Linux 3.15-rc2
[firefly-linux-kernel-4.4.55.git] / drivers / staging / rtl8723au / hal / rtl8723a_hal_init.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2007 - 2012 Realtek Corporation. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12  * more details.
13  *
14  ******************************************************************************/
15 #define _HAL_INIT_C_
16
17 #include <linux/firmware.h>
18 #include <drv_types.h>
19 #include <rtw_efuse.h>
20
21 #include <rtl8723a_hal.h>
22
23 static void _FWDownloadEnable(struct rtw_adapter *padapter, bool enable)
24 {
25         u8 tmp;
26
27         if (enable) {
28                 /*  8051 enable */
29                 tmp = rtw_read8(padapter, REG_SYS_FUNC_EN + 1);
30                 rtw_write8(padapter, REG_SYS_FUNC_EN + 1, tmp | 0x04);
31
32                 /*  MCU firmware download enable. */
33                 tmp = rtw_read8(padapter, REG_MCUFWDL);
34                 rtw_write8(padapter, REG_MCUFWDL, tmp | 0x01);
35
36                 /*  8051 reset */
37                 tmp = rtw_read8(padapter, REG_MCUFWDL + 2);
38                 rtw_write8(padapter, REG_MCUFWDL + 2, tmp & 0xf7);
39         } else {
40                 /*  MCU firmware download disable. */
41                 tmp = rtw_read8(padapter, REG_MCUFWDL);
42                 rtw_write8(padapter, REG_MCUFWDL, tmp & 0xfe);
43
44                 /*  Reserved for fw extension. */
45                 rtw_write8(padapter, REG_MCUFWDL + 1, 0x00);
46         }
47 }
48
49 static int _BlockWrite(struct rtw_adapter *padapter, void *buffer, u32 buffSize)
50 {
51         int ret = _SUCCESS;
52         /*  (Default) Phase #1 : PCI muse use 4-byte write to download FW */
53         u32 blockSize_p1 = 4;
54         /*  Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */
55         u32 blockSize_p2 = 8;
56         /*  Phase #3 : Use 1-byte, the remnant of FW image. */
57         u32 blockSize_p3 = 1;
58         u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
59         u32 remainSize_p1 = 0, remainSize_p2 = 0;
60         u8 *bufferPtr = (u8 *) buffer;
61         u32 i = 0, offset = 0;
62
63         blockSize_p1 = 254;
64
65         /* 3 Phase #1 */
66         blockCount_p1 = buffSize / blockSize_p1;
67         remainSize_p1 = buffSize % blockSize_p1;
68
69         if (blockCount_p1) {
70                 RT_TRACE(_module_hal_init_c_, _drv_notice_,
71                          ("_BlockWrite: [P1] buffSize(%d) blockSize_p1(%d) "
72                           "blockCount_p1(%d) remainSize_p1(%d)\n",
73                           buffSize, blockSize_p1, blockCount_p1,
74                           remainSize_p1));
75         }
76
77         for (i = 0; i < blockCount_p1; i++) {
78                 ret = rtw_writeN(padapter,
79                                  (FW_8723A_START_ADDRESS + i * blockSize_p1),
80                                  blockSize_p1, (bufferPtr + i * blockSize_p1));
81                 if (ret == _FAIL)
82                         goto exit;
83         }
84
85         /* 3 Phase #2 */
86         if (remainSize_p1) {
87                 offset = blockCount_p1 * blockSize_p1;
88
89                 blockCount_p2 = remainSize_p1 / blockSize_p2;
90                 remainSize_p2 = remainSize_p1 % blockSize_p2;
91
92                 if (blockCount_p2) {
93                         RT_TRACE(_module_hal_init_c_, _drv_notice_,
94                                  ("_BlockWrite: [P2] buffSize_p2(%d) "
95                                   "blockSize_p2(%d) blockCount_p2(%d) "
96                                   "remainSize_p2(%d)\n",
97                                   (buffSize - offset), blockSize_p2,
98                                   blockCount_p2, remainSize_p2));
99                 }
100
101                 for (i = 0; i < blockCount_p2; i++) {
102                         ret = rtw_writeN(padapter,
103                                          (FW_8723A_START_ADDRESS + offset +
104                                           i * blockSize_p2), blockSize_p2,
105                                          (bufferPtr + offset +
106                                           i * blockSize_p2));
107
108                         if (ret == _FAIL)
109                                 goto exit;
110                 }
111         }
112
113         /* 3 Phase #3 */
114         if (remainSize_p2) {
115                 offset = (blockCount_p1 * blockSize_p1) +
116                         (blockCount_p2 * blockSize_p2);
117
118                 blockCount_p3 = remainSize_p2 / blockSize_p3;
119
120                 RT_TRACE(_module_hal_init_c_, _drv_notice_,
121                          ("_BlockWrite: [P3] buffSize_p3(%d) blockSize_p3(%d) "
122                           "blockCount_p3(%d)\n",
123                           (buffSize - offset), blockSize_p3, blockCount_p3));
124
125                 for (i = 0; i < blockCount_p3; i++) {
126                         ret = rtw_write8(padapter,
127                                          (FW_8723A_START_ADDRESS + offset + i),
128                                          *(bufferPtr + offset + i));
129
130                         if (ret == _FAIL)
131                                 goto exit;
132                 }
133         }
134
135 exit:
136         return ret;
137 }
138
139 static int
140 _PageWrite(struct rtw_adapter *padapter, u32 page, void *buffer, u32 size)
141 {
142         u8 value8;
143         u8 u8Page = (u8) (page & 0x07);
144
145         value8 = (rtw_read8(padapter, REG_MCUFWDL + 2) & 0xF8) | u8Page;
146         rtw_write8(padapter, REG_MCUFWDL + 2, value8);
147
148         return _BlockWrite(padapter, buffer, size);
149 }
150
151 static int _WriteFW(struct rtw_adapter *padapter, void *buffer, u32 size)
152 {
153         /*  Since we need dynamic decide method of dwonload fw, so we
154             call this function to get chip version. */
155         /*  We can remove _ReadChipVersion from ReadpadapterInfo8192C later. */
156         int ret = _SUCCESS;
157         u32 pageNums, remainSize;
158         u32 page, offset;
159         u8 *bufferPtr = (u8 *) buffer;
160
161         pageNums = size / MAX_PAGE_SIZE;
162         /* RT_ASSERT((pageNums <= 4),
163            ("Page numbers should not greater then 4 \n")); */
164         remainSize = size % MAX_PAGE_SIZE;
165
166         for (page = 0; page < pageNums; page++) {
167                 offset = page * MAX_PAGE_SIZE;
168                 ret = _PageWrite(padapter, page, bufferPtr + offset,
169                                  MAX_PAGE_SIZE);
170
171                 if (ret == _FAIL)
172                         goto exit;
173         }
174         if (remainSize) {
175                 offset = pageNums * MAX_PAGE_SIZE;
176                 page = pageNums;
177                 ret = _PageWrite(padapter, page, bufferPtr + offset,
178                                  remainSize);
179
180                 if (ret == _FAIL)
181                         goto exit;
182         }
183         RT_TRACE(_module_hal_init_c_, _drv_info_,
184                  ("_WriteFW Done- for Normal chip.\n"));
185
186 exit:
187         return ret;
188 }
189
190 static s32 _FWFreeToGo(struct rtw_adapter *padapter)
191 {
192         u32 counter = 0;
193         u32 value32;
194
195         /*  polling CheckSum report */
196         do {
197                 value32 = rtw_read32(padapter, REG_MCUFWDL);
198                 if (value32 & FWDL_ChkSum_rpt)
199                         break;
200         } while (counter++ < POLLING_READY_TIMEOUT_COUNT);
201
202         if (counter >= POLLING_READY_TIMEOUT_COUNT) {
203                 RT_TRACE(_module_hal_init_c_, _drv_err_,
204                          ("%s: chksum report fail! REG_MCUFWDL:0x%08x\n",
205                           __func__, value32));
206                 return _FAIL;
207         }
208         RT_TRACE(_module_hal_init_c_, _drv_info_,
209                  ("%s: Checksum report OK! REG_MCUFWDL:0x%08x\n", __func__,
210                   value32));
211
212         value32 = rtw_read32(padapter, REG_MCUFWDL);
213         value32 |= MCUFWDL_RDY;
214         value32 &= ~WINTINI_RDY;
215         rtw_write32(padapter, REG_MCUFWDL, value32);
216
217         /*  polling for FW ready */
218         counter = 0;
219         do {
220                 value32 = rtw_read32(padapter, REG_MCUFWDL);
221                 if (value32 & WINTINI_RDY) {
222                         RT_TRACE(_module_hal_init_c_, _drv_info_,
223                                  ("%s: Polling FW ready success!! "
224                                   "REG_MCUFWDL:0x%08x\n",
225                                   __func__, value32));
226                         return _SUCCESS;
227                 }
228                 udelay(5);
229         } while (counter++ < POLLING_READY_TIMEOUT_COUNT);
230
231         RT_TRACE(_module_hal_init_c_, _drv_err_,
232                  ("%s: Polling FW ready fail!! REG_MCUFWDL:0x%08x\n",
233                   __func__, value32));
234         return _FAIL;
235 }
236
237 #define IS_FW_81xxC(padapter)   (((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)
238
239 void rtl8723a_FirmwareSelfReset(struct rtw_adapter *padapter)
240 {
241         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
242         u8 u1bTmp;
243         u8 Delay = 100;
244
245         if (!(IS_FW_81xxC(padapter) &&
246               ((pHalData->FirmwareVersion < 0x21) ||
247                (pHalData->FirmwareVersion == 0x21 &&
248                 pHalData->FirmwareSubVersion < 0x01)))) {
249                 /*  after 88C Fw v33.1 */
250                 /* 0x1cf = 0x20. Inform 8051 to reset. 2009.12.25. tynli_test */
251                 rtw_write8(padapter, REG_HMETFR + 3, 0x20);
252
253                 u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN + 1);
254                 while (u1bTmp & BIT2) {
255                         Delay--;
256                         if (Delay == 0)
257                                 break;
258                         udelay(50);
259                         u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN + 1);
260                 }
261                 RT_TRACE(_module_hal_init_c_, _drv_info_,
262                          ("-%s: 8051 reset success (%d)\n", __func__,
263                           Delay));
264
265                 if ((Delay == 0)) {
266                         /* force firmware reset */
267                         u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN + 1);
268                         rtw_write8(padapter, REG_SYS_FUNC_EN + 1,
269                                    u1bTmp & (~BIT2));
270                 }
271         }
272 }
273
274 /*  */
275 /*      Description: */
276 /*              Download 8192C firmware code. */
277 /*  */
278 /*  */
279 s32 rtl8723a_FirmwareDownload(struct rtw_adapter *padapter)
280 {
281         s32 rtStatus = _SUCCESS;
282         u8 writeFW_retry = 0;
283         unsigned long fwdl_start_time;
284         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
285         struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
286         struct device *device = dvobj_to_dev(dvobj);
287         struct rt_8723a_firmware_hdr *pFwHdr = NULL;
288         const struct firmware *fw;
289         char *fw_name;
290         u8 *firmware_buf = NULL;
291         u8 *buf;
292         int fw_size;
293         static int log_version;
294
295         RT_TRACE(_module_hal_init_c_, _drv_info_, ("+%s\n", __func__));
296
297         if (IS_8723A_A_CUT(pHalData->VersionID)) {
298                 fw_name = "rtlwifi/rtl8723aufw.bin";
299                 RT_TRACE(_module_hal_init_c_, _drv_info_,
300                          ("rtl8723a_FirmwareDownload: R8723FwImageArray_UMC "
301                           "for RTL8723A A CUT\n"));
302         } else if (IS_8723A_B_CUT(pHalData->VersionID)) {
303                 /*  WLAN Fw. */
304                 if (padapter->registrypriv.wifi_spec == 1) {
305                         fw_name = "rtlwifi/rtl8723aufw_B_NoBT.bin";
306                         DBG_8723A(" Rtl8723_FwUMCBCutImageArrayWithoutBT for "
307                                   "RTL8723A B CUT\n");
308                 } else {
309 #ifdef CONFIG_8723AU_BT_COEXIST
310                         fw_name = "rtlwifi/rtl8723aufw_B.bin";
311                         DBG_8723A(" Rtl8723_FwUMCBCutImageArrayWithBT for "
312                                   "RTL8723A B CUT\n");
313 #else
314                         fw_name = "rtlwifi/rtl8723aufw_B_NoBT.bin";
315                         DBG_8723A(" Rtl8723_FwUMCBCutImageArrayWithoutBT for "
316                                   "RTL8723A B CUT\n");
317 #endif
318                 }
319         } else {
320                 /*  <Roger_TODO> We should download proper RAM Code here
321                     to match the ROM code. */
322                 RT_TRACE(_module_hal_init_c_, _drv_err_,
323                          ("%s: unknow version!\n", __func__));
324                 rtStatus = _FAIL;
325                 goto Exit;
326         }
327
328         pr_info("rtl8723au: Loading firmware %s\n", fw_name);
329         if (request_firmware(&fw, fw_name, device)) {
330                 pr_err("rtl8723au: request_firmware load failed\n");
331                 rtStatus = _FAIL;
332                 goto Exit;
333         }
334         if (!fw) {
335                 pr_err("rtl8723au: Firmware %s not available\n", fw_name);
336                 rtStatus = _FAIL;
337                 goto Exit;
338         }
339         firmware_buf = kzalloc(fw->size, GFP_KERNEL);
340         if (!firmware_buf) {
341                 rtStatus = _FAIL;
342                 goto Exit;
343         }
344         memcpy(firmware_buf, fw->data, fw->size);
345         buf = firmware_buf;
346         fw_size = fw->size;
347         release_firmware(fw);
348
349         /*  To Check Fw header. Added by tynli. 2009.12.04. */
350         pFwHdr = (struct rt_8723a_firmware_hdr *)firmware_buf;
351
352         pHalData->FirmwareVersion = le16_to_cpu(pFwHdr->Version);
353         pHalData->FirmwareSubVersion = pFwHdr->Subversion;
354         pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->Signature);
355
356         DBG_8723A("%s: fw_ver =%d fw_subver =%d sig = 0x%x\n",
357                   __func__, pHalData->FirmwareVersion,
