staging: rtl8723au: Fold rtl8723a_set_nav_upper() into rtl8723au_hal_init()
[firefly-linux-kernel-4.4.55.git] / drivers / staging / rtl8723au / hal / hal_com.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12  * more details.
13  *
14  ******************************************************************************/
15 #include <osdep_service.h>
16 #include <drv_types.h>
17
18 #include <hal_intf.h>
19 #include <hal_com.h>
20 #include <rtl8723a_hal.h>
21 #include <usb_ops_linux.h>
22
23 #define _HAL_INIT_C_
24
25 void dump_chip_info23a(struct hal_version ChipVersion)
26 {
27         int cnt = 0;
28         u8 buf[128];
29
30         cnt += sprintf((buf + cnt), "Chip Version Info: CHIP_8723A_");
31
32         cnt += sprintf((buf + cnt), "%s_", IS_NORMAL_CHIP(ChipVersion) ?
33                        "Normal_Chip" : "Test_Chip");
34         cnt += sprintf((buf + cnt), "%s_",
35                        IS_CHIP_VENDOR_TSMC(ChipVersion) ? "TSMC" : "UMC");
36         if (IS_A_CUT(ChipVersion))
37                 cnt += sprintf((buf + cnt), "A_CUT_");
38         else if (IS_B_CUT(ChipVersion))
39                 cnt += sprintf((buf + cnt), "B_CUT_");
40         else if (IS_C_CUT(ChipVersion))
41                 cnt += sprintf((buf + cnt), "C_CUT_");
42         else if (IS_D_CUT(ChipVersion))
43                 cnt += sprintf((buf + cnt), "D_CUT_");
44         else if (IS_E_CUT(ChipVersion))
45                 cnt += sprintf((buf + cnt), "E_CUT_");
46         else
47                 cnt += sprintf((buf + cnt), "UNKNOWN_CUT(%d)_",
48                                ChipVersion.CUTVersion);
49
50         if (IS_1T1R(ChipVersion))
51                 cnt += sprintf((buf + cnt), "1T1R_");
52         else if (IS_1T2R(ChipVersion))
53                 cnt += sprintf((buf + cnt), "1T2R_");
54         else if (IS_2T2R(ChipVersion))
55                 cnt += sprintf((buf + cnt), "2T2R_");
56         else
57                 cnt += sprintf((buf + cnt), "UNKNOWN_RFTYPE(%d)_",
58                                ChipVersion.RFType);
59
60         cnt += sprintf((buf + cnt), "RomVer(%d)\n", ChipVersion.ROMVer);
61
62         DBG_8723A("%s", buf);
63 }
64
65 #define EEPROM_CHANNEL_PLAN_BY_HW_MASK  0x80
66
67 /* return the final channel plan decision */
68 /* hw_channel_plan:  channel plan from HW (efuse/eeprom) */
69 /* sw_channel_plan:  channel plan from SW (registry/module param) */
70 /* def_channel_plan: channel plan used when the former two is invalid */
71 u8 hal_com_get_channel_plan23a(struct rtw_adapter *padapter, u8 hw_channel_plan,
72                             u8 sw_channel_plan, u8 def_channel_plan,
73                             bool AutoLoadFail)
74 {
75         u8 swConfig;
76         u8 chnlPlan;
77
78         swConfig = true;
79         if (!AutoLoadFail) {
80                 if (!rtw_is_channel_plan_valid(sw_channel_plan))
81                         swConfig = false;
82                 if (hw_channel_plan & EEPROM_CHANNEL_PLAN_BY_HW_MASK)
83                         swConfig = false;
84         }
85
86         if (swConfig == true)
87                 chnlPlan = sw_channel_plan;
88         else
89                 chnlPlan = hw_channel_plan & (~EEPROM_CHANNEL_PLAN_BY_HW_MASK);
90
91         if (!rtw_is_channel_plan_valid(chnlPlan))
92                 chnlPlan = def_channel_plan;
93
94         return chnlPlan;
95 }
96
97 u8 MRateToHwRate23a(u8 rate)
98 {
99         u8 ret = DESC_RATE1M;
100
101         switch (rate) {
102                 /*  CCK and OFDM non-HT rates */
103         case IEEE80211_CCK_RATE_1MB:
104                 ret = DESC_RATE1M;
105                 break;
106         case IEEE80211_CCK_RATE_2MB:
107                 ret = DESC_RATE2M;
108                 break;
109         case IEEE80211_CCK_RATE_5MB:
110                 ret = DESC_RATE5_5M;
111                 break;
112         case IEEE80211_CCK_RATE_11MB:
113                 ret = DESC_RATE11M;
114                 break;
115         case IEEE80211_OFDM_RATE_6MB:
116                 ret = DESC_RATE6M;
117                 break;
118         case IEEE80211_OFDM_RATE_9MB:
119                 ret = DESC_RATE9M;
120                 break;
121         case IEEE80211_OFDM_RATE_12MB:
122                 ret = DESC_RATE12M;
123                 break;
124         case IEEE80211_OFDM_RATE_18MB:
125                 ret = DESC_RATE18M;
126                 break;
127         case IEEE80211_OFDM_RATE_24MB:
128                 ret = DESC_RATE24M;
129                 break;
