2 * Simple synchronous userspace interface to SPI devices
4 * Copyright (C) 2006 SWAPP
5 * Andrea Paterniani <a.paterniani@swapp-eng.it>
6 * Copyright (C) 2007 David Brownell (simplification, cleanup)
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/ioctl.h>
23 #include <linux/device.h>
24 #include <linux/err.h>
25 #include <linux/list.h>
26 #include <linux/errno.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/compat.h>
31 #include <linux/of_device.h>
33 #include <linux/spi/spi.h>
34 #include <linux/spi/spidev.h>
36 #include <linux/uaccess.h>
40 * This supports access to SPI devices using normal userspace I/O calls.
41 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
42 * and often mask message boundaries, full SPI support requires full duplex
43 * transfers. There are several kinds of internal message boundaries to
44 * handle chipselect management and other protocol options.
46 * SPI has a character major number assigned. We allocate minor numbers
47 * dynamically using a bitmask. You must use hotplug tools, such as udev
48 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
49 * nodes, since there is no fixed association of minor numbers with any
50 * particular SPI bus or device.
52 #define SPIDEV_MAJOR 153 /* assigned */
53 #define N_SPI_MINORS 32 /* ... up to 256 */
55 static DECLARE_BITMAP(minors, N_SPI_MINORS);
58 /* Bit masks for spi_device.mode management. Note that incorrect
59 * settings for some settings can cause *lots* of trouble for other
60 * devices on a shared bus:
62 * - CS_HIGH ... this device will be active when it shouldn't be
63 * - 3WIRE ... when active, it won't behave as it should
64 * - NO_CS ... there will be no explicit message boundaries; this
65 * is completely incompatible with the shared bus model
66 * - READY ... transfers may proceed when they shouldn't.
68 * REVISIT should changing those flags be privileged?
70 #define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
71 | SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
72 | SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
73 | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)
78 struct spi_device *spi;
79 struct list_head device_entry;
81 /* TX/RX buffers are NULL unless this device is open (users > 0) */
82 struct mutex buf_lock;
89 static LIST_HEAD(device_list);
90 static DEFINE_MUTEX(device_list_lock);
92 static unsigned bufsiz = 4096;
93 module_param(bufsiz, uint, S_IRUGO);
94 MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
96 /*-------------------------------------------------------------------------*/
99 spidev_sync(struct spidev_data *spidev, struct spi_message *message)
101 DECLARE_COMPLETION_ONSTACK(done);
103 struct spi_device *spi;
105 spin_lock_irq(&spidev->spi_lock);
107 spin_unlock_irq(&spidev->spi_lock);
112 status = spi_sync(spi, message);
115 status = message->actual_length;
120 static inline ssize_t
121 spidev_sync_write(struct spidev_data *spidev, size_t len)
123 struct spi_transfer t = {
124 .tx_buf = spidev->tx_buffer,
126 .speed_hz = spidev->speed_hz,
128 struct spi_message m;
130 spi_message_init(&m);
131 spi_message_add_tail(&t, &m);
132 return spidev_sync(spidev, &m);
135 static inline ssize_t
136 spidev_sync_read(struct spidev_data *spidev, size_t len)
138 struct spi_transfer t = {
139 .rx_buf = spidev->rx_buffer,
141 .speed_hz = spidev->speed_hz,
143 struct spi_message m;
145 spi_message_init(&m);
146 spi_message_add_tail(&t, &m);
147 return spidev_sync(spidev, &m);
150 /*-------------------------------------------------------------------------*/
152 /* Read-only message with current device setup */
154 spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
156 struct spidev_data *spidev;
159 /* chipselect only toggles at start or end of operation */
163 spidev = filp->private_data;
165 mutex_lock(&spidev->buf_lock);
166 status = spidev_sync_read(spidev, count);
168 unsigned long missing;
170 missing = copy_to_user(buf, spidev->rx_buffer, status);
171 if (missing == status)
174 status = status - missing;
176 mutex_unlock(&spidev->buf_lock);
181 /* Write-only message with current device setup */
183 spidev_write(struct file *filp, const char __user *buf,
184 size_t count, loff_t *f_pos)
186 struct spidev_data *spidev;
188 unsigned long missing;
190 /* chipselect only toggles at start or end of operation */
194 spidev = filp->private_data;
196 mutex_lock(&spidev->buf_lock);
197 missing = copy_from_user(spidev->tx_buffer, buf, count);
199 status = spidev_sync_write(spidev, count);
202 mutex_unlock(&spidev->buf_lock);
207 static int spidev_message(struct spidev_data *spidev,
208 struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
210 struct spi_message msg;
211 struct spi_transfer *k_xfers;
212 struct spi_transfer *k_tmp;
213 struct spi_ioc_transfer *u_tmp;
214 unsigned n, total, tx_total, rx_total;
216 int status = -EFAULT;
218 spi_message_init(&msg);
219 k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
223 /* Construct spi_message, copying any tx data to bounce buffer.