358                   pHalData->FirmwareSubVersion, pHalData->FirmwareSignature);
359
360         if (!log_version++)
361                 pr_info("%sFirmware Version %d, SubVersion %d, Signature "
362                         "0x%x\n", DRIVER_PREFIX, pHalData->FirmwareVersion,
363                         pHalData->FirmwareSubVersion,
364                         pHalData->FirmwareSignature);
365
366         if (IS_FW_HEADER_EXIST(pFwHdr)) {
367                 /*  Shift 32 bytes for FW header */
368                 buf = buf + 32;
369                 fw_size = fw_size - 32;
370         }
371
372         /*  Suggested by Filen. If 8051 is running in RAM code, driver should
373             inform Fw to reset by itself, */
374         /*  or it will cause download Fw fail. 2010.02.01. by tynli. */
375         if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) {
376                 /* 8051 RAM code */
377                 rtl8723a_FirmwareSelfReset(padapter);
378                 rtw_write8(padapter, REG_MCUFWDL, 0x00);
379         }
380
381         _FWDownloadEnable(padapter, true);
382         fwdl_start_time = jiffies;
383         while (1) {
384                 /* reset the FWDL chksum */
385                 rtw_write8(padapter, REG_MCUFWDL,
386                            rtw_read8(padapter, REG_MCUFWDL) | FWDL_ChkSum_rpt);
387
388                 rtStatus = _WriteFW(padapter, buf, fw_size);
389
390                 if (rtStatus == _SUCCESS ||
391                     (jiffies_to_msecs(jiffies - fwdl_start_time) > 500 &&
392                      writeFW_retry++ >= 3))
393                         break;
394
395                 DBG_8723A("%s writeFW_retry:%u, time after fwdl_start_time:"
396                           "%ums\n", __func__, writeFW_retry,
397                           jiffies_to_msecs(jiffies - fwdl_start_time));
398         }
399         _FWDownloadEnable(padapter, false);
400         if (_SUCCESS != rtStatus) {
401                 DBG_8723A("DL Firmware failed!\n");
402                 goto Exit;
403         }
404
405         rtStatus = _FWFreeToGo(padapter);
406         if (_SUCCESS != rtStatus) {
407                 RT_TRACE(_module_hal_init_c_, _drv_err_,
408                          ("DL Firmware failed!\n"));
409                 goto Exit;
410         }
411         RT_TRACE(_module_hal_init_c_, _drv_info_,
412                  ("Firmware is ready to run!\n"));
413
414 Exit:
415         kfree(firmware_buf);
416         return rtStatus;
417 }
418
419 void rtl8723a_InitializeFirmwareVars(struct rtw_adapter *padapter)
420 {
421         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
422
423         /*  Init Fw LPS related. */
424         padapter->pwrctrlpriv.bFwCurrentInPSMode = false;
425
426         /*  Init H2C counter. by tynli. 2009.12.09. */
427         pHalData->LastHMEBoxNum = 0;
428 }
429
430 static void rtl8723a_free_hal_data(struct rtw_adapter *padapter)
431 {
432
433         kfree(padapter->HalData);
434         padapter->HalData = NULL;
435
436 }
437
438 /*  */
439 /*                              Efuse related code */
440 /*  */
441 static u8
442 hal_EfuseSwitchToBank(struct rtw_adapter *padapter, u8 bank)
443 {
444         u8 bRet = false;
445         u32 value32 = 0;
446
447         DBG_8723A("%s: Efuse switch bank to %d\n", __func__, bank);
448         value32 = rtw_read32(padapter, EFUSE_TEST);
449         bRet = true;
450         switch (bank) {
451         case 0:
452                 value32 = (value32 & ~EFUSE_SEL_MASK) |
453                         EFUSE_SEL(EFUSE_WIFI_SEL_0);
454                 break;
455         case 1:
456                 value32 = (value32 & ~EFUSE_SEL_MASK) |
457                         EFUSE_SEL(EFUSE_BT_SEL_0);
458                 break;
459         case 2:
460                 value32 = (value32 & ~EFUSE_SEL_MASK) |
461                         EFUSE_SEL(EFUSE_BT_SEL_1);
462                 break;
463         case 3:
464                 value32 = (value32 & ~EFUSE_SEL_MASK) |
465                         EFUSE_SEL(EFUSE_BT_SEL_2);
466                 break;
467         default:
468                 value32 = (value32 & ~EFUSE_SEL_MASK) |
469                         EFUSE_SEL(EFUSE_WIFI_SEL_0);
470                 bRet = false;
471                 break;
472         }
473         rtw_write32(padapter, EFUSE_TEST, value32);
474
475         return bRet;
476 }
477
478 static void
479 Hal_GetEfuseDefinition(struct rtw_adapter *padapter,
480                        u8 efuseType, u8 type, void *pOut)
481 {
482         u8 *pu1Tmp;
483         u16 *pu2Tmp;
484         u8 *pMax_section;
485
486         switch (type) {
487         case TYPE_EFUSE_MAX_SECTION:
488                 pMax_section = (u8 *) pOut;
489
490                 if (efuseType == EFUSE_WIFI)
491                         *pMax_section = EFUSE_MAX_SECTION_8723A;
492                 else
493                         *pMax_section = EFUSE_BT_MAX_SECTION;
494                 break;
495
496         case TYPE_EFUSE_REAL_CONTENT_LEN:
497                 pu2Tmp = (u16 *) pOut;
498
499                 if (efuseType == EFUSE_WIFI)
500                         *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723A;
501                 else
502                         *pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN;
503                 break;
504
505         case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
506                 pu2Tmp = (u16 *) pOut;
507
508                 if (efuseType == EFUSE_WIFI)
509                         *pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723A -
510                                    EFUSE_OOB_PROTECT_BYTES);
511                 else
512                         *pu2Tmp = (EFUSE_BT_REAL_BANK_CONTENT_LEN -
513                                    EFUSE_PROTECT_BYTES_BANK);
514                 break;
515
516         case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
517                 pu2Tmp = (u16 *) pOut;
518
519                 if (efuseType == EFUSE_WIFI)
520                         *pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723A -
521                                    EFUSE_OOB_PROTECT_BYTES);
522                 else
523                         *pu2Tmp = (EFUSE_BT_REAL_CONTENT_LEN -
524                                    (EFUSE_PROTECT_BYTES_BANK * 3));
525                 break;
526
527         case TYPE_EFUSE_MAP_LEN:
528                 pu2Tmp = (u16 *) pOut;
529
530                 if (efuseType == EFUSE_WIFI)
531                         *pu2Tmp = EFUSE_MAP_LEN_8723A;
532                 else
533                         *pu2Tmp = EFUSE_BT_MAP_LEN;
534                 break;
535
536         case TYPE_EFUSE_PROTECT_BYTES_BANK:
537                 pu1Tmp = (u8 *) pOut;
538
539                 if (efuseType == EFUSE_WIFI)
540                         *pu1Tmp = EFUSE_OOB_PROTECT_BYTES;
541                 else
542                         *pu1Tmp = EFUSE_PROTECT_BYTES_BANK;
543                 break;
544
545         case TYPE_EFUSE_CONTENT_LEN_BANK:
546                 pu2Tmp = (u16 *) pOut;
547
548                 if (efuseType == EFUSE_WIFI)
549                         *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723A;
550                 else
551                         *pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN;
552                 break;
553
554         default:
555                 pu1Tmp = (u8 *) pOut;
556                 *pu1Tmp = 0;
557                 break;
558         }
559 }
560
561 #define VOLTAGE_V25             0x03
562 #define LDOE25_SHIFT    28
563
564 static void
565 Hal_EfusePowerSwitch(struct rtw_adapter *padapter, u8 bWrite, u8 PwrState)
566 {
567         u8 tempval;
568         u16 tmpV16;
569
570         if (PwrState == true) {
571                 rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON);
572
573                 /*  1.2V Power: From VDDON with Power
574                     Cut(0x0000h[15]), defualt valid */
575                 tmpV16 = rtw_read16(padapter, REG_SYS_ISO_CTRL);
576                 if (!(tmpV16 & PWC_EV12V)) {
577                         tmpV16 |= PWC_EV12V;
578                         rtw_write16(padapter, REG_SYS_ISO_CTRL, tmpV16);
579                 }
580                 /*  Reset: 0x0000h[28], default valid */
581                 tmpV16 = rtw_read16(padapter, REG_SYS_FUNC_EN);
582                 if (!(tmpV16 & FEN_ELDR)) {
583                         tmpV16 |= FEN_ELDR;
584                         rtw_write16(padapter, REG_SYS_FUNC_EN, tmpV16);
585                 }
586
587                 /*  Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock
588                     from ANA, default valid */
589                 tmpV16 = rtw_read16(padapter, REG_SYS_CLKR);
590                 if ((!(tmpV16 & LOADER_CLK_EN)) || (!(tmpV16 & ANA8M))) {
591                         tmpV16 |= (LOADER_CLK_EN | ANA8M);
592                         rtw_write16(padapter, REG_SYS_CLKR, tmpV16);
593                 }
594
595                 if (bWrite == true) {
596                         /*  Enable LDO 2.5V before read/write action */
597                         tempval = rtw_read8(padapter, EFUSE_TEST + 3);
598                         tempval &= 0x0F;
599                         tempval |= (VOLTAGE_V25 << 4);
600                         rtw_write8(padapter, EFUSE_TEST + 3, (tempval | 0x80));
601                 }
602         } else {
603                 rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
604
605                 if (bWrite == true) {
606                         /*  Disable LDO 2.5V after read/write action */
607                         tempval = rtw_read8(padapter, EFUSE_TEST + 3);
608                         rtw_write8(padapter, EFUSE_TEST + 3, (tempval & 0x7F));
609                 }
610         }
611 }
612
613 static void
614 hal_ReadEFuse_WiFi(struct rtw_adapter *padapter,
615                    u16 _offset, u16 _size_byte, u8 *pbuf)
616 {
617         u8 *efuseTbl = NULL;
618         u16 eFuse_Addr = 0;
619         u8 offset, wden;
620         u8 efuseHeader, efuseExtHdr, efuseData;
621         u16 i, total, used;
622
623         /*  Do NOT excess total size of EFuse table.
624             Added by Roger, 2008.11.10. */
625         if ((_offset + _size_byte) > EFUSE_MAP_LEN_8723A) {
626                 DBG_8723A("%s: Invalid offset(%#x) with read bytes(%#x)!!\n",
627                           __func__, _offset, _size_byte);
628                 return;
629         }
630
631         efuseTbl = (u8 *) kmalloc(EFUSE_MAP_LEN_8723A, GFP_KERNEL);
632         if (efuseTbl == NULL) {
633                 DBG_8723A("%s: alloc efuseTbl fail!\n", __func__);
634                 return;
635         }
636         /*  0xff will be efuse default value instead of 0x00. */
637         memset(efuseTbl, 0xFF, EFUSE_MAP_LEN_8723A);
638
639         /*  switch bank back to bank 0 for later BT and wifi use. */
640         hal_EfuseSwitchToBank(padapter, 0);
641
642         while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
643                 ReadEFuseByte23a(padapter, eFuse_Addr++, &efuseHeader);
644                 if (efuseHeader == 0xFF) {
645                         DBG_8723A("%s: data end at address =%#x\n", __func__,
646                                   eFuse_Addr);
647                         break;
648                 }
649
650                 /*  Check PG header for section num. */
651                 if (EXT_HEADER(efuseHeader)) {  /* extended header */
652                         offset = GET_HDR_OFFSET_2_0(efuseHeader);
653
654                         ReadEFuseByte23a(padapter, eFuse_Addr++, &efuseExtHdr);
655                         if (ALL_WORDS_DISABLED(efuseExtHdr)) {
656                                 continue;
657                         }
658
659                         offset |= ((efuseExtHdr & 0xF0) >> 1);
660                         wden = (efuseExtHdr & 0x0F);
661                 } else {
662                         offset = ((efuseHeader >> 4) & 0x0f);
663                         wden = (efuseHeader & 0x0f);
664                 }
665
666                 if (offset < EFUSE_MAX_SECTION_8723A) {
667                         u16 addr;
668                         /*  Get word enable value from PG header */
669
670                         addr = offset * PGPKT_DATA_SIZE;
671                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
672                                 /* Check word enable condition in the section */
673                                 if (!(wden & (0x01 << i))) {
674                                         ReadEFuseByte23a(padapter, eFuse_Addr++,
675                                                       &efuseData);
676                                         efuseTbl[addr] = efuseData;
677
678                                         ReadEFuseByte23a(padapter, eFuse_Addr++,
679                                                       &efuseData);
680                                         efuseTbl[addr + 1] = efuseData;
681                                 }
682                                 addr += 2;
683                         }
684                 } else {
685                         DBG_8723A(KERN_ERR "%s: offset(%d) is illegal!!\n",
686                                   __func__, offset);
687                         eFuse_Addr += Efuse_CalculateWordCnts23a(wden) * 2;
688                 }
689         }
690
691         /*  Copy from Efuse map to output pointer memory!!! */
692         for (i = 0; i < _size_byte; i++)
693                 pbuf[i] = efuseTbl[_offset + i];
694
695         /*  Calculate Efuse utilization */
696         EFUSE_GetEfuseDefinition23a(padapter, EFUSE_WIFI,
697                                  TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total);
698         used = eFuse_Addr - 1;
699         rtw_hal_set_hwreg23a(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&used);
700
701         kfree(efuseTbl);
702 }
703
704 static void
705 hal_ReadEFuse_BT(struct rtw_adapter *padapter,
706                  u16 _offset, u16 _size_byte, u8 *pbuf)
707 {
708         u8 *efuseTbl;
709         u8 bank;
710         u16 eFuse_Addr;
711         u8 efuseHeader, efuseExtHdr, efuseData;
712         u8 offset, wden;
713         u16 i, total, used;
714
715         /*  Do NOT excess total size of EFuse table.
