scsi: simplify scsi_log_(send|completion)
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33
34 #include <trace/events/scsi.h>
35
36 #include "scsi_priv.h"
37 #include "scsi_logging.h"
38
39
40 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
41 #define SG_MEMPOOL_SIZE         2
42
43 struct scsi_host_sg_pool {
44         size_t          size;
45         char            *name;
46         struct kmem_cache       *slab;
47         mempool_t       *pool;
48 };
49
50 #define SP(x) { .size = x, "sgpool-" __stringify(x) }
51 #if (SCSI_MAX_SG_SEGMENTS < 32)
52 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
53 #endif
54 static struct scsi_host_sg_pool scsi_sg_pools[] = {
55         SP(8),
56         SP(16),
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
58         SP(32),
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
60         SP(64),
61 #if (SCSI_MAX_SG_SEGMENTS > 128)
62         SP(128),
63 #if (SCSI_MAX_SG_SEGMENTS > 256)
64 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
65 #endif
66 #endif
67 #endif
68 #endif
69         SP(SCSI_MAX_SG_SEGMENTS)
70 };
71 #undef SP
72
73 struct kmem_cache *scsi_sdb_cache;
74
75 /*
76  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
77  * not change behaviour from the previous unplug mechanism, experimentation
78  * may prove this needs changing.
79  */
80 #define SCSI_QUEUE_DELAY        3
81
82 static void
83 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
84 {
85         struct Scsi_Host *host = cmd->device->host;
86         struct scsi_device *device = cmd->device;
87         struct scsi_target *starget = scsi_target(device);
88
89         /*
90          * Set the appropriate busy bit for the device/host.
91          *
92          * If the host/device isn't busy, assume that something actually
93          * completed, and that we should be able to queue a command now.
94          *
95          * Note that the prior mid-layer assumption that any host could
96          * always queue at least one command is now broken.  The mid-layer
97          * will implement a user specifiable stall (see
98          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
99          * if a command is requeued with no other commands outstanding
100          * either for the device or for the host.
101          */
102         switch (reason) {
103         case SCSI_MLQUEUE_HOST_BUSY:
104                 atomic_set(&host->host_blocked, host->max_host_blocked);
105                 break;
106         case SCSI_MLQUEUE_DEVICE_BUSY:
107         case SCSI_MLQUEUE_EH_RETRY:
108                 atomic_set(&device->device_blocked,
109                            device->max_device_blocked);
110                 break;
111         case SCSI_MLQUEUE_TARGET_BUSY:
112                 atomic_set(&starget->target_blocked,
113                            starget->max_target_blocked);
114                 break;
115         }
116 }
117
118 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
119 {
120         struct scsi_device *sdev = cmd->device;
121         struct request_queue *q = cmd->request->q;
122
123         blk_mq_requeue_request(cmd->request);
124         blk_mq_kick_requeue_list(q);
125         put_device(&sdev->sdev_gendev);
126 }
127
128 /**
129  * __scsi_queue_insert - private queue insertion
130  * @cmd: The SCSI command being requeued
131  * @reason:  The reason for the requeue
132  * @unbusy: Whether the queue should be unbusied
133  *
134  * This is a private queue insertion.  The public interface
135  * scsi_queue_insert() always assumes the queue should be unbusied
136  * because it's always called before the completion.  This function is
137  * for a requeue after completion, which should only occur in this
138  * file.
139  */
140 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
141 {
142         struct scsi_device *device = cmd->device;
143         struct request_queue *q = device->request_queue;
144         unsigned long flags;
145
146         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147                 "Inserting command %p into mlqueue\n", cmd));
148
149         scsi_set_blocked(cmd, reason);
150
151         /*
152          * Decrement the counters, since these commands are no longer
153          * active on the host/device.
154          */
155         if (unbusy)
156                 scsi_device_unbusy(device);
157
158         /*
159          * Requeue this command.  It will go before all other commands
160          * that are already in the queue. Schedule requeue work under
161          * lock such that the kblockd_schedule_work() call happens
162          * before blk_cleanup_queue() finishes.
163          */
164         cmd->result = 0;
165         if (q->mq_ops) {
166                 scsi_mq_requeue_cmd(cmd);
167                 return;
168         }
169         spin_lock_irqsave(q->queue_lock, flags);
170         blk_requeue_request(q, cmd->request);
171         kblockd_schedule_work(&device->requeue_work);
172         spin_unlock_irqrestore(q->queue_lock, flags);
173 }
174
175 /*
176  * Function:    scsi_queue_insert()
177  *
178  * Purpose:     Insert a command in the midlevel queue.
179  *
180  * Arguments:   cmd    - command that we are adding to queue.
181  *              reason - why we are inserting command to queue.
182  *
183  * Lock status: Assumed that lock is not held upon entry.
184  *
185  * Returns:     Nothing.
186  *
187  * Notes:       We do this for one of two cases.  Either the host is busy
188  *              and it cannot accept any more commands for the time being,
189  *              or the device returned QUEUE_FULL and can accept no more
190  *              commands.
191  * Notes:       This could be called either from an interrupt context or a
192  *              normal process context.
193  */
194 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
195 {
196         __scsi_queue_insert(cmd, reason, 1);
197 }
198 /**
199  * scsi_execute - insert request and wait for the result
200  * @sdev:       scsi device
201  * @cmd:        scsi command
202  * @data_direction: data direction
203  * @buffer:     data buffer
204  * @bufflen:    len of buffer
205  * @sense:      optional sense buffer
206  * @timeout:    request timeout in seconds
207  * @retries:    number of times to retry request
208  * @flags:      or into request flags;
209  * @resid:      optional residual length
210  *
211  * returns the req->errors value which is the scsi_cmnd result
212  * field.
213  */
214 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
215                  int data_direction, void *buffer, unsigned bufflen,
216                  unsigned char *sense, int timeout, int retries, u64 flags,
217                  int *resid)
218 {
219         struct request *req;
220         int write = (data_direction == DMA_TO_DEVICE);
221         int ret = DRIVER_ERROR << 24;
222
223         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
224         if (IS_ERR(req))
225                 return ret;
226         blk_rq_set_block_pc(req);
227
228         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
229                                         buffer, bufflen, __GFP_WAIT))
230                 goto out;
231
232         req->cmd_len = COMMAND_SIZE(cmd[0]);
233         memcpy(req->cmd, cmd, req->cmd_len);
234         req->sense = sense;
235         req->sense_len = 0;
236         req->retries = retries;
237         req->timeout = timeout;
238         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
239
240         /*
241          * head injection *required* here otherwise quiesce won't work
242          */
243         blk_execute_rq(req->q, NULL, req, 1);
244
245         /*
246          * Some devices (USB mass-storage in particular) may transfer
247          * garbage data together with a residue indicating that the data
248          * is invalid.  Prevent the garbage from being misinterpreted
249          * and prevent security leaks by zeroing out the excess data.
250          */
251         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
252                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
253
254         if (resid)
255                 *resid = req->resid_len;
256         ret = req->errors;
257  out:
258         blk_put_request(req);
259
260         return ret;
261 }
262 EXPORT_SYMBOL(scsi_execute);
263
264 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
265                      int data_direction, void *buffer, unsigned bufflen,
266                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
267                      int *resid, u64 flags)
268 {
269         char *sense = NULL;
270         int result;
271         
272         if (sshdr) {
273                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
274                 if (!sense)
275                         return DRIVER_ERROR << 24;
276         }
277         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
278                               sense, timeout, retries, flags, resid);
279         if (sshdr)
280                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
281
282         kfree(sense);
283         return result;
284 }
285 EXPORT_SYMBOL(scsi_execute_req_flags);
286
287 /*
288  * Function:    scsi_init_cmd_errh()
289  *
290  * Purpose:     Initialize cmd fields related to error handling.
291  *
292  * Arguments:   cmd     - command that is ready to be queued.
293  *
294  * Notes:       This function has the job of initializing a number of
295  *              fields related to error handling.   Typically this will
296  *              be called once for each command, as required.
297  */
298 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
299 {
300         cmd->serial_number = 0;
301         scsi_set_resid(cmd, 0);
302         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
303         if (cmd->cmd_len == 0)
304                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
305 }
306
307 void scsi_device_unbusy(struct scsi_device *sdev)
308 {
309         struct Scsi_Host *shost = sdev->host;
310         struct scsi_target *starget = scsi_target(sdev);
311         unsigned long flags;
312
313         atomic_dec(&shost->host_busy);
314         if (starget->can_queue > 0)
315                 atomic_dec(&starget->target_busy);
316
317         if (unlikely(scsi_host_in_recovery(shost) &&
318                      (shost->host_failed || shost->host_eh_scheduled))) {
319                 spin_lock_irqsave(shost->host_lock, flags);
320                 scsi_eh_wakeup(shost);
321                 spin_unlock_irqrestore(shost->host_lock, flags);
322         }
323
324         atomic_dec(&sdev->device_busy);
325 }
326
327 static void scsi_kick_queue(struct request_queue *q)
328 {
329         if (q->mq_ops)
330                 blk_mq_start_hw_queues(q);
331         else
332                 blk_run_queue(q);
333 }
334
335 /*
336  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
337  * and call blk_run_queue for all the scsi_devices on the target -
338  * including current_sdev first.
339  *
340  * Called with *no* scsi locks held.
341  */
342 static void scsi_single_lun_run(struct scsi_device *current_sdev)
343 {
344         struct Scsi_Host *shost = current_sdev->host;
345         struct scsi_device *sdev, *tmp;
346         struct scsi_target *starget = scsi_target(current_sdev);
347         unsigned long flags;
348
349         spin_lock_irqsave(shost->host_lock, flags);
350         starget->starget_sdev_user = NULL;
351         spin_unlock_irqrestore(shost->host_lock, flags);
352
353         /*
354          * Call blk_run_queue for all LUNs on the target, starting with
355          * current_sdev. We race with others (to set starget_sdev_user),
356          * but in most cases, we will be first. Ideally, each LU on the
357          * target would get some limited time or requests on the target.
358          */
359         scsi_kick_queue(current_sdev->request_queue);
360
361         spin_lock_irqsave(shost->host_lock, flags);
362         if (starget->starget_sdev_user)
363                 goto out;
364         list_for_each_entry_safe(sdev, tmp, &starget->devices,
365                         same_target_siblings) {
366                 if (sdev == current_sdev)
367                         continue;
368                 if (scsi_device_get(sdev))
369                         continue;
370
371                 spin_unlock_irqrestore(shost->host_lock, flags);
372                 scsi_kick_queue(sdev->request_queue);
373                 spin_lock_irqsave(shost->host_lock, flags);
374         
375                 scsi_device_put(sdev);
376         }
377  out:
378         spin_unlock_irqrestore(shost->host_lock, flags);
379 }
380
381 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
382 {
383         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
384                 return true;
385         if (atomic_read(&sdev->device_blocked) > 0)
386                 return true;
387         return false;
388 }
389
390 static inline bool scsi_target_is_busy(struct scsi_target *starget)
391 {
392         if (starget->can_queue > 0) {
393                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
394                         return true;
395                 if (atomic_read(&starget->target_blocked) > 0)
396                         return true;
397         }
398         return false;
399 }
400
401 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
402 {
403         if (shost->can_queue > 0 &&
404             atomic_read(&shost->host_busy) >= shost->can_queue)
405                 return true;
406         if (atomic_read(&shost->host_blocked) > 0)
407                 return true;
408         if (shost->host_self_blocked)
409                 return true;
410         return false;
411 }
412
413 static void scsi_starved_list_run(struct Scsi_Host *shost)
414 {
415         LIST_HEAD(starved_list);
416         struct scsi_device *sdev;
417         unsigned long flags;
418
419         spin_lock_irqsave(shost->host_lock, flags);
420         list_splice_init(&shost->starved_list, &starved_list);
421
422         while (!list_empty(&starved_list)) {
423                 struct request_queue *slq;
424
425                 /*
426                  * As long as shost is accepting commands and we have
427                  * starved queues, call blk_run_queue. scsi_request_fn
428                  * drops the queue_lock and can add us back to the
429                  * starved_list.
