Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE         2
38
39 struct scsi_host_sg_pool {
40         size_t          size;
41         char            *name;
42         struct kmem_cache       *slab;
43         mempool_t       *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51         SP(8),
52         SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54         SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56         SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58         SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65         SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 /*
72  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73  * not change behaviour from the previous unplug mechanism, experimentation
74  * may prove this needs changing.
75  */
76 #define SCSI_QUEUE_DELAY        3
77
78 /*
79  * Function:    scsi_unprep_request()
80  *
81  * Purpose:     Remove all preparation done for a request, including its
82  *              associated scsi_cmnd, so that it can be requeued.
83  *
84  * Arguments:   req     - request to unprepare
85  *
86  * Lock status: Assumed that no locks are held upon entry.
87  *
88  * Returns:     Nothing.
89  */
90 static void scsi_unprep_request(struct request *req)
91 {
92         struct scsi_cmnd *cmd = req->special;
93
94         blk_unprep_request(req);
95         req->special = NULL;
96
97         scsi_put_command(cmd);
98 }
99
100 /**
101  * __scsi_queue_insert - private queue insertion
102  * @cmd: The SCSI command being requeued
103  * @reason:  The reason for the requeue
104  * @unbusy: Whether the queue should be unbusied
105  *
106  * This is a private queue insertion.  The public interface
107  * scsi_queue_insert() always assumes the queue should be unbusied
108  * because it's always called before the completion.  This function is
109  * for a requeue after completion, which should only occur in this
110  * file.
111  */
112 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
113 {
114         struct Scsi_Host *host = cmd->device->host;
115         struct scsi_device *device = cmd->device;
116         struct scsi_target *starget = scsi_target(device);
117         struct request_queue *q = device->request_queue;
118         unsigned long flags;
119
120         SCSI_LOG_MLQUEUE(1,
121                  printk("Inserting command %p into mlqueue\n", cmd));
122
123         /*
124          * Set the appropriate busy bit for the device/host.
125          *
126          * If the host/device isn't busy, assume that something actually
127          * completed, and that we should be able to queue a command now.
128          *
129          * Note that the prior mid-layer assumption that any host could
130          * always queue at least one command is now broken.  The mid-layer
131          * will implement a user specifiable stall (see
132          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133          * if a command is requeued with no other commands outstanding
134          * either for the device or for the host.
135          */
136         switch (reason) {
137         case SCSI_MLQUEUE_HOST_BUSY:
138                 host->host_blocked = host->max_host_blocked;
139                 break;
140         case SCSI_MLQUEUE_DEVICE_BUSY:
141         case SCSI_MLQUEUE_EH_RETRY:
142                 device->device_blocked = device->max_device_blocked;
143                 break;
144         case SCSI_MLQUEUE_TARGET_BUSY:
145                 starget->target_blocked = starget->max_target_blocked;
146                 break;
147         }
148
149         /*
150          * Decrement the counters, since these commands are no longer
151          * active on the host/device.
152          */
153         if (unbusy)
154                 scsi_device_unbusy(device);
155
156         /*
157          * Requeue this command.  It will go before all other commands
158          * that are already in the queue. Schedule requeue work under
159          * lock such that the kblockd_schedule_work() call happens
160          * before blk_cleanup_queue() finishes.
161          */
162         spin_lock_irqsave(q->queue_lock, flags);
163         blk_requeue_request(q, cmd->request);
164         kblockd_schedule_work(q, &device->requeue_work);
165         spin_unlock_irqrestore(q->queue_lock, flags);
166 }
167
168 /*
169  * Function:    scsi_queue_insert()
170  *
171  * Purpose:     Insert a command in the midlevel queue.
172  *
173  * Arguments:   cmd    - command that we are adding to queue.
174  *              reason - why we are inserting command to queue.
175  *
176  * Lock status: Assumed that lock is not held upon entry.
177  *
178  * Returns:     Nothing.
179  *
180  * Notes:       We do this for one of two cases.  Either the host is busy
181  *              and it cannot accept any more commands for the time being,
182  *              or the device returned QUEUE_FULL and can accept no more
183  *              commands.
184  * Notes:       This could be called either from an interrupt context or a
185  *              normal process context.
186  */
187 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
188 {
189         __scsi_queue_insert(cmd, reason, 1);
190 }
191 /**
192  * scsi_execute - insert request and wait for the result
193  * @sdev:       scsi device
194  * @cmd:        scsi command
195  * @data_direction: data direction
196  * @buffer:     data buffer
197  * @bufflen:    len of buffer
198  * @sense:      optional sense buffer
199  * @timeout:    request timeout in seconds
200  * @retries:    number of times to retry request
201  * @flags:      or into request flags;
202  * @resid:      optional residual length
203  *
204  * returns the req->errors value which is the scsi_cmnd result
205  * field.
206  */
207 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
208                  int data_direction, void *buffer, unsigned bufflen,
209                  unsigned char *sense, int timeout, int retries, int flags,
210                  int *resid)
211 {
212         struct request *req;
213         int write = (data_direction == DMA_TO_DEVICE);
214         int ret = DRIVER_ERROR << 24;
215
216         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
217         if (!req)
218                 return ret;
219
220         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
221                                         buffer, bufflen, __GFP_WAIT))
222                 goto out;
223
224         req->cmd_len = COMMAND_SIZE(cmd[0]);
225         memcpy(req->cmd, cmd, req->cmd_len);
226         req->sense = sense;
227         req->sense_len = 0;
228         req->retries = retries;
229         req->timeout = timeout;
230         req->cmd_type = REQ_TYPE_BLOCK_PC;
231         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
232
233         /*
234          * head injection *required* here otherwise quiesce won't work
235          */
236         blk_execute_rq(req->q, NULL, req, 1);
237
238         /*
239          * Some devices (USB mass-storage in particular) may transfer
240          * garbage data together with a residue indicating that the data
241          * is invalid.  Prevent the garbage from being misinterpreted
242          * and prevent security leaks by zeroing out the excess data.
243          */
244         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
245                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
246
247         if (resid)
248                 *resid = req->resid_len;
249         ret = req->errors;
250  out:
251         blk_put_request(req);
252
253         return ret;
254 }
255 EXPORT_SYMBOL(scsi_execute);
256
257
258 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
259                      int data_direction, void *buffer, unsigned bufflen,
260                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
261                      int *resid)
262 {
263         char *sense = NULL;
264         int result;
265         
266         if (sshdr) {
267                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
268                 if (!sense)
269                         return DRIVER_ERROR << 24;
270         }
271         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
272                               sense, timeout, retries, 0, resid);
273         if (sshdr)
274                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
275
276         kfree(sense);
277         return result;
278 }
279 EXPORT_SYMBOL(scsi_execute_req);
280
281 /*
282  * Function:    scsi_init_cmd_errh()
283  *
284  * Purpose:     Initialize cmd fields related to error handling.
285  *
286  * Arguments:   cmd     - command that is ready to be queued.
287  *
288  * Notes:       This function has the job of initializing a number of
289  *              fields related to error handling.   Typically this will
290  *              be called once for each command, as required.
291  */
292 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
293 {
294         cmd->serial_number = 0;
295         scsi_set_resid(cmd, 0);
296         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
297         if (cmd->cmd_len == 0)
298                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
299 }
300
301 void scsi_device_unbusy(struct scsi_device *sdev)
302 {
303         struct Scsi_Host *shost = sdev->host;
304         struct scsi_target *starget = scsi_target(sdev);
305         unsigned long flags;
306
307         spin_lock_irqsave(shost->host_lock, flags);
308         shost->host_busy--;
309         starget->target_busy--;
310         if (unlikely(scsi_host_in_recovery(shost) &&
311                      (shost->host_failed || shost->host_eh_scheduled)))
312                 scsi_eh_wakeup(shost);
313         spin_unlock(shost->host_lock);
314         spin_lock(sdev->request_queue->queue_lock);
315         sdev->device_busy--;
316         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
317 }
318
319 /*
320  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
321  * and call blk_run_queue for all the scsi_devices on the target -
322  * including current_sdev first.
323  *
324  * Called with *no* scsi locks held.
325  */
326 static void scsi_single_lun_run(struct scsi_device *current_sdev)
327 {
328         struct Scsi_Host *shost = current_sdev->host;
329         struct scsi_device *sdev, *tmp;
330         struct scsi_target *starget = scsi_target(current_sdev);
331         unsigned long flags;
332
333         spin_lock_irqsave(shost->host_lock, flags);
334         starget->starget_sdev_user = NULL;
335         spin_unlock_irqrestore(shost->host_lock, flags);
336
337         /*
338          * Call blk_run_queue for all LUNs on the target, starting with
339          * current_sdev. We race with others (to set starget_sdev_user),
340          * but in most cases, we will be first. Ideally, each LU on the
341          * target would get some limited time or requests on the target.
342          */
343         blk_run_queue(current_sdev->request_queue);
344
345         spin_lock_irqsave(shost->host_lock, flags);
346         if (starget->starget_sdev_user)
347                 goto out;
348         list_for_each_entry_safe(sdev, tmp, &starget->devices,
349                         same_target_siblings) {
350                 if (sdev == current_sdev)
351                         continue;
352                 if (scsi_device_get(sdev))
353                         continue;
354
355                 spin_unlock_irqrestore(shost->host_lock, flags);
356                 blk_run_queue(sdev->request_queue);
357                 spin_lock_irqsave(shost->host_lock, flags);
358         
359                 scsi_device_put(sdev);
360         }
361  out:
362         spin_unlock_irqrestore(shost->host_lock, flags);
363 }
364
365 static inline int scsi_device_is_busy(struct scsi_device *sdev)
366 {
367         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
368                 return 1;
369
370         return 0;
371 }
372
373 static inline int scsi_target_is_busy(struct scsi_target *starget)
374 {
375         return ((starget->can_queue > 0 &&
376                  starget->target_busy >= starget->can_queue) ||
377                  starget->target_blocked);
378 }
379
380 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
381 {
382         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
383             shost->host_blocked || shost->host_self_blocked)
384                 return 1;
385
386         return 0;
387 }
388
389 /*
390  * Function:    scsi_run_queue()
391  *
392  * Purpose:     Select a proper request queue to serve next
393  *
394  * Arguments:   q       - last request's queue
395  *
396  * Returns:     Nothing
397  *
398  * Notes:       The previous command was completely finished, start
399  *              a new one if possible.
