spi: Map SPI OF client IRQ at probe time
[firefly-linux-kernel-4.4.55.git] / drivers / spi / spi.c
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43
44 static void spidev_release(struct device *dev)
45 {
46         struct spi_device       *spi = to_spi_device(dev);
47
48         /* spi masters may cleanup for released devices */
49         if (spi->master->cleanup)
50                 spi->master->cleanup(spi);
51
52         spi_master_put(spi->master);
53         kfree(spi);
54 }
55
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59         const struct spi_device *spi = to_spi_device(dev);
60         int len;
61
62         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63         if (len != -ENODEV)
64                 return len;
65
66         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69
70 #define SPI_STATISTICS_ATTRS(field, file)                               \
71 static ssize_t spi_master_##field##_show(struct device *dev,            \
72                                          struct device_attribute *attr, \
73                                          char *buf)                     \
74 {                                                                       \
75         struct spi_master *master = container_of(dev,                   \
76                                                  struct spi_master, dev); \
77         return spi_statistics_##field##_show(&master->statistics, buf); \
78 }                                                                       \
79 static struct device_attribute dev_attr_spi_master_##field = {          \
80         .attr = { .name = file, .mode = S_IRUGO },                      \
81         .show = spi_master_##field##_show,                              \
82 };                                                                      \
83 static ssize_t spi_device_##field##_show(struct device *dev,            \
84                                          struct device_attribute *attr, \
85                                         char *buf)                      \
86 {                                                                       \
87         struct spi_device *spi = container_of(dev,                      \
88                                               struct spi_device, dev);  \
89         return spi_statistics_##field##_show(&spi->statistics, buf);    \
90 }                                                                       \
91 static struct device_attribute dev_attr_spi_device_##field = {          \
92         .attr = { .name = file, .mode = S_IRUGO },                      \
93         .show = spi_device_##field##_show,                              \
94 }
95
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98                                             char *buf)                  \
99 {                                                                       \
100         unsigned long flags;                                            \
101         ssize_t len;                                                    \
102         spin_lock_irqsave(&stat->lock, flags);                          \
103         len = sprintf(buf, format_string, stat->field);                 \
104         spin_unlock_irqrestore(&stat->lock, flags);                     \
105         return len;                                                     \
106 }                                                                       \
107 SPI_STATISTICS_ATTRS(name, file)
108
109 #define SPI_STATISTICS_SHOW(field, format_string)                       \
110         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
111                                  field, format_string)
112
113 SPI_STATISTICS_SHOW(messages, "%lu");
114 SPI_STATISTICS_SHOW(transfers, "%lu");
115 SPI_STATISTICS_SHOW(errors, "%lu");
116 SPI_STATISTICS_SHOW(timedout, "%lu");
117
118 SPI_STATISTICS_SHOW(spi_sync, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120 SPI_STATISTICS_SHOW(spi_async, "%lu");
121
122 SPI_STATISTICS_SHOW(bytes, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
125
126 static struct attribute *spi_dev_attrs[] = {
127         &dev_attr_modalias.attr,
128         NULL,
129 };
130
131 static const struct attribute_group spi_dev_group = {
132         .attrs  = spi_dev_attrs,
133 };
134
135 static struct attribute *spi_device_statistics_attrs[] = {
136         &dev_attr_spi_device_messages.attr,
137         &dev_attr_spi_device_transfers.attr,
138         &dev_attr_spi_device_errors.attr,
139         &dev_attr_spi_device_timedout.attr,
140         &dev_attr_spi_device_spi_sync.attr,
141         &dev_attr_spi_device_spi_sync_immediate.attr,
142         &dev_attr_spi_device_spi_async.attr,
143         &dev_attr_spi_device_bytes.attr,
144         &dev_attr_spi_device_bytes_rx.attr,
145         &dev_attr_spi_device_bytes_tx.attr,
146         NULL,
147 };
148
149 static const struct attribute_group spi_device_statistics_group = {
150         .name  = "statistics",
151         .attrs  = spi_device_statistics_attrs,
152 };
153
154 static const struct attribute_group *spi_dev_groups[] = {
155         &spi_dev_group,
156         &spi_device_statistics_group,
157         NULL,
158 };
159
160 static struct attribute *spi_master_statistics_attrs[] = {
161         &dev_attr_spi_master_messages.attr,
162         &dev_attr_spi_master_transfers.attr,
163         &dev_attr_spi_master_errors.attr,
164         &dev_attr_spi_master_timedout.attr,
165         &dev_attr_spi_master_spi_sync.attr,
166         &dev_attr_spi_master_spi_sync_immediate.attr,
167         &dev_attr_spi_master_spi_async.attr,
168         &dev_attr_spi_master_bytes.attr,
169         &dev_attr_spi_master_bytes_rx.attr,
170         &dev_attr_spi_master_bytes_tx.attr,
171         NULL,
172 };
173
174 static const struct attribute_group spi_master_statistics_group = {
175         .name  = "statistics",
176         .attrs  = spi_master_statistics_attrs,
177 };
178
179 static const struct attribute_group *spi_master_groups[] = {
180         &spi_master_statistics_group,
181         NULL,
182 };
183
184 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
185                                        struct spi_transfer *xfer,
186                                        struct spi_master *master)
187 {
188         unsigned long flags;
189
190         spin_lock_irqsave(&stats->lock, flags);
191
192         stats->transfers++;
193
194         stats->bytes += xfer->len;
195         if ((xfer->tx_buf) &&
196             (xfer->tx_buf != master->dummy_tx))
197                 stats->bytes_tx += xfer->len;
198         if ((xfer->rx_buf) &&
199             (xfer->rx_buf != master->dummy_rx))
200                 stats->bytes_rx += xfer->len;
201
202         spin_unlock_irqrestore(&stats->lock, flags);
203 }
204 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
205
206 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
207  * and the sysfs version makes coldplug work too.
208  */
209
210 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
211                                                 const struct spi_device *sdev)
212 {
213         while (id->name[0]) {
214                 if (!strcmp(sdev->modalias, id->name))
215                         return id;
216                 id++;
217         }
218         return NULL;
219 }
220
221 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
222 {
223         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
224
225         return spi_match_id(sdrv->id_table, sdev);
226 }
227 EXPORT_SYMBOL_GPL(spi_get_device_id);
228
229 static int spi_match_device(struct device *dev, struct device_driver *drv)
230 {
231         const struct spi_device *spi = to_spi_device(dev);
232         const struct spi_driver *sdrv = to_spi_driver(drv);
233
234         /* Attempt an OF style match */
235         if (of_driver_match_device(dev, drv))
236                 return 1;
237
238         /* Then try ACPI */
239         if (acpi_driver_match_device(dev, drv))
240                 return 1;
241
242         if (sdrv->id_table)
243                 return !!spi_match_id(sdrv->id_table, spi);
244
245         return strcmp(spi->modalias, drv->name) == 0;
246 }
247
248 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
249 {
250         const struct spi_device         *spi = to_spi_device(dev);
251         int rc;
252
253         rc = acpi_device_uevent_modalias(dev, env);
254         if (rc != -ENODEV)
255                 return rc;
256
257         add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
258         return 0;
259 }
260
261 struct bus_type spi_bus_type = {
262         .name           = "spi",
263         .dev_groups     = spi_dev_groups,
264         .match          = spi_match_device,
265         .uevent         = spi_uevent,
266 };
267 EXPORT_SYMBOL_GPL(spi_bus_type);
268
269
270 static int spi_drv_probe(struct device *dev)
271 {
272         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
273         struct spi_device               *spi = to_spi_device(dev);
274         int ret;
275
276         ret = of_clk_set_defaults(dev->of_node, false);
277         if (ret)
278                 return ret;
279
280         if (dev->of_node) {
281                 spi->irq = of_irq_get(dev->of_node, 0);
282                 if (spi->irq == -EPROBE_DEFER)
283                         return -EPROBE_DEFER;
284                 if (spi->irq < 0)
285                         spi->irq = 0;
286         }
287
288         ret = dev_pm_domain_attach(dev, true);
289         if (ret != -EPROBE_DEFER) {
290                 ret = sdrv->probe(spi);
291                 if (ret)
292                         dev_pm_domain_detach(dev, true);
293         }
294
295         return ret;
296 }
297
298 static int spi_drv_remove(struct device *dev)
299 {
300         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
301         int ret;
302
303         ret = sdrv->remove(to_spi_device(dev));
304         dev_pm_domain_detach(dev, true);
305
306         return ret;
307 }
308
309 static void spi_drv_shutdown(struct device *dev)
310 {
311         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
312
313         sdrv->shutdown(to_spi_device(dev));
314 }
315
316 /**
317  * spi_register_driver - register a SPI driver
318  * @sdrv: the driver to register
319  * Context: can sleep
320  */
321 int spi_register_driver(struct spi_driver *sdrv)
322 {
323         sdrv->driver.bus = &spi_bus_type;
324         if (sdrv->probe)
325                 sdrv->driver.probe = spi_drv_probe;
326         if (sdrv->remove)
327                 sdrv->driver.remove = spi_drv_remove;
328         if (sdrv->shutdown)
329                 sdrv->driver.shutdown = spi_drv_shutdown;
330         return driver_register(&sdrv->driver);
331 }
332 EXPORT_SYMBOL_GPL(spi_register_driver);
333
334 /*-------------------------------------------------------------------------*/
335
336 /* SPI devices should normally not be created by SPI device drivers; that
337  * would make them board-specific.  Similarly with SPI master drivers.
338  * Device registration normally goes into like arch/.../mach.../board-YYY.c
339  * with other readonly (flashable) information about mainboard devices.
340  */
341
342 struct boardinfo {
343         struct list_head        list;
344         struct spi_board_info   board_info;
345 };
346
347 static LIST_HEAD(board_list);
348 static LIST_HEAD(spi_master_list);
349
350 /*
351  * Used to protect add/del opertion for board_info list and
352  * spi_master list, and their matching process
353  */
354 static DEFINE_MUTEX(board_lock);
355
356 /**
357  * spi_alloc_device - Allocate a new SPI device
358  * @master: Controller to which device is connected
359  * Context: can sleep
360  *
361  * Allows a driver to allocate and initialize a spi_device without
362  * registering it immediately.  This allows a driver to directly
363  * fill the spi_device with device parameters before calling
364  * spi_add_device() on it.
