Merge tag 'for-3.4' of git://openrisc.net/jonas/linux
[firefly-linux-kernel-4.4.55.git] / drivers / staging / ramster / tmem.c
1 /*
2  * In-kernel transcendent memory (generic implementation)
3  *
4  * Copyright (c) 2009-2011, Dan Magenheimer, Oracle Corp.
5  *
6  * The primary purpose of Transcedent Memory ("tmem") is to map object-oriented
7  * "handles" (triples containing a pool id, and object id, and an index), to
8  * pages in a page-accessible memory (PAM).  Tmem references the PAM pages via
9  * an abstract "pampd" (PAM page-descriptor), which can be operated on by a
10  * set of functions (pamops).  Each pampd contains some representation of
11  * PAGE_SIZE bytes worth of data. Tmem must support potentially millions of
12  * pages and must be able to insert, find, and delete these pages at a
13  * potential frequency of thousands per second concurrently across many CPUs,
14  * (and, if used with KVM, across many vcpus across many guests).
15  * Tmem is tracked with a hierarchy of data structures, organized by
16  * the elements in a handle-tuple: pool_id, object_id, and page index.
17  * One or more "clients" (e.g. guests) each provide one or more tmem_pools.
18  * Each pool, contains a hash table of rb_trees of tmem_objs.  Each
19  * tmem_obj contains a radix-tree-like tree of pointers, with intermediate
20  * nodes called tmem_objnodes.  Each leaf pointer in this tree points to
21  * a pampd, which is accessible only through a small set of callbacks
22  * registered by the PAM implementation (see tmem_register_pamops). Tmem
23  * does all memory allocation via a set of callbacks registered by the tmem
24  * host implementation (e.g. see tmem_register_hostops).
25  */
26
27 #include <linux/list.h>
28 #include <linux/spinlock.h>
29 #include <linux/atomic.h>
30 #include <linux/delay.h>
31
32 #include "tmem.h"
33
34 /* data structure sentinels used for debugging... see tmem.h */
35 #define POOL_SENTINEL 0x87658765
36 #define OBJ_SENTINEL 0x12345678
37 #define OBJNODE_SENTINEL 0xfedcba09
38
39 /*
40  * A tmem host implementation must use this function to register callbacks
41  * for memory allocation.
42  */
43 static struct tmem_hostops tmem_hostops;
44
45 static void tmem_objnode_tree_init(void);
46
47 void tmem_register_hostops(struct tmem_hostops *m)
48 {
49         tmem_objnode_tree_init();
50         tmem_hostops = *m;
51 }
52
53 /*
54  * A tmem host implementation must use this function to register
55  * callbacks for a page-accessible memory (PAM) implementation
56  */
57 static struct tmem_pamops tmem_pamops;
58
59 void tmem_register_pamops(struct tmem_pamops *m)
60 {
61         tmem_pamops = *m;
62 }
63
64 /*
65  * Oid's are potentially very sparse and tmem_objs may have an indeterminately
66  * short life, being added and deleted at a relatively high frequency.
67  * So an rb_tree is an ideal data structure to manage tmem_objs.  But because
68  * of the potentially huge number of tmem_objs, each pool manages a hashtable
69  * of rb_trees to reduce search, insert, delete, and rebalancing time.
70  * Each hashbucket also has a lock to manage concurrent access.
71  *
72  * The following routines manage tmem_objs.  When any tmem_obj is accessed,
73  * the hashbucket lock must be held.