400  */
401 static void scsi_run_queue(struct request_queue *q)
402 {
403         struct scsi_device *sdev = q->queuedata;
404         struct Scsi_Host *shost;
405         LIST_HEAD(starved_list);
406         unsigned long flags;
407
408         shost = sdev->host;
409         if (scsi_target(sdev)->single_lun)
410                 scsi_single_lun_run(sdev);
411
412         spin_lock_irqsave(shost->host_lock, flags);
413         list_splice_init(&shost->starved_list, &starved_list);
414
415         while (!list_empty(&starved_list)) {
416                 /*
417                  * As long as shost is accepting commands and we have
418                  * starved queues, call blk_run_queue. scsi_request_fn
419                  * drops the queue_lock and can add us back to the
420                  * starved_list.
421                  *
422                  * host_lock protects the starved_list and starved_entry.
423                  * scsi_request_fn must get the host_lock before checking
424                  * or modifying starved_list or starved_entry.
425                  */
426                 if (scsi_host_is_busy(shost))
427                         break;
428
429                 sdev = list_entry(starved_list.next,
430                                   struct scsi_device, starved_entry);
431                 list_del_init(&sdev->starved_entry);
432                 if (scsi_target_is_busy(scsi_target(sdev))) {
433                         list_move_tail(&sdev->starved_entry,
434                                        &shost->starved_list);
435                         continue;
436                 }
437
438                 spin_unlock(shost->host_lock);
439                 spin_lock(sdev->request_queue->queue_lock);
440                 __blk_run_queue(sdev->request_queue);
441                 spin_unlock(sdev->request_queue->queue_lock);
442                 spin_lock(shost->host_lock);
443         }
444         /* put any unprocessed entries back */
445         list_splice(&starved_list, &shost->starved_list);
446         spin_unlock_irqrestore(shost->host_lock, flags);
447
448         blk_run_queue(q);
449 }
450
451 void scsi_requeue_run_queue(struct work_struct *work)
452 {
453         struct scsi_device *sdev;
454         struct request_queue *q;
455
456         sdev = container_of(work, struct scsi_device, requeue_work);
457         q = sdev->request_queue;
458         scsi_run_queue(q);
459 }
460
461 /*
462  * Function:    scsi_requeue_command()
463  *
464  * Purpose:     Handle post-processing of completed commands.
465  *
466  * Arguments:   q       - queue to operate on
467  *              cmd     - command that may need to be requeued.
468  *
469  * Returns:     Nothing
470  *
471  * Notes:       After command completion, there may be blocks left
472  *              over which weren't finished by the previous command
473  *              this can be for a number of reasons - the main one is
474  *              I/O errors in the middle of the request, in which case
475  *              we need to request the blocks that come after the bad
476  *              sector.
477  * Notes:       Upon return, cmd is a stale pointer.
478  */
479 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
480 {
481         struct scsi_device *sdev = cmd->device;
482         struct request *req = cmd->request;
483         unsigned long flags;
484
485         /*
486          * We need to hold a reference on the device to avoid the queue being
487          * killed after the unlock and before scsi_run_queue is invoked which
488          * may happen because scsi_unprep_request() puts the command which
489          * releases its reference on the device.
490          */
491         get_device(&sdev->sdev_gendev);
492
493         spin_lock_irqsave(q->queue_lock, flags);
494         scsi_unprep_request(req);
495         blk_requeue_request(q, req);
496         spin_unlock_irqrestore(q->queue_lock, flags);
497
498         scsi_run_queue(q);
499
500         put_device(&sdev->sdev_gendev);
501 }
502
503 void scsi_next_command(struct scsi_cmnd *cmd)
504 {
505         struct scsi_device *sdev = cmd->device;
506         struct request_queue *q = sdev->request_queue;
507
508         /* need to hold a reference on the device before we let go of the cmd */
509         get_device(&sdev->sdev_gendev);
510
511         scsi_put_command(cmd);
512         scsi_run_queue(q);
513
514         /* ok to remove device now */
515         put_device(&sdev->sdev_gendev);
516 }
517
518 void scsi_run_host_queues(struct Scsi_Host *shost)
519 {
520         struct scsi_device *sdev;
521
522         shost_for_each_device(sdev, shost)
523                 scsi_run_queue(sdev->request_queue);
524 }
525
526 static void __scsi_release_buffers(struct scsi_cmnd *, int);
527
528 /*
529  * Function:    scsi_end_request()
530  *
531  * Purpose:     Post-processing of completed commands (usually invoked at end
532  *              of upper level post-processing and scsi_io_completion).
533  *
534  * Arguments:   cmd      - command that is complete.
535  *              error    - 0 if I/O indicates success, < 0 for I/O error.
536  *              bytes    - number of bytes of completed I/O
537  *              requeue  - indicates whether we should requeue leftovers.
538  *
539  * Lock status: Assumed that lock is not held upon entry.
540  *
541  * Returns:     cmd if requeue required, NULL otherwise.
542  *
543  * Notes:       This is called for block device requests in order to
544  *              mark some number of sectors as complete.
545  * 
546  *              We are guaranteeing that the request queue will be goosed
547  *              at some point during this call.
548  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
549  */
550 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
551                                           int bytes, int requeue)
552 {
553         struct request_queue *q = cmd->device->request_queue;
554         struct request *req = cmd->request;
555
556         /*
557          * If there are blocks left over at the end, set up the command
558          * to queue the remainder of them.
559          */
560         if (blk_end_request(req, error, bytes)) {
561                 /* kill remainder if no retrys */
562                 if (error && scsi_noretry_cmd(cmd))
563                         blk_end_request_all(req, error);
564                 else {
565                         if (requeue) {
566                                 /*
567                                  * Bleah.  Leftovers again.  Stick the
568                                  * leftovers in the front of the
569                                  * queue, and goose the queue again.
570                                  */
571                                 scsi_release_buffers(cmd);
572                                 scsi_requeue_command(q, cmd);
573                                 cmd = NULL;
574                         }
575                         return cmd;
576                 }
577         }
578
579         /*
580          * This will goose the queue request function at the end, so we don't
581          * need to worry about launching another command.
582          */
583         __scsi_release_buffers(cmd, 0);
584         scsi_next_command(cmd);
585         return NULL;
586 }
587
588 static inline unsigned int scsi_sgtable_index(unsigned short nents)
589 {
590         unsigned int index;
591
592         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
593
594         if (nents <= 8)
595                 index = 0;
596         else
597                 index = get_count_order(nents) - 3;
598
599         return index;
600 }
601
602 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
603 {
604         struct scsi_host_sg_pool *sgp;
605
606         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
607         mempool_free(sgl, sgp->pool);
608 }
609
610 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
611 {
612         struct scsi_host_sg_pool *sgp;
613
614         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
615         return mempool_alloc(sgp->pool, gfp_mask);
616 }
617
618 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
619                               gfp_t gfp_mask)
620 {
621         int ret;
622
623         BUG_ON(!nents);
624
625         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
626                                gfp_mask, scsi_sg_alloc);
627         if (unlikely(ret))
628                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
629                                 scsi_sg_free);
630
631         return ret;
632 }
633
634 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
635 {
636         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
637 }
638
639 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
640 {
641
642         if (cmd->sdb.table.nents)
643                 scsi_free_sgtable(&cmd->sdb);
644
645         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
646
647         if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
648                 struct scsi_data_buffer *bidi_sdb =
649                         cmd->request->next_rq->special;
650                 scsi_free_sgtable(bidi_sdb);
651                 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
652                 cmd->request->next_rq->special = NULL;
653         }
654
655         if (scsi_prot_sg_count(cmd))
656                 scsi_free_sgtable(cmd->prot_sdb);
657 }
658
659 /*
660  * Function:    scsi_release_buffers()
661  *
662  * Purpose:     Completion processing for block device I/O requests.
663  *
664  * Arguments:   cmd     - command that we are bailing.
665  *
666  * Lock status: Assumed that no lock is held upon entry.
667  *
668  * Returns:     Nothing
669  *
670  * Notes:       In the event that an upper level driver rejects a
671  *              command, we must release resources allocated during
672  *              the __init_io() function.  Primarily this would involve
673  *              the scatter-gather table, and potentially any bounce
674  *              buffers.
675  */
676 void scsi_release_buffers(struct scsi_cmnd *cmd)
677 {
678         __scsi_release_buffers(cmd, 1);
679 }
680 EXPORT_SYMBOL(scsi_release_buffers);
681
682 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
683 {
684         int error = 0;
685
686         switch(host_byte(result)) {
687         case DID_TRANSPORT_FAILFAST:
688                 error = -ENOLINK;
689                 break;
690         case DID_TARGET_FAILURE:
691                 set_host_byte(cmd, DID_OK);
692                 error = -EREMOTEIO;
693                 break;
694         case DID_NEXUS_FAILURE:
695                 set_host_byte(cmd, DID_OK);
696                 error = -EBADE;
697                 break;
698         default:
699                 error = -EIO;
700                 break;
701         }
702
703         return error;
704 }
705
706 /*
707  * Function:    scsi_io_completion()
708  *
709  * Purpose:     Completion processing for block device I/O requests.
710  *
711  * Arguments:   cmd   - command that is finished.