365  *
366  * Caller is responsible to call spi_add_device() on the returned
367  * spi_device structure to add it to the SPI master.  If the caller
368  * needs to discard the spi_device without adding it, then it should
369  * call spi_dev_put() on it.
370  *
371  * Returns a pointer to the new device, or NULL.
372  */
373 struct spi_device *spi_alloc_device(struct spi_master *master)
374 {
375         struct spi_device       *spi;
376
377         if (!spi_master_get(master))
378                 return NULL;
379
380         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
381         if (!spi) {
382                 spi_master_put(master);
383                 return NULL;
384         }
385
386         spi->master = master;
387         spi->dev.parent = &master->dev;
388         spi->dev.bus = &spi_bus_type;
389         spi->dev.release = spidev_release;
390         spi->cs_gpio = -ENOENT;
391
392         spin_lock_init(&spi->statistics.lock);
393
394         device_initialize(&spi->dev);
395         return spi;
396 }
397 EXPORT_SYMBOL_GPL(spi_alloc_device);
398
399 static void spi_dev_set_name(struct spi_device *spi)
400 {
401         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
402
403         if (adev) {
404                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
405                 return;
406         }
407
408         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
409                      spi->chip_select);
410 }
411
412 static int spi_dev_check(struct device *dev, void *data)
413 {
414         struct spi_device *spi = to_spi_device(dev);
415         struct spi_device *new_spi = data;
416
417         if (spi->master == new_spi->master &&
418             spi->chip_select == new_spi->chip_select)
419                 return -EBUSY;
420         return 0;
421 }
422
423 /**
424  * spi_add_device - Add spi_device allocated with spi_alloc_device
425  * @spi: spi_device to register
426  *
427  * Companion function to spi_alloc_device.  Devices allocated with
428  * spi_alloc_device can be added onto the spi bus with this function.
429  *
430  * Returns 0 on success; negative errno on failure
431  */
432 int spi_add_device(struct spi_device *spi)
433 {
434         static DEFINE_MUTEX(spi_add_lock);
435         struct spi_master *master = spi->master;
436         struct device *dev = master->dev.parent;
437         int status;
438
439         /* Chipselects are numbered 0..max; validate. */
440         if (spi->chip_select >= master->num_chipselect) {
441                 dev_err(dev, "cs%d >= max %d\n",
442                         spi->chip_select,
443                         master->num_chipselect);
444                 return -EINVAL;
445         }
446
447         /* Set the bus ID string */
448         spi_dev_set_name(spi);
449
450         /* We need to make sure there's no other device with this
451          * chipselect **BEFORE** we call setup(), else we'll trash
452          * its configuration.  Lock against concurrent add() calls.
453          */
454         mutex_lock(&spi_add_lock);
455
456         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
457         if (status) {
458                 dev_err(dev, "chipselect %d already in use\n",
459                                 spi->chip_select);
460                 goto done;
461         }
462
463         if (master->cs_gpios)
464                 spi->cs_gpio = master->cs_gpios[spi->chip_select];
465
466         /* Drivers may modify this initial i/o setup, but will
467          * normally rely on the device being setup.  Devices
468          * using SPI_CS_HIGH can't coexist well otherwise...
469          */
470         status = spi_setup(spi);
471         if (status < 0) {
472                 dev_err(dev, "can't setup %s, status %d\n",
473                                 dev_name(&spi->dev), status);
474                 goto done;
475         }
476
477         /* Device may be bound to an active driver when this returns */
478         status = device_add(&spi->dev);
479         if (status < 0)
480                 dev_err(dev, "can't add %s, status %d\n",
481                                 dev_name(&spi->dev), status);
482         else
483                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
484
485 done:
486         mutex_unlock(&spi_add_lock);
487         return status;
488 }
489 EXPORT_SYMBOL_GPL(spi_add_device);
490
491 /**
492  * spi_new_device - instantiate one new SPI device
493  * @master: Controller to which device is connected
494  * @chip: Describes the SPI device
495  * Context: can sleep
496  *
497  * On typical mainboards, this is purely internal; and it's not needed
498  * after board init creates the hard-wired devices.  Some development
499  * platforms may not be able to use spi_register_board_info though, and
500  * this is exported so that for example a USB or parport based adapter
501  * driver could add devices (which it would learn about out-of-band).
502  *
503  * Returns the new device, or NULL.
504  */
505 struct spi_device *spi_new_device(struct spi_master *master,
506                                   struct spi_board_info *chip)
507 {
508         struct spi_device       *proxy;
509         int                     status;
510
511         /* NOTE:  caller did any chip->bus_num checks necessary.
512          *
513          * Also, unless we change the return value convention to use
514          * error-or-pointer (not NULL-or-pointer), troubleshootability
515          * suggests syslogged diagnostics are best here (ugh).
516          */
517
518         proxy = spi_alloc_device(master);
519         if (!proxy)
520                 return NULL;
521
522         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
523
524         proxy->chip_select = chip->chip_select;
525         proxy->max_speed_hz = chip->max_speed_hz;
526         proxy->mode = chip->mode;
527         proxy->irq = chip->irq;
528         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
529         proxy->dev.platform_data = (void *) chip->platform_data;
530         proxy->controller_data = chip->controller_data;
531         proxy->controller_state = NULL;
532
533         status = spi_add_device(proxy);
534         if (status < 0) {
535                 spi_dev_put(proxy);
536                 return NULL;
537         }
538
539         return proxy;
540 }
541 EXPORT_SYMBOL_GPL(spi_new_device);
542
543 static void spi_match_master_to_boardinfo(struct spi_master *master,
544                                 struct spi_board_info *bi)
545 {
546         struct spi_device *dev;
547
548         if (master->bus_num != bi->bus_num)
549                 return;
550
551         dev = spi_new_device(master, bi);
552         if (!dev)
553                 dev_err(master->dev.parent, "can't create new device for %s\n",
554                         bi->modalias);
555 }
556
557 /**
558  * spi_register_board_info - register SPI devices for a given board
559  * @info: array of chip descriptors
560  * @n: how many descriptors are provided
561  * Context: can sleep
562  *
563  * Board-specific early init code calls this (probably during arch_initcall)
564  * with segments of the SPI device table.  Any device nodes are created later,
565  * after the relevant parent SPI controller (bus_num) is defined.  We keep
566  * this table of devices forever, so that reloading a controller driver will
567  * not make Linux forget about these hard-wired devices.
568  *
569  * Other code can also call this, e.g. a particular add-on board might provide
570  * SPI devices through its expansion connector, so code initializing that board
571  * would naturally declare its SPI devices.
572  *
573  * The board info passed can safely be __initdata ... but be careful of
574  * any embedded pointers (platform_data, etc), they're copied as-is.
575  */
576 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
577 {
578         struct boardinfo *bi;
579         int i;
580
581         if (!n)
582                 return -EINVAL;
583
584         bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
585         if (!bi)
586                 return -ENOMEM;
587
588         for (i = 0; i < n; i++, bi++, info++) {
589                 struct spi_master *master;
590
591                 memcpy(&bi->board_info, info, sizeof(*info));
592                 mutex_lock(&board_lock);
593                 list_add_tail(&bi->list, &board_list);
594                 list_for_each_entry(master, &spi_master_list, list)
595                         spi_match_master_to_boardinfo(master, &bi->board_info);
596                 mutex_unlock(&board_lock);
597         }
598
599         return 0;
600 }
601
602 /*-------------------------------------------------------------------------*/
603
604 static void spi_set_cs(struct spi_device *spi, bool enable)
605 {
606         if (spi->mode & SPI_CS_HIGH)
607                 enable = !enable;
608
609         if (spi->cs_gpio >= 0)
610                 gpio_set_value(spi->cs_gpio, !enable);
611         else if (spi->master->set_cs)
612                 spi->master->set_cs(spi, !enable);
613 }
614
615 #ifdef CONFIG_HAS_DMA
616 static int spi_map_buf(struct spi_master *master, struct device *dev,
617                        struct sg_table *sgt, void *buf, size_t len,
618                        enum dma_data_direction dir)
619 {
620         const bool vmalloced_buf = is_vmalloc_addr(buf);
621         int desc_len;
622         int sgs;
623         struct page *vm_page;
624         void *sg_buf;
625         size_t min;
626         int i, ret;
627
628         if (vmalloced_buf) {
629                 desc_len = PAGE_SIZE;
630                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
631         } else {
632                 desc_len = master->max_dma_len;
633                 sgs = DIV_ROUND_UP(len, desc_len);
634         }
635
636         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
637         if (ret != 0)
638                 return ret;
639
640         for (i = 0; i < sgs; i++) {
641
642                 if (vmalloced_buf) {
643                         min = min_t(size_t,
644                                     len, desc_len - offset_in_page(buf));
645                         vm_page = vmalloc_to_page(buf);
646                         if (!vm_page) {
647                                 sg_free_table(sgt);
648                                 return -ENOMEM;
649                         }
650                         sg_set_page(&sgt->sgl[i], vm_page,
651                                     min, offset_in_page(buf));
652                 } else {
653                         min = min_t(size_t, len, desc_len);
654                         sg_buf = buf;
655                         sg_set_buf(&sgt->sgl[i], sg_buf, min);
656                 }
657
658
659                 buf += min;
660                 len -= min;
661         }
662
663         ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
664         if (!ret)
665                 ret = -ENOMEM;
666         if (ret < 0) {
667                 sg_free_table(sgt);
668                 return ret;
669         }
670
671         sgt->nents = ret;
672
673         return 0;
674 }
675
676 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
677                           struct sg_table *sgt, enum dma_data_direction dir)
678 {
679         if (sgt->orig_nents) {
680                 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
681                 sg_free_table(sgt);
682         }
683 }
684
685 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
686 {
687         struct device *tx_dev, *rx_dev;
688         struct spi_transfer *xfer;
689         int ret;
690
691         if (!master->can_dma)
692                 return 0;
693
694         if (master->dma_tx)
695                 tx_dev = master->dma_tx->device->dev;
696         else
697                 tx_dev = &master->dev;
698
699         if (master->dma_rx)
700                 rx_dev = master->dma_rx->device->dev;
701         else
702                 rx_dev = &master->dev;
703
704         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
705                 if (!master->can_dma(master, msg->spi, xfer))
706                         continue;
707
708                 if (xfer->tx_buf != NULL) {
709                         ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
710                                           (void *)xfer->tx_buf, xfer->len,
711                                           DMA_TO_DEVICE);
712                         if (ret != 0)
713                                 return ret;
714                 }
715
716                 if (xfer->rx_buf != NULL) {
717                         ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
718                                           xfer->rx_buf, xfer->len,
719                                           DMA_FROM_DEVICE);
720                         if (ret != 0) {
721                                 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
722                                               DMA_TO_DEVICE);
723                                 return ret;
724                         }
725                 }
726         }
727
728         master->cur_msg_mapped = true;
729
730         return 0;
731 }
732
733 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
734 {
735         struct spi_transfer *xfer;
736         struct device *tx_dev, *rx_dev;
737
738         if (!master->cur_msg_mapped || !master->can_dma)
739                 return 0;
740
741         if (master->dma_tx)
742                 tx_dev = master->dma_tx->device->dev;
743         else
744                 tx_dev = &master->dev;
745
746         if (master->dma_rx)
747                 rx_dev = master->dma_rx->device->dev;
748         else
749                 rx_dev = &master->dev;
750
751         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
752                 if (!master->can_dma(master, msg->spi, xfer))
753                         continue;
754
755                 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
756                 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
757         }
758
759         return 0;
760 }
761 #else /* !CONFIG_HAS_DMA */
762 static inline int __spi_map_msg(struct spi_master *master,
763                                 struct spi_message *msg)
764 {
765         return 0;
766 }
767
768 static inline int __spi_unmap_msg(struct spi_master *master,
769                                   struct spi_message *msg)
770 {
771         return 0;
772 }
773 #endif /* !CONFIG_HAS_DMA */
774
775 static inline int spi_unmap_msg(struct spi_master *master,
776                                 struct spi_message *msg)
777 {
778         struct spi_transfer *xfer;
779
780         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
781                 /*
782                  * Restore the original value of tx_buf or rx_buf if they are
783                  * NULL.