130         case IEEE80211_OFDM_RATE_36MB:
131                 ret = DESC_RATE36M;
132                 break;
133         case IEEE80211_OFDM_RATE_48MB:
134                 ret = DESC_RATE48M;
135                 break;
136         case IEEE80211_OFDM_RATE_54MB:
137                 ret = DESC_RATE54M;
138                 break;
139
140                 /*  HT rates since here */
141                 /* case MGN_MCS0:       ret = DESC_RATEMCS0;    break; */
142                 /* case MGN_MCS1:       ret = DESC_RATEMCS1;    break; */
143                 /* case MGN_MCS2:       ret = DESC_RATEMCS2;    break; */
144                 /* case MGN_MCS3:       ret = DESC_RATEMCS3;    break; */
145                 /* case MGN_MCS4:       ret = DESC_RATEMCS4;    break; */
146                 /* case MGN_MCS5:       ret = DESC_RATEMCS5;    break; */
147                 /* case MGN_MCS6:       ret = DESC_RATEMCS6;    break; */
148                 /* case MGN_MCS7:       ret = DESC_RATEMCS7;    break; */
149
150         default:
151                 break;
152         }
153         return ret;
154 }
155
156 void HalSetBrateCfg23a(struct rtw_adapter *padapter, u8 *mBratesOS)
157 {
158         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
159         u8 i, is_brate, brate;
160         u16 brate_cfg = 0;
161         u8 rate_index;
162
163         for (i = 0; i < NDIS_802_11_LENGTH_RATES_EX; i++) {
164                 is_brate = mBratesOS[i] & IEEE80211_BASIC_RATE_MASK;
165                 brate = mBratesOS[i] & 0x7f;
166
167                 if (is_brate) {
168                         switch (brate) {
169                         case IEEE80211_CCK_RATE_1MB:
170                                 brate_cfg |= RATE_1M;
171                                 break;
172                         case IEEE80211_CCK_RATE_2MB:
173                                 brate_cfg |= RATE_2M;
174                                 break;
175                         case IEEE80211_CCK_RATE_5MB:
176                                 brate_cfg |= RATE_5_5M;
177                                 break;
178                         case IEEE80211_CCK_RATE_11MB:
179                                 brate_cfg |= RATE_11M;
180                                 break;
181                         case IEEE80211_OFDM_RATE_6MB:
182                                 brate_cfg |= RATE_6M;
183                                 break;
184                         case IEEE80211_OFDM_RATE_9MB:
185                                 brate_cfg |= RATE_9M;
186                                 break;
187                         case IEEE80211_OFDM_RATE_12MB:
188                                 brate_cfg |= RATE_12M;
189                                 break;
190                         case IEEE80211_OFDM_RATE_18MB:
191                                 brate_cfg |= RATE_18M;
192                                 break;
193                         case IEEE80211_OFDM_RATE_24MB:
194                                 brate_cfg |= RATE_24M;
195                                 break;
196                         case IEEE80211_OFDM_RATE_36MB:
197                                 brate_cfg |= RATE_36M;
198                                 break;
199                         case IEEE80211_OFDM_RATE_48MB:
200                                 brate_cfg |= RATE_48M;
201                                 break;
202                         case IEEE80211_OFDM_RATE_54MB:
203                                 brate_cfg |= RATE_54M;
204                                 break;
205                         }
206                 }
207         }
208
209         /*  2007.01.16, by Emily */
210         /*  Select RRSR (in Legacy-OFDM and CCK) */
211         /*  For 8190, we select only 24M, 12M, 6M, 11M, 5.5M, 2M,
212             and 1M from the Basic rate. */
213         /*  We do not use other rates. */
214         /* 2011.03.30 add by Luke Lee */
215         /* CCK 2M ACK should be disabled for some BCM and Atheros AP IOT */
216         /* because CCK 2M has poor TXEVM */
217         /* CCK 5.5M & 11M ACK should be enabled for better
218            performance */
219
220         brate_cfg = (brate_cfg | 0xd) & 0x15d;
221         pHalData->BasicRateSet = brate_cfg;
222         brate_cfg |= 0x01;      /*  default enable 1M ACK rate */
223         DBG_8723A("HW_VAR_BASIC_RATE: BrateCfg(%#x)\n", brate_cfg);
224
225         /*  Set RRSR rate table. */
226         rtl8723au_write8(padapter, REG_RRSR, brate_cfg & 0xff);
