4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
44 static void spidev_release(struct device *dev)
46 struct spi_device *spi = to_spi_device(dev);
48 /* spi masters may cleanup for released devices */
49 if (spi->master->cleanup)
50 spi->master->cleanup(spi);
52 spi_master_put(spi->master);
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 const struct spi_device *spi = to_spi_device(dev);
62 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 static DEVICE_ATTR_RO(modalias);
70 #define SPI_STATISTICS_ATTRS(field, file) \
71 static ssize_t spi_master_##field##_show(struct device *dev, \
72 struct device_attribute *attr, \
75 struct spi_master *master = container_of(dev, \
76 struct spi_master, dev); \
77 return spi_statistics_##field##_show(&master->statistics, buf); \
79 static struct device_attribute dev_attr_spi_master_##field = { \
80 .attr = { .name = file, .mode = S_IRUGO }, \
81 .show = spi_master_##field##_show, \
83 static ssize_t spi_device_##field##_show(struct device *dev, \
84 struct device_attribute *attr, \
87 struct spi_device *spi = container_of(dev, \
88 struct spi_device, dev); \
89 return spi_statistics_##field##_show(&spi->statistics, buf); \
91 static struct device_attribute dev_attr_spi_device_##field = { \
92 .attr = { .name = file, .mode = S_IRUGO }, \
93 .show = spi_device_##field##_show, \
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
100 unsigned long flags; \
102 spin_lock_irqsave(&stat->lock, flags); \
103 len = sprintf(buf, format_string, stat->field); \
104 spin_unlock_irqrestore(&stat->lock, flags); \
107 SPI_STATISTICS_ATTRS(name, file)
109 #define SPI_STATISTICS_SHOW(field, format_string) \
110 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
111 field, format_string)
113 SPI_STATISTICS_SHOW(messages, "%lu");
114 SPI_STATISTICS_SHOW(transfers, "%lu");
115 SPI_STATISTICS_SHOW(errors, "%lu");
116 SPI_STATISTICS_SHOW(timedout, "%lu");
118 SPI_STATISTICS_SHOW(spi_sync, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120 SPI_STATISTICS_SHOW(spi_async, "%lu");
122 SPI_STATISTICS_SHOW(bytes, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
126 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
127 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
128 "transfer_bytes_histo_" number, \
129 transfer_bytes_histo[index], "%lu")
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
148 static struct attribute *spi_dev_attrs[] = {
149 &dev_attr_modalias.attr,
153 static const struct attribute_group spi_dev_group = {
154 .attrs = spi_dev_attrs,
157 static struct attribute *spi_device_statistics_attrs[] = {
158 &dev_attr_spi_device_messages.attr,
159 &dev_attr_spi_device_transfers.attr,
160 &dev_attr_spi_device_errors.attr,
161 &dev_attr_spi_device_timedout.attr,
162 &dev_attr_spi_device_spi_sync.attr,
163 &dev_attr_spi_device_spi_sync_immediate.attr,
164 &dev_attr_spi_device_spi_async.attr,
165 &dev_attr_spi_device_bytes.attr,
166 &dev_attr_spi_device_bytes_rx.attr,
167 &dev_attr_spi_device_bytes_tx.attr,
168 &dev_attr_spi_device_transfer_bytes_histo0.attr,
169 &dev_attr_spi_device_transfer_bytes_histo1.attr,
170 &dev_attr_spi_device_transfer_bytes_histo2.attr,
171 &dev_attr_spi_device_transfer_bytes_histo3.attr,
172 &dev_attr_spi_device_transfer_bytes_histo4.attr,
173 &dev_attr_spi_device_transfer_bytes_histo5.attr,
174 &dev_attr_spi_device_transfer_bytes_histo6.attr,
175 &dev_attr_spi_device_transfer_bytes_histo7.attr,
176 &dev_attr_spi_device_transfer_bytes_histo8.attr,
177 &dev_attr_spi_device_transfer_bytes_histo9.attr,
178 &dev_attr_spi_device_transfer_bytes_histo10.attr,
179 &dev_attr_spi_device_transfer_bytes_histo11.attr,
180 &dev_attr_spi_device_transfer_bytes_histo12.attr,
181 &dev_attr_spi_device_transfer_bytes_histo13.attr,
182 &dev_attr_spi_device_transfer_bytes_histo14.attr,
183 &dev_attr_spi_device_transfer_bytes_histo15.attr,
184 &dev_attr_spi_device_transfer_bytes_histo16.attr,
188 static const struct attribute_group spi_device_statistics_group = {
189 .name = "statistics",
190 .attrs = spi_device_statistics_attrs,
193 static const struct attribute_group *spi_dev_groups[] = {
195 &spi_device_statistics_group,
199 static struct attribute *spi_master_statistics_attrs[] = {
200 &dev_attr_spi_master_messages.attr,
201 &dev_attr_spi_master_transfers.attr,
202 &dev_attr_spi_master_errors.attr,
203 &dev_attr_spi_master_timedout.attr,
204 &dev_attr_spi_master_spi_sync.attr,
205 &dev_attr_spi_master_spi_sync_immediate.attr,
206 &dev_attr_spi_master_spi_async.attr,
207 &dev_attr_spi_master_bytes.attr,
208 &dev_attr_spi_master_bytes_rx.attr,
209 &dev_attr_spi_master_bytes_tx.attr,
210 &dev_attr_spi_master_transfer_bytes_histo0.attr,
211 &dev_attr_spi_master_transfer_bytes_histo1.attr,
212 &dev_attr_spi_master_transfer_bytes_histo2.attr,
213 &dev_attr_spi_master_transfer_bytes_histo3.attr,
214 &dev_attr_spi_master_transfer_bytes_histo4.attr,
215 &dev_attr_spi_master_transfer_bytes_histo5.attr,
216 &dev_attr_spi_master_transfer_bytes_histo6.attr,
217 &dev_attr_spi_master_transfer_bytes_histo7.attr,
218 &dev_attr_spi_master_transfer_bytes_histo8.attr,
219 &dev_attr_spi_master_transfer_bytes_histo9.attr,
220 &dev_attr_spi_master_transfer_bytes_histo10.attr,
221 &dev_attr_spi_master_transfer_bytes_histo11.attr,
222 &dev_attr_spi_master_transfer_bytes_histo12.attr,
223 &dev_attr_spi_master_transfer_bytes_histo13.attr,
224 &dev_attr_spi_master_transfer_bytes_histo14.attr,
225 &dev_attr_spi_master_transfer_bytes_histo15.attr,
226 &dev_attr_spi_master_transfer_bytes_histo16.attr,
230 static const struct attribute_group spi_master_statistics_group = {
231 .name = "statistics",
232 .attrs = spi_master_statistics_attrs,
235 static const struct attribute_group *spi_master_groups[] = {
236 &spi_master_statistics_group,
240 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
241 struct spi_transfer *xfer,
242 struct spi_master *master)
245 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
250 spin_lock_irqsave(&stats->lock, flags);
253 stats->transfer_bytes_histo[l2len]++;
255 stats->bytes += xfer->len;
256 if ((xfer->tx_buf) &&
257 (xfer->tx_buf != master->dummy_tx))
258 stats->bytes_tx += xfer->len;
259 if ((xfer->rx_buf) &&
260 (xfer->rx_buf != master->dummy_rx))
261 stats->bytes_rx += xfer->len;
263 spin_unlock_irqrestore(&stats->lock, flags);
265 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
267 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
268 * and the sysfs version makes coldplug work too.