224 * We walk the array of user-provided transfers, using each one
225 * to initialize a kernel version of the same transfer.
227 tx_buf = spidev->tx_buffer;
228 rx_buf = spidev->rx_buffer;
232 for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
234 n--, k_tmp++, u_tmp++) {
235 k_tmp->len = u_tmp->len;
238 /* Since the function returns the total length of transfers
239 * on success, restrict the total to positive int values to
240 * avoid the return value looking like an error. Also check
241 * each transfer length to avoid arithmetic overflow.
243 if (total > INT_MAX || k_tmp->len > INT_MAX) {
249 /* this transfer needs space in RX bounce buffer */
250 rx_total += k_tmp->len;
251 if (rx_total > bufsiz) {
255 k_tmp->rx_buf = rx_buf;
256 if (!access_ok(VERIFY_WRITE, (u8 __user *)
257 (uintptr_t) u_tmp->rx_buf,
260 rx_buf += k_tmp->len;
263 /* this transfer needs space in TX bounce buffer */
264 tx_total += k_tmp->len;
265 if (tx_total > bufsiz) {
269 k_tmp->tx_buf = tx_buf;
270 if (copy_from_user(tx_buf, (const u8 __user *)
271 (uintptr_t) u_tmp->tx_buf,
274 tx_buf += k_tmp->len;
277 k_tmp->cs_change = !!u_tmp->cs_change;
278 k_tmp->tx_nbits = u_tmp->tx_nbits;
279 k_tmp->rx_nbits = u_tmp->rx_nbits;
280 k_tmp->bits_per_word = u_tmp->bits_per_word;
281 k_tmp->delay_usecs = u_tmp->delay_usecs;
282 k_tmp->speed_hz = u_tmp->speed_hz;
283 if (!k_tmp->speed_hz)
284 k_tmp->speed_hz = spidev->speed_hz;
286 dev_dbg(&spidev->spi->dev,
287 " xfer len %zd %s%s%s%dbits %u usec %uHz\n",
289 u_tmp->rx_buf ? "rx " : "",
290 u_tmp->tx_buf ? "tx " : "",
291 u_tmp->cs_change ? "cs " : "",
292 u_tmp->bits_per_word ? : spidev->spi->bits_per_word,
294 u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
296 spi_message_add_tail(k_tmp, &msg);
299 status = spidev_sync(spidev, &msg);
303 /* copy any rx data out of bounce buffer */
304 rx_buf = spidev->rx_buffer;
305 for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
307 if (__copy_to_user((u8 __user *)
308 (uintptr_t) u_tmp->rx_buf, rx_buf,
313 rx_buf += u_tmp->len;
323 static struct spi_ioc_transfer *
324 spidev_get_ioc_message(unsigned int cmd, struct spi_ioc_transfer __user *u_ioc,
327 struct spi_ioc_transfer *ioc;
330 /* Check type, command number and direction */
331 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC
332 || _IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
333 || _IOC_DIR(cmd) != _IOC_WRITE)
334 return ERR_PTR(-ENOTTY);
336 tmp = _IOC_SIZE(cmd);
337 if ((tmp % sizeof(struct spi_ioc_transfer)) != 0)
338 return ERR_PTR(-EINVAL);
339 *n_ioc = tmp / sizeof(struct spi_ioc_transfer);
343 /* copy into scratch area */
344 ioc = kmalloc(tmp, GFP_KERNEL);
346 return ERR_PTR(-ENOMEM);
347 if (__copy_from_user(ioc, u_ioc, tmp)) {
349 return ERR_PTR(-EFAULT);
355 spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
359 struct spidev_data *spidev;
360 struct spi_device *spi;
363 struct spi_ioc_transfer *ioc;
365 /* Check type and command number */
366 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
369 /* Check access direction once here; don't repeat below.