227         rtl8723au_write8(padapter, REG_RRSR + 1, (brate_cfg >> 8) & 0xff);
228         rtl8723au_write8(padapter, REG_RRSR + 2,
229                          rtl8723au_read8(padapter, REG_RRSR + 2) & 0xf0);
230
231         rate_index = 0;
232         /*  Set RTS initial rate */
233         while (brate_cfg > 0x1) {
234                 brate_cfg = (brate_cfg >> 1);
235                 rate_index++;
236         }
237                 /*  Ziv - Check */
238         rtl8723au_write8(padapter, REG_INIRTS_RATE_SEL, rate_index);
239
240         return;
241 }
242
243 static void _OneOutPipeMapping(struct rtw_adapter *pAdapter)
244 {
245         struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(pAdapter);
246
247         pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0];   /* VO */
248         pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[0];   /* VI */
249         pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[0];   /* BE */
250         pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[0];   /* BK */
251
252         pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];   /* BCN */
253         pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];   /* MGT */
254         pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0];   /* HIGH */
255         pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];   /* TXCMD */
256 }
257
258 static void _TwoOutPipeMapping(struct rtw_adapter *pAdapter, bool bWIFICfg)
259 {
260         struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(pAdapter);
261
262         if (bWIFICfg) {         /* WMM */
263                 /*    BK,   BE,   VI,   VO,   BCN,  CMD,  MGT, HIGH, HCCA */
264                 /*     0,    1,    0,    1,     0,    0,    0,    0,    0 }; */
265                 /* 0:H, 1:L */
266                 pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[1]; /* VO */
267                 pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[0]; /* VI */
268                 pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[1]; /* BE */
269                 pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[0]; /* BK */
270
271                 pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0]; /* BCN */
272                 pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0]; /* MGT */
273                 pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0]; /* HIGH */
274                 pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0]; /* TXCMD*/
275         } else {                /* typical setting */
276                 /*    BK,   BE,   VI,   VO,   BCN,  CMD,  MGT, HIGH, HCCA */
277                 /*     1,    1,    0,    0,     0,    0,    0,    0,    0 }; */
278                 /* 0:H, 1:L */
279                 pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0]; /* VO */
280                 pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[0]; /* VI */
281                 pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[1]; /* BE */
282                 pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[1]; /* BK */
283
284                 pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0]; /* BCN */
285                 pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0]; /* MGT */
286                 pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0]; /* HIGH */
287                 pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0]; /* TXCMD*/
288         }
289 }
290
291 static void _ThreeOutPipeMapping(struct rtw_adapter *pAdapter, bool bWIFICfg)
292 {
293         struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(pAdapter);
294
295         if (bWIFICfg) {         /* for WMM */
296                 /*    BK,   BE,   VI,   VO,   BCN,  CMD,  MGT, HIGH, HCCA */
297                 /*     1,    2,    1,    0,     0,    0,    0,    0,    0 }; */
298                 /* 0:H, 1:N, 2:L */
299                 pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0]; /* VO */
300                 pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[1]; /* VI */
301                 pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[2]; /* BE */
302                 pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[1]; /* BK */
303
304                 pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0]; /* BCN */
305                 pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0]; /* MGT */
306                 pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0]; /* HIGH */