430                  *
431                  * host_lock protects the starved_list and starved_entry.
432                  * scsi_request_fn must get the host_lock before checking
433                  * or modifying starved_list or starved_entry.
434                  */
435                 if (scsi_host_is_busy(shost))
436                         break;
437
438                 sdev = list_entry(starved_list.next,
439                                   struct scsi_device, starved_entry);
440                 list_del_init(&sdev->starved_entry);
441                 if (scsi_target_is_busy(scsi_target(sdev))) {
442                         list_move_tail(&sdev->starved_entry,
443                                        &shost->starved_list);
444                         continue;
445                 }
446
447                 /*
448                  * Once we drop the host lock, a racing scsi_remove_device()
449                  * call may remove the sdev from the starved list and destroy
450                  * it and the queue.  Mitigate by taking a reference to the
451                  * queue and never touching the sdev again after we drop the
452                  * host lock.  Note: if __scsi_remove_device() invokes
453                  * blk_cleanup_queue() before the queue is run from this
454                  * function then blk_run_queue() will return immediately since
455                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
456                  */
457                 slq = sdev->request_queue;
458                 if (!blk_get_queue(slq))
459                         continue;
460                 spin_unlock_irqrestore(shost->host_lock, flags);
461
462                 scsi_kick_queue(slq);
463                 blk_put_queue(slq);
464
465                 spin_lock_irqsave(shost->host_lock, flags);
466         }
467         /* put any unprocessed entries back */
468         list_splice(&starved_list, &shost->starved_list);
469         spin_unlock_irqrestore(shost->host_lock, flags);
470 }
471
472 /*
473  * Function:   scsi_run_queue()
474  *
475  * Purpose:    Select a proper request queue to serve next
476  *
477  * Arguments:  q       - last request's queue
478  *
479  * Returns:     Nothing
480  *
481  * Notes:      The previous command was completely finished, start
482  *             a new one if possible.
483  */
484 static void scsi_run_queue(struct request_queue *q)
485 {
486         struct scsi_device *sdev = q->queuedata;
487
488         if (scsi_target(sdev)->single_lun)
489                 scsi_single_lun_run(sdev);
490         if (!list_empty(&sdev->host->starved_list))
491                 scsi_starved_list_run(sdev->host);
492
493         if (q->mq_ops)
494                 blk_mq_start_stopped_hw_queues(q, false);
495         else
496                 blk_run_queue(q);
497 }
498
499 void scsi_requeue_run_queue(struct work_struct *work)
500 {
501         struct scsi_device *sdev;
502         struct request_queue *q;
503
504         sdev = container_of(work, struct scsi_device, requeue_work);
505         q = sdev->request_queue;
506         scsi_run_queue(q);
507 }
508
509 /*
510  * Function:    scsi_requeue_command()
511  *
512  * Purpose:     Handle post-processing of completed commands.
513  *
514  * Arguments:   q       - queue to operate on
515  *              cmd     - command that may need to be requeued.
516  *
517  * Returns:     Nothing
518  *
519  * Notes:       After command completion, there may be blocks left
520  *              over which weren't finished by the previous command
521  *              this can be for a number of reasons - the main one is
522  *              I/O errors in the middle of the request, in which case
523  *              we need to request the blocks that come after the bad
524  *              sector.
525  * Notes:       Upon return, cmd is a stale pointer.
526  */
527 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
528 {
529         struct scsi_device *sdev = cmd->device;
530         struct request *req = cmd->request;
531         unsigned long flags;
532
533         spin_lock_irqsave(q->queue_lock, flags);
534         blk_unprep_request(req);
535         req->special = NULL;
536         scsi_put_command(cmd);
537         blk_requeue_request(q, req);
538         spin_unlock_irqrestore(q->queue_lock, flags);
539
540         scsi_run_queue(q);
541
542         put_device(&sdev->sdev_gendev);
543 }
544
545 void scsi_next_command(struct scsi_cmnd *cmd)
546 {
547         struct scsi_device *sdev = cmd->device;
548         struct request_queue *q = sdev->request_queue;
549
550         scsi_put_command(cmd);
551         scsi_run_queue(q);
552
553         put_device(&sdev->sdev_gendev);
554 }
555
556 void scsi_run_host_queues(struct Scsi_Host *shost)
557 {
558         struct scsi_device *sdev;
559
560         shost_for_each_device(sdev, shost)
561                 scsi_run_queue(sdev->request_queue);
562 }
563
564 static inline unsigned int scsi_sgtable_index(unsigned short nents)
565 {
566         unsigned int index;
567
568         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
569
570         if (nents <= 8)
571                 index = 0;
572         else
573                 index = get_count_order(nents) - 3;
574
575         return index;
576 }
577
578 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
579 {
580         struct scsi_host_sg_pool *sgp;
581
582         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
583         mempool_free(sgl, sgp->pool);
584 }
585
586 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
587 {
588         struct scsi_host_sg_pool *sgp;
589
590         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
591         return mempool_alloc(sgp->pool, gfp_mask);
592 }
593
594 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
595 {
596         if (mq && sdb->table.nents <= SCSI_MAX_SG_SEGMENTS)
597                 return;
598         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
599 }
600
601 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
602                               gfp_t gfp_mask, bool mq)
603 {
604         struct scatterlist *first_chunk = NULL;
605         int ret;
606
607         BUG_ON(!nents);
608
609         if (mq) {
610                 if (nents <= SCSI_MAX_SG_SEGMENTS) {
611                         sdb->table.nents = nents;
612                         sg_init_table(sdb->table.sgl, sdb->table.nents);
613                         return 0;
614                 }
615                 first_chunk = sdb->table.sgl;
616         }
617
618         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
619                                first_chunk, gfp_mask, scsi_sg_alloc);
620         if (unlikely(ret))
621                 scsi_free_sgtable(sdb, mq);
622         return ret;
623 }
624
625 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
626 {
627         if (cmd->request->cmd_type == REQ_TYPE_FS) {
628                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
629
630                 if (drv->uninit_command)
631                         drv->uninit_command(cmd);
632         }
633 }
634
635 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
636 {
637         if (cmd->sdb.table.nents)
638                 scsi_free_sgtable(&cmd->sdb, true);
639         if (cmd->request->next_rq && cmd->request->next_rq->special)
640                 scsi_free_sgtable(cmd->request->next_rq->special, true);
641         if (scsi_prot_sg_count(cmd))
642                 scsi_free_sgtable(cmd->prot_sdb, true);
643 }
644
645 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
646 {
647         struct scsi_device *sdev = cmd->device;
648         struct Scsi_Host *shost = sdev->host;
649         unsigned long flags;
650
651         scsi_mq_free_sgtables(cmd);
652         scsi_uninit_cmd(cmd);
653
654         if (shost->use_cmd_list) {
655                 BUG_ON(list_empty(&cmd->list));
656                 spin_lock_irqsave(&sdev->list_lock, flags);
657                 list_del_init(&cmd->list);
658                 spin_unlock_irqrestore(&sdev->list_lock, flags);
659         }
660 }
661
662 /*
663  * Function:    scsi_release_buffers()
664  *
665  * Purpose:     Free resources allocate for a scsi_command.
666  *
667  * Arguments:   cmd     - command that we are bailing.
668  *
669  * Lock status: Assumed that no lock is held upon entry.
670  *
671  * Returns:     Nothing
672  *
673  * Notes:       In the event that an upper level driver rejects a
674  *              command, we must release resources allocated during
675  *              the __init_io() function.  Primarily this would involve
676  *              the scatter-gather table.
677  */
678 static void scsi_release_buffers(struct scsi_cmnd *cmd)
679 {
680         if (cmd->sdb.table.nents)
681                 scsi_free_sgtable(&cmd->sdb, false);
682
683         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
684
685         if (scsi_prot_sg_count(cmd))
686                 scsi_free_sgtable(cmd->prot_sdb, false);
687 }
688
689 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
690 {
691         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
692
693         scsi_free_sgtable(bidi_sdb, false);
694         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
695         cmd->request->next_rq->special = NULL;
696 }
697
698 static bool scsi_end_request(struct request *req, int error,
699                 unsigned int bytes, unsigned int bidi_bytes)
700 {
701         struct scsi_cmnd *cmd = req->special;
702         struct scsi_device *sdev = cmd->device;
703         struct request_queue *q = sdev->request_queue;
704
705         if (blk_update_request(req, error, bytes))
706                 return true;
707
708         /* Bidi request must be completed as a whole */
709         if (unlikely(bidi_bytes) &&
710             blk_update_request(req->next_rq, error, bidi_bytes))
711                 return true;
712
713         if (blk_queue_add_random(q))
714                 add_disk_randomness(req->rq_disk);
715
716         if (req->mq_ctx) {
717                 /*
718                  * In the MQ case the command gets freed by __blk_mq_end_request,
719                  * so we have to do all cleanup that depends on it earlier.
720                  *
721                  * We also can't kick the queues from irq context, so we
722                  * will have to defer it to a workqueue.
723                  */
724                 scsi_mq_uninit_cmd(cmd);
725
726                 __blk_mq_end_request(req, error);
727
728                 if (scsi_target(sdev)->single_lun ||
729                     !list_empty(&sdev->host->starved_list))
730                         kblockd_schedule_work(&sdev->requeue_work);
731                 else
732                         blk_mq_start_stopped_hw_queues(q, true);
733
734                 put_device(&sdev->sdev_gendev);
735         } else {
736                 unsigned long flags;
737
738                 if (bidi_bytes)
739                         scsi_release_bidi_buffers(cmd);
740
741                 spin_lock_irqsave(q->queue_lock, flags);
742                 blk_finish_request(req, error);
743                 spin_unlock_irqrestore(q->queue_lock, flags);
744
745                 scsi_release_buffers(cmd);
746                 scsi_next_command(cmd);
747         }
748
749         return false;
750 }
751
752 /**
753  * __scsi_error_from_host_byte - translate SCSI error code into errno
754  * @cmd:        SCSI command (unused)
755  * @result:     scsi error code
756  *
757  * Translate SCSI error code into standard UNIX errno.
758  * Return values:
759  * -ENOLINK     temporary transport failure
760  * -EREMOTEIO   permanent target failure, do not retry
761  * -EBADE       permanent nexus failure, retry on other path
762  * -ENOSPC      No write space available
763  * -ENODATA     Medium error
764  * -EIO         unspecified I/O error
765  */
766 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
767 {
768         int error = 0;
769
770         switch(host_byte(result)) {
771         case DID_TRANSPORT_FAILFAST:
772                 error = -ENOLINK;
773                 break;
774         case DID_TARGET_FAILURE:
775                 set_host_byte(cmd, DID_OK);
776                 error = -EREMOTEIO;
777                 break;
778         case DID_NEXUS_FAILURE:
779                 set_host_byte(cmd, DID_OK);
780                 error = -EBADE;
781                 break;
782         case DID_ALLOC_FAILURE:
783                 set_host_byte(cmd, DID_OK);
784                 error = -ENOSPC;
785                 break;
786         case DID_MEDIUM_ERROR:
787                 set_host_byte(cmd, DID_OK);
788                 error = -ENODATA;
789                 break;
790         default:
791                 error = -EIO;
792                 break;
793         }
794
795         return error;
796 }
797
798 /*
799  * Function:    scsi_io_completion()
800  *
801  * Purpose:     Completion processing for block device I/O requests.
802  *
803  * Arguments:   cmd   - command that is finished.
804  *
805  * Lock status: Assumed that no lock is held upon entry.