716             Added by Roger, 2008.11.10. */
717         if ((_offset + _size_byte) > EFUSE_BT_MAP_LEN) {
718                 DBG_8723A("%s: Invalid offset(%#x) with read bytes(%#x)!!\n",
719                           __func__, _offset, _size_byte);
720                 return;
721         }
722
723         efuseTbl = kmalloc(EFUSE_BT_MAP_LEN, GFP_KERNEL);
724         if (efuseTbl == NULL) {
725                 DBG_8723A("%s: efuseTbl malloc fail!\n", __func__);
726                 return;
727         }
728         /*  0xff will be efuse default value instead of 0x00. */
729         memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
730
731         EFUSE_GetEfuseDefinition23a(padapter, EFUSE_BT,
732                                  TYPE_AVAILABLE_EFUSE_BYTES_BANK, &total);
733
734         for (bank = 1; bank < EFUSE_MAX_BANK; bank++) {
735                 if (hal_EfuseSwitchToBank(padapter, bank) == false) {
736                         DBG_8723A("%s: hal_EfuseSwitchToBank Fail!!\n",
737                                   __func__);
738                         goto exit;
739                 }
740
741                 eFuse_Addr = 0;
742
743                 while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
744                         ReadEFuseByte23a(padapter, eFuse_Addr++, &efuseHeader);
745                         if (efuseHeader == 0xFF)
746                                 break;
747
748                         /*  Check PG header for section num. */
749                         if (EXT_HEADER(efuseHeader)) {  /* extended header */
750                                 offset = GET_HDR_OFFSET_2_0(efuseHeader);
751
752                                 ReadEFuseByte23a(padapter, eFuse_Addr++,
753                                               &efuseExtHdr);
754                                 if (ALL_WORDS_DISABLED(efuseExtHdr)) {
755                                         continue;
756                                 }
757
758                                 offset |= ((efuseExtHdr & 0xF0) >> 1);
759                                 wden = (efuseExtHdr & 0x0F);
760                         } else {
761                                 offset = ((efuseHeader >> 4) & 0x0f);
762                                 wden = (efuseHeader & 0x0f);
763                         }
764
765                         if (offset < EFUSE_BT_MAX_SECTION) {
766                                 u16 addr;
767
768                                 /*  Get word enable value from PG header */
769
770                                 addr = offset * PGPKT_DATA_SIZE;
771                                 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
772                                         /*  Check word enable condition in
773                                             the section */
774                                         if (!(wden & (0x01 << i))) {
775                                                 ReadEFuseByte23a(padapter,
776                                                               eFuse_Addr++,
777                                                               &efuseData);
778                                                 efuseTbl[addr] = efuseData;
779
780                                                 ReadEFuseByte23a(padapter,
781                                                               eFuse_Addr++,
782                                                               &efuseData);
783                                                 efuseTbl[addr + 1] = efuseData;
784                                         }
785                                         addr += 2;
786                                 }
787                         } else {
788                                 DBG_8723A(KERN_ERR
789                                           "%s: offset(%d) is illegal!!\n",
790                                           __func__, offset);
791                                 eFuse_Addr += Efuse_CalculateWordCnts23a(wden) * 2;
792                         }
793                 }
794
795                 if ((eFuse_Addr - 1) < total) {
796                         DBG_8723A("%s: bank(%d) data end at %#x\n",
797                                   __func__, bank, eFuse_Addr - 1);
798                         break;
799                 }
800         }
801
802         /*  switch bank back to bank 0 for later BT and wifi use. */
803         hal_EfuseSwitchToBank(padapter, 0);
804
805         /*  Copy from Efuse map to output pointer memory!!! */
806         for (i = 0; i < _size_byte; i++)
807                 pbuf[i] = efuseTbl[_offset + i];
808
809         /*  */
810         /*  Calculate Efuse utilization. */
811         /*  */
812         EFUSE_GetEfuseDefinition23a(padapter, EFUSE_BT,
813                                  TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total);
814         used = (EFUSE_BT_REAL_BANK_CONTENT_LEN * (bank - 1)) + eFuse_Addr - 1;
815         rtw_hal_set_hwreg23a(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *) &used);
816
817 exit:
818         kfree(efuseTbl);
819 }
820
821 static void
822 Hal_ReadEFuse(struct rtw_adapter *padapter,
823               u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf)
824 {
825         if (efuseType == EFUSE_WIFI)
826                 hal_ReadEFuse_WiFi(padapter, _offset, _size_byte, pbuf);
827         else
828                 hal_ReadEFuse_BT(padapter, _offset, _size_byte, pbuf);
829 }
830
831 static u16
832 hal_EfuseGetCurrentSize_WiFi(struct rtw_adapter *padapter)
833 {
834         u16 efuse_addr = 0;
835         u8 hoffset = 0, hworden = 0;
836         u8 efuse_data, word_cnts = 0;
837
838         rtw23a_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *) &efuse_addr);
839
840         DBG_8723A("%s: start_efuse_addr = 0x%X\n", __func__, efuse_addr);
841
842         /*  switch bank back to bank 0 for later BT and wifi use. */
843         hal_EfuseSwitchToBank(padapter, 0);
844
845         while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
846                 if (efuse_OneByteRead23a(padapter, efuse_addr, &efuse_data) ==
847                     false) {
848                         DBG_8723A(KERN_ERR "%s: efuse_OneByteRead23a Fail! "
849                                   "addr = 0x%X !!\n", __func__, efuse_addr);
850                         break;
851                 }
852
853                 if (efuse_data == 0xFF)
854                         break;
855
856                 if (EXT_HEADER(efuse_data)) {
857                         hoffset = GET_HDR_OFFSET_2_0(efuse_data);
858                         efuse_addr++;
859                         efuse_OneByteRead23a(padapter, efuse_addr, &efuse_data);
860                         if (ALL_WORDS_DISABLED(efuse_data)) {
861                                 continue;
862                         }
863
864                         hoffset |= ((efuse_data & 0xF0) >> 1);
865                         hworden = efuse_data & 0x0F;
866                 } else {
867                         hoffset = (efuse_data >> 4) & 0x0F;
868                         hworden = efuse_data & 0x0F;
869                 }
870
871                 word_cnts = Efuse_CalculateWordCnts23a(hworden);
872                 efuse_addr += (word_cnts * 2) + 1;
873         }
874
875         rtw_hal_set_hwreg23a(padapter, HW_VAR_EFUSE_BYTES, (u8 *) &efuse_addr);
876
877         DBG_8723A("%s: CurrentSize =%d\n", __func__, efuse_addr);
878
879         return efuse_addr;
880 }
881
882 static u16
883 hal_EfuseGetCurrentSize_BT(struct rtw_adapter *padapter)
884 {
885         u16 btusedbytes;
886         u16 efuse_addr;
887         u8 bank, startBank;
888         u8 hoffset = 0, hworden = 0;
889         u8 efuse_data, word_cnts = 0;
890         u16 retU2 = 0;
891
892         rtw23a_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *) &btusedbytes);
893
894         efuse_addr = (u16) ((btusedbytes % EFUSE_BT_REAL_BANK_CONTENT_LEN));
895         startBank = (u8) (1 + (btusedbytes / EFUSE_BT_REAL_BANK_CONTENT_LEN));
896
897         DBG_8723A("%s: start from bank =%d addr = 0x%X\n", __func__, startBank,
898                   efuse_addr);
899
900         EFUSE_GetEfuseDefinition23a(padapter, EFUSE_BT,
901                                  TYPE_AVAILABLE_EFUSE_BYTES_BANK, &retU2);
902
903         for (bank = startBank; bank < EFUSE_MAX_BANK; bank++) {
904                 if (hal_EfuseSwitchToBank(padapter, bank) == false) {
905                         DBG_8723A(KERN_ERR "%s: switch bank(%d) Fail!!\n",
906                                   __func__, bank);
907                         bank = EFUSE_MAX_BANK;
908                         break;
909                 }
910
911                 /*  only when bank is switched we have to reset
912                     the efuse_addr. */
913                 if (bank != startBank)
914                         efuse_addr = 0;
915
916                 while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
917                         if (efuse_OneByteRead23a(padapter, efuse_addr,
918                                               &efuse_data) == false) {
919                                 DBG_8723A(KERN_ERR "%s: efuse_OneByteRead23a Fail!"
920                                           " addr = 0x%X !!\n",
921                                           __func__, efuse_addr);
922                                 bank = EFUSE_MAX_BANK;
923                                 break;
924                         }
925
926                         if (efuse_data == 0xFF)
927                                 break;
928
929                         if (EXT_HEADER(efuse_data)) {
930                                 hoffset = GET_HDR_OFFSET_2_0(efuse_data);
931                                 efuse_addr++;
932                                 efuse_OneByteRead23a(padapter, efuse_addr,
933                                                   &efuse_data);
934                                 if (ALL_WORDS_DISABLED(efuse_data)) {
935                                         efuse_addr++;
936                                         continue;
937                                 }
938
939                                 hoffset |= ((efuse_data & 0xF0) >> 1);
940                                 hworden = efuse_data & 0x0F;
941                         } else {
942                                 hoffset = (efuse_data >> 4) & 0x0F;
943                                 hworden = efuse_data & 0x0F;
944                         }
945                         word_cnts = Efuse_CalculateWordCnts23a(hworden);
946                         /* read next header */
947                         efuse_addr += (word_cnts * 2) + 1;
948                 }
949
950                 /*  Check if we need to check next bank efuse */
951                 if (efuse_addr < retU2) {
952                         break;  /*  don't need to check next bank. */
953                 }
954         }
955
956         retU2 = ((bank - 1) * EFUSE_BT_REAL_BANK_CONTENT_LEN) + efuse_addr;
957         rtw_hal_set_hwreg23a(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&retU2);
958
959         DBG_8723A("%s: CurrentSize =%d\n", __func__, retU2);
960         return retU2;
961 }
962
963 static u16
964 Hal_EfuseGetCurrentSize(struct rtw_adapter *pAdapter, u8 efuseType)
965 {
966         u16 ret = 0;
967
968         if (efuseType == EFUSE_WIFI)
969                 ret = hal_EfuseGetCurrentSize_WiFi(pAdapter);
970         else
971                 ret = hal_EfuseGetCurrentSize_BT(pAdapter);
972
973         return ret;
974 }
975
976 static u8
977 Hal_EfuseWordEnableDataWrite(struct rtw_adapter *padapter,
978                              u16 efuse_addr, u8 word_en, u8 *data)
979 {
980         u16 tmpaddr = 0;
981         u16 start_addr = efuse_addr;
982         u8 badworden = 0x0F;
983         u8 tmpdata[PGPKT_DATA_SIZE];
984
985         memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
986
987         if (!(word_en & BIT(0))) {
988                 tmpaddr = start_addr;
989                 efuse_OneByteWrite23a(padapter, start_addr++, data[0]);
990                 efuse_OneByteWrite23a(padapter, start_addr++, data[1]);
991
992                 efuse_OneByteRead23a(padapter, tmpaddr, &tmpdata[0]);
993                 efuse_OneByteRead23a(padapter, tmpaddr + 1, &tmpdata[1]);
994                 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) {
995                         badworden &= (~BIT(0));
996                 }
997         }
998         if (!(word_en & BIT(1))) {
999                 tmpaddr = start_addr;
1000                 efuse_OneByteWrite23a(padapter, start_addr++, data[2]);
1001                 efuse_OneByteWrite23a(padapter, start_addr++, data[3]);
1002
1003                 efuse_OneByteRead23a(padapter, tmpaddr, &tmpdata[2]);
1004                 efuse_OneByteRead23a(padapter, tmpaddr + 1, &tmpdata[3]);
1005                 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) {
1006                         badworden &= (~BIT(1));
1007                 }
1008         }
1009         if (!(word_en & BIT(2))) {
1010                 tmpaddr = start_addr;
1011                 efuse_OneByteWrite23a(padapter, start_addr++, data[4]);
1012                 efuse_OneByteWrite23a(padapter, start_addr++, data[5]);
1013
1014                 efuse_OneByteRead23a(padapter, tmpaddr, &tmpdata[4]);
1015                 efuse_OneByteRead23a(padapter, tmpaddr + 1, &tmpdata[5]);
1016                 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) {
1017                         badworden &= (~BIT(2));
1018                 }
1019         }
1020         if (!(word_en & BIT(3))) {
1021                 tmpaddr = start_addr;
1022                 efuse_OneByteWrite23a(padapter, start_addr++, data[6]);
1023                 efuse_OneByteWrite23a(padapter, start_addr++, data[7]);
1024
1025                 efuse_OneByteRead23a(padapter, tmpaddr, &tmpdata[6]);
1026                 efuse_OneByteRead23a(padapter, tmpaddr + 1, &tmpdata[7]);
1027                 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) {
1028                         badworden &= (~BIT(3));
1029                 }
1030         }
1031
1032         return badworden;
1033 }
1034
1035 static s32
1036 Hal_EfusePgPacketRead(struct rtw_adapter *padapter, u8 offset, u8 *data)
1037 {
1038         u8 efuse_data, word_cnts = 0;
1039         u16 efuse_addr = 0;
1040         u8 hoffset = 0, hworden = 0;
1041         u8 i;
1042         u8 max_section = 0;
1043         s32 ret;
1044
1045         if (data == NULL)
1046                 return false;
1047
1048         EFUSE_GetEfuseDefinition23a(padapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION,