784                  */
785                 if (xfer->tx_buf == master->dummy_tx)
786                         xfer->tx_buf = NULL;
787                 if (xfer->rx_buf == master->dummy_rx)
788                         xfer->rx_buf = NULL;
789         }
790
791         return __spi_unmap_msg(master, msg);
792 }
793
794 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
795 {
796         struct spi_transfer *xfer;
797         void *tmp;
798         unsigned int max_tx, max_rx;
799
800         if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
801                 max_tx = 0;
802                 max_rx = 0;
803
804                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
805                         if ((master->flags & SPI_MASTER_MUST_TX) &&
806                             !xfer->tx_buf)
807                                 max_tx = max(xfer->len, max_tx);
808                         if ((master->flags & SPI_MASTER_MUST_RX) &&
809                             !xfer->rx_buf)
810                                 max_rx = max(xfer->len, max_rx);
811                 }
812
813                 if (max_tx) {
814                         tmp = krealloc(master->dummy_tx, max_tx,
815                                        GFP_KERNEL | GFP_DMA);
816                         if (!tmp)
817                                 return -ENOMEM;
818                         master->dummy_tx = tmp;
819                         memset(tmp, 0, max_tx);
820                 }
821
822                 if (max_rx) {
823                         tmp = krealloc(master->dummy_rx, max_rx,
824                                        GFP_KERNEL | GFP_DMA);
825                         if (!tmp)
826                                 return -ENOMEM;
827                         master->dummy_rx = tmp;
828                 }
829
830                 if (max_tx || max_rx) {
831                         list_for_each_entry(xfer, &msg->transfers,
832                                             transfer_list) {
833                                 if (!xfer->tx_buf)
834                                         xfer->tx_buf = master->dummy_tx;
835                                 if (!xfer->rx_buf)
836                                         xfer->rx_buf = master->dummy_rx;
837                         }
838                 }
839         }
840
841         return __spi_map_msg(master, msg);
842 }
843
844 /*
845  * spi_transfer_one_message - Default implementation of transfer_one_message()
846  *
847  * This is a standard implementation of transfer_one_message() for
848  * drivers which impelment a transfer_one() operation.  It provides
849  * standard handling of delays and chip select management.
850  */
851 static int spi_transfer_one_message(struct spi_master *master,
852                                     struct spi_message *msg)
853 {
854         struct spi_transfer *xfer;
855         bool keep_cs = false;
856         int ret = 0;
857         unsigned long ms = 1;
858         struct spi_statistics *statm = &master->statistics;
859         struct spi_statistics *stats = &msg->spi->statistics;
860
861         spi_set_cs(msg->spi, true);
862
863         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
864         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
865
866         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
867                 trace_spi_transfer_start(msg, xfer);
868
869                 spi_statistics_add_transfer_stats(statm, xfer, master);
870                 spi_statistics_add_transfer_stats(stats, xfer, master);
871
872                 if (xfer->tx_buf || xfer->rx_buf) {
873                         reinit_completion(&master->xfer_completion);
874
875                         ret = master->transfer_one(master, msg->spi, xfer);
876                         if (ret < 0) {
877                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
878                                                                errors);
879                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
880                                                                errors);
881                                 dev_err(&msg->spi->dev,
882                                         "SPI transfer failed: %d\n", ret);
883                                 goto out;
884                         }
885
886                         if (ret > 0) {
887                                 ret = 0;
888                                 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
889                                 ms += ms + 100; /* some tolerance */
890
891                                 ms = wait_for_completion_timeout(&master->xfer_completion,
892                                                                  msecs_to_jiffies(ms));
893                         }
894
895                         if (ms == 0) {
896                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
897                                                                timedout);
898                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
899                                                                timedout);
900                                 dev_err(&msg->spi->dev,
901                                         "SPI transfer timed out\n");
902                                 msg->status = -ETIMEDOUT;
903                         }
904                 } else {
905                         if (xfer->len)
906                                 dev_err(&msg->spi->dev,
907                                         "Bufferless transfer has length %u\n",
908                                         xfer->len);
909                 }
910
911                 trace_spi_transfer_stop(msg, xfer);
912
913                 if (msg->status != -EINPROGRESS)
914                         goto out;
915
916                 if (xfer->delay_usecs)
917                         udelay(xfer->delay_usecs);
918
919                 if (xfer->cs_change) {
920                         if (list_is_last(&xfer->transfer_list,
921                                          &msg->transfers)) {
922                                 keep_cs = true;
923                         } else {
924                                 spi_set_cs(msg->spi, false);
925                                 udelay(10);
926                                 spi_set_cs(msg->spi, true);
927                         }
928                 }
929
930                 msg->actual_length += xfer->len;
931         }
932
933 out:
934         if (ret != 0 || !keep_cs)
935                 spi_set_cs(msg->spi, false);
936
937         if (msg->status == -EINPROGRESS)
938                 msg->status = ret;
939
940         if (msg->status && master->handle_err)
941                 master->handle_err(master, msg);
942
943         spi_finalize_current_message(master);
944
945         return ret;
946 }
947
948 /**
949  * spi_finalize_current_transfer - report completion of a transfer
950  * @master: the master reporting completion
951  *
952  * Called by SPI drivers using the core transfer_one_message()
953  * implementation to notify it that the current interrupt driven
954  * transfer has finished and the next one may be scheduled.
955  */
956 void spi_finalize_current_transfer(struct spi_master *master)
957 {
958         complete(&master->xfer_completion);
959 }
960 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
961
962 /**
963  * __spi_pump_messages - function which processes spi message queue
964  * @master: master to process queue for
965  * @in_kthread: true if we are in the context of the message pump thread
966  *
967  * This function checks if there is any spi message in the queue that
968  * needs processing and if so call out to the driver to initialize hardware
969  * and transfer each message.
970  *
971  * Note that it is called both from the kthread itself and also from
972  * inside spi_sync(); the queue extraction handling at the top of the
973  * function should deal with this safely.