806  *
807  * Returns:     Nothing
808  *
809  * Notes:       We will finish off the specified number of sectors.  If we
810  *              are done, the command block will be released and the queue
811  *              function will be goosed.  If we are not done then we have to
812  *              figure out what to do next:
813  *
814  *              a) We can call scsi_requeue_command().  The request
815  *                 will be unprepared and put back on the queue.  Then
816  *                 a new command will be created for it.  This should
817  *                 be used if we made forward progress, or if we want
818  *                 to switch from READ(10) to READ(6) for example.
819  *
820  *              b) We can call __scsi_queue_insert().  The request will
821  *                 be put back on the queue and retried using the same
822  *                 command as before, possibly after a delay.
823  *
824  *              c) We can call scsi_end_request() with -EIO to fail
825  *                 the remainder of the request.
826  */
827 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
828 {
829         int result = cmd->result;
830         struct request_queue *q = cmd->device->request_queue;
831         struct request *req = cmd->request;
832         int error = 0;
833         struct scsi_sense_hdr sshdr;
834         bool sense_valid = false;
835         int sense_deferred = 0, level = 0;
836         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
837               ACTION_DELAYED_RETRY} action;
838         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
839
840         if (result) {
841                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
842                 if (sense_valid)
843                         sense_deferred = scsi_sense_is_deferred(&sshdr);
844         }
845
846         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
847                 if (result) {
848                         if (sense_valid && req->sense) {
849                                 /*
850                                  * SG_IO wants current and deferred errors
851                                  */
852                                 int len = 8 + cmd->sense_buffer[7];
853
854                                 if (len > SCSI_SENSE_BUFFERSIZE)
855                                         len = SCSI_SENSE_BUFFERSIZE;
856                                 memcpy(req->sense, cmd->sense_buffer,  len);
857                                 req->sense_len = len;
858                         }
859                         if (!sense_deferred)
860                                 error = __scsi_error_from_host_byte(cmd, result);
861                 }
862                 /*
863                  * __scsi_error_from_host_byte may have reset the host_byte
864                  */
865                 req->errors = cmd->result;
866
867                 req->resid_len = scsi_get_resid(cmd);
868
869                 if (scsi_bidi_cmnd(cmd)) {
870                         /*
871                          * Bidi commands Must be complete as a whole,
872                          * both sides at once.
873                          */
874                         req->next_rq->resid_len = scsi_in(cmd)->resid;
875                         if (scsi_end_request(req, 0, blk_rq_bytes(req),
876                                         blk_rq_bytes(req->next_rq)))
877                                 BUG();
878                         return;
879                 }
880         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
881                 /*
882                  * Certain non BLOCK_PC requests are commands that don't
883                  * actually transfer anything (FLUSH), so cannot use
884                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
885                  * This sets the error explicitly for the problem case.
886                  */
887                 error = __scsi_error_from_host_byte(cmd, result);
888         }
889
890         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
891         BUG_ON(blk_bidi_rq(req));
892
893         /*
894          * Next deal with any sectors which we were able to correctly
895          * handle.
896          */
897         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
898                 "%u sectors total, %d bytes done.\n",
899                 blk_rq_sectors(req), good_bytes));
900
901         /*
902          * Recovered errors need reporting, but they're always treated
903          * as success, so fiddle the result code here.  For BLOCK_PC
904          * we already took a copy of the original into rq->errors which
905          * is what gets returned to the user
906          */
907         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
908                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
909                  * print since caller wants ATA registers. Only occurs on
910                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
911                  */
912                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
913                         ;
914                 else if (!(req->cmd_flags & REQ_QUIET))
915                         scsi_print_sense(cmd);
916                 result = 0;
917                 /* BLOCK_PC may have set error */
918                 error = 0;
919         }
920
921         /*
922          * If we finished all bytes in the request we are done now.
923          */
924         if (!scsi_end_request(req, error, good_bytes, 0))
925                 return;
926
927         /*
928          * Kill remainder if no retrys.
929          */
930         if (error && scsi_noretry_cmd(cmd)) {
931                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
932                         BUG();
933                 return;
934         }
935
936         /*
937          * If there had been no error, but we have leftover bytes in the
938          * requeues just queue the command up again.
939          */
940         if (result == 0)
941                 goto requeue;
942
943         error = __scsi_error_from_host_byte(cmd, result);
944
945         if (host_byte(result) == DID_RESET) {
946                 /* Third party bus reset or reset for error recovery
947                  * reasons.  Just retry the command and see what
948                  * happens.
949                  */
950                 action = ACTION_RETRY;
951         } else if (sense_valid && !sense_deferred) {
952                 switch (sshdr.sense_key) {
953                 case UNIT_ATTENTION:
954                         if (cmd->device->removable) {
955                                 /* Detected disc change.  Set a bit
956                                  * and quietly refuse further access.
957                                  */
958                                 cmd->device->changed = 1;
959                                 action = ACTION_FAIL;
960                         } else {
961                                 /* Must have been a power glitch, or a
962                                  * bus reset.  Could not have been a
963                                  * media change, so we just retry the
964                                  * command and see what happens.
965                                  */
966                                 action = ACTION_RETRY;
967                         }
968                         break;
969                 case ILLEGAL_REQUEST:
970                         /* If we had an ILLEGAL REQUEST returned, then
971                          * we may have performed an unsupported
972                          * command.  The only thing this should be
973                          * would be a ten byte read where only a six
974                          * byte read was supported.  Also, on a system
975                          * where READ CAPACITY failed, we may have
976                          * read past the end of the disk.
977                          */
978                         if ((cmd->device->use_10_for_rw &&
979                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
980                             (cmd->cmnd[0] == READ_10 ||
981                              cmd->cmnd[0] == WRITE_10)) {
982                                 /* This will issue a new 6-byte command. */
983                                 cmd->device->use_10_for_rw = 0;
984                                 action = ACTION_REPREP;
985                         } else if (sshdr.asc == 0x10) /* DIX */ {
986                                 action = ACTION_FAIL;
987                                 error = -EILSEQ;
988                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
989                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
990                                 action = ACTION_FAIL;
991                                 error = -EREMOTEIO;
992                         } else
993                                 action = ACTION_FAIL;
994                         break;
995                 case ABORTED_COMMAND:
996                         action = ACTION_FAIL;
997                         if (sshdr.asc == 0x10) /* DIF */
998                                 error = -EILSEQ;
999                         break;
1000                 case NOT_READY:
1001                         /* If the device is in the process of becoming
1002                          * ready, or has a temporary blockage, retry.
1003                          */
1004                         if (sshdr.asc == 0x04) {
1005                                 switch (sshdr.ascq) {
1006                                 case 0x01: /* becoming ready */
1007                                 case 0x04: /* format in progress */
1008                                 case 0x05: /* rebuild in progress */
1009                                 case 0x06: /* recalculation in progress */
1010                                 case 0x07: /* operation in progress */
1011                                 case 0x08: /* Long write in progress */
1012                                 case 0x09: /* self test in progress */
1013                                 case 0x14: /* space allocation in progress */
1014                                         action = ACTION_DELAYED_RETRY;
1015                                         break;
1016                                 default:
1017                                         action = ACTION_FAIL;
1018                                         break;
1019                                 }
1020                         } else
1021                                 action = ACTION_FAIL;
1022                         break;
1023                 case VOLUME_OVERFLOW:
1024                         /* See SSC3rXX or current. */
1025                         action = ACTION_FAIL;
1026                         break;
1027                 default:
1028                         action = ACTION_FAIL;
1029                         break;
1030                 }
1031         } else
1032                 action = ACTION_FAIL;
1033
1034         if (action != ACTION_FAIL &&
1035             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1036                 action = ACTION_FAIL;
1037
1038         switch (action) {
1039         case ACTION_FAIL:
1040                 /* Give up and fail the remainder of the request */
1041                 if (unlikely(scsi_logging_level))
1042                         level = SCSI_LOG_LEVEL(SCSI_LOG_MLQUEUE_SHIFT,
1043                                                SCSI_LOG_MLQUEUE_BITS);
1044                 /*
1045                  * if logging is enabled the failure will be printed
1046                  * in scsi_log_completion(), so avoid duplicate messages
1047                  */
1048                 if (!level && !(req->cmd_flags & REQ_QUIET)) {
1049                         scsi_print_result(cmd, NULL, FAILED);
1050                         if (driver_byte(result) & DRIVER_SENSE)
1051                                 scsi_print_sense(cmd);
1052                         scsi_print_command(cmd);
1053                 }
1054                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1055                         return;
1056                 /*FALLTHRU*/
1057         case ACTION_REPREP:
1058         requeue:
1059                 /* Unprep the request and put it back at the head of the queue.
1060                  * A new command will be prepared and issued.
1061                  */
1062                 if (q->mq_ops) {
1063                         cmd->request->cmd_flags &= ~REQ_DONTPREP;
1064                         scsi_mq_uninit_cmd(cmd);
1065                         scsi_mq_requeue_cmd(cmd);
1066                 } else {
1067                         scsi_release_buffers(cmd);
1068                         scsi_requeue_command(q, cmd);
1069                 }
1070                 break;
1071         case ACTION_RETRY:
1072                 /* Retry the same command immediately */
1073                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1074                 break;
1075         case ACTION_DELAYED_RETRY:
1076                 /* Retry the same command after a delay */
1077                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1078                 break;
1079         }
1080 }
1081
1082 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1083                              gfp_t gfp_mask)
1084 {
1085         int count;
1086
1087         /*
1088          * If sg table allocation fails, requeue request later.
1089          */
1090         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1091                                         gfp_mask, req->mq_ctx != NULL)))
1092                 return BLKPREP_DEFER;
1093
1094         /* 
1095          * Next, walk the list, and fill in the addresses and sizes of
1096          * each segment.
1097          */
1098         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1099         BUG_ON(count > sdb->table.nents);
1100         sdb->table.nents = count;
1101         sdb->length = blk_rq_bytes(req);
1102         return BLKPREP_OK;
1103 }
1104
1105 /*
1106  * Function:    scsi_init_io()
1107  *
1108  * Purpose:     SCSI I/O initialize function.
1109  *
1110  * Arguments:   cmd   - Command descriptor we wish to initialize
1111  *
1112  * Returns:     0 on success
1113  *              BLKPREP_DEFER if the failure is retryable
1114  *              BLKPREP_KILL if the failure is fatal
1115  */
1116 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1117 {
1118         struct scsi_device *sdev = cmd->device;
1119         struct request *rq = cmd->request;
1120         bool is_mq = (rq->mq_ctx != NULL);
1121         int error;
1122
1123         BUG_ON(!rq->nr_phys_segments);
1124
1125         error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1126         if (error)
1127                 goto err_exit;
1128
1129         if (blk_bidi_rq(rq)) {
1130                 if (!rq->q->mq_ops) {
1131                         struct scsi_data_buffer *bidi_sdb =
1132                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1133                         if (!bidi_sdb) {
1134                                 error = BLKPREP_DEFER;
1135                                 goto err_exit;
1136                         }
1137
1138                         rq->next_rq->special = bidi_sdb;
1139                 }
1140
1141                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special,
1142                                           GFP_ATOMIC);
1143                 if (error)
1144                         goto err_exit;
1145         }
1146
1147         if (blk_integrity_rq(rq)) {
1148                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1149                 int ivecs, count;
1150
1151                 BUG_ON(prot_sdb == NULL);
1152                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1153
1154                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask, is_mq)) {
1155                         error = BLKPREP_DEFER;
1156                         goto err_exit;
1157                 }
1158
1159                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1160                                                 prot_sdb->table.sgl);
1161                 BUG_ON(unlikely(count > ivecs));
1162                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1163
1164                 cmd->prot_sdb = prot_sdb;
1165                 cmd->prot_sdb->table.nents = count;
1166         }
1167
1168         return BLKPREP_OK;
1169 err_exit:
1170         if (is_mq) {
1171                 scsi_mq_free_sgtables(cmd);
1172         } else {
1173                 scsi_release_buffers(cmd);
1174                 cmd->request->special = NULL;
1175                 scsi_put_command(cmd);
1176                 put_device(&sdev->sdev_gendev);
1177         }
1178         return error;
1179 }
1180 EXPORT_SYMBOL(scsi_init_io);
1181
1182 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1183                 struct request *req)
1184 {
1185         struct scsi_cmnd *cmd;
1186
1187         if (!req->special) {
1188                 /* Bail if we can't get a reference to the device */
1189                 if (!get_device(&sdev->sdev_gendev))
1190                         return NULL;
1191
1192                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1193                 if (unlikely(!cmd)) {
1194                         put_device(&sdev->sdev_gendev);
1195                         return NULL;
1196                 }
1197                 req->special = cmd;
1198         } else {
1199                 cmd = req->special;
1200         }
1201
1202         /* pull a tag out of the request if we have one */
1203         cmd->tag = req->tag;
1204         cmd->request = req;
1205
1206         cmd->cmnd = req->cmd;
1207         cmd->prot_op = SCSI_PROT_NORMAL;
1208
1209         return cmd;
1210 }
1211
1212 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1213 {
1214         struct scsi_cmnd *cmd = req->special;
1215
1216         /*
1217          * BLOCK_PC requests may transfer data, in which case they must
1218          * a bio attached to them.  Or they might contain a SCSI command
1219          * that does not transfer data, in which case they may optionally
1220          * submit a request without an attached bio.