1049                                  &max_section);
1050         if (offset > max_section) {
1051                 DBG_8723A("%s: Packet offset(%d) is illegal(>%d)!\n",
1052                           __func__, offset, max_section);
1053                 return false;
1054         }
1055
1056         memset(data, 0xFF, PGPKT_DATA_SIZE);
1057         ret = true;
1058
1059         /*  */
1060         /*  <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the
1061             end of Efuse by CP. */
1062         /*  Skip dummy parts to prevent unexpected data read from Efuse. */
1063         /*  By pass right now. 2009.02.19. */
1064         /*  */
1065         while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1066                 if (efuse_OneByteRead23a(padapter, efuse_addr++, &efuse_data) ==
1067                     false) {
1068                         ret = false;
1069                         break;
1070                 }
1071
1072                 if (efuse_data == 0xFF)
1073                         break;
1074
1075                 if (EXT_HEADER(efuse_data)) {
1076                         hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1077                         efuse_OneByteRead23a(padapter, efuse_addr++, &efuse_data);
1078                         if (ALL_WORDS_DISABLED(efuse_data)) {
1079                                 DBG_8723A("%s: Error!! All words disabled!\n",
1080                                           __func__);
1081                                 continue;
1082                         }
1083
1084                         hoffset |= ((efuse_data & 0xF0) >> 1);
1085                         hworden = efuse_data & 0x0F;
1086                 } else {
1087                         hoffset = (efuse_data >> 4) & 0x0F;
1088                         hworden = efuse_data & 0x0F;
1089                 }
1090
1091                 if (hoffset == offset) {
1092                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
1093                                 /* Check word enable condition in the section */
1094                                 if (!(hworden & (0x01 << i))) {
1095                                         ReadEFuseByte23a(padapter, efuse_addr++,
1096                                                       &efuse_data);
1097                                         data[i * 2] = efuse_data;
1098
1099                                         ReadEFuseByte23a(padapter, efuse_addr++,
1100                                                       &efuse_data);
1101                                         data[(i * 2) + 1] = efuse_data;
1102                                 }
1103                         }
1104                 } else {
1105                         word_cnts = Efuse_CalculateWordCnts23a(hworden);
1106                         efuse_addr += word_cnts * 2;
1107                 }
1108         }
1109
1110         return ret;
1111 }
1112
1113 static u8
1114 hal_EfusePgCheckAvailableAddr(struct rtw_adapter *pAdapter, u8 efuseType)
1115 {
1116         u16 max_available = 0;
1117         u16 current_size;
1118
1119         EFUSE_GetEfuseDefinition23a(pAdapter, efuseType,
1120                                  TYPE_AVAILABLE_EFUSE_BYTES_TOTAL,
1121                                  &max_available);
1122
1123         current_size = Efuse_GetCurrentSize23a(pAdapter, efuseType);
1124         if (current_size >= max_available) {
1125                 DBG_8723A("%s: Error!! current_size(%d)>max_available(%d)\n",
1126                           __func__, current_size, max_available);
1127                 return false;
1128         }
1129         return true;
1130 }
1131
1132 static void
1133 hal_EfuseConstructPGPkt(u8 offset, u8 word_en, u8 *pData,
1134                         struct pg_pkt_struct *pTargetPkt)
1135 {
1136         memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
1137         pTargetPkt->offset = offset;
1138         pTargetPkt->word_en = word_en;
1139         efuse_WordEnableDataRead23a(word_en, pData, pTargetPkt->data);
1140         pTargetPkt->word_cnts = Efuse_CalculateWordCnts23a(pTargetPkt->word_en);
1141 }
1142
1143 static u8
1144 hal_EfusePartialWriteCheck(struct rtw_adapter *padapter, u8 efuseType,
1145                            u16 *pAddr, struct pg_pkt_struct *pTargetPkt)
1146 {
1147         u8 bRet = false;
1148         u16 startAddr = 0, efuse_max_available_len = 0, efuse_max = 0;
1149         u8 efuse_data = 0;
1150
1151         EFUSE_GetEfuseDefinition23a(padapter, efuseType,
1152                                  TYPE_AVAILABLE_EFUSE_BYTES_TOTAL,
1153                                  &efuse_max_available_len);
1154         EFUSE_GetEfuseDefinition23a(padapter, efuseType,
1155                                  TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max);
1156
1157         if (efuseType == EFUSE_WIFI) {
1158                 rtw23a_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES,
1159                                   (u8 *) &startAddr);
1160         } else {
1161                 rtw23a_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES,
1162                                   (u8 *) &startAddr);
1163         }
1164         startAddr %= efuse_max;
1165
1166         while (1) {
1167                 if (startAddr >= efuse_max_available_len) {
1168                         bRet = false;
1169                         DBG_8723A("%s: startAddr(%d) >= efuse_max_available_"
1170                                   "len(%d)\n", __func__, startAddr,
1171                                   efuse_max_available_len);
1172                         break;
1173                 }
1174
1175                 if (efuse_OneByteRead23a(padapter, startAddr, &efuse_data) &&
1176                     (efuse_data != 0xFF)) {
1177                         bRet = false;
1178                         DBG_8723A("%s: Something Wrong! last bytes(%#X = 0x%02X) "
1179                                   "is not 0xFF\n", __func__,
1180                                   startAddr, efuse_data);
1181                         break;
1182                 } else {
1183                         /*  not used header, 0xff */
1184                         *pAddr = startAddr;
1185                         bRet = true;
1186                         break;
1187                 }
1188         }
1189
1190         return bRet;
1191 }
1192
1193 static u8
1194 hal_EfusePgPacketWrite1ByteHeader(struct rtw_adapter *pAdapter, u8 efuseType,
1195                                   u16 *pAddr, struct pg_pkt_struct *pTargetPkt)
1196 {
1197         u8 pg_header = 0, tmp_header = 0;
1198         u16 efuse_addr = *pAddr;
1199         u8 repeatcnt = 0;
1200
1201         pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
1202
1203         do {
1204                 efuse_OneByteWrite23a(pAdapter, efuse_addr, pg_header);
1205                 efuse_OneByteRead23a(pAdapter, efuse_addr, &tmp_header);
1206                 if (tmp_header != 0xFF)
1207                         break;
1208                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1209                         DBG_8723A("%s: Repeat over limit for pg_header!!\n",
1210                                   __func__);
1211                         return false;
1212                 }
1213         } while (1);
1214
1215         if (tmp_header != pg_header) {
1216                 DBG_8723A(KERN_ERR "%s: PG Header Fail!!(pg = 0x%02X "
1217                           "read = 0x%02X)\n", __func__,
1218                           pg_header, tmp_header);
1219                 return false;
1220         }
1221
1222         *pAddr = efuse_addr;
1223
1224         return true;
1225 }
1226
1227 static u8
1228 hal_EfusePgPacketWrite2ByteHeader(struct rtw_adapter *padapter, u8 efuseType,
1229                                   u16 *pAddr, struct pg_pkt_struct *pTargetPkt)
1230 {
1231         u16 efuse_addr, efuse_max_available_len = 0;
1232         u8 pg_header = 0, tmp_header = 0;
1233         u8 repeatcnt = 0;
1234
1235         EFUSE_GetEfuseDefinition23a(padapter, efuseType,
1236                                  TYPE_AVAILABLE_EFUSE_BYTES_BANK,
1237                                  &efuse_max_available_len);
1238
1239         efuse_addr = *pAddr;
1240         if (efuse_addr >= efuse_max_available_len) {
1241                 DBG_8723A("%s: addr(%d) over avaliable(%d)!!\n", __func__,
1242                           efuse_addr, efuse_max_available_len);
1243                 return false;
1244         }
1245
1246         pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
1247
1248         do {
1249                 efuse_OneByteWrite23a(padapter, efuse_addr, pg_header);
1250                 efuse_OneByteRead23a(padapter, efuse_addr, &tmp_header);
1251                 if (tmp_header != 0xFF)
1252                         break;
1253                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1254                         DBG_8723A("%s: Repeat over limit for pg_header!!\n",
1255                                   __func__);
1256                         return false;
1257                 }
1258         } while (1);
1259
1260         if (tmp_header != pg_header) {
1261                 DBG_8723A(KERN_ERR
1262                           "%s: PG Header Fail!!(pg = 0x%02X read = 0x%02X)\n",
1263                           __func__, pg_header, tmp_header);
1264                 return false;
1265         }
1266
1267         /*  to write ext_header */
1268         efuse_addr++;
1269         pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
1270
1271         do {
1272                 efuse_OneByteWrite23a(padapter, efuse_addr, pg_header);
1273                 efuse_OneByteRead23a(padapter, efuse_addr, &tmp_header);
1274                 if (tmp_header != 0xFF)
1275                         break;
1276                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1277                         DBG_8723A("%s: Repeat over limit for ext_header!!\n",
1278                                   __func__);
1279                         return false;
1280                 }
1281         } while (1);
1282
1283         if (tmp_header != pg_header) {  /* offset PG fail */
1284                 DBG_8723A(KERN_ERR
1285                           "%s: PG EXT Header Fail!!(pg = 0x%02X read = 0x%02X)\n",
1286                           __func__, pg_header, tmp_header);
1287                 return false;
1288         }
1289
1290         *pAddr = efuse_addr;
1291
1292         return true;
1293 }
1294
1295 static u8
1296 hal_EfusePgPacketWriteHeader(struct rtw_adapter *padapter, u8 efuseType,
1297                              u16 *pAddr, struct pg_pkt_struct *pTargetPkt)
1298 {
1299         u8 bRet = false;
1300
1301         if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE) {
1302                 bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType,
1303                                                          pAddr, pTargetPkt);
1304         } else {
1305                 bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType,
1306                                                          pAddr, pTargetPkt);
1307         }
1308
1309         return bRet;
1310 }
1311
1312 static u8
1313 hal_EfusePgPacketWriteData(struct rtw_adapter *pAdapter, u8 efuseType,
1314                            u16 *pAddr, struct pg_pkt_struct *pTargetPkt)
1315 {
1316         u16 efuse_addr;
1317         u8 badworden;
1318
1319         efuse_addr = *pAddr;
1320         badworden =
1321             Efuse_WordEnableDataWrite23a(pAdapter, efuse_addr + 1,
1322                                       pTargetPkt->word_en, pTargetPkt->data);
1323         if (badworden != 0x0F) {
1324                 DBG_8723A("%s: Fail!!\n", __func__);
1325                 return false;
1326         }
1327
1328         return true;
1329 }
1330
1331 static s32
1332 Hal_EfusePgPacketWrite(struct rtw_adapter *padapter,
1333                        u8 offset, u8 word_en, u8 *pData)
1334 {
1335         struct pg_pkt_struct targetPkt;
1336         u16 startAddr = 0;
1337         u8 efuseType = EFUSE_WIFI;
1338
1339         if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType))
1340                 return false;
1341
1342         hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1343
1344         if (!hal_EfusePartialWriteCheck(padapter, efuseType,
1345                                         &startAddr, &targetPkt))
1346                 return false;
1347
1348         if (!hal_EfusePgPacketWriteHeader(padapter, efuseType,
1349                                           &startAddr, &targetPkt))
1350                 return false;
1351
1352         if (!hal_EfusePgPacketWriteData(padapter, efuseType,
1353                                         &startAddr, &targetPkt))
1354                 return false;
1355
1356         return true;
1357 }
1358
1359 static bool
1360 Hal_EfusePgPacketWrite_BT(struct rtw_adapter *pAdapter,
1361                           u8 offset, u8 word_en, u8 *pData)
1362 {
1363         struct pg_pkt_struct targetPkt;
1364         u16 startAddr = 0;
1365         u8 efuseType = EFUSE_BT;
1366
1367         if (!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType))
1368                 return false;
1369
1370         hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1371
1372         if (!hal_EfusePartialWriteCheck(pAdapter, efuseType,
1373                                         &startAddr, &targetPkt))
1374                 return false;
1375
1376         if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType,
1377                                           &startAddr, &targetPkt))
1378                 return false;
1379
1380         if (!hal_EfusePgPacketWriteData(pAdapter, efuseType,
1381                                         &startAddr, &targetPkt))
1382                 return false;
1383
1384         return true;
1385 }
1386
1387 static struct hal_version ReadChipVersion8723A(struct rtw_adapter *padapter)
1388 {
1389         u32 value32;
1390         struct hal_version ChipVersion;
1391         struct hal_data_8723a *pHalData;
1392
1393         pHalData = GET_HAL_DATA(padapter);
1394
1395         value32 = rtw_read32(padapter, REG_SYS_CFG);
1396         ChipVersion.ICType = CHIP_8723A;
1397         ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
1398         ChipVersion.RFType = RF_TYPE_1T1R;
1399         ChipVersion.VendorType =
1400                 ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
1401         ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK) >> CHIP_VER_RTL_SHIFT;   /*  IC version (CUT) */
1402
1403         /*  For regulator mode. by tynli. 2011.01.14 */
1404         pHalData->RegulatorMode = ((value32 & SPS_SEL) ?