974  */
975 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
976 {
977         unsigned long flags;
978         bool was_busy = false;
979         int ret;
980
981         /* Lock queue */
982         spin_lock_irqsave(&master->queue_lock, flags);
983
984         /* Make sure we are not already running a message */
985         if (master->cur_msg) {
986                 spin_unlock_irqrestore(&master->queue_lock, flags);
987                 return;
988         }
989
990         /* If another context is idling the device then defer */
991         if (master->idling) {
992                 queue_kthread_work(&master->kworker, &master->pump_messages);
993                 spin_unlock_irqrestore(&master->queue_lock, flags);
994                 return;
995         }
996
997         /* Check if the queue is idle */
998         if (list_empty(&master->queue) || !master->running) {
999                 if (!master->busy) {
1000                         spin_unlock_irqrestore(&master->queue_lock, flags);
1001                         return;
1002                 }
1003
1004                 /* Only do teardown in the thread */
1005                 if (!in_kthread) {
1006                         queue_kthread_work(&master->kworker,
1007                                            &master->pump_messages);
1008                         spin_unlock_irqrestore(&master->queue_lock, flags);
1009                         return;
1010                 }
1011
1012                 master->busy = false;
1013                 master->idling = true;
1014                 spin_unlock_irqrestore(&master->queue_lock, flags);
1015
1016                 kfree(master->dummy_rx);
1017                 master->dummy_rx = NULL;
1018                 kfree(master->dummy_tx);
1019                 master->dummy_tx = NULL;
1020                 if (master->unprepare_transfer_hardware &&
1021                     master->unprepare_transfer_hardware(master))
1022                         dev_err(&master->dev,
1023                                 "failed to unprepare transfer hardware\n");
1024                 if (master->auto_runtime_pm) {
1025                         pm_runtime_mark_last_busy(master->dev.parent);
1026                         pm_runtime_put_autosuspend(master->dev.parent);
1027                 }
1028                 trace_spi_master_idle(master);
1029
1030                 spin_lock_irqsave(&master->queue_lock, flags);
1031                 master->idling = false;
1032                 spin_unlock_irqrestore(&master->queue_lock, flags);
1033                 return;
1034         }
1035
1036         /* Extract head of queue */
1037         master->cur_msg =
1038                 list_first_entry(&master->queue, struct spi_message, queue);
1039
1040         list_del_init(&master->cur_msg->queue);
1041         if (master->busy)
1042                 was_busy = true;
1043         else
1044                 master->busy = true;
1045         spin_unlock_irqrestore(&master->queue_lock, flags);
1046
1047         if (!was_busy && master->auto_runtime_pm) {
1048                 ret = pm_runtime_get_sync(master->dev.parent);
1049                 if (ret < 0) {
1050                         dev_err(&master->dev, "Failed to power device: %d\n",
1051                                 ret);
1052                         return;
1053                 }
1054         }
1055
1056         if (!was_busy)
1057                 trace_spi_master_busy(master);
1058
1059         if (!was_busy && master->prepare_transfer_hardware) {
1060                 ret = master->prepare_transfer_hardware(master);
1061                 if (ret) {
1062                         dev_err(&master->dev,
1063                                 "failed to prepare transfer hardware\n");
1064
1065                         if (master->auto_runtime_pm)
1066                                 pm_runtime_put(master->dev.parent);
1067                         return;
1068                 }
1069         }
1070
1071         trace_spi_message_start(master->cur_msg);
1072
1073         if (master->prepare_message) {
1074                 ret = master->prepare_message(master, master->cur_msg);
1075                 if (ret) {
1076                         dev_err(&master->dev,
1077                                 "failed to prepare message: %d\n", ret);
1078                         master->cur_msg->status = ret;
1079                         spi_finalize_current_message(master);
1080                         return;
1081                 }
1082                 master->cur_msg_prepared = true;
1083         }
1084
1085         ret = spi_map_msg(master, master->cur_msg);
1086         if (ret) {
1087                 master->cur_msg->status = ret;
1088                 spi_finalize_current_message(master);
1089                 return;
1090         }
1091
1092         ret = master->transfer_one_message(master, master->cur_msg);
1093         if (ret) {
1094                 dev_err(&master->dev,
1095                         "failed to transfer one message from queue\n");
1096                 return;
1097         }
1098 }
1099
1100 /**
1101  * spi_pump_messages - kthread work function which processes spi message queue
1102  * @work: pointer to kthread work struct contained in the master struct
1103  */
1104 static void spi_pump_messages(struct kthread_work *work)
1105 {
1106         struct spi_master *master =
1107                 container_of(work, struct spi_master, pump_messages);
1108
1109         __spi_pump_messages(master, true);
1110 }
1111
1112 static int spi_init_queue(struct spi_master *master)
1113 {
1114         struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1115
1116         master->running = false;
1117         master->busy = false;
1118
1119         init_kthread_worker(&master->kworker);
1120         master->kworker_task = kthread_run(kthread_worker_fn,
1121                                            &master->kworker, "%s",
1122                                            dev_name(&master->dev));
1123         if (IS_ERR(master->kworker_task)) {
1124                 dev_err(&master->dev, "failed to create message pump task\n");
1125                 return PTR_ERR(master->kworker_task);
1126         }
1127         init_kthread_work(&master->pump_messages, spi_pump_messages);
1128
1129         /*
1130          * Master config will indicate if this controller should run the
1131          * message pump with high (realtime) priority to reduce the transfer
1132          * latency on the bus by minimising the delay between a transfer
1133          * request and the scheduling of the message pump thread. Without this
1134          * setting the message pump thread will remain at default priority.
1135          */
1136         if (master->rt) {
1137                 dev_info(&master->dev,
1138                         "will run message pump with realtime priority\n");
1139                 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1140         }
1141
1142         return 0;
1143 }
1144
1145 /**
1146  * spi_get_next_queued_message() - called by driver to check for queued
1147  * messages
1148  * @master: the master to check for queued messages
1149  *
1150  * If there are more messages in the queue, the next message is returned from
1151  * this call.
1152  */
1153 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1154 {
1155         struct spi_message *next;
1156         unsigned long flags;
1157
1158         /* get a pointer to the next message, if any */
1159         spin_lock_irqsave(&master->queue_lock, flags);
1160         next = list_first_entry_or_null(&master->queue, struct spi_message,
1161                                         queue);
1162         spin_unlock_irqrestore(&master->queue_lock, flags);
1163
1164         return next;
1165 }
1166 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1167
1168 /**
1169  * spi_finalize_current_message() - the current message is complete
1170  * @master: the master to return the message to
1171  *
1172  * Called by the driver to notify the core that the message in the front of the
1173  * queue is complete and can be removed from the queue.
1174  */
1175 void spi_finalize_current_message(struct spi_master *master)
1176 {
1177         struct spi_message *mesg;
1178         unsigned long flags;
1179         int ret;
1180
1181         spin_lock_irqsave(&master->queue_lock, flags);
1182         mesg = master->cur_msg;
1183         spin_unlock_irqrestore(&master->queue_lock, flags);
1184
1185         spi_unmap_msg(master, mesg);
1186
1187         if (master->cur_msg_prepared && master->unprepare_message) {
1188                 ret = master->unprepare_message(master, mesg);
1189                 if (ret) {
1190                         dev_err(&master->dev,
1191                                 "failed to unprepare message: %d\n", ret);
1192                 }
1193         }
1194
1195         spin_lock_irqsave(&master->queue_lock, flags);
1196         master->cur_msg = NULL;
1197         master->cur_msg_prepared = false;
1198         queue_kthread_work(&master->kworker, &master->pump_messages);
1199         spin_unlock_irqrestore(&master->queue_lock, flags);
1200
1201         trace_spi_message_done(mesg);
1202
1203         mesg->state = NULL;
1204         if (mesg->complete)
1205                 mesg->complete(mesg->context);
1206 }
1207 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1208
1209 static int spi_start_queue(struct spi_master *master)
1210 {
1211         unsigned long flags;
1212
1213         spin_lock_irqsave(&master->queue_lock, flags);
1214
1215         if (master->running || master->busy) {
1216                 spin_unlock_irqrestore(&master->queue_lock, flags);
1217                 return -EBUSY;
1218         }
1219
1220         master->running = true;
1221         master->cur_msg = NULL;
1222         spin_unlock_irqrestore(&master->queue_lock, flags);
1223
1224         queue_kthread_work(&master->kworker, &master->pump_messages);
1225
1226         return 0;
1227 }
1228
1229 static int spi_stop_queue(struct spi_master *master)
1230 {
1231         unsigned long flags;
1232         unsigned limit = 500;
1233         int ret = 0;
1234
1235         spin_lock_irqsave(&master->queue_lock, flags);
1236
1237         /*
1238          * This is a bit lame, but is optimized for the common execution path.
1239          * A wait_queue on the master->busy could be used, but then the common
1240          * execution path (pump_messages) would be required to call wake_up or
1241          * friends on every SPI message. Do this instead.
1242          */
1243         while ((!list_empty(&master->queue) || master->busy) && limit--) {
1244                 spin_unlock_irqrestore(&master->queue_lock, flags);
1245                 usleep_range(10000, 11000);
1246                 spin_lock_irqsave(&master->queue_lock, flags);
1247         }
1248
1249         if (!list_empty(&master->queue) || master->busy)
1250                 ret = -EBUSY;
1251         else
1252                 master->running = false;
1253
1254         spin_unlock_irqrestore(&master->queue_lock, flags);
1255
1256         if (ret) {
1257                 dev_warn(&master->dev,
1258                          "could not stop message queue\n");
1259                 return ret;
1260         }
1261         return ret;
1262 }
1263
1264 static int spi_destroy_queue(struct spi_master *master)
1265 {
1266         int ret;
1267
1268         ret = spi_stop_queue(master);
1269
1270         /*
1271          * flush_kthread_worker will block until all work is done.
1272          * If the reason that stop_queue timed out is that the work will never
1273          * finish, then it does no good to call flush/stop thread, so
1274          * return anyway.