271 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
272 const struct spi_device *sdev)
274 while (id->name[0]) {
275 if (!strcmp(sdev->modalias, id->name))
282 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
284 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
286 return spi_match_id(sdrv->id_table, sdev);
288 EXPORT_SYMBOL_GPL(spi_get_device_id);
290 static int spi_match_device(struct device *dev, struct device_driver *drv)
292 const struct spi_device *spi = to_spi_device(dev);
293 const struct spi_driver *sdrv = to_spi_driver(drv);
295 /* Attempt an OF style match */
296 if (of_driver_match_device(dev, drv))
300 if (acpi_driver_match_device(dev, drv))
304 return !!spi_match_id(sdrv->id_table, spi);
306 return strcmp(spi->modalias, drv->name) == 0;
309 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
311 const struct spi_device *spi = to_spi_device(dev);
314 rc = acpi_device_uevent_modalias(dev, env);
318 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
322 struct bus_type spi_bus_type = {
324 .dev_groups = spi_dev_groups,
325 .match = spi_match_device,
326 .uevent = spi_uevent,
328 EXPORT_SYMBOL_GPL(spi_bus_type);
331 static int spi_drv_probe(struct device *dev)
333 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
334 struct spi_device *spi = to_spi_device(dev);
337 ret = of_clk_set_defaults(dev->of_node, false);
342 spi->irq = of_irq_get(dev->of_node, 0);
343 if (spi->irq == -EPROBE_DEFER)
344 return -EPROBE_DEFER;
349 ret = dev_pm_domain_attach(dev, true);
350 if (ret != -EPROBE_DEFER) {
351 ret = sdrv->probe(spi);
353 dev_pm_domain_detach(dev, true);
359 static int spi_drv_remove(struct device *dev)
361 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
364 ret = sdrv->remove(to_spi_device(dev));
365 dev_pm_domain_detach(dev, true);
370 static void spi_drv_shutdown(struct device *dev)
372 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
374 sdrv->shutdown(to_spi_device(dev));
378 * __spi_register_driver - register a SPI driver
379 * @sdrv: the driver to register
382 * Return: zero on success, else a negative error code.
384 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
386 sdrv->driver.owner = owner;
387 sdrv->driver.bus = &spi_bus_type;
389 sdrv->driver.probe = spi_drv_probe;
391 sdrv->driver.remove = spi_drv_remove;
393 sdrv->driver.shutdown = spi_drv_shutdown;
394 return driver_register(&sdrv->driver);
396 EXPORT_SYMBOL_GPL(__spi_register_driver);
398 /*-------------------------------------------------------------------------*/
400 /* SPI devices should normally not be created by SPI device drivers; that
401 * would make them board-specific. Similarly with SPI master drivers.
402 * Device registration normally goes into like arch/.../mach.../board-YYY.c
403 * with other readonly (flashable) information about mainboard devices.
407 struct list_head list;
408 struct spi_board_info board_info;
411 static LIST_HEAD(board_list);
412 static LIST_HEAD(spi_master_list);
415 * Used to protect add/del opertion for board_info list and
416 * spi_master list, and their matching process
418 static DEFINE_MUTEX(board_lock);
421 * spi_alloc_device - Allocate a new SPI device
422 * @master: Controller to which device is connected
425 * Allows a driver to allocate and initialize a spi_device without
426 * registering it immediately. This allows a driver to directly
427 * fill the spi_device with device parameters before calling
428 * spi_add_device() on it.
430 * Caller is responsible to call spi_add_device() on the returned
431 * spi_device structure to add it to the SPI master. If the caller
432 * needs to discard the spi_device without adding it, then it should
433 * call spi_dev_put() on it.
435 * Return: a pointer to the new device, or NULL.
437 struct spi_device *spi_alloc_device(struct spi_master *master)
439 struct spi_device *spi;
441 if (!spi_master_get(master))
444 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
446 spi_master_put(master);
450 spi->master = master;
451 spi->dev.parent = &master->dev;
452 spi->dev.bus = &spi_bus_type;
453 spi->dev.release = spidev_release;
454 spi->cs_gpio = -ENOENT;
456 spin_lock_init(&spi->statistics.lock);
458 device_initialize(&spi->dev);
461 EXPORT_SYMBOL_GPL(spi_alloc_device);
463 static void spi_dev_set_name(struct spi_device *spi)
465 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
468 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
472 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
476 static int spi_dev_check(struct device *dev, void *data)
478 struct spi_device *spi = to_spi_device(dev);
479 struct spi_device *new_spi = data;
481 if (spi->master == new_spi->master &&
482 spi->chip_select == new_spi->chip_select)
488 * spi_add_device - Add spi_device allocated with spi_alloc_device
489 * @spi: spi_device to register
491 * Companion function to spi_alloc_device. Devices allocated with
492 * spi_alloc_device can be added onto the spi bus with this function.
494 * Return: 0 on success; negative errno on failure
496 int spi_add_device(struct spi_device *spi)
498 static DEFINE_MUTEX(spi_add_lock);
499 struct spi_master *master = spi->master;
500 struct device *dev = master->dev.parent;
503 /* Chipselects are numbered 0..max; validate. */
504 if (spi->chip_select >= master->num_chipselect) {
505 dev_err(dev, "cs%d >= max %d\n",
507 master->num_chipselect);
511 /* Set the bus ID string */
512 spi_dev_set_name(spi);
514 /* We need to make sure there's no other device with this
515 * chipselect **BEFORE** we call setup(), else we'll trash
516 * its configuration. Lock against concurrent add() calls.
518 mutex_lock(&spi_add_lock);
520 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
522 dev_err(dev, "chipselect %d already in use\n",
527 if (master->cs_gpios)
528 spi->cs_gpio = master->cs_gpios[spi->chip_select];
530 /* Drivers may modify this initial i/o setup, but will
531 * normally rely on the device being setup. Devices
532 * using SPI_CS_HIGH can't coexist well otherwise...
534 status = spi_setup(spi);
536 dev_err(dev, "can't setup %s, status %d\n",
537 dev_name(&spi->dev), status);
541 /* Device may be bound to an active driver when this returns */
542 status = device_add(&spi->dev);
544 dev_err(dev, "can't add %s, status %d\n",
545 dev_name(&spi->dev), status);
547 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
550 mutex_unlock(&spi_add_lock);
553 EXPORT_SYMBOL_GPL(spi_add_device);
556 * spi_new_device - instantiate one new SPI device
557 * @master: Controller to which device is connected
558 * @chip: Describes the SPI device
561 * On typical mainboards, this is purely internal; and it's not needed
562 * after board init creates the hard-wired devices. Some development
563 * platforms may not be able to use spi_register_board_info though, and
564 * this is exported so that for example a USB or parport based adapter
565 * driver could add devices (which it would learn about out-of-band).
567 * Return: the new device, or NULL.
569 struct spi_device *spi_new_device(struct spi_master *master,
570 struct spi_board_info *chip)
572 struct spi_device *proxy;
575 /* NOTE: caller did any chip->bus_num checks necessary.
577 * Also, unless we change the return value convention to use
578 * error-or-pointer (not NULL-or-pointer), troubleshootability
579 * suggests syslogged diagnostics are best here (ugh).
582 proxy = spi_alloc_device(master);
586 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
588 proxy->chip_select = chip->chip_select;
589 proxy->max_speed_hz = chip->max_speed_hz;
590 proxy->mode = chip->mode;
591 proxy->irq = chip->irq;
592 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
593 proxy->dev.platform_data = (void *) chip->platform_data;
594 proxy->controller_data = chip->controller_data;
595 proxy->controller_state = NULL;
597 status = spi_add_device(proxy);
605 EXPORT_SYMBOL_GPL(spi_new_device);
607 static void spi_match_master_to_boardinfo(struct spi_master *master,
608 struct spi_board_info *bi)
610 struct spi_device *dev;
612 if (master->bus_num != bi->bus_num)
615 dev = spi_new_device(master, bi);
617 dev_err(master->dev.parent, "can't create new device for %s\n",
622 * spi_register_board_info - register SPI devices for a given board
623 * @info: array of chip descriptors
624 * @n: how many descriptors are provided
627 * Board-specific early init code calls this (probably during arch_initcall)
628 * with segments of the SPI device table. Any device nodes are created later,
629 * after the relevant parent SPI controller (bus_num) is defined. We keep
630 * this table of devices forever, so that reloading a controller driver will
631 * not make Linux forget about these hard-wired devices.
633 * Other code can also call this, e.g. a particular add-on board might provide
634 * SPI devices through its expansion connector, so code initializing that board
635 * would naturally declare its SPI devices.