1405                                    RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
1406
1407         value32 = rtw_read32(padapter, REG_GPIO_OUTSTS);
1408         /*  ROM code version. */
1409         ChipVersion.ROMVer = ((value32 & RF_RL_ID) >> 20);
1410
1411         /*  For multi-function consideration. Added by Roger, 2010.10.06. */
1412         pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
1413         value32 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
1414         pHalData->MultiFunc |=
1415                 ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0);
1416         pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0);
1417         pHalData->MultiFunc |=
1418                 ((value32 & GPS_FUNC_EN) ? RT_MULTI_FUNC_GPS : 0);
1419         pHalData->PolarityCtl =
1420                 ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT :
1421                  RT_POLARITY_LOW_ACT);
1422         dump_chip_info23a(ChipVersion);
1423         pHalData->VersionID = ChipVersion;
1424
1425         if (IS_1T2R(ChipVersion))
1426                 pHalData->rf_type = RF_1T2R;
1427         else if (IS_2T2R(ChipVersion))
1428                 pHalData->rf_type = RF_2T2R;
1429         else
1430                 pHalData->rf_type = RF_1T1R;
1431
1432         MSG_8723A("RF_Type is %x!!\n", pHalData->rf_type);
1433
1434         return ChipVersion;
1435 }
1436
1437 static void rtl8723a_read_chip_version(struct rtw_adapter *padapter)
1438 {
1439         ReadChipVersion8723A(padapter);
1440 }
1441
1442 /*  */
1443 /*  */
1444 /*  20100209 Joseph: */
1445 /*  This function is used only for 92C to set REG_BCN_CTRL(0x550) register. */
1446 /*  We just reserve the value of the register in variable
1447     pHalData->RegBcnCtrlVal and then operate */
1448 /*  the value of the register via atomic operation. */
1449 /*  This prevents from race condition when setting this register. */
1450 /*  The value of pHalData->RegBcnCtrlVal is initialized in
1451     HwConfigureRTL8192CE() function. */
1452 /*  */
1453 void SetBcnCtrlReg23a(struct rtw_adapter *padapter, u8 SetBits, u8 ClearBits)
1454 {
1455         struct hal_data_8723a *pHalData;
1456         u32 addr;
1457         u8 *pRegBcnCtrlVal;
1458
1459         pHalData = GET_HAL_DATA(padapter);
1460         pRegBcnCtrlVal = (u8 *)&pHalData->RegBcnCtrlVal;
1461
1462         addr = REG_BCN_CTRL;
1463
1464         *pRegBcnCtrlVal = rtw_read8(padapter, addr);
1465         *pRegBcnCtrlVal |= SetBits;
1466         *pRegBcnCtrlVal &= ~ClearBits;
1467
1468         rtw_write8(padapter, addr, *pRegBcnCtrlVal);
1469 }
1470
1471 void rtl8723a_InitBeaconParameters(struct rtw_adapter *padapter)
1472 {
1473         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
1474
1475         rtw_write16(padapter, REG_BCN_CTRL, 0x1010);
1476         pHalData->RegBcnCtrlVal = 0x1010;
1477
1478         /*  TODO: Remove these magic number */
1479         rtw_write16(padapter, REG_TBTT_PROHIBIT, 0x6404);       /*  ms */
1480         /*  Firmware will control REG_DRVERLYINT when power saving is enable, */
1481         /*  so don't set this register on STA mode. */
1482         if (check_fwstate(&padapter->mlmepriv, WIFI_STATION_STATE) == false)
1483                 rtw_write8(padapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME);
1484         /*  2ms */
1485         rtw_write8(padapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME);
1486
1487         /*  Suggested by designer timchen. Change beacon AIFS to the
1488             largest number beacause test chip does not contension before
1489             sending beacon. by tynli. 2009.11.03 */
1490         rtw_write16(padapter, REG_BCNTCFG, 0x660F);
1491 }
1492
1493 static void ResumeTxBeacon(struct rtw_adapter *padapter)
1494 {
1495         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
1496
1497         /*  2010.03.01. Marked by tynli. No need to call workitem beacause
1498             we record the value */
1499         /*  which should be read from register to a global variable. */
1500
1501         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+ResumeTxBeacon\n"));
1502
1503         pHalData->RegFwHwTxQCtrl |= BIT(6);
1504         rtw_write8(padapter, REG_FWHW_TXQ_CTRL + 2, pHalData->RegFwHwTxQCtrl);
1505         rtw_write8(padapter, REG_TBTT_PROHIBIT + 1, 0xff);
1506         pHalData->RegReg542 |= BIT(0);
1507         rtw_write8(padapter, REG_TBTT_PROHIBIT + 2, pHalData->RegReg542);
1508 }
1509
1510 static void StopTxBeacon(struct rtw_adapter *padapter)
1511 {
1512         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
1513
1514         /*  2010.03.01. Marked by tynli. No need to call workitem beacause
1515             we record the value */
1516         /*  which should be read from register to a global variable. */
1517
1518         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+StopTxBeacon\n"));
1519
1520         pHalData->RegFwHwTxQCtrl &= ~BIT(6);
1521         rtw_write8(padapter, REG_FWHW_TXQ_CTRL + 2, pHalData->RegFwHwTxQCtrl);
1522         rtw_write8(padapter, REG_TBTT_PROHIBIT + 1, 0x64);
1523         pHalData->RegReg542 &= ~BIT(0);
1524         rtw_write8(padapter, REG_TBTT_PROHIBIT + 2, pHalData->RegReg542);
1525
1526         CheckFwRsvdPageContent23a(padapter); /*  2010.06.23. Added by tynli. */
1527 }
1528
1529 static void _BeaconFunctionEnable(struct rtw_adapter *padapter, u8 Enable,
1530                                   u8 Linked)
1531 {
1532         SetBcnCtrlReg23a(padapter, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB,
1533                       0);
1534         rtw_write8(padapter, REG_RD_CTRL + 1, 0x6F);
1535 }
1536
1537 static void rtl8723a_SetBeaconRelatedRegisters(struct rtw_adapter *padapter)
1538 {
1539         u32 value32;
1540         struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
1541         struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
1542
1543         /* reset TSF, enable update TSF, correcting TSF On Beacon */
1544
1545         /* REG_BCN_INTERVAL */
1546         /* REG_BCNDMATIM */
1547         /* REG_ATIMWND */
1548         /* REG_TBTT_PROHIBIT */
1549         /* REG_DRVERLYINT */
1550         /* REG_BCN_MAX_ERR */
1551         /* REG_BCNTCFG (0x510) */
1552         /* REG_DUAL_TSF_RST */
1553         /* REG_BCN_CTRL (0x550) */
1554
1555         /*  */
1556         /*  ATIM window */
1557         /*  */
1558         rtw_write16(padapter, REG_ATIMWND, 2);
1559
1560         /*  */
1561         /*  Beacon interval (in unit of TU). */
1562         /*  */
1563         rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
1564
1565         rtl8723a_InitBeaconParameters(padapter);
1566
1567         rtw_write8(padapter, REG_SLOT, 0x09);
1568
1569         /*  */
1570         /*  Reset TSF Timer to zero, added by Roger. 2008.06.24 */
1571         /*  */
1572         value32 = rtw_read32(padapter, REG_TCR);
1573         value32 &= ~TSFRST;
1574         rtw_write32(padapter, REG_TCR, value32);
1575
1576         value32 |= TSFRST;
1577         rtw_write32(padapter, REG_TCR, value32);
1578
1579         /*  NOTE: Fix test chip's bug (about contention windows's randomness) */
1580         if (check_fwstate(&padapter->mlmepriv, WIFI_ADHOC_STATE |
1581                           WIFI_ADHOC_MASTER_STATE | WIFI_AP_STATE) == true) {
1582                 rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
1583                 rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
1584         }
1585
1586         _BeaconFunctionEnable(padapter, true, true);
1587
1588         ResumeTxBeacon(padapter);
1589         SetBcnCtrlReg23a(padapter, DIS_BCNQ_SUB, 0);
1590 }
1591
1592 static void rtl8723a_GetHalODMVar(struct rtw_adapter *Adapter,
1593                                   enum hal_odm_variable eVariable,
1594                                   void *pValue1, bool bSet)
1595 {
1596         switch (eVariable) {
1597         case HAL_ODM_STA_INFO:
1598                 break;
1599         default:
1600                 break;
1601         }
1602 }
1603
1604 static void rtl8723a_SetHalODMVar(struct rtw_adapter *Adapter,
1605                                   enum hal_odm_variable eVariable,
1606                                   void *pValue1, bool bSet)
1607 {
1608         struct hal_data_8723a *pHalData = GET_HAL_DATA(Adapter);
1609         struct dm_odm_t *podmpriv = &pHalData->odmpriv;
1610         switch (eVariable) {
1611         case HAL_ODM_STA_INFO:
1612         {
1613                 struct sta_info *psta = (struct sta_info *)pValue1;
1614
1615                 if (bSet) {
1616                         DBG_8723A("Set STA_(%d) info\n", psta->mac_id);
1617                         ODM_CmnInfoPtrArrayHook23a(podmpriv,
1618                                                 ODM_CMNINFO_STA_STATUS,
1619                                                 psta->mac_id, psta);
1620                 } else {
1621                         DBG_8723A("Clean STA_(%d) info\n", psta->mac_id);
1622                                 ODM_CmnInfoPtrArrayHook23a(podmpriv,
1623                                                         ODM_CMNINFO_STA_STATUS,
1624                                                         psta->mac_id, NULL);
1625                 }
1626         }
1627                 break;
1628         case HAL_ODM_P2P_STATE:
1629                 ODM_CmnInfoUpdate23a(podmpriv, ODM_CMNINFO_WIFI_DIRECT, bSet);
1630                 break;
1631         case HAL_ODM_WIFI_DISPLAY_STATE:
1632                 ODM_CmnInfoUpdate23a(podmpriv, ODM_CMNINFO_WIFI_DISPLAY, bSet);
1633                 break;
1634         default:
1635                 break;
1636         }
1637 }
1638
1639 static void hal_notch_filter_8723a(struct rtw_adapter *adapter, bool enable)
1640 {
1641         if (enable) {
1642                 DBG_8723A("Enable notch filter\n");
1643                 rtw_write8(adapter, rOFDM0_RxDSP + 1,
1644                            rtw_read8(adapter, rOFDM0_RxDSP + 1) | BIT1);
1645         } else {
1646                 DBG_8723A("Disable notch filter\n");
1647                 rtw_write8(adapter, rOFDM0_RxDSP + 1,
1648                            rtw_read8(adapter, rOFDM0_RxDSP + 1) & ~BIT1);
1649         }
1650 }
1651
1652 s32 c2h_id_filter_ccx_8723a(u8 id)
1653 {
1654         s32 ret = false;
1655         if (id == C2H_CCX_TX_RPT)
1656                 ret = true;
1657
1658         return ret;
1659 }
1660
1661 static s32 c2h_handler_8723a(struct rtw_adapter *padapter,
1662                              struct c2h_evt_hdr *c2h_evt)
1663 {
1664         s32 ret = _SUCCESS;
1665         u8 i = 0;
1666
1667         if (c2h_evt == NULL) {
1668                 DBG_8723A("%s c2h_evt is NULL\n", __func__);
1669                 ret = _FAIL;
1670                 goto exit;
1671         }
1672
1673         switch (c2h_evt->id) {
1674         case C2H_DBG:
1675                 RT_TRACE(_module_hal_init_c_, _drv_info_,
1676                          ("C2HCommandHandler: %s\n", c2h_evt->payload));
1677                 break;
1678
1679         case C2H_CCX_TX_RPT:
1680                 handle_txrpt_ccx_8723a(padapter, c2h_evt->payload);
1681                 break;
1682         case C2H_EXT_RA_RPT:
1683                 break;
1684         case C2H_HW_INFO_EXCH:
1685                 RT_TRACE(_module_hal_init_c_, _drv_info_,
1686                          ("[BT], C2H_HW_INFO_EXCH\n"));
1687                 for (i = 0; i < c2h_evt->plen; i++) {
1688                         RT_TRACE(_module_hal_init_c_, _drv_info_,
1689                                  ("[BT], tmpBuf[%d]= 0x%x\n", i,
1690                                   c2h_evt->payload[i]));
1691                 }
1692                 break;
1693
1694         case C2H_C2H_H2C_TEST:
1695                 RT_TRACE(_module_hal_init_c_, _drv_info_,
1696                          ("[BT], C2H_H2C_TEST\n"));
1697                 RT_TRACE(_module_hal_init_c_, _drv_info_,
1698                          ("[BT], tmpBuf[0]/[1]/[2]/[3]/[4]= 0x%x/ 0x%x/ "
1699                           "0x%x/ 0x%x/ 0x%x\n", c2h_evt->payload[0],
1700                           c2h_evt->payload[1], c2h_evt->payload[2],
1701                           c2h_evt->payload[3], c2h_evt->payload[4]));
1702                 break;
1703
1704 #ifdef CONFIG_8723AU_BT_COEXIST
1705         case C2H_BT_INFO:
1706                 DBG_8723A("%s ,  Got  C2H_BT_INFO \n", __func__);
1707                 BT_FwC2hBtInfo(padapter, c2h_evt->payload, c2h_evt->plen);
1708                 break;
1709 #endif
1710
1711         default:
1712                 ret = _FAIL;
1713                 break;
1714         }
1715
1716 exit:
1717         return ret;
1718 }
1719
1720 void rtl8723a_set_hal_ops(struct hal_ops *pHalFunc)
1721 {
1722         pHalFunc->free_hal_data = &rtl8723a_free_hal_data;
1723
1724         pHalFunc->dm_init = &rtl8723a_init_dm_priv;
1725         pHalFunc->dm_deinit = &rtl8723a_deinit_dm_priv;
1726
1727         pHalFunc->read_chip_version = &rtl8723a_read_chip_version;
1728
1729         pHalFunc->set_bwmode_handler = &PHY_SetBWMode23a8723A;
1730         pHalFunc->set_channel_handler = &PHY_SwChnl8723A;
1731
1732         pHalFunc->hal_dm_watchdog = &rtl8723a_HalDmWatchDog;
1733
1734         pHalFunc->SetBeaconRelatedRegistersHandler =
1735                 &rtl8723a_SetBeaconRelatedRegisters;
1736
1737         pHalFunc->Add_RateATid = &rtl8723a_add_rateatid;
1738         pHalFunc->run_thread = &rtl8723a_start_thread;
1739         pHalFunc->cancel_thread = &rtl8723a_stop_thread;
1740
1741         pHalFunc->read_bbreg = &PHY_QueryBBReg;
1742         pHalFunc->write_bbreg = &PHY_SetBBReg;
1743         pHalFunc->read_rfreg = &PHY_QueryRFReg;
1744         pHalFunc->write_rfreg = &PHY_SetRFReg;
1745
1746         /*  Efuse related function */
1747         pHalFunc->EfusePowerSwitch = &Hal_EfusePowerSwitch;
1748         pHalFunc->ReadEFuse = &Hal_ReadEFuse;
1749         pHalFunc->EFUSEGetEfuseDefinition = &Hal_GetEfuseDefinition;