1275          */
1276         if (ret) {
1277                 dev_err(&master->dev, "problem destroying queue\n");
1278                 return ret;
1279         }
1280
1281         flush_kthread_worker(&master->kworker);
1282         kthread_stop(master->kworker_task);
1283
1284         return 0;
1285 }
1286
1287 static int __spi_queued_transfer(struct spi_device *spi,
1288                                  struct spi_message *msg,
1289                                  bool need_pump)
1290 {
1291         struct spi_master *master = spi->master;
1292         unsigned long flags;
1293
1294         spin_lock_irqsave(&master->queue_lock, flags);
1295
1296         if (!master->running) {
1297                 spin_unlock_irqrestore(&master->queue_lock, flags);
1298                 return -ESHUTDOWN;
1299         }
1300         msg->actual_length = 0;
1301         msg->status = -EINPROGRESS;
1302
1303         list_add_tail(&msg->queue, &master->queue);
1304         if (!master->busy && need_pump)
1305                 queue_kthread_work(&master->kworker, &master->pump_messages);
1306
1307         spin_unlock_irqrestore(&master->queue_lock, flags);
1308         return 0;
1309 }
1310
1311 /**
1312  * spi_queued_transfer - transfer function for queued transfers
1313  * @spi: spi device which is requesting transfer
1314  * @msg: spi message which is to handled is queued to driver queue
1315  */
1316 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1317 {
1318         return __spi_queued_transfer(spi, msg, true);
1319 }
1320
1321 static int spi_master_initialize_queue(struct spi_master *master)
1322 {
1323         int ret;
1324
1325         master->transfer = spi_queued_transfer;
1326         if (!master->transfer_one_message)
1327                 master->transfer_one_message = spi_transfer_one_message;
1328
1329         /* Initialize and start queue */
1330         ret = spi_init_queue(master);
1331         if (ret) {
1332                 dev_err(&master->dev, "problem initializing queue\n");
1333                 goto err_init_queue;
1334         }
1335         master->queued = true;
1336         ret = spi_start_queue(master);
1337         if (ret) {
1338                 dev_err(&master->dev, "problem starting queue\n");
1339                 goto err_start_queue;
1340         }
1341
1342         return 0;
1343
1344 err_start_queue:
1345         spi_destroy_queue(master);
1346 err_init_queue:
1347         return ret;
1348 }
1349
1350 /*-------------------------------------------------------------------------*/
1351
1352 #if defined(CONFIG_OF)
1353 static struct spi_device *
1354 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1355 {
1356         struct spi_device *spi;
1357         int rc;
1358         u32 value;
1359
1360         /* Alloc an spi_device */
1361         spi = spi_alloc_device(master);
1362         if (!spi) {
1363                 dev_err(&master->dev, "spi_device alloc error for %s\n",
1364                         nc->full_name);
1365                 rc = -ENOMEM;
1366                 goto err_out;
1367         }
1368
1369         /* Select device driver */
1370         rc = of_modalias_node(nc, spi->modalias,
1371                                 sizeof(spi->modalias));
1372         if (rc < 0) {
1373                 dev_err(&master->dev, "cannot find modalias for %s\n",
1374                         nc->full_name);
1375                 goto err_out;
1376         }
1377
1378         /* Device address */
1379         rc = of_property_read_u32(nc, "reg", &value);
1380         if (rc) {
1381                 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1382                         nc->full_name, rc);
1383                 goto err_out;
1384         }
1385         spi->chip_select = value;
1386
1387         /* Mode (clock phase/polarity/etc.) */
1388         if (of_find_property(nc, "spi-cpha", NULL))
1389                 spi->mode |= SPI_CPHA;
1390         if (of_find_property(nc, "spi-cpol", NULL))
1391                 spi->mode |= SPI_CPOL;
1392         if (of_find_property(nc, "spi-cs-high", NULL))
1393                 spi->mode |= SPI_CS_HIGH;
1394         if (of_find_property(nc, "spi-3wire", NULL))
1395                 spi->mode |= SPI_3WIRE;
1396         if (of_find_property(nc, "spi-lsb-first", NULL))
1397                 spi->mode |= SPI_LSB_FIRST;
1398
1399         /* Device DUAL/QUAD mode */
1400         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1401                 switch (value) {
1402                 case 1:
1403                         break;
1404                 case 2:
1405                         spi->mode |= SPI_TX_DUAL;
1406                         break;
1407                 case 4:
1408                         spi->mode |= SPI_TX_QUAD;
1409                         break;
1410                 default:
1411                         dev_warn(&master->dev,
1412                                 "spi-tx-bus-width %d not supported\n",
1413                                 value);
1414                         break;
1415                 }
1416         }
1417
1418         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1419                 switch (value) {
1420                 case 1:
1421                         break;
1422                 case 2:
1423                         spi->mode |= SPI_RX_DUAL;
1424                         break;
1425                 case 4:
1426                         spi->mode |= SPI_RX_QUAD;
1427                         break;
1428                 default:
1429                         dev_warn(&master->dev,
1430                                 "spi-rx-bus-width %d not supported\n",
1431                                 value);
1432                         break;
1433                 }
1434         }
1435
1436         /* Device speed */
1437         rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1438         if (rc) {
1439                 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1440                         nc->full_name, rc);
1441                 goto err_out;
1442         }
1443         spi->max_speed_hz = value;
1444
1445         /* Store a pointer to the node in the device structure */
1446         of_node_get(nc);
1447         spi->dev.of_node = nc;
1448
1449         /* Register the new device */
1450         rc = spi_add_device(spi);
1451         if (rc) {
1452                 dev_err(&master->dev, "spi_device register error %s\n",
1453                         nc->full_name);
1454                 goto err_out;
1455         }
1456
1457         return spi;
1458
1459 err_out:
1460         spi_dev_put(spi);
1461         return ERR_PTR(rc);
1462 }
1463
1464 /**
1465  * of_register_spi_devices() - Register child devices onto the SPI bus
1466  * @master:     Pointer to spi_master device
1467  *
1468  * Registers an spi_device for each child node of master node which has a 'reg'
1469  * property.
1470  */
1471 static void of_register_spi_devices(struct spi_master *master)
1472 {
1473         struct spi_device *spi;
1474         struct device_node *nc;
1475
1476         if (!master->dev.of_node)
1477                 return;
1478
1479         for_each_available_child_of_node(master->dev.of_node, nc) {
1480                 spi = of_register_spi_device(master, nc);
1481                 if (IS_ERR(spi))
1482                         dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1483                                 nc->full_name);
1484         }
1485 }
1486 #else
1487 static void of_register_spi_devices(struct spi_master *master) { }
1488 #endif
1489
1490 #ifdef CONFIG_ACPI
1491 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1492 {
1493         struct spi_device *spi = data;
1494
1495         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1496                 struct acpi_resource_spi_serialbus *sb;
1497
1498                 sb = &ares->data.spi_serial_bus;
1499                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1500                         spi->chip_select = sb->device_selection;
1501                         spi->max_speed_hz = sb->connection_speed;
1502
1503                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1504                                 spi->mode |= SPI_CPHA;
1505                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1506                                 spi->mode |= SPI_CPOL;
1507                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1508                                 spi->mode |= SPI_CS_HIGH;
1509                 }
1510         } else if (spi->irq < 0) {
1511                 struct resource r;
1512
1513                 if (acpi_dev_resource_interrupt(ares, 0, &r))
1514                         spi->irq = r.start;
1515         }
1516
1517         /* Always tell the ACPI core to skip this resource */
1518         return 1;
1519 }
1520
1521 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1522                                        void *data, void **return_value)
1523 {
1524         struct spi_master *master = data;
1525         struct list_head resource_list;
1526         struct acpi_device *adev;
1527         struct spi_device *spi;
1528         int ret;
1529
1530         if (acpi_bus_get_device(handle, &adev))
1531                 return AE_OK;
1532         if (acpi_bus_get_status(adev) || !adev->status.present)
1533                 return AE_OK;
1534
1535         spi = spi_alloc_device(master);
1536         if (!spi) {
1537                 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1538                         dev_name(&adev->dev));
1539                 return AE_NO_MEMORY;
1540         }
1541
1542         ACPI_COMPANION_SET(&spi->dev, adev);
1543         spi->irq = -1;
1544
1545         INIT_LIST_HEAD(&resource_list);
1546         ret = acpi_dev_get_resources(adev, &resource_list,
1547                                      acpi_spi_add_resource, spi);
1548         acpi_dev_free_resource_list(&resource_list);
1549
1550         if (ret < 0 || !spi->max_speed_hz) {
1551                 spi_dev_put(spi);
1552                 return AE_OK;
1553         }
1554
1555         adev->power.flags.ignore_parent = true;
1556         strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1557         if (spi_add_device(spi)) {
1558                 adev->power.flags.ignore_parent = false;
1559                 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1560                         dev_name(&adev->dev));
1561                 spi_dev_put(spi);
1562         }
1563
1564         return AE_OK;
1565 }
1566
1567 static void acpi_register_spi_devices(struct spi_master *master)
1568 {
1569         acpi_status status;
1570         acpi_handle handle;
1571
1572         handle = ACPI_HANDLE(master->dev.parent);
1573         if (!handle)
1574                 return;
1575
1576         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1577                                      acpi_spi_add_device, NULL,
1578                                      master, NULL);
1579         if (ACPI_FAILURE(status))
1580                 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1581 }
1582 #else
1583 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1584 #endif /* CONFIG_ACPI */
1585
1586 static void spi_master_release(struct device *dev)
1587 {
1588         struct spi_master *master;
1589
1590         master = container_of(dev, struct spi_master, dev);
1591         kfree(master);
1592 }
1593
1594 static struct class spi_master_class = {
1595         .name           = "spi_master",
1596         .owner          = THIS_MODULE,
1597         .dev_release    = spi_master_release,
1598         .dev_groups     = spi_master_groups,
1599 };
1600
1601
1602 /**
1603  * spi_alloc_master - allocate SPI master controller
1604  * @dev: the controller, possibly using the platform_bus
1605  * @size: how much zeroed driver-private data to allocate; the pointer to this
1606  *      memory is in the driver_data field of the returned device,
1607  *      accessible with spi_master_get_devdata().
1608  * Context: can sleep
1609  *
1610  * This call is used only by SPI master controller drivers, which are the
1611  * only ones directly touching chip registers.  It's how they allocate
1612  * an spi_master structure, prior to calling spi_register_master().
1613  *
1614  * This must be called from context that can sleep.  It returns the SPI
1615  * master structure on success, else NULL.
1616  *
1617  * The caller is responsible for assigning the bus number and initializing
1618  * the master's methods before calling spi_register_master(); and (after errors
1619  * adding the device) calling spi_master_put() and kfree() to prevent a memory
1620  * leak.
1621  */
1622 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1623 {
1624         struct spi_master       *master;
1625
1626         if (!dev)
1627                 return NULL;
1628
1629         master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1630         if (!master)
1631                 return NULL;
1632
1633         device_initialize(&master->dev);
1634         master->bus_num = -1;
1635         master->num_chipselect = 1;
1636         master->dev.class = &spi_master_class;
1637         master->dev.parent = get_device(dev);
1638         spi_master_set_devdata(master, &master[1]);
1639
1640         return master;
1641 }
1642 EXPORT_SYMBOL_GPL(spi_alloc_master);
1643
1644 #ifdef CONFIG_OF
1645 static int of_spi_register_master(struct spi_master *master)
1646 {
1647         int nb, i, *cs;
1648         struct device_node *np = master->dev.of_node;
1649
1650         if (!np)
1651                 return 0;
1652
1653         nb = of_gpio_named_count(np, "cs-gpios");
1654         master->num_chipselect = max_t(int, nb, master->num_chipselect);
1655
1656         /* Return error only for an incorrectly formed cs-gpios property */
1657         if (nb == 0 || nb == -ENOENT)
1658                 return 0;
1659         else if (nb < 0)
1660                 return nb;
1661
1662         cs = devm_kzalloc(&master->dev,
1663                           sizeof(int) * master->num_chipselect,
1664                           GFP_KERNEL);
1665         master->cs_gpios = cs;
1666
1667         if (!master->cs_gpios)
1668                 return -ENOMEM;
1669
1670         for (i = 0; i < master->num_chipselect; i++)
1671                 cs[i] = -ENOENT;
1672
1673         for (i = 0; i < nb; i++)
1674                 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1675
1676         return 0;
1677 }
1678 #else
1679 static int of_spi_register_master(struct spi_master *master)
1680 {
1681         return 0;
1682 }
1683 #endif
1684
1685 /**
1686  * spi_register_master - register SPI master controller
1687  * @master: initialized master, originally from spi_alloc_master()
1688  * Context: can sleep
1689  *
1690  * SPI master controllers connect to their drivers using some non-SPI bus,
1691  * such as the platform bus.  The final stage of probe() in that code
1692  * includes calling spi_register_master() to hook up to this SPI bus glue.