712  *
713  * Lock status: Assumed that no lock is held upon entry.
714  *
715  * Returns:     Nothing
716  *
717  * Notes:       This function is matched in terms of capabilities to
718  *              the function that created the scatter-gather list.
719  *              In other words, if there are no bounce buffers
720  *              (the normal case for most drivers), we don't need
721  *              the logic to deal with cleaning up afterwards.
722  *
723  *              We must call scsi_end_request().  This will finish off
724  *              the specified number of sectors.  If we are done, the
725  *              command block will be released and the queue function
726  *              will be goosed.  If we are not done then we have to
727  *              figure out what to do next:
728  *
729  *              a) We can call scsi_requeue_command().  The request
730  *                 will be unprepared and put back on the queue.  Then
731  *                 a new command will be created for it.  This should
732  *                 be used if we made forward progress, or if we want
733  *                 to switch from READ(10) to READ(6) for example.
734  *
735  *              b) We can call scsi_queue_insert().  The request will
736  *                 be put back on the queue and retried using the same
737  *                 command as before, possibly after a delay.
738  *
739  *              c) We can call blk_end_request() with -EIO to fail
740  *                 the remainder of the request.
741  */
742 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
743 {
744         int result = cmd->result;
745         struct request_queue *q = cmd->device->request_queue;
746         struct request *req = cmd->request;
747         int error = 0;
748         struct scsi_sense_hdr sshdr;
749         int sense_valid = 0;
750         int sense_deferred = 0;
751         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
752               ACTION_DELAYED_RETRY} action;
753         char *description = NULL;
754
755         if (result) {
756                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
757                 if (sense_valid)
758                         sense_deferred = scsi_sense_is_deferred(&sshdr);
759         }
760
761         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
762                 req->errors = result;
763                 if (result) {
764                         if (sense_valid && req->sense) {
765                                 /*
766                                  * SG_IO wants current and deferred errors
767                                  */
768                                 int len = 8 + cmd->sense_buffer[7];
769
770                                 if (len > SCSI_SENSE_BUFFERSIZE)
771                                         len = SCSI_SENSE_BUFFERSIZE;
772                                 memcpy(req->sense, cmd->sense_buffer,  len);
773                                 req->sense_len = len;
774                         }
775                         if (!sense_deferred)
776                                 error = __scsi_error_from_host_byte(cmd, result);
777                 }
778
779                 req->resid_len = scsi_get_resid(cmd);
780
781                 if (scsi_bidi_cmnd(cmd)) {
782                         /*
783                          * Bidi commands Must be complete as a whole,
784                          * both sides at once.
785                          */
786                         req->next_rq->resid_len = scsi_in(cmd)->resid;
787
788                         scsi_release_buffers(cmd);
789                         blk_end_request_all(req, 0);
790
791                         scsi_next_command(cmd);
792                         return;
793                 }
794         }
795
796         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
797         BUG_ON(blk_bidi_rq(req));
798
799         /*
800          * Next deal with any sectors which we were able to correctly
801          * handle.
802          */
803         SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
804                                       "%d bytes done.\n",
805                                       blk_rq_sectors(req), good_bytes));
806
807         /*
808          * Recovered errors need reporting, but they're always treated
809          * as success, so fiddle the result code here.  For BLOCK_PC
810          * we already took a copy of the original into rq->errors which
811          * is what gets returned to the user
812          */
813         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
814                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
815                  * print since caller wants ATA registers. Only occurs on
816                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
817                  */
818                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
819                         ;
820                 else if (!(req->cmd_flags & REQ_QUIET))
821                         scsi_print_sense("", cmd);
822                 result = 0;
823                 /* BLOCK_PC may have set error */
824                 error = 0;
825         }
826
827         /*
828          * A number of bytes were successfully read.  If there
829          * are leftovers and there is some kind of error
830          * (result != 0), retry the rest.
831          */
832         if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
833                 return;
834
835         error = __scsi_error_from_host_byte(cmd, result);
836
837         if (host_byte(result) == DID_RESET) {
838                 /* Third party bus reset or reset for error recovery
839                  * reasons.  Just retry the command and see what
840                  * happens.
841                  */
842                 action = ACTION_RETRY;
843         } else if (sense_valid && !sense_deferred) {
844                 switch (sshdr.sense_key) {
845                 case UNIT_ATTENTION:
846                         if (cmd->device->removable) {
847                                 /* Detected disc change.  Set a bit
848                                  * and quietly refuse further access.
849                                  */
850                                 cmd->device->changed = 1;
851                                 description = "Media Changed";
852                                 action = ACTION_FAIL;
853                         } else {
854                                 /* Must have been a power glitch, or a
855                                  * bus reset.  Could not have been a
856                                  * media change, so we just retry the
857                                  * command and see what happens.
858                                  */
859                                 action = ACTION_RETRY;
860                         }
861                         break;
862                 case ILLEGAL_REQUEST:
863                         /* If we had an ILLEGAL REQUEST returned, then
864                          * we may have performed an unsupported
865                          * command.  The only thing this should be
866                          * would be a ten byte read where only a six
867                          * byte read was supported.  Also, on a system
868                          * where READ CAPACITY failed, we may have
869                          * read past the end of the disk.
870                          */
871                         if ((cmd->device->use_10_for_rw &&
872                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
873                             (cmd->cmnd[0] == READ_10 ||
874                              cmd->cmnd[0] == WRITE_10)) {
875                                 /* This will issue a new 6-byte command. */
876                                 cmd->device->use_10_for_rw = 0;
877                                 action = ACTION_REPREP;
878                         } else if (sshdr.asc == 0x10) /* DIX */ {
879                                 description = "Host Data Integrity Failure";
880                                 action = ACTION_FAIL;
881                                 error = -EILSEQ;
882                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
883                         } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
884                                    (cmd->cmnd[0] == UNMAP ||
885                                     cmd->cmnd[0] == WRITE_SAME_16 ||
886                                     cmd->cmnd[0] == WRITE_SAME)) {
887                                 description = "Discard failure";
888                                 action = ACTION_FAIL;
889                                 error = -EREMOTEIO;
890                         } else
891                                 action = ACTION_FAIL;
892                         break;
893                 case ABORTED_COMMAND:
894                         action = ACTION_FAIL;
895                         if (sshdr.asc == 0x10) { /* DIF */
896                                 description = "Target Data Integrity Failure";
897                                 error = -EILSEQ;
898                         }
899                         break;
900                 case NOT_READY:
901                         /* If the device is in the process of becoming
902                          * ready, or has a temporary blockage, retry.
903                          */
904                         if (sshdr.asc == 0x04) {
905                                 switch (sshdr.ascq) {
906                                 case 0x01: /* becoming ready */
907                                 case 0x04: /* format in progress */
908                                 case 0x05: /* rebuild in progress */
909                                 case 0x06: /* recalculation in progress */
910                                 case 0x07: /* operation in progress */
911                                 case 0x08: /* Long write in progress */
912                                 case 0x09: /* self test in progress */
913                                 case 0x14: /* space allocation in progress */
914                                         action = ACTION_DELAYED_RETRY;
915                                         break;
916                                 default:
917                                         description = "Device not ready";
918                                         action = ACTION_FAIL;
919                                         break;
920                                 }
921                         } else {
922                                 description = "Device not ready";
923                                 action = ACTION_FAIL;
924                         }
925                         break;
926                 case VOLUME_OVERFLOW:
927                         /* See SSC3rXX or current. */
928                         action = ACTION_FAIL;
929                         break;
930                 default:
931                         description = "Unhandled sense code";
932                         action = ACTION_FAIL;
933                         break;
934                 }
935         } else {
936                 description = "Unhandled error code";
937                 action = ACTION_FAIL;
938         }
939
940         switch (action) {
941         case ACTION_FAIL:
942                 /* Give up and fail the remainder of the request */
943                 scsi_release_buffers(cmd);
944                 if (!(req->cmd_flags & REQ_QUIET)) {
945                         if (description)
946                                 scmd_printk(KERN_INFO, cmd, "%s\n",
947                                             description);
948                         scsi_print_result(cmd);
949                         if (driver_byte(result) & DRIVER_SENSE)
950                                 scsi_print_sense("", cmd);
951                         scsi_print_command(cmd);
952                 }
953                 if (blk_end_request_err(req, error))
954                         scsi_requeue_command(q, cmd);
955                 else
956                         scsi_next_command(cmd);
957                 break;
958         case ACTION_REPREP:
959                 /* Unprep the request and put it back at the head of the queue.
960                  * A new command will be prepared and issued.
961                  */
962                 scsi_release_buffers(cmd);
963                 scsi_requeue_command(q, cmd);
964                 break;
965         case ACTION_RETRY:
966                 /* Retry the same command immediately */
967                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
968                 break;
969         case ACTION_DELAYED_RETRY:
970                 /* Retry the same command after a delay */
971                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
972                 break;
973         }
974 }
975
976 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
977                              gfp_t gfp_mask)
978 {
979         int count;
980
981         /*
982          * If sg table allocation fails, requeue request later.
983          */
984         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
985                                         gfp_mask))) {
986                 return BLKPREP_DEFER;
987         }
988
989         req->buffer = NULL;
990
991         /* 
992          * Next, walk the list, and fill in the addresses and sizes of
993          * each segment.
994          */
995         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
996         BUG_ON(count > sdb->table.nents);
997         sdb->table.nents = count;
998         sdb->length = blk_rq_bytes(req);
999         return BLKPREP_OK;
1000 }
1001
1002 /*
1003  * Function:    scsi_init_io()
1004  *
1005  * Purpose:     SCSI I/O initialize function.