1221          */
1222         if (req->bio) {
1223                 int ret = scsi_init_io(cmd, GFP_ATOMIC);
1224                 if (unlikely(ret))
1225                         return ret;
1226         } else {
1227                 BUG_ON(blk_rq_bytes(req));
1228
1229                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1230         }
1231
1232         cmd->cmd_len = req->cmd_len;
1233         cmd->transfersize = blk_rq_bytes(req);
1234         cmd->allowed = req->retries;
1235         return BLKPREP_OK;
1236 }
1237
1238 /*
1239  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1240  * that still need to be translated to SCSI CDBs from the ULD.
1241  */
1242 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1243 {
1244         struct scsi_cmnd *cmd = req->special;
1245
1246         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1247                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1248                 int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1249                 if (ret != BLKPREP_OK)
1250                         return ret;
1251         }
1252
1253         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1254         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1255 }
1256
1257 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1258 {
1259         struct scsi_cmnd *cmd = req->special;
1260
1261         if (!blk_rq_bytes(req))
1262                 cmd->sc_data_direction = DMA_NONE;
1263         else if (rq_data_dir(req) == WRITE)
1264                 cmd->sc_data_direction = DMA_TO_DEVICE;
1265         else
1266                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1267
1268         switch (req->cmd_type) {
1269         case REQ_TYPE_FS:
1270                 return scsi_setup_fs_cmnd(sdev, req);
1271         case REQ_TYPE_BLOCK_PC:
1272                 return scsi_setup_blk_pc_cmnd(sdev, req);
1273         default:
1274                 return BLKPREP_KILL;
1275         }
1276 }
1277
1278 static int
1279 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1280 {
1281         int ret = BLKPREP_OK;
1282
1283         /*
1284          * If the device is not in running state we will reject some
1285          * or all commands.
1286          */
1287         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1288                 switch (sdev->sdev_state) {
1289                 case SDEV_OFFLINE:
1290                 case SDEV_TRANSPORT_OFFLINE:
1291                         /*
1292                          * If the device is offline we refuse to process any
1293                          * commands.  The device must be brought online
1294                          * before trying any recovery commands.
1295                          */
1296                         sdev_printk(KERN_ERR, sdev,
1297                                     "rejecting I/O to offline device\n");
1298                         ret = BLKPREP_KILL;
1299                         break;
1300                 case SDEV_DEL:
1301                         /*
1302                          * If the device is fully deleted, we refuse to
1303                          * process any commands as well.
1304                          */
1305                         sdev_printk(KERN_ERR, sdev,
1306                                     "rejecting I/O to dead device\n");
1307                         ret = BLKPREP_KILL;
1308                         break;
1309                 case SDEV_QUIESCE:
1310                 case SDEV_BLOCK:
1311                 case SDEV_CREATED_BLOCK:
1312                         /*
1313                          * If the devices is blocked we defer normal commands.
1314                          */
1315                         if (!(req->cmd_flags & REQ_PREEMPT))
1316                                 ret = BLKPREP_DEFER;
1317                         break;
1318                 default:
1319                         /*
1320                          * For any other not fully online state we only allow
1321                          * special commands.  In particular any user initiated
1322                          * command is not allowed.
1323                          */
1324                         if (!(req->cmd_flags & REQ_PREEMPT))
1325                                 ret = BLKPREP_KILL;
1326                         break;
1327                 }
1328         }
1329         return ret;
1330 }
1331
1332 static int
1333 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1334 {
1335         struct scsi_device *sdev = q->queuedata;
1336
1337         switch (ret) {
1338         case BLKPREP_KILL:
1339                 req->errors = DID_NO_CONNECT << 16;
1340                 /* release the command and kill it */
1341                 if (req->special) {
1342                         struct scsi_cmnd *cmd = req->special;
1343                         scsi_release_buffers(cmd);
1344                         scsi_put_command(cmd);
1345                         put_device(&sdev->sdev_gendev);
1346                         req->special = NULL;
1347                 }
1348                 break;
1349         case BLKPREP_DEFER:
1350                 /*
1351                  * If we defer, the blk_peek_request() returns NULL, but the
1352                  * queue must be restarted, so we schedule a callback to happen
1353                  * shortly.
1354                  */
1355                 if (atomic_read(&sdev->device_busy) == 0)
1356                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1357                 break;
1358         default:
1359                 req->cmd_flags |= REQ_DONTPREP;
1360         }
1361
1362         return ret;
1363 }
1364
1365 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1366 {
1367         struct scsi_device *sdev = q->queuedata;
1368         struct scsi_cmnd *cmd;
1369         int ret;
1370
1371         ret = scsi_prep_state_check(sdev, req);
1372         if (ret != BLKPREP_OK)
1373                 goto out;
1374
1375         cmd = scsi_get_cmd_from_req(sdev, req);
1376         if (unlikely(!cmd)) {
1377                 ret = BLKPREP_DEFER;
1378                 goto out;
1379         }
1380
1381         ret = scsi_setup_cmnd(sdev, req);
1382 out:
1383         return scsi_prep_return(q, req, ret);
1384 }
1385
1386 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1387 {
1388         scsi_uninit_cmd(req->special);
1389 }
1390
1391 /*
1392  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1393  * return 0.
1394  *
1395  * Called with the queue_lock held.
1396  */
1397 static inline int scsi_dev_queue_ready(struct request_queue *q,
1398                                   struct scsi_device *sdev)
1399 {
1400         unsigned int busy;
1401
1402         busy = atomic_inc_return(&sdev->device_busy) - 1;
1403         if (atomic_read(&sdev->device_blocked)) {
1404                 if (busy)
1405                         goto out_dec;
1406
1407                 /*
1408                  * unblock after device_blocked iterates to zero
1409                  */
1410                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1411                         /*
1412                          * For the MQ case we take care of this in the caller.
1413                          */
1414                         if (!q->mq_ops)
1415                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1416                         goto out_dec;
1417                 }
1418                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1419                                    "unblocking device at zero depth\n"));
1420         }
1421
1422         if (busy >= sdev->queue_depth)
1423                 goto out_dec;
1424
1425         return 1;
1426 out_dec:
1427         atomic_dec(&sdev->device_busy);
1428         return 0;
1429 }
1430
1431 /*
1432  * scsi_target_queue_ready: checks if there we can send commands to target
1433  * @sdev: scsi device on starget to check.
1434  */
1435 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1436                                            struct scsi_device *sdev)
1437 {
1438         struct scsi_target *starget = scsi_target(sdev);
1439         unsigned int busy;
1440
1441         if (starget->single_lun) {
1442                 spin_lock_irq(shost->host_lock);
1443                 if (starget->starget_sdev_user &&
1444                     starget->starget_sdev_user != sdev) {
1445                         spin_unlock_irq(shost->host_lock);
1446                         return 0;
1447                 }
1448                 starget->starget_sdev_user = sdev;
1449                 spin_unlock_irq(shost->host_lock);
1450         }
1451
1452         if (starget->can_queue <= 0)
1453                 return 1;
1454
1455         busy = atomic_inc_return(&starget->target_busy) - 1;
1456         if (atomic_read(&starget->target_blocked) > 0) {
1457                 if (busy)
1458                         goto starved;
1459
1460                 /*
1461                  * unblock after target_blocked iterates to zero
1462                  */
1463                 if (atomic_dec_return(&starget->target_blocked) > 0)
1464                         goto out_dec;
1465
1466                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1467                                  "unblocking target at zero depth\n"));
1468         }
1469
1470         if (busy >= starget->can_queue)
1471                 goto starved;
1472
1473         return 1;
1474
1475 starved:
1476         spin_lock_irq(shost->host_lock);
1477         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1478         spin_unlock_irq(shost->host_lock);
1479 out_dec:
1480         if (starget->can_queue > 0)
1481                 atomic_dec(&starget->target_busy);
1482         return 0;
1483 }
1484
1485 /*
1486  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1487  * return 0. We must end up running the queue again whenever 0 is
1488  * returned, else IO can hang.
1489  */
1490 static inline int scsi_host_queue_ready(struct request_queue *q,
1491                                    struct Scsi_Host *shost,
1492                                    struct scsi_device *sdev)
1493 {
1494         unsigned int busy;
1495
1496         if (scsi_host_in_recovery(shost))
1497                 return 0;
1498
1499         busy = atomic_inc_return(&shost->host_busy) - 1;
1500         if (atomic_read(&shost->host_blocked) > 0) {
1501                 if (busy)
1502                         goto starved;
1503
1504                 /*
1505                  * unblock after host_blocked iterates to zero
1506                  */
1507                 if (atomic_dec_return(&shost->host_blocked) > 0)
1508                         goto out_dec;
1509
1510                 SCSI_LOG_MLQUEUE(3,
1511                         shost_printk(KERN_INFO, shost,
1512                                      "unblocking host at zero depth\n"));
1513         }
1514
1515         if (shost->can_queue > 0 && busy >= shost->can_queue)
1516                 goto starved;
1517         if (shost->host_self_blocked)
1518                 goto starved;
1519
1520         /* We're OK to process the command, so we can't be starved */
1521         if (!list_empty(&sdev->starved_entry)) {
1522                 spin_lock_irq(shost->host_lock);
1523                 if (!list_empty(&sdev->starved_entry))
1524                         list_del_init(&sdev->starved_entry);
1525                 spin_unlock_irq(shost->host_lock);
1526         }
1527
1528         return 1;
1529
1530 starved:
1531         spin_lock_irq(shost->host_lock);
1532         if (list_empty(&sdev->starved_entry))
1533                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1534         spin_unlock_irq(shost->host_lock);
1535 out_dec:
1536         atomic_dec(&shost->host_busy);
1537         return 0;
1538 }
1539
1540 /*
1541  * Busy state exporting function for request stacking drivers.
1542  *
1543  * For efficiency, no lock is taken to check the busy state of
1544  * shost/starget/sdev, since the returned value is not guaranteed and
1545  * may be changed after request stacking drivers call the function,
1546  * regardless of taking lock or not.
1547  *
1548  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1549  * needs to return 'not busy'. Otherwise, request stacking drivers
1550  * may hold requests forever.