1693  *
1694  * SPI controllers use board specific (often SOC specific) bus numbers,
1695  * and board-specific addressing for SPI devices combines those numbers
1696  * with chip select numbers.  Since SPI does not directly support dynamic
1697  * device identification, boards need configuration tables telling which
1698  * chip is at which address.
1699  *
1700  * This must be called from context that can sleep.  It returns zero on
1701  * success, else a negative error code (dropping the master's refcount).
1702  * After a successful return, the caller is responsible for calling
1703  * spi_unregister_master().
1704  */
1705 int spi_register_master(struct spi_master *master)
1706 {
1707         static atomic_t         dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1708         struct device           *dev = master->dev.parent;
1709         struct boardinfo        *bi;
1710         int                     status = -ENODEV;
1711         int                     dynamic = 0;
1712
1713         if (!dev)
1714                 return -ENODEV;
1715
1716         status = of_spi_register_master(master);
1717         if (status)
1718                 return status;
1719
1720         /* even if it's just one always-selected device, there must
1721          * be at least one chipselect
1722          */
1723         if (master->num_chipselect == 0)
1724                 return -EINVAL;
1725
1726         if ((master->bus_num < 0) && master->dev.of_node)
1727                 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1728
1729         /* convention:  dynamically assigned bus IDs count down from the max */
1730         if (master->bus_num < 0) {
1731                 /* FIXME switch to an IDR based scheme, something like
1732                  * I2C now uses, so we can't run out of "dynamic" IDs
1733                  */
1734                 master->bus_num = atomic_dec_return(&dyn_bus_id);
1735                 dynamic = 1;
1736         }
1737
1738         INIT_LIST_HEAD(&master->queue);
1739         spin_lock_init(&master->queue_lock);
1740         spin_lock_init(&master->bus_lock_spinlock);
1741         mutex_init(&master->bus_lock_mutex);
1742         master->bus_lock_flag = 0;
1743         init_completion(&master->xfer_completion);
1744         if (!master->max_dma_len)
1745                 master->max_dma_len = INT_MAX;
1746
1747         /* register the device, then userspace will see it.
1748          * registration fails if the bus ID is in use.
1749          */
1750         dev_set_name(&master->dev, "spi%u", master->bus_num);
1751         status = device_add(&master->dev);
1752         if (status < 0)
1753                 goto done;
1754         dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1755                         dynamic ? " (dynamic)" : "");
1756
1757         /* If we're using a queued driver, start the queue */
1758         if (master->transfer)
1759                 dev_info(dev, "master is unqueued, this is deprecated\n");
1760         else {
1761                 status = spi_master_initialize_queue(master);
1762                 if (status) {
1763                         device_del(&master->dev);
1764                         goto done;
1765                 }
1766         }
1767         /* add statistics */
1768         spin_lock_init(&master->statistics.lock);
1769
1770         mutex_lock(&board_lock);
1771         list_add_tail(&master->list, &spi_master_list);
1772         list_for_each_entry(bi, &board_list, list)
1773                 spi_match_master_to_boardinfo(master, &bi->board_info);
1774         mutex_unlock(&board_lock);
1775
1776         /* Register devices from the device tree and ACPI */
1777         of_register_spi_devices(master);
1778         acpi_register_spi_devices(master);
1779 done:
1780         return status;
1781 }
1782 EXPORT_SYMBOL_GPL(spi_register_master);
1783
1784 static void devm_spi_unregister(struct device *dev, void *res)
1785 {
1786         spi_unregister_master(*(struct spi_master **)res);
1787 }
1788
1789 /**
1790  * dev_spi_register_master - register managed SPI master controller
1791  * @dev:    device managing SPI master
1792  * @master: initialized master, originally from spi_alloc_master()
1793  * Context: can sleep
1794  *
1795  * Register a SPI device as with spi_register_master() which will
1796  * automatically be unregister
1797  */
1798 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1799 {
1800         struct spi_master **ptr;
1801         int ret;
1802
1803         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1804         if (!ptr)
1805                 return -ENOMEM;
1806
1807         ret = spi_register_master(master);
1808         if (!ret) {
1809                 *ptr = master;
1810                 devres_add(dev, ptr);
1811         } else {
1812                 devres_free(ptr);
1813         }
1814
1815         return ret;
1816 }
1817 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1818
1819 static int __unregister(struct device *dev, void *null)
1820 {
1821         spi_unregister_device(to_spi_device(dev));
1822         return 0;
1823 }
1824
1825 /**
1826  * spi_unregister_master - unregister SPI master controller
1827  * @master: the master being unregistered
1828  * Context: can sleep
1829  *
1830  * This call is used only by SPI master controller drivers, which are the
1831  * only ones directly touching chip registers.
1832  *
1833  * This must be called from context that can sleep.
1834  */
1835 void spi_unregister_master(struct spi_master *master)
1836 {
1837         int dummy;
1838
1839         if (master->queued) {
1840                 if (spi_destroy_queue(master))
1841                         dev_err(&master->dev, "queue remove failed\n");
1842         }
1843
1844         mutex_lock(&board_lock);
1845         list_del(&master->list);
1846         mutex_unlock(&board_lock);
1847
1848         dummy = device_for_each_child(&master->dev, NULL, __unregister);
1849         device_unregister(&master->dev);
1850 }
1851 EXPORT_SYMBOL_GPL(spi_unregister_master);
1852
1853 int spi_master_suspend(struct spi_master *master)
1854 {
1855         int ret;
1856
1857         /* Basically no-ops for non-queued masters */
1858         if (!master->queued)
1859                 return 0;
1860
1861         ret = spi_stop_queue(master);
1862         if (ret)
1863                 dev_err(&master->dev, "queue stop failed\n");
1864
1865         return ret;
1866 }
1867 EXPORT_SYMBOL_GPL(spi_master_suspend);
1868
1869 int spi_master_resume(struct spi_master *master)
1870 {
1871         int ret;
1872
1873         if (!master->queued)
1874                 return 0;
1875
1876         ret = spi_start_queue(master);
1877         if (ret)
1878                 dev_err(&master->dev, "queue restart failed\n");
1879
1880         return ret;
1881 }
1882 EXPORT_SYMBOL_GPL(spi_master_resume);
1883
1884 static int __spi_master_match(struct device *dev, const void *data)
1885 {
1886         struct spi_master *m;
1887         const u16 *bus_num = data;
1888
1889         m = container_of(dev, struct spi_master, dev);
1890         return m->bus_num == *bus_num;
1891 }
1892
1893 /**
1894  * spi_busnum_to_master - look up master associated with bus_num
1895  * @bus_num: the master's bus number
1896  * Context: can sleep
1897  *
1898  * This call may be used with devices that are registered after
1899  * arch init time.  It returns a refcounted pointer to the relevant
1900  * spi_master (which the caller must release), or NULL if there is
1901  * no such master registered.
1902  */
1903 struct spi_master *spi_busnum_to_master(u16 bus_num)
1904 {
1905         struct device           *dev;
1906         struct spi_master       *master = NULL;
1907
1908         dev = class_find_device(&spi_master_class, NULL, &bus_num,
1909                                 __spi_master_match);
1910         if (dev)
1911                 master = container_of(dev, struct spi_master, dev);
1912         /* reference got in class_find_device */
1913         return master;
1914 }
1915 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1916
1917
1918 /*-------------------------------------------------------------------------*/
1919
1920 /* Core methods for SPI master protocol drivers.  Some of the
1921  * other core methods are currently defined as inline functions.
1922  */
1923
1924 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
1925 {
1926         if (master->bits_per_word_mask) {
1927                 /* Only 32 bits fit in the mask */
1928                 if (bits_per_word > 32)
1929                         return -EINVAL;
1930                 if (!(master->bits_per_word_mask &
1931                                 SPI_BPW_MASK(bits_per_word)))
1932                         return -EINVAL;
1933         }
1934
1935         return 0;
1936 }
1937
1938 /**
1939  * spi_setup - setup SPI mode and clock rate
1940  * @spi: the device whose settings are being modified
1941  * Context: can sleep, and no requests are queued to the device
1942  *
1943  * SPI protocol drivers may need to update the transfer mode if the
1944  * device doesn't work with its default.  They may likewise need
1945  * to update clock rates or word sizes from initial values.  This function
1946  * changes those settings, and must be called from a context that can sleep.
1947  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1948  * effect the next time the device is selected and data is transferred to
1949  * or from it.  When this function returns, the spi device is deselected.
1950  *
1951  * Note that this call will fail if the protocol driver specifies an option
1952  * that the underlying controller or its driver does not support.  For
1953  * example, not all hardware supports wire transfers using nine bit words,
1954  * LSB-first wire encoding, or active-high chipselects.