637 * The board info passed can safely be __initdata ... but be careful of
638 * any embedded pointers (platform_data, etc), they're copied as-is.
640 * Return: zero on success, else a negative error code.
642 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
644 struct boardinfo *bi;
650 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
654 for (i = 0; i < n; i++, bi++, info++) {
655 struct spi_master *master;
657 memcpy(&bi->board_info, info, sizeof(*info));
658 mutex_lock(&board_lock);
659 list_add_tail(&bi->list, &board_list);
660 list_for_each_entry(master, &spi_master_list, list)
661 spi_match_master_to_boardinfo(master, &bi->board_info);
662 mutex_unlock(&board_lock);
668 /*-------------------------------------------------------------------------*/
670 static void spi_set_cs(struct spi_device *spi, bool enable)
672 if (spi->mode & SPI_CS_HIGH)
675 if (gpio_is_valid(spi->cs_gpio))
676 gpio_set_value(spi->cs_gpio, !enable);
677 else if (spi->master->set_cs)
678 spi->master->set_cs(spi, !enable);
681 #ifdef CONFIG_HAS_DMA
682 static int spi_map_buf(struct spi_master *master, struct device *dev,
683 struct sg_table *sgt, void *buf, size_t len,
684 enum dma_data_direction dir)
686 const bool vmalloced_buf = is_vmalloc_addr(buf);
689 struct page *vm_page;
695 desc_len = PAGE_SIZE;
696 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
698 desc_len = master->max_dma_len;
699 sgs = DIV_ROUND_UP(len, desc_len);
702 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
706 for (i = 0; i < sgs; i++) {
710 len, desc_len - offset_in_page(buf));
711 vm_page = vmalloc_to_page(buf);
716 sg_set_page(&sgt->sgl[i], vm_page,
717 min, offset_in_page(buf));
719 min = min_t(size_t, len, desc_len);
721 sg_set_buf(&sgt->sgl[i], sg_buf, min);
729 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
742 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
743 struct sg_table *sgt, enum dma_data_direction dir)
745 if (sgt->orig_nents) {
746 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
751 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
753 struct device *tx_dev, *rx_dev;
754 struct spi_transfer *xfer;
757 if (!master->can_dma)
761 tx_dev = master->dma_tx->device->dev;
763 tx_dev = &master->dev;
766 rx_dev = master->dma_rx->device->dev;
768 rx_dev = &master->dev;
770 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
771 if (!master->can_dma(master, msg->spi, xfer))
774 if (xfer->tx_buf != NULL) {
775 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
776 (void *)xfer->tx_buf, xfer->len,
782 if (xfer->rx_buf != NULL) {
783 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
784 xfer->rx_buf, xfer->len,
787 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
794 master->cur_msg_mapped = true;
799 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
801 struct spi_transfer *xfer;
802 struct device *tx_dev, *rx_dev;
804 if (!master->cur_msg_mapped || !master->can_dma)
808 tx_dev = master->dma_tx->device->dev;
810 tx_dev = &master->dev;
813 rx_dev = master->dma_rx->device->dev;
815 rx_dev = &master->dev;
817 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
818 if (!master->can_dma(master, msg->spi, xfer))
821 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
822 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
827 #else /* !CONFIG_HAS_DMA */
828 static inline int __spi_map_msg(struct spi_master *master,
829 struct spi_message *msg)
834 static inline int __spi_unmap_msg(struct spi_master *master,
835 struct spi_message *msg)
839 #endif /* !CONFIG_HAS_DMA */
841 static inline int spi_unmap_msg(struct spi_master *master,
842 struct spi_message *msg)
844 struct spi_transfer *xfer;
846 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
848 * Restore the original value of tx_buf or rx_buf if they are
851 if (xfer->tx_buf == master->dummy_tx)
853 if (xfer->rx_buf == master->dummy_rx)
857 return __spi_unmap_msg(master, msg);
860 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
862 struct spi_transfer *xfer;
864 unsigned int max_tx, max_rx;
866 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
870 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
871 if ((master->flags & SPI_MASTER_MUST_TX) &&
873 max_tx = max(xfer->len, max_tx);
874 if ((master->flags & SPI_MASTER_MUST_RX) &&
876 max_rx = max(xfer->len, max_rx);
880 tmp = krealloc(master->dummy_tx, max_tx,
881 GFP_KERNEL | GFP_DMA);
884 master->dummy_tx = tmp;
885 memset(tmp, 0, max_tx);
889 tmp = krealloc(master->dummy_rx, max_rx,
890 GFP_KERNEL | GFP_DMA);
893 master->dummy_rx = tmp;
896 if (max_tx || max_rx) {
897 list_for_each_entry(xfer, &msg->transfers,
900 xfer->tx_buf = master->dummy_tx;
902 xfer->rx_buf = master->dummy_rx;
907 return __spi_map_msg(master, msg);
911 * spi_transfer_one_message - Default implementation of transfer_one_message()
913 * This is a standard implementation of transfer_one_message() for
914 * drivers which impelment a transfer_one() operation. It provides
915 * standard handling of delays and chip select management.
917 static int spi_transfer_one_message(struct spi_master *master,
918 struct spi_message *msg)
920 struct spi_transfer *xfer;
921 bool keep_cs = false;
923 unsigned long ms = 1;
924 struct spi_statistics *statm = &master->statistics;
925 struct spi_statistics *stats = &msg->spi->statistics;
927 spi_set_cs(msg->spi, true);
929 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
930 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
932 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
933 trace_spi_transfer_start(msg, xfer);
935 spi_statistics_add_transfer_stats(statm, xfer, master);
936 spi_statistics_add_transfer_stats(stats, xfer, master);
938 if (xfer->tx_buf || xfer->rx_buf) {
939 reinit_completion(&master->xfer_completion);
941 ret = master->transfer_one(master, msg->spi, xfer);
943 SPI_STATISTICS_INCREMENT_FIELD(statm,
945 SPI_STATISTICS_INCREMENT_FIELD(stats,
947 dev_err(&msg->spi->dev,
948 "SPI transfer failed: %d\n", ret);
954 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
955 ms += ms + 100; /* some tolerance */
957 ms = wait_for_completion_timeout(&master->xfer_completion,
958 msecs_to_jiffies(ms));
962 SPI_STATISTICS_INCREMENT_FIELD(statm,
964 SPI_STATISTICS_INCREMENT_FIELD(stats,
966 dev_err(&msg->spi->dev,
967 "SPI transfer timed out\n");
968 msg->status = -ETIMEDOUT;
972 dev_err(&msg->spi->dev,
973 "Bufferless transfer has length %u\n",
977 trace_spi_transfer_stop(msg, xfer);
979 if (msg->status != -EINPROGRESS)
982 if (xfer->delay_usecs)
983 udelay(xfer->delay_usecs);
985 if (xfer->cs_change) {
986 if (list_is_last(&xfer->transfer_list,
990 spi_set_cs(msg->spi, false);
992 spi_set_cs(msg->spi, true);
996 msg->actual_length += xfer->len;
1000 if (ret != 0 || !keep_cs)
1001 spi_set_cs(msg->spi, false);
1003 if (msg->status == -EINPROGRESS)
1006 if (msg->status && master->handle_err)
1007 master->handle_err(master, msg);
1009 spi_finalize_current_message(master);
1015 * spi_finalize_current_transfer - report completion of a transfer
1016 * @master: the master reporting completion
1018 * Called by SPI drivers using the core transfer_one_message()
1019 * implementation to notify it that the current interrupt driven
1020 * transfer has finished and the next one may be scheduled.
1022 void spi_finalize_current_transfer(struct spi_master *master)
1024 complete(&master->xfer_completion);
1026 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1029 * __spi_pump_messages - function which processes spi message queue
1030 * @master: master to process queue for
1031 * @in_kthread: true if we are in the context of the message pump thread
1033 * This function checks if there is any spi message in the queue that
1034 * needs processing and if so call out to the driver to initialize hardware
1035 * and transfer each message.