307                 pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0]; /* TXCMD*/
308         } else {                /* typical setting */
309                 /*    BK,   BE,   VI,   VO,   BCN,  CMD,  MGT, HIGH, HCCA */
310                 /*     2,    2,    1,    0,     0,    0,    0,    0,    0 }; */
311                 /* 0:H, 1:N, 2:L */
312                 pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0]; /* VO */
313                 pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[1]; /* VI */
314                 pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[2]; /* BE */
315                 pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[2]; /* BK */
316
317                 pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0]; /* BCN */
318                 pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0]; /* MGT */
319                 pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0]; /* HIGH */
320                 pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0]; /* TXCMD*/
321         }
322 }
323
324 bool Hal_MappingOutPipe23a(struct rtw_adapter *pAdapter, u8 NumOutPipe)
325 {
326         struct registry_priv *pregistrypriv = &pAdapter->registrypriv;
327         bool bWIFICfg = (pregistrypriv->wifi_spec) ? true : false;
328         bool result = true;
329
330         switch (NumOutPipe) {
331         case 2:
332                 _TwoOutPipeMapping(pAdapter, bWIFICfg);
333                 break;
334         case 3:
335                 _ThreeOutPipeMapping(pAdapter, bWIFICfg);
336                 break;
337         case 1:
338                 _OneOutPipeMapping(pAdapter);
339                 break;
340         default:
341                 result = false;
342                 break;
343         }
344
345         return result;
346 }
347
348 /*
349 * C2H event format:
350 * Field  TRIGGER                CONTENT    CMD_SEQ      CMD_LEN          CMD_ID
351 * BITS   [127:120]      [119:16]      [15:8]              [7:4]            [3:0]
352 */
353
354 void c2h_evt_clear23a(struct rtw_adapter *adapter)
355 {
356         rtl8723au_write8(adapter, REG_C2HEVT_CLEAR, C2H_EVT_HOST_CLOSE);
357 }
358
359 int c2h_evt_read23a(struct rtw_adapter *adapter, u8 *buf)
360 {
361         int ret = _FAIL;
362         struct c2h_evt_hdr *c2h_evt;
363         int i;
364         u8 trigger;
365
366         if (buf == NULL)
367                 goto exit;
368
369         trigger = rtl8723au_read8(adapter, REG_C2HEVT_CLEAR);
370
371         if (trigger == C2H_EVT_HOST_CLOSE)
372                 goto exit;      /* Not ready */
373         else if (trigger != C2H_EVT_FW_CLOSE)
374                 goto clear_evt; /* Not a valid value */
375
376         c2h_evt = (struct c2h_evt_hdr *)buf;
377
378         memset(c2h_evt, 0, 16);
379
380         *buf = rtl8723au_read8(adapter, REG_C2HEVT_MSG_NORMAL);
381         *(buf + 1) = rtl8723au_read8(adapter, REG_C2HEVT_MSG_NORMAL + 1);
382
383         RT_PRINT_DATA(_module_hal_init_c_, _drv_info_, "c2h_evt_read23a(): ",
384                       &c2h_evt, sizeof(c2h_evt));
385
386         if (0) {
387                 DBG_8723A("%s id:%u, len:%u, seq:%u, trigger:0x%02x\n",
388                           __func__, c2h_evt->id, c2h_evt->plen, c2h_evt->seq,
389                           trigger);
390         }
391
392         /* Read the content */
393         for (i = 0; i < c2h_evt->plen; i++)
394                 c2h_evt->payload[i] = rtl8723au_read8(adapter,
395                                                 REG_C2HEVT_MSG_NORMAL +
396                                                 sizeof(*c2h_evt) + i);
397
398         RT_PRINT_DATA(_module_hal_init_c_, _drv_info_,
399                       "c2h_evt_read23a(): Command Content:\n", c2h_evt->payload,
400                       c2h_evt->plen);
401
402         ret = _SUCCESS;
403
404 clear_evt:
405         /*
406          * Clear event to notify FW we have read the command.
407          * If this field isn't clear, the FW won't update the
408          * next command message.
409          */
410         c2h_evt_clear23a(adapter);
411 exit:
412         return ret;
413 }
414
415 void
416 rtl8723a_set_ampdu_min_space(struct rtw_adapter *padapter, u8 MinSpacingToSet)
417 {
418         u8 SecMinSpace;
419
420         if (MinSpacingToSet <= 7) {
421                 switch (padapter->securitypriv.dot11PrivacyAlgrthm) {
422                 case 0:
423                 case WLAN_CIPHER_SUITE_CCMP:
424                         SecMinSpace = 0;
425                         break;
426
427                 case WLAN_CIPHER_SUITE_WEP40:
428                 case WLAN_CIPHER_SUITE_WEP104:
429                 case WLAN_CIPHER_SUITE_TKIP:
430                         SecMinSpace = 6;
431                         break;
432                 default:
433                         SecMinSpace = 7;
434                         break;
435                 }
436
437                 if (MinSpacingToSet < SecMinSpace)
438                         MinSpacingToSet = SecMinSpace;
439
440                 /* RT_TRACE(COMP_MLME, DBG_LOUD,
441                    ("Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
442                    padapter->MgntInfo.MinSpaceCfg)); */
443                 MinSpacingToSet |=
444                         rtl8723au_read8(padapter, REG_AMPDU_MIN_SPACE) & 0xf8;
445                 rtl8723au_write8(padapter, REG_AMPDU_MIN_SPACE,
446                                  MinSpacingToSet);
447         }
448 }
449
450 void rtl8723a_set_ampdu_factor(struct rtw_adapter *padapter, u8 FactorToSet)
451 {
452         u8 RegToSet_Normal[4] = { 0x41, 0xa8, 0x72, 0xb9 };
453         u8 MaxAggNum;
454         u8 *pRegToSet;
455         u8 index = 0;
456
457         pRegToSet = RegToSet_Normal;    /*  0xb972a841; */
458
459         if (rtl8723a_BT_enabled(padapter) &&
460             rtl8723a_BT_using_antenna_1(padapter))
461                 MaxAggNum = 0x8;
462         else
463                 MaxAggNum = 0xF;
464
465         if (FactorToSet <= 3) {
466                 FactorToSet = (1 << (FactorToSet + 2));
467                 if (FactorToSet > MaxAggNum)
468                         FactorToSet = MaxAggNum;
469
470                 for (index = 0; index < 4; index++) {
471                         if ((pRegToSet[index] & 0xf0) > (FactorToSet << 4))
472                                 pRegToSet[index] = (pRegToSet[index] & 0x0f) |
473                                         (FactorToSet << 4);
474
475                         if ((pRegToSet[index] & 0x0f) > FactorToSet)
476                                 pRegToSet[index] = (pRegToSet[index] & 0xf0) |
477                                         FactorToSet;
478
479                         rtl8723au_write8(padapter, REG_AGGLEN_LMT + index,
480                                          pRegToSet[index]);
481                 }
482
483                 /* RT_TRACE(COMP_MLME, DBG_LOUD,
484                    ("Set HW_VAR_AMPDU_FACTOR: %#x\n", FactorToSet)); */
485         }
486 }
487
488 void rtl8723a_set_acm_ctrl(struct rtw_adapter *padapter, u8 ctrl)
489 {
490         u8 hwctrl = 0;
491
492         if (ctrl != 0) {
493                 hwctrl |= AcmHw_HwEn;
494
495                 if (ctrl & BIT(1))      /*  BE */
496                         hwctrl |= AcmHw_BeqEn;
497
498                 if (ctrl & BIT(2))      /*  VI */
499                         hwctrl |= AcmHw_ViqEn;
500
501                 if (ctrl & BIT(3))      /*  VO */
502                         hwctrl |= AcmHw_VoqEn;
503         }
504
505         DBG_8723A("[HW_VAR_ACM_CTRL] Write 0x%02X\n", hwctrl);
506         rtl8723au_write8(padapter, REG_ACMHWCTRL, hwctrl);
507 }
508
509 void rtl8723a_set_media_status(struct rtw_adapter *padapter, u8 status)
510 {
511         u8 val8;
512
513         val8 = rtl8723au_read8(padapter, MSR) & 0x0c;
514         val8 |= status;
515         rtl8723au_write8(padapter, MSR, val8);
516 }
517
518 void rtl8723a_set_media_status1(struct rtw_adapter *padapter, u8 status)
519 {
520         u8 val8;
521
522         val8 = rtl8723au_read8(padapter, MSR) & 0x03;
523         val8 |= status << 2;
524         rtl8723au_write8(padapter, MSR, val8);
525 }
526
527 void rtl8723a_set_bcn_func(struct rtw_adapter *padapter, u8 val)
528 {
529         if (val)
530                 SetBcnCtrlReg23a(padapter, EN_BCN_FUNCTION | EN_TXBCN_RPT, 0);
531         else
532                 SetBcnCtrlReg23a(padapter, 0, EN_BCN_FUNCTION | EN_TXBCN_RPT);
533 }
534
535 void rtl8723a_check_bssid(struct rtw_adapter *padapter, u8 val)
536 {
537         u32 val32;
538         val32 = rtl8723au_read32(padapter, REG_RCR);
539         if (val)
540                 val32 |= RCR_CBSSID_DATA | RCR_CBSSID_BCN;
541         else
542                 val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);
543         rtl8723au_write32(padapter, REG_RCR, val32);
544 }
545
546 void rtl8723a_mlme_sitesurvey(struct rtw_adapter *padapter, u8 flag)
547 {