370 * IOC_DIR is from the user perspective, while access_ok is
371 * from the kernel perspective; so they look reversed.
373 if (_IOC_DIR(cmd) & _IOC_READ)
374 err = !access_ok(VERIFY_WRITE,
375 (void __user *)arg, _IOC_SIZE(cmd));
376 if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
377 err = !access_ok(VERIFY_READ,
378 (void __user *)arg, _IOC_SIZE(cmd));
382 /* guard against device removal before, or while,
383 * we issue this ioctl.
385 spidev = filp->private_data;
386 spin_lock_irq(&spidev->spi_lock);
387 spi = spi_dev_get(spidev->spi);
388 spin_unlock_irq(&spidev->spi_lock);
393 /* use the buffer lock here for triple duty:
394 * - prevent I/O (from us) so calling spi_setup() is safe;
395 * - prevent concurrent SPI_IOC_WR_* from morphing
396 * data fields while SPI_IOC_RD_* reads them;
397 * - SPI_IOC_MESSAGE needs the buffer locked "normally".
399 mutex_lock(&spidev->buf_lock);
403 case SPI_IOC_RD_MODE:
404 retval = __put_user(spi->mode & SPI_MODE_MASK,
407 case SPI_IOC_RD_MODE32:
408 retval = __put_user(spi->mode & SPI_MODE_MASK,
409 (__u32 __user *)arg);
411 case SPI_IOC_RD_LSB_FIRST:
412 retval = __put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0,
415 case SPI_IOC_RD_BITS_PER_WORD:
416 retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
418 case SPI_IOC_RD_MAX_SPEED_HZ:
419 retval = __put_user(spidev->speed_hz, (__u32 __user *)arg);
423 case SPI_IOC_WR_MODE:
424 case SPI_IOC_WR_MODE32:
425 if (cmd == SPI_IOC_WR_MODE)
426 retval = __get_user(tmp, (u8 __user *)arg);
428 retval = __get_user(tmp, (u32 __user *)arg);
430 u32 save = spi->mode;
432 if (tmp & ~SPI_MODE_MASK) {
437 tmp |= spi->mode & ~SPI_MODE_MASK;
438 spi->mode = (u16)tmp;
439 retval = spi_setup(spi);
443 dev_dbg(&spi->dev, "spi mode %x\n", tmp);
446 case SPI_IOC_WR_LSB_FIRST:
447 retval = __get_user(tmp, (__u8 __user *)arg);
449 u32 save = spi->mode;
452 spi->mode |= SPI_LSB_FIRST;
454 spi->mode &= ~SPI_LSB_FIRST;
455 retval = spi_setup(spi);
459 dev_dbg(&spi->dev, "%csb first\n",
463 case SPI_IOC_WR_BITS_PER_WORD:
464 retval = __get_user(tmp, (__u8 __user *)arg);
466 u8 save = spi->bits_per_word;
468 spi->bits_per_word = tmp;
469 retval = spi_setup(spi);
471 spi->bits_per_word = save;
473 dev_dbg(&spi->dev, "%d bits per word\n", tmp);
476 case SPI_IOC_WR_MAX_SPEED_HZ:
477 retval = __get_user(tmp, (__u32 __user *)arg);
479 u32 save = spi->max_speed_hz;
481 spi->max_speed_hz = tmp;
482 retval = spi_setup(spi);
484 spidev->speed_hz = tmp;
486 dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
487 spi->max_speed_hz = save;
492 /* segmented and/or full-duplex I/O request */
493 /* Check message and copy into scratch area */
494 ioc = spidev_get_ioc_message(cmd,
495 (struct spi_ioc_transfer __user *)arg, &n_ioc);
497 retval = PTR_ERR(ioc);
501 break; /* n_ioc is also 0 */
503 /* translate to spi_message, execute */
504 retval = spidev_message(spidev, ioc, n_ioc);
509 mutex_unlock(&spidev->buf_lock);
516 spidev_compat_ioc_message(struct file *filp, unsigned int cmd,
519 struct spi_ioc_transfer __user *u_ioc;
521 struct spidev_data *spidev;
522 struct spi_device *spi;
524 struct spi_ioc_transfer *ioc;
526 u_ioc = (struct spi_ioc_transfer __user *) compat_ptr(arg);
527 if (!access_ok(VERIFY_READ, u_ioc, _IOC_SIZE(cmd)))
530 /* guard against device removal before, or while,
531 * we issue this ioctl.