1037 * Note that it is called both from the kthread itself and also from
1038 * inside spi_sync(); the queue extraction handling at the top of the
1039 * function should deal with this safely.
1041 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1043 unsigned long flags;
1044 bool was_busy = false;
1048 spin_lock_irqsave(&master->queue_lock, flags);
1050 /* Make sure we are not already running a message */
1051 if (master->cur_msg) {
1052 spin_unlock_irqrestore(&master->queue_lock, flags);
1056 /* If another context is idling the device then defer */
1057 if (master->idling) {
1058 queue_kthread_work(&master->kworker, &master->pump_messages);
1059 spin_unlock_irqrestore(&master->queue_lock, flags);
1063 /* Check if the queue is idle */
1064 if (list_empty(&master->queue) || !master->running) {
1065 if (!master->busy) {
1066 spin_unlock_irqrestore(&master->queue_lock, flags);
1070 /* Only do teardown in the thread */
1072 queue_kthread_work(&master->kworker,
1073 &master->pump_messages);
1074 spin_unlock_irqrestore(&master->queue_lock, flags);
1078 master->busy = false;
1079 master->idling = true;
1080 spin_unlock_irqrestore(&master->queue_lock, flags);
1082 kfree(master->dummy_rx);
1083 master->dummy_rx = NULL;
1084 kfree(master->dummy_tx);
1085 master->dummy_tx = NULL;
1086 if (master->unprepare_transfer_hardware &&
1087 master->unprepare_transfer_hardware(master))
1088 dev_err(&master->dev,
1089 "failed to unprepare transfer hardware\n");
1090 if (master->auto_runtime_pm) {
1091 pm_runtime_mark_last_busy(master->dev.parent);
1092 pm_runtime_put_autosuspend(master->dev.parent);
1094 trace_spi_master_idle(master);
1096 spin_lock_irqsave(&master->queue_lock, flags);
1097 master->idling = false;
1098 spin_unlock_irqrestore(&master->queue_lock, flags);
1102 /* Extract head of queue */
1104 list_first_entry(&master->queue, struct spi_message, queue);
1106 list_del_init(&master->cur_msg->queue);
1110 master->busy = true;
1111 spin_unlock_irqrestore(&master->queue_lock, flags);
1113 if (!was_busy && master->auto_runtime_pm) {
1114 ret = pm_runtime_get_sync(master->dev.parent);
1116 dev_err(&master->dev, "Failed to power device: %d\n",
1123 trace_spi_master_busy(master);
1125 if (!was_busy && master->prepare_transfer_hardware) {
1126 ret = master->prepare_transfer_hardware(master);
1128 dev_err(&master->dev,
1129 "failed to prepare transfer hardware\n");
1131 if (master->auto_runtime_pm)
1132 pm_runtime_put(master->dev.parent);
1137 trace_spi_message_start(master->cur_msg);
1139 if (master->prepare_message) {
1140 ret = master->prepare_message(master, master->cur_msg);
1142 dev_err(&master->dev,
1143 "failed to prepare message: %d\n", ret);
1144 master->cur_msg->status = ret;
1145 spi_finalize_current_message(master);
1148 master->cur_msg_prepared = true;
1151 ret = spi_map_msg(master, master->cur_msg);
1153 master->cur_msg->status = ret;
1154 spi_finalize_current_message(master);
1158 ret = master->transfer_one_message(master, master->cur_msg);
1160 dev_err(&master->dev,
1161 "failed to transfer one message from queue\n");
1167 * spi_pump_messages - kthread work function which processes spi message queue
1168 * @work: pointer to kthread work struct contained in the master struct
1170 static void spi_pump_messages(struct kthread_work *work)
1172 struct spi_master *master =
1173 container_of(work, struct spi_master, pump_messages);
1175 __spi_pump_messages(master, true);
1178 static int spi_init_queue(struct spi_master *master)
1180 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1182 master->running = false;
1183 master->busy = false;
1185 init_kthread_worker(&master->kworker);
1186 master->kworker_task = kthread_run(kthread_worker_fn,
1187 &master->kworker, "%s",
1188 dev_name(&master->dev));
1189 if (IS_ERR(master->kworker_task)) {
1190 dev_err(&master->dev, "failed to create message pump task\n");
1191 return PTR_ERR(master->kworker_task);
1193 init_kthread_work(&master->pump_messages, spi_pump_messages);
1196 * Master config will indicate if this controller should run the
1197 * message pump with high (realtime) priority to reduce the transfer
1198 * latency on the bus by minimising the delay between a transfer
1199 * request and the scheduling of the message pump thread. Without this
1200 * setting the message pump thread will remain at default priority.
1203 dev_info(&master->dev,
1204 "will run message pump with realtime priority\n");
1205 sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m);
1212 * spi_get_next_queued_message() - called by driver to check for queued
1214 * @master: the master to check for queued messages
1216 * If there are more messages in the queue, the next message is returned from
1219 * Return: the next message in the queue, else NULL if the queue is empty.
1221 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1223 struct spi_message *next;
1224 unsigned long flags;
1226 /* get a pointer to the next message, if any */
1227 spin_lock_irqsave(&master->queue_lock, flags);
1228 next = list_first_entry_or_null(&master->queue, struct spi_message,
1230 spin_unlock_irqrestore(&master->queue_lock, flags);
1234 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1237 * spi_finalize_current_message() - the current message is complete
1238 * @master: the master to return the message to
1240 * Called by the driver to notify the core that the message in the front of the
1241 * queue is complete and can be removed from the queue.
1243 void spi_finalize_current_message(struct spi_master *master)
1245 struct spi_message *mesg;
1246 unsigned long flags;
1249 spin_lock_irqsave(&master->queue_lock, flags);
1250 mesg = master->cur_msg;
1251 spin_unlock_irqrestore(&master->queue_lock, flags);
1253 spi_unmap_msg(master, mesg);
1255 if (master->cur_msg_prepared && master->unprepare_message) {
1256 ret = master->unprepare_message(master, mesg);
1258 dev_err(&master->dev,
1259 "failed to unprepare message: %d\n", ret);
1263 spin_lock_irqsave(&master->queue_lock, flags);
1264 master->cur_msg = NULL;
1265 master->cur_msg_prepared = false;
1266 queue_kthread_work(&master->kworker, &master->pump_messages);
1267 spin_unlock_irqrestore(&master->queue_lock, flags);
1269 trace_spi_message_done(mesg);
1273 mesg->complete(mesg->context);
1275 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1277 static int spi_start_queue(struct spi_master *master)
1279 unsigned long flags;
1281 spin_lock_irqsave(&master->queue_lock, flags);
1283 if (master->running || master->busy) {
1284 spin_unlock_irqrestore(&master->queue_lock, flags);
1288 master->running = true;
1289 master->cur_msg = NULL;
1290 spin_unlock_irqrestore(&master->queue_lock, flags);
1292 queue_kthread_work(&master->kworker, &master->pump_messages);
1297 static int spi_stop_queue(struct spi_master *master)
1299 unsigned long flags;
1300 unsigned limit = 500;
1303 spin_lock_irqsave(&master->queue_lock, flags);
1306 * This is a bit lame, but is optimized for the common execution path.
1307 * A wait_queue on the master->busy could be used, but then the common
1308 * execution path (pump_messages) would be required to call wake_up or
1309 * friends on every SPI message. Do this instead.
1311 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1312 spin_unlock_irqrestore(&master->queue_lock, flags);
1313 usleep_range(10000, 11000);
1314 spin_lock_irqsave(&master->queue_lock, flags);
1317 if (!list_empty(&master->queue) || master->busy)
1320 master->running = false;
1322 spin_unlock_irqrestore(&master->queue_lock, flags);
1325 dev_warn(&master->dev,
1326 "could not stop message queue\n");
1332 static int spi_destroy_queue(struct spi_master *master)
1336 ret = spi_stop_queue(master);
1339 * flush_kthread_worker will block until all work is done.