1551  */
1552 static int scsi_lld_busy(struct request_queue *q)
1553 {
1554         struct scsi_device *sdev = q->queuedata;
1555         struct Scsi_Host *shost;
1556
1557         if (blk_queue_dying(q))
1558                 return 0;
1559
1560         shost = sdev->host;
1561
1562         /*
1563          * Ignore host/starget busy state.
1564          * Since block layer does not have a concept of fairness across
1565          * multiple queues, congestion of host/starget needs to be handled
1566          * in SCSI layer.
1567          */
1568         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1569                 return 1;
1570
1571         return 0;
1572 }
1573
1574 /*
1575  * Kill a request for a dead device
1576  */
1577 static void scsi_kill_request(struct request *req, struct request_queue *q)
1578 {
1579         struct scsi_cmnd *cmd = req->special;
1580         struct scsi_device *sdev;
1581         struct scsi_target *starget;
1582         struct Scsi_Host *shost;
1583
1584         blk_start_request(req);
1585
1586         scmd_printk(KERN_INFO, cmd, "killing request\n");
1587
1588         sdev = cmd->device;
1589         starget = scsi_target(sdev);
1590         shost = sdev->host;
1591         scsi_init_cmd_errh(cmd);
1592         cmd->result = DID_NO_CONNECT << 16;
1593         atomic_inc(&cmd->device->iorequest_cnt);
1594
1595         /*
1596          * SCSI request completion path will do scsi_device_unbusy(),
1597          * bump busy counts.  To bump the counters, we need to dance
1598          * with the locks as normal issue path does.
1599          */
1600         atomic_inc(&sdev->device_busy);
1601         atomic_inc(&shost->host_busy);
1602         if (starget->can_queue > 0)
1603                 atomic_inc(&starget->target_busy);
1604
1605         blk_complete_request(req);
1606 }
1607
1608 static void scsi_softirq_done(struct request *rq)
1609 {
1610         struct scsi_cmnd *cmd = rq->special;
1611         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1612         int disposition;
1613
1614         INIT_LIST_HEAD(&cmd->eh_entry);
1615
1616         atomic_inc(&cmd->device->iodone_cnt);
1617         if (cmd->result)
1618                 atomic_inc(&cmd->device->ioerr_cnt);
1619
1620         disposition = scsi_decide_disposition(cmd);
1621         if (disposition != SUCCESS &&
1622             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1623                 sdev_printk(KERN_ERR, cmd->device,
1624                             "timing out command, waited %lus\n",
1625                             wait_for/HZ);
1626                 disposition = SUCCESS;
1627         }
1628
1629         scsi_log_completion(cmd, disposition);
1630
1631         switch (disposition) {
1632                 case SUCCESS:
1633                         scsi_finish_command(cmd);
1634                         break;
1635                 case NEEDS_RETRY:
1636                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1637                         break;
1638                 case ADD_TO_MLQUEUE:
1639                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1640                         break;
1641                 default:
1642                         if (!scsi_eh_scmd_add(cmd, 0))
1643                                 scsi_finish_command(cmd);
1644         }
1645 }
1646
1647 /**
1648  * scsi_done - Invoke completion on finished SCSI command.
1649  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1650  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1651  *
1652  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1653  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1654  * calls blk_complete_request() for further processing.
1655  *
1656  * This function is interrupt context safe.
1657  */
1658 static void scsi_done(struct scsi_cmnd *cmd)
1659 {
1660         trace_scsi_dispatch_cmd_done(cmd);
1661         blk_complete_request(cmd->request);
1662 }
1663
1664 /*
1665  * Function:    scsi_request_fn()
1666  *
1667  * Purpose:     Main strategy routine for SCSI.
1668  *
1669  * Arguments:   q       - Pointer to actual queue.
1670  *
1671  * Returns:     Nothing
1672  *
1673  * Lock status: IO request lock assumed to be held when called.
1674  */
1675 static void scsi_request_fn(struct request_queue *q)
1676         __releases(q->queue_lock)
1677         __acquires(q->queue_lock)
1678 {
1679         struct scsi_device *sdev = q->queuedata;
1680         struct Scsi_Host *shost;
1681         struct scsi_cmnd *cmd;
1682         struct request *req;
1683
1684         /*
1685          * To start with, we keep looping until the queue is empty, or until
1686          * the host is no longer able to accept any more requests.
1687          */
1688         shost = sdev->host;
1689         for (;;) {
1690                 int rtn;
1691                 /*
1692                  * get next queueable request.  We do this early to make sure
1693                  * that the request is fully prepared even if we cannot
1694                  * accept it.
1695                  */
1696                 req = blk_peek_request(q);
1697                 if (!req)
1698                         break;
1699
1700                 if (unlikely(!scsi_device_online(sdev))) {
1701                         sdev_printk(KERN_ERR, sdev,
1702                                     "rejecting I/O to offline device\n");
1703                         scsi_kill_request(req, q);
1704                         continue;
1705                 }
1706
1707                 if (!scsi_dev_queue_ready(q, sdev))
1708                         break;
1709
1710                 /*
1711                  * Remove the request from the request list.
1712                  */
1713                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1714                         blk_start_request(req);
1715
1716                 spin_unlock_irq(q->queue_lock);
1717                 cmd = req->special;
1718                 if (unlikely(cmd == NULL)) {
1719                         printk(KERN_CRIT "impossible request in %s.\n"
1720                                          "please mail a stack trace to "
1721                                          "linux-scsi@vger.kernel.org\n",
1722                                          __func__);
1723                         blk_dump_rq_flags(req, "foo");
1724                         BUG();
1725                 }
1726
1727                 /*
1728                  * We hit this when the driver is using a host wide
1729                  * tag map. For device level tag maps the queue_depth check
1730                  * in the device ready fn would prevent us from trying
1731                  * to allocate a tag. Since the map is a shared host resource
1732                  * we add the dev to the starved list so it eventually gets
1733                  * a run when a tag is freed.
1734                  */
1735                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1736                         spin_lock_irq(shost->host_lock);
1737                         if (list_empty(&sdev->starved_entry))
1738                                 list_add_tail(&sdev->starved_entry,
1739                                               &shost->starved_list);
1740                         spin_unlock_irq(shost->host_lock);
1741                         goto not_ready;
1742                 }
1743
1744                 if (!scsi_target_queue_ready(shost, sdev))
1745                         goto not_ready;
1746
1747                 if (!scsi_host_queue_ready(q, shost, sdev))
1748                         goto host_not_ready;
1749
1750                 /*
1751                  * Finally, initialize any error handling parameters, and set up
1752                  * the timers for timeouts.
1753                  */
1754                 scsi_init_cmd_errh(cmd);
1755
1756                 /*
1757                  * Dispatch the command to the low-level driver.
1758                  */
1759                 cmd->scsi_done = scsi_done;
1760                 rtn = scsi_dispatch_cmd(cmd);
1761                 if (rtn) {
1762                         scsi_queue_insert(cmd, rtn);
1763                         spin_lock_irq(q->queue_lock);
1764                         goto out_delay;
1765                 }
1766                 spin_lock_irq(q->queue_lock);
1767         }
1768
1769         return;
1770
1771  host_not_ready:
1772         if (scsi_target(sdev)->can_queue > 0)
1773                 atomic_dec(&scsi_target(sdev)->target_busy);
1774  not_ready:
1775         /*
1776          * lock q, handle tag, requeue req, and decrement device_busy. We
1777          * must return with queue_lock held.
1778          *
1779          * Decrementing device_busy without checking it is OK, as all such
1780          * cases (host limits or settings) should run the queue at some
1781          * later time.
1782          */
1783         spin_lock_irq(q->queue_lock);
1784         blk_requeue_request(q, req);
1785         atomic_dec(&sdev->device_busy);
1786 out_delay:
1787         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1788                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1789 }
1790
1791 static inline int prep_to_mq(int ret)
1792 {
1793         switch (ret) {
1794         case BLKPREP_OK:
1795                 return 0;
1796         case BLKPREP_DEFER:
1797                 return BLK_MQ_RQ_QUEUE_BUSY;
1798         default:
1799                 return BLK_MQ_RQ_QUEUE_ERROR;
1800         }
1801 }
1802
1803 static int scsi_mq_prep_fn(struct request *req)
1804 {
1805         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1806         struct scsi_device *sdev = req->q->queuedata;
1807         struct Scsi_Host *shost = sdev->host;
1808         unsigned char *sense_buf = cmd->sense_buffer;
1809         struct scatterlist *sg;
1810
1811         memset(cmd, 0, sizeof(struct scsi_cmnd));
1812
1813         req->special = cmd;
1814
1815         cmd->request = req;
1816         cmd->device = sdev;
1817         cmd->sense_buffer = sense_buf;
1818
1819         cmd->tag = req->tag;
1820
1821         cmd->cmnd = req->cmd;
1822         cmd->prot_op = SCSI_PROT_NORMAL;
1823
1824         INIT_LIST_HEAD(&cmd->list);
1825         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1826         cmd->jiffies_at_alloc = jiffies;
1827
1828         if (shost->use_cmd_list) {
1829                 spin_lock_irq(&sdev->list_lock);
1830                 list_add_tail(&cmd->list, &sdev->cmd_list);
1831                 spin_unlock_irq(&sdev->list_lock);
1832         }
1833
1834         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1835         cmd->sdb.table.sgl = sg;
1836
1837         if (scsi_host_get_prot(shost)) {
1838                 cmd->prot_sdb = (void *)sg +
1839                         shost->sg_tablesize * sizeof(struct scatterlist);
1840                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1841
1842                 cmd->prot_sdb->table.sgl =
1843                         (struct scatterlist *)(cmd->prot_sdb + 1);
1844         }
1845
1846         if (blk_bidi_rq(req)) {
1847                 struct request *next_rq = req->next_rq;
1848                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1849
1850                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1851                 bidi_sdb->table.sgl =
1852                         (struct scatterlist *)(bidi_sdb + 1);
1853
1854                 next_rq->special = bidi_sdb;
1855         }
1856
1857         blk_mq_start_request(req);
1858
1859         return scsi_setup_cmnd(sdev, req);
1860 }
1861
1862 static void scsi_mq_done(struct scsi_cmnd *cmd)
1863 {
1864         trace_scsi_dispatch_cmd_done(cmd);
1865         blk_mq_complete_request(cmd->request);
1866 }
1867
1868 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx, struct request *req,
1869                 bool last)
1870 {
1871         struct request_queue *q = req->q;
1872         struct scsi_device *sdev = q->queuedata;
1873         struct Scsi_Host *shost = sdev->host;
1874         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1875         int ret;
1876         int reason;
1877
1878         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1879         if (ret)
1880                 goto out;
1881
1882         ret = BLK_MQ_RQ_QUEUE_BUSY;
1883         if (!get_device(&sdev->sdev_gendev))
1884                 goto out;
1885
1886         if (!scsi_dev_queue_ready(q, sdev))
1887                 goto out_put_device;
1888         if (!scsi_target_queue_ready(shost, sdev))
1889                 goto out_dec_device_busy;
1890         if (!scsi_host_queue_ready(q, shost, sdev))
1891                 goto out_dec_target_busy;
1892
1893
1894         if (!(req->cmd_flags & REQ_DONTPREP)) {
1895                 ret = prep_to_mq(scsi_mq_prep_fn(req));
1896                 if (ret)
1897                         goto out_dec_host_busy;
1898                 req->cmd_flags |= REQ_DONTPREP;
1899         } else {
1900                 blk_mq_start_request(req);
1901         }
1902
1903         if (blk_queue_tagged(q))
1904                 req->cmd_flags |= REQ_QUEUED;
1905         else
1906                 req->cmd_flags &= ~REQ_QUEUED;
1907
1908         scsi_init_cmd_errh(cmd);
1909         cmd->scsi_done = scsi_mq_done;
1910
1911         reason = scsi_dispatch_cmd(cmd);
1912         if (reason) {
1913                 scsi_set_blocked(cmd, reason);
1914                 ret = BLK_MQ_RQ_QUEUE_BUSY;
1915                 goto out_dec_host_busy;
1916         }
1917
1918         return BLK_MQ_RQ_QUEUE_OK;
1919
1920 out_dec_host_busy:
1921         atomic_dec(&shost->host_busy);
1922 out_dec_target_busy:
1923         if (scsi_target(sdev)->can_queue > 0)
1924                 atomic_dec(&scsi_target(sdev)->target_busy);
1925 out_dec_device_busy:
1926         atomic_dec(&sdev->device_busy);
1927 out_put_device:
1928         put_device(&sdev->sdev_gendev);
1929 out:
1930         switch (ret) {
1931         case BLK_MQ_RQ_QUEUE_BUSY:
1932                 blk_mq_stop_hw_queue(hctx);
1933                 if (atomic_read(&sdev->device_busy) == 0 &&
1934                     !scsi_device_blocked(sdev))
1935                         blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1936                 break;
1937         case BLK_MQ_RQ_QUEUE_ERROR:
1938                 /*
1939                  * Make sure to release all allocated ressources when
1940                  * we hit an error, as we will never see this command
1941                  * again.