74  */
75
76 /* searches for object==oid in pool, returns locked object if found */
77 static struct tmem_obj *tmem_obj_find(struct tmem_hashbucket *hb,
78                                         struct tmem_oid *oidp)
79 {
80         struct rb_node *rbnode;
81         struct tmem_obj *obj;
82
83         rbnode = hb->obj_rb_root.rb_node;
84         while (rbnode) {
85                 BUG_ON(RB_EMPTY_NODE(rbnode));
86                 obj = rb_entry(rbnode, struct tmem_obj, rb_tree_node);
87                 switch (tmem_oid_compare(oidp, &obj->oid)) {
88                 case 0: /* equal */
89                         goto out;
90                 case -1:
91                         rbnode = rbnode->rb_left;
92                         break;
93                 case 1:
94                         rbnode = rbnode->rb_right;
95                         break;
96                 }
97         }
98         obj = NULL;
99 out:
100         return obj;
101 }
102
103 static void tmem_pampd_destroy_all_in_obj(struct tmem_obj *);
104
105 /* free an object that has no more pampds in it */
106 static void tmem_obj_free(struct tmem_obj *obj, struct tmem_hashbucket *hb)
107 {
108         struct tmem_pool *pool;
109
110         BUG_ON(obj == NULL);
111         ASSERT_SENTINEL(obj, OBJ);
112         BUG_ON(obj->pampd_count > 0);
113         pool = obj->pool;
114         BUG_ON(pool == NULL);
115         if (obj->objnode_tree_root != NULL) /* may be "stump" with no leaves */
116                 tmem_pampd_destroy_all_in_obj(obj);
117         BUG_ON(obj->objnode_tree_root != NULL);
118         BUG_ON((long)obj->objnode_count != 0);
119         atomic_dec(&pool->obj_count);
120         BUG_ON(atomic_read(&pool->obj_count) < 0);
121         INVERT_SENTINEL(obj, OBJ);
122         obj->pool = NULL;
123         tmem_oid_set_invalid(&obj->oid);
124         rb_erase(&obj->rb_tree_node, &hb->obj_rb_root);
125 }
126
127 /*
128  * initialize, and insert an tmem_object_root (called only if find failed)
129  */
130 static void tmem_obj_init(struct tmem_obj *obj, struct tmem_hashbucket *hb,
131                                         struct tmem_pool *pool,
132                                         struct tmem_oid *oidp)
133 {
134         struct rb_root *root = &hb->obj_rb_root;
135         struct rb_node **new = &(root->rb_node), *parent = NULL;
136         struct tmem_obj *this;
137
138         BUG_ON(pool == NULL);
139         atomic_inc(&pool->obj_count);
140         obj->objnode_tree_height = 0;
141         obj->objnode_tree_root = NULL;
142         obj->pool = pool;
143         obj->oid = *oidp;
144         obj->objnode_count = 0;
145         obj->pampd_count = 0;
146         (*tmem_pamops.new_obj)(obj);
147         SET_SENTINEL(obj, OBJ);
148         while (*new) {
149                 BUG_ON(RB_EMPTY_NODE(*new));
150                 this = rb_entry(*new, struct tmem_obj, rb_tree_node);
151                 parent = *new;
152                 switch (tmem_oid_compare(oidp, &this->oid)) {
153                 case 0:
154                         BUG(); /* already present; should never happen! */
155                         break;
156                 case -1:
157                         new = &(*new)->rb_left;
158                         break;
159                 case 1:
160                         new = &(*new)->rb_right;
161                         break;
162                 }
163         }
164         rb_link_node(&obj->rb_tree_node, parent, new);
165         rb_insert_color(&obj->rb_tree_node, root);
166 }
167
168 /*
169  * Tmem is managed as a set of tmem_pools with certain attributes, such as
170  * "ephemeral" vs "persistent".  These attributes apply to all tmem_objs
171  * and all pampds that belong to a tmem_pool.  A tmem_pool is created
172  * or deleted relatively rarely (for example, when a filesystem is
173  * mounted or unmounted.
174  */
175
176 /* flush all data from a pool and, optionally, free it */
177 static void tmem_pool_flush(struct tmem_pool *pool, bool destroy)
178 {
179         struct rb_node *rbnode;
180         struct tmem_obj *obj;
181         struct tmem_hashbucket *hb = &pool->hashbucket[0];
182         int i;
183
184         BUG_ON(pool == NULL);
185         for (i = 0; i < TMEM_HASH_BUCKETS; i++, hb++) {
186                 spin_lock(&hb->lock);
187                 rbnode = rb_first(&hb->obj_rb_root);
188                 while (rbnode != NULL) {
189                         obj = rb_entry(rbnode, struct tmem_obj, rb_tree_node);
190                         rbnode = rb_next(rbnode);
191                         tmem_pampd_destroy_all_in_obj(obj);
192                         tmem_obj_free(obj, hb);
193                         (*tmem_hostops.obj_free)(obj, pool);
194                 }
195                 spin_unlock(&hb->lock);
196         }
197         if (destroy)
198                 list_del(&pool->pool_list);
199 }
200
201 /*
202  * A tmem_obj contains a radix-tree-like tree in which the intermediate
203  * nodes are called tmem_objnodes.  (The kernel lib/radix-tree.c implementation
204  * is very specialized and tuned for specific uses and is not particularly
205  * suited for use from this code, though some code from the core algorithms has
206  * been reused, thus the copyright notices below).  Each tmem_objnode contains
207  * a set of pointers which point to either a set of intermediate tmem_objnodes
208  * or a set of of pampds.