548         if (flag) {     /* under sitesurvey */
549                 u32 v32;
550
551                 /*  config RCR to receive different BSSID & not
552                     to receive data frame */
553                 v32 = rtl8723au_read32(padapter, REG_RCR);
554                 v32 &= ~(RCR_CBSSID_BCN);
555                 rtl8723au_write32(padapter, REG_RCR, v32);
556                 /*  reject all data frame */
557                 rtl8723au_write16(padapter, REG_RXFLTMAP2, 0);
558
559                 /*  disable update TSF */
560                 SetBcnCtrlReg23a(padapter, DIS_TSF_UDT, 0);
561         } else {        /* sitesurvey done */
562
563                 struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
564                 struct mlme_ext_info *pmlmeinfo;
565                 u32 v32;
566
567                 pmlmeinfo = &pmlmeext->mlmext_info;
568
569                 if ((is_client_associated_to_ap23a(padapter) == true) ||
570                     ((pmlmeinfo->state & 0x03) == MSR_ADHOC) ||
571                     ((pmlmeinfo->state & 0x03) == MSR_AP)) {
572                         /*  enable to rx data frame */
573                         rtl8723au_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
574
575                         /*  enable update TSF */
576                         SetBcnCtrlReg23a(padapter, 0, DIS_TSF_UDT);
577                 }
578
579                 v32 = rtl8723au_read32(padapter, REG_RCR);
580                 v32 |= RCR_CBSSID_BCN;
581                 rtl8723au_write32(padapter, REG_RCR, v32);
582         }
583
584         rtl8723a_BT_wifiscan_notify(padapter, flag ? true : false);
585 }
586
587 void rtl8723a_on_rcr_am(struct rtw_adapter *padapter)
588 {
589         rtl8723au_write32(padapter, REG_RCR,
590                     rtl8723au_read32(padapter, REG_RCR) | RCR_AM);
591         DBG_8723A("%s, %d, RCR = %x \n", __func__, __LINE__,
592                   rtl8723au_read32(padapter, REG_RCR));
593 }
594
595 void rtl8723a_off_rcr_am(struct rtw_adapter *padapter)
596 {
597         rtl8723au_write32(padapter, REG_RCR,
598                     rtl8723au_read32(padapter, REG_RCR) & (~RCR_AM));
599         DBG_8723A("%s, %d, RCR = %x \n", __func__, __LINE__,
600                   rtl8723au_read32(padapter, REG_RCR));
601 }
602
603 void rtl8723a_set_slot_time(struct rtw_adapter *padapter, u8 slottime)
604 {
605         u8 u1bAIFS, aSifsTime;
606         struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
607         struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
608
609         rtl8723au_write8(padapter, REG_SLOT, slottime);
610
611         if (pmlmeinfo->WMM_enable == 0) {
612                 if (pmlmeext->cur_wireless_mode == WIRELESS_11B)
613                         aSifsTime = 10;
614                 else
615                         aSifsTime = 16;
616
617                 u1bAIFS = aSifsTime + (2 * pmlmeinfo->slotTime);
618
619                 /*  <Roger_EXP> Temporary removed, 2008.06.20. */
620                 rtl8723au_write8(padapter, REG_EDCA_VO_PARAM, u1bAIFS);
621                 rtl8723au_write8(padapter, REG_EDCA_VI_PARAM, u1bAIFS);
622                 rtl8723au_write8(padapter, REG_EDCA_BE_PARAM, u1bAIFS);
623                 rtl8723au_write8(padapter, REG_EDCA_BK_PARAM, u1bAIFS);
624         }
625 }
626
627 void rtl8723a_ack_preamble(struct rtw_adapter *padapter, u8 bShortPreamble)
628 {
629         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
630         u8 regTmp;
631
632         /*  Joseph marked out for Netgear 3500 TKIP
633             channel 7 issue.(Temporarily) */
634         regTmp = (pHalData->nCur40MhzPrimeSC) << 5;
635         /* regTmp = 0; */
636         if (bShortPreamble)
637                 regTmp |= 0x80;
638         rtl8723au_write8(padapter, REG_RRSR + 2, regTmp);
639 }
640
641 void rtl8723a_set_sec_cfg(struct rtw_adapter *padapter, u8 sec)
642 {
643         rtl8723au_write8(padapter, REG_SECCFG, sec);
644 }
645
646 void rtl8723a_cam_empty_entry(struct rtw_adapter *padapter, u8 ucIndex)
647 {
648         u8 i;
649         u32 ulCommand = 0;
650         u32 ulContent = 0;
651         u32 ulEncAlgo = CAM_AES;
652
653         for (i = 0; i < CAM_CONTENT_COUNT; i++) {
654                 /*  filled id in CAM config 2 byte */
655                 if (i == 0) {
656                         ulContent |= (ucIndex & 0x03) |
657                                 ((u16) (ulEncAlgo) << 2);
658                         /* ulContent |= CAM_VALID; */