1006  *
1007  * Arguments:   cmd   - Command descriptor we wish to initialize
1008  *
1009  * Returns:     0 on success
1010  *              BLKPREP_DEFER if the failure is retryable
1011  *              BLKPREP_KILL if the failure is fatal
1012  */
1013 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1014 {
1015         struct request *rq = cmd->request;
1016
1017         int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1018         if (error)
1019                 goto err_exit;
1020
1021         if (blk_bidi_rq(rq)) {
1022                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1023                         scsi_sdb_cache, GFP_ATOMIC);
1024                 if (!bidi_sdb) {
1025                         error = BLKPREP_DEFER;
1026                         goto err_exit;
1027                 }
1028
1029                 rq->next_rq->special = bidi_sdb;
1030                 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1031                 if (error)
1032                         goto err_exit;
1033         }
1034
1035         if (blk_integrity_rq(rq)) {
1036                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1037                 int ivecs, count;
1038
1039                 BUG_ON(prot_sdb == NULL);
1040                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1041
1042                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1043                         error = BLKPREP_DEFER;
1044                         goto err_exit;
1045                 }
1046
1047                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1048                                                 prot_sdb->table.sgl);
1049                 BUG_ON(unlikely(count > ivecs));
1050                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1051
1052                 cmd->prot_sdb = prot_sdb;
1053                 cmd->prot_sdb->table.nents = count;
1054         }
1055
1056         return BLKPREP_OK ;
1057
1058 err_exit:
1059         scsi_release_buffers(cmd);
1060         cmd->request->special = NULL;
1061         scsi_put_command(cmd);
1062         return error;
1063 }
1064 EXPORT_SYMBOL(scsi_init_io);
1065
1066 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1067                 struct request *req)
1068 {
1069         struct scsi_cmnd *cmd;
1070
1071         if (!req->special) {
1072                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1073                 if (unlikely(!cmd))
1074                         return NULL;
1075                 req->special = cmd;
1076         } else {
1077                 cmd = req->special;
1078         }
1079
1080         /* pull a tag out of the request if we have one */
1081         cmd->tag = req->tag;
1082         cmd->request = req;
1083
1084         cmd->cmnd = req->cmd;
1085         cmd->prot_op = SCSI_PROT_NORMAL;
1086
1087         return cmd;
1088 }
1089
1090 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1091 {
1092         struct scsi_cmnd *cmd;
1093         int ret = scsi_prep_state_check(sdev, req);
1094
1095         if (ret != BLKPREP_OK)
1096                 return ret;
1097
1098         cmd = scsi_get_cmd_from_req(sdev, req);
1099         if (unlikely(!cmd))
1100                 return BLKPREP_DEFER;
1101
1102         /*
1103          * BLOCK_PC requests may transfer data, in which case they must
1104          * a bio attached to them.  Or they might contain a SCSI command
1105          * that does not transfer data, in which case they may optionally
1106          * submit a request without an attached bio.
1107          */
1108         if (req->bio) {
1109                 int ret;
1110
1111                 BUG_ON(!req->nr_phys_segments);
1112
1113                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1114                 if (unlikely(ret))
1115                         return ret;
1116         } else {
1117                 BUG_ON(blk_rq_bytes(req));
1118
1119                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1120                 req->buffer = NULL;
1121         }
1122
1123         cmd->cmd_len = req->cmd_len;
1124         if (!blk_rq_bytes(req))
1125                 cmd->sc_data_direction = DMA_NONE;
1126         else if (rq_data_dir(req) == WRITE)
1127                 cmd->sc_data_direction = DMA_TO_DEVICE;
1128         else
1129                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1130         
1131         cmd->transfersize = blk_rq_bytes(req);
1132         cmd->allowed = req->retries;
1133         return BLKPREP_OK;
1134 }
1135 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1136
1137 /*
1138  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1139  * from filesystems that still need to be translated to SCSI CDBs from
1140  * the ULD.
1141  */
1142 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1143 {
1144         struct scsi_cmnd *cmd;
1145         int ret = scsi_prep_state_check(sdev, req);
1146
1147         if (ret != BLKPREP_OK)
1148                 return ret;
1149
1150         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1151                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1152                 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1153                 if (ret != BLKPREP_OK)
1154                         return ret;
1155         }
1156
1157         /*
1158          * Filesystem requests must transfer data.
1159          */
1160         BUG_ON(!req->nr_phys_segments);
1161
1162         cmd = scsi_get_cmd_from_req(sdev, req);
1163         if (unlikely(!cmd))
1164                 return BLKPREP_DEFER;
1165
1166         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1167         return scsi_init_io(cmd, GFP_ATOMIC);
1168 }
1169 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1170
1171 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1172 {
1173         int ret = BLKPREP_OK;
1174
1175         /*
1176          * If the device is not in running state we will reject some
1177          * or all commands.
1178          */
1179         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1180                 switch (sdev->sdev_state) {
1181                 case SDEV_OFFLINE:
1182                 case SDEV_TRANSPORT_OFFLINE:
1183                         /*
1184                          * If the device is offline we refuse to process any
1185                          * commands.  The device must be brought online
1186                          * before trying any recovery commands.
1187                          */
1188                         sdev_printk(KERN_ERR, sdev,
1189                                     "rejecting I/O to offline device\n");
1190                         ret = BLKPREP_KILL;
1191                         break;
1192                 case SDEV_DEL:
1193                         /*
1194                          * If the device is fully deleted, we refuse to
1195                          * process any commands as well.
1196                          */
1197                         sdev_printk(KERN_ERR, sdev,
1198                                     "rejecting I/O to dead device\n");
1199                         ret = BLKPREP_KILL;
1200                         break;
1201                 case SDEV_QUIESCE:
1202                 case SDEV_BLOCK:
1203                 case SDEV_CREATED_BLOCK:
1204                         /*
1205                          * If the devices is blocked we defer normal commands.
1206                          */
1207                         if (!(req->cmd_flags & REQ_PREEMPT))
1208                                 ret = BLKPREP_DEFER;
1209                         break;
1210                 default:
1211                         /*
1212                          * For any other not fully online state we only allow
1213                          * special commands.  In particular any user initiated
1214                          * command is not allowed.
1215                          */
1216                         if (!(req->cmd_flags & REQ_PREEMPT))
1217                                 ret = BLKPREP_KILL;
1218                         break;
1219                 }
1220         }
1221         return ret;
1222 }
1223 EXPORT_SYMBOL(scsi_prep_state_check);
1224
1225 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1226 {
1227         struct scsi_device *sdev = q->queuedata;
1228
1229         switch (ret) {
1230         case BLKPREP_KILL:
1231                 req->errors = DID_NO_CONNECT << 16;
1232                 /* release the command and kill it */
1233                 if (req->special) {
1234                         struct scsi_cmnd *cmd = req->special;
1235                         scsi_release_buffers(cmd);
1236                         scsi_put_command(cmd);
1237                         req->special = NULL;
1238                 }
1239                 break;
1240         case BLKPREP_DEFER:
1241                 /*
1242                  * If we defer, the blk_peek_request() returns NULL, but the
1243                  * queue must be restarted, so we schedule a callback to happen
1244                  * shortly.
1245                  */
1246                 if (sdev->device_busy == 0)
1247                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1248                 break;
1249         default:
1250                 req->cmd_flags |= REQ_DONTPREP;
1251         }
1252
1253         return ret;
1254 }
1255 EXPORT_SYMBOL(scsi_prep_return);
1256
1257 int scsi_prep_fn(struct request_queue *q, struct request *req)
1258 {
1259         struct scsi_device *sdev = q->queuedata;
1260         int ret = BLKPREP_KILL;
1261
1262         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1263                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1264         return scsi_prep_return(q, req, ret);
1265 }
1266 EXPORT_SYMBOL(scsi_prep_fn);
1267
1268 /*
1269  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1270  * return 0.
1271  *
1272  * Called with the queue_lock held.
1273  */
1274 static inline int scsi_dev_queue_ready(struct request_queue *q,
1275                                   struct scsi_device *sdev)
1276 {
1277         if (sdev->device_busy == 0 && sdev->device_blocked) {
1278                 /*
1279                  * unblock after device_blocked iterates to zero
1280                  */
1281                 if (--sdev->device_blocked == 0) {
1282                         SCSI_LOG_MLQUEUE(3,
1283                                    sdev_printk(KERN_INFO, sdev,
1284                                    "unblocking device at zero depth\n"));
1285                 } else {
1286                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1287                         return 0;
1288                 }
1289         }
1290         if (scsi_device_is_busy(sdev))
1291                 return 0;
1292
1293         return 1;
1294 }
1295
1296
1297 /*
1298  * scsi_target_queue_ready: checks if there we can send commands to target
1299  * @sdev: scsi device on starget to check.
1300  *
1301  * Called with the host lock held.
1302  */
1303 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1304                                            struct scsi_device *sdev)
1305 {
1306         struct scsi_target *starget = scsi_target(sdev);
1307
1308         if (starget->single_lun) {
1309                 if (starget->starget_sdev_user &&
1310                     starget->starget_sdev_user != sdev)
1311                         return 0;
1312                 starget->starget_sdev_user = sdev;
1313         }
1314
1315         if (starget->target_busy == 0 && starget->target_blocked) {
1316                 /*
1317                  * unblock after target_blocked iterates to zero
1318                  */
1319                 if (--starget->target_blocked == 0) {
1320                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1321                                          "unblocking target at zero depth\n"));
1322                 } else
1323                         return 0;
1324         }
1325
1326         if (scsi_target_is_busy(starget)) {
1327                 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1328                 return 0;
1329         }
1330
1331         return 1;
1332 }
1333
1334 /*
1335  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1336  * return 0. We must end up running the queue again whenever 0 is
1337  * returned, else IO can hang.
1338  *
1339  * Called with host_lock held.