209  *
210  * Portions Copyright (C) 2001 Momchil Velikov
211  * Portions Copyright (C) 2001 Christoph Hellwig
212  * Portions Copyright (C) 2005 SGI, Christoph Lameter <clameter@sgi.com>
213  */
214
215 struct tmem_objnode_tree_path {
216         struct tmem_objnode *objnode;
217         int offset;
218 };
219
220 /* objnode height_to_maxindex translation */
221 static unsigned long tmem_objnode_tree_h2max[OBJNODE_TREE_MAX_PATH + 1];
222
223 static void tmem_objnode_tree_init(void)
224 {
225         unsigned int ht, tmp;
226
227         for (ht = 0; ht < ARRAY_SIZE(tmem_objnode_tree_h2max); ht++) {
228                 tmp = ht * OBJNODE_TREE_MAP_SHIFT;
229                 if (tmp >= OBJNODE_TREE_INDEX_BITS)
230                         tmem_objnode_tree_h2max[ht] = ~0UL;
231                 else
232                         tmem_objnode_tree_h2max[ht] =
233                             (~0UL >> (OBJNODE_TREE_INDEX_BITS - tmp - 1)) >> 1;
234         }
235 }
236
237 static struct tmem_objnode *tmem_objnode_alloc(struct tmem_obj *obj)
238 {
239         struct tmem_objnode *objnode;
240
241         ASSERT_SENTINEL(obj, OBJ);
242         BUG_ON(obj->pool == NULL);
243         ASSERT_SENTINEL(obj->pool, POOL);
244         objnode = (*tmem_hostops.objnode_alloc)(obj->pool);
245         if (unlikely(objnode == NULL))
246                 goto out;
247         objnode->obj = obj;
248         SET_SENTINEL(objnode, OBJNODE);
249         memset(&objnode->slots, 0, sizeof(objnode->slots));
250         objnode->slots_in_use = 0;
251         obj->objnode_count++;
252 out:
253         return objnode;
254 }
255
256 static void tmem_objnode_free(struct tmem_objnode *objnode)
257 {
258         struct tmem_pool *pool;
259         int i;
260
261         BUG_ON(objnode == NULL);
262         for (i = 0; i < OBJNODE_TREE_MAP_SIZE; i++)
263                 BUG_ON(objnode->slots[i] != NULL);
264         ASSERT_SENTINEL(objnode, OBJNODE);
265         INVERT_SENTINEL(objnode, OBJNODE);
266         BUG_ON(objnode->obj == NULL);
267         ASSERT_SENTINEL(objnode->obj, OBJ);
268         pool = objnode->obj->pool;
269         BUG_ON(pool == NULL);
270         ASSERT_SENTINEL(pool, POOL);
271         objnode->obj->objnode_count--;
272         objnode->obj = NULL;
273         (*tmem_hostops.objnode_free)(objnode, pool);
274 }
275
276 /*
277  * lookup index in object and return associated pampd (or NULL if not found)
278  */
279 static void **__tmem_pampd_lookup_in_obj(struct tmem_obj *obj, uint32_t index)
280 {
281         unsigned int height, shift;
282         struct tmem_objnode **slot = NULL;
283
284         BUG_ON(obj == NULL);
285         ASSERT_SENTINEL(obj, OBJ);
286         BUG_ON(obj->pool == NULL);
287         ASSERT_SENTINEL(obj->pool, POOL);
288
289         height = obj->objnode_tree_height;
290         if (index > tmem_objnode_tree_h2max[obj->objnode_tree_height])
291                 goto out;
292         if (height == 0 && obj->objnode_tree_root) {
293                 slot = &obj->objnode_tree_root;
294                 goto out;
295         }
296         shift = (height-1) * OBJNODE_TREE_MAP_SHIFT;
297         slot = &obj->objnode_tree_root;
298         while (height > 0) {
299                 if (*slot == NULL)
300                         goto out;
301                 slot = (struct tmem_objnode **)
302                         ((*slot)->slots +
303                          ((index >> shift) & OBJNODE_TREE_MAP_MASK));
304                 shift -= OBJNODE_TREE_MAP_SHIFT;
305                 height--;
306         }
307 out:
308         return slot != NULL ? (void **)slot : NULL;
309 }
310
311 static void *tmem_pampd_lookup_in_obj(struct tmem_obj *obj, uint32_t index)
312 {
313         struct tmem_objnode **slot;
314
315         slot = (struct tmem_objnode **)__tmem_pampd_lookup_in_obj(obj, index);
316         return slot != NULL ? *slot : NULL;
317 }
318
319 static void *tmem_pampd_replace_in_obj(struct tmem_obj *obj, uint32_t index,
320                                         void *new_pampd, bool no_free)
321 {
322         struct tmem_objnode **slot;
323         void *ret = NULL;
324
325         slot = (struct tmem_objnode **)__tmem_pampd_lookup_in_obj(obj, index);
326         if ((slot != NULL) && (*slot != NULL)) {