1942                  */
1943                 if (req->cmd_flags & REQ_DONTPREP)
1944                         scsi_mq_uninit_cmd(cmd);
1945                 break;
1946         default:
1947                 break;
1948         }
1949         return ret;
1950 }
1951
1952 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1953                 bool reserved)
1954 {
1955         if (reserved)
1956                 return BLK_EH_RESET_TIMER;
1957         return scsi_times_out(req);
1958 }
1959
1960 static int scsi_init_request(void *data, struct request *rq,
1961                 unsigned int hctx_idx, unsigned int request_idx,
1962                 unsigned int numa_node)
1963 {
1964         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1965
1966         cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1967                         numa_node);
1968         if (!cmd->sense_buffer)
1969                 return -ENOMEM;
1970         return 0;
1971 }
1972
1973 static void scsi_exit_request(void *data, struct request *rq,
1974                 unsigned int hctx_idx, unsigned int request_idx)
1975 {
1976         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1977
1978         kfree(cmd->sense_buffer);
1979 }
1980
1981 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1982 {
1983         struct device *host_dev;
1984         u64 bounce_limit = 0xffffffff;
1985
1986         if (shost->unchecked_isa_dma)
1987                 return BLK_BOUNCE_ISA;
1988         /*
1989          * Platforms with virtual-DMA translation
1990          * hardware have no practical limit.
1991          */
1992         if (!PCI_DMA_BUS_IS_PHYS)
1993                 return BLK_BOUNCE_ANY;
1994
1995         host_dev = scsi_get_device(shost);
1996         if (host_dev && host_dev->dma_mask)
1997                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1998
1999         return bounce_limit;
2000 }
2001
2002 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2003 {
2004         struct device *dev = shost->dma_dev;
2005
2006         /*
2007          * this limit is imposed by hardware restrictions
2008          */
2009         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2010                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
2011
2012         if (scsi_host_prot_dma(shost)) {
2013                 shost->sg_prot_tablesize =
2014                         min_not_zero(shost->sg_prot_tablesize,
2015                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2016                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2017                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2018         }
2019
2020         blk_queue_max_hw_sectors(q, shost->max_sectors);
2021         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2022         blk_queue_segment_boundary(q, shost->dma_boundary);
2023         dma_set_seg_boundary(dev, shost->dma_boundary);
2024
2025         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2026
2027         if (!shost->use_clustering)
2028                 q->limits.cluster = 0;
2029
2030         /*
2031          * set a reasonable default alignment on word boundaries: the
2032          * host and device may alter it using
2033          * blk_queue_update_dma_alignment() later.
2034          */
2035         blk_queue_dma_alignment(q, 0x03);
2036 }
2037
2038 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2039                                          request_fn_proc *request_fn)
2040 {
2041         struct request_queue *q;
2042
2043         q = blk_init_queue(request_fn, NULL);
2044         if (!q)
2045                 return NULL;
2046         __scsi_init_queue(shost, q);
2047         return q;
2048 }
2049 EXPORT_SYMBOL(__scsi_alloc_queue);
2050
2051 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2052 {
2053         struct request_queue *q;
2054
2055         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2056         if (!q)
2057                 return NULL;
2058
2059         blk_queue_prep_rq(q, scsi_prep_fn);
2060         blk_queue_unprep_rq(q, scsi_unprep_fn);
2061         blk_queue_softirq_done(q, scsi_softirq_done);
2062         blk_queue_rq_timed_out(q, scsi_times_out);
2063         blk_queue_lld_busy(q, scsi_lld_busy);
2064         return q;
2065 }
2066
2067 static struct blk_mq_ops scsi_mq_ops = {
2068         .map_queue      = blk_mq_map_queue,
2069         .queue_rq       = scsi_queue_rq,
2070         .complete       = scsi_softirq_done,
2071         .timeout        = scsi_timeout,
2072         .init_request   = scsi_init_request,
2073         .exit_request   = scsi_exit_request,
2074 };
2075
2076 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2077 {
2078         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2079         if (IS_ERR(sdev->request_queue))
2080                 return NULL;
2081
2082         sdev->request_queue->queuedata = sdev;
2083         __scsi_init_queue(sdev->host, sdev->request_queue);
2084         return sdev->request_queue;
2085 }
2086
2087 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2088 {
2089         unsigned int cmd_size, sgl_size, tbl_size;
2090
2091         tbl_size = shost->sg_tablesize;
2092         if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2093                 tbl_size = SCSI_MAX_SG_SEGMENTS;
2094         sgl_size = tbl_size * sizeof(struct scatterlist);
2095         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2096         if (scsi_host_get_prot(shost))
2097                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2098
2099         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2100         shost->tag_set.ops = &scsi_mq_ops;
2101         shost->tag_set.nr_hw_queues = 1;
2102         shost->tag_set.queue_depth = shost->can_queue;
2103         shost->tag_set.cmd_size = cmd_size;
2104         shost->tag_set.numa_node = NUMA_NO_NODE;
2105         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2106         shost->tag_set.driver_data = shost;
2107
2108         return blk_mq_alloc_tag_set(&shost->tag_set);
2109 }
2110
2111 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2112 {
2113         blk_mq_free_tag_set(&shost->tag_set);
2114 }
2115
2116 /*
2117  * Function:    scsi_block_requests()
2118  *
2119  * Purpose:     Utility function used by low-level drivers to prevent further
2120  *              commands from being queued to the device.
2121  *
2122  * Arguments:   shost       - Host in question
2123  *
2124  * Returns:     Nothing
2125  *
2126  * Lock status: No locks are assumed held.
2127  *
2128  * Notes:       There is no timer nor any other means by which the requests
2129  *              get unblocked other than the low-level driver calling
2130  *              scsi_unblock_requests().
2131  */
2132 void scsi_block_requests(struct Scsi_Host *shost)
2133 {
2134         shost->host_self_blocked = 1;
2135 }
2136 EXPORT_SYMBOL(scsi_block_requests);
2137
2138 /*
2139  * Function:    scsi_unblock_requests()
2140  *
2141  * Purpose:     Utility function used by low-level drivers to allow further
2142  *              commands from being queued to the device.
2143  *
2144  * Arguments:   shost       - Host in question
2145  *
2146  * Returns:     Nothing
2147  *
2148  * Lock status: No locks are assumed held.
2149  *
2150  * Notes:       There is no timer nor any other means by which the requests
2151  *              get unblocked other than the low-level driver calling
2152  *              scsi_unblock_requests().
2153  *
2154  *              This is done as an API function so that changes to the
2155  *              internals of the scsi mid-layer won't require wholesale
2156  *              changes to drivers that use this feature.
2157  */
2158 void scsi_unblock_requests(struct Scsi_Host *shost)
2159 {
2160         shost->host_self_blocked = 0;
2161         scsi_run_host_queues(shost);
2162 }
2163 EXPORT_SYMBOL(scsi_unblock_requests);
2164
2165 int __init scsi_init_queue(void)
2166 {
2167         int i;
2168
2169         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2170                                            sizeof(struct scsi_data_buffer),
2171                                            0, 0, NULL);
2172         if (!scsi_sdb_cache) {
2173                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2174                 return -ENOMEM;
2175         }
2176
2177         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2178                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2179                 int size = sgp->size * sizeof(struct scatterlist);
2180
2181                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
2182                                 SLAB_HWCACHE_ALIGN, NULL);
2183                 if (!sgp->slab) {
2184                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2185                                         sgp->name);
2186                         goto cleanup_sdb;
2187                 }
2188
2189                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2190                                                      sgp->slab);
2191                 if (!sgp->pool) {
2192                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2193                                         sgp->name);
2194                         goto cleanup_sdb;
2195                 }
2196         }
2197
2198         return 0;
2199
2200 cleanup_sdb:
2201         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2202                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2203                 if (sgp->pool)
2204                         mempool_destroy(sgp->pool);
2205                 if (sgp->slab)
2206                         kmem_cache_destroy(sgp->slab);
2207         }
2208         kmem_cache_destroy(scsi_sdb_cache);
2209
2210         return -ENOMEM;
2211 }
2212
2213 void scsi_exit_queue(void)
2214 {
2215         int i;
2216
2217         kmem_cache_destroy(scsi_sdb_cache);
2218
2219         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2220                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2221                 mempool_destroy(sgp->pool);
2222                 kmem_cache_destroy(sgp->slab);
2223         }
2224 }
2225
2226 /**
2227  *      scsi_mode_select - issue a mode select
2228  *      @sdev:  SCSI device to be queried
2229  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2230  *      @sp:    Save page bit (0 == don't save, 1 == save)
2231  *      @modepage: mode page being requested
2232  *      @buffer: request buffer (may not be smaller than eight bytes)
2233  *      @len:   length of request buffer.
2234  *      @timeout: command timeout
2235  *      @retries: number of retries before failing
2236  *      @data: returns a structure abstracting the mode header data
2237  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2238  *              must be SCSI_SENSE_BUFFERSIZE big.
2239  *
2240  *      Returns zero if successful; negative error number or scsi
2241  *      status on error
2242  *
2243  */
2244 int
2245 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2246                  unsigned char *buffer, int len, int timeout, int retries,
2247                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2248 {
2249         unsigned char cmd[10];
2250         unsigned char *real_buffer;
2251         int ret;
2252
2253         memset(cmd, 0, sizeof(cmd));
2254         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2255
2256         if (sdev->use_10_for_ms) {
2257                 if (len > 65535)
2258                         return -EINVAL;
2259                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2260                 if (!real_buffer)
2261                         return -ENOMEM;
2262                 memcpy(real_buffer + 8, buffer, len);
2263                 len += 8;
2264                 real_buffer[0] = 0;
2265                 real_buffer[1] = 0;
2266                 real_buffer[2] = data->medium_type;
2267                 real_buffer[3] = data->device_specific;
2268                 real_buffer[4] = data->longlba ? 0x01 : 0;
2269                 real_buffer[5] = 0;
2270                 real_buffer[6] = data->block_descriptor_length >> 8;
2271                 real_buffer[7] = data->block_descriptor_length;
2272
2273                 cmd[0] = MODE_SELECT_10;
2274                 cmd[7] = len >> 8;
2275                 cmd[8] = len;
2276         } else {
2277                 if (len > 255 || data->block_descriptor_length > 255 ||
2278                     data->longlba)
2279                         return -EINVAL;
2280
2281                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2282                 if (!real_buffer)
2283                         return -ENOMEM;
2284                 memcpy(real_buffer + 4, buffer, len);
2285                 len += 4;
2286                 real_buffer[0] = 0;
2287                 real_buffer[1] = data->medium_type;
2288                 real_buffer[2] = data->device_specific;
2289                 real_buffer[3] = data->block_descriptor_length;
2290                 
2291
2292                 cmd[0] = MODE_SELECT;
2293                 cmd[4] = len;
2294         }
2295
2296         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2297                                sshdr, timeout, retries, NULL);
2298         kfree(real_buffer);
2299         return ret;
2300 }
2301 EXPORT_SYMBOL_GPL(scsi_mode_select);
2302
2303 /**
2304  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2305  *      @sdev:  SCSI device to be queried
2306  *      @dbd:   set if mode sense will allow block descriptors to be returned
2307  *      @modepage: mode page being requested
2308  *      @buffer: request buffer (may not be smaller than eight bytes)
2309  *      @len:   length of request buffer.