1955  */
1956 int spi_setup(struct spi_device *spi)
1957 {
1958         unsigned        bad_bits, ugly_bits;
1959         int             status = 0;
1960
1961         /* check mode to prevent that DUAL and QUAD set at the same time
1962          */
1963         if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1964                 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1965                 dev_err(&spi->dev,
1966                 "setup: can not select dual and quad at the same time\n");
1967                 return -EINVAL;
1968         }
1969         /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1970          */
1971         if ((spi->mode & SPI_3WIRE) && (spi->mode &
1972                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1973                 return -EINVAL;
1974         /* help drivers fail *cleanly* when they need options
1975          * that aren't supported with their current master
1976          */
1977         bad_bits = spi->mode & ~spi->master->mode_bits;
1978         ugly_bits = bad_bits &
1979                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1980         if (ugly_bits) {
1981                 dev_warn(&spi->dev,
1982                          "setup: ignoring unsupported mode bits %x\n",
1983                          ugly_bits);
1984                 spi->mode &= ~ugly_bits;
1985                 bad_bits &= ~ugly_bits;
1986         }
1987         if (bad_bits) {
1988                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1989                         bad_bits);
1990                 return -EINVAL;
1991         }
1992
1993         if (!spi->bits_per_word)
1994                 spi->bits_per_word = 8;
1995
1996         if (__spi_validate_bits_per_word(spi->master, spi->bits_per_word))
1997                 return -EINVAL;
1998
1999         if (!spi->max_speed_hz)
2000                 spi->max_speed_hz = spi->master->max_speed_hz;
2001
2002         spi_set_cs(spi, false);
2003
2004         if (spi->master->setup)
2005                 status = spi->master->setup(spi);
2006
2007         dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2008                         (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2009                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2010                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2011                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2012                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
2013                         spi->bits_per_word, spi->max_speed_hz,
2014                         status);
2015
2016         return status;
2017 }
2018 EXPORT_SYMBOL_GPL(spi_setup);
2019
2020 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2021 {
2022         struct spi_master *master = spi->master;
2023         struct spi_transfer *xfer;
2024         int w_size;
2025
2026         if (list_empty(&message->transfers))
2027                 return -EINVAL;
2028
2029         /* Half-duplex links include original MicroWire, and ones with
2030          * only one data pin like SPI_3WIRE (switches direction) or where
2031          * either MOSI or MISO is missing.  They can also be caused by
2032          * software limitations.
2033          */
2034         if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2035                         || (spi->mode & SPI_3WIRE)) {
2036                 unsigned flags = master->flags;
2037
2038                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2039                         if (xfer->rx_buf && xfer->tx_buf)
2040                                 return -EINVAL;
2041                         if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2042                                 return -EINVAL;
2043                         if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2044                                 return -EINVAL;
2045                 }
2046         }
2047
2048         /**
2049          * Set transfer bits_per_word and max speed as spi device default if
2050          * it is not set for this transfer.
2051          * Set transfer tx_nbits and rx_nbits as single transfer default
2052          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2053          */
2054         list_for_each_entry(xfer, &message->transfers, transfer_list) {
2055                 message->frame_length += xfer->len;
2056                 if (!xfer->bits_per_word)
2057                         xfer->bits_per_word = spi->bits_per_word;
2058
2059                 if (!xfer->speed_hz)
2060                         xfer->speed_hz = spi->max_speed_hz;
2061                 if (!xfer->speed_hz)
2062                         xfer->speed_hz = master->max_speed_hz;
2063
2064                 if (master->max_speed_hz &&
2065                     xfer->speed_hz > master->max_speed_hz)
2066                         xfer->speed_hz = master->max_speed_hz;
2067
2068                 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2069                         return -EINVAL;
2070
2071                 /*
2072                  * SPI transfer length should be multiple of SPI word size
2073                  * where SPI word size should be power-of-two multiple
2074                  */
2075                 if (xfer->bits_per_word <= 8)
2076                         w_size = 1;
2077                 else if (xfer->bits_per_word <= 16)
2078                         w_size = 2;
2079                 else
2080                         w_size = 4;
2081
2082                 /* No partial transfers accepted */
2083                 if (xfer->len % w_size)
2084                         return -EINVAL;
2085
2086                 if (xfer->speed_hz && master->min_speed_hz &&
2087                     xfer->speed_hz < master->min_speed_hz)
2088                         return -EINVAL;
2089
2090                 if (xfer->tx_buf && !xfer->tx_nbits)
2091                         xfer->tx_nbits = SPI_NBITS_SINGLE;
2092                 if (xfer->rx_buf && !xfer->rx_nbits)
2093                         xfer->rx_nbits = SPI_NBITS_SINGLE;
2094                 /* check transfer tx/rx_nbits:
2095                  * 1. check the value matches one of single, dual and quad
2096                  * 2. check tx/rx_nbits match the mode in spi_device
2097                  */
2098                 if (xfer->tx_buf) {
2099                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2100                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
2101                                 xfer->tx_nbits != SPI_NBITS_QUAD)
2102                                 return -EINVAL;
2103                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2104                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2105                                 return -EINVAL;
2106                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2107                                 !(spi->mode & SPI_TX_QUAD))
2108                                 return -EINVAL;
2109                 }
2110                 /* check transfer rx_nbits */
2111                 if (xfer->rx_buf) {
2112                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2113                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
2114                                 xfer->rx_nbits != SPI_NBITS_QUAD)
2115                                 return -EINVAL;
2116                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2117                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2118                                 return -EINVAL;
2119                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2120                                 !(spi->mode & SPI_RX_QUAD))
2121                                 return -EINVAL;
2122                 }
2123         }
2124
2125         message->status = -EINPROGRESS;
2126
2127         return 0;
2128 }
2129
2130 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2131 {
2132         struct spi_master *master = spi->master;
2133
2134         message->spi = spi;
2135
2136         SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2137         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2138
2139         trace_spi_message_submit(message);
2140
2141         return master->transfer(spi, message);
2142 }
2143
2144 /**
2145  * spi_async - asynchronous SPI transfer
2146  * @spi: device with which data will be exchanged
2147  * @message: describes the data transfers, including completion callback
2148  * Context: any (irqs may be blocked, etc)
2149  *
2150  * This call may be used in_irq and other contexts which can't sleep,
2151  * as well as from task contexts which can sleep.
2152  *
2153  * The completion callback is invoked in a context which can't sleep.
2154  * Before that invocation, the value of message->status is undefined.
2155  * When the callback is issued, message->status holds either zero (to
2156  * indicate complete success) or a negative error code.  After that
2157  * callback returns, the driver which issued the transfer request may
2158  * deallocate the associated memory; it's no longer in use by any SPI
2159  * core or controller driver code.
2160  *
2161  * Note that although all messages to a spi_device are handled in
2162  * FIFO order, messages may go to different devices in other orders.
2163  * Some device might be higher priority, or have various "hard" access
2164  * time requirements, for example.
2165  *
2166  * On detection of any fault during the transfer, processing of
2167  * the entire message is aborted, and the device is deselected.
2168  * Until returning from the associated message completion callback,
2169  * no other spi_message queued to that device will be processed.
2170  * (This rule applies equally to all the synchronous transfer calls,
2171  * which are wrappers around this core asynchronous primitive.)
2172  */
2173 int spi_async(struct spi_device *spi, struct spi_message *message)
2174 {
2175         struct spi_master *master = spi->master;
2176         int ret;
2177         unsigned long flags;
2178
2179         ret = __spi_validate(spi, message);
2180         if (ret != 0)
2181                 return ret;
2182
2183         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2184
2185         if (master->bus_lock_flag)
2186                 ret = -EBUSY;
2187         else
2188                 ret = __spi_async(spi, message);
2189
2190         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2191
2192         return ret;
2193 }
2194 EXPORT_SYMBOL_GPL(spi_async);
2195
2196 /**
2197  * spi_async_locked - version of spi_async with exclusive bus usage
2198  * @spi: device with which data will be exchanged
2199  * @message: describes the data transfers, including completion callback
2200  * Context: any (irqs may be blocked, etc)
2201  *
2202  * This call may be used in_irq and other contexts which can't sleep,
2203  * as well as from task contexts which can sleep.
2204  *
2205  * The completion callback is invoked in a context which can't sleep.
2206  * Before that invocation, the value of message->status is undefined.
2207  * When the callback is issued, message->status holds either zero (to
2208  * indicate complete success) or a negative error code.  After that
2209  * callback returns, the driver which issued the transfer request may
2210  * deallocate the associated memory; it's no longer in use by any SPI
2211  * core or controller driver code.
2212  *
2213  * Note that although all messages to a spi_device are handled in
2214  * FIFO order, messages may go to different devices in other orders.
2215  * Some device might be higher priority, or have various "hard" access
2216  * time requirements, for example.
2217  *
2218  * On detection of any fault during the transfer, processing of
2219  * the entire message is aborted, and the device is deselected.
2220  * Until returning from the associated message completion callback,
2221  * no other spi_message queued to that device will be processed.
2222  * (This rule applies equally to all the synchronous transfer calls,
2223  * which are wrappers around this core asynchronous primitive.)
2224  */
2225 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2226 {
2227         struct spi_master *master = spi->master;
2228         int ret;
2229         unsigned long flags;
2230
2231         ret = __spi_validate(spi, message);
2232         if (ret != 0)
2233                 return ret;
2234
2235         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2236
2237         ret = __spi_async(spi, message);
2238
2239         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2240
2241         return ret;
2242
2243 }
2244 EXPORT_SYMBOL_GPL(spi_async_locked);
2245
2246
2247 /*-------------------------------------------------------------------------*/
2248
2249 /* Utility methods for SPI master protocol drivers, layered on
2250  * top of the core.  Some other utility methods are defined as
2251  * inline functions.
2252  */
2253
2254 static void spi_complete(void *arg)
2255 {
2256         complete(arg);
2257 }
2258
2259 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2260                       int bus_locked)
2261 {
2262         DECLARE_COMPLETION_ONSTACK(done);
2263         int status;
2264         struct spi_master *master = spi->master;
2265         unsigned long flags;
2266
2267         status = __spi_validate(spi, message);
2268         if (status != 0)
2269                 return status;
2270
2271         message->complete = spi_complete;
2272         message->context = &done;
2273         message->spi = spi;
2274
2275         SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2276         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2277
2278         if (!bus_locked)
2279                 mutex_lock(&master->bus_lock_mutex);
2280
2281         /* If we're not using the legacy transfer method then we will
2282          * try to transfer in the calling context so special case.
2283          * This code would be less tricky if we could remove the
2284          * support for driver implemented message queues.
2285          */
2286         if (master->transfer == spi_queued_transfer) {
2287                 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2288
2289                 trace_spi_message_submit(message);
2290
2291                 status = __spi_queued_transfer(spi, message, false);
2292
2293                 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2294         } else {
2295                 status = spi_async_locked(spi, message);
2296         }
2297
2298         if (!bus_locked)
2299                 mutex_unlock(&master->bus_lock_mutex);
2300
2301         if (status == 0) {
2302                 /* Push out the messages in the calling context if we
2303                  * can.