327                 void *old_pampd = *(void **)slot;
328                 *(void **)slot = new_pampd;
329                 if (!no_free)
330                         (*tmem_pamops.free)(old_pampd, obj->pool,
331                                                 NULL, 0, false);
332                 ret = new_pampd;
333         }
334         return ret;
335 }
336
337 static int tmem_pampd_add_to_obj(struct tmem_obj *obj, uint32_t index,
338                                         void *pampd)
339 {
340         int ret = 0;
341         struct tmem_objnode *objnode = NULL, *newnode, *slot;
342         unsigned int height, shift;
343         int offset = 0;
344
345         /* if necessary, extend the tree to be higher  */
346         if (index > tmem_objnode_tree_h2max[obj->objnode_tree_height]) {
347                 height = obj->objnode_tree_height + 1;
348                 if (index > tmem_objnode_tree_h2max[height])
349                         while (index > tmem_objnode_tree_h2max[height])
350                                 height++;
351                 if (obj->objnode_tree_root == NULL) {
352                         obj->objnode_tree_height = height;
353                         goto insert;
354                 }
355                 do {
356                         newnode = tmem_objnode_alloc(obj);
357                         if (!newnode) {
358                                 ret = -ENOMEM;
359                                 goto out;
360                         }
361                         newnode->slots[0] = obj->objnode_tree_root;
362                         newnode->slots_in_use = 1;
363                         obj->objnode_tree_root = newnode;
364                         obj->objnode_tree_height++;
365                 } while (height > obj->objnode_tree_height);
366         }
367 insert:
368         slot = obj->objnode_tree_root;
369         height = obj->objnode_tree_height;
370         shift = (height-1) * OBJNODE_TREE_MAP_SHIFT;
371         while (height > 0) {
372                 if (slot == NULL) {
373                         /* add a child objnode.  */
374                         slot = tmem_objnode_alloc(obj);
375                         if (!slot) {
376                                 ret = -ENOMEM;
377                                 goto out;
378                         }
379                         if (objnode) {
380
381                                 objnode->slots[offset] = slot;
382                                 objnode->slots_in_use++;
383                         } else
384                                 obj->objnode_tree_root = slot;
385                 }
386                 /* go down a level */
387                 offset = (index >> shift) & OBJNODE_TREE_MAP_MASK;
388                 objnode = slot;
389                 slot = objnode->slots[offset];
390                 shift -= OBJNODE_TREE_MAP_SHIFT;
391                 height--;
392         }
393         BUG_ON(slot != NULL);
394         if (objnode) {
395                 objnode->slots_in_use++;
396                 objnode->slots[offset] = pampd;
397         } else
398                 obj->objnode_tree_root = pampd;
399         obj->pampd_count++;
400 out:
401         return ret;
402 }
403
404 static void *tmem_pampd_delete_from_obj(struct tmem_obj *obj, uint32_t index)
405 {
406         struct tmem_objnode_tree_path path[OBJNODE_TREE_MAX_PATH + 1];
407         struct tmem_objnode_tree_path *pathp = path;
408         struct tmem_objnode *slot = NULL;
409         unsigned int height, shift;
410         int offset;
411
412         BUG_ON(obj == NULL);
413         ASSERT_SENTINEL(obj, OBJ);
414         BUG_ON(obj->pool == NULL);
415         ASSERT_SENTINEL(obj->pool, POOL);
416         height = obj->objnode_tree_height;
417         if (index > tmem_objnode_tree_h2max[height])
418                 goto out;
419         slot = obj->objnode_tree_root;
420         if (height == 0 && obj->objnode_tree_root) {
421                 obj->objnode_tree_root = NULL;
422                 goto out;
423         }
424         shift = (height - 1) * OBJNODE_TREE_MAP_SHIFT;
425         pathp->objnode = NULL;
426         do {
427                 if (slot == NULL)
428                         goto out;