533 spidev = filp->private_data;
534 spin_lock_irq(&spidev->spi_lock);
535 spi = spi_dev_get(spidev->spi);
536 spin_unlock_irq(&spidev->spi_lock);
541 /* SPI_IOC_MESSAGE needs the buffer locked "normally" */
542 mutex_lock(&spidev->buf_lock);
544 /* Check message and copy into scratch area */
545 ioc = spidev_get_ioc_message(cmd, u_ioc, &n_ioc);
547 retval = PTR_ERR(ioc);
551 goto done; /* n_ioc is also 0 */
553 /* Convert buffer pointers */
554 for (n = 0; n < n_ioc; n++) {
555 ioc[n].rx_buf = (uintptr_t) compat_ptr(ioc[n].rx_buf);
556 ioc[n].tx_buf = (uintptr_t) compat_ptr(ioc[n].tx_buf);
559 /* translate to spi_message, execute */
560 retval = spidev_message(spidev, ioc, n_ioc);
564 mutex_unlock(&spidev->buf_lock);
570 spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
572 if (_IOC_TYPE(cmd) == SPI_IOC_MAGIC
573 && _IOC_NR(cmd) == _IOC_NR(SPI_IOC_MESSAGE(0))
574 && _IOC_DIR(cmd) == _IOC_WRITE)
575 return spidev_compat_ioc_message(filp, cmd, arg);
577 return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
580 #define spidev_compat_ioctl NULL
581 #endif /* CONFIG_COMPAT */
583 static int spidev_open(struct inode *inode, struct file *filp)
585 struct spidev_data *spidev;
588 mutex_lock(&device_list_lock);
590 list_for_each_entry(spidev, &device_list, device_entry) {
591 if (spidev->devt == inode->i_rdev) {
598 pr_debug("spidev: nothing for minor %d\n", iminor(inode));
602 if (!spidev->tx_buffer) {
603 spidev->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
604 if (!spidev->tx_buffer) {
605 dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
611 if (!spidev->rx_buffer) {
612 spidev->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
613 if (!spidev->rx_buffer) {
614 dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
616 goto err_alloc_rx_buf;
621 filp->private_data = spidev;
622 nonseekable_open(inode, filp);
624 mutex_unlock(&device_list_lock);
628 kfree(spidev->tx_buffer);
629 spidev->tx_buffer = NULL;
631 mutex_unlock(&device_list_lock);
635 static int spidev_release(struct inode *inode, struct file *filp)
637 struct spidev_data *spidev;
639 mutex_lock(&device_list_lock);
640 spidev = filp->private_data;
641 filp->private_data = NULL;
645 if (!spidev->users) {
648 kfree(spidev->tx_buffer);
649 spidev->tx_buffer = NULL;
651 kfree(spidev->rx_buffer);
652 spidev->rx_buffer = NULL;
655 spidev->speed_hz = spidev->spi->max_speed_hz;
657 /* ... after we unbound from the underlying device? */
658 spin_lock_irq(&spidev->spi_lock);
659 dofree = (spidev->spi == NULL);
660 spin_unlock_irq(&spidev->spi_lock);
665 mutex_unlock(&device_list_lock);
670 static const struct file_operations spidev_fops = {
671 .owner = THIS_MODULE,
672 /* REVISIT switch to aio primitives, so that userspace
673 * gets more complete API coverage. It'll simplify things
674 * too, except for the locking.
676 .write = spidev_write,
678 .unlocked_ioctl = spidev_ioctl,
679 .compat_ioctl = spidev_compat_ioctl,
681 .release = spidev_release,
685 /*-------------------------------------------------------------------------*/
687 /* The main reason to have this class is to make mdev/udev create the
688 * /dev/spidevB.C character device nodes exposing our userspace API.
