Linux 3.15-rc2
[firefly-linux-kernel-4.4.55.git] / drivers / staging / comedi / drivers / s626.c
1 /*
2  * comedi/drivers/s626.c
3  * Sensoray s626 Comedi driver
4  *
5  * COMEDI - Linux Control and Measurement Device Interface
6  * Copyright (C) 2000 David A. Schleef <ds@schleef.org>
7  *
8  * Based on Sensoray Model 626 Linux driver Version 0.2
9  * Copyright (C) 2002-2004 Sensoray Co., Inc.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21
22 /*
23  * Driver: s626
24  * Description: Sensoray 626 driver
25  * Devices: [Sensoray] 626 (s626)
26  * Authors: Gianluca Palli <gpalli@deis.unibo.it>,
27  * Updated: Fri, 15 Feb 2008 10:28:42 +0000
28  * Status: experimental
29
30  * Configuration options: not applicable, uses PCI auto config
31
32  * INSN_CONFIG instructions:
33  *   analog input:
34  *    none
35  *
36  *   analog output:
37  *    none
38  *
39  *   digital channel:
40  *    s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
41  *    supported configuration options:
42  *    INSN_CONFIG_DIO_QUERY
43  *    COMEDI_INPUT
44  *    COMEDI_OUTPUT
45  *
46  *   encoder:
47  *    Every channel must be configured before reading.
48  *
49  *   Example code
50  *
51  *    insn.insn=INSN_CONFIG;   //configuration instruction
52  *    insn.n=1;                //number of operation (must be 1)
53  *    insn.data=&initialvalue; //initial value loaded into encoder
54  *                             //during configuration
55  *    insn.subdev=5;           //encoder subdevice
56  *    insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
57  *                                                         //to configure
58  *
59  *    comedi_do_insn(cf,&insn); //executing configuration
60  */
61
62 #include <linux/module.h>
63 #include <linux/delay.h>
64 #include <linux/pci.h>
65 #include <linux/interrupt.h>
66 #include <linux/kernel.h>
67 #include <linux/types.h>
68
69 #include "../comedidev.h"
70
71 #include "comedi_fc.h"
72 #include "s626.h"
73
74 struct s626_buffer_dma {
75         dma_addr_t physical_base;
76         void *logical_base;
77 };
78
79 struct s626_private {
80         void __iomem *mmio;
81         uint8_t ai_cmd_running;         /* ai_cmd is running */
82         uint8_t ai_continuous;          /* continuous acquisition */
83         int ai_sample_count;            /* number of samples to acquire */
84         unsigned int ai_sample_timer;   /* time between samples in
85                                          * units of the timer */
86         int ai_convert_count;           /* conversion counter */
87         unsigned int ai_convert_timer;  /* time between conversion in
88                                          * units of the timer */
89         uint16_t counter_int_enabs;     /* counter interrupt enable mask
90                                          * for MISC2 register */
91         uint8_t adc_items;              /* number of items in ADC poll list */
92         struct s626_buffer_dma rps_buf; /* DMA buffer used to hold ADC (RPS1)
93                                          * program */
94         struct s626_buffer_dma ana_buf; /* DMA buffer used to receive ADC data
95                                          * and hold DAC data */
96         uint32_t *dac_wbuf;             /* pointer to logical adrs of DMA buffer
97                                          * used to hold DAC data */
98         uint16_t dacpol;                /* image of DAC polarity register */
99         uint8_t trim_setpoint[12];      /* images of TrimDAC setpoints */
100         uint32_t i2c_adrs;              /* I2C device address for onboard EEPROM
101                                          * (board rev dependent) */
102         unsigned int ao_readback[S626_DAC_CHANNELS];
103 };
104
105 /* COUNTER OBJECT ------------------------------------------------ */
106 struct s626_enc_info {
107         /* Pointers to functions that differ for A and B counters: */
108         /* Return clock enable. */
109         uint16_t (*get_enable)(struct comedi_device *dev,
110                               const struct s626_enc_info *k);
111         /* Return interrupt source. */
112         uint16_t (*get_int_src)(struct comedi_device *dev,
113                                const struct s626_enc_info *k);
114         /* Return preload trigger source. */
115         uint16_t (*get_load_trig)(struct comedi_device *dev,
116                                  const struct s626_enc_info *k);
117         /* Return standardized operating mode. */
118         uint16_t (*get_mode)(struct comedi_device *dev,
119                             const struct s626_enc_info *k);
120         /* Generate soft index strobe. */
121         void (*pulse_index)(struct comedi_device *dev,
122                             const struct s626_enc_info *k);
123         /* Program clock enable. */
124         void (*set_enable)(struct comedi_device *dev,
125                            const struct s626_enc_info *k, uint16_t enab);
126         /* Program interrupt source. */
127         void (*set_int_src)(struct comedi_device *dev,
128                             const struct s626_enc_info *k, uint16_t int_source);
129         /* Program preload trigger source. */
130         void (*set_load_trig)(struct comedi_device *dev,
131                               const struct s626_enc_info *k, uint16_t trig);
132         /* Program standardized operating mode. */
133         void (*set_mode)(struct comedi_device *dev,
134                          const struct s626_enc_info *k, uint16_t setup,
135                          uint16_t disable_int_src);
136         /* Reset event capture flags. */
137         void (*reset_cap_flags)(struct comedi_device *dev,
138                                 const struct s626_enc_info *k);
139
140         uint16_t my_cra;        /* address of CRA register */
141         uint16_t my_crb;        /* address of CRB register */
142         uint16_t my_latch_lsw;  /* address of Latch least-significant-word
143                                  * register */
144         uint16_t my_event_bits[4]; /* bit translations for IntSrc -->RDMISC2 */
145 };
146
147 /* Counter overflow/index event flag masks for RDMISC2. */
148 #define S626_INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 +  4)))
149 #define S626_OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
150 #define S626_EVBITS(C)  { 0, S626_OVERMASK(C), S626_INDXMASK(C), \
151                           S626_OVERMASK(C) | S626_INDXMASK(C) }
152
153 /*
154  * Translation table to map IntSrc into equivalent RDMISC2 event flag  bits.
155  * static const uint16_t s626_event_bits[][4] =
156  *     { S626_EVBITS(0), S626_EVBITS(1), S626_EVBITS(2), S626_EVBITS(3),
157  *       S626_EVBITS(4), S626_EVBITS(5) };
158  */
159
160 /*
161  * Enable/disable a function or test status bit(s) that are accessed
162  * through Main Control Registers 1 or 2.
163  */
164 static void s626_mc_enable(struct comedi_device *dev,
165                            unsigned int cmd, unsigned int reg)
166 {
167         struct s626_private *devpriv = dev->private;
168         unsigned int val = (cmd << 16) | cmd;
169
170         mmiowb();
171         writel(val, devpriv->mmio + reg);
172 }
173
174 static void s626_mc_disable(struct comedi_device *dev,
175                             unsigned int cmd, unsigned int reg)
176 {
177         struct s626_private *devpriv = dev->private;
178
179         writel(cmd << 16 , devpriv->mmio + reg);
180         mmiowb();
181 }
182
183 static bool s626_mc_test(struct comedi_device *dev,
184                          unsigned int cmd, unsigned int reg)
185 {
186         struct s626_private *devpriv = dev->private;
187         unsigned int val;
188
189         val = readl(devpriv->mmio + reg);
190
191         return (val & cmd) ? true : false;
192 }
193
194 #define S626_BUGFIX_STREG(REGADRS)   ((REGADRS) - 4)
195
196 /* Write a time slot control record to TSL2. */
197 #define S626_VECTPORT(VECTNUM)          (S626_P_TSL2 + ((VECTNUM) << 2))
198
199 static const struct comedi_lrange s626_range_table = {
200         2, {
201                 BIP_RANGE(5),
202                 BIP_RANGE(10)
203         }
204 };
205
206 /*
207  * Execute a DEBI transfer.  This must be called from within a critical section.
208  */
209 static void s626_debi_transfer(struct comedi_device *dev)
210 {
211         struct s626_private *devpriv = dev->private;
212         static const int timeout = 10000;
213         int i;
214
215         /* Initiate upload of shadow RAM to DEBI control register */
216         s626_mc_enable(dev, S626_MC2_UPLD_DEBI, S626_P_MC2);
217
218         /*
219          * Wait for completion of upload from shadow RAM to
220          * DEBI control register.
221          */
222         for (i = 0; i < timeout; i++) {
223                 if (s626_mc_test(dev, S626_MC2_UPLD_DEBI, S626_P_MC2))
224                         break;
225                 udelay(1);
226         }
227         if (i == timeout)
228                 comedi_error(dev,
229                         "Timeout while uploading to DEBI control register.");
230
231         /* Wait until DEBI transfer is done */
232         for (i = 0; i < timeout; i++) {
233                 if (!(readl(devpriv->mmio + S626_P_PSR) & S626_PSR_DEBI_S))
234                         break;
235                 udelay(1);
236         }
237         if (i == timeout)
238                 comedi_error(dev, "DEBI transfer timeout.");
239 }
240
241 /*
242  * Read a value from a gate array register.
243  */
244 static uint16_t s626_debi_read(struct comedi_device *dev, uint16_t addr)
245 {
246         struct s626_private *devpriv = dev->private;
247
248         /* Set up DEBI control register value in shadow RAM */
249         writel(S626_DEBI_CMD_RDWORD | addr, devpriv->mmio + S626_P_DEBICMD);
250
251         /*  Execute the DEBI transfer. */
252         s626_debi_transfer(dev);
253
254         return readl(devpriv->mmio + S626_P_DEBIAD);
255 }
256
257 /*
258  * Write a value to a gate array register.
259  */
260 static void s626_debi_write(struct comedi_device *dev, uint16_t addr,
261                             uint16_t wdata)
262 {
263         struct s626_private *devpriv = dev->private;
264
265         /* Set up DEBI control register value in shadow RAM */
266         writel(S626_DEBI_CMD_WRWORD | addr, devpriv->mmio + S626_P_DEBICMD);
267         writel(wdata, devpriv->mmio + S626_P_DEBIAD);
268
269         /*  Execute the DEBI transfer. */
270         s626_debi_transfer(dev);
271 }
272
273 /*
274  * Replace the specified bits in a gate array register.  Imports: mask
275  * specifies bits that are to be preserved, wdata is new value to be
276  * or'd with the masked original.
277  */
278 static void s626_debi_replace(struct comedi_device *dev, unsigned int addr,
279                               unsigned int mask, unsigned int wdata)
280 {
281         struct s626_private *devpriv = dev->private;
282         unsigned int val;
283
284         addr &= 0xffff;
285         writel(S626_DEBI_CMD_RDWORD | addr, devpriv->mmio + S626_P_DEBICMD);
286         s626_debi_transfer(dev);
287
288         writel(S626_DEBI_CMD_WRWORD | addr, devpriv->mmio + S626_P_DEBICMD);
289         val = readl(devpriv->mmio + S626_P_DEBIAD);
290         val &= mask;
291         val |= wdata;
292         writel(val & 0xffff, devpriv->mmio + S626_P_DEBIAD);
293         s626_debi_transfer(dev);
294 }
295
296 /* **************  EEPROM ACCESS FUNCTIONS  ************** */
297
298 static uint32_t s626_i2c_handshake(struct comedi_device *dev, uint32_t val)
299 {
300         struct s626_private *devpriv = dev->private;
301         unsigned int ctrl;
302
303         /* Write I2C command to I2C Transfer Control shadow register */
304         writel(val, devpriv->mmio + S626_P_I2CCTRL);
305
306         /*
307          * Upload I2C shadow registers into working registers and
308          * wait for upload confirmation.
309          */
310         s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
311         while (!s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2))
312                 ;
313
314         /* Wait until I2C bus transfer is finished or an error occurs */
315         do {
316                 ctrl = readl(devpriv->mmio + S626_P_I2CCTRL);
317         } while ((ctrl & (S626_I2C_BUSY | S626_I2C_ERR)) == S626_I2C_BUSY);
318
319         /* Return non-zero if I2C error occurred */
320         return ctrl & S626_I2C_ERR;
321 }
322
323 /* Read uint8_t from EEPROM. */
324 static uint8_t s626_i2c_read(struct comedi_device *dev, uint8_t addr)
325 {
326         struct s626_private *devpriv = dev->private;
327
328         /*
329          * Send EEPROM target address:
330          *  Byte2 = I2C command: write to I2C EEPROM device.
331          *  Byte1 = EEPROM internal target address.
332          *  Byte0 = Not sent.
333          */
334         if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
335                                                 devpriv->i2c_adrs) |
336                                     S626_I2C_B1(S626_I2C_ATTRSTOP, addr) |
337                                     S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
338                 /* Abort function and declare error if handshake failed. */
339                 return 0;
340
341         /*
342          * Execute EEPROM read:
343          *  Byte2 = I2C command: read from I2C EEPROM device.
344          *  Byte1 receives uint8_t from EEPROM.
345          *  Byte0 = Not sent.
346          */
347         if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
348                                            (devpriv->i2c_adrs | 1)) |
349                                     S626_I2C_B1(S626_I2C_ATTRSTOP, 0) |
350                                     S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
351                 /* Abort function and declare error if handshake failed. */
352                 return 0;
353
354         return (readl(devpriv->mmio + S626_P_I2CCTRL) >> 16) & 0xff;
355 }
356
357 /* ***********  DAC FUNCTIONS *********** */
358
359 /* TrimDac LogicalChan-to-PhysicalChan mapping table. */
360 static const uint8_t s626_trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
361
362 /* TrimDac LogicalChan-to-EepromAdrs mapping table. */
363 static const uint8_t s626_trimadrs[] = {
364         0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63
365 };
366
367 enum {
368         s626_send_dac_wait_not_mc1_a2out,
369         s626_send_dac_wait_ssr_af2_out,
370         s626_send_dac_wait_fb_buffer2_msb_00,
371         s626_send_dac_wait_fb_buffer2_msb_ff
372 };
373
374 static int s626_send_dac_eoc(struct comedi_device *dev,
375                              struct comedi_subdevice *s,
376                              struct comedi_insn *insn,
377                              unsigned long context)
378 {
379         struct s626_private *devpriv = dev->private;
380         unsigned int status;
381
382         switch (context) {
383         case s626_send_dac_wait_not_mc1_a2out:
384                 status = readl(devpriv->mmio + S626_P_MC1);
385                 if (!(status & S626_MC1_A2OUT))
386                         return 0;
387                 break;
388         case s626_send_dac_wait_ssr_af2_out:
389                 status = readl(devpriv->mmio + S626_P_SSR);
390                 if (status & S626_SSR_AF2_OUT)
391                         return 0;
392                 break;
393         case s626_send_dac_wait_fb_buffer2_msb_00:
394                 status = readl(devpriv->mmio + S626_P_FB_BUFFER2);
395                 if (!(status & 0xff000000))
396                         return 0;
397                 break;
398         case s626_send_dac_wait_fb_buffer2_msb_ff:
399                 status = readl(devpriv->mmio + S626_P_FB_BUFFER2);
400                 if (status & 0xff000000)
401                         return 0;
402                 break;
403         default:
404                 return -EINVAL;
405         }
406         return -EBUSY;
407 }
408
409 /*
410  * Private helper function: Transmit serial data to DAC via Audio
411  * channel 2.  Assumes: (1) TSL2 slot records initialized, and (2)
412  * dacpol contains valid target image.