429                 pathp++;
430                 offset = (index >> shift) & OBJNODE_TREE_MAP_MASK;
431                 pathp->offset = offset;
432                 pathp->objnode = slot;
433                 slot = slot->slots[offset];
434                 shift -= OBJNODE_TREE_MAP_SHIFT;
435                 height--;
436         } while (height > 0);
437         if (slot == NULL)
438                 goto out;
439         while (pathp->objnode) {
440                 pathp->objnode->slots[pathp->offset] = NULL;
441                 pathp->objnode->slots_in_use--;
442                 if (pathp->objnode->slots_in_use) {
443                         if (pathp->objnode == obj->objnode_tree_root) {
444                                 while (obj->objnode_tree_height > 0 &&
445                                   obj->objnode_tree_root->slots_in_use == 1 &&
446                                   obj->objnode_tree_root->slots[0]) {
447                                         struct tmem_objnode *to_free =
448                                                 obj->objnode_tree_root;
449
450                                         obj->objnode_tree_root =
451                                                         to_free->slots[0];
452                                         obj->objnode_tree_height--;
453                                         to_free->slots[0] = NULL;
454                                         to_free->slots_in_use = 0;
455                                         tmem_objnode_free(to_free);
456                                 }
457                         }
458                         goto out;
459                 }
460                 tmem_objnode_free(pathp->objnode); /* 0 slots used, free it */
461                 pathp--;
462         }
463         obj->objnode_tree_height = 0;
464         obj->objnode_tree_root = NULL;
465
466 out:
467         if (slot != NULL)
468                 obj->pampd_count--;
469         BUG_ON(obj->pampd_count < 0);
470         return slot;
471 }
472
473 /* recursively walk the objnode_tree destroying pampds and objnodes */
474 static void tmem_objnode_node_destroy(struct tmem_obj *obj,
475                                         struct tmem_objnode *objnode,
476                                         unsigned int ht)
477 {
478         int i;
479
480         if (ht == 0)
481                 return;
482         for (i = 0; i < OBJNODE_TREE_MAP_SIZE; i++) {
483                 if (objnode->slots[i]) {
484                         if (ht == 1) {
485                                 obj->pampd_count--;
486                                 (*tmem_pamops.free)(objnode->slots[i],
487                                                 obj->pool, NULL, 0, true);
488                                 objnode->slots[i] = NULL;
489                                 continue;
490                         }
491                         tmem_objnode_node_destroy(obj, objnode->slots[i], ht-1);
492                         tmem_objnode_free(objnode->slots[i]);
493                         objnode->slots[i] = NULL;
494                 }
495         }
496 }
497
498 static void tmem_pampd_destroy_all_in_obj(struct tmem_obj *obj)
499 {
500         if (obj->objnode_tree_root == NULL)
501                 return;
502         if (obj->objnode_tree_height == 0) {
503                 obj->pampd_count--;
504                 (*tmem_pamops.free)(obj->objnode_tree_root,
505                                         obj->pool, NULL, 0, true);
506         } else {
507                 tmem_objnode_node_destroy(obj, obj->objnode_tree_root,
508                                         obj->objnode_tree_height);
509                 tmem_objnode_free(obj->objnode_tree_root);
510                 obj->objnode_tree_height = 0;
511         }
512         obj->objnode_tree_root = NULL;
513         (*tmem_pamops.free_obj)(obj->pool, obj);
514 }
515
516 /*
517  * Tmem is operated on by a set of well-defined actions:
518  * "put", "get", "flush", "flush_object", "new pool" and "destroy pool".
519  * (The tmem ABI allows for subpages and exchanges but these operations
520  * are not included in this implementation.)
521  *
522  * These "tmem core" operations are implemented in the following functions.