1340 * If the reason that stop_queue timed out is that the work will never
1341 * finish, then it does no good to call flush/stop thread, so
1345 dev_err(&master->dev, "problem destroying queue\n");
1349 flush_kthread_worker(&master->kworker);
1350 kthread_stop(master->kworker_task);
1355 static int __spi_queued_transfer(struct spi_device *spi,
1356 struct spi_message *msg,
1359 struct spi_master *master = spi->master;
1360 unsigned long flags;
1362 spin_lock_irqsave(&master->queue_lock, flags);
1364 if (!master->running) {
1365 spin_unlock_irqrestore(&master->queue_lock, flags);
1368 msg->actual_length = 0;
1369 msg->status = -EINPROGRESS;
1371 list_add_tail(&msg->queue, &master->queue);
1372 if (!master->busy && need_pump)
1373 queue_kthread_work(&master->kworker, &master->pump_messages);
1375 spin_unlock_irqrestore(&master->queue_lock, flags);
1380 * spi_queued_transfer - transfer function for queued transfers
1381 * @spi: spi device which is requesting transfer
1382 * @msg: spi message which is to handled is queued to driver queue
1384 * Return: zero on success, else a negative error code.
1386 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1388 return __spi_queued_transfer(spi, msg, true);
1391 static int spi_master_initialize_queue(struct spi_master *master)
1395 master->transfer = spi_queued_transfer;
1396 if (!master->transfer_one_message)
1397 master->transfer_one_message = spi_transfer_one_message;
1399 /* Initialize and start queue */
1400 ret = spi_init_queue(master);
1402 dev_err(&master->dev, "problem initializing queue\n");
1403 goto err_init_queue;
1405 master->queued = true;
1406 ret = spi_start_queue(master);
1408 dev_err(&master->dev, "problem starting queue\n");
1409 goto err_start_queue;
1415 spi_destroy_queue(master);
1420 /*-------------------------------------------------------------------------*/
1422 #if defined(CONFIG_OF)
1423 static struct spi_device *
1424 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1426 struct spi_device *spi;
1430 /* Alloc an spi_device */
1431 spi = spi_alloc_device(master);
1433 dev_err(&master->dev, "spi_device alloc error for %s\n",
1439 /* Select device driver */
1440 rc = of_modalias_node(nc, spi->modalias,
1441 sizeof(spi->modalias));
1443 dev_err(&master->dev, "cannot find modalias for %s\n",
1448 /* Device address */
1449 rc = of_property_read_u32(nc, "reg", &value);
1451 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1455 spi->chip_select = value;
1457 /* Mode (clock phase/polarity/etc.) */
1458 if (of_find_property(nc, "spi-cpha", NULL))
1459 spi->mode |= SPI_CPHA;
1460 if (of_find_property(nc, "spi-cpol", NULL))
1461 spi->mode |= SPI_CPOL;
1462 if (of_find_property(nc, "spi-cs-high", NULL))
1463 spi->mode |= SPI_CS_HIGH;
1464 if (of_find_property(nc, "spi-3wire", NULL))
1465 spi->mode |= SPI_3WIRE;
1466 if (of_find_property(nc, "spi-lsb-first", NULL))
1467 spi->mode |= SPI_LSB_FIRST;
1469 /* Device DUAL/QUAD mode */
1470 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1475 spi->mode |= SPI_TX_DUAL;
1478 spi->mode |= SPI_TX_QUAD;
1481 dev_warn(&master->dev,
1482 "spi-tx-bus-width %d not supported\n",
1488 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1493 spi->mode |= SPI_RX_DUAL;
1496 spi->mode |= SPI_RX_QUAD;
1499 dev_warn(&master->dev,
1500 "spi-rx-bus-width %d not supported\n",
1507 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1509 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1513 spi->max_speed_hz = value;
1515 /* Store a pointer to the node in the device structure */
1517 spi->dev.of_node = nc;
1519 /* Register the new device */
1520 rc = spi_add_device(spi);
1522 dev_err(&master->dev, "spi_device register error %s\n",
1535 * of_register_spi_devices() - Register child devices onto the SPI bus
1536 * @master: Pointer to spi_master device
1538 * Registers an spi_device for each child node of master node which has a 'reg'
1541 static void of_register_spi_devices(struct spi_master *master)
1543 struct spi_device *spi;
1544 struct device_node *nc;
1546 if (!master->dev.of_node)
1549 for_each_available_child_of_node(master->dev.of_node, nc) {
1550 spi = of_register_spi_device(master, nc);
1552 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1557 static void of_register_spi_devices(struct spi_master *master) { }
1561 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1563 struct spi_device *spi = data;
1565 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1566 struct acpi_resource_spi_serialbus *sb;
1568 sb = &ares->data.spi_serial_bus;
1569 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1570 spi->chip_select = sb->device_selection;
1571 spi->max_speed_hz = sb->connection_speed;
1573 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1574 spi->mode |= SPI_CPHA;
1575 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1576 spi->mode |= SPI_CPOL;
1577 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1578 spi->mode |= SPI_CS_HIGH;
1580 } else if (spi->irq < 0) {
1583 if (acpi_dev_resource_interrupt(ares, 0, &r))
1587 /* Always tell the ACPI core to skip this resource */
1591 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1592 void *data, void **return_value)
1594 struct spi_master *master = data;
1595 struct list_head resource_list;
1596 struct acpi_device *adev;
1597 struct spi_device *spi;
1600 if (acpi_bus_get_device(handle, &adev))
1602 if (acpi_bus_get_status(adev) || !adev->status.present)
1605 spi = spi_alloc_device(master);
1607 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1608 dev_name(&adev->dev));
1609 return AE_NO_MEMORY;
1612 ACPI_COMPANION_SET(&spi->dev, adev);
1615 INIT_LIST_HEAD(&resource_list);
1616 ret = acpi_dev_get_resources(adev, &resource_list,
1617 acpi_spi_add_resource, spi);
1618 acpi_dev_free_resource_list(&resource_list);
1620 if (ret < 0 || !spi->max_speed_hz) {
1625 adev->power.flags.ignore_parent = true;
1626 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1627 if (spi_add_device(spi)) {
1628 adev->power.flags.ignore_parent = false;
1629 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1630 dev_name(&adev->dev));
1637 static void acpi_register_spi_devices(struct spi_master *master)
1642 handle = ACPI_HANDLE(master->dev.parent);
1646 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1647 acpi_spi_add_device, NULL,
1649 if (ACPI_FAILURE(status))
1650 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1653 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1654 #endif /* CONFIG_ACPI */
1656 static void spi_master_release(struct device *dev)
1658 struct spi_master *master;
1660 master = container_of(dev, struct spi_master, dev);
1664 static struct class spi_master_class = {
1665 .name = "spi_master",
1666 .owner = THIS_MODULE,
1667 .dev_release = spi_master_release,
1668 .dev_groups = spi_master_groups,
1673 * spi_alloc_master - allocate SPI master controller
1674 * @dev: the controller, possibly using the platform_bus
1675 * @size: how much zeroed driver-private data to allocate; the pointer to this
1676 * memory is in the driver_data field of the returned device,
1677 * accessible with spi_master_get_devdata().
1678 * Context: can sleep
1680 * This call is used only by SPI master controller drivers, which are the
1681 * only ones directly touching chip registers. It's how they allocate
1682 * an spi_master structure, prior to calling spi_register_master().
1684 * This must be called from context that can sleep.
1686 * The caller is responsible for assigning the bus number and initializing
1687 * the master's methods before calling spi_register_master(); and (after errors
1688 * adding the device) calling spi_master_put() to prevent a memory leak.
1690 * Return: the SPI master structure on success, else NULL.