2304                  */
2305                 if (master->transfer == spi_queued_transfer) {
2306                         SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2307                                                        spi_sync_immediate);
2308                         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2309                                                        spi_sync_immediate);
2310                         __spi_pump_messages(master, false);
2311                 }
2312
2313                 wait_for_completion(&done);
2314                 status = message->status;
2315         }
2316         message->context = NULL;
2317         return status;
2318 }
2319
2320 /**
2321  * spi_sync - blocking/synchronous SPI data transfers
2322  * @spi: device with which data will be exchanged
2323  * @message: describes the data transfers
2324  * Context: can sleep
2325  *
2326  * This call may only be used from a context that may sleep.  The sleep
2327  * is non-interruptible, and has no timeout.  Low-overhead controller
2328  * drivers may DMA directly into and out of the message buffers.
2329  *
2330  * Note that the SPI device's chip select is active during the message,
2331  * and then is normally disabled between messages.  Drivers for some
2332  * frequently-used devices may want to minimize costs of selecting a chip,
2333  * by leaving it selected in anticipation that the next message will go
2334  * to the same chip.  (That may increase power usage.)
2335  *
2336  * Also, the caller is guaranteeing that the memory associated with the
2337  * message will not be freed before this call returns.
2338  *
2339  * It returns zero on success, else a negative error code.
2340  */
2341 int spi_sync(struct spi_device *spi, struct spi_message *message)
2342 {
2343         return __spi_sync(spi, message, 0);
2344 }
2345 EXPORT_SYMBOL_GPL(spi_sync);
2346
2347 /**
2348  * spi_sync_locked - version of spi_sync with exclusive bus usage
2349  * @spi: device with which data will be exchanged
2350  * @message: describes the data transfers
2351  * Context: can sleep
2352  *
2353  * This call may only be used from a context that may sleep.  The sleep
2354  * is non-interruptible, and has no timeout.  Low-overhead controller
2355  * drivers may DMA directly into and out of the message buffers.
2356  *
2357  * This call should be used by drivers that require exclusive access to the
2358  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2359  * be released by a spi_bus_unlock call when the exclusive access is over.
2360  *
2361  * It returns zero on success, else a negative error code.
2362  */
2363 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2364 {
2365         return __spi_sync(spi, message, 1);
2366 }
2367 EXPORT_SYMBOL_GPL(spi_sync_locked);
2368
2369 /**
2370  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2371  * @master: SPI bus master that should be locked for exclusive bus access
2372  * Context: can sleep
2373  *
2374  * This call may only be used from a context that may sleep.  The sleep
2375  * is non-interruptible, and has no timeout.
2376  *
2377  * This call should be used by drivers that require exclusive access to the
2378  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2379  * exclusive access is over. Data transfer must be done by spi_sync_locked
2380  * and spi_async_locked calls when the SPI bus lock is held.
2381  *
2382  * It returns zero on success, else a negative error code.
2383  */
2384 int spi_bus_lock(struct spi_master *master)
2385 {
2386         unsigned long flags;
2387
2388         mutex_lock(&master->bus_lock_mutex);
2389
2390         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2391         master->bus_lock_flag = 1;
2392         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2393
2394         /* mutex remains locked until spi_bus_unlock is called */
2395
2396         return 0;
2397 }
2398 EXPORT_SYMBOL_GPL(spi_bus_lock);
2399
2400 /**
2401  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2402  * @master: SPI bus master that was locked for exclusive bus access
2403  * Context: can sleep
2404  *
2405  * This call may only be used from a context that may sleep.  The sleep
2406  * is non-interruptible, and has no timeout.
2407  *
2408  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2409  * call.
2410  *
2411  * It returns zero on success, else a negative error code.
2412  */
2413 int spi_bus_unlock(struct spi_master *master)
2414 {
2415         master->bus_lock_flag = 0;
2416
2417         mutex_unlock(&master->bus_lock_mutex);
2418
2419         return 0;
2420 }
2421 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2422
2423 /* portable code must never pass more than 32 bytes */
2424 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
2425
2426 static u8       *buf;
2427
2428 /**
2429  * spi_write_then_read - SPI synchronous write followed by read
2430  * @spi: device with which data will be exchanged
2431  * @txbuf: data to be written (need not be dma-safe)
2432  * @n_tx: size of txbuf, in bytes
2433  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2434  * @n_rx: size of rxbuf, in bytes
2435  * Context: can sleep
2436  *
2437  * This performs a half duplex MicroWire style transaction with the
2438  * device, sending txbuf and then reading rxbuf.  The return value
2439  * is zero for success, else a negative errno status code.
2440  * This call may only be used from a context that may sleep.
2441  *
2442  * Parameters to this routine are always copied using a small buffer;
2443  * portable code should never use this for more than 32 bytes.
2444  * Performance-sensitive or bulk transfer code should instead use
2445  * spi_{async,sync}() calls with dma-safe buffers.
2446  */
2447 int spi_write_then_read(struct spi_device *spi,
2448                 const void *txbuf, unsigned n_tx,
2449                 void *rxbuf, unsigned n_rx)
2450 {
2451         static DEFINE_MUTEX(lock);
2452
2453         int                     status;
2454         struct spi_message      message;
2455         struct spi_transfer     x[2];
2456         u8                      *local_buf;
2457
2458         /* Use preallocated DMA-safe buffer if we can.  We can't avoid
2459          * copying here, (as a pure convenience thing), but we can
2460          * keep heap costs out of the hot path unless someone else is
2461          * using the pre-allocated buffer or the transfer is too large.
2462          */
2463         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2464                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2465                                     GFP_KERNEL | GFP_DMA);
2466                 if (!local_buf)
2467                         return -ENOMEM;
2468         } else {
2469                 local_buf = buf;
2470         }
2471
2472         spi_message_init(&message);
2473         memset(x, 0, sizeof(x));
2474         if (n_tx) {
2475                 x[0].len = n_tx;
2476                 spi_message_add_tail(&x[0], &message);
2477         }
2478         if (n_rx) {
2479                 x[1].len = n_rx;
2480                 spi_message_add_tail(&x[1], &message);
2481         }
2482
2483         memcpy(local_buf, txbuf, n_tx);
2484         x[0].tx_buf = local_buf;
2485         x[1].rx_buf = local_buf + n_tx;
2486
2487         /* do the i/o */
2488         status = spi_sync(spi, &message);
2489         if (status == 0)
2490                 memcpy(rxbuf, x[1].rx_buf, n_rx);
2491
2492         if (x[0].tx_buf == buf)
2493                 mutex_unlock(&lock);
2494         else
2495                 kfree(local_buf);
2496
2497         return status;
2498 }
2499 EXPORT_SYMBOL_GPL(spi_write_then_read);
2500
2501 /*-------------------------------------------------------------------------*/
2502
2503 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2504 static int __spi_of_device_match(struct device *dev, void *data)
2505 {
2506         return dev->of_node == data;
2507 }
2508
2509 /* must call put_device() when done with returned spi_device device */
2510 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2511 {
2512         struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2513                                                 __spi_of_device_match);
2514         return dev ? to_spi_device(dev) : NULL;
2515 }
2516
2517 static int __spi_of_master_match(struct device *dev, const void *data)
2518 {
2519         return dev->of_node == data;
2520 }
2521
2522 /* the spi masters are not using spi_bus, so we find it with another way */
2523 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2524 {
2525         struct device *dev;
2526
2527         dev = class_find_device(&spi_master_class, NULL, node,
2528                                 __spi_of_master_match);
2529         if (!dev)
2530                 return NULL;
2531
2532         /* reference got in class_find_device */
2533         return container_of(dev, struct spi_master, dev);
2534 }
2535
2536 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2537                          void *arg)
2538 {
2539         struct of_reconfig_data *rd = arg;
2540         struct spi_master *master;
2541         struct spi_device *spi;
2542
2543         switch (of_reconfig_get_state_change(action, arg)) {
2544         case OF_RECONFIG_CHANGE_ADD:
2545                 master = of_find_spi_master_by_node(rd->dn->parent);
2546                 if (master == NULL)
2547                         return NOTIFY_OK;       /* not for us */
2548
2549                 spi = of_register_spi_device(master, rd->dn);
2550                 put_device(&master->dev);
2551
2552                 if (IS_ERR(spi)) {
2553                         pr_err("%s: failed to create for '%s'\n",
2554                                         __func__, rd->dn->full_name);
2555                         return notifier_from_errno(PTR_ERR(spi));
2556                 }
2557                 break;
2558
2559         case OF_RECONFIG_CHANGE_REMOVE:
2560                 /* find our device by node */
2561                 spi = of_find_spi_device_by_node(rd->dn);
2562                 if (spi == NULL)
2563                         return NOTIFY_OK;       /* no? not meant for us */
2564
2565                 /* unregister takes one ref away */
2566                 spi_unregister_device(spi);
2567
2568                 /* and put the reference of the find */
2569                 put_device(&spi->dev);
2570                 break;
2571         }
2572
2573         return NOTIFY_OK;
2574 }
2575
2576 static struct notifier_block spi_of_notifier = {
2577         .notifier_call = of_spi_notify,
2578 };
2579 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2580 extern struct notifier_block spi_of_notifier;
2581 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2582
2583 static int __init spi_init(void)
2584 {
2585         int     status;
2586
2587         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2588         if (!buf) {
2589                 status = -ENOMEM;
2590                 goto err0;
2591         }
2592
2593         status = bus_register(&spi_bus_type);
2594         if (status < 0)
2595                 goto err1;
2596
2597         status = class_register(&spi_master_class);
2598         if (status < 0)
2599                 goto err2;
2600
2601         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2602                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2603
2604         return 0;
2605
2606 err2:
2607         bus_unregister(&spi_bus_type);
2608 err1:
2609         kfree(buf);
2610         buf = NULL;
2611 err0:
2612         return status;
2613 }
2614
2615 /* board_info is normally registered in arch_initcall(),
2616  * but even essential drivers wait till later
2617  *
2618  * REVISIT only boardinfo really needs static linking. the rest (device and
2619  * driver registration) _could_ be dynamically linked (modular) ... costs
2620  * include needing to have boardinfo data structures be much more public.
2621  */
2622 postcore_initcall(spi_init);
2623