659                 } else {
660                         ulContent = 0;
661                 }
662                 /*  polling bit, and No Write enable, and address */
663                 ulCommand = CAM_CONTENT_COUNT * ucIndex + i;
664                 ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
665                 /*  write content 0 is equall to mark invalid */
666                 /* delay_ms(40); */
667                 rtl8723au_write32(padapter, WCAMI, ulContent);
668                 /* RT_TRACE(COMP_SEC, DBG_LOUD,
669                    ("rtl8723a_cam_empty_entry(): WRITE A4: %lx \n",
670                    ulContent));*/
671                 /* delay_ms(40); */
672                 rtl8723au_write32(padapter, REG_CAMCMD, ulCommand);
673                 /* RT_TRACE(COMP_SEC, DBG_LOUD,
674                    ("rtl8723a_cam_empty_entry(): WRITE A0: %lx \n",
675                    ulCommand));*/
676         }
677 }
678
679 void rtl8723a_cam_invalidate_all(struct rtw_adapter *padapter)
680 {
681         rtl8723au_write32(padapter, REG_CAMCMD, CAM_POLLINIG | BIT(30));
682 }
683
684 void rtl8723a_cam_write(struct rtw_adapter *padapter,
685                         u8 entry, u16 ctrl, const u8 *mac, const u8 *key)
686 {
687         u32 cmd;
688         unsigned int i, val, addr;
689         int j;
690
691         addr = entry << 3;
692
693         for (j = 5; j >= 0; j--) {
694                 switch (j) {
695                 case 0:
696                         val = ctrl | (mac[0] << 16) | (mac[1] << 24);
697                         break;
698                 case 1:
699                         val = mac[2] | (mac[3] << 8) |
700                                 (mac[4] << 16) | (mac[5] << 24);
701                         break;
702                 default:
703                         i = (j - 2) << 2;
704                         val = key[i] | (key[i+1] << 8) |
705                                 (key[i+2] << 16) | (key[i+3] << 24);
706                         break;
707                 }
708
709                 rtl8723au_write32(padapter, WCAMI, val);
710                 cmd = CAM_POLLINIG | CAM_WRITE | (addr + j);
711                 rtl8723au_write32(padapter, REG_CAMCMD, cmd);
712
713                 /* DBG_8723A("%s => cam write: %x, %x\n", __func__, cmd, val);*/
714         }
715 }
716
717 void rtl8723a_fifo_cleanup(struct rtw_adapter *padapter)
718 {
719 #define RW_RELEASE_EN           BIT(18)
720 #define RXDMA_IDLE              BIT(17)
721
722         struct pwrctrl_priv *pwrpriv = &padapter->pwrctrlpriv;
723         u8 trycnt = 100;
724
725         /*  pause tx */
726         rtl8723au_write8(padapter, REG_TXPAUSE, 0xff);
727
728         /*  keep sn */
729         padapter->xmitpriv.nqos_ssn = rtl8723au_read16(padapter, REG_NQOS_SEQ);
730
731         if (pwrpriv->bkeepfwalive != true) {
732                 u32 v32;
733
734                 /*  RX DMA stop */
735                 v32 = rtl8723au_read32(padapter, REG_RXPKT_NUM);
736                 v32 |= RW_RELEASE_EN;
737                 rtl8723au_write32(padapter, REG_RXPKT_NUM, v32);
738                 do {
739                         v32 = rtl8723au_read32(padapter,
740                                                REG_RXPKT_NUM) & RXDMA_IDLE;
741                         if (!v32)
742                                 break;
743                 } while (trycnt--);
744                 if (trycnt == 0) {
745                         DBG_8723A("Stop RX DMA failed......\n");
746                 }
747
748                 /*  RQPN Load 0 */
749                 rtl8723au_write16(padapter, REG_RQPN_NPQ, 0);
750                 rtl8723au_write32(padapter, REG_RQPN, 0x80000000);
751                 mdelay(10);
752         }
753 }
754
755 void rtl8723a_bcn_valid(struct rtw_adapter *padapter)
756 {
757         /* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2,
758            write 1 to clear, Clear by sw */
759         rtl8723au_write8(padapter, REG_TDECTRL + 2,
760                          rtl8723au_read8(padapter, REG_TDECTRL + 2) | BIT(0));
761 }
762
763 bool rtl8723a_get_bcn_valid(struct rtw_adapter *padapter)
764 {
765         bool retval;
766
767         retval = (rtl8723au_read8(padapter, REG_TDECTRL + 2) & BIT(0)) ? true : false;
768
769         return retval;
770 }
771
772 void rtl8723a_set_beacon_interval(struct rtw_adapter *padapter, u16 interval)
773 {
774         rtl8723au_write16(padapter, REG_BCN_INTERVAL, interval);
775 }
776