523  */
524
525 /*
526  * "Put" a page, e.g. copy a page from the kernel into newly allocated
527  * PAM space (if such space is available).  Tmem_put is complicated by
528  * a corner case: What if a page with matching handle already exists in
529  * tmem?  To guarantee coherency, one of two actions is necessary: Either
530  * the data for the page must be overwritten, or the page must be
531  * "flushed" so that the data is not accessible to a subsequent "get".
532  * Since these "duplicate puts" are relatively rare, this implementation
533  * always flushes for simplicity.
534  */
535 int tmem_put(struct tmem_pool *pool, struct tmem_oid *oidp, uint32_t index,
536                 char *data, size_t size, bool raw, int ephemeral)
537 {
538         struct tmem_obj *obj = NULL, *objfound = NULL, *objnew = NULL;
539         void *pampd = NULL, *pampd_del = NULL;
540         int ret = -ENOMEM;
541         struct tmem_hashbucket *hb;
542
543         hb = &pool->hashbucket[tmem_oid_hash(oidp)];
544         spin_lock(&hb->lock);
545         obj = objfound = tmem_obj_find(hb, oidp);
546         if (obj != NULL) {
547                 pampd = tmem_pampd_lookup_in_obj(objfound, index);
548                 if (pampd != NULL) {
549                         /* if found, is a dup put, flush the old one */
550                         pampd_del = tmem_pampd_delete_from_obj(obj, index);
551                         BUG_ON(pampd_del != pampd);
552                         (*tmem_pamops.free)(pampd, pool, oidp, index, true);
553                         if (obj->pampd_count == 0) {
554                                 objnew = obj;
555                                 objfound = NULL;
556                         }
557                         pampd = NULL;
558                 }
559         } else {
560                 obj = objnew = (*tmem_hostops.obj_alloc)(pool);
561                 if (unlikely(obj == NULL)) {
562                         ret = -ENOMEM;
563                         goto out;
564                 }
565                 tmem_obj_init(obj, hb, pool, oidp);
566         }
567         BUG_ON(obj == NULL);
568         BUG_ON(((objnew != obj) && (objfound != obj)) || (objnew == objfound));
569         pampd = (*tmem_pamops.create)(data, size, raw, ephemeral,
570                                         obj->pool, &obj->oid, index);
571         if (unlikely(pampd == NULL))
572                 goto free;
573         ret = tmem_pampd_add_to_obj(obj, index, pampd);
574         if (unlikely(ret == -ENOMEM))
575                 /* may have partially built objnode tree ("stump") */
576                 goto delete_and_free;
577         goto out;
578
579 delete_and_free:
580         (void)tmem_pampd_delete_from_obj(obj, index);
581 free:
582         if (pampd)
583                 (*tmem_pamops.free)(pampd, pool, NULL, 0, true);
584         if (objnew) {
585                 tmem_obj_free(objnew, hb);
586                 (*tmem_hostops.obj_free)(objnew, pool);
587         }
588 out:
589         spin_unlock(&hb->lock);
590         return ret;
591 }
592
593 void *tmem_localify_get_pampd(struct tmem_pool *pool, struct tmem_oid *oidp,
594                                 uint32_t index, struct tmem_obj **ret_obj,
595                                 void **saved_hb)
596 {
597         struct tmem_hashbucket *hb;
598         struct tmem_obj *obj = NULL;
599         void *pampd = NULL;
600
601         hb = &pool->hashbucket[tmem_oid_hash(oidp)];
602         spin_lock(&hb->lock);
603         obj = tmem_obj_find(hb, oidp);
604         if (likely(obj != NULL))
605                 pampd = tmem_pampd_lookup_in_obj(obj, index);
606         *ret_obj = obj;
607         *saved_hb = (void *)hb;
608         /* note, hashbucket remains locked */
609         return pampd;
610 }
611
612 void tmem_localify_finish(struct tmem_obj *obj, uint32_t index,
613                           void *pampd, void *saved_hb, bool delete)
614 {
615         struct tmem_hashbucket *hb = (struct tmem_hashbucket *)saved_hb;
616
617         BUG_ON(!spin_is_locked(&hb->lock));
618         if (pampd != NULL) {
619                 BUG_ON(obj == NULL);
620                 (void)tmem_pampd_replace_in_obj(obj, index, pampd, 1);
621         } else if (delete) {
622                 BUG_ON(obj == NULL);
623                 (void)tmem_pampd_delete_from_obj(obj, index);
624         }
625         spin_unlock(&hb->lock);
626 }
627
628 static int tmem_repatriate(void **ppampd, struct tmem_hashbucket *hb,