413  */
414 static int s626_send_dac(struct comedi_device *dev, uint32_t val)
415 {
416         struct s626_private *devpriv = dev->private;
417         int ret;
418
419         /* START THE SERIAL CLOCK RUNNING ------------- */
420
421         /*
422          * Assert DAC polarity control and enable gating of DAC serial clock
423          * and audio bit stream signals.  At this point in time we must be
424          * assured of being in time slot 0.  If we are not in slot 0, the
425          * serial clock and audio stream signals will be disabled; this is
426          * because the following s626_debi_write statement (which enables
427          * signals to be passed through the gate array) would execute before
428          * the trailing edge of WS1/WS3 (which turns off the signals), thus
429          * causing the signals to be inactive during the DAC write.
430          */
431         s626_debi_write(dev, S626_LP_DACPOL, devpriv->dacpol);
432
433         /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
434
435         /* Copy DAC setpoint value to DAC's output DMA buffer. */
436         /* writel(val, devpriv->mmio + (uint32_t)devpriv->dac_wbuf); */
437         *devpriv->dac_wbuf = val;
438
439         /*
440          * Enable the output DMA transfer. This will cause the DMAC to copy
441          * the DAC's data value to A2's output FIFO. The DMA transfer will
442          * then immediately terminate because the protection address is
443          * reached upon transfer of the first DWORD value.
444          */
445         s626_mc_enable(dev, S626_MC1_A2OUT, S626_P_MC1);
446
447         /* While the DMA transfer is executing ... */
448
449         /*
450          * Reset Audio2 output FIFO's underflow flag (along with any
451          * other FIFO underflow/overflow flags). When set, this flag
452          * will indicate that we have emerged from slot 0.
453          */
454         writel(S626_ISR_AFOU, devpriv->mmio + S626_P_ISR);
455
456         /*
457          * Wait for the DMA transfer to finish so that there will be data
458          * available in the FIFO when time slot 1 tries to transfer a DWORD
459          * from the FIFO to the output buffer register.  We test for DMA
460          * Done by polling the DMAC enable flag; this flag is automatically
461          * cleared when the transfer has finished.
462          */
463         ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
464                              s626_send_dac_wait_not_mc1_a2out);
465         if (ret) {
466                 comedi_error(dev, "DMA transfer timeout.");
467                 return ret;
468         }
469
470         /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
471
472         /*
473          * FIFO data is now available, so we enable execution of time slots
474          * 1 and higher by clearing the EOS flag in slot 0.  Note that SD3
475          * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
476          * detection.
477          */
478         writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2,
479                devpriv->mmio + S626_VECTPORT(0));
480
481         /*
482          * Wait for slot 1 to execute to ensure that the Packet will be
483          * transmitted.  This is detected by polling the Audio2 output FIFO
484          * underflow flag, which will be set when slot 1 execution has
485          * finished transferring the DAC's data DWORD from the output FIFO
486          * to the output buffer register.
487          */
488         ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
489                              s626_send_dac_wait_ssr_af2_out);
490         if (ret) {
491                 comedi_error(dev, "TSL timeout waiting for slot 1 to execute.");
492                 return ret;
493         }
494
495         /*
496          * Set up to trap execution at slot 0 when the TSL sequencer cycles
497          * back to slot 0 after executing the EOS in slot 5.  Also,
498          * simultaneously shift out and in the 0x00 that is ALWAYS the value
499          * stored in the last byte to be shifted out of the FIFO's DWORD
500          * buffer register.
501          */
502         writel(S626_XSD2 | S626_XFIFO_2 | S626_RSD2 | S626_SIB_A2 | S626_EOS,
503                devpriv->mmio + S626_VECTPORT(0));
504
505         /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
506
507         /*
508          * Wait for the TSL to finish executing all time slots before
509          * exiting this function.  We must do this so that the next DAC
510          * write doesn't start, thereby enabling clock/chip select signals:
511          *
512          * 1. Before the TSL sequence cycles back to slot 0, which disables
513          *    the clock/cs signal gating and traps slot // list execution.
514          *    we have not yet finished slot 5 then the clock/cs signals are
515          *    still gated and we have not finished transmitting the stream.
516          *
517          * 2. While slots 2-5 are executing due to a late slot 0 trap.  In
518          *    this case, the slot sequence is currently repeating, but with
519          *    clock/cs signals disabled.  We must wait for slot 0 to trap
520          *    execution before setting up the next DAC setpoint DMA transfer
521          *    and enabling the clock/cs signals.  To detect the end of slot 5,
522          *    we test for the FB_BUFFER2 MSB contents to be equal to 0xFF.  If
523          *    the TSL has not yet finished executing slot 5 ...
524          */
525         if (readl(devpriv->mmio + S626_P_FB_BUFFER2) & 0xff000000) {
526                 /*
527                  * The trap was set on time and we are still executing somewhere
528                  * in slots 2-5, so we now wait for slot 0 to execute and trap
529                  * TSL execution.  This is detected when FB_BUFFER2 MSB changes
530                  * from 0xFF to 0x00, which slot 0 causes to happen by shifting
531                  * out/in on SD2 the 0x00 that is always referenced by slot 5.
532                  */
533                 ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
534                                      s626_send_dac_wait_fb_buffer2_msb_00);
535                 if (ret) {
536                         comedi_error(dev,
537                                 "TSL timeout waiting for slot 0 to execute.");
538                         return ret;
539                 }
540         }
541         /*
542          * Either (1) we were too late setting the slot 0 trap; the TSL
543          * sequencer restarted slot 0 before we could set the EOS trap flag,
544          * or (2) we were not late and execution is now trapped at slot 0.
545          * In either case, we must now change slot 0 so that it will store
546          * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
547          * In order to do this, we reprogram slot 0 so that it will shift in
548          * SD3, which is driven only by a pull-up resistor.
549          */
550         writel(S626_RSD3 | S626_SIB_A2 | S626_EOS,
551                devpriv->mmio + S626_VECTPORT(0));
552
553         /*
554          * Wait for slot 0 to execute, at which time the TSL is setup for
555          * the next DAC write.  This is detected when FB_BUFFER2 MSB changes
556          * from 0x00 to 0xFF.
557          */
558         ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
559                              s626_send_dac_wait_fb_buffer2_msb_ff);
560         if (ret) {
561                 comedi_error(dev, "TSL timeout waiting for slot 0 to execute.");
562                 return ret;
563         }
564         return 0;
565 }
566
567 /*
568  * Private helper function: Write setpoint to an application DAC channel.
569  */
570 static int s626_set_dac(struct comedi_device *dev, uint16_t chan,
571                          int16_t dacdata)
572 {
573         struct s626_private *devpriv = dev->private;
574         uint16_t signmask;
575         uint32_t ws_image;
576         uint32_t val;
577
578         /*
579          * Adjust DAC data polarity and set up Polarity Control Register image.
580          */
581         signmask = 1 << chan;
582         if (dacdata < 0) {
583                 dacdata = -dacdata;
584                 devpriv->dacpol |= signmask;
585         } else {
586                 devpriv->dacpol &= ~signmask;
587         }
588
589         /* Limit DAC setpoint value to valid range. */
590         if ((uint16_t)dacdata > 0x1FFF)
591                 dacdata = 0x1FFF;
592
593         /*
594          * Set up TSL2 records (aka "vectors") for DAC update.  Vectors V2
595          * and V3 transmit the setpoint to the target DAC.  V4 and V5 send
596          * data to a non-existent TrimDac channel just to keep the clock
597          * running after sending data to the target DAC.  This is necessary
598          * to eliminate the clock glitch that would otherwise occur at the
599          * end of the target DAC's serial data stream.  When the sequence
600          * restarts at V0 (after executing V5), the gate array automatically
601          * disables gating for the DAC clock and all DAC chip selects.
602          */
603
604         /* Choose DAC chip select to be asserted */
605         ws_image = (chan & 2) ? S626_WS1 : S626_WS2;
606         /* Slot 2: Transmit high data byte to target DAC */
607         writel(S626_XSD2 | S626_XFIFO_1 | ws_image,
608                devpriv->mmio + S626_VECTPORT(2));
609         /* Slot 3: Transmit low data byte to target DAC */
610         writel(S626_XSD2 | S626_XFIFO_0 | ws_image,
611                devpriv->mmio + S626_VECTPORT(3));
612         /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
613         writel(S626_XSD2 | S626_XFIFO_3 | S626_WS3,
614                devpriv->mmio + S626_VECTPORT(4));
615         /* Slot 5: running after writing target DAC's low data byte */
616         writel(S626_XSD2 | S626_XFIFO_2 | S626_WS3 | S626_EOS,
617                devpriv->mmio + S626_VECTPORT(5));
618
619         /*
620          * Construct and transmit target DAC's serial packet:
621          * (A10D DDDD), (DDDD DDDD), (0x0F), (0x00) where A is chan<0>,
622          * and D<12:0> is the DAC setpoint.  Append a WORD value (that writes
623          * to a  non-existent TrimDac channel) that serves to keep the clock
624          * running after the packet has been sent to the target DAC.
625          */
626         val = 0x0F000000;       /* Continue clock after target DAC data
627                                  * (write to non-existent trimdac). */
628         val |= 0x00004000;      /* Address the two main dual-DAC devices
629                                  * (TSL's chip select enables target device). */
630         val |= ((uint32_t)(chan & 1) << 15);    /* Address the DAC channel
631                                                  * within the device. */
632         val |= (uint32_t)dacdata;       /* Include DAC setpoint data. */
633         return s626_send_dac(dev, val);
634 }
635
636 static int s626_write_trim_dac(struct comedi_device *dev, uint8_t logical_chan,
637                                 uint8_t dac_data)
638 {
639         struct s626_private *devpriv = dev->private;
640         uint32_t chan;
641
642         /*
643          * Save the new setpoint in case the application needs to read it back
644          * later.
645          */
646         devpriv->trim_setpoint[logical_chan] = (uint8_t)dac_data;
647
648         /* Map logical channel number to physical channel number. */
649         chan = s626_trimchan[logical_chan];
650
651         /*
652          * Set up TSL2 records for TrimDac write operation.  All slots shift
653          * 0xFF in from pulled-up SD3 so that the end of the slot sequence
654          * can be detected.
655          */
656
657         /* Slot 2: Send high uint8_t to target TrimDac */
658         writel(S626_XSD2 | S626_XFIFO_1 | S626_WS3,
659                devpriv->mmio + S626_VECTPORT(2));
660         /* Slot 3: Send low uint8_t to target TrimDac */
661         writel(S626_XSD2 | S626_XFIFO_0 | S626_WS3,
662                devpriv->mmio + S626_VECTPORT(3));
663         /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running */
664         writel(S626_XSD2 | S626_XFIFO_3 | S626_WS1,
665                devpriv->mmio + S626_VECTPORT(4));
666         /* Slot 5: Send NOP low  uint8_t to DAC0 */
667         writel(S626_XSD2 | S626_XFIFO_2 | S626_WS1 | S626_EOS,
668                devpriv->mmio + S626_VECTPORT(5));
669
670         /*
671          * Construct and transmit target DAC's serial packet:
672          * (0000 AAAA), (DDDD DDDD), (0x00), (0x00) where A<3:0> is the
673          * DAC channel's address, and D<7:0> is the DAC setpoint.  Append a
674          * WORD value (that writes a channel 0 NOP command to a non-existent
675          * main DAC channel) that serves to keep the clock running after the
676          * packet has been sent to the target DAC.
677          */
678
679         /*
680          * Address the DAC channel within the trimdac device.
681          * Include DAC setpoint data.
682          */
683         return s626_send_dac(dev, (chan << 8) | dac_data);
684 }
685
686 static int s626_load_trim_dacs(struct comedi_device *dev)
687 {
688         uint8_t i;
689         int ret;
690
691         /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
692         for (i = 0; i < ARRAY_SIZE(s626_trimchan); i++) {
693                 ret = s626_write_trim_dac(dev, i,
694                                     s626_i2c_read(dev, s626_trimadrs[i]));
695                 if (ret)
696                         return ret;
697         }
698         return 0;
699 }
700
701 /* ******  COUNTER FUNCTIONS  ******* */
702
703 /*
704  * All counter functions address a specific counter by means of the
705  * "Counter" argument, which is a logical counter number.  The Counter
706  * argument may have any of the following legal values: 0=0A, 1=1A,
707  * 2=2A, 3=0B, 4=1B, 5=2B.
708  */
709
710 /*
711  * Read a counter's output latch.
712  */
713 static uint32_t s626_read_latch(struct comedi_device *dev,
714                                 const struct s626_enc_info *k)
715 {
716         uint32_t value;
717
718         /* Latch counts and fetch LSW of latched counts value. */
719         value = s626_debi_read(dev, k->my_latch_lsw);
720
721         /* Fetch MSW of latched counts and combine with LSW. */
722         value |= ((uint32_t)s626_debi_read(dev, k->my_latch_lsw + 2) << 16);
723
724         /* Return latched counts. */
725         return value;
726 }
727
728 /*
729  * Return/set a counter pair's latch trigger source.  0: On read
730  * access, 1: A index latches A, 2: B index latches B, 3: A overflow
731  * latches B.
732  */
733 static void s626_set_latch_source(struct comedi_device *dev,
734                                   const struct s626_enc_info *k, uint16_t value)
735 {
736         s626_debi_replace(dev, k->my_crb,
737                           ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_LATCHSRC),
738                           S626_SET_CRB_LATCHSRC(value));
739 }
740
741 /*
742  * Write value into counter preload register.
743  */
744 static void s626_preload(struct comedi_device *dev,
745                          const struct s626_enc_info *k, uint32_t value)
746 {
747         s626_debi_write(dev, k->my_latch_lsw, value);
748         s626_debi_write(dev, k->my_latch_lsw + 2, value >> 16);
749 }
750
751 /* ******  PRIVATE COUNTER FUNCTIONS ****** */
752
753 /*
754  * Reset a counter's index and overflow event capture flags.
755  */
756 static void s626_reset_cap_flags_a(struct comedi_device *dev,
757                                    const struct s626_enc_info *k)
758 {
759         s626_debi_replace(dev, k->my_crb, ~S626_CRBMSK_INTCTRL,
760                           (S626_SET_CRB_INTRESETCMD(1) |
761                            S626_SET_CRB_INTRESET_A(1)));
762 }
763
764 static void s626_reset_cap_flags_b(struct comedi_device *dev,
765                                    const struct s626_enc_info *k)
766 {
767         s626_debi_replace(dev, k->my_crb, ~S626_CRBMSK_INTCTRL,
768                           (S626_SET_CRB_INTRESETCMD(1) |
769                            S626_SET_CRB_INTRESET_B(1)));
770 }
771
772 /*
773  * Return counter setup in a format (COUNTER_SETUP) that is consistent
774  * for both A and B counters.
775  */
776 static uint16_t s626_get_mode_a(struct comedi_device *dev,
777                                 const struct s626_enc_info *k)
778 {
779         uint16_t cra;
780         uint16_t crb;
781         uint16_t setup;
782         unsigned cntsrc, clkmult, clkpol, encmode;
783
784         /* Fetch CRA and CRB register images. */
785         cra = s626_debi_read(dev, k->my_cra);
786         crb = s626_debi_read(dev, k->my_crb);
787
788         /*
789          * Populate the standardized counter setup bit fields.