1750         pHalFunc->EfuseGetCurrentSize = &Hal_EfuseGetCurrentSize;
1751         pHalFunc->Efuse_PgPacketRead23a = &Hal_EfusePgPacketRead;
1752         pHalFunc->Efuse_PgPacketWrite23a = &Hal_EfusePgPacketWrite;
1753         pHalFunc->Efuse_WordEnableDataWrite23a = &Hal_EfuseWordEnableDataWrite;
1754         pHalFunc->Efuse_PgPacketWrite23a_BT = &Hal_EfusePgPacketWrite_BT;
1755
1756         pHalFunc->sreset_init_value23a = &sreset_init_value23a;
1757         pHalFunc->sreset_reset_value23a = &sreset_reset_value23a;
1758         pHalFunc->silentreset = &sreset_reset;
1759         pHalFunc->sreset_xmit_status_check = &rtl8723a_sreset_xmit_status_check;
1760         pHalFunc->sreset_linked_status_check =
1761                 &rtl8723a_sreset_linked_status_check;
1762         pHalFunc->sreset_get_wifi_status23a = &sreset_get_wifi_status23a;
1763         pHalFunc->sreset_inprogress = &sreset_inprogress;
1764         pHalFunc->GetHalODMVarHandler = &rtl8723a_GetHalODMVar;
1765         pHalFunc->SetHalODMVarHandler = &rtl8723a_SetHalODMVar;
1766
1767         pHalFunc->hal_notch_filter = &hal_notch_filter_8723a;
1768
1769         pHalFunc->c2h_handler = c2h_handler_8723a;
1770         pHalFunc->c2h_id_filter_ccx = c2h_id_filter_ccx_8723a;
1771 }
1772
1773 void rtl8723a_InitAntenna_Selection(struct rtw_adapter *padapter)
1774 {
1775         struct hal_data_8723a *pHalData;
1776         u8 val;
1777
1778         pHalData = GET_HAL_DATA(padapter);
1779
1780         val = rtw_read8(padapter, REG_LEDCFG2);
1781         /*  Let 8051 take control antenna settting */
1782         val |= BIT(7);          /*  DPDT_SEL_EN, 0x4C[23] */
1783         rtw_write8(padapter, REG_LEDCFG2, val);
1784 }
1785
1786 void rtl8723a_CheckAntenna_Selection(struct rtw_adapter *padapter)
1787 {
1788         struct hal_data_8723a *pHalData;
1789         u8 val;
1790
1791         pHalData = GET_HAL_DATA(padapter);
1792
1793         val = rtw_read8(padapter, REG_LEDCFG2);
1794         /*  Let 8051 take control antenna settting */
1795         if (!(val & BIT(7))) {
1796                 val |= BIT(7);  /*  DPDT_SEL_EN, 0x4C[23] */
1797                 rtw_write8(padapter, REG_LEDCFG2, val);
1798         }
1799 }
1800
1801 void rtl8723a_DeinitAntenna_Selection(struct rtw_adapter *padapter)
1802 {
1803         struct hal_data_8723a *pHalData;
1804         u8 val;
1805
1806         pHalData = GET_HAL_DATA(padapter);
1807         val = rtw_read8(padapter, REG_LEDCFG2);
1808         /*  Let 8051 take control antenna settting */
1809         val &= ~BIT(7);         /*  DPDT_SEL_EN, clear 0x4C[23] */
1810         rtw_write8(padapter, REG_LEDCFG2, val);
1811 }
1812
1813 void rtl8723a_init_default_value(struct rtw_adapter *padapter)
1814 {
1815         struct hal_data_8723a *pHalData;
1816         struct dm_priv *pdmpriv;
1817         u8 i;
1818
1819         pHalData = GET_HAL_DATA(padapter);
1820         pdmpriv = &pHalData->dmpriv;
1821
1822         /*  init default value */
1823         pHalData->fw_ractrl = false;
1824         pHalData->bIQKInitialized = false;
1825         if (!padapter->pwrctrlpriv.bkeepfwalive)
1826                 pHalData->LastHMEBoxNum = 0;
1827
1828         pHalData->bIQKInitialized = false;
1829
1830         /*  init dm default value */
1831         pdmpriv->TM_Trigger = 0;        /* for IQK */
1832 /*      pdmpriv->binitialized = false; */
1833 /*      pdmpriv->prv_traffic_idx = 3; */
1834 /*      pdmpriv->initialize = 0; */
1835
1836         pdmpriv->ThermalValue_HP_index = 0;
1837         for (i = 0; i < HP_THERMAL_NUM; i++)
1838                 pdmpriv->ThermalValue_HP[i] = 0;
1839
1840         /*  init Efuse variables */
1841         pHalData->EfuseUsedBytes = 0;
1842         pHalData->BTEfuseUsedBytes = 0;
1843 }
1844
1845 u8 GetEEPROMSize8723A(struct rtw_adapter *padapter)
1846 {
1847         u8 size = 0;
1848         u32 cr;
1849
1850         cr = rtw_read16(padapter, REG_9346CR);
1851         /*  6: EEPROM used is 93C46, 4: boot from E-Fuse. */
1852         size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
1853
1854         MSG_8723A("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46");
1855
1856         return size;
1857 }
1858
1859 /*  */
1860 /*  */
1861 /*  LLT R/W/Init function */
1862 /*  */
1863 /*  */
1864 static s32 _LLTWrite(struct rtw_adapter *padapter, u32 address, u32 data)
1865 {
1866         s32 status = _SUCCESS;
1867         s32 count = 0;
1868         u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) |
1869                     _LLT_OP(_LLT_WRITE_ACCESS);
1870         u16 LLTReg = REG_LLT_INIT;
1871
1872         rtw_write32(padapter, LLTReg, value);
1873
1874         /* polling */
1875         do {
1876                 value = rtw_read32(padapter, LLTReg);
1877                 if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) {
1878                         break;
1879                 }
1880
1881                 if (count > POLLING_LLT_THRESHOLD) {
1882                         RT_TRACE(_module_hal_init_c_, _drv_err_,
1883                                  ("Failed to polling write LLT done at "
1884                                   "address %d!\n", address));
1885                         status = _FAIL;
1886                         break;
1887                 }
1888         } while (count++);
1889
1890         return status;
1891 }
1892
1893 s32 InitLLTTable23a(struct rtw_adapter *padapter, u32 boundary)
1894 {
1895         s32 status = _SUCCESS;
1896         u32 i;
1897         u32 txpktbuf_bndy = boundary;
1898         u32 Last_Entry_Of_TxPktBuf = LAST_ENTRY_OF_TX_PKT_BUFFER;
1899
1900         for (i = 0; i < (txpktbuf_bndy - 1); i++) {
1901                 status = _LLTWrite(padapter, i, i + 1);
1902                 if (_SUCCESS != status) {
1903                         return status;
1904                 }
1905         }
1906
1907         /*  end of list */
1908         status = _LLTWrite(padapter, (txpktbuf_bndy - 1), 0xFF);
1909         if (_SUCCESS != status) {
1910                 return status;
1911         }
1912
1913         /*  Make the other pages as ring buffer */
1914         /*  This ring buffer is used as beacon buffer if we config this
1915             MAC as two MAC transfer. */
1916         /*  Otherwise used as local loopback buffer. */
1917         for (i = txpktbuf_bndy; i < Last_Entry_Of_TxPktBuf; i++) {
1918                 status = _LLTWrite(padapter, i, (i + 1));
1919                 if (_SUCCESS != status) {
1920                         return status;
1921                 }
1922         }
1923
1924         /*  Let last entry point to the start entry of ring buffer */
1925         status = _LLTWrite(padapter, Last_Entry_Of_TxPktBuf, txpktbuf_bndy);
1926         if (_SUCCESS != status) {
1927                 return status;
1928         }
1929
1930         return status;
1931 }
1932
1933 static void _DisableGPIO(struct rtw_adapter *padapter)
1934 {
1935 /***************************************
1936 j. GPIO_PIN_CTRL 0x44[31:0]= 0x000
1937 k.Value = GPIO_PIN_CTRL[7:0]
1938 l. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); write external PIN level
1939 m. GPIO_MUXCFG 0x42 [15:0] = 0x0780
1940 n. LEDCFG 0x4C[15:0] = 0x8080
1941 ***************************************/
1942         u32 value32;
1943         u32 u4bTmp;
1944
1945         /* 1. Disable GPIO[7:0] */
1946         rtw_write16(padapter, REG_GPIO_PIN_CTRL + 2, 0x0000);
1947         value32 = rtw_read32(padapter, REG_GPIO_PIN_CTRL) & 0xFFFF00FF;
1948         u4bTmp = value32 & 0x000000FF;
1949         value32 |= ((u4bTmp << 8) | 0x00FF0000);
1950         rtw_write32(padapter, REG_GPIO_PIN_CTRL, value32);
1951
1952         /*  */
1953         /*  <Roger_Notes> For RTL8723u multi-function configuration which
1954             was autoload from Efuse offset 0x0a and 0x0b, */
1955         /*  WLAN HW GPIO[9], GPS HW GPIO[10] and BT HW GPIO[11]. */
1956         /*  Added by Roger, 2010.10.07. */
1957         /*  */
1958         /* 2. Disable GPIO[8] and GPIO[12] */
1959
1960         /*  Configure all pins as input mode. */
1961         rtw_write16(padapter, REG_GPIO_IO_SEL_2, 0x0000);
1962         value32 = rtw_read32(padapter, REG_GPIO_PIN_CTRL_2) & 0xFFFF001F;
1963         u4bTmp = value32 & 0x0000001F;
1964         /*  Set pin 8, 10, 11 and pin 12 to output mode. */
1965         value32 |= ((u4bTmp << 8) | 0x001D0000);
1966         rtw_write32(padapter, REG_GPIO_PIN_CTRL_2, value32);
1967
1968         /* 3. Disable LED0 & 1 */
1969         rtw_write16(padapter, REG_LEDCFG0, 0x8080);
1970 }                               /* end of _DisableGPIO() */
1971
1972 static void _DisableRFAFEAndResetBB8192C(struct rtw_adapter *padapter)
1973 {
1974 /**************************************
1975 a.      TXPAUSE 0x522[7:0] = 0xFF               Pause MAC TX queue
1976 b.      RF path 0 offset 0x00 = 0x00            disable RF
1977 c.      APSD_CTRL 0x600[7:0] = 0x40
1978 d.      SYS_FUNC_EN 0x02[7:0] = 0x16            reset BB state machine
1979 e.      SYS_FUNC_EN 0x02[7:0] = 0x14            reset BB state machine
1980 ***************************************/
1981         u8 eRFPath = 0, value8 = 0;
1982
1983         rtw_write8(padapter, REG_TXPAUSE, 0xFF);
1984
1985         PHY_SetRFReg(padapter, (enum RF_RADIO_PATH) eRFPath, 0x0, bMaskByte0, 0x0);
1986
1987         value8 |= APSDOFF;
1988         rtw_write8(padapter, REG_APSD_CTRL, value8);    /* 0x40 */
1989
1990         /*  Set BB reset at first */
1991         value8 = 0;
1992         value8 |= (FEN_USBD | FEN_USBA | FEN_BB_GLB_RSTn);
1993         rtw_write8(padapter, REG_SYS_FUNC_EN, value8);  /* 0x16 */
1994
1995         /*  Set global reset. */
1996         value8 &= ~FEN_BB_GLB_RSTn;
1997         rtw_write8(padapter, REG_SYS_FUNC_EN, value8);  /* 0x14 */
1998
1999         /*  2010/08/12 MH We need to set BB/GLBAL reset to save power
2000             for SS mode. */
2001
2002 /*      RT_TRACE(COMP_INIT, DBG_LOUD, ("======> RF off and reset BB.\n")); */
2003 }
2004
2005 static void _DisableRFAFEAndResetBB(struct rtw_adapter *padapter)
2006 {
2007         _DisableRFAFEAndResetBB8192C(padapter);
2008 }
2009
2010 static void _ResetDigitalProcedure1_92C(struct rtw_adapter *padapter,
2011                                         bool bWithoutHWSM)
2012 {
2013         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
2014
2015         if (IS_FW_81xxC(padapter) && (pHalData->FirmwareVersion <= 0x20)) {
2016         /*****************************
2017         f.      MCUFWDL 0x80[7:0]= 0            reset MCU ready status
2018         g.      SYS_FUNC_EN 0x02[10]= 0         reset MCU register, (8051 reset)
2019         h.      SYS_FUNC_EN 0x02[15-12]= 5      reset MAC register, DCORE
2020         i.     SYS_FUNC_EN 0x02[10]= 1          enable MCU register,
2021                                                 (8051 enable)
2022         ******************************/
2023                 u16 valu16 = 0;
2024                 rtw_write8(padapter, REG_MCUFWDL, 0);
2025
2026                 valu16 = rtw_read16(padapter, REG_SYS_FUNC_EN);
2027                 /* reset MCU , 8051 */
2028                 rtw_write16(padapter, REG_SYS_FUNC_EN, (valu16 & (~FEN_CPUEN)));
2029
2030                 valu16 = rtw_read16(padapter, REG_SYS_FUNC_EN) & 0x0FFF;
2031                 rtw_write16(padapter, REG_SYS_FUNC_EN,
2032                             (valu16 | (FEN_HWPDN | FEN_ELDR))); /* reset MAC */
2033
2034                 valu16 = rtw_read16(padapter, REG_SYS_FUNC_EN);
2035                 /* enable MCU , 8051 */
2036                 rtw_write16(padapter, REG_SYS_FUNC_EN, (valu16 | FEN_CPUEN));
2037         } else {
2038                 u8 retry_cnts = 0;
2039
2040                 /*  2010/08/12 MH For USB SS, we can not stop 8051 when we
2041                     are trying to enter IPS/HW&SW radio off. For
2042                     S3/S4/S5/Disable, we can stop 8051 because */
2043                 /*  we will init FW when power on again. */
2044                 /* if (!pDevice->RegUsbSS) */
2045                 /*  If we want to SS mode, we can not reset 8051. */
2046                 if (rtw_read8(padapter, REG_MCUFWDL) & BIT1) {
2047                         /* IF fw in RAM code, do reset */
2048                         if (padapter->bFWReady) {
2049                                 /*  2010/08/25 MH Accordign to RD alfred's
2050                                     suggestion, we need to disable other */
2051                                 /*  HRCV INT to influence 8051 reset. */
2052                                 rtw_write8(padapter, REG_FWIMR, 0x20);
2053                                 /*  2011/02/15 MH According to Alex's
2054                                     suggestion, close mask to prevent
2055                                     incorrect FW write operation. */
2056                                 rtw_write8(padapter, REG_FTIMR, 0x00);
2057                                 rtw_write8(padapter, REG_FSIMR, 0x00);
2058
2059                                 /* 8051 reset by self */
2060                                 rtw_write8(padapter, REG_HMETFR + 3, 0x20);
2061
2062                                 while ((retry_cnts++ < 100) &&
2063                                        (FEN_CPUEN &
2064                                         rtw_read16(padapter, REG_SYS_FUNC_EN))) {
2065                                         udelay(50);     /* us */
2066                                 }
2067
2068                                 if (retry_cnts >= 100) {
2069                                         /* Reset MAC and Enable 8051 */
2070                                         rtw_write8(padapter,
2071                                                    REG_SYS_FUNC_EN + 1, 0x50);
2072                                         mdelay(10);
2073                                 }
2074                         }
2075                 }
2076                 /* Reset MAC and Enable 8051 */