1692 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1694 struct spi_master *master;
1699 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1703 device_initialize(&master->dev);
1704 master->bus_num = -1;
1705 master->num_chipselect = 1;
1706 master->dev.class = &spi_master_class;
1707 master->dev.parent = get_device(dev);
1708 spi_master_set_devdata(master, &master[1]);
1712 EXPORT_SYMBOL_GPL(spi_alloc_master);
1715 static int of_spi_register_master(struct spi_master *master)
1718 struct device_node *np = master->dev.of_node;
1723 nb = of_gpio_named_count(np, "cs-gpios");
1724 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1726 /* Return error only for an incorrectly formed cs-gpios property */
1727 if (nb == 0 || nb == -ENOENT)
1732 cs = devm_kzalloc(&master->dev,
1733 sizeof(int) * master->num_chipselect,
1735 master->cs_gpios = cs;
1737 if (!master->cs_gpios)
1740 for (i = 0; i < master->num_chipselect; i++)
1743 for (i = 0; i < nb; i++)
1744 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1749 static int of_spi_register_master(struct spi_master *master)
1756 * spi_register_master - register SPI master controller
1757 * @master: initialized master, originally from spi_alloc_master()
1758 * Context: can sleep
1760 * SPI master controllers connect to their drivers using some non-SPI bus,
1761 * such as the platform bus. The final stage of probe() in that code
1762 * includes calling spi_register_master() to hook up to this SPI bus glue.
1764 * SPI controllers use board specific (often SOC specific) bus numbers,
1765 * and board-specific addressing for SPI devices combines those numbers
1766 * with chip select numbers. Since SPI does not directly support dynamic
1767 * device identification, boards need configuration tables telling which
1768 * chip is at which address.
1770 * This must be called from context that can sleep. It returns zero on
1771 * success, else a negative error code (dropping the master's refcount).
1772 * After a successful return, the caller is responsible for calling
1773 * spi_unregister_master().
1775 * Return: zero on success, else a negative error code.
1777 int spi_register_master(struct spi_master *master)
1779 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1780 struct device *dev = master->dev.parent;
1781 struct boardinfo *bi;
1782 int status = -ENODEV;
1788 status = of_spi_register_master(master);
1792 /* even if it's just one always-selected device, there must
1793 * be at least one chipselect
1795 if (master->num_chipselect == 0)
1798 if ((master->bus_num < 0) && master->dev.of_node)
1799 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1801 /* convention: dynamically assigned bus IDs count down from the max */
1802 if (master->bus_num < 0) {
1803 /* FIXME switch to an IDR based scheme, something like
1804 * I2C now uses, so we can't run out of "dynamic" IDs
1806 master->bus_num = atomic_dec_return(&dyn_bus_id);
1810 INIT_LIST_HEAD(&master->queue);
1811 spin_lock_init(&master->queue_lock);
1812 spin_lock_init(&master->bus_lock_spinlock);
1813 mutex_init(&master->bus_lock_mutex);
1814 master->bus_lock_flag = 0;
1815 init_completion(&master->xfer_completion);
1816 if (!master->max_dma_len)
1817 master->max_dma_len = INT_MAX;
1819 /* register the device, then userspace will see it.
1820 * registration fails if the bus ID is in use.
1822 dev_set_name(&master->dev, "spi%u", master->bus_num);
1823 status = device_add(&master->dev);
1826 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1827 dynamic ? " (dynamic)" : "");
1829 /* If we're using a queued driver, start the queue */
1830 if (master->transfer)
1831 dev_info(dev, "master is unqueued, this is deprecated\n");
1833 status = spi_master_initialize_queue(master);
1835 device_del(&master->dev);
1839 /* add statistics */
1840 spin_lock_init(&master->statistics.lock);
1842 mutex_lock(&board_lock);
1843 list_add_tail(&master->list, &spi_master_list);
1844 list_for_each_entry(bi, &board_list, list)
1845 spi_match_master_to_boardinfo(master, &bi->board_info);
1846 mutex_unlock(&board_lock);
1848 /* Register devices from the device tree and ACPI */
1849 of_register_spi_devices(master);
1850 acpi_register_spi_devices(master);
1854 EXPORT_SYMBOL_GPL(spi_register_master);
1856 static void devm_spi_unregister(struct device *dev, void *res)
1858 spi_unregister_master(*(struct spi_master **)res);
1862 * dev_spi_register_master - register managed SPI master controller
1863 * @dev: device managing SPI master
1864 * @master: initialized master, originally from spi_alloc_master()
1865 * Context: can sleep
1867 * Register a SPI device as with spi_register_master() which will
1868 * automatically be unregister
1870 * Return: zero on success, else a negative error code.
1872 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1874 struct spi_master **ptr;
1877 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1881 ret = spi_register_master(master);
1884 devres_add(dev, ptr);
1891 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1893 static int __unregister(struct device *dev, void *null)
1895 spi_unregister_device(to_spi_device(dev));
1900 * spi_unregister_master - unregister SPI master controller
1901 * @master: the master being unregistered
1902 * Context: can sleep
1904 * This call is used only by SPI master controller drivers, which are the
1905 * only ones directly touching chip registers.
1907 * This must be called from context that can sleep.
1909 void spi_unregister_master(struct spi_master *master)
1913 if (master->queued) {
1914 if (spi_destroy_queue(master))
1915 dev_err(&master->dev, "queue remove failed\n");
1918 mutex_lock(&board_lock);
1919 list_del(&master->list);
1920 mutex_unlock(&board_lock);
1922 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1923 device_unregister(&master->dev);
1925 EXPORT_SYMBOL_GPL(spi_unregister_master);
1927 int spi_master_suspend(struct spi_master *master)
1931 /* Basically no-ops for non-queued masters */
1932 if (!master->queued)
1935 ret = spi_stop_queue(master);
1937 dev_err(&master->dev, "queue stop failed\n");
1941 EXPORT_SYMBOL_GPL(spi_master_suspend);
1943 int spi_master_resume(struct spi_master *master)
1947 if (!master->queued)
1950 ret = spi_start_queue(master);
1952 dev_err(&master->dev, "queue restart failed\n");
1956 EXPORT_SYMBOL_GPL(spi_master_resume);
1958 static int __spi_master_match(struct device *dev, const void *data)
1960 struct spi_master *m;
1961 const u16 *bus_num = data;
1963 m = container_of(dev, struct spi_master, dev);
1964 return m->bus_num == *bus_num;
1968 * spi_busnum_to_master - look up master associated with bus_num
1969 * @bus_num: the master's bus number
1970 * Context: can sleep
1972 * This call may be used with devices that are registered after
1973 * arch init time. It returns a refcounted pointer to the relevant
1974 * spi_master (which the caller must release), or NULL if there is
1975 * no such master registered.
1977 * Return: the SPI master structure on success, else NULL.
1979 struct spi_master *spi_busnum_to_master(u16 bus_num)
1982 struct spi_master *master = NULL;
1984 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1985 __spi_master_match);
1987 master = container_of(dev, struct spi_master, dev);
1988 /* reference got in class_find_device */
1991 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1994 /*-------------------------------------------------------------------------*/
1996 /* Core methods for SPI master protocol drivers. Some of the
1997 * other core methods are currently defined as inline functions.
2000 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2002 if (master->bits_per_word_mask) {
2003 /* Only 32 bits fit in the mask */
2004 if (bits_per_word > 32)
2006 if (!(master->bits_per_word_mask &
2007 SPI_BPW_MASK(bits_per_word)))
2015 * spi_setup - setup SPI mode and clock rate
2016 * @spi: the device whose settings are being modified
2017 * Context: can sleep, and no requests are queued to the device
2019 * SPI protocol drivers may need to update the transfer mode if the
2020 * device doesn't work with its default. They may likewise need
2021 * to update clock rates or word sizes from initial values. This function
2022 * changes those settings, and must be called from a context that can sleep.
2023 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2024 * effect the next time the device is selected and data is transferred to
2025 * or from it. When this function returns, the spi device is deselected.
2027 * Note that this call will fail if the protocol driver specifies an option
2028 * that the underlying controller or its driver does not support. For
2029 * example, not all hardware supports wire transfers using nine bit words,
2030 * LSB-first wire encoding, or active-high chipselects.
2032 * Return: zero on success, else a negative error code.