790          */
791         setup =
792                 /* LoadSrc  = LoadSrcA. */
793                 S626_SET_STD_LOADSRC(S626_GET_CRA_LOADSRC_A(cra)) |
794                 /* LatchSrc = LatchSrcA. */
795                 S626_SET_STD_LATCHSRC(S626_GET_CRB_LATCHSRC(crb)) |
796                 /* IntSrc   = IntSrcA. */
797                 S626_SET_STD_INTSRC(S626_GET_CRA_INTSRC_A(cra)) |
798                 /* IndxSrc  = IndxSrcA. */
799                 S626_SET_STD_INDXSRC(S626_GET_CRA_INDXSRC_A(cra)) |
800                 /* IndxPol  = IndxPolA. */
801                 S626_SET_STD_INDXPOL(S626_GET_CRA_INDXPOL_A(cra)) |
802                 /* ClkEnab  = ClkEnabA. */
803                 S626_SET_STD_CLKENAB(S626_GET_CRB_CLKENAB_A(crb));
804
805         /* Adjust mode-dependent parameters. */
806         cntsrc = S626_GET_CRA_CNTSRC_A(cra);
807         if (cntsrc & S626_CNTSRC_SYSCLK) {
808                 /* Timer mode (CntSrcA<1> == 1): */
809                 encmode = S626_ENCMODE_TIMER;
810                 /* Set ClkPol to indicate count direction (CntSrcA<0>). */
811                 clkpol = cntsrc & 1;
812                 /* ClkMult must be 1x in Timer mode. */
813                 clkmult = S626_CLKMULT_1X;
814         } else {
815                 /* Counter mode (CntSrcA<1> == 0): */
816                 encmode = S626_ENCMODE_COUNTER;
817                 /* Pass through ClkPol. */
818                 clkpol = S626_GET_CRA_CLKPOL_A(cra);
819                 /* Force ClkMult to 1x if not legal, else pass through. */
820                 clkmult = S626_GET_CRA_CLKMULT_A(cra);
821                 if (clkmult == S626_CLKMULT_SPECIAL)
822                         clkmult = S626_CLKMULT_1X;
823         }
824         setup |= S626_SET_STD_ENCMODE(encmode) | S626_SET_STD_CLKMULT(clkmult) |
825                  S626_SET_STD_CLKPOL(clkpol);
826
827         /* Return adjusted counter setup. */
828         return setup;
829 }
830
831 static uint16_t s626_get_mode_b(struct comedi_device *dev,
832                                 const struct s626_enc_info *k)
833 {
834         uint16_t cra;
835         uint16_t crb;
836         uint16_t setup;
837         unsigned cntsrc, clkmult, clkpol, encmode;
838
839         /* Fetch CRA and CRB register images. */
840         cra = s626_debi_read(dev, k->my_cra);
841         crb = s626_debi_read(dev, k->my_crb);
842
843         /*
844          * Populate the standardized counter setup bit fields.
845          */
846         setup =
847                 /* IntSrc   = IntSrcB. */
848                 S626_SET_STD_INTSRC(S626_GET_CRB_INTSRC_B(crb)) |
849                 /* LatchSrc = LatchSrcB. */
850                 S626_SET_STD_LATCHSRC(S626_GET_CRB_LATCHSRC(crb)) |
851                 /* LoadSrc  = LoadSrcB. */
852                 S626_SET_STD_LOADSRC(S626_GET_CRB_LOADSRC_B(crb)) |
853                 /* IndxPol  = IndxPolB. */
854                 S626_SET_STD_INDXPOL(S626_GET_CRB_INDXPOL_B(crb)) |
855                 /* ClkEnab  = ClkEnabB. */
856                 S626_SET_STD_CLKENAB(S626_GET_CRB_CLKENAB_B(crb)) |
857                 /* IndxSrc  = IndxSrcB. */
858                 S626_SET_STD_INDXSRC(S626_GET_CRA_INDXSRC_B(cra));
859
860         /* Adjust mode-dependent parameters. */
861         cntsrc = S626_GET_CRA_CNTSRC_B(cra);
862         clkmult = S626_GET_CRB_CLKMULT_B(crb);
863         if (clkmult == S626_CLKMULT_SPECIAL) {
864                 /* Extender mode (ClkMultB == S626_CLKMULT_SPECIAL): */
865                 encmode = S626_ENCMODE_EXTENDER;
866                 /* Indicate multiplier is 1x. */
867                 clkmult = S626_CLKMULT_1X;
868                 /* Set ClkPol equal to Timer count direction (CntSrcB<0>). */
869                 clkpol = cntsrc & 1;
870         } else if (cntsrc & S626_CNTSRC_SYSCLK) {
871                 /* Timer mode (CntSrcB<1> == 1): */
872                 encmode = S626_ENCMODE_TIMER;
873                 /* Indicate multiplier is 1x. */
874                 clkmult = S626_CLKMULT_1X;
875                 /* Set ClkPol equal to Timer count direction (CntSrcB<0>). */
876                 clkpol = cntsrc & 1;
877         } else {
878                 /* If Counter mode (CntSrcB<1> == 0): */
879                 encmode = S626_ENCMODE_COUNTER;
880                 /* Clock multiplier is passed through. */
881                 /* Clock polarity is passed through. */
882                 clkpol = S626_GET_CRB_CLKPOL_B(crb);
883         }
884         setup |= S626_SET_STD_ENCMODE(encmode) | S626_SET_STD_CLKMULT(clkmult) |
885                  S626_SET_STD_CLKPOL(clkpol);
886
887         /* Return adjusted counter setup. */
888         return setup;
889 }
890
891 /*
892  * Set the operating mode for the specified counter.  The setup
893  * parameter is treated as a COUNTER_SETUP data type.  The following
894  * parameters are programmable (all other parms are ignored): ClkMult,
895  * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
896  */
897 static void s626_set_mode_a(struct comedi_device *dev,
898                             const struct s626_enc_info *k, uint16_t setup,
899                             uint16_t disable_int_src)
900 {
901         struct s626_private *devpriv = dev->private;
902         uint16_t cra;
903         uint16_t crb;
904         unsigned cntsrc, clkmult, clkpol;
905
906         /* Initialize CRA and CRB images. */
907         /* Preload trigger is passed through. */
908         cra = S626_SET_CRA_LOADSRC_A(S626_GET_STD_LOADSRC(setup));
909         /* IndexSrc is passed through. */
910         cra |= S626_SET_CRA_INDXSRC_A(S626_GET_STD_INDXSRC(setup));
911
912         /* Reset any pending CounterA event captures. */
913         crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_A(1);
914         /* Clock enable is passed through. */
915         crb |= S626_SET_CRB_CLKENAB_A(S626_GET_STD_CLKENAB(setup));
916
917         /* Force IntSrc to Disabled if disable_int_src is asserted. */
918         if (!disable_int_src)
919                 cra |= S626_SET_CRA_INTSRC_A(S626_GET_STD_INTSRC(setup));
920
921         /* Populate all mode-dependent attributes of CRA & CRB images. */
922         clkpol = S626_GET_STD_CLKPOL(setup);
923         switch (S626_GET_STD_ENCMODE(setup)) {
924         case S626_ENCMODE_EXTENDER: /* Extender Mode: */
925                 /* Force to Timer mode (Extender valid only for B counters). */
926                 /* Fall through to case S626_ENCMODE_TIMER: */
927         case S626_ENCMODE_TIMER:        /* Timer Mode: */
928                 /* CntSrcA<1> selects system clock */
929                 cntsrc = S626_CNTSRC_SYSCLK;
930                 /* Count direction (CntSrcA<0>) obtained from ClkPol. */
931                 cntsrc |= clkpol;
932                 /* ClkPolA behaves as always-on clock enable. */
933                 clkpol = 1;
934                 /* ClkMult must be 1x. */
935                 clkmult = S626_CLKMULT_1X;
936                 break;
937         default:                /* Counter Mode: */
938                 /* Select ENC_C and ENC_D as clock/direction inputs. */
939                 cntsrc = S626_CNTSRC_ENCODER;
940                 /* Clock polarity is passed through. */
941                 /* Force multiplier to x1 if not legal, else pass through. */
942                 clkmult = S626_GET_STD_CLKMULT(setup);
943                 if (clkmult == S626_CLKMULT_SPECIAL)
944                         clkmult = S626_CLKMULT_1X;
945                 break;
946         }
947         cra |= S626_SET_CRA_CNTSRC_A(cntsrc) | S626_SET_CRA_CLKPOL_A(clkpol) |
948                S626_SET_CRA_CLKMULT_A(clkmult);
949
950         /*
951          * Force positive index polarity if IndxSrc is software-driven only,
952          * otherwise pass it through.
953          */
954         if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
955                 cra |= S626_SET_CRA_INDXPOL_A(S626_GET_STD_INDXPOL(setup));
956
957         /*
958          * If IntSrc has been forced to Disabled, update the MISC2 interrupt
959          * enable mask to indicate the counter interrupt is disabled.
960          */
961         if (disable_int_src)
962                 devpriv->counter_int_enabs &= ~k->my_event_bits[3];
963
964         /*
965          * While retaining CounterB and LatchSrc configurations, program the
966          * new counter operating mode.
967          */
968         s626_debi_replace(dev, k->my_cra,
969                           S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B, cra);
970         s626_debi_replace(dev, k->my_crb,
971                           ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A), crb);
972 }
973
974 static void s626_set_mode_b(struct comedi_device *dev,
975                             const struct s626_enc_info *k, uint16_t setup,
976                             uint16_t disable_int_src)
977 {
978         struct s626_private *devpriv = dev->private;
979         uint16_t cra;
980         uint16_t crb;
981         unsigned cntsrc, clkmult, clkpol;
982
983         /* Initialize CRA and CRB images. */
984         /* IndexSrc is passed through. */
985         cra = S626_SET_CRA_INDXSRC_B(S626_GET_STD_INDXSRC(setup));
986
987         /* Reset event captures and disable interrupts. */
988         crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_B(1);
989         /* Clock enable is passed through. */
990         crb |= S626_SET_CRB_CLKENAB_B(S626_GET_STD_CLKENAB(setup));
991         /* Preload trigger source is passed through. */
992         crb |= S626_SET_CRB_LOADSRC_B(S626_GET_STD_LOADSRC(setup));
993
994         /* Force IntSrc to Disabled if disable_int_src is asserted. */
995         if (!disable_int_src)
996                 crb |= S626_SET_CRB_INTSRC_B(S626_GET_STD_INTSRC(setup));
997
998         /* Populate all mode-dependent attributes of CRA & CRB images. */
999         clkpol = S626_GET_STD_CLKPOL(setup);
1000         switch (S626_GET_STD_ENCMODE(setup)) {
1001         case S626_ENCMODE_TIMER:        /* Timer Mode: */
1002                 /* CntSrcB<1> selects system clock */
1003                 cntsrc = S626_CNTSRC_SYSCLK;
1004                 /* with direction (CntSrcB<0>) obtained from ClkPol. */
1005                 cntsrc |= clkpol;
1006                 /* ClkPolB behaves as always-on clock enable. */
1007                 clkpol = 1;
1008                 /* ClkMultB must be 1x. */
1009                 clkmult = S626_CLKMULT_1X;
1010                 break;
1011         case S626_ENCMODE_EXTENDER:     /* Extender Mode: */
1012                 /* CntSrcB source is OverflowA (same as "timer") */
1013                 cntsrc = S626_CNTSRC_SYSCLK;
1014                 /* with direction obtained from ClkPol. */
1015                 cntsrc |= clkpol;
1016                 /* ClkPolB controls IndexB -- always set to active. */
1017                 clkpol = 1;
1018                 /* ClkMultB selects OverflowA as the clock source. */
1019                 clkmult = S626_CLKMULT_SPECIAL;
1020                 break;
1021         default:                /* Counter Mode: */
1022                 /* Select ENC_C and ENC_D as clock/direction inputs. */
1023                 cntsrc = S626_CNTSRC_ENCODER;
1024                 /* ClkPol is passed through. */
1025                 /* Force ClkMult to x1 if not legal, otherwise pass through. */
1026                 clkmult = S626_GET_STD_CLKMULT(setup);
1027                 if (clkmult == S626_CLKMULT_SPECIAL)
1028                         clkmult = S626_CLKMULT_1X;
1029                 break;
1030         }
1031         cra |= S626_SET_CRA_CNTSRC_B(cntsrc);
1032         crb |= S626_SET_CRB_CLKPOL_B(clkpol) | S626_SET_CRB_CLKMULT_B(clkmult);
1033
1034         /*
1035          * Force positive index polarity if IndxSrc is software-driven only,
1036          * otherwise pass it through.
1037          */
1038         if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
1039                 crb |= S626_SET_CRB_INDXPOL_B(S626_GET_STD_INDXPOL(setup));
1040
1041         /*
1042          * If IntSrc has been forced to Disabled, update the MISC2 interrupt
1043          * enable mask to indicate the counter interrupt is disabled.
1044          */
1045         if (disable_int_src)
1046                 devpriv->counter_int_enabs &= ~k->my_event_bits[3];
1047
1048         /*
1049          * While retaining CounterA and LatchSrc configurations, program the
1050          * new counter operating mode.
1051          */
1052         s626_debi_replace(dev, k->my_cra,
1053                           ~(S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B), cra);
1054         s626_debi_replace(dev, k->my_crb,
1055                           S626_CRBMSK_CLKENAB_A | S626_CRBMSK_LATCHSRC, crb);
1056 }
1057
1058 /*
1059  * Return/set a counter's enable.  enab: 0=always enabled, 1=enabled by index.
1060  */
1061 static void s626_set_enable_a(struct comedi_device *dev,
1062                               const struct s626_enc_info *k, uint16_t enab)
1063 {
1064         s626_debi_replace(dev, k->my_crb,
1065                           ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A),
1066                           S626_SET_CRB_CLKENAB_A(enab));
1067 }
1068
1069 static void s626_set_enable_b(struct comedi_device *dev,
1070                               const struct s626_enc_info *k, uint16_t enab)
1071 {
1072         s626_debi_replace(dev, k->my_crb,
1073                           ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_B),
1074                           S626_SET_CRB_CLKENAB_B(enab));
1075 }
1076
1077 static uint16_t s626_get_enable_a(struct comedi_device *dev,
1078                                   const struct s626_enc_info *k)
1079 {
1080         return S626_GET_CRB_CLKENAB_A(s626_debi_read(dev, k->my_crb));
1081 }
1082
1083 static uint16_t s626_get_enable_b(struct comedi_device *dev,
1084                                   const struct s626_enc_info *k)
1085 {
1086         return S626_GET_CRB_CLKENAB_B(s626_debi_read(dev, k->my_crb));
1087 }
1088
1089 #ifdef unused
1090 static uint16_t s626_get_latch_source(struct comedi_device *dev,
1091                                       const struct s626_enc_info *k)
1092 {
1093         return S626_GET_CRB_LATCHSRC(s626_debi_read(dev, k->my_crb));
1094 }
1095 #endif
1096
1097 /*
1098  * Return/set the event that will trigger transfer of the preload
1099  * register into the counter.  0=ThisCntr_Index, 1=ThisCntr_Overflow,
1100  * 2=OverflowA (B counters only), 3=disabled.