2310  *      @timeout: command timeout
2311  *      @retries: number of retries before failing
2312  *      @data: returns a structure abstracting the mode header data
2313  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2314  *              must be SCSI_SENSE_BUFFERSIZE big.
2315  *
2316  *      Returns zero if unsuccessful, or the header offset (either 4
2317  *      or 8 depending on whether a six or ten byte command was
2318  *      issued) if successful.
2319  */
2320 int
2321 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2322                   unsigned char *buffer, int len, int timeout, int retries,
2323                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2324 {
2325         unsigned char cmd[12];
2326         int use_10_for_ms;
2327         int header_length;
2328         int result;
2329         struct scsi_sense_hdr my_sshdr;
2330
2331         memset(data, 0, sizeof(*data));
2332         memset(&cmd[0], 0, 12);
2333         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2334         cmd[2] = modepage;
2335
2336         /* caller might not be interested in sense, but we need it */
2337         if (!sshdr)
2338                 sshdr = &my_sshdr;
2339
2340  retry:
2341         use_10_for_ms = sdev->use_10_for_ms;
2342
2343         if (use_10_for_ms) {
2344                 if (len < 8)
2345                         len = 8;
2346
2347                 cmd[0] = MODE_SENSE_10;
2348                 cmd[8] = len;
2349                 header_length = 8;
2350         } else {
2351                 if (len < 4)
2352                         len = 4;
2353
2354                 cmd[0] = MODE_SENSE;
2355                 cmd[4] = len;
2356                 header_length = 4;
2357         }
2358
2359         memset(buffer, 0, len);
2360
2361         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2362                                   sshdr, timeout, retries, NULL);
2363
2364         /* This code looks awful: what it's doing is making sure an
2365          * ILLEGAL REQUEST sense return identifies the actual command
2366          * byte as the problem.  MODE_SENSE commands can return
2367          * ILLEGAL REQUEST if the code page isn't supported */
2368
2369         if (use_10_for_ms && !scsi_status_is_good(result) &&
2370             (driver_byte(result) & DRIVER_SENSE)) {
2371                 if (scsi_sense_valid(sshdr)) {
2372                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2373                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2374                                 /* 
2375                                  * Invalid command operation code
2376                                  */
2377                                 sdev->use_10_for_ms = 0;
2378                                 goto retry;
2379                         }
2380                 }
2381         }
2382
2383         if(scsi_status_is_good(result)) {
2384                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2385                              (modepage == 6 || modepage == 8))) {
2386                         /* Initio breakage? */
2387                         header_length = 0;
2388                         data->length = 13;
2389                         data->medium_type = 0;
2390                         data->device_specific = 0;
2391                         data->longlba = 0;
2392                         data->block_descriptor_length = 0;
2393                 } else if(use_10_for_ms) {
2394                         data->length = buffer[0]*256 + buffer[1] + 2;
2395                         data->medium_type = buffer[2];
2396                         data->device_specific = buffer[3];
2397                         data->longlba = buffer[4] & 0x01;
2398                         data->block_descriptor_length = buffer[6]*256
2399                                 + buffer[7];
2400                 } else {
2401                         data->length = buffer[0] + 1;
2402                         data->medium_type = buffer[1];
2403                         data->device_specific = buffer[2];
2404                         data->block_descriptor_length = buffer[3];
2405                 }
2406                 data->header_length = header_length;
2407         }
2408
2409         return result;
2410 }
2411 EXPORT_SYMBOL(scsi_mode_sense);
2412
2413 /**
2414  *      scsi_test_unit_ready - test if unit is ready
2415  *      @sdev:  scsi device to change the state of.
2416  *      @timeout: command timeout
2417  *      @retries: number of retries before failing
2418  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2419  *              returning sense. Make sure that this is cleared before passing
2420  *              in.
2421  *
2422  *      Returns zero if unsuccessful or an error if TUR failed.  For
2423  *      removable media, UNIT_ATTENTION sets ->changed flag.
2424  **/
2425 int
2426 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2427                      struct scsi_sense_hdr *sshdr_external)
2428 {
2429         char cmd[] = {
2430                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2431         };
2432         struct scsi_sense_hdr *sshdr;
2433         int result;
2434
2435         if (!sshdr_external)
2436                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2437         else
2438                 sshdr = sshdr_external;
2439
2440         /* try to eat the UNIT_ATTENTION if there are enough retries */
2441         do {
2442                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2443                                           timeout, retries, NULL);
2444                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2445                     sshdr->sense_key == UNIT_ATTENTION)
2446                         sdev->changed = 1;
2447         } while (scsi_sense_valid(sshdr) &&
2448                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2449
2450         if (!sshdr_external)
2451                 kfree(sshdr);
2452         return result;
2453 }
2454 EXPORT_SYMBOL(scsi_test_unit_ready);
2455
2456 /**
2457  *      scsi_device_set_state - Take the given device through the device state model.
2458  *      @sdev:  scsi device to change the state of.
2459  *      @state: state to change to.
2460  *
2461  *      Returns zero if unsuccessful or an error if the requested 
2462  *      transition is illegal.
2463  */
2464 int
2465 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2466 {
2467         enum scsi_device_state oldstate = sdev->sdev_state;
2468
2469         if (state == oldstate)
2470                 return 0;
2471
2472         switch (state) {
2473         case SDEV_CREATED:
2474                 switch (oldstate) {
2475                 case SDEV_CREATED_BLOCK:
2476                         break;
2477                 default:
2478                         goto illegal;
2479                 }
2480                 break;
2481                         
2482         case SDEV_RUNNING:
2483                 switch (oldstate) {
2484                 case SDEV_CREATED:
2485                 case SDEV_OFFLINE:
2486                 case SDEV_TRANSPORT_OFFLINE:
2487                 case SDEV_QUIESCE:
2488                 case SDEV_BLOCK:
2489                         break;
2490                 default:
2491                         goto illegal;
2492                 }
2493                 break;
2494
2495         case SDEV_QUIESCE:
2496                 switch (oldstate) {
2497                 case SDEV_RUNNING:
2498                 case SDEV_OFFLINE:
2499                 case SDEV_TRANSPORT_OFFLINE:
2500                         break;
2501                 default:
2502                         goto illegal;
2503                 }
2504                 break;
2505
2506         case SDEV_OFFLINE:
2507         case SDEV_TRANSPORT_OFFLINE:
2508                 switch (oldstate) {
2509                 case SDEV_CREATED:
2510                 case SDEV_RUNNING:
2511                 case SDEV_QUIESCE:
2512                 case SDEV_BLOCK:
2513                         break;
2514                 default:
2515                         goto illegal;
2516                 }
2517                 break;
2518
2519         case SDEV_BLOCK:
2520                 switch (oldstate) {
2521                 case SDEV_RUNNING:
2522                 case SDEV_CREATED_BLOCK:
2523                         break;
2524                 default:
2525                         goto illegal;
2526                 }
2527                 break;
2528
2529         case SDEV_CREATED_BLOCK:
2530                 switch (oldstate) {
2531                 case SDEV_CREATED:
2532                         break;
2533                 default:
2534                         goto illegal;
2535                 }
2536                 break;
2537
2538         case SDEV_CANCEL:
2539                 switch (oldstate) {
2540                 case SDEV_CREATED:
2541                 case SDEV_RUNNING:
2542                 case SDEV_QUIESCE:
2543                 case SDEV_OFFLINE:
2544                 case SDEV_TRANSPORT_OFFLINE:
2545                 case SDEV_BLOCK:
2546                         break;
2547                 default:
2548                         goto illegal;
2549                 }
2550                 break;
2551
2552         case SDEV_DEL:
2553                 switch (oldstate) {
2554                 case SDEV_CREATED:
2555                 case SDEV_RUNNING:
2556                 case SDEV_OFFLINE:
2557                 case SDEV_TRANSPORT_OFFLINE:
2558                 case SDEV_CANCEL:
2559                 case SDEV_CREATED_BLOCK:
2560                         break;
2561                 default:
2562                         goto illegal;
2563                 }
2564                 break;
2565
2566         }
2567         sdev->sdev_state = state;
2568         return 0;
2569
2570  illegal:
2571         SCSI_LOG_ERROR_RECOVERY(1,
2572                                 sdev_printk(KERN_ERR, sdev,
2573                                             "Illegal state transition %s->%s",
2574                                             scsi_device_state_name(oldstate),
2575                                             scsi_device_state_name(state))
2576                                 );
2577         return -EINVAL;
2578 }
2579 EXPORT_SYMBOL(scsi_device_set_state);
2580
2581 /**
2582  *      sdev_evt_emit - emit a single SCSI device uevent
2583  *      @sdev: associated SCSI device
2584  *      @evt: event to emit
2585  *
2586  *      Send a single uevent (scsi_event) to the associated scsi_device.
2587  */
2588 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2589 {
2590         int idx = 0;
2591         char *envp[3];
2592
2593         switch (evt->evt_type) {
2594         case SDEV_EVT_MEDIA_CHANGE:
2595                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2596                 break;
2597         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2598                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2599                 break;
2600         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2601                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2602                 break;
2603         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2604                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2605                 break;
2606         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2607                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2608                 break;
2609         case SDEV_EVT_LUN_CHANGE_REPORTED:
2610                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2611                 break;
2612         default:
2613                 /* do nothing */
2614                 break;
2615         }
2616
2617         envp[idx++] = NULL;
2618
2619         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2620 }
2621
2622 /**
2623  *      sdev_evt_thread - send a uevent for each scsi event
2624  *      @work: work struct for scsi_device
2625  *
2626  *      Dispatch queued events to their associated scsi_device kobjects
2627  *      as uevents.
2628  */
2629 void scsi_evt_thread(struct work_struct *work)
2630 {
2631         struct scsi_device *sdev;
2632         enum scsi_device_event evt_type;
2633         LIST_HEAD(event_list);
2634
2635         sdev = container_of(work, struct scsi_device, event_work);
2636
2637         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2638                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2639                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2640
2641         while (1) {
2642                 struct scsi_event *evt;
2643                 struct list_head *this, *tmp;
2644                 unsigned long flags;
2645
2646                 spin_lock_irqsave(&sdev->list_lock, flags);
2647                 list_splice_init(&sdev->event_list, &event_list);
2648                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2649
2650                 if (list_empty(&event_list))
2651                         break;
2652
2653                 list_for_each_safe(this, tmp, &event_list) {
2654                         evt = list_entry(this, struct scsi_event, node);
2655                         list_del(&evt->node);
2656                         scsi_evt_emit(sdev, evt);
2657                         kfree(evt);
2658                 }
2659         }
2660 }
2661
2662 /**
2663  *      sdev_evt_send - send asserted event to uevent thread
2664  *      @sdev: scsi_device event occurred on
2665  *      @evt: event to send
2666  *
2667  *      Assert scsi device event asynchronously.