2077                 rtw_write8(padapter, REG_SYS_FUNC_EN + 1, 0x54);
2078                 rtw_write8(padapter, REG_MCUFWDL, 0);
2079         }
2080
2081         if (bWithoutHWSM) {
2082         /*****************************
2083                 Without HW auto state machine
2084         g.      SYS_CLKR 0x08[15:0] = 0x30A3            disable MAC clock
2085         h.      AFE_PLL_CTRL 0x28[7:0] = 0x80           disable AFE PLL
2086         i.      AFE_XTAL_CTRL 0x24[15:0] = 0x880F       gated AFE DIG_CLOCK
2087         j.      SYS_ISO_CTRL 0x00[7:0] = 0xF9           isolated digital to PON
2088         ******************************/
2089                 /* modify to 0x70A3 by Scott. */
2090                 rtw_write16(padapter, REG_SYS_CLKR, 0x70A3);
2091                 rtw_write8(padapter, REG_AFE_PLL_CTRL, 0x80);
2092                 rtw_write16(padapter, REG_AFE_XTAL_CTRL, 0x880F);
2093                 rtw_write8(padapter, REG_SYS_ISO_CTRL, 0xF9);
2094         } else {
2095                 /*  Disable all RF/BB power */
2096                 rtw_write8(padapter, REG_RF_CTRL, 0x00);
2097         }
2098 }
2099
2100 static void _ResetDigitalProcedure1(struct rtw_adapter *padapter,
2101                                     bool bWithoutHWSM)
2102 {
2103         _ResetDigitalProcedure1_92C(padapter, bWithoutHWSM);
2104 }
2105
2106 static void _ResetDigitalProcedure2(struct rtw_adapter *padapter)
2107 {
2108 /*****************************
2109 k.      SYS_FUNC_EN 0x03[7:0] = 0x44            disable ELDR runction
2110 l.      SYS_CLKR 0x08[15:0] = 0x3083            disable ELDR clock
2111 m.      SYS_ISO_CTRL 0x01[7:0] = 0x83           isolated ELDR to PON
2112 ******************************/
2113         /* modify to 0x70a3 by Scott. */
2114         rtw_write16(padapter, REG_SYS_CLKR, 0x70a3);
2115         /* modify to 0x82 by Scott. */
2116         rtw_write8(padapter, REG_SYS_ISO_CTRL + 1, 0x82);
2117 }
2118
2119 static void _DisableAnalog(struct rtw_adapter *padapter, bool bWithoutHWSM)
2120 {
2121         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
2122         u16 value16 = 0;
2123         u8 value8 = 0;
2124
2125         if (bWithoutHWSM) {
2126         /*****************************
2127         n.      LDOA15_CTRL 0x20[7:0] = 0x04    disable A15 power
2128         o.      LDOV12D_CTRL 0x21[7:0] = 0x54   disable digital core power
2129         r.      When driver call disable, the ASIC will turn off remaining
2130                 clock automatically
2131         ******************************/
2132
2133                 rtw_write8(padapter, REG_LDOA15_CTRL, 0x04);
2134                 /* rtw_write8(padapter, REG_LDOV12D_CTRL, 0x54); */
2135
2136                 value8 = rtw_read8(padapter, REG_LDOV12D_CTRL);
2137                 value8 &= (~LDV12_EN);
2138                 rtw_write8(padapter, REG_LDOV12D_CTRL, value8);
2139 /*              RT_TRACE(COMP_INIT, DBG_LOUD,
2140                 (" REG_LDOV12D_CTRL Reg0x21:0x%02x.\n", value8)); */
2141         }
2142
2143         /*****************************
2144         h.      SPS0_CTRL 0x11[7:0] = 0x23              enter PFM mode
2145         i.      APS_FSMCO 0x04[15:0] = 0x4802           set USB suspend
2146         ******************************/
2147         value8 = 0x23;
2148         if (IS_81xxC_VENDOR_UMC_B_CUT(pHalData->VersionID))
2149                 value8 |= BIT3;
2150
2151         rtw_write8(padapter, REG_SPS0_CTRL, value8);
2152
2153         if (bWithoutHWSM) {
2154                 /* value16 |= (APDM_HOST | FSM_HSUS |/PFM_ALDN); */
2155                 /*  2010/08/31 According to Filen description, we need to
2156                     use HW to shut down 8051 automatically. */
2157                 /*  Becasue suspend operatione need the asistance of 8051
2158                     to wait for 3ms. */
2159                 value16 |= (APDM_HOST | AFSM_HSUS | PFM_ALDN);
2160         } else {
2161                 value16 |= (APDM_HOST | AFSM_HSUS | PFM_ALDN);
2162         }
2163
2164         rtw_write16(padapter, REG_APS_FSMCO, value16);  /* 0x4802 */
2165
2166         rtw_write8(padapter, REG_RSV_CTRL, 0x0e);
2167 }
2168
2169 /*  HW Auto state machine */
2170 s32 CardDisableHWSM(struct rtw_adapter *padapter, u8 resetMCU)
2171 {
2172         int rtStatus = _SUCCESS;
2173
2174         if (padapter->bSurpriseRemoved) {
2175                 return rtStatus;
2176         }
2177         /*  RF Off Sequence ==== */
2178         _DisableRFAFEAndResetBB(padapter);
2179
2180         /*   ==== Reset digital sequence   ====== */
2181         _ResetDigitalProcedure1(padapter, false);
2182
2183         /*   ==== Pull GPIO PIN to balance level and LED control ====== */
2184         _DisableGPIO(padapter);
2185
2186         /*   ==== Disable analog sequence === */
2187         _DisableAnalog(padapter, false);
2188
2189         RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
2190                  ("======> Card disable finished.\n"));
2191
2192         return rtStatus;
2193 }
2194
2195 /*  without HW Auto state machine */
2196 s32 CardDisableWithoutHWSM(struct rtw_adapter *padapter)
2197 {
2198         s32 rtStatus = _SUCCESS;
2199
2200         /* RT_TRACE(COMP_INIT, DBG_LOUD,
2201            ("======> Card Disable Without HWSM .\n")); */
2202         if (padapter->bSurpriseRemoved) {
2203                 return rtStatus;
2204         }
2205
2206         /*  RF Off Sequence ==== */
2207         _DisableRFAFEAndResetBB(padapter);
2208
2209         /*   ==== Reset digital sequence   ====== */
2210         _ResetDigitalProcedure1(padapter, true);
2211
2212         /*   ==== Pull GPIO PIN to balance level and LED control ====== */
2213         _DisableGPIO(padapter);
2214
2215         /*   ==== Reset digital sequence   ====== */
2216         _ResetDigitalProcedure2(padapter);
2217
2218         /*   ==== Disable analog sequence === */
2219         _DisableAnalog(padapter, true);
2220
2221         /* RT_TRACE(COMP_INIT, DBG_LOUD,
2222            ("<====== Card Disable Without HWSM .\n")); */
2223         return rtStatus;
2224 }
2225
2226 void Hal_InitPGData(struct rtw_adapter *padapter, u8 *PROMContent)
2227 {
2228         struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2229
2230         if (false == pEEPROM->bautoload_fail_flag) {    /*  autoload OK. */
2231                 if (!pEEPROM->EepromOrEfuse) {
2232                         /*  Read EFUSE real map to shadow. */
2233                         EFUSE_ShadowMapUpdate23a(padapter, EFUSE_WIFI);
2234                         memcpy((void *)PROMContent,
2235                                (void *)pEEPROM->efuse_eeprom_data,
2236                                HWSET_MAX_SIZE);
2237                 }
2238         } else {                /* autoload fail */
2239                 RT_TRACE(_module_hci_hal_init_c_, _drv_notice_,
2240                          ("AutoLoad Fail reported from CR9346!!\n"));
2241 /*              pHalData->AutoloadFailFlag = true; */
2242                 /* update to default value 0xFF */
2243                 if (false == pEEPROM->EepromOrEfuse)
2244                         EFUSE_ShadowMapUpdate23a(padapter, EFUSE_WIFI);
2245                 memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data,
2246                        HWSET_MAX_SIZE);
2247         }
2248 }
2249
2250 void Hal_EfuseParseIDCode(struct rtw_adapter *padapter, u8 *hwinfo)
2251 {
2252         struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2253 /*      struct hal_data_8723a   *pHalData = GET_HAL_DATA(padapter); */
2254         u16 EEPROMId;
2255
2256         /*  Checl 0x8129 again for making sure autoload status!! */
2257         EEPROMId = le16_to_cpu(*((u16 *) hwinfo));
2258         if (EEPROMId != RTL_EEPROM_ID) {
2259                 DBG_8723A("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
2260                 pEEPROM->bautoload_fail_flag = true;
2261         } else {
2262                 pEEPROM->bautoload_fail_flag = false;
2263         }
2264
2265         RT_TRACE(_module_hal_init_c_, _drv_info_,
2266                  ("EEPROM ID = 0x%04x\n", EEPROMId));
2267 }
2268
2269 static void Hal_EEValueCheck(u8 EEType, void *pInValue, void *pOutValue)
2270 {
2271         switch (EEType) {
2272         case EETYPE_TX_PWR:
2273         {
2274                 u8 *pIn, *pOut;
2275                 pIn = (u8 *) pInValue;
2276                 pOut = (u8 *) pOutValue;
2277                 if (*pIn >= 0 && *pIn <= 63) {
2278                         *pOut = *pIn;
2279                 } else {
2280                         RT_TRACE(_module_hci_hal_init_c_, _drv_err_,
2281                                  ("EETYPE_TX_PWR, value =%d is invalid, set "
2282                                   "to default = 0x%x\n",
2283                                   *pIn, EEPROM_Default_TxPowerLevel));
2284                         *pOut = EEPROM_Default_TxPowerLevel;
2285                 }
2286         }
2287                 break;
2288         default:
2289                 break;
2290         }
2291 }
2292
2293 static void
2294 Hal_ReadPowerValueFromPROM_8723A(struct txpowerinfo *pwrInfo,
2295                                  u8 *PROMContent, bool AutoLoadFail)
2296 {
2297         u32 rfPath, eeAddr, group, rfPathMax = 1;
2298
2299         memset(pwrInfo, 0, sizeof(*pwrInfo));
2300
2301         if (AutoLoadFail) {
2302                 for (group = 0; group < MAX_CHNL_GROUP; group++) {
2303                         for (rfPath = 0; rfPath < rfPathMax; rfPath++) {
2304                                 pwrInfo->CCKIndex[rfPath][group] =
2305                                         EEPROM_Default_TxPowerLevel;
2306                                 pwrInfo->HT40_1SIndex[rfPath][group] =
2307                                         EEPROM_Default_TxPowerLevel;
2308                                 pwrInfo->HT40_2SIndexDiff[rfPath][group] =
2309                                         EEPROM_Default_HT40_2SDiff;
2310                                 pwrInfo->HT20IndexDiff[rfPath][group] =
2311                                         EEPROM_Default_HT20_Diff;
2312                                 pwrInfo->OFDMIndexDiff[rfPath][group] =
2313                                         EEPROM_Default_LegacyHTTxPowerDiff;
2314                                 pwrInfo->HT40MaxOffset[rfPath][group] =
2315                                         EEPROM_Default_HT40_PwrMaxOffset;
2316                                 pwrInfo->HT20MaxOffset[rfPath][group] =
2317                                         EEPROM_Default_HT20_PwrMaxOffset;
2318                         }
2319                 }
2320                 pwrInfo->TSSI_A[0] = EEPROM_Default_TSSI;
2321                 return;
2322         }
2323
2324         for (rfPath = 0; rfPath < rfPathMax; rfPath++) {
2325                 for (group = 0; group < MAX_CHNL_GROUP; group++) {
2326                         eeAddr =
2327                             EEPROM_CCK_TX_PWR_INX_8723A + (rfPath * 3) + group;
2328                         /* pwrInfo->CCKIndex[rfPath][group] =
2329                            PROMContent[eeAddr]; */
2330                         Hal_EEValueCheck(EETYPE_TX_PWR, &PROMContent[eeAddr],
2331                                          &pwrInfo->CCKIndex[rfPath][group]);
2332                         eeAddr = EEPROM_HT40_1S_TX_PWR_INX_8723A +
2333                                 (rfPath * 3) + group;
2334                         /* pwrInfo->HT40_1SIndex[rfPath][group] =
2335                            PROMContent[eeAddr]; */
2336                         Hal_EEValueCheck(EETYPE_TX_PWR, &PROMContent[eeAddr],
2337                                          &pwrInfo->HT40_1SIndex[rfPath][group]);
2338                 }
2339         }
2340
2341         for (group = 0; group < MAX_CHNL_GROUP; group++) {
2342                 for (rfPath = 0; rfPath < rfPathMax; rfPath++) {
2343                         pwrInfo->HT40_2SIndexDiff[rfPath][group] = 0;
2344                         pwrInfo->HT20IndexDiff[rfPath][group] =
2345                                 (PROMContent
2346                                  [EEPROM_HT20_TX_PWR_INX_DIFF_8723A +
2347                                   group] >> (rfPath * 4)) & 0xF;
2348                         /* 4bit sign number to 8 bit sign number */
2349                         if (pwrInfo->HT20IndexDiff[rfPath][group] & BIT3)
2350                                 pwrInfo->HT20IndexDiff[rfPath][group] |= 0xF0;
2351
2352                         pwrInfo->OFDMIndexDiff[rfPath][group] =
2353                                 (PROMContent[EEPROM_OFDM_TX_PWR_INX_DIFF_8723A +
2354                                              group] >> (rfPath * 4)) & 0xF;
2355
2356                         pwrInfo->HT40MaxOffset[rfPath][group] =
2357                                 (PROMContent[EEPROM_HT40_MAX_PWR_OFFSET_8723A +
2358                                              group] >> (rfPath * 4)) & 0xF;
2359
2360                         pwrInfo->HT20MaxOffset[rfPath][group] =
2361                                 (PROMContent[EEPROM_HT20_MAX_PWR_OFFSET_8723A +
2362                                              group] >> (rfPath * 4)) & 0xF;
2363                 }
2364         }
2365
2366         pwrInfo->TSSI_A[0] = PROMContent[EEPROM_TSSI_A_8723A];
2367 }
2368
2369 static u8 Hal_GetChnlGroup(u8 chnl)
2370 {
2371         u8 group = 0;
2372
2373         if (chnl < 3)           /*  Cjanel 1-3 */
2374                 group = 0;
2375         else if (chnl < 9)      /*  Channel 4-9 */
2376                 group = 1;
2377         else                    /*  Channel 10-14 */
2378                 group = 2;
2379
2380         return group;
2381 }
2382
2383 void
2384 Hal_EfuseParsetxpowerinfo_8723A(struct rtw_adapter *padapter,
2385                                 u8 *PROMContent, bool AutoLoadFail)
2386 {
2387         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
2388         struct txpowerinfo pwrInfo;