1101  */
1102 static void s626_set_load_trig_a(struct comedi_device *dev,
1103                                  const struct s626_enc_info *k, uint16_t trig)
1104 {
1105         s626_debi_replace(dev, k->my_cra, ~S626_CRAMSK_LOADSRC_A,
1106                           S626_SET_CRA_LOADSRC_A(trig));
1107 }
1108
1109 static void s626_set_load_trig_b(struct comedi_device *dev,
1110                                  const struct s626_enc_info *k, uint16_t trig)
1111 {
1112         s626_debi_replace(dev, k->my_crb,
1113                           ~(S626_CRBMSK_LOADSRC_B | S626_CRBMSK_INTCTRL),
1114                           S626_SET_CRB_LOADSRC_B(trig));
1115 }
1116
1117 static uint16_t s626_get_load_trig_a(struct comedi_device *dev,
1118                                      const struct s626_enc_info *k)
1119 {
1120         return S626_GET_CRA_LOADSRC_A(s626_debi_read(dev, k->my_cra));
1121 }
1122
1123 static uint16_t s626_get_load_trig_b(struct comedi_device *dev,
1124                                      const struct s626_enc_info *k)
1125 {
1126         return S626_GET_CRB_LOADSRC_B(s626_debi_read(dev, k->my_crb));
1127 }
1128
1129 /*
1130  * Return/set counter interrupt source and clear any captured
1131  * index/overflow events.  int_source: 0=Disabled, 1=OverflowOnly,
1132  * 2=IndexOnly, 3=IndexAndOverflow.
1133  */
1134 static void s626_set_int_src_a(struct comedi_device *dev,
1135                                const struct s626_enc_info *k,
1136                                uint16_t int_source)
1137 {
1138         struct s626_private *devpriv = dev->private;
1139
1140         /* Reset any pending counter overflow or index captures. */
1141         s626_debi_replace(dev, k->my_crb, ~S626_CRBMSK_INTCTRL,
1142                           (S626_SET_CRB_INTRESETCMD(1) |
1143                            S626_SET_CRB_INTRESET_A(1)));
1144
1145         /* Program counter interrupt source. */
1146         s626_debi_replace(dev, k->my_cra, ~S626_CRAMSK_INTSRC_A,
1147                           S626_SET_CRA_INTSRC_A(int_source));
1148
1149         /* Update MISC2 interrupt enable mask. */
1150         devpriv->counter_int_enabs =
1151             (devpriv->counter_int_enabs & ~k->my_event_bits[3]) |
1152             k->my_event_bits[int_source];
1153 }
1154
1155 static void s626_set_int_src_b(struct comedi_device *dev,
1156                                const struct s626_enc_info *k,
1157                                uint16_t int_source)
1158 {
1159         struct s626_private *devpriv = dev->private;
1160         uint16_t crb;
1161
1162         /* Cache writeable CRB register image. */
1163         crb = s626_debi_read(dev, k->my_crb) & ~S626_CRBMSK_INTCTRL;
1164
1165         /* Reset any pending counter overflow or index captures. */
1166         s626_debi_write(dev, k->my_crb, (crb | S626_SET_CRB_INTRESETCMD(1) |
1167                                          S626_SET_CRB_INTRESET_B(1)));
1168
1169         /* Program counter interrupt source. */
1170         s626_debi_write(dev, k->my_crb, ((crb & ~S626_CRBMSK_INTSRC_B) |
1171                                          S626_SET_CRB_INTSRC_B(int_source)));
1172
1173         /* Update MISC2 interrupt enable mask. */
1174         devpriv->counter_int_enabs =
1175                 (devpriv->counter_int_enabs & ~k->my_event_bits[3]) |
1176                 k->my_event_bits[int_source];
1177 }
1178
1179 static uint16_t s626_get_int_src_a(struct comedi_device *dev,
1180                                    const struct s626_enc_info *k)
1181 {
1182         return S626_GET_CRA_INTSRC_A(s626_debi_read(dev, k->my_cra));
1183 }
1184
1185 static uint16_t s626_get_int_src_b(struct comedi_device *dev,
1186                                    const struct s626_enc_info *k)
1187 {
1188         return S626_GET_CRB_INTSRC_B(s626_debi_read(dev, k->my_crb));
1189 }
1190
1191 #ifdef unused
1192 /*
1193  * Return/set the clock multiplier.
1194  */
1195 static void s626_set_clk_mult(struct comedi_device *dev,
1196                               const struct s626_enc_info *k, uint16_t value)
1197 {
1198         k->set_mode(dev, k, ((k->get_mode(dev, k) & ~S626_STDMSK_CLKMULT) |
1199                              S626_SET_STD_CLKMULT(value)), false);
1200 }
1201
1202 static uint16_t s626_get_clk_mult(struct comedi_device *dev,
1203                                   const struct s626_enc_info *k)
1204 {
1205         return S626_GET_STD_CLKMULT(k->get_mode(dev, k));
1206 }
1207
1208 /*
1209  * Return/set the clock polarity.
1210  */
1211 static void s626_set_clk_pol(struct comedi_device *dev,
1212                              const struct s626_enc_info *k, uint16_t value)
1213 {
1214         k->set_mode(dev, k, ((k->get_mode(dev, k) & ~S626_STDMSK_CLKPOL) |
1215                              S626_SET_STD_CLKPOL(value)), false);
1216 }
1217
1218 static uint16_t s626_get_clk_pol(struct comedi_device *dev,
1219                                  const struct s626_enc_info *k)
1220 {
1221         return S626_GET_STD_CLKPOL(k->get_mode(dev, k));
1222 }
1223
1224 /*
1225  * Return/set the encoder mode.
1226  */
1227 static void s626_set_enc_mode(struct comedi_device *dev,
1228                               const struct s626_enc_info *k, uint16_t value)
1229 {
1230         k->set_mode(dev, k, ((k->get_mode(dev, k) & ~S626_STDMSK_ENCMODE) |
1231                              S626_SET_STD_ENCMODE(value)), false);
1232 }
1233
1234 static uint16_t s626_get_enc_mode(struct comedi_device *dev,
1235                                   const struct s626_enc_info *k)
1236 {
1237         return S626_GET_STD_ENCMODE(k->get_mode(dev, k));
1238 }
1239
1240 /*
1241  * Return/set the index polarity.
1242  */
1243 static void s626_set_index_pol(struct comedi_device *dev,
1244                                const struct s626_enc_info *k, uint16_t value)
1245 {
1246         k->set_mode(dev, k, ((k->get_mode(dev, k) & ~S626_STDMSK_INDXPOL) |
1247                              S626_SET_STD_INDXPOL(value != 0)), false);
1248 }
1249
1250 static uint16_t s626_get_index_pol(struct comedi_device *dev,
1251                                    const struct s626_enc_info *k)
1252 {
1253         return S626_GET_STD_INDXPOL(k->get_mode(dev, k));
1254 }
1255
1256 /*
1257  * Return/set the index source.
1258  */
1259 static void s626_set_index_src(struct comedi_device *dev,
1260                                const struct s626_enc_info *k, uint16_t value)
1261 {
1262         k->set_mode(dev, k, ((k->get_mode(dev, k) & ~S626_STDMSK_INDXSRC) |
1263                              S626_SET_STD_INDXSRC(value != 0)), false);
1264 }
1265
1266 static uint16_t s626_get_index_src(struct comedi_device *dev,
1267                                    const struct s626_enc_info *k)
1268 {
1269         return S626_GET_STD_INDXSRC(k->get_mode(dev, k));
1270 }
1271 #endif
1272
1273 /*
1274  * Generate an index pulse.
1275  */
1276 static void s626_pulse_index_a(struct comedi_device *dev,
1277                                const struct s626_enc_info *k)
1278 {
1279         uint16_t cra;
1280
1281         cra = s626_debi_read(dev, k->my_cra);
1282         /* Pulse index. */
1283         s626_debi_write(dev, k->my_cra, (cra ^ S626_CRAMSK_INDXPOL_A));
1284         s626_debi_write(dev, k->my_cra, cra);
1285 }
1286
1287 static void s626_pulse_index_b(struct comedi_device *dev,
1288                                const struct s626_enc_info *k)
1289 {
1290         uint16_t crb;
1291
1292         crb = s626_debi_read(dev, k->my_crb) & ~S626_CRBMSK_INTCTRL;
1293         /* Pulse index. */
1294         s626_debi_write(dev, k->my_crb, (crb ^ S626_CRBMSK_INDXPOL_B));
1295         s626_debi_write(dev, k->my_crb, crb);
1296 }
1297
1298 static const struct s626_enc_info s626_enc_chan_info[] = {
1299         {
1300                 .get_enable             = s626_get_enable_a,
1301                 .get_int_src            = s626_get_int_src_a,
1302                 .get_load_trig          = s626_get_load_trig_a,
1303                 .get_mode               = s626_get_mode_a,
1304                 .pulse_index            = s626_pulse_index_a,
1305                 .set_enable             = s626_set_enable_a,
1306                 .set_int_src            = s626_set_int_src_a,
1307                 .set_load_trig          = s626_set_load_trig_a,
1308                 .set_mode               = s626_set_mode_a,
1309                 .reset_cap_flags        = s626_reset_cap_flags_a,
1310                 .my_cra                 = S626_LP_CR0A,
1311                 .my_crb                 = S626_LP_CR0B,
1312                 .my_latch_lsw           = S626_LP_CNTR0ALSW,
1313                 .my_event_bits          = S626_EVBITS(0),
1314         }, {
1315                 .get_enable             = s626_get_enable_a,
1316                 .get_int_src            = s626_get_int_src_a,
1317                 .get_load_trig          = s626_get_load_trig_a,
1318                 .get_mode               = s626_get_mode_a,
1319                 .pulse_index            = s626_pulse_index_a,
1320                 .set_enable             = s626_set_enable_a,
1321                 .set_int_src            = s626_set_int_src_a,
1322                 .set_load_trig          = s626_set_load_trig_a,
1323                 .set_mode               = s626_set_mode_a,
1324                 .reset_cap_flags        = s626_reset_cap_flags_a,
1325                 .my_cra                 = S626_LP_CR1A,
1326                 .my_crb                 = S626_LP_CR1B,
1327                 .my_latch_lsw           = S626_LP_CNTR1ALSW,
1328                 .my_event_bits          = S626_EVBITS(1),
1329         }, {
1330                 .get_enable             = s626_get_enable_a,
1331                 .get_int_src            = s626_get_int_src_a,
1332                 .get_load_trig          = s626_get_load_trig_a,
1333                 .get_mode               = s626_get_mode_a,
1334                 .pulse_index            = s626_pulse_index_a,
1335                 .set_enable             = s626_set_enable_a,
1336                 .set_int_src            = s626_set_int_src_a,
1337                 .set_load_trig          = s626_set_load_trig_a,
1338                 .set_mode               = s626_set_mode_a,
1339                 .reset_cap_flags        = s626_reset_cap_flags_a,
1340                 .my_cra                 = S626_LP_CR2A,
1341                 .my_crb                 = S626_LP_CR2B,
1342                 .my_latch_lsw           = S626_LP_CNTR2ALSW,
1343                 .my_event_bits          = S626_EVBITS(2),
1344         }, {
1345                 .get_enable             = s626_get_enable_b,
1346                 .get_int_src            = s626_get_int_src_b,
1347                 .get_load_trig          = s626_get_load_trig_b,
1348                 .get_mode               = s626_get_mode_b,
1349                 .pulse_index            = s626_pulse_index_b,
1350                 .set_enable             = s626_set_enable_b,
1351                 .set_int_src            = s626_set_int_src_b,
1352                 .set_load_trig          = s626_set_load_trig_b,
1353                 .set_mode               = s626_set_mode_b,
1354                 .reset_cap_flags        = s626_reset_cap_flags_b,
1355                 .my_cra                 = S626_LP_CR0A,
1356                 .my_crb                 = S626_LP_CR0B,
1357                 .my_latch_lsw           = S626_LP_CNTR0BLSW,
1358                 .my_event_bits          = S626_EVBITS(3),
1359         }, {
1360                 .get_enable             = s626_get_enable_b,
1361                 .get_int_src            = s626_get_int_src_b,
1362                 .get_load_trig          = s626_get_load_trig_b,
1363                 .get_mode               = s626_get_mode_b,
1364                 .pulse_index            = s626_pulse_index_b,
1365                 .set_enable             = s626_set_enable_b,
1366                 .set_int_src            = s626_set_int_src_b,
1367                 .set_load_trig          = s626_set_load_trig_b,
1368                 .set_mode               = s626_set_mode_b,
1369                 .reset_cap_flags        = s626_reset_cap_flags_b,
1370                 .my_cra                 = S626_LP_CR1A,
1371                 .my_crb                 = S626_LP_CR1B,
1372                 .my_latch_lsw           = S626_LP_CNTR1BLSW,
1373                 .my_event_bits          = S626_EVBITS(4),
1374         }, {
1375                 .get_enable             = s626_get_enable_b,
1376                 .get_int_src            = s626_get_int_src_b,
1377                 .get_load_trig          = s626_get_load_trig_b,
1378                 .get_mode               = s626_get_mode_b,
1379                 .pulse_index            = s626_pulse_index_b,
1380                 .set_enable             = s626_set_enable_b,
1381                 .set_int_src            = s626_set_int_src_b,
1382                 .set_load_trig          = s626_set_load_trig_b,
1383                 .set_mode               = s626_set_mode_b,
1384                 .reset_cap_flags        = s626_reset_cap_flags_b,
1385                 .my_cra                 = S626_LP_CR2A,
1386                 .my_crb                 = S626_LP_CR2B,
1387                 .my_latch_lsw           = S626_LP_CNTR2BLSW,
1388                 .my_event_bits          = S626_EVBITS(5),
1389         },
1390 };
1391
1392 static unsigned int s626_ai_reg_to_uint(unsigned int data)
1393 {
1394         return ((data >> 18) & 0x3fff) ^ 0x2000;
1395 }
1396
1397 static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
1398 {
1399         unsigned int group = chan / 16;
1400         unsigned int mask = 1 << (chan - (16 * group));
1401         unsigned int status;
1402
1403         /* set channel to capture positive edge */
1404         status = s626_debi_read(dev, S626_LP_RDEDGSEL(group));
1405         s626_debi_write(dev, S626_LP_WREDGSEL(group), mask | status);
1406
1407         /* enable interrupt on selected channel */
1408         status = s626_debi_read(dev, S626_LP_RDINTSEL(group));
1409         s626_debi_write(dev, S626_LP_WRINTSEL(group), mask | status);
1410
1411         /* enable edge capture write command */
1412         s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_EDCAP);
1413
1414         /* enable edge capture on selected channel */
1415         status = s626_debi_read(dev, S626_LP_RDCAPSEL(group));
1416         s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask | status);
1417
1418         return 0;
1419 }
1420
1421 static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
1422                               unsigned int mask)
1423 {
1424         /* disable edge capture write command */
1425         s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1426
1427         /* enable edge capture on selected channel */
1428         s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask);
1429
1430         return 0;
1431 }
1432
1433 static int s626_dio_clear_irq(struct comedi_device *dev)
1434 {
1435         unsigned int group;
1436
1437         /* disable edge capture write command */
1438         s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1439
1440         /* clear all dio pending events and interrupt */
1441         for (group = 0; group < S626_DIO_BANKS; group++)
1442                 s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
1443
1444         return 0;
1445 }
1446
1447 static void s626_handle_dio_interrupt(struct comedi_device *dev,
1448                                       uint16_t irqbit, uint8_t group)
1449 {
1450         struct s626_private *devpriv = dev->private;
1451         struct comedi_subdevice *s = dev->read_subdev;
1452         struct comedi_cmd *cmd = &s->async->cmd;
1453
1454         s626_dio_reset_irq(dev, group, irqbit);
1455
1456         if (devpriv->ai_cmd_running) {
1457                 /* check if interrupt is an ai acquisition start trigger */
1458                 if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 &&
1459                     cmd->start_src == TRIG_EXT) {
1460                         /* Start executing the RPS program */
1461                         s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1462
1463                         if (cmd->scan_begin_src == TRIG_EXT)
1464                                 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1465                 }
1466                 if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 &&
1467                     cmd->scan_begin_src == TRIG_EXT) {
1468                         /* Trigger ADC scan loop start */
1469                         s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1470
1471                         if (cmd->convert_src == TRIG_EXT) {
1472                                 devpriv->ai_convert_count = cmd->chanlist_len;
1473
1474                                 s626_dio_set_irq(dev, cmd->convert_arg);
1475                         }
1476
1477                         if (cmd->convert_src == TRIG_TIMER) {
1478                                 const struct s626_enc_info *k =