777 void rtl8723a_set_resp_sifs(struct rtw_adapter *padapter,
778                             u8 r2t1, u8 r2t2, u8 t2t1, u8 t2t2)
779 {
780         /* SIFS_Timer = 0x0a0a0808; */
781         /* RESP_SIFS for CCK */
782         /*  SIFS_T2T_CCK (0x08) */
783         rtl8723au_write8(padapter, REG_R2T_SIFS, r2t1);
784         /* SIFS_R2T_CCK(0x08) */
785         rtl8723au_write8(padapter, REG_R2T_SIFS + 1, r2t2);
786         /* RESP_SIFS for OFDM */
787         /* SIFS_T2T_OFDM (0x0a) */
788         rtl8723au_write8(padapter, REG_T2T_SIFS, t2t1);
789         /* SIFS_R2T_OFDM(0x0a) */
790         rtl8723au_write8(padapter, REG_T2T_SIFS + 1, t2t2);
791 }
792
793 void rtl8723a_set_ac_param_vo(struct rtw_adapter *padapter, u32 vo)
794 {
795         rtl8723au_write32(padapter, REG_EDCA_VO_PARAM, vo);
796 }
797
798 void rtl8723a_set_ac_param_vi(struct rtw_adapter *padapter, u32 vi)
799 {
800         rtl8723au_write32(padapter, REG_EDCA_VI_PARAM, vi);
801 }
802
803 void rtl8723a_set_ac_param_be(struct rtw_adapter *padapter, u32 be)
804 {
805         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
806
807         pHalData->AcParam_BE = be;
808         rtl8723au_write32(padapter, REG_EDCA_BE_PARAM, be);
809 }
810
811 void rtl8723a_set_ac_param_bk(struct rtw_adapter *padapter, u32 bk)
812 {
813         rtl8723au_write32(padapter, REG_EDCA_BK_PARAM, bk);
814 }
815
816 void rtl8723a_set_rxdma_agg_pg_th(struct rtw_adapter *padapter, u8 val)
817 {
818         rtl8723au_write8(padapter, REG_RXDMA_AGG_PG_TH, val);
819 }
820
821 void rtl8723a_set_initial_gain(struct rtw_adapter *padapter, u32 rx_gain)
822 {
823         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
824         struct dig_t *pDigTable = &pHalData->odmpriv.DM_DigTable;
825
826         if (rx_gain == 0xff)    /* restore rx gain */
827                 ODM_Write_DIG23a(&pHalData->odmpriv, pDigTable->BackupIGValue);
828         else {
829                 pDigTable->BackupIGValue = pDigTable->CurIGValue;
830                 ODM_Write_DIG23a(&pHalData->odmpriv, rx_gain);
831         }
832 }
833
834 void rtl8723a_odm_support_ability_restore(struct rtw_adapter *padapter)
835 {
836         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
837
838         pHalData->odmpriv.SupportAbility = pHalData->odmpriv.BK_SupportAbility;
839 }
840
841 void rtl8723a_odm_support_ability_backup(struct rtw_adapter *padapter)
842 {
843         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
844
845         pHalData->odmpriv.BK_SupportAbility = pHalData->odmpriv.SupportAbility;
846 }
847
848 void rtl8723a_odm_support_ability_set(struct rtw_adapter *padapter, u32 val)
849 {
850         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
851
852         if (val == DYNAMIC_ALL_FUNC_ENABLE)
853                 pHalData->odmpriv.SupportAbility = pHalData->dmpriv.InitODMFlag;
854         else
855                 pHalData->odmpriv.SupportAbility |= val;
856 }
857
858 void rtl8723a_odm_support_ability_clr(struct rtw_adapter *padapter, u32 val)
859 {
860         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
861
862         pHalData->odmpriv.SupportAbility &= val;
863 }
864
865 void rtl8723a_set_rpwm(struct rtw_adapter *padapter, u8 val)
866 {
867         rtl8723au_write8(padapter, REG_USB_HRPWM, val);
868 }
869
870 u8 rtl8723a_get_rf_type(struct rtw_adapter *padapter)
871 {
872         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
873
874         return pHalData->rf_type;
875 }
876
877 bool rtl8723a_get_fwlps_rf_on(struct rtw_adapter *padapter)
878 {
879         bool retval;
880         u32 valRCR;
881
882         /*  When we halt NIC, we should check if FW LPS is leave. */
883
884         if ((padapter->bSurpriseRemoved == true) ||
885             (padapter->pwrctrlpriv.rf_pwrstate == rf_off)) {
886                 /*  If it is in HW/SW Radio OFF or IPS state, we do
887                     not check Fw LPS Leave, because Fw is unload. */
888                 retval = true;
889         } else {
890                 valRCR = rtl8723au_read32(padapter, REG_RCR);
891                 if (valRCR & 0x00070000)
892                         retval = false;
893                 else
894                         retval = true;
895         }
896
897         return retval;
898 }
899
900 bool rtl8723a_chk_hi_queue_empty(struct rtw_adapter *padapter)
901 {
902         u32 hgq;
903
904         hgq = rtl8723au_read32(padapter, REG_HGQ_INFORMATION);
905
906         return ((hgq & 0x0000ff00) == 0) ? true : false;
907 }