1340  */
1341 static inline int scsi_host_queue_ready(struct request_queue *q,
1342                                    struct Scsi_Host *shost,
1343                                    struct scsi_device *sdev)
1344 {
1345         if (scsi_host_in_recovery(shost))
1346                 return 0;
1347         if (shost->host_busy == 0 && shost->host_blocked) {
1348                 /*
1349                  * unblock after host_blocked iterates to zero
1350                  */
1351                 if (--shost->host_blocked == 0) {
1352                         SCSI_LOG_MLQUEUE(3,
1353                                 printk("scsi%d unblocking host at zero depth\n",
1354                                         shost->host_no));
1355                 } else {
1356                         return 0;
1357                 }
1358         }
1359         if (scsi_host_is_busy(shost)) {
1360                 if (list_empty(&sdev->starved_entry))
1361                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1362                 return 0;
1363         }
1364
1365         /* We're OK to process the command, so we can't be starved */
1366         if (!list_empty(&sdev->starved_entry))
1367                 list_del_init(&sdev->starved_entry);
1368
1369         return 1;
1370 }
1371
1372 /*
1373  * Busy state exporting function for request stacking drivers.
1374  *
1375  * For efficiency, no lock is taken to check the busy state of
1376  * shost/starget/sdev, since the returned value is not guaranteed and
1377  * may be changed after request stacking drivers call the function,
1378  * regardless of taking lock or not.
1379  *
1380  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1381  * needs to return 'not busy'. Otherwise, request stacking drivers
1382  * may hold requests forever.
1383  */
1384 static int scsi_lld_busy(struct request_queue *q)
1385 {
1386         struct scsi_device *sdev = q->queuedata;
1387         struct Scsi_Host *shost;
1388
1389         if (blk_queue_dead(q))
1390                 return 0;
1391
1392         shost = sdev->host;
1393
1394         /*
1395          * Ignore host/starget busy state.
1396          * Since block layer does not have a concept of fairness across
1397          * multiple queues, congestion of host/starget needs to be handled
1398          * in SCSI layer.
1399          */
1400         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1401                 return 1;
1402
1403         return 0;
1404 }
1405
1406 /*
1407  * Kill a request for a dead device
1408  */
1409 static void scsi_kill_request(struct request *req, struct request_queue *q)
1410 {
1411         struct scsi_cmnd *cmd = req->special;
1412         struct scsi_device *sdev;
1413         struct scsi_target *starget;
1414         struct Scsi_Host *shost;
1415
1416         blk_start_request(req);
1417
1418         scmd_printk(KERN_INFO, cmd, "killing request\n");
1419
1420         sdev = cmd->device;
1421         starget = scsi_target(sdev);
1422         shost = sdev->host;
1423         scsi_init_cmd_errh(cmd);
1424         cmd->result = DID_NO_CONNECT << 16;
1425         atomic_inc(&cmd->device->iorequest_cnt);
1426
1427         /*
1428          * SCSI request completion path will do scsi_device_unbusy(),
1429          * bump busy counts.  To bump the counters, we need to dance
1430          * with the locks as normal issue path does.
1431          */
1432         sdev->device_busy++;
1433         spin_unlock(sdev->request_queue->queue_lock);
1434         spin_lock(shost->host_lock);
1435         shost->host_busy++;
1436         starget->target_busy++;
1437         spin_unlock(shost->host_lock);
1438         spin_lock(sdev->request_queue->queue_lock);
1439
1440         blk_complete_request(req);
1441 }
1442
1443 static void scsi_softirq_done(struct request *rq)
1444 {
1445         struct scsi_cmnd *cmd = rq->special;
1446         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1447         int disposition;
1448
1449         INIT_LIST_HEAD(&cmd->eh_entry);
1450
1451         atomic_inc(&cmd->device->iodone_cnt);
1452         if (cmd->result)
1453                 atomic_inc(&cmd->device->ioerr_cnt);
1454
1455         disposition = scsi_decide_disposition(cmd);
1456         if (disposition != SUCCESS &&
1457             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1458                 sdev_printk(KERN_ERR, cmd->device,
1459                             "timing out command, waited %lus\n",
1460                             wait_for/HZ);
1461                 disposition = SUCCESS;
1462         }
1463                         
1464         scsi_log_completion(cmd, disposition);
1465
1466         switch (disposition) {
1467                 case SUCCESS:
1468                         scsi_finish_command(cmd);
1469                         break;
1470                 case NEEDS_RETRY:
1471                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1472                         break;
1473                 case ADD_TO_MLQUEUE:
1474                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1475                         break;
1476                 default:
1477                         if (!scsi_eh_scmd_add(cmd, 0))
1478                                 scsi_finish_command(cmd);
1479         }
1480 }
1481
1482 /*
1483  * Function:    scsi_request_fn()
1484  *
1485  * Purpose:     Main strategy routine for SCSI.
1486  *
1487  * Arguments:   q       - Pointer to actual queue.
1488  *
1489  * Returns:     Nothing
1490  *
1491  * Lock status: IO request lock assumed to be held when called.
1492  */
1493 static void scsi_request_fn(struct request_queue *q)
1494 {
1495         struct scsi_device *sdev = q->queuedata;
1496         struct Scsi_Host *shost;
1497         struct scsi_cmnd *cmd;
1498         struct request *req;
1499
1500         if(!get_device(&sdev->sdev_gendev))
1501                 /* We must be tearing the block queue down already */
1502                 return;
1503
1504         /*
1505          * To start with, we keep looping until the queue is empty, or until
1506          * the host is no longer able to accept any more requests.
1507          */
1508         shost = sdev->host;
1509         for (;;) {
1510                 int rtn;
1511                 /*
1512                  * get next queueable request.  We do this early to make sure
1513                  * that the request is fully prepared even if we cannot 
1514                  * accept it.
1515                  */
1516                 req = blk_peek_request(q);
1517                 if (!req || !scsi_dev_queue_ready(q, sdev))
1518                         break;
1519
1520                 if (unlikely(!scsi_device_online(sdev))) {
1521                         sdev_printk(KERN_ERR, sdev,
1522                                     "rejecting I/O to offline device\n");
1523                         scsi_kill_request(req, q);
1524                         continue;
1525                 }
1526
1527
1528                 /*
1529                  * Remove the request from the request list.
1530                  */
1531                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1532                         blk_start_request(req);
1533                 sdev->device_busy++;
1534
1535                 spin_unlock(q->queue_lock);
1536                 cmd = req->special;
1537                 if (unlikely(cmd == NULL)) {
1538                         printk(KERN_CRIT "impossible request in %s.\n"
1539                                          "please mail a stack trace to "
1540                                          "linux-scsi@vger.kernel.org\n",
1541                                          __func__);
1542                         blk_dump_rq_flags(req, "foo");
1543                         BUG();
1544                 }
1545                 spin_lock(shost->host_lock);
1546
1547                 /*
1548                  * We hit this when the driver is using a host wide
1549                  * tag map. For device level tag maps the queue_depth check
1550                  * in the device ready fn would prevent us from trying
1551                  * to allocate a tag. Since the map is a shared host resource
1552                  * we add the dev to the starved list so it eventually gets
1553                  * a run when a tag is freed.
1554                  */
1555                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1556                         if (list_empty(&sdev->starved_entry))
1557                                 list_add_tail(&sdev->starved_entry,
1558                                               &shost->starved_list);
1559                         goto not_ready;
1560                 }
1561
1562                 if (!scsi_target_queue_ready(shost, sdev))
1563                         goto not_ready;
1564
1565                 if (!scsi_host_queue_ready(q, shost, sdev))
1566                         goto not_ready;
1567
1568                 scsi_target(sdev)->target_busy++;
1569                 shost->host_busy++;
1570
1571                 /*
1572                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1573                  *              take the lock again.
1574                  */
1575                 spin_unlock_irq(shost->host_lock);
1576
1577                 /*
1578                  * Finally, initialize any error handling parameters, and set up
1579                  * the timers for timeouts.
1580                  */
1581                 scsi_init_cmd_errh(cmd);
1582
1583                 /*
1584                  * Dispatch the command to the low-level driver.
1585                  */
1586                 rtn = scsi_dispatch_cmd(cmd);
1587                 spin_lock_irq(q->queue_lock);
1588                 if (rtn)
1589                         goto out_delay;
1590         }
1591
1592         goto out;
1593
1594  not_ready:
1595         spin_unlock_irq(shost->host_lock);
1596
1597         /*
1598          * lock q, handle tag, requeue req, and decrement device_busy. We
1599          * must return with queue_lock held.
1600          *
1601          * Decrementing device_busy without checking it is OK, as all such
1602          * cases (host limits or settings) should run the queue at some
1603          * later time.
1604          */
1605         spin_lock_irq(q->queue_lock);
1606         blk_requeue_request(q, req);
1607         sdev->device_busy--;
1608 out_delay:
1609         if (sdev->device_busy == 0)
1610                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1611 out:
1612         /* must be careful here...if we trigger the ->remove() function
1613          * we cannot be holding the q lock */
1614         spin_unlock_irq(q->queue_lock);
1615         put_device(&sdev->sdev_gendev);
1616         spin_lock_irq(q->queue_lock);
1617 }
1618
1619 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1620 {
1621         struct device *host_dev;
1622         u64 bounce_limit = 0xffffffff;
1623
1624         if (shost->unchecked_isa_dma)
1625                 return BLK_BOUNCE_ISA;
1626         /*
1627          * Platforms with virtual-DMA translation
1628          * hardware have no practical limit.