1479                                         &s626_enc_chan_info[5];
1480
1481                                 devpriv->ai_convert_count = cmd->chanlist_len;
1482                                 k->set_enable(dev, k, S626_CLKENAB_ALWAYS);
1483                         }
1484                 }
1485                 if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 &&
1486                     cmd->convert_src == TRIG_EXT) {
1487                         /* Trigger ADC scan loop start */
1488                         s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1489
1490                         devpriv->ai_convert_count--;
1491                         if (devpriv->ai_convert_count > 0)
1492                                 s626_dio_set_irq(dev, cmd->convert_arg);
1493                 }
1494         }
1495 }
1496
1497 static void s626_check_dio_interrupts(struct comedi_device *dev)
1498 {
1499         uint16_t irqbit;
1500         uint8_t group;
1501
1502         for (group = 0; group < S626_DIO_BANKS; group++) {
1503                 irqbit = 0;
1504                 /* read interrupt type */
1505                 irqbit = s626_debi_read(dev, S626_LP_RDCAPFLG(group));
1506
1507                 /* check if interrupt is generated from dio channels */
1508                 if (irqbit) {
1509                         s626_handle_dio_interrupt(dev, irqbit, group);
1510                         return;
1511                 }
1512         }
1513 }
1514
1515 static void s626_check_counter_interrupts(struct comedi_device *dev)
1516 {
1517         struct s626_private *devpriv = dev->private;
1518         struct comedi_subdevice *s = dev->read_subdev;
1519         struct comedi_async *async = s->async;
1520         struct comedi_cmd *cmd = &async->cmd;
1521         const struct s626_enc_info *k;
1522         uint16_t irqbit;
1523
1524         /* read interrupt type */
1525         irqbit = s626_debi_read(dev, S626_LP_RDMISC2);
1526
1527         /* check interrupt on counters */
1528         if (irqbit & S626_IRQ_COINT1A) {
1529                 k = &s626_enc_chan_info[0];
1530
1531                 /* clear interrupt capture flag */
1532                 k->reset_cap_flags(dev, k);
1533         }
1534         if (irqbit & S626_IRQ_COINT2A) {
1535                 k = &s626_enc_chan_info[1];
1536
1537                 /* clear interrupt capture flag */
1538                 k->reset_cap_flags(dev, k);
1539         }
1540         if (irqbit & S626_IRQ_COINT3A) {
1541                 k = &s626_enc_chan_info[2];
1542
1543                 /* clear interrupt capture flag */
1544                 k->reset_cap_flags(dev, k);
1545         }
1546         if (irqbit & S626_IRQ_COINT1B) {
1547                 k = &s626_enc_chan_info[3];
1548
1549                 /* clear interrupt capture flag */
1550                 k->reset_cap_flags(dev, k);
1551         }
1552         if (irqbit & S626_IRQ_COINT2B) {
1553                 k = &s626_enc_chan_info[4];
1554
1555                 /* clear interrupt capture flag */
1556                 k->reset_cap_flags(dev, k);
1557
1558                 if (devpriv->ai_convert_count > 0) {
1559                         devpriv->ai_convert_count--;
1560                         if (devpriv->ai_convert_count == 0)
1561                                 k->set_enable(dev, k, S626_CLKENAB_INDEX);
1562
1563                         if (cmd->convert_src == TRIG_TIMER) {
1564                                 /* Trigger ADC scan loop start */
1565                                 s626_mc_enable(dev, S626_MC2_ADC_RPS,
1566                                                S626_P_MC2);
1567                         }
1568                 }
1569         }
1570         if (irqbit & S626_IRQ_COINT3B) {
1571                 k = &s626_enc_chan_info[5];
1572
1573                 /* clear interrupt capture flag */
1574                 k->reset_cap_flags(dev, k);
1575
1576                 if (cmd->scan_begin_src == TRIG_TIMER) {
1577                         /* Trigger ADC scan loop start */
1578                         s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1579                 }
1580
1581                 if (cmd->convert_src == TRIG_TIMER) {
1582                         k = &s626_enc_chan_info[4];
1583                         devpriv->ai_convert_count = cmd->chanlist_len;
1584                         k->set_enable(dev, k, S626_CLKENAB_ALWAYS);
1585                 }
1586         }
1587 }
1588
1589 static bool s626_handle_eos_interrupt(struct comedi_device *dev)
1590 {
1591         struct s626_private *devpriv = dev->private;
1592         struct comedi_subdevice *s = dev->read_subdev;
1593         struct comedi_async *async = s->async;
1594         struct comedi_cmd *cmd = &async->cmd;
1595         /*
1596          * Init ptr to DMA buffer that holds new ADC data.  We skip the
1597          * first uint16_t in the buffer because it contains junk data
1598          * from the final ADC of the previous poll list scan.
1599          */
1600         uint32_t *readaddr = (uint32_t *)devpriv->ana_buf.logical_base + 1;
1601         bool finished = false;
1602         int i;
1603
1604         /* get the data and hand it over to comedi */
1605         for (i = 0; i < cmd->chanlist_len; i++) {
1606                 unsigned short tempdata;
1607
1608                 /*
1609                  * Convert ADC data to 16-bit integer values and copy
1610                  * to application buffer.
1611                  */
1612                 tempdata = s626_ai_reg_to_uint(*readaddr);
1613                 readaddr++;
1614
1615                 /* put data into read buffer */
1616                 /* comedi_buf_put(async, tempdata); */
1617                 cfc_write_to_buffer(s, tempdata);
1618         }
1619
1620         /* end of scan occurs */
1621         async->events |= COMEDI_CB_EOS;
1622
1623         if (!devpriv->ai_continuous)
1624                 devpriv->ai_sample_count--;
1625         if (devpriv->ai_sample_count <= 0) {
1626                 devpriv->ai_cmd_running = 0;
1627
1628                 /* Stop RPS program */
1629                 s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
1630
1631                 /* send end of acquisition */
1632                 async->events |= COMEDI_CB_EOA;
1633
1634                 /* disable master interrupt */
1635                 finished = true;
1636         }
1637
1638         if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT)
1639                 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1640
1641         /* tell comedi that data is there */
1642         comedi_event(dev, s);
1643
1644         return finished;
1645 }
1646
1647 static irqreturn_t s626_irq_handler(int irq, void *d)
1648 {
1649         struct comedi_device *dev = d;
1650         struct s626_private *devpriv = dev->private;
1651         unsigned long flags;
1652         uint32_t irqtype, irqstatus;
1653
1654         if (!dev->attached)
1655                 return IRQ_NONE;
1656         /* lock to avoid race with comedi_poll */
1657         spin_lock_irqsave(&dev->spinlock, flags);
1658
1659         /* save interrupt enable register state */
1660         irqstatus = readl(devpriv->mmio + S626_P_IER);
1661
1662         /* read interrupt type */
1663         irqtype = readl(devpriv->mmio + S626_P_ISR);
1664
1665         /* disable master interrupt */
1666         writel(0, devpriv->mmio + S626_P_IER);
1667
1668         /* clear interrupt */
1669         writel(irqtype, devpriv->mmio + S626_P_ISR);
1670
1671         switch (irqtype) {
1672         case S626_IRQ_RPS1:     /* end_of_scan occurs */
1673                 if (s626_handle_eos_interrupt(dev))
1674                         irqstatus = 0;
1675                 break;
1676         case S626_IRQ_GPIO3:    /* check dio and counter interrupt */
1677                 /* s626_dio_clear_irq(dev); */
1678                 s626_check_dio_interrupts(dev);
1679                 s626_check_counter_interrupts(dev);
1680                 break;
1681         }
1682
1683         /* enable interrupt */
1684         writel(irqstatus, devpriv->mmio + S626_P_IER);
1685
1686         spin_unlock_irqrestore(&dev->spinlock, flags);
1687         return IRQ_HANDLED;
1688 }
1689
1690 /*
1691  * This function builds the RPS program for hardware driven acquisition.
1692  */
1693 static void s626_reset_adc(struct comedi_device *dev, uint8_t *ppl)
1694 {
1695         struct s626_private *devpriv = dev->private;
1696         struct comedi_subdevice *s = dev->read_subdev;
1697         struct comedi_cmd *cmd = &s->async->cmd;
1698         uint32_t *rps;
1699         uint32_t jmp_adrs;
1700         uint16_t i;
1701         uint16_t n;
1702         uint32_t local_ppl;
1703
1704         /* Stop RPS program in case it is currently running */
1705         s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
1706
1707         /* Set starting logical address to write RPS commands. */
1708         rps = (uint32_t *)devpriv->rps_buf.logical_base;
1709
1710         /* Initialize RPS instruction pointer */
1711         writel((uint32_t)devpriv->rps_buf.physical_base,
1712                devpriv->mmio + S626_P_RPSADDR1);
1713
1714         /* Construct RPS program in rps_buf DMA buffer */
1715         if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
1716                 /* Wait for Start trigger. */
1717                 *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1718                 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
1719         }
1720
1721         /*
1722          * SAA7146 BUG WORKAROUND Do a dummy DEBI Write.  This is necessary
1723          * because the first RPS DEBI Write following a non-RPS DEBI write
1724          * seems to always fail.  If we don't do this dummy write, the ADC
1725          * gain might not be set to the value required for the first slot in
1726          * the poll list; the ADC gain would instead remain unchanged from
1727          * the previously programmed value.
1728          */
1729         /* Write DEBI Write command and address to shadow RAM. */
1730         *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1731         *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
1732         *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1733         /* Write DEBI immediate data  to shadow RAM: */
1734         *rps++ = S626_GSEL_BIPOLAR5V;   /* arbitrary immediate data  value. */
1735         *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1736         /* Reset "shadow RAM  uploaded" flag. */
1737         /* Invoke shadow RAM upload. */
1738         *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1739         /* Wait for shadow upload to finish. */
1740         *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1741
1742         /*
1743          * Digitize all slots in the poll list. This is implemented as a
1744          * for loop to limit the slot count to 16 in case the application
1745          * forgot to set the S626_EOPL flag in the final slot.
1746          */
1747         for (devpriv->adc_items = 0; devpriv->adc_items < 16;
1748              devpriv->adc_items++) {
1749                 /*
1750                  * Convert application's poll list item to private board class
1751                  * format.  Each app poll list item is an uint8_t with form
1752                  * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1753                  * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1754                  */
1755                 local_ppl = (*ppl << 8) | (*ppl & 0x10 ? S626_GSEL_BIPOLAR5V :
1756                                            S626_GSEL_BIPOLAR10V);
1757
1758                 /* Switch ADC analog gain. */
1759                 /* Write DEBI command and address to shadow RAM. */
1760                 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1761                 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
1762                 /* Write DEBI immediate data to shadow RAM. */
1763                 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1764                 *rps++ = local_ppl;
1765                 /* Reset "shadow RAM uploaded" flag. */
1766                 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1767                 /* Invoke shadow RAM upload. */
1768                 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1769                 /* Wait for shadow upload to finish. */
1770                 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1771                 /* Select ADC analog input channel. */
1772                 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1773                 /* Write DEBI command and address to shadow RAM. */
1774                 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_ISEL;
1775                 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1776                 /* Write DEBI immediate data to shadow RAM. */
1777                 *rps++ = local_ppl;
1778                 /* Reset "shadow RAM uploaded" flag. */
1779                 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1780                 /* Invoke shadow RAM upload. */
1781                 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1782                 /* Wait for shadow upload to finish. */
1783                 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1784
1785                 /*
1786                  * Delay at least 10 microseconds for analog input settling.
1787                  * Instead of padding with NOPs, we use S626_RPS_JUMP
1788                  * instructions here; this allows us to produce a longer delay
1789                  * than is possible with NOPs because each S626_RPS_JUMP
1790                  * flushes the RPS' instruction prefetch pipeline.
1791                  */
1792                 jmp_adrs =
1793                         (uint32_t)devpriv->rps_buf.physical_base +
1794                         (uint32_t)((unsigned long)rps -
1795                                    (unsigned long)devpriv->
1796                                                   rps_buf.logical_base);
1797                 for (i = 0; i < (10 * S626_RPSCLK_PER_US / 2); i++) {
1798                         jmp_adrs += 8;  /* Repeat to implement time delay: */
1799                         /* Jump to next RPS instruction. */
1800                         *rps++ = S626_RPS_JUMP;
1801                         *rps++ = jmp_adrs;
1802                 }
1803
1804                 if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
1805                         /* Wait for Start trigger. */
1806                         *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1807                         *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
1808                 }
1809                 /* Start ADC by pulsing GPIO1. */
1810                 /* Begin ADC Start pulse. */
1811                 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1812                 *rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1813                 *rps++ = S626_RPS_NOP;
1814                 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1815                 /* End ADC Start pulse. */
1816                 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1817                 *rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
1818                 /*
1819                  * Wait for ADC to complete (GPIO2 is asserted high when ADC not
1820                  * busy) and for data from previous conversion to shift into FB
1821                  * BUFFER 1 register.
1822                  */
1823                 /* Wait for ADC done. */
1824                 *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;
1825
1826                 /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
1827                 *rps++ = S626_RPS_STREG |
1828                          (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
1829                 *rps++ = (uint32_t)devpriv->ana_buf.physical_base +
1830                          (devpriv->adc_items << 2);
1831
1832                 /*
1833                  * If this slot's EndOfPollList flag is set, all channels have
1834                  * now been processed.
1835                  */
1836                 if (*ppl++ & S626_EOPL) {
1837                         devpriv->adc_items++; /* Adjust poll list item count. */
1838                         break;  /* Exit poll list processing loop. */
1839                 }
1840         }
1841
1842         /*
1843          * VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US.  Allow the
1844          * ADC to stabilize for 2 microseconds before starting the final
1845          * (dummy) conversion.  This delay is necessary to allow sufficient
1846          * time between last conversion finished and the start of the dummy
1847          * conversion.  Without this delay, the last conversion's data value
1848          * is sometimes set to the previous conversion's data value.