629                                 struct tmem_pool *pool, struct tmem_oid *oidp,
630                                 uint32_t index, bool free, char *data)
631 {
632         void *old_pampd = *ppampd, *new_pampd = NULL;
633         bool intransit = false;
634         int ret = 0;
635
636
637         if (!is_ephemeral(pool))
638                 new_pampd = (*tmem_pamops.repatriate_preload)(
639                                 old_pampd, pool, oidp, index, &intransit);
640         if (intransit)
641                 ret = -EAGAIN;
642         else if (new_pampd != NULL)
643                 *ppampd = new_pampd;
644         /* must release the hb->lock else repatriate can't sleep */
645         spin_unlock(&hb->lock);
646         if (!intransit)
647                 ret = (*tmem_pamops.repatriate)(old_pampd, new_pampd, pool,
648                                                 oidp, index, free, data);
649         return ret;
650 }
651
652 /*
653  * "Get" a page, e.g. if one can be found, copy the tmem page with the
654  * matching handle from PAM space to the kernel.  By tmem definition,
655  * when a "get" is successful on an ephemeral page, the page is "flushed",
656  * and when a "get" is successful on a persistent page, the page is retained
657  * in tmem.  Note that to preserve
658  * coherency, "get" can never be skipped if tmem contains the data.
659  * That is, if a get is done with a certain handle and fails, any
660  * subsequent "get" must also fail (unless of course there is a
661  * "put" done with the same handle).
662
663  */
664 int tmem_get(struct tmem_pool *pool, struct tmem_oid *oidp, uint32_t index,
665                 char *data, size_t *size, bool raw, int get_and_free)
666 {
667         struct tmem_obj *obj;
668         void *pampd;
669         bool ephemeral = is_ephemeral(pool);
670         int ret = -1;
671         struct tmem_hashbucket *hb;
672         bool free = (get_and_free == 1) || ((get_and_free == 0) && ephemeral);
673         bool lock_held = 0;
674         void **ppampd;
675
676 again:
677         hb = &pool->hashbucket[tmem_oid_hash(oidp)];
678         spin_lock(&hb->lock);
679         lock_held = 1;
680         obj = tmem_obj_find(hb, oidp);
681         if (obj == NULL)
682                 goto out;
683         ppampd = __tmem_pampd_lookup_in_obj(obj, index);
684         if (ppampd == NULL)
685                 goto out;
686         if (tmem_pamops.is_remote(*ppampd)) {
687                 ret = tmem_repatriate(ppampd, hb, pool, oidp,
688                                         index, free, data);
689                 lock_held = 0; /* note hb->lock has been unlocked */
690                 if (ret == -EAGAIN) {
691                         /* rare I think, but should cond_resched()??? */
692                         usleep_range(10, 1000);
693                         goto again;
694                 } else if (ret != 0) {
695                         if (ret != -ENOENT)
696                                 pr_err("UNTESTED case in tmem_get, ret=%d\n",
697                                                 ret);
698                         ret = -1;
699                         goto out;
700                 }
701                 goto out;
702         }
703         if (free)
704                 pampd = tmem_pampd_delete_from_obj(obj, index);
705         else
706                 pampd = tmem_pampd_lookup_in_obj(obj, index);
707         if (pampd == NULL)
708                 goto out;
709         if (free) {
710                 if (obj->pampd_count == 0) {
711                         tmem_obj_free(obj, hb);
712                         (*tmem_hostops.obj_free)(obj, pool);
713                         obj = NULL;
714                 }
715         }
716         if (free)
717                 ret = (*tmem_pamops.get_data_and_free)(
718                                 data, size, raw, pampd, pool, oidp, index);
719         else
720                 ret = (*tmem_pamops.get_data)(
721                                 data, size, raw, pampd, pool, oidp, index);
722         if (ret < 0)
723                 goto out;
724         ret = 0;
725 out:
726         if (lock_held)
727                 spin_unlock(&hb->lock);
728         return ret;
729 }
730
731 /*
732  * If a page in tmem matches the handle, "flush" this page from tmem such
733  * that any subsequent "get" does not succeed (unless, of course, there
734  * was another "put" with the same handle).