1629          */
1630         if (!PCI_DMA_BUS_IS_PHYS)
1631                 return BLK_BOUNCE_ANY;
1632
1633         host_dev = scsi_get_device(shost);
1634         if (host_dev && host_dev->dma_mask)
1635                 bounce_limit = *host_dev->dma_mask;
1636
1637         return bounce_limit;
1638 }
1639 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1640
1641 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1642                                          request_fn_proc *request_fn)
1643 {
1644         struct request_queue *q;
1645         struct device *dev = shost->dma_dev;
1646
1647         q = blk_init_queue(request_fn, NULL);
1648         if (!q)
1649                 return NULL;
1650
1651         /*
1652          * this limit is imposed by hardware restrictions
1653          */
1654         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1655                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1656
1657         if (scsi_host_prot_dma(shost)) {
1658                 shost->sg_prot_tablesize =
1659                         min_not_zero(shost->sg_prot_tablesize,
1660                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1661                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1662                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1663         }
1664
1665         blk_queue_max_hw_sectors(q, shost->max_sectors);
1666         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1667         blk_queue_segment_boundary(q, shost->dma_boundary);
1668         dma_set_seg_boundary(dev, shost->dma_boundary);
1669
1670         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1671
1672         if (!shost->use_clustering)
1673                 q->limits.cluster = 0;
1674
1675         /*
1676          * set a reasonable default alignment on word boundaries: the
1677          * host and device may alter it using
1678          * blk_queue_update_dma_alignment() later.
1679          */
1680         blk_queue_dma_alignment(q, 0x03);
1681
1682         return q;
1683 }
1684 EXPORT_SYMBOL(__scsi_alloc_queue);
1685
1686 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1687 {
1688         struct request_queue *q;
1689
1690         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1691         if (!q)
1692                 return NULL;
1693
1694         blk_queue_prep_rq(q, scsi_prep_fn);
1695         blk_queue_softirq_done(q, scsi_softirq_done);
1696         blk_queue_rq_timed_out(q, scsi_times_out);
1697         blk_queue_lld_busy(q, scsi_lld_busy);
1698         return q;
1699 }
1700
1701 /*
1702  * Function:    scsi_block_requests()
1703  *
1704  * Purpose:     Utility function used by low-level drivers to prevent further
1705  *              commands from being queued to the device.
1706  *
1707  * Arguments:   shost       - Host in question
1708  *
1709  * Returns:     Nothing
1710  *
1711  * Lock status: No locks are assumed held.
1712  *
1713  * Notes:       There is no timer nor any other means by which the requests
1714  *              get unblocked other than the low-level driver calling
1715  *              scsi_unblock_requests().
1716  */
1717 void scsi_block_requests(struct Scsi_Host *shost)
1718 {
1719         shost->host_self_blocked = 1;
1720 }
1721 EXPORT_SYMBOL(scsi_block_requests);
1722
1723 /*
1724  * Function:    scsi_unblock_requests()
1725  *
1726  * Purpose:     Utility function used by low-level drivers to allow further
1727  *              commands from being queued to the device.
1728  *
1729  * Arguments:   shost       - Host in question
1730  *
1731  * Returns:     Nothing
1732  *
1733  * Lock status: No locks are assumed held.
1734  *
1735  * Notes:       There is no timer nor any other means by which the requests
1736  *              get unblocked other than the low-level driver calling
1737  *              scsi_unblock_requests().
1738  *
1739  *              This is done as an API function so that changes to the
1740  *              internals of the scsi mid-layer won't require wholesale
1741  *              changes to drivers that use this feature.
1742  */
1743 void scsi_unblock_requests(struct Scsi_Host *shost)
1744 {
1745         shost->host_self_blocked = 0;
1746         scsi_run_host_queues(shost);
1747 }
1748 EXPORT_SYMBOL(scsi_unblock_requests);
1749
1750 int __init scsi_init_queue(void)
1751 {
1752         int i;
1753
1754         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1755                                            sizeof(struct scsi_data_buffer),
1756                                            0, 0, NULL);
1757         if (!scsi_sdb_cache) {
1758                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1759                 return -ENOMEM;
1760         }
1761
1762         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1763                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1764                 int size = sgp->size * sizeof(struct scatterlist);
1765
1766                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1767                                 SLAB_HWCACHE_ALIGN, NULL);
1768                 if (!sgp->slab) {
1769                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1770                                         sgp->name);
1771                         goto cleanup_sdb;
1772                 }
1773
1774                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1775                                                      sgp->slab);
1776                 if (!sgp->pool) {
1777                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1778                                         sgp->name);
1779                         goto cleanup_sdb;
1780                 }
1781         }
1782
1783         return 0;
1784
1785 cleanup_sdb:
1786         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1787                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1788                 if (sgp->pool)
1789                         mempool_destroy(sgp->pool);
1790                 if (sgp->slab)
1791                         kmem_cache_destroy(sgp->slab);
1792         }
1793         kmem_cache_destroy(scsi_sdb_cache);
1794
1795         return -ENOMEM;
1796 }
1797
1798 void scsi_exit_queue(void)
1799 {
1800         int i;
1801
1802         kmem_cache_destroy(scsi_sdb_cache);
1803
1804         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1805                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1806                 mempool_destroy(sgp->pool);
1807                 kmem_cache_destroy(sgp->slab);
1808         }
1809 }
1810
1811 /**
1812  *      scsi_mode_select - issue a mode select
1813  *      @sdev:  SCSI device to be queried
1814  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1815  *      @sp:    Save page bit (0 == don't save, 1 == save)
1816  *      @modepage: mode page being requested
1817  *      @buffer: request buffer (may not be smaller than eight bytes)
1818  *      @len:   length of request buffer.
1819  *      @timeout: command timeout
1820  *      @retries: number of retries before failing
1821  *      @data: returns a structure abstracting the mode header data
1822  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1823  *              must be SCSI_SENSE_BUFFERSIZE big.
1824  *
1825  *      Returns zero if successful; negative error number or scsi
1826  *      status on error
1827  *
1828  */
1829 int
1830 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1831                  unsigned char *buffer, int len, int timeout, int retries,
1832                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1833 {
1834         unsigned char cmd[10];
1835         unsigned char *real_buffer;
1836         int ret;
1837
1838         memset(cmd, 0, sizeof(cmd));
1839         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1840
1841         if (sdev->use_10_for_ms) {
1842                 if (len > 65535)
1843                         return -EINVAL;
1844                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1845                 if (!real_buffer)
1846                         return -ENOMEM;
1847                 memcpy(real_buffer + 8, buffer, len);
1848                 len += 8;
1849                 real_buffer[0] = 0;
1850                 real_buffer[1] = 0;
1851                 real_buffer[2] = data->medium_type;
1852                 real_buffer[3] = data->device_specific;
1853                 real_buffer[4] = data->longlba ? 0x01 : 0;
1854                 real_buffer[5] = 0;
1855                 real_buffer[6] = data->block_descriptor_length >> 8;
1856                 real_buffer[7] = data->block_descriptor_length;
1857
1858                 cmd[0] = MODE_SELECT_10;
1859                 cmd[7] = len >> 8;
1860                 cmd[8] = len;
1861         } else {
1862                 if (len > 255 || data->block_descriptor_length > 255 ||
1863                     data->longlba)
1864                         return -EINVAL;
1865
1866                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1867                 if (!real_buffer)
1868                         return -ENOMEM;
1869                 memcpy(real_buffer + 4, buffer, len);
1870                 len += 4;
1871                 real_buffer[0] = 0;
1872                 real_buffer[1] = data->medium_type;
1873                 real_buffer[2] = data->device_specific;
1874                 real_buffer[3] = data->block_descriptor_length;
1875                 
1876
1877                 cmd[0] = MODE_SELECT;
1878                 cmd[4] = len;
1879         }
1880
1881         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1882                                sshdr, timeout, retries, NULL);
1883         kfree(real_buffer);
1884         return ret;
1885 }
1886 EXPORT_SYMBOL_GPL(scsi_mode_select);
1887
1888 /**
1889  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1890  *      @sdev:  SCSI device to be queried
1891  *      @dbd:   set if mode sense will allow block descriptors to be returned
1892  *      @modepage: mode page being requested
1893  *      @buffer: request buffer (may not be smaller than eight bytes)
1894  *      @len:   length of request buffer.
1895  *      @timeout: command timeout
1896  *      @retries: number of retries before failing
1897  *      @data: returns a structure abstracting the mode header data
1898  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1899  *              must be SCSI_SENSE_BUFFERSIZE big.
1900  *
1901  *      Returns zero if unsuccessful, or the header offset (either 4
1902  *      or 8 depending on whether a six or ten byte command was
1903  *      issued) if successful.
1904  */
1905 int
1906 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1907                   unsigned char *buffer, int len, int timeout, int retries,
1908                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1909 {
1910         unsigned char cmd[12];
1911         int use_10_for_ms;
1912         int header_length;
1913         int result;
1914         struct scsi_sense_hdr my_sshdr;
1915
1916         memset(data, 0, sizeof(*data));
1917         memset(&cmd[0], 0, 12);
1918         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1919         cmd[2] = modepage;
1920
1921         /* caller might not be interested in sense, but we need it */
1922         if (!sshdr)
1923                 sshdr = &my_sshdr;
1924
1925  retry:
1926         use_10_for_ms = sdev->use_10_for_ms;
1927
1928         if (use_10_for_ms) {
1929                 if (len < 8)
1930                         len = 8;
1931
1932                 cmd[0] = MODE_SENSE_10;
1933                 cmd[8] = len;
1934                 header_length = 8;
1935         } else {
1936                 if (len < 4)
1937                         len = 4;
1938
1939                 cmd[0] = MODE_SENSE;
1940                 cmd[4] = len;
1941                 header_length = 4;
1942         }
1943
1944         memset(buffer, 0, len);
1945
1946         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1947                                   sshdr, timeout, retries, NULL);
1948
1949         /* This code looks awful: what it's doing is making sure an
1950          * ILLEGAL REQUEST sense return identifies the actual command
1951          * byte as the problem.  MODE_SENSE commands can return
1952          * ILLEGAL REQUEST if the code page isn't supported */
1953
1954         if (use_10_for_ms && !scsi_status_is_good(result) &&
1955             (driver_byte(result) & DRIVER_SENSE)) {
1956                 if (scsi_sense_valid(sshdr)) {
1957                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1958                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1959                                 /* 
1960                                  * Invalid command operation code
1961                                  */
1962                                 sdev->use_10_for_ms = 0;
1963                                 goto retry;
1964                         }
1965                 }
1966         }
1967
1968         if(scsi_status_is_good(result)) {
1969                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1970                              (modepage == 6 || modepage == 8))) {
1971                         /* Initio breakage? */
1972                         header_length = 0;
1973                         data->length = 13;
1974                         data->medium_type = 0;
1975                         data->device_specific = 0;
1976                         data->longlba = 0;
1977                         data->block_descriptor_length = 0;
1978                 } else if(use_10_for_ms) {
1979                         data->length = buffer[0]*256 + buffer[1] + 2;
1980                         data->medium_type = buffer[2];
1981                         data->device_specific = buffer[3];
1982                         data->longlba = buffer[4] & 0x01;
1983                         data->block_descriptor_length = buffer[6]*256
1984                                 + buffer[7];
1985                 } else {
1986                         data->length = buffer[0] + 1;
1987                         data->medium_type = buffer[1];
1988                         data->device_specific = buffer[2];
1989                         data->block_descriptor_length = buffer[3];
1990                 }
1991                 data->header_length = header_length;
1992         }
1993
1994         return result;
1995 }
1996 EXPORT_SYMBOL(scsi_mode_sense);
1997
1998 /**
1999  *      scsi_test_unit_ready - test if unit is ready
2000  *      @sdev:  scsi device to change the state of.