1849          */
1850         for (n = 0; n < (2 * S626_RPSCLK_PER_US); n++)
1851                 *rps++ = S626_RPS_NOP;
1852
1853         /*
1854          * Start a dummy conversion to cause the data from the last
1855          * conversion of interest to be shifted in.
1856          */
1857         /* Begin ADC Start pulse. */
1858         *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1859         *rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1860         *rps++ = S626_RPS_NOP;
1861         /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1862         *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); /* End ADC Start pulse. */
1863         *rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
1864
1865         /*
1866          * Wait for the data from the last conversion of interest to arrive
1867          * in FB BUFFER 1 register.
1868          */
1869         *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;       /* Wait for ADC done. */
1870
1871         /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1872         *rps++ = S626_RPS_STREG | (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
1873         *rps++ = (uint32_t)devpriv->ana_buf.physical_base +
1874                  (devpriv->adc_items << 2);
1875
1876         /* Indicate ADC scan loop is finished. */
1877         /* Signal ReadADC() that scan is done. */
1878         /* *rps++= S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; */
1879
1880         /* invoke interrupt */
1881         if (devpriv->ai_cmd_running == 1)
1882                 *rps++ = S626_RPS_IRQ;
1883
1884         /* Restart RPS program at its beginning. */
1885         *rps++ = S626_RPS_JUMP; /* Branch to start of RPS program. */
1886         *rps++ = (uint32_t)devpriv->rps_buf.physical_base;
1887
1888         /* End of RPS program build */
1889 }
1890
1891 #ifdef unused_code
1892 static int s626_ai_rinsn(struct comedi_device *dev,
1893                          struct comedi_subdevice *s,
1894                          struct comedi_insn *insn,
1895                          unsigned int *data)
1896 {
1897         struct s626_private *devpriv = dev->private;
1898         uint8_t i;
1899         int32_t *readaddr;
1900
1901         /* Trigger ADC scan loop start */
1902         s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1903
1904         /* Wait until ADC scan loop is finished (RPS Signal 0 reset) */
1905         while (s626_mc_test(dev, S626_MC2_ADC_RPS, S626_P_MC2))
1906                 ;
1907
1908         /*
1909          * Init ptr to DMA buffer that holds new ADC data.  We skip the
1910          * first uint16_t in the buffer because it contains junk data from
1911          * the final ADC of the previous poll list scan.
1912          */
1913         readaddr = (uint32_t *)devpriv->ana_buf.logical_base + 1;
1914
1915         /*
1916          * Convert ADC data to 16-bit integer values and
1917          * copy to application buffer.
1918          */
1919         for (i = 0; i < devpriv->adc_items; i++) {
1920                 *data = s626_ai_reg_to_uint(*readaddr++);
1921                 data++;
1922         }
1923
1924         return i;
1925 }
1926 #endif
1927
1928 static int s626_ai_eoc(struct comedi_device *dev,
1929                        struct comedi_subdevice *s,
1930                        struct comedi_insn *insn,
1931                        unsigned long context)
1932 {
1933         struct s626_private *devpriv = dev->private;
1934         unsigned int status;
1935
1936         status = readl(devpriv->mmio + S626_P_PSR);
1937         if (status & S626_PSR_GPIO2)
1938                 return 0;
1939         return -EBUSY;
1940 }
1941
1942 static int s626_ai_insn_read(struct comedi_device *dev,
1943                              struct comedi_subdevice *s,
1944                              struct comedi_insn *insn, unsigned int *data)
1945 {
1946         struct s626_private *devpriv = dev->private;
1947         uint16_t chan = CR_CHAN(insn->chanspec);
1948         uint16_t range = CR_RANGE(insn->chanspec);
1949         uint16_t adc_spec = 0;
1950         uint32_t gpio_image;
1951         uint32_t tmp;
1952         int ret;
1953         int n;
1954
1955         /*
1956          * Convert application's ADC specification into form
1957          *  appropriate for register programming.
1958          */
1959         if (range == 0)
1960                 adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR5V);
1961         else
1962                 adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR10V);
1963
1964         /* Switch ADC analog gain. */
1965         s626_debi_write(dev, S626_LP_GSEL, adc_spec);   /* Set gain. */
1966
1967         /* Select ADC analog input channel. */
1968         s626_debi_write(dev, S626_LP_ISEL, adc_spec);   /* Select channel. */
1969
1970         for (n = 0; n < insn->n; n++) {
1971                 /* Delay 10 microseconds for analog input settling. */
1972                 udelay(10);
1973
1974                 /* Start ADC by pulsing GPIO1 low */
1975                 gpio_image = readl(devpriv->mmio + S626_P_GPIO);
1976                 /* Assert ADC Start command */
1977                 writel(gpio_image & ~S626_GPIO1_HI,
1978                        devpriv->mmio + S626_P_GPIO);
1979                 /* and stretch it out */
1980                 writel(gpio_image & ~S626_GPIO1_HI,
1981                        devpriv->mmio + S626_P_GPIO);
1982                 writel(gpio_image & ~S626_GPIO1_HI,
1983                        devpriv->mmio + S626_P_GPIO);
1984                 /* Negate ADC Start command */
1985                 writel(gpio_image | S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
1986
1987                 /*
1988                  * Wait for ADC to complete (GPIO2 is asserted high when
1989                  * ADC not busy) and for data from previous conversion to
1990                  * shift into FB BUFFER 1 register.
1991                  */
1992
1993                 /* Wait for ADC done */
1994                 ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
1995                 if (ret)
1996                         return ret;
1997
1998                 /* Fetch ADC data */
1999                 if (n != 0) {
2000                         tmp = readl(devpriv->mmio + S626_P_FB_BUFFER1);
2001                         data[n - 1] = s626_ai_reg_to_uint(tmp);
2002                 }
2003
2004                 /*
2005                  * Allow the ADC to stabilize for 4 microseconds before
2006                  * starting the next (final) conversion.  This delay is
2007                  * necessary to allow sufficient time between last
2008                  * conversion finished and the start of the next
2009                  * conversion.  Without this delay, the last conversion's
2010                  * data value is sometimes set to the previous
2011                  * conversion's data value.
2012                  */
2013                 udelay(4);
2014         }
2015
2016         /*
2017          * Start a dummy conversion to cause the data from the
2018          * previous conversion to be shifted in.
2019          */
2020         gpio_image = readl(devpriv->mmio + S626_P_GPIO);
2021         /* Assert ADC Start command */
2022         writel(gpio_image & ~S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
2023         /* and stretch it out */
2024         writel(gpio_image & ~S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
2025         writel(gpio_image & ~S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
2026         /* Negate ADC Start command */
2027         writel(gpio_image | S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
2028
2029         /* Wait for the data to arrive in FB BUFFER 1 register. */
2030
2031         /* Wait for ADC done */
2032         while (!(readl(devpriv->mmio + S626_P_PSR) & S626_PSR_GPIO2))
2033                 ;
2034
2035         /* Fetch ADC data from audio interface's input shift register. */
2036
2037         /* Fetch ADC data */
2038         if (n != 0) {
2039                 tmp = readl(devpriv->mmio + S626_P_FB_BUFFER1);
2040                 data[n - 1] = s626_ai_reg_to_uint(tmp);
2041         }
2042
2043         return n;
2044 }
2045
2046 static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd)
2047 {
2048         int n;
2049
2050         for (n = 0; n < cmd->chanlist_len; n++) {
2051                 if (CR_RANGE(cmd->chanlist[n]) == 0)
2052                         ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_5V;
2053                 else
2054                         ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_10V;
2055         }
2056         if (n != 0)
2057                 ppl[n - 1] |= S626_EOPL;
2058
2059         return n;
2060 }
2061
2062 static int s626_ai_inttrig(struct comedi_device *dev,
2063                            struct comedi_subdevice *s, unsigned int trignum)
2064 {
2065         if (trignum != 0)
2066                 return -EINVAL;
2067
2068         /* Start executing the RPS program */
2069         s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
2070
2071         s->async->inttrig = NULL;
2072
2073         return 1;
2074 }
2075
2076 /*
2077  * This function doesn't require a particular form, this is just what
2078  * happens to be used in some of the drivers.  It should convert ns
2079  * nanoseconds to a counter value suitable for programming the device.
2080  * Also, it should adjust ns so that it cooresponds to the actual time
2081  * that the device will use.
2082  */
2083 static int s626_ns_to_timer(int *nanosec, int round_mode)
2084 {
2085         int divider, base;
2086
2087         base = 500;             /* 2MHz internal clock */
2088
2089         switch (round_mode) {
2090         case TRIG_ROUND_NEAREST:
2091         default:
2092                 divider = (*nanosec + base / 2) / base;
2093                 break;
2094         case TRIG_ROUND_DOWN:
2095                 divider = (*nanosec) / base;
2096                 break;
2097         case TRIG_ROUND_UP:
2098                 divider = (*nanosec + base - 1) / base;
2099                 break;
2100         }
2101
2102         *nanosec = base * divider;
2103         return divider - 1;
2104 }
2105
2106 static void s626_timer_load(struct comedi_device *dev,
2107                             const struct s626_enc_info *k, int tick)
2108 {
2109         uint16_t setup =
2110                 /* Preload upon index. */
2111                 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
2112                 /* Disable hardware index. */
2113                 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
2114                 /* Operating mode is Timer. */
2115                 S626_SET_STD_ENCMODE(S626_ENCMODE_TIMER) |
2116                 /* Count direction is Down. */
2117                 S626_SET_STD_CLKPOL(S626_CNTDIR_DOWN) |
2118                 /* Clock multiplier is 1x. */
2119                 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2120                 /* Enabled by index */
2121                 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
2122         uint16_t value_latchsrc = S626_LATCHSRC_A_INDXA;
2123         /* uint16_t enab = S626_CLKENAB_ALWAYS; */
2124
2125         k->set_mode(dev, k, setup, false);
2126
2127         /* Set the preload register */
2128         s626_preload(dev, k, tick);
2129
2130         /*
2131          * Software index pulse forces the preload register to load
2132          * into the counter
2133          */
2134         k->set_load_trig(dev, k, 0);
2135         k->pulse_index(dev, k);
2136
2137         /* set reload on counter overflow */
2138         k->set_load_trig(dev, k, 1);
2139
2140         /* set interrupt on overflow */
2141         k->set_int_src(dev, k, S626_INTSRC_OVER);
2142
2143         s626_set_latch_source(dev, k, value_latchsrc);
2144         /* k->set_enable(dev, k, (uint16_t)(enab != 0)); */
2145 }
2146
2147 /* TO COMPLETE  */
2148 static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
2149 {
2150         struct s626_private *devpriv = dev->private;
2151         uint8_t ppl[16];
2152         struct comedi_cmd *cmd = &s->async->cmd;
2153         const struct s626_enc_info *k;
2154         int tick;
2155
2156         if (devpriv->ai_cmd_running) {
2157                 dev_err(dev->class_dev,
2158                         "s626_ai_cmd: Another ai_cmd is running\n");
2159                 return -EBUSY;
2160         }
2161         /* disable interrupt */
2162         writel(0, devpriv->mmio + S626_P_IER);
2163
2164         /* clear interrupt request */
2165         writel(S626_IRQ_RPS1 | S626_IRQ_GPIO3, devpriv->mmio + S626_P_ISR);
2166
2167         /* clear any pending interrupt */
2168         s626_dio_clear_irq(dev);
2169         /* s626_enc_clear_irq(dev); */
2170
2171         /* reset ai_cmd_running flag */
2172         devpriv->ai_cmd_running = 0;
2173
2174         /* test if cmd is valid */
2175         if (cmd == NULL)
2176                 return -EINVAL;
2177
2178         s626_ai_load_polllist(ppl, cmd);
2179         devpriv->ai_cmd_running = 1;
2180         devpriv->ai_convert_count = 0;
2181
2182         switch (cmd->scan_begin_src) {
2183         case TRIG_FOLLOW:
2184                 break;
2185         case TRIG_TIMER:
2186                 /*
2187                  * set a counter to generate adc trigger at scan_begin_arg
2188                  * interval
2189                  */
2190                 k = &s626_enc_chan_info[5];
2191                 tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
2192                                         cmd->flags & TRIG_ROUND_MASK);
2193
2194                 /* load timer value and enable interrupt */
2195                 s626_timer_load(dev, k, tick);
2196                 k->set_enable(dev, k, S626_CLKENAB_ALWAYS);
2197                 break;
2198         case TRIG_EXT:
2199                 /* set the digital line and interrupt for scan trigger */
2200                 if (cmd->start_src != TRIG_EXT)
2201                         s626_dio_set_irq(dev, cmd->scan_begin_arg);
2202                 break;
2203         }
2204
2205         switch (cmd->convert_src) {
2206         case TRIG_NOW:
2207                 break;
2208         case TRIG_TIMER:
2209                 /*
2210                  * set a counter to generate adc trigger at convert_arg
2211                  * interval
2212                  */
2213                 k = &s626_enc_chan_info[4];
2214                 tick = s626_ns_to_timer((int *)&cmd->convert_arg,
2215                                         cmd->flags & TRIG_ROUND_MASK);
2216
2217                 /* load timer value and enable interrupt */
2218                 s626_timer_load(dev, k, tick);
2219                 k->set_enable(dev, k, S626_CLKENAB_INDEX);
2220                 break;
2221         case TRIG_EXT:
2222                 /* set the digital line and interrupt for convert trigger */
2223                 if (cmd->scan_begin_src != TRIG_EXT &&
2224                     cmd->start_src == TRIG_EXT)
2225                         s626_dio_set_irq(dev, cmd->convert_arg);
2226                 break;
2227         }
2228
2229         switch (cmd->stop_src) {
2230         case TRIG_COUNT:
2231                 /* data arrives as one packet */
2232                 devpriv->ai_sample_count = cmd->stop_arg;
2233                 devpriv->ai_continuous = 0;
2234                 break;
2235         case TRIG_NONE:
2236                 /* continuous acquisition */
2237                 devpriv->ai_continuous = 1;
2238                 devpriv->ai_sample_count = 1;
2239                 break;
2240         }
2241
2242         s626_reset_adc(dev, ppl);
2243
2244         switch (cmd->start_src) {
2245         case TRIG_NOW:
2246                 /* Trigger ADC scan loop start */
2247                 /* s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); */
2248
2249                 /* Start executing the RPS program */
2250                 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
2251                 s->async->inttrig = NULL;
2252                 break;
2253         case TRIG_EXT:
2254                 /* configure DIO channel for acquisition trigger */
2255                 s626_dio_set_irq(dev, cmd->start_arg);
2256                 s->async->inttrig = NULL;
2257                 break;
2258         case TRIG_INT:
2259                 s->async->inttrig = s626_ai_inttrig;
2260                 break;
2261         }
2262
2263         /* enable interrupt */
2264         writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, devpriv->mmio + S626_P_IER);
2265
2266         return 0;
2267 }
2268
2269 static int s626_ai_cmdtest(struct comedi_device *dev,
2270                            struct comedi_subdevice *s, struct comedi_cmd *cmd)
2271 {
2272         int err = 0;
2273         int tmp;
2274
2275         /* Step 1 : check if triggers are trivially valid */
2276
2277         err |= cfc_check_trigger_src(&cmd->start_src,
2278                                      TRIG_NOW | TRIG_INT | TRIG_EXT);
2279         err |= cfc_check_trigger_src(&cmd->scan_begin_src,
2280                                      TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW);