2668  */
2669 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2670 {
2671         unsigned long flags;
2672
2673 #if 0
2674         /* FIXME: currently this check eliminates all media change events
2675          * for polled devices.  Need to update to discriminate between AN
2676          * and polled events */
2677         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2678                 kfree(evt);
2679                 return;
2680         }
2681 #endif
2682
2683         spin_lock_irqsave(&sdev->list_lock, flags);
2684         list_add_tail(&evt->node, &sdev->event_list);
2685         schedule_work(&sdev->event_work);
2686         spin_unlock_irqrestore(&sdev->list_lock, flags);
2687 }
2688 EXPORT_SYMBOL_GPL(sdev_evt_send);
2689
2690 /**
2691  *      sdev_evt_alloc - allocate a new scsi event
2692  *      @evt_type: type of event to allocate
2693  *      @gfpflags: GFP flags for allocation
2694  *
2695  *      Allocates and returns a new scsi_event.
2696  */
2697 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2698                                   gfp_t gfpflags)
2699 {
2700         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2701         if (!evt)
2702                 return NULL;
2703
2704         evt->evt_type = evt_type;
2705         INIT_LIST_HEAD(&evt->node);
2706
2707         /* evt_type-specific initialization, if any */
2708         switch (evt_type) {
2709         case SDEV_EVT_MEDIA_CHANGE:
2710         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2711         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2712         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2713         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2714         case SDEV_EVT_LUN_CHANGE_REPORTED:
2715         default:
2716                 /* do nothing */
2717                 break;
2718         }
2719
2720         return evt;
2721 }
2722 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2723
2724 /**
2725  *      sdev_evt_send_simple - send asserted event to uevent thread
2726  *      @sdev: scsi_device event occurred on
2727  *      @evt_type: type of event to send
2728  *      @gfpflags: GFP flags for allocation
2729  *
2730  *      Assert scsi device event asynchronously, given an event type.
2731  */
2732 void sdev_evt_send_simple(struct scsi_device *sdev,
2733                           enum scsi_device_event evt_type, gfp_t gfpflags)
2734 {
2735         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2736         if (!evt) {
2737                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2738                             evt_type);
2739                 return;
2740         }
2741
2742         sdev_evt_send(sdev, evt);
2743 }
2744 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2745
2746 /**
2747  *      scsi_device_quiesce - Block user issued commands.
2748  *      @sdev:  scsi device to quiesce.
2749  *
2750  *      This works by trying to transition to the SDEV_QUIESCE state
2751  *      (which must be a legal transition).  When the device is in this
2752  *      state, only special requests will be accepted, all others will
2753  *      be deferred.  Since special requests may also be requeued requests,
2754  *      a successful return doesn't guarantee the device will be 
2755  *      totally quiescent.
2756  *
2757  *      Must be called with user context, may sleep.
2758  *
2759  *      Returns zero if unsuccessful or an error if not.
2760  */
2761 int
2762 scsi_device_quiesce(struct scsi_device *sdev)
2763 {
2764         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2765         if (err)
2766                 return err;
2767
2768         scsi_run_queue(sdev->request_queue);
2769         while (atomic_read(&sdev->device_busy)) {
2770                 msleep_interruptible(200);
2771                 scsi_run_queue(sdev->request_queue);
2772         }
2773         return 0;
2774 }
2775 EXPORT_SYMBOL(scsi_device_quiesce);
2776
2777 /**
2778  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2779  *      @sdev:  scsi device to resume.
2780  *
2781  *      Moves the device from quiesced back to running and restarts the
2782  *      queues.
2783  *
2784  *      Must be called with user context, may sleep.
2785  */
2786 void scsi_device_resume(struct scsi_device *sdev)
2787 {
2788         /* check if the device state was mutated prior to resume, and if
2789          * so assume the state is being managed elsewhere (for example
2790          * device deleted during suspend)
2791          */
2792         if (sdev->sdev_state != SDEV_QUIESCE ||
2793             scsi_device_set_state(sdev, SDEV_RUNNING))
2794                 return;
2795         scsi_run_queue(sdev->request_queue);
2796 }
2797 EXPORT_SYMBOL(scsi_device_resume);
2798
2799 static void
2800 device_quiesce_fn(struct scsi_device *sdev, void *data)
2801 {
2802         scsi_device_quiesce(sdev);
2803 }
2804
2805 void
2806 scsi_target_quiesce(struct scsi_target *starget)
2807 {
2808         starget_for_each_device(starget, NULL, device_quiesce_fn);
2809 }
2810 EXPORT_SYMBOL(scsi_target_quiesce);
2811
2812 static void
2813 device_resume_fn(struct scsi_device *sdev, void *data)
2814 {
2815         scsi_device_resume(sdev);
2816 }
2817
2818 void
2819 scsi_target_resume(struct scsi_target *starget)
2820 {
2821         starget_for_each_device(starget, NULL, device_resume_fn);
2822 }
2823 EXPORT_SYMBOL(scsi_target_resume);
2824
2825 /**
2826  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2827  * @sdev:       device to block
2828  *
2829  * Block request made by scsi lld's to temporarily stop all
2830  * scsi commands on the specified device.  Called from interrupt
2831  * or normal process context.
2832  *
2833  * Returns zero if successful or error if not
2834  *
2835  * Notes:       
2836  *      This routine transitions the device to the SDEV_BLOCK state
2837  *      (which must be a legal transition).  When the device is in this
2838  *      state, all commands are deferred until the scsi lld reenables
2839  *      the device with scsi_device_unblock or device_block_tmo fires.
2840  */
2841 int
2842 scsi_internal_device_block(struct scsi_device *sdev)
2843 {
2844         struct request_queue *q = sdev->request_queue;
2845         unsigned long flags;
2846         int err = 0;
2847
2848         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2849         if (err) {
2850                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2851
2852                 if (err)
2853                         return err;
2854         }
2855
2856         /* 
2857          * The device has transitioned to SDEV_BLOCK.  Stop the
2858          * block layer from calling the midlayer with this device's
2859          * request queue. 
2860          */
2861         if (q->mq_ops) {
2862                 blk_mq_stop_hw_queues(q);
2863         } else {
2864                 spin_lock_irqsave(q->queue_lock, flags);
2865                 blk_stop_queue(q);
2866                 spin_unlock_irqrestore(q->queue_lock, flags);
2867         }
2868
2869         return 0;
2870 }
2871 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2872  
2873 /**
2874  * scsi_internal_device_unblock - resume a device after a block request
2875  * @sdev:       device to resume
2876  * @new_state:  state to set devices to after unblocking
2877  *
2878  * Called by scsi lld's or the midlayer to restart the device queue
2879  * for the previously suspended scsi device.  Called from interrupt or
2880  * normal process context.
2881  *
2882  * Returns zero if successful or error if not.
2883  *
2884  * Notes:       
2885  *      This routine transitions the device to the SDEV_RUNNING state
2886  *      or to one of the offline states (which must be a legal transition)
2887  *      allowing the midlayer to goose the queue for this device.
2888  */
2889 int
2890 scsi_internal_device_unblock(struct scsi_device *sdev,
2891                              enum scsi_device_state new_state)
2892 {
2893         struct request_queue *q = sdev->request_queue; 
2894         unsigned long flags;
2895
2896         /*
2897          * Try to transition the scsi device to SDEV_RUNNING or one of the
2898          * offlined states and goose the device queue if successful.
2899          */
2900         if ((sdev->sdev_state == SDEV_BLOCK) ||
2901             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2902                 sdev->sdev_state = new_state;
2903         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2904                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2905                     new_state == SDEV_OFFLINE)
2906                         sdev->sdev_state = new_state;
2907                 else
2908                         sdev->sdev_state = SDEV_CREATED;
2909         } else if (sdev->sdev_state != SDEV_CANCEL &&
2910                  sdev->sdev_state != SDEV_OFFLINE)
2911                 return -EINVAL;
2912
2913         if (q->mq_ops) {
2914                 blk_mq_start_stopped_hw_queues(q, false);
2915         } else {
2916                 spin_lock_irqsave(q->queue_lock, flags);
2917                 blk_start_queue(q);
2918                 spin_unlock_irqrestore(q->queue_lock, flags);
2919         }
2920
2921         return 0;
2922 }
2923 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2924
2925 static void
2926 device_block(struct scsi_device *sdev, void *data)
2927 {
2928         scsi_internal_device_block(sdev);
2929 }
2930
2931 static int
2932 target_block(struct device *dev, void *data)
2933 {
2934         if (scsi_is_target_device(dev))
2935                 starget_for_each_device(to_scsi_target(dev), NULL,
2936                                         device_block);
2937         return 0;
2938 }
2939
2940 void
2941 scsi_target_block(struct device *dev)
2942 {
2943         if (scsi_is_target_device(dev))
2944                 starget_for_each_device(to_scsi_target(dev), NULL,
2945                                         device_block);
2946         else
2947                 device_for_each_child(dev, NULL, target_block);
2948 }
2949 EXPORT_SYMBOL_GPL(scsi_target_block);
2950
2951 static void
2952 device_unblock(struct scsi_device *sdev, void *data)
2953 {
2954         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2955 }
2956
2957 static int
2958 target_unblock(struct device *dev, void *data)
2959 {
2960         if (scsi_is_target_device(dev))
2961                 starget_for_each_device(to_scsi_target(dev), data,
2962                                         device_unblock);
2963         return 0;
2964 }
2965
2966 void
2967 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2968 {
2969         if (scsi_is_target_device(dev))
2970                 starget_for_each_device(to_scsi_target(dev), &new_state,
2971                                         device_unblock);
2972         else
2973                 device_for_each_child(dev, &new_state, target_unblock);
2974 }
2975 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2976
2977 /**
2978  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2979  * @sgl:        scatter-gather list
2980  * @sg_count:   number of segments in sg
2981  * @offset:     offset in bytes into sg, on return offset into the mapped area
2982  * @len:        bytes to map, on return number of bytes mapped
2983  *
2984  * Returns virtual address of the start of the mapped page
2985  */
2986 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2987                           size_t *offset, size_t *len)
2988 {
2989         int i;
2990         size_t sg_len = 0, len_complete = 0;
2991         struct scatterlist *sg;
2992         struct page *page;
2993
2994         WARN_ON(!irqs_disabled());
2995
2996         for_each_sg(sgl, sg, sg_count, i) {
2997                 len_complete = sg_len; /* Complete sg-entries */
2998                 sg_len += sg->length;
2999                 if (sg_len > *offset)
3000                         break;
3001         }
3002
3003         if (unlikely(i == sg_count)) {
3004                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3005                         "elements %d\n",
3006                        __func__, sg_len, *offset, sg_count);
3007                 WARN_ON(1);
3008                 return NULL;
3009         }
3010
3011         /* Offset starting from the beginning of first page in this sg-entry */
3012         *offset = *offset - len_complete + sg->offset;
3013
3014         /* Assumption: contiguous pages can be accessed as "page + i" */
3015         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3016         *offset &= ~PAGE_MASK;
3017
3018         /* Bytes in this sg-entry from *offset to the end of the page */
3019         sg_len = PAGE_SIZE - *offset;
3020         if (*len > sg_len)
3021                 *len = sg_len;
3022
3023         return kmap_atomic(page);
3024 }
3025 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3026
3027 /**
3028  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3029  * @virt:       virtual address to be unmapped
3030  */
3031 void scsi_kunmap_atomic_sg(void *virt)
3032 {
3033         kunmap_atomic(virt);
3034 }
3035 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3036
3037 void sdev_disable_disk_events(struct scsi_device *sdev)
3038 {
3039         atomic_inc(&sdev->disk_events_disable_depth);
3040 }
3041 EXPORT_SYMBOL(sdev_disable_disk_events);
3042
3043 void sdev_enable_disk_events(struct scsi_device *sdev)
3044 {
3045         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3046                 return;
3047         atomic_dec(&sdev->disk_events_disable_depth);
3048 }
3049 EXPORT_SYMBOL(sdev_enable_disk_events);