2001  *      @timeout: command timeout
2002  *      @retries: number of retries before failing
2003  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2004  *              returning sense. Make sure that this is cleared before passing
2005  *              in.
2006  *
2007  *      Returns zero if unsuccessful or an error if TUR failed.  For
2008  *      removable media, UNIT_ATTENTION sets ->changed flag.
2009  **/
2010 int
2011 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2012                      struct scsi_sense_hdr *sshdr_external)
2013 {
2014         char cmd[] = {
2015                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2016         };
2017         struct scsi_sense_hdr *sshdr;
2018         int result;
2019
2020         if (!sshdr_external)
2021                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2022         else
2023                 sshdr = sshdr_external;
2024
2025         /* try to eat the UNIT_ATTENTION if there are enough retries */
2026         do {
2027                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2028                                           timeout, retries, NULL);
2029                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2030                     sshdr->sense_key == UNIT_ATTENTION)
2031                         sdev->changed = 1;
2032         } while (scsi_sense_valid(sshdr) &&
2033                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2034
2035         if (!sshdr_external)
2036                 kfree(sshdr);
2037         return result;
2038 }
2039 EXPORT_SYMBOL(scsi_test_unit_ready);
2040
2041 /**
2042  *      scsi_device_set_state - Take the given device through the device state model.
2043  *      @sdev:  scsi device to change the state of.
2044  *      @state: state to change to.
2045  *
2046  *      Returns zero if unsuccessful or an error if the requested 
2047  *      transition is illegal.
2048  */
2049 int
2050 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2051 {
2052         enum scsi_device_state oldstate = sdev->sdev_state;
2053
2054         if (state == oldstate)
2055                 return 0;
2056
2057         switch (state) {
2058         case SDEV_CREATED:
2059                 switch (oldstate) {
2060                 case SDEV_CREATED_BLOCK:
2061                         break;
2062                 default:
2063                         goto illegal;
2064                 }
2065                 break;
2066                         
2067         case SDEV_RUNNING:
2068                 switch (oldstate) {
2069                 case SDEV_CREATED:
2070                 case SDEV_OFFLINE:
2071                 case SDEV_TRANSPORT_OFFLINE:
2072                 case SDEV_QUIESCE:
2073                 case SDEV_BLOCK:
2074                         break;
2075                 default:
2076                         goto illegal;
2077                 }
2078                 break;
2079
2080         case SDEV_QUIESCE:
2081                 switch (oldstate) {
2082                 case SDEV_RUNNING:
2083                 case SDEV_OFFLINE:
2084                 case SDEV_TRANSPORT_OFFLINE:
2085                         break;
2086                 default:
2087                         goto illegal;
2088                 }
2089                 break;
2090
2091         case SDEV_OFFLINE:
2092         case SDEV_TRANSPORT_OFFLINE:
2093                 switch (oldstate) {
2094                 case SDEV_CREATED:
2095                 case SDEV_RUNNING:
2096                 case SDEV_QUIESCE:
2097                 case SDEV_BLOCK:
2098                         break;
2099                 default:
2100                         goto illegal;
2101                 }
2102                 break;
2103
2104         case SDEV_BLOCK:
2105                 switch (oldstate) {
2106                 case SDEV_RUNNING:
2107                 case SDEV_CREATED_BLOCK:
2108                         break;
2109                 default:
2110                         goto illegal;
2111                 }
2112                 break;
2113
2114         case SDEV_CREATED_BLOCK:
2115                 switch (oldstate) {
2116                 case SDEV_CREATED:
2117                         break;
2118                 default:
2119                         goto illegal;
2120                 }
2121                 break;
2122
2123         case SDEV_CANCEL:
2124                 switch (oldstate) {
2125                 case SDEV_CREATED:
2126                 case SDEV_RUNNING:
2127                 case SDEV_QUIESCE:
2128                 case SDEV_OFFLINE:
2129                 case SDEV_TRANSPORT_OFFLINE:
2130                 case SDEV_BLOCK:
2131                         break;
2132                 default:
2133                         goto illegal;
2134                 }
2135                 break;
2136
2137         case SDEV_DEL:
2138                 switch (oldstate) {
2139                 case SDEV_CREATED:
2140                 case SDEV_RUNNING:
2141                 case SDEV_OFFLINE:
2142                 case SDEV_TRANSPORT_OFFLINE:
2143                 case SDEV_CANCEL:
2144                         break;
2145                 default:
2146                         goto illegal;
2147                 }
2148                 break;
2149
2150         }
2151         sdev->sdev_state = state;
2152         return 0;
2153
2154  illegal:
2155         SCSI_LOG_ERROR_RECOVERY(1, 
2156                                 sdev_printk(KERN_ERR, sdev,
2157                                             "Illegal state transition %s->%s\n",
2158                                             scsi_device_state_name(oldstate),
2159                                             scsi_device_state_name(state))
2160                                 );
2161         return -EINVAL;
2162 }
2163 EXPORT_SYMBOL(scsi_device_set_state);
2164
2165 /**
2166  *      sdev_evt_emit - emit a single SCSI device uevent
2167  *      @sdev: associated SCSI device
2168  *      @evt: event to emit
2169  *
2170  *      Send a single uevent (scsi_event) to the associated scsi_device.
2171  */
2172 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2173 {
2174         int idx = 0;
2175         char *envp[3];
2176
2177         switch (evt->evt_type) {
2178         case SDEV_EVT_MEDIA_CHANGE:
2179                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2180                 break;
2181
2182         default:
2183                 /* do nothing */
2184                 break;
2185         }
2186
2187         envp[idx++] = NULL;
2188
2189         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2190 }
2191
2192 /**
2193  *      sdev_evt_thread - send a uevent for each scsi event
2194  *      @work: work struct for scsi_device
2195  *
2196  *      Dispatch queued events to their associated scsi_device kobjects
2197  *      as uevents.
2198  */
2199 void scsi_evt_thread(struct work_struct *work)
2200 {
2201         struct scsi_device *sdev;
2202         LIST_HEAD(event_list);
2203
2204         sdev = container_of(work, struct scsi_device, event_work);
2205
2206         while (1) {
2207                 struct scsi_event *evt;
2208                 struct list_head *this, *tmp;
2209                 unsigned long flags;
2210
2211                 spin_lock_irqsave(&sdev->list_lock, flags);
2212                 list_splice_init(&sdev->event_list, &event_list);
2213                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2214
2215                 if (list_empty(&event_list))
2216                         break;
2217
2218                 list_for_each_safe(this, tmp, &event_list) {
2219                         evt = list_entry(this, struct scsi_event, node);
2220                         list_del(&evt->node);
2221                         scsi_evt_emit(sdev, evt);
2222                         kfree(evt);
2223                 }
2224         }
2225 }
2226
2227 /**
2228  *      sdev_evt_send - send asserted event to uevent thread
2229  *      @sdev: scsi_device event occurred on
2230  *      @evt: event to send
2231  *
2232  *      Assert scsi device event asynchronously.
2233  */
2234 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2235 {
2236         unsigned long flags;
2237
2238 #if 0
2239         /* FIXME: currently this check eliminates all media change events
2240          * for polled devices.  Need to update to discriminate between AN
2241          * and polled events */
2242         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2243                 kfree(evt);
2244                 return;
2245         }
2246 #endif
2247
2248         spin_lock_irqsave(&sdev->list_lock, flags);
2249         list_add_tail(&evt->node, &sdev->event_list);
2250         schedule_work(&sdev->event_work);
2251         spin_unlock_irqrestore(&sdev->list_lock, flags);
2252 }
2253 EXPORT_SYMBOL_GPL(sdev_evt_send);
2254
2255 /**
2256  *      sdev_evt_alloc - allocate a new scsi event
2257  *      @evt_type: type of event to allocate
2258  *      @gfpflags: GFP flags for allocation
2259  *
2260  *      Allocates and returns a new scsi_event.