2281         err |= cfc_check_trigger_src(&cmd->convert_src,
2282                                      TRIG_TIMER | TRIG_EXT | TRIG_NOW);
2283         err |= cfc_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
2284         err |= cfc_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
2285
2286         if (err)
2287                 return 1;
2288
2289         /* Step 2a : make sure trigger sources are unique */
2290
2291         err |= cfc_check_trigger_is_unique(cmd->start_src);
2292         err |= cfc_check_trigger_is_unique(cmd->scan_begin_src);
2293         err |= cfc_check_trigger_is_unique(cmd->convert_src);
2294         err |= cfc_check_trigger_is_unique(cmd->stop_src);
2295
2296         /* Step 2b : and mutually compatible */
2297
2298         if (err)
2299                 return 2;
2300
2301         /* step 3: make sure arguments are trivially compatible */
2302
2303         if (cmd->start_src != TRIG_EXT)
2304                 err |= cfc_check_trigger_arg_is(&cmd->start_arg, 0);
2305         if (cmd->start_src == TRIG_EXT)
2306                 err |= cfc_check_trigger_arg_max(&cmd->start_arg, 39);
2307         if (cmd->scan_begin_src == TRIG_EXT)
2308                 err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, 39);
2309         if (cmd->convert_src == TRIG_EXT)
2310                 err |= cfc_check_trigger_arg_max(&cmd->convert_arg, 39);
2311
2312 #define S626_MAX_SPEED  200000  /* in nanoseconds */
2313 #define S626_MIN_SPEED  2000000000      /* in nanoseconds */
2314
2315         if (cmd->scan_begin_src == TRIG_TIMER) {
2316                 err |= cfc_check_trigger_arg_min(&cmd->scan_begin_arg,
2317                                                  S626_MAX_SPEED);
2318                 err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg,
2319                                                  S626_MIN_SPEED);
2320         } else {
2321                 /* external trigger */
2322                 /* should be level/edge, hi/lo specification here */
2323                 /* should specify multiple external triggers */
2324                 /* err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, 9); */
2325         }
2326         if (cmd->convert_src == TRIG_TIMER) {
2327                 err |= cfc_check_trigger_arg_min(&cmd->convert_arg,
2328                                                  S626_MAX_SPEED);
2329                 err |= cfc_check_trigger_arg_max(&cmd->convert_arg,
2330                                                  S626_MIN_SPEED);
2331         } else {
2332                 /* external trigger */
2333                 /* see above */
2334                 /* err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, 9); */
2335         }
2336
2337         err |= cfc_check_trigger_arg_is(&cmd->scan_end_arg, cmd->chanlist_len);
2338
2339         if (cmd->stop_src == TRIG_COUNT)
2340                 err |= cfc_check_trigger_arg_max(&cmd->stop_arg, 0x00ffffff);
2341         else    /* TRIG_NONE */
2342                 err |= cfc_check_trigger_arg_is(&cmd->stop_arg, 0);
2343
2344         if (err)
2345                 return 3;
2346
2347         /* step 4: fix up any arguments */
2348
2349         if (cmd->scan_begin_src == TRIG_TIMER) {
2350                 tmp = cmd->scan_begin_arg;
2351                 s626_ns_to_timer((int *)&cmd->scan_begin_arg,
2352                                  cmd->flags & TRIG_ROUND_MASK);
2353                 if (tmp != cmd->scan_begin_arg)
2354                         err++;
2355         }
2356         if (cmd->convert_src == TRIG_TIMER) {
2357                 tmp = cmd->convert_arg;
2358                 s626_ns_to_timer((int *)&cmd->convert_arg,
2359                                  cmd->flags & TRIG_ROUND_MASK);
2360                 if (tmp != cmd->convert_arg)
2361                         err++;
2362                 if (cmd->scan_begin_src == TRIG_TIMER &&
2363                     cmd->scan_begin_arg < cmd->convert_arg *
2364                                           cmd->scan_end_arg) {
2365                         cmd->scan_begin_arg = cmd->convert_arg *
2366                                               cmd->scan_end_arg;
2367                         err++;
2368                 }
2369         }
2370
2371         if (err)
2372                 return 4;
2373
2374         return 0;
2375 }
2376
2377 static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
2378 {
2379         struct s626_private *devpriv = dev->private;
2380
2381         /* Stop RPS program in case it is currently running */
2382         s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
2383
2384         /* disable master interrupt */
2385         writel(0, devpriv->mmio + S626_P_IER);
2386
2387         devpriv->ai_cmd_running = 0;
2388
2389         return 0;
2390 }
2391
2392 static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
2393                          struct comedi_insn *insn, unsigned int *data)
2394 {
2395         struct s626_private *devpriv = dev->private;
2396         int i;
2397         int ret;
2398         uint16_t chan = CR_CHAN(insn->chanspec);
2399         int16_t dacdata;
2400
2401         for (i = 0; i < insn->n; i++) {
2402                 dacdata = (int16_t) data[i];
2403                 devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
2404                 dacdata -= (0x1fff);
2405
2406                 ret = s626_set_dac(dev, chan, dacdata);
2407                 if (ret)
2408                         return ret;
2409         }
2410
2411         return i;
2412 }
2413
2414 static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
2415                          struct comedi_insn *insn, unsigned int *data)
2416 {
2417         struct s626_private *devpriv = dev->private;
2418         int i;
2419
2420         for (i = 0; i < insn->n; i++)
2421                 data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
2422
2423         return i;
2424 }
2425
2426 /* *************** DIGITAL I/O FUNCTIONS *************** */
2427
2428 /*
2429  * All DIO functions address a group of DIO channels by means of
2430  * "group" argument.  group may be 0, 1 or 2, which correspond to DIO
2431  * ports A, B and C, respectively.
2432  */
2433
2434 static void s626_dio_init(struct comedi_device *dev)
2435 {
2436         uint16_t group;
2437
2438         /* Prepare to treat writes to WRCapSel as capture disables. */
2439         s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
2440
2441         /* For each group of sixteen channels ... */
2442         for (group = 0; group < S626_DIO_BANKS; group++) {
2443                 /* Disable all interrupts */
2444                 s626_debi_write(dev, S626_LP_WRINTSEL(group), 0);
2445                 /* Disable all event captures */
2446                 s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
2447                 /* Init all DIOs to default edge polarity */
2448                 s626_debi_write(dev, S626_LP_WREDGSEL(group), 0);
2449                 /* Program all outputs to inactive state */
2450                 s626_debi_write(dev, S626_LP_WRDOUT(group), 0);
2451         }
2452 }
2453
2454 static int s626_dio_insn_bits(struct comedi_device *dev,
2455                               struct comedi_subdevice *s,
2456                               struct comedi_insn *insn,
2457                               unsigned int *data)
2458 {
2459         unsigned long group = (unsigned long)s->private;
2460
2461         if (comedi_dio_update_state(s, data))
2462                 s626_debi_write(dev, S626_LP_WRDOUT(group), s->state);
2463
2464         data[1] = s626_debi_read(dev, S626_LP_RDDIN(group));
2465
2466         return insn->n;
2467 }
2468
2469 static int s626_dio_insn_config(struct comedi_device *dev,
2470                                 struct comedi_subdevice *s,
2471                                 struct comedi_insn *insn,
2472                                 unsigned int *data)
2473 {
2474         unsigned long group = (unsigned long)s->private;
2475         int ret;
2476
2477         ret = comedi_dio_insn_config(dev, s, insn, data, 0);
2478         if (ret)
2479                 return ret;
2480
2481         s626_debi_write(dev, S626_LP_WRDOUT(group), s->io_bits);
2482
2483         return insn->n;
2484 }
2485
2486 /*
2487  * Now this function initializes the value of the counter (data[0])
2488  * and set the subdevice. To complete with trigger and interrupt
2489  * configuration.
2490  *
2491  * FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating
2492  * what is being configured, but this function appears to be using data[0]
2493  * as a variable.
2494  */
2495 static int s626_enc_insn_config(struct comedi_device *dev,
2496                                 struct comedi_subdevice *s,
2497                                 struct comedi_insn *insn, unsigned int *data)
2498 {
2499         uint16_t setup =
2500                 /* Preload upon index. */
2501                 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
2502                 /* Disable hardware index. */
2503                 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
2504                 /* Operating mode is Counter. */
2505                 S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
2506                 /* Active high clock. */
2507                 S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
2508                 /* Clock multiplier is 1x. */
2509                 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2510                 /* Enabled by index */
2511                 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
2512         /* uint16_t disable_int_src = true; */
2513         /* uint32_t Preloadvalue;              //Counter initial value */
2514         uint16_t value_latchsrc = S626_LATCHSRC_AB_READ;
2515         uint16_t enab = S626_CLKENAB_ALWAYS;
2516         const struct s626_enc_info *k =
2517                 &s626_enc_chan_info[CR_CHAN(insn->chanspec)];
2518
2519         /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
2520
2521         k->set_mode(dev, k, setup, true);
2522         s626_preload(dev, k, data[0]);
2523         k->pulse_index(dev, k);
2524         s626_set_latch_source(dev, k, value_latchsrc);
2525         k->set_enable(dev, k, (enab != 0));
2526
2527         return insn->n;
2528 }
2529
2530 static int s626_enc_insn_read(struct comedi_device *dev,
2531                               struct comedi_subdevice *s,
2532                               struct comedi_insn *insn, unsigned int *data)
2533 {
2534         int n;
2535         const struct s626_enc_info *k =
2536                 &s626_enc_chan_info[CR_CHAN(insn->chanspec)];
2537
2538         for (n = 0; n < insn->n; n++)
2539                 data[n] = s626_read_latch(dev, k);
2540
2541         return n;
2542 }
2543
2544 static int s626_enc_insn_write(struct comedi_device *dev,
2545                                struct comedi_subdevice *s,
2546                                struct comedi_insn *insn, unsigned int *data)
2547 {
2548         const struct s626_enc_info *k =
2549                 &s626_enc_chan_info[CR_CHAN(insn->chanspec)];
2550
2551         /* Set the preload register */
2552         s626_preload(dev, k, data[0]);
2553
2554         /*
2555          * Software index pulse forces the preload register to load
2556          * into the counter
2557          */
2558         k->set_load_trig(dev, k, 0);
2559         k->pulse_index(dev, k);
2560         k->set_load_trig(dev, k, 2);
2561
2562         return 1;
2563 }
2564
2565 static void s626_write_misc2(struct comedi_device *dev, uint16_t new_image)
2566 {
2567         s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WENABLE);
2568         s626_debi_write(dev, S626_LP_WRMISC2, new_image);
2569         s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WDISABLE);
2570 }
2571
2572 static void s626_close_dma_b(struct comedi_device *dev,
2573                              struct s626_buffer_dma *pdma, size_t bsize)
2574 {
2575         struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2576         void *vbptr;
2577         dma_addr_t vpptr;
2578
2579         if (pdma == NULL)
2580                 return;
2581
2582         /* find the matching allocation from the board struct */
2583         vbptr = pdma->logical_base;
2584         vpptr = pdma->physical_base;
2585         if (vbptr) {
2586                 pci_free_consistent(pcidev, bsize, vbptr, vpptr);
2587                 pdma->logical_base = NULL;
2588                 pdma->physical_base = 0;
2589         }
2590 }
2591
2592 static void s626_counters_init(struct comedi_device *dev)
2593 {
2594         int chan;
2595         const struct s626_enc_info *k;
2596         uint16_t setup =
2597                 /* Preload upon index. */
2598                 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
2599                 /* Disable hardware index. */
2600                 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
2601                 /* Operating mode is counter. */
2602                 S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
2603                 /* Active high clock. */
2604                 S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
2605                 /* Clock multiplier is 1x. */
2606                 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2607                 /* Enabled by index */
2608                 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
2609
2610         /*
2611          * Disable all counter interrupts and clear any captured counter events.
2612          */
2613         for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
2614                 k = &s626_enc_chan_info[chan];
2615                 k->set_mode(dev, k, setup, true);
2616                 k->set_int_src(dev, k, 0);
2617                 k->reset_cap_flags(dev, k);
2618                 k->set_enable(dev, k, S626_CLKENAB_ALWAYS);
2619         }
2620 }
2621
2622 static int s626_allocate_dma_buffers(struct comedi_device *dev)
2623 {
2624         struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2625         struct s626_private *devpriv = dev->private;
2626         void *addr;
2627         dma_addr_t appdma;
2628
2629         addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
2630         if (!addr)
2631                 return -ENOMEM;
2632         devpriv->ana_buf.logical_base = addr;
2633         devpriv->ana_buf.physical_base = appdma;
2634
2635         addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
2636         if (!addr)
2637                 return -ENOMEM;
2638         devpriv->rps_buf.logical_base = addr;
2639         devpriv->rps_buf.physical_base = appdma;
2640
2641         return 0;
2642 }
2643
2644 static int s626_initialize(struct comedi_device *dev)
2645 {
2646         struct s626_private *devpriv = dev->private;
2647         dma_addr_t phys_buf;
2648         uint16_t chan;
2649         int i;
2650         int ret;
2651
2652         /* Enable DEBI and audio pins, enable I2C interface */
2653         s626_mc_enable(dev, S626_MC1_DEBI | S626_MC1_AUDIO | S626_MC1_I2C,
2654                        S626_P_MC1);
2655
2656         /*
2657          * Configure DEBI operating mode
2658          *
2659          *  Local bus is 16 bits wide
2660          *  Declare DEBI transfer timeout interval
2661          *  Set up byte lane steering
2662          *  Intel-compatible local bus (DEBI never times out)
2663          */
2664         writel(S626_DEBI_CFG_SLAVE16 |
2665                (S626_DEBI_TOUT << S626_DEBI_CFG_TOUT_BIT) | S626_DEBI_SWAP |
2666                S626_DEBI_CFG_INTEL, devpriv->mmio + S626_P_DEBICFG);
2667
2668         /* Disable MMU paging */
2669         writel(S626_DEBI_PAGE_DISABLE, devpriv->mmio + S626_P_DEBIPAGE);
2670
2671         /* Init GPIO so that ADC Start* is negated */
2672         writel(S626_GPIO_BASE | S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
2673
2674         /* I2C device address for onboard eeprom (revb) */
2675         devpriv->i2c_adrs = 0xA0;
2676
2677         /*
2678          * Issue an I2C ABORT command to halt any I2C
2679          * operation in progress and reset BUSY flag.
2680          */
2681         writel(S626_I2C_CLKSEL | S626_I2C_ABORT,
2682                devpriv->mmio + S626_P_I2CSTAT);
2683         s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
2684         while (!(readl(devpriv->mmio + S626_P_MC2) & S626_MC2_UPLD_IIC))
2685                 ;
2686
2687         /*
2688          * Per SAA7146 data sheet, write to STATUS
2689          * reg twice to reset all  I2C error flags.
2690          */
2691         for (i = 0; i < 2; i++) {
2692                 writel(S626_I2C_CLKSEL, devpriv->mmio + S626_P_I2CSTAT);
2693                 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
2694                 while (!s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2))
2695                         ;
2696         }
2697
2698         /*
2699          * Init audio interface functional attributes: set DAC/ADC
2700          * serial clock rates, invert DAC serial clock so that
2701          * DAC data setup times are satisfied, enable DAC serial
2702          * clock out.