2034 int spi_setup(struct spi_device *spi)
2036 unsigned bad_bits, ugly_bits;
2039 /* check mode to prevent that DUAL and QUAD set at the same time
2041 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2042 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2044 "setup: can not select dual and quad at the same time\n");
2047 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2049 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2050 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2052 /* help drivers fail *cleanly* when they need options
2053 * that aren't supported with their current master
2055 bad_bits = spi->mode & ~spi->master->mode_bits;
2056 ugly_bits = bad_bits &
2057 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2060 "setup: ignoring unsupported mode bits %x\n",
2062 spi->mode &= ~ugly_bits;
2063 bad_bits &= ~ugly_bits;
2066 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2071 if (!spi->bits_per_word)
2072 spi->bits_per_word = 8;
2074 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2078 if (!spi->max_speed_hz)
2079 spi->max_speed_hz = spi->master->max_speed_hz;
2081 if (spi->master->setup)
2082 status = spi->master->setup(spi);
2084 spi_set_cs(spi, false);
2086 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2087 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2088 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2089 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2090 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2091 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2092 spi->bits_per_word, spi->max_speed_hz,
2097 EXPORT_SYMBOL_GPL(spi_setup);
2099 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2101 struct spi_master *master = spi->master;
2102 struct spi_transfer *xfer;
2105 if (list_empty(&message->transfers))
2108 /* Half-duplex links include original MicroWire, and ones with
2109 * only one data pin like SPI_3WIRE (switches direction) or where
2110 * either MOSI or MISO is missing. They can also be caused by
2111 * software limitations.
2113 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2114 || (spi->mode & SPI_3WIRE)) {
2115 unsigned flags = master->flags;
2117 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2118 if (xfer->rx_buf && xfer->tx_buf)
2120 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2122 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2128 * Set transfer bits_per_word and max speed as spi device default if
2129 * it is not set for this transfer.
2130 * Set transfer tx_nbits and rx_nbits as single transfer default
2131 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2133 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2134 message->frame_length += xfer->len;
2135 if (!xfer->bits_per_word)
2136 xfer->bits_per_word = spi->bits_per_word;
2138 if (!xfer->speed_hz)
2139 xfer->speed_hz = spi->max_speed_hz;
2140 if (!xfer->speed_hz)
2141 xfer->speed_hz = master->max_speed_hz;
2143 if (master->max_speed_hz &&
2144 xfer->speed_hz > master->max_speed_hz)
2145 xfer->speed_hz = master->max_speed_hz;
2147 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2151 * SPI transfer length should be multiple of SPI word size
2152 * where SPI word size should be power-of-two multiple
2154 if (xfer->bits_per_word <= 8)
2156 else if (xfer->bits_per_word <= 16)
2161 /* No partial transfers accepted */
2162 if (xfer->len % w_size)
2165 if (xfer->speed_hz && master->min_speed_hz &&
2166 xfer->speed_hz < master->min_speed_hz)
2169 if (xfer->tx_buf && !xfer->tx_nbits)
2170 xfer->tx_nbits = SPI_NBITS_SINGLE;
2171 if (xfer->rx_buf && !xfer->rx_nbits)
2172 xfer->rx_nbits = SPI_NBITS_SINGLE;
2173 /* check transfer tx/rx_nbits:
2174 * 1. check the value matches one of single, dual and quad
2175 * 2. check tx/rx_nbits match the mode in spi_device
2178 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2179 xfer->tx_nbits != SPI_NBITS_DUAL &&
2180 xfer->tx_nbits != SPI_NBITS_QUAD)
2182 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2183 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2185 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2186 !(spi->mode & SPI_TX_QUAD))
2189 /* check transfer rx_nbits */
2191 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2192 xfer->rx_nbits != SPI_NBITS_DUAL &&
2193 xfer->rx_nbits != SPI_NBITS_QUAD)
2195 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2196 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2198 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2199 !(spi->mode & SPI_RX_QUAD))
2204 message->status = -EINPROGRESS;
2209 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2211 struct spi_master *master = spi->master;
2215 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2216 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2218 trace_spi_message_submit(message);
2220 return master->transfer(spi, message);
2224 * spi_async - asynchronous SPI transfer
2225 * @spi: device with which data will be exchanged
2226 * @message: describes the data transfers, including completion callback
2227 * Context: any (irqs may be blocked, etc)
2229 * This call may be used in_irq and other contexts which can't sleep,
2230 * as well as from task contexts which can sleep.
2232 * The completion callback is invoked in a context which can't sleep.
2233 * Before that invocation, the value of message->status is undefined.
2234 * When the callback is issued, message->status holds either zero (to
2235 * indicate complete success) or a negative error code. After that
2236 * callback returns, the driver which issued the transfer request may
2237 * deallocate the associated memory; it's no longer in use by any SPI
2238 * core or controller driver code.
2240 * Note that although all messages to a spi_device are handled in
2241 * FIFO order, messages may go to different devices in other orders.
2242 * Some device might be higher priority, or have various "hard" access
2243 * time requirements, for example.
2245 * On detection of any fault during the transfer, processing of
2246 * the entire message is aborted, and the device is deselected.
2247 * Until returning from the associated message completion callback,
2248 * no other spi_message queued to that device will be processed.
2249 * (This rule applies equally to all the synchronous transfer calls,
2250 * which are wrappers around this core asynchronous primitive.)
2252 * Return: zero on success, else a negative error code.
2254 int spi_async(struct spi_device *spi, struct spi_message *message)
2256 struct spi_master *master = spi->master;
2258 unsigned long flags;
2260 ret = __spi_validate(spi, message);
2264 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2266 if (master->bus_lock_flag)
2269 ret = __spi_async(spi, message);
2271 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2275 EXPORT_SYMBOL_GPL(spi_async);
2278 * spi_async_locked - version of spi_async with exclusive bus usage
2279 * @spi: device with which data will be exchanged
2280 * @message: describes the data transfers, including completion callback
2281 * Context: any (irqs may be blocked, etc)
2283 * This call may be used in_irq and other contexts which can't sleep,
2284 * as well as from task contexts which can sleep.
2286 * The completion callback is invoked in a context which can't sleep.
2287 * Before that invocation, the value of message->status is undefined.
2288 * When the callback is issued, message->status holds either zero (to
2289 * indicate complete success) or a negative error code. After that
2290 * callback returns, the driver which issued the transfer request may
2291 * deallocate the associated memory; it's no longer in use by any SPI
2292 * core or controller driver code.
2294 * Note that although all messages to a spi_device are handled in
2295 * FIFO order, messages may go to different devices in other orders.
2296 * Some device might be higher priority, or have various "hard" access
2297 * time requirements, for example.
2299 * On detection of any fault during the transfer, processing of
2300 * the entire message is aborted, and the device is deselected.
2301 * Until returning from the associated message completion callback,
2302 * no other spi_message queued to that device will be processed.
2303 * (This rule applies equally to all the synchronous transfer calls,
2304 * which are wrappers around this core asynchronous primitive.)
2306 * Return: zero on success, else a negative error code.
2308 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2310 struct spi_master *master = spi->master;
2312 unsigned long flags;
2314 ret = __spi_validate(spi, message);
2318 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2320 ret = __spi_async(spi, message);
2322 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2327 EXPORT_SYMBOL_GPL(spi_async_locked);
2330 /*-------------------------------------------------------------------------*/
2332 /* Utility methods for SPI master protocol drivers, layered on
2333 * top of the core. Some other utility methods are defined as
2337 static void spi_complete(void *arg)
2342 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2345 DECLARE_COMPLETION_ONSTACK(done);
2347 struct spi_master *master = spi->master;
2348 unsigned long flags;
2350 status = __spi_validate(spi, message);
2354 message->complete = spi_complete;
2355 message->context = &done;
2358 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2359 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2362 mutex_lock(&master->bus_lock_mutex);
2364 /* If we're not using the legacy transfer method then we will
2365 * try to transfer in the calling context so special case.
2366 * This code would be less tricky if we could remove the
2367 * support for driver implemented message queues.