2261  */
2262 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2263                                   gfp_t gfpflags)
2264 {
2265         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2266         if (!evt)
2267                 return NULL;
2268
2269         evt->evt_type = evt_type;
2270         INIT_LIST_HEAD(&evt->node);
2271
2272         /* evt_type-specific initialization, if any */
2273         switch (evt_type) {
2274         case SDEV_EVT_MEDIA_CHANGE:
2275         default:
2276                 /* do nothing */
2277                 break;
2278         }
2279
2280         return evt;
2281 }
2282 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2283
2284 /**
2285  *      sdev_evt_send_simple - send asserted event to uevent thread
2286  *      @sdev: scsi_device event occurred on
2287  *      @evt_type: type of event to send
2288  *      @gfpflags: GFP flags for allocation
2289  *
2290  *      Assert scsi device event asynchronously, given an event type.
2291  */
2292 void sdev_evt_send_simple(struct scsi_device *sdev,
2293                           enum scsi_device_event evt_type, gfp_t gfpflags)
2294 {
2295         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2296         if (!evt) {
2297                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2298                             evt_type);
2299                 return;
2300         }
2301
2302         sdev_evt_send(sdev, evt);
2303 }
2304 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2305
2306 /**
2307  *      scsi_device_quiesce - Block user issued commands.
2308  *      @sdev:  scsi device to quiesce.
2309  *
2310  *      This works by trying to transition to the SDEV_QUIESCE state
2311  *      (which must be a legal transition).  When the device is in this
2312  *      state, only special requests will be accepted, all others will
2313  *      be deferred.  Since special requests may also be requeued requests,
2314  *      a successful return doesn't guarantee the device will be 
2315  *      totally quiescent.
2316  *
2317  *      Must be called with user context, may sleep.
2318  *
2319  *      Returns zero if unsuccessful or an error if not.
2320  */
2321 int
2322 scsi_device_quiesce(struct scsi_device *sdev)
2323 {
2324         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2325         if (err)
2326                 return err;
2327
2328         scsi_run_queue(sdev->request_queue);
2329         while (sdev->device_busy) {
2330                 msleep_interruptible(200);
2331                 scsi_run_queue(sdev->request_queue);
2332         }
2333         return 0;
2334 }
2335 EXPORT_SYMBOL(scsi_device_quiesce);
2336
2337 /**
2338  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2339  *      @sdev:  scsi device to resume.
2340  *
2341  *      Moves the device from quiesced back to running and restarts the
2342  *      queues.
2343  *
2344  *      Must be called with user context, may sleep.
2345  */
2346 void scsi_device_resume(struct scsi_device *sdev)
2347 {
2348         /* check if the device state was mutated prior to resume, and if
2349          * so assume the state is being managed elsewhere (for example
2350          * device deleted during suspend)
2351          */
2352         if (sdev->sdev_state != SDEV_QUIESCE ||
2353             scsi_device_set_state(sdev, SDEV_RUNNING))
2354                 return;
2355         scsi_run_queue(sdev->request_queue);
2356 }
2357 EXPORT_SYMBOL(scsi_device_resume);
2358
2359 static void
2360 device_quiesce_fn(struct scsi_device *sdev, void *data)
2361 {
2362         scsi_device_quiesce(sdev);
2363 }
2364
2365 void
2366 scsi_target_quiesce(struct scsi_target *starget)
2367 {
2368         starget_for_each_device(starget, NULL, device_quiesce_fn);
2369 }
2370 EXPORT_SYMBOL(scsi_target_quiesce);
2371
2372 static void
2373 device_resume_fn(struct scsi_device *sdev, void *data)
2374 {
2375         scsi_device_resume(sdev);
2376 }
2377
2378 void
2379 scsi_target_resume(struct scsi_target *starget)
2380 {
2381         starget_for_each_device(starget, NULL, device_resume_fn);
2382 }
2383 EXPORT_SYMBOL(scsi_target_resume);
2384
2385 /**
2386  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2387  * @sdev:       device to block
2388  *
2389  * Block request made by scsi lld's to temporarily stop all
2390  * scsi commands on the specified device.  Called from interrupt
2391  * or normal process context.
2392  *
2393  * Returns zero if successful or error if not
2394  *
2395  * Notes:       
2396  *      This routine transitions the device to the SDEV_BLOCK state
2397  *      (which must be a legal transition).  When the device is in this
2398  *      state, all commands are deferred until the scsi lld reenables
2399  *      the device with scsi_device_unblock or device_block_tmo fires.
2400  */
2401 int
2402 scsi_internal_device_block(struct scsi_device *sdev)
2403 {
2404         struct request_queue *q = sdev->request_queue;
2405         unsigned long flags;
2406         int err = 0;
2407
2408         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2409         if (err) {
2410                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2411
2412                 if (err)
2413                         return err;
2414         }
2415
2416         /* 
2417          * The device has transitioned to SDEV_BLOCK.  Stop the
2418          * block layer from calling the midlayer with this device's
2419          * request queue. 
2420          */
2421         spin_lock_irqsave(q->queue_lock, flags);
2422         blk_stop_queue(q);
2423         spin_unlock_irqrestore(q->queue_lock, flags);
2424
2425         return 0;
2426 }
2427 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2428  
2429 /**
2430  * scsi_internal_device_unblock - resume a device after a block request
2431  * @sdev:       device to resume
2432  * @new_state:  state to set devices to after unblocking
2433  *
2434  * Called by scsi lld's or the midlayer to restart the device queue
2435  * for the previously suspended scsi device.  Called from interrupt or
2436  * normal process context.
2437  *
2438  * Returns zero if successful or error if not.
2439  *
2440  * Notes:       
2441  *      This routine transitions the device to the SDEV_RUNNING state
2442  *      or to one of the offline states (which must be a legal transition)
2443  *      allowing the midlayer to goose the queue for this device.
2444  */
2445 int
2446 scsi_internal_device_unblock(struct scsi_device *sdev,
2447                              enum scsi_device_state new_state)
2448 {
2449         struct request_queue *q = sdev->request_queue; 
2450         unsigned long flags;
2451
2452         /*
2453          * Try to transition the scsi device to SDEV_RUNNING or one of the
2454          * offlined states and goose the device queue if successful.
2455          */
2456         if (sdev->sdev_state == SDEV_BLOCK)
2457                 sdev->sdev_state = new_state;
2458         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2459                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2460                     new_state == SDEV_OFFLINE)
2461                         sdev->sdev_state = new_state;
2462                 else
2463                         sdev->sdev_state = SDEV_CREATED;
2464         } else if (sdev->sdev_state != SDEV_CANCEL &&
2465                  sdev->sdev_state != SDEV_OFFLINE)
2466                 return -EINVAL;
2467
2468         spin_lock_irqsave(q->queue_lock, flags);
2469         blk_start_queue(q);
2470         spin_unlock_irqrestore(q->queue_lock, flags);
2471
2472         return 0;
2473 }
2474 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2475
2476 static void
2477 device_block(struct scsi_device *sdev, void *data)
2478 {
2479         scsi_internal_device_block(sdev);
2480 }
2481
2482 static int
2483 target_block(struct device *dev, void *data)
2484 {
2485         if (scsi_is_target_device(dev))
2486                 starget_for_each_device(to_scsi_target(dev), NULL,
2487                                         device_block);
2488         return 0;
2489 }
2490
2491 void
2492 scsi_target_block(struct device *dev)
2493 {
2494         if (scsi_is_target_device(dev))
2495                 starget_for_each_device(to_scsi_target(dev), NULL,
2496                                         device_block);
2497         else
2498                 device_for_each_child(dev, NULL, target_block);
2499 }
2500 EXPORT_SYMBOL_GPL(scsi_target_block);
2501
2502 static void
2503 device_unblock(struct scsi_device *sdev, void *data)
2504 {
2505         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2506 }
2507
2508 static int
2509 target_unblock(struct device *dev, void *data)
2510 {
2511         if (scsi_is_target_device(dev))
2512                 starget_for_each_device(to_scsi_target(dev), data,
2513                                         device_unblock);
2514         return 0;
2515 }
2516
2517 void
2518 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2519 {
2520         if (scsi_is_target_device(dev))
2521                 starget_for_each_device(to_scsi_target(dev), &new_state,
2522                                         device_unblock);
2523         else
2524                 device_for_each_child(dev, &new_state, target_unblock);
2525 }
2526 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2527
2528 /**
2529  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2530  * @sgl:        scatter-gather list
2531  * @sg_count:   number of segments in sg
2532  * @offset:     offset in bytes into sg, on return offset into the mapped area
2533  * @len:        bytes to map, on return number of bytes mapped
2534  *
2535  * Returns virtual address of the start of the mapped page
2536  */
2537 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2538                           size_t *offset, size_t *len)
2539 {
2540         int i;
2541         size_t sg_len = 0, len_complete = 0;
2542         struct scatterlist *sg;
2543         struct page *page;
2544
2545         WARN_ON(!irqs_disabled());
2546
2547         for_each_sg(sgl, sg, sg_count, i) {
2548                 len_complete = sg_len; /* Complete sg-entries */
2549                 sg_len += sg->length;
2550                 if (sg_len > *offset)
2551                         break;
2552         }
2553
2554         if (unlikely(i == sg_count)) {
2555                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2556                         "elements %d\n",
2557                        __func__, sg_len, *offset, sg_count);
2558                 WARN_ON(1);
2559                 return NULL;
2560         }
2561
2562         /* Offset starting from the beginning of first page in this sg-entry */
2563         *offset = *offset - len_complete + sg->offset;
2564
2565         /* Assumption: contiguous pages can be accessed as "page + i" */
2566         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2567         *offset &= ~PAGE_MASK;
2568
2569         /* Bytes in this sg-entry from *offset to the end of the page */
2570         sg_len = PAGE_SIZE - *offset;
2571         if (*len > sg_len)
2572                 *len = sg_len;
2573
2574         return kmap_atomic(page);
2575 }
2576 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2577
2578 /**
2579  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2580  * @virt:       virtual address to be unmapped
2581  */
2582 void scsi_kunmap_atomic_sg(void *virt)
2583 {
2584         kunmap_atomic(virt);
2585 }
2586 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);