2703          */
2704         writel(S626_ACON2_INIT, devpriv->mmio + S626_P_ACON2);
2705
2706         /*
2707          * Set up TSL1 slot list, which is used to control the
2708          * accumulation of ADC data: S626_RSD1 = shift data in on SD1.
2709          * S626_SIB_A1  = store data uint8_t at next available location
2710          * in FB BUFFER1 register.
2711          */
2712         writel(S626_RSD1 | S626_SIB_A1, devpriv->mmio + S626_P_TSL1);
2713         writel(S626_RSD1 | S626_SIB_A1 | S626_EOS,
2714                devpriv->mmio + S626_P_TSL1 + 4);
2715
2716         /* Enable TSL1 slot list so that it executes all the time */
2717         writel(S626_ACON1_ADCSTART, devpriv->mmio + S626_P_ACON1);
2718
2719         /*
2720          * Initialize RPS registers used for ADC
2721          */
2722
2723         /* Physical start of RPS program */
2724         writel((uint32_t)devpriv->rps_buf.physical_base,
2725                devpriv->mmio + S626_P_RPSADDR1);
2726         /* RPS program performs no explicit mem writes */
2727         writel(0, devpriv->mmio + S626_P_RPSPAGE1);
2728         /* Disable RPS timeouts */
2729         writel(0, devpriv->mmio + S626_P_RPS1_TOUT);
2730
2731 #if 0
2732         /*
2733          * SAA7146 BUG WORKAROUND
2734          *
2735          * Initialize SAA7146 ADC interface to a known state by
2736          * invoking ADCs until FB BUFFER 1 register shows that it
2737          * is correctly receiving ADC data. This is necessary
2738          * because the SAA7146 ADC interface does not start up in
2739          * a defined state after a PCI reset.
2740          */
2741         {
2742                 struct comedi_subdevice *s = dev->read_subdev;
2743                 uint8_t poll_list;
2744                 uint16_t adc_data;
2745                 uint16_t start_val;
2746                 uint16_t index;
2747                 unsigned int data[16];
2748
2749                 /* Create a simple polling list for analog input channel 0 */
2750                 poll_list = S626_EOPL;
2751                 s626_reset_adc(dev, &poll_list);
2752
2753                 /* Get initial ADC value */
2754                 s626_ai_rinsn(dev, s, NULL, data);
2755                 start_val = data[0];
2756
2757                 /*
2758                  * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED
2759                  * EXECUTION.
2760                  *
2761                  * Invoke ADCs until the new ADC value differs from the initial
2762                  * value or a timeout occurs.  The timeout protects against the
2763                  * possibility that the driver is restarting and the ADC data is
2764                  * a fixed value resulting from the applied ADC analog input
2765                  * being unusually quiet or at the rail.
2766                  */
2767                 for (index = 0; index < 500; index++) {
2768                         s626_ai_rinsn(dev, s, NULL, data);
2769                         adc_data = data[0];
2770                         if (adc_data != start_val)
2771                                 break;
2772                 }
2773         }
2774 #endif  /* SAA7146 BUG WORKAROUND */
2775
2776         /*
2777          * Initialize the DAC interface
2778          */
2779
2780         /*
2781          * Init Audio2's output DMAC attributes:
2782          *   burst length = 1 DWORD
2783          *   threshold = 1 DWORD.
2784          */
2785         writel(0, devpriv->mmio + S626_P_PCI_BT_A);
2786
2787         /*
2788          * Init Audio2's output DMA physical addresses.  The protection
2789          * address is set to 1 DWORD past the base address so that a
2790          * single DWORD will be transferred each time a DMA transfer is
2791          * enabled.
2792          */
2793         phys_buf = devpriv->ana_buf.physical_base +
2794                    (S626_DAC_WDMABUF_OS * sizeof(uint32_t));
2795         writel((uint32_t)phys_buf, devpriv->mmio + S626_P_BASEA2_OUT);
2796         writel((uint32_t)(phys_buf + sizeof(uint32_t)),
2797                devpriv->mmio + S626_P_PROTA2_OUT);
2798
2799         /*
2800          * Cache Audio2's output DMA buffer logical address.  This is
2801          * where DAC data is buffered for A2 output DMA transfers.
2802          */
2803         devpriv->dac_wbuf = (uint32_t *)devpriv->ana_buf.logical_base +
2804                             S626_DAC_WDMABUF_OS;
2805
2806         /*
2807          * Audio2's output channels does not use paging.  The
2808          * protection violation handling bit is set so that the
2809          * DMAC will automatically halt and its PCI address pointer
2810          * will be reset when the protection address is reached.
2811          */
2812         writel(8, devpriv->mmio + S626_P_PAGEA2_OUT);
2813
2814         /*
2815          * Initialize time slot list 2 (TSL2), which is used to control
2816          * the clock generation for and serialization of data to be sent
2817          * to the DAC devices.  Slot 0 is a NOP that is used to trap TSL
2818          * execution; this permits other slots to be safely modified
2819          * without first turning off the TSL sequencer (which is
2820          * apparently impossible to do).  Also, SD3 (which is driven by a
2821          * pull-up resistor) is shifted in and stored to the MSB of
2822          * FB_BUFFER2 to be used as evidence that the slot sequence has
2823          * not yet finished executing.
2824          */
2825
2826         /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */
2827         writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2 | S626_EOS,
2828                devpriv->mmio + S626_VECTPORT(0));
2829
2830         /*
2831          * Initialize slot 1, which is constant.  Slot 1 causes a
2832          * DWORD to be transferred from audio channel 2's output FIFO
2833          * to the FIFO's output buffer so that it can be serialized
2834          * and sent to the DAC during subsequent slots.  All remaining
2835          * slots are dynamically populated as required by the target
2836          * DAC device.
2837          */
2838
2839         /* Slot 1: Fetch DWORD from Audio2's output FIFO */
2840         writel(S626_LF_A2, devpriv->mmio + S626_VECTPORT(1));
2841
2842         /* Start DAC's audio interface (TSL2) running */
2843         writel(S626_ACON1_DACSTART, devpriv->mmio + S626_P_ACON1);
2844
2845         /*
2846          * Init Trim DACs to calibrated values.  Do it twice because the
2847          * SAA7146 audio channel does not always reset properly and
2848          * sometimes causes the first few TrimDAC writes to malfunction.
2849          */
2850         s626_load_trim_dacs(dev);
2851         ret = s626_load_trim_dacs(dev);
2852         if (ret)
2853                 return ret;
2854
2855         /*
2856          * Manually init all gate array hardware in case this is a soft
2857          * reset (we have no way of determining whether this is a warm
2858          * or cold start).  This is necessary because the gate array will
2859          * reset only in response to a PCI hard reset; there is no soft
2860          * reset function.
2861          */
2862
2863         /*
2864          * Init all DAC outputs to 0V and init all DAC setpoint and
2865          * polarity images.
2866          */
2867         for (chan = 0; chan < S626_DAC_CHANNELS; chan++) {
2868                 ret = s626_set_dac(dev, chan, 0);
2869                 if (ret)
2870                         return ret;
2871         }
2872
2873         /* Init counters */
2874         s626_counters_init(dev);
2875
2876         /*
2877          * Without modifying the state of the Battery Backup enab, disable
2878          * the watchdog timer, set DIO channels 0-5 to operate in the
2879          * standard DIO (vs. counter overflow) mode, disable the battery
2880          * charger, and reset the watchdog interval selector to zero.
2881          */
2882         s626_write_misc2(dev, (s626_debi_read(dev, S626_LP_RDMISC2) &
2883                                S626_MISC2_BATT_ENABLE));
2884
2885         /* Initialize the digital I/O subsystem */
2886         s626_dio_init(dev);
2887
2888         return 0;
2889 }
2890
2891 static int s626_auto_attach(struct comedi_device *dev,
2892                                       unsigned long context_unused)
2893 {
2894         struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2895         struct s626_private *devpriv;
2896         struct comedi_subdevice *s;
2897         int ret;
2898
2899         devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
2900         if (!devpriv)
2901                 return -ENOMEM;
2902
2903         ret = comedi_pci_enable(dev);
2904         if (ret)
2905                 return ret;
2906
2907         devpriv->mmio = pci_ioremap_bar(pcidev, 0);
2908         if (!devpriv->mmio)
2909                 return -ENOMEM;
2910
2911         /* disable master interrupt */
2912         writel(0, devpriv->mmio + S626_P_IER);
2913
2914         /* soft reset */
2915         writel(S626_MC1_SOFT_RESET, devpriv->mmio + S626_P_MC1);
2916
2917         /* DMA FIXME DMA// */
2918
2919         ret = s626_allocate_dma_buffers(dev);
2920         if (ret)
2921                 return ret;
2922
2923         if (pcidev->irq) {
2924                 ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED,
2925                                   dev->board_name, dev);
2926
2927                 if (ret == 0)
2928                         dev->irq = pcidev->irq;
2929         }
2930
2931         ret = comedi_alloc_subdevices(dev, 6);
2932         if (ret)
2933                 return ret;
2934
2935         s = &dev->subdevices[0];
2936         /* analog input subdevice */
2937         s->type         = COMEDI_SUBD_AI;
2938         s->subdev_flags = SDF_READABLE | SDF_DIFF;
2939         s->n_chan       = S626_ADC_CHANNELS;
2940         s->maxdata      = 0x3fff;
2941         s->range_table  = &s626_range_table;
2942         s->len_chanlist = S626_ADC_CHANNELS;
2943         s->insn_read    = s626_ai_insn_read;
2944         if (dev->irq) {
2945                 dev->read_subdev = s;
2946                 s->subdev_flags |= SDF_CMD_READ;
2947                 s->do_cmd       = s626_ai_cmd;
2948                 s->do_cmdtest   = s626_ai_cmdtest;
2949                 s->cancel       = s626_ai_cancel;
2950         }
2951
2952         s = &dev->subdevices[1];
2953         /* analog output subdevice */
2954         s->type         = COMEDI_SUBD_AO;
2955         s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2956         s->n_chan       = S626_DAC_CHANNELS;
2957         s->maxdata      = 0x3fff;
2958         s->range_table  = &range_bipolar10;
2959         s->insn_write   = s626_ao_winsn;
2960         s->insn_read    = s626_ao_rinsn;
2961
2962         s = &dev->subdevices[2];
2963         /* digital I/O subdevice */
2964         s->type         = COMEDI_SUBD_DIO;
2965         s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2966         s->n_chan       = 16;
2967         s->maxdata      = 1;
2968         s->io_bits      = 0xffff;
2969         s->private      = (void *)0;    /* DIO group 0 */
2970         s->range_table  = &range_digital;
2971         s->insn_config  = s626_dio_insn_config;
2972         s->insn_bits    = s626_dio_insn_bits;
2973
2974         s = &dev->subdevices[3];
2975         /* digital I/O subdevice */
2976         s->type         = COMEDI_SUBD_DIO;
2977         s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2978         s->n_chan       = 16;
2979         s->maxdata      = 1;
2980         s->io_bits      = 0xffff;
2981         s->private      = (void *)1;    /* DIO group 1 */
2982         s->range_table  = &range_digital;
2983         s->insn_config  = s626_dio_insn_config;
2984         s->insn_bits    = s626_dio_insn_bits;
2985
2986         s = &dev->subdevices[4];
2987         /* digital I/O subdevice */
2988         s->type         = COMEDI_SUBD_DIO;
2989         s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2990         s->n_chan       = 16;
2991         s->maxdata      = 1;
2992         s->io_bits      = 0xffff;
2993         s->private      = (void *)2;    /* DIO group 2 */
2994         s->range_table  = &range_digital;
2995         s->insn_config  = s626_dio_insn_config;
2996         s->insn_bits    = s626_dio_insn_bits;
2997
2998         s = &dev->subdevices[5];
2999         /* encoder (counter) subdevice */
3000         s->type         = COMEDI_SUBD_COUNTER;
3001         s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
3002         s->n_chan       = S626_ENCODER_CHANNELS;
3003         s->maxdata      = 0xffffff;
3004         s->range_table  = &range_unknown;
3005         s->insn_config  = s626_enc_insn_config;
3006         s->insn_read    = s626_enc_insn_read;
3007         s->insn_write   = s626_enc_insn_write;
3008
3009         ret = s626_initialize(dev);
3010         if (ret)
3011                 return ret;
3012
3013         return 0;
3014 }
3015
3016 static void s626_detach(struct comedi_device *dev)
3017 {
3018         struct s626_private *devpriv = dev->private;
3019
3020         if (devpriv) {
3021                 /* stop ai_command */
3022                 devpriv->ai_cmd_running = 0;
3023
3024                 if (devpriv->mmio) {
3025                         /* interrupt mask */
3026                         /* Disable master interrupt */
3027                         writel(0, devpriv->mmio + S626_P_IER);
3028                         /* Clear board's IRQ status flag */
3029                         writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1,
3030                                devpriv->mmio + S626_P_ISR);
3031
3032                         /* Disable the watchdog timer and battery charger. */
3033                         s626_write_misc2(dev, 0);
3034
3035                         /* Close all interfaces on 7146 device */
3036                         writel(S626_MC1_SHUTDOWN, devpriv->mmio + S626_P_MC1);
3037                         writel(S626_ACON1_BASE, devpriv->mmio + S626_P_ACON1);
3038
3039                         s626_close_dma_b(dev, &devpriv->rps_buf,
3040                                          S626_DMABUF_SIZE);
3041                         s626_close_dma_b(dev, &devpriv->ana_buf,
3042                                          S626_DMABUF_SIZE);
3043                 }
3044
3045                 if (dev->irq)
3046                         free_irq(dev->irq, dev);
3047                 if (devpriv->mmio)
3048                         iounmap(devpriv->mmio);
3049         }
3050         comedi_pci_disable(dev);
3051 }
3052
3053 static struct comedi_driver s626_driver = {
3054         .driver_name    = "s626",
3055         .module         = THIS_MODULE,
3056         .auto_attach    = s626_auto_attach,
3057         .detach         = s626_detach,
3058 };
3059
3060 static int s626_pci_probe(struct pci_dev *dev,
3061                           const struct pci_device_id *id)
3062 {
3063         return comedi_pci_auto_config(dev, &s626_driver, id->driver_data);
3064 }
3065
3066 /*
3067  * For devices with vendor:device id == 0x1131:0x7146 you must specify
3068  * also subvendor:subdevice ids, because otherwise it will conflict with
3069  * Philips SAA7146 media/dvb based cards.
3070  */
3071 static const struct pci_device_id s626_pci_table[] = {
3072         { PCI_DEVICE_SUB(PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_PHILIPS_SAA7146,
3073                          0x6000, 0x0272) },
3074         { 0 }
3075 };
3076 MODULE_DEVICE_TABLE(pci, s626_pci_table);
3077
3078 static struct pci_driver s626_pci_driver = {
3079         .name           = "s626",
3080         .id_table       = s626_pci_table,
3081         .probe          = s626_pci_probe,
3082         .remove         = comedi_pci_auto_unconfig,
3083 };
3084 module_comedi_pci_driver(s626_driver, s626_pci_driver);
3085
3086 MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
3087 MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
3088 MODULE_LICENSE("GPL");