735  */
736 int tmem_flush_page(struct tmem_pool *pool,
737                                 struct tmem_oid *oidp, uint32_t index)
738 {
739         struct tmem_obj *obj;
740         void *pampd;
741         int ret = -1;
742         struct tmem_hashbucket *hb;
743
744         hb = &pool->hashbucket[tmem_oid_hash(oidp)];
745         spin_lock(&hb->lock);
746         obj = tmem_obj_find(hb, oidp);
747         if (obj == NULL)
748                 goto out;
749         pampd = tmem_pampd_delete_from_obj(obj, index);
750         if (pampd == NULL)
751                 goto out;
752         (*tmem_pamops.free)(pampd, pool, oidp, index, true);
753         if (obj->pampd_count == 0) {
754                 tmem_obj_free(obj, hb);
755                 (*tmem_hostops.obj_free)(obj, pool);
756         }
757         ret = 0;
758
759 out:
760         spin_unlock(&hb->lock);
761         return ret;
762 }
763
764 /*
765  * If a page in tmem matches the handle, replace the page so that any
766  * subsequent "get" gets the new page.  Returns the new page if
767  * there was a page to replace, else returns NULL.
768  */
769 int tmem_replace(struct tmem_pool *pool, struct tmem_oid *oidp,
770                         uint32_t index, void *new_pampd)
771 {
772         struct tmem_obj *obj;
773         int ret = -1;
774         struct tmem_hashbucket *hb;
775
776         hb = &pool->hashbucket[tmem_oid_hash(oidp)];
777         spin_lock(&hb->lock);
778         obj = tmem_obj_find(hb, oidp);
779         if (obj == NULL)
780                 goto out;
781         new_pampd = tmem_pampd_replace_in_obj(obj, index, new_pampd, 0);
782         ret = (*tmem_pamops.replace_in_obj)(new_pampd, obj);
783 out:
784         spin_unlock(&hb->lock);
785         return ret;
786 }
787
788 /*
789  * "Flush" all pages in tmem matching this oid.
790  */
791 int tmem_flush_object(struct tmem_pool *pool, struct tmem_oid *oidp)
792 {
793         struct tmem_obj *obj;
794         struct tmem_hashbucket *hb;
795         int ret = -1;
796
797         hb = &pool->hashbucket[tmem_oid_hash(oidp)];
798         spin_lock(&hb->lock);
799         obj = tmem_obj_find(hb, oidp);
800         if (obj == NULL)
801                 goto out;
802         tmem_pampd_destroy_all_in_obj(obj);
803         tmem_obj_free(obj, hb);
804         (*tmem_hostops.obj_free)(obj, pool);
805         ret = 0;
806
807 out:
808         spin_unlock(&hb->lock);
809         return ret;
810 }
811
812 /*
813  * "Flush" all pages (and tmem_objs) from this tmem_pool and disable
814  * all subsequent access to this tmem_pool.
815  */
816 int tmem_destroy_pool(struct tmem_pool *pool)
817 {
818         int ret = -1;
819
820         if (pool == NULL)
821                 goto out;
822         tmem_pool_flush(pool, 1);
823         ret = 0;
824 out:
825         return ret;
826 }
827
828 static LIST_HEAD(tmem_global_pool_list);
829
830 /*
831  * Create a new tmem_pool with the provided flag and return
832  * a pool id provided by the tmem host implementation.
833  */
834 void tmem_new_pool(struct tmem_pool *pool, uint32_t flags)
835 {
836         int persistent = flags & TMEM_POOL_PERSIST;
837         int shared = flags & TMEM_POOL_SHARED;
838         struct tmem_hashbucket *hb = &pool->hashbucket[0];
839         int i;
840
841         for (i = 0; i < TMEM_HASH_BUCKETS; i++, hb++) {
842                 hb->obj_rb_root = RB_ROOT;
843                 spin_lock_init(&hb->lock);
844         }
845         INIT_LIST_HEAD(&pool->pool_list);
846         atomic_set(&pool->obj_count, 0);
847         SET_SENTINEL(pool, POOL);
848         list_add_tail(&pool->pool_list, &tmem_global_pool_list);
849         pool->persistent = persistent;
850         pool->shared = shared;
851 }