689 * It also simplifies memory management.
692 static struct class *spidev_class;
695 static const struct of_device_id spidev_dt_ids[] = {
696 { .compatible = "rohm,dh2228fv" },
697 { .compatible = "lineartechnology,ltc2488" },
700 MODULE_DEVICE_TABLE(of, spidev_dt_ids);
703 /*-------------------------------------------------------------------------*/
705 static int spidev_probe(struct spi_device *spi)
707 struct spidev_data *spidev;
712 * spidev should never be referenced in DT without a specific
713 * compatible string, it is a Linux implementation thing
714 * rather than a description of the hardware.
716 if (spi->dev.of_node && !of_match_device(spidev_dt_ids, &spi->dev)) {
717 dev_err(&spi->dev, "buggy DT: spidev listed directly in DT\n");
718 WARN_ON(spi->dev.of_node &&
719 !of_match_device(spidev_dt_ids, &spi->dev));
722 /* Allocate driver data */
723 spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
727 /* Initialize the driver data */
729 spin_lock_init(&spidev->spi_lock);
730 mutex_init(&spidev->buf_lock);
732 INIT_LIST_HEAD(&spidev->device_entry);
734 /* If we can allocate a minor number, hook up this device.
735 * Reusing minors is fine so long as udev or mdev is working.
737 mutex_lock(&device_list_lock);
738 minor = find_first_zero_bit(minors, N_SPI_MINORS);
739 if (minor < N_SPI_MINORS) {
742 spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
743 dev = device_create(spidev_class, &spi->dev, spidev->devt,
744 spidev, "spidev%d.%d",
745 spi->master->bus_num, spi->chip_select);
746 status = PTR_ERR_OR_ZERO(dev);
748 dev_dbg(&spi->dev, "no minor number available!\n");
752 set_bit(minor, minors);
753 list_add(&spidev->device_entry, &device_list);
755 mutex_unlock(&device_list_lock);
757 spidev->speed_hz = spi->max_speed_hz;
760 spi_set_drvdata(spi, spidev);
767 static int spidev_remove(struct spi_device *spi)
769 struct spidev_data *spidev = spi_get_drvdata(spi);
771 /* make sure ops on existing fds can abort cleanly */
772 spin_lock_irq(&spidev->spi_lock);
774 spin_unlock_irq(&spidev->spi_lock);
776 /* prevent new opens */
777 mutex_lock(&device_list_lock);
778 list_del(&spidev->device_entry);
779 device_destroy(spidev_class, spidev->devt);
780 clear_bit(MINOR(spidev->devt), minors);
781 if (spidev->users == 0)
783 mutex_unlock(&device_list_lock);
788 static struct spi_driver spidev_spi_driver = {
791 .of_match_table = of_match_ptr(spidev_dt_ids),
793 .probe = spidev_probe,
794 .remove = spidev_remove,
796 /* NOTE: suspend/resume methods are not necessary here.
797 * We don't do anything except pass the requests to/from
798 * the underlying controller. The refrigerator handles
799 * most issues; the controller driver handles the rest.
803 /*-------------------------------------------------------------------------*/
805 static int __init spidev_init(void)
809 /* Claim our 256 reserved device numbers. Then register a class
810 * that will key udev/mdev to add/remove /dev nodes. Last, register
811 * the driver which manages those device numbers.
813 BUILD_BUG_ON(N_SPI_MINORS > 256);
814 status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
818 spidev_class = class_create(THIS_MODULE, "spidev");
819 if (IS_ERR(spidev_class)) {
820 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
821 return PTR_ERR(spidev_class);
824 status = spi_register_driver(&spidev_spi_driver);
826 class_destroy(spidev_class);
827 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
831 module_init(spidev_init);
833 static void __exit spidev_exit(void)
835 spi_unregister_driver(&spidev_spi_driver);
836 class_destroy(spidev_class);
837 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
839 module_exit(spidev_exit);
841 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
842 MODULE_DESCRIPTION("User mode SPI device interface");
843 MODULE_LICENSE("GPL");
844 MODULE_ALIAS("spi:spidev");