2369 if (master->transfer == spi_queued_transfer) {
2370 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2372 trace_spi_message_submit(message);
2374 status = __spi_queued_transfer(spi, message, false);
2376 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2378 status = spi_async_locked(spi, message);
2382 mutex_unlock(&master->bus_lock_mutex);
2385 /* Push out the messages in the calling context if we
2388 if (master->transfer == spi_queued_transfer) {
2389 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2390 spi_sync_immediate);
2391 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2392 spi_sync_immediate);
2393 __spi_pump_messages(master, false);
2396 wait_for_completion(&done);
2397 status = message->status;
2399 message->context = NULL;
2404 * spi_sync - blocking/synchronous SPI data transfers
2405 * @spi: device with which data will be exchanged
2406 * @message: describes the data transfers
2407 * Context: can sleep
2409 * This call may only be used from a context that may sleep. The sleep
2410 * is non-interruptible, and has no timeout. Low-overhead controller
2411 * drivers may DMA directly into and out of the message buffers.
2413 * Note that the SPI device's chip select is active during the message,
2414 * and then is normally disabled between messages. Drivers for some
2415 * frequently-used devices may want to minimize costs of selecting a chip,
2416 * by leaving it selected in anticipation that the next message will go
2417 * to the same chip. (That may increase power usage.)
2419 * Also, the caller is guaranteeing that the memory associated with the
2420 * message will not be freed before this call returns.
2422 * Return: zero on success, else a negative error code.
2424 int spi_sync(struct spi_device *spi, struct spi_message *message)
2426 return __spi_sync(spi, message, 0);
2428 EXPORT_SYMBOL_GPL(spi_sync);
2431 * spi_sync_locked - version of spi_sync with exclusive bus usage
2432 * @spi: device with which data will be exchanged
2433 * @message: describes the data transfers
2434 * Context: can sleep
2436 * This call may only be used from a context that may sleep. The sleep
2437 * is non-interruptible, and has no timeout. Low-overhead controller
2438 * drivers may DMA directly into and out of the message buffers.
2440 * This call should be used by drivers that require exclusive access to the
2441 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2442 * be released by a spi_bus_unlock call when the exclusive access is over.
2444 * Return: zero on success, else a negative error code.
2446 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2448 return __spi_sync(spi, message, 1);
2450 EXPORT_SYMBOL_GPL(spi_sync_locked);
2453 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2454 * @master: SPI bus master that should be locked for exclusive bus access
2455 * Context: can sleep
2457 * This call may only be used from a context that may sleep. The sleep
2458 * is non-interruptible, and has no timeout.
2460 * This call should be used by drivers that require exclusive access to the
2461 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2462 * exclusive access is over. Data transfer must be done by spi_sync_locked
2463 * and spi_async_locked calls when the SPI bus lock is held.
2465 * Return: always zero.
2467 int spi_bus_lock(struct spi_master *master)
2469 unsigned long flags;
2471 mutex_lock(&master->bus_lock_mutex);
2473 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2474 master->bus_lock_flag = 1;
2475 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2477 /* mutex remains locked until spi_bus_unlock is called */
2481 EXPORT_SYMBOL_GPL(spi_bus_lock);
2484 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2485 * @master: SPI bus master that was locked for exclusive bus access
2486 * Context: can sleep
2488 * This call may only be used from a context that may sleep. The sleep
2489 * is non-interruptible, and has no timeout.
2491 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2494 * Return: always zero.
2496 int spi_bus_unlock(struct spi_master *master)
2498 master->bus_lock_flag = 0;
2500 mutex_unlock(&master->bus_lock_mutex);
2504 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2506 /* portable code must never pass more than 32 bytes */
2507 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2512 * spi_write_then_read - SPI synchronous write followed by read
2513 * @spi: device with which data will be exchanged
2514 * @txbuf: data to be written (need not be dma-safe)
2515 * @n_tx: size of txbuf, in bytes
2516 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2517 * @n_rx: size of rxbuf, in bytes
2518 * Context: can sleep
2520 * This performs a half duplex MicroWire style transaction with the
2521 * device, sending txbuf and then reading rxbuf. The return value
2522 * is zero for success, else a negative errno status code.
2523 * This call may only be used from a context that may sleep.
2525 * Parameters to this routine are always copied using a small buffer;
2526 * portable code should never use this for more than 32 bytes.
2527 * Performance-sensitive or bulk transfer code should instead use
2528 * spi_{async,sync}() calls with dma-safe buffers.
2530 * Return: zero on success, else a negative error code.
2532 int spi_write_then_read(struct spi_device *spi,
2533 const void *txbuf, unsigned n_tx,
2534 void *rxbuf, unsigned n_rx)
2536 static DEFINE_MUTEX(lock);
2539 struct spi_message message;
2540 struct spi_transfer x[2];
2543 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2544 * copying here, (as a pure convenience thing), but we can
2545 * keep heap costs out of the hot path unless someone else is
2546 * using the pre-allocated buffer or the transfer is too large.
2548 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2549 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2550 GFP_KERNEL | GFP_DMA);
2557 spi_message_init(&message);
2558 memset(x, 0, sizeof(x));
2561 spi_message_add_tail(&x[0], &message);
2565 spi_message_add_tail(&x[1], &message);
2568 memcpy(local_buf, txbuf, n_tx);
2569 x[0].tx_buf = local_buf;
2570 x[1].rx_buf = local_buf + n_tx;
2573 status = spi_sync(spi, &message);
2575 memcpy(rxbuf, x[1].rx_buf, n_rx);
2577 if (x[0].tx_buf == buf)
2578 mutex_unlock(&lock);
2584 EXPORT_SYMBOL_GPL(spi_write_then_read);
2586 /*-------------------------------------------------------------------------*/
2588 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2589 static int __spi_of_device_match(struct device *dev, void *data)
2591 return dev->of_node == data;
2594 /* must call put_device() when done with returned spi_device device */
2595 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2597 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2598 __spi_of_device_match);
2599 return dev ? to_spi_device(dev) : NULL;
2602 static int __spi_of_master_match(struct device *dev, const void *data)
2604 return dev->of_node == data;
2607 /* the spi masters are not using spi_bus, so we find it with another way */
2608 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2612 dev = class_find_device(&spi_master_class, NULL, node,
2613 __spi_of_master_match);
2617 /* reference got in class_find_device */
2618 return container_of(dev, struct spi_master, dev);
2621 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2624 struct of_reconfig_data *rd = arg;
2625 struct spi_master *master;
2626 struct spi_device *spi;
2628 switch (of_reconfig_get_state_change(action, arg)) {
2629 case OF_RECONFIG_CHANGE_ADD:
2630 master = of_find_spi_master_by_node(rd->dn->parent);
2632 return NOTIFY_OK; /* not for us */
2634 spi = of_register_spi_device(master, rd->dn);
2635 put_device(&master->dev);
2638 pr_err("%s: failed to create for '%s'\n",
2639 __func__, rd->dn->full_name);
2640 return notifier_from_errno(PTR_ERR(spi));
2644 case OF_RECONFIG_CHANGE_REMOVE:
2645 /* find our device by node */
2646 spi = of_find_spi_device_by_node(rd->dn);
2648 return NOTIFY_OK; /* no? not meant for us */
2650 /* unregister takes one ref away */
2651 spi_unregister_device(spi);
2653 /* and put the reference of the find */
2654 put_device(&spi->dev);
2661 static struct notifier_block spi_of_notifier = {
2662 .notifier_call = of_spi_notify,
2664 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2665 extern struct notifier_block spi_of_notifier;
2666 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2668 static int __init spi_init(void)
2672 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2678 status = bus_register(&spi_bus_type);
2682 status = class_register(&spi_master_class);
2686 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2687 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2692 bus_unregister(&spi_bus_type);
2700 /* board_info is normally registered in arch_initcall(),
2701 * but even essential drivers wait till later
2703 * REVISIT only boardinfo really needs static linking. the rest (device and
2704 * driver registration) _could_ be dynamically linked (modular) ... costs
2705 * include needing to have boardinfo data structures be much more public.
2707 postcore_initcall(spi_init);