2389         u8 rfPath, ch, group, rfPathMax = 1;
2390         u8 pwr, diff;
2391
2392         Hal_ReadPowerValueFromPROM_8723A(&pwrInfo, PROMContent, AutoLoadFail);
2393         for (rfPath = 0; rfPath < rfPathMax; rfPath++) {
2394                 for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
2395                         group = Hal_GetChnlGroup(ch);
2396
2397                         pHalData->TxPwrLevelCck[rfPath][ch] =
2398                                 pwrInfo.CCKIndex[rfPath][group];
2399                         pHalData->TxPwrLevelHT40_1S[rfPath][ch] =
2400                                 pwrInfo.HT40_1SIndex[rfPath][group];
2401
2402                         pHalData->TxPwrHt20Diff[rfPath][ch] =
2403                                 pwrInfo.HT20IndexDiff[rfPath][group];
2404                         pHalData->TxPwrLegacyHtDiff[rfPath][ch] =
2405                                 pwrInfo.OFDMIndexDiff[rfPath][group];
2406                         pHalData->PwrGroupHT20[rfPath][ch] =
2407                                 pwrInfo.HT20MaxOffset[rfPath][group];
2408                         pHalData->PwrGroupHT40[rfPath][ch] =
2409                                 pwrInfo.HT40MaxOffset[rfPath][group];
2410
2411                         pwr = pwrInfo.HT40_1SIndex[rfPath][group];
2412                         diff = pwrInfo.HT40_2SIndexDiff[rfPath][group];
2413
2414                         pHalData->TxPwrLevelHT40_2S[rfPath][ch] =
2415                             (pwr > diff) ? (pwr - diff) : 0;
2416                 }
2417         }
2418         for (rfPath = 0; rfPath < RF_PATH_MAX; rfPath++) {
2419                 for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
2420                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
2421                                  ("RF(%u)-Ch(%u) [CCK / HT40_1S / HT40_2S] = "
2422                                   "[0x%x / 0x%x / 0x%x]\n",
2423                                   rfPath, ch,
2424                                   pHalData->TxPwrLevelCck[rfPath][ch],
2425                                   pHalData->TxPwrLevelHT40_1S[rfPath][ch],
2426                                   pHalData->TxPwrLevelHT40_2S[rfPath][ch]));
2427
2428                 }
2429         }
2430         for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
2431                 RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
2432                          ("RF-A Ht20 to HT40 Diff[%u] = 0x%x(%d)\n", ch,
2433                           pHalData->TxPwrHt20Diff[RF_PATH_A][ch],
2434                           pHalData->TxPwrHt20Diff[RF_PATH_A][ch]));
2435         }
2436         for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++)
2437                 RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
2438                          ("RF-A Legacy to Ht40 Diff[%u] = 0x%x\n", ch,
2439                           pHalData->TxPwrLegacyHtDiff[RF_PATH_A][ch]));
2440         for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
2441                 RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
2442                          ("RF-B Ht20 to HT40 Diff[%u] = 0x%x(%d)\n", ch,
2443                           pHalData->TxPwrHt20Diff[RF_PATH_B][ch],
2444                           pHalData->TxPwrHt20Diff[RF_PATH_B][ch]));
2445         }
2446         for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++)
2447                 RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
2448                          ("RF-B Legacy to HT40 Diff[%u] = 0x%x\n", ch,
2449                           pHalData->TxPwrLegacyHtDiff[RF_PATH_B][ch]));
2450         if (!AutoLoadFail) {
2451                 struct registry_priv *registry_par = &padapter->registrypriv;
2452                 if (registry_par->regulatory_tid == 0xff) {
2453                         if (PROMContent[RF_OPTION1_8723A] == 0xff)
2454                                 pHalData->EEPROMRegulatory = 0;
2455                         else
2456                                 pHalData->EEPROMRegulatory =
2457                                         PROMContent[RF_OPTION1_8723A] & 0x7;
2458                 } else {
2459                         pHalData->EEPROMRegulatory =
2460                             registry_par->regulatory_tid;
2461                 }
2462         } else {
2463                 pHalData->EEPROMRegulatory = 0;
2464         }
2465         RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
2466                  ("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory));
2467
2468         if (!AutoLoadFail)
2469                 pHalData->bTXPowerDataReadFromEEPORM = true;
2470 }
2471
2472 void
2473 Hal_EfuseParseBTCoexistInfo_8723A(struct rtw_adapter *padapter,
2474                                   u8 *hwinfo, bool AutoLoadFail)
2475 {
2476         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
2477         u8 tempval;
2478         u32 tmpu4;
2479
2480         if (!AutoLoadFail) {
2481                 tmpu4 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
2482                 if (tmpu4 & BT_FUNC_EN)
2483                         pHalData->EEPROMBluetoothCoexist = 1;
2484                 else
2485                         pHalData->EEPROMBluetoothCoexist = 0;
2486                 pHalData->EEPROMBluetoothType = BT_RTL8723A;
2487
2488                 /*  The following need to be checked with newer version of */
2489                 /*  eeprom spec */
2490                 tempval = hwinfo[RF_OPTION4_8723A];
2491                 pHalData->EEPROMBluetoothAntNum = (tempval & 0x1);
2492                 pHalData->EEPROMBluetoothAntIsolation = ((tempval & 0x10) >> 4);
2493                 pHalData->EEPROMBluetoothRadioShared = ((tempval & 0x20) >> 5);
2494         } else {
2495                 pHalData->EEPROMBluetoothCoexist = 0;
2496                 pHalData->EEPROMBluetoothType = BT_RTL8723A;
2497                 pHalData->EEPROMBluetoothAntNum = Ant_x2;
2498                 pHalData->EEPROMBluetoothAntIsolation = 0;
2499                 pHalData->EEPROMBluetoothRadioShared = BT_Radio_Shared;
2500         }
2501 #ifdef CONFIG_8723AU_BT_COEXIST
2502         BT_InitHalVars(padapter);
2503 #endif
2504 }
2505
2506 void
2507 Hal_EfuseParseEEPROMVer(struct rtw_adapter *padapter,
2508                         u8 *hwinfo, bool AutoLoadFail)
2509 {
2510         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
2511
2512         if (!AutoLoadFail)
2513                 pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_8723A];
2514         else
2515                 pHalData->EEPROMVersion = 1;
2516         RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
2517                  ("Hal_EfuseParseEEPROMVer(), EEVer = %d\n",
2518                   pHalData->EEPROMVersion));
2519 }
2520
2521 void
2522 rtl8723a_EfuseParseChnlPlan(struct rtw_adapter *padapter,
2523                             u8 *hwinfo, bool AutoLoadFail)
2524 {
2525         padapter->mlmepriv.ChannelPlan =
2526                 hal_com_get_channel_plan23a(padapter, hwinfo ?
2527                                          hwinfo[EEPROM_ChannelPlan_8723A]:0xFF,
2528                                          padapter->registrypriv.channel_plan,
2529                                          RT_CHANNEL_DOMAIN_WORLD_WIDE_13,
2530                                          AutoLoadFail);
2531
2532         DBG_8723A("mlmepriv.ChannelPlan = 0x%02x\n",
2533                   padapter->mlmepriv.ChannelPlan);
2534 }
2535
2536 void
2537 Hal_EfuseParseCustomerID(struct rtw_adapter *padapter,
2538                          u8 *hwinfo, bool AutoLoadFail)
2539 {
2540         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
2541
2542         if (!AutoLoadFail) {
2543                 pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_8723A];
2544                 pHalData->EEPROMSubCustomerID =
2545                     hwinfo[EEPROM_SubCustomID_8723A];
2546         } else {
2547                 pHalData->EEPROMCustomerID = 0;
2548                 pHalData->EEPROMSubCustomerID = 0;
2549         }
2550         RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
2551                  ("EEPROM Customer ID: 0x%2x\n", pHalData->EEPROMCustomerID));
2552         RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
2553                  ("EEPROM SubCustomer ID: 0x%02x\n",
2554                   pHalData->EEPROMSubCustomerID));
2555 }
2556
2557 void
2558 Hal_EfuseParseAntennaDiversity(struct rtw_adapter *padapter,
2559                                u8 *hwinfo, bool AutoLoadFail)
2560 {
2561 }
2562
2563 void
2564 Hal_EfuseParseRateIndicationOption(struct rtw_adapter *padapter,
2565                                    u8 *hwinfo, bool AutoLoadFail)
2566 {
2567 }
2568
2569 void
2570 Hal_EfuseParseXtal_8723A(struct rtw_adapter *pAdapter,
2571                          u8 *hwinfo, u8 AutoLoadFail)
2572 {
2573         struct hal_data_8723a *pHalData = GET_HAL_DATA(pAdapter);
2574
2575         if (!AutoLoadFail) {
2576                 pHalData->CrystalCap = hwinfo[EEPROM_XTAL_K_8723A];
2577                 if (pHalData->CrystalCap == 0xFF)
2578                         pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723A;
2579         } else {
2580                 pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723A;
2581         }
2582         RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
2583                  ("%s: CrystalCap = 0x%2x\n", __func__,
2584                   pHalData->CrystalCap));
2585 }
2586
2587 void
2588 Hal_EfuseParseThermalMeter_8723A(struct rtw_adapter *padapter,
2589                                  u8 *PROMContent, u8 AutoloadFail)
2590 {
2591         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
2592
2593         /*  */
2594         /*  ThermalMeter from EEPROM */
2595         /*  */
2596         if (false == AutoloadFail)
2597                 pHalData->EEPROMThermalMeter =
2598                     PROMContent[EEPROM_THERMAL_METER_8723A];
2599         else
2600                 pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter;
2601
2602         if ((pHalData->EEPROMThermalMeter == 0xff) || (true == AutoloadFail)) {
2603                 pHalData->bAPKThermalMeterIgnore = true;
2604                 pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter;
2605         }
2606
2607         DBG_8723A("%s: ThermalMeter = 0x%x\n", __func__,
2608                   pHalData->EEPROMThermalMeter);
2609 }
2610
2611 void Hal_InitChannelPlan23a(struct rtw_adapter *padapter)
2612 {
2613 }
2614
2615 static void rtl8723a_cal_txdesc_chksum(struct tx_desc *ptxdesc)
2616 {
2617         u16 *usPtr = (u16 *) ptxdesc;
2618         u32 count = 16;         /*  (32 bytes / 2 bytes per XOR) => 16 times */
2619         u32 index;
2620         u16 checksum = 0;
2621
2622         /*  Clear first */
2623         ptxdesc->txdw7 &= cpu_to_le32(0xffff0000);
2624
2625         for (index = 0; index < count; index++) {
2626                 checksum ^= le16_to_cpu(*(usPtr + index));
2627         }
2628
2629         ptxdesc->txdw7 |= cpu_to_le32(checksum & 0x0000ffff);
2630 }
2631
2632 static void fill_txdesc_sectype(struct pkt_attrib *pattrib,
2633                                 struct txdesc_8723a *ptxdesc)
2634 {
2635         if ((pattrib->encrypt > 0) && !pattrib->bswenc) {
2636                 switch (pattrib->encrypt) {
2637                         /*  SEC_TYPE */
2638                 case _WEP40_:
2639                 case _WEP104_:
2640                 case _TKIP_:
2641                 case _TKIP_WTMIC_:
2642                         ptxdesc->sectype = 1;
2643                         break;
2644
2645                 case _AES_:
2646                         ptxdesc->sectype = 3;
2647                         break;
2648
2649                 case _NO_PRIVACY_:
2650                 default:
2651                         break;
2652                 }
2653         }
2654 }
2655
2656 static void fill_txdesc_vcs(struct pkt_attrib *pattrib,
2657                             struct txdesc_8723a *ptxdesc)
2658 {
2659         /* DBG_8723A("cvs_mode =%d\n", pattrib->vcs_mode); */
2660
2661         switch (pattrib->vcs_mode) {
2662         case RTS_CTS:
2663                 ptxdesc->rtsen = 1;
2664                 break;
2665
2666         case CTS_TO_SELF:
2667                 ptxdesc->cts2self = 1;
2668                 break;
2669
2670         case NONE_VCS:
2671         default:
2672                 break;
2673         }
2674
2675         if (pattrib->vcs_mode) {
2676                 ptxdesc->hw_rts_en = 1; /*  ENABLE HW RTS */
2677
2678                 /*  Set RTS BW */
2679                 if (pattrib->ht_en) {
2680                         if (pattrib->bwmode & HT_CHANNEL_WIDTH_40)
2681                                 ptxdesc->rts_bw = 1;
2682
2683                         switch (pattrib->ch_offset) {
2684                         case HAL_PRIME_CHNL_OFFSET_DONT_CARE:
2685                                 ptxdesc->rts_sc = 0;
2686                                 break;
2687
2688                         case HAL_PRIME_CHNL_OFFSET_LOWER:
2689                                 ptxdesc->rts_sc = 1;
2690                                 break;
2691
2692                         case HAL_PRIME_CHNL_OFFSET_UPPER:
2693                                 ptxdesc->rts_sc = 2;
2694                                 break;
2695
2696                         default:
2697                                 ptxdesc->rts_sc = 3;    /*  Duplicate */
2698                                 break;
2699                         }
2700                 }
2701         }
2702 }
2703
2704 static void fill_txdesc_phy(struct pkt_attrib *pattrib,
2705                             struct txdesc_8723a *ptxdesc)
2706 {
2707         if (pattrib->ht_en) {
2708                 if (pattrib->bwmode & HT_CHANNEL_WIDTH_40)
2709                         ptxdesc->data_bw = 1;
2710
2711                 switch (pattrib->ch_offset) {
2712                 case HAL_PRIME_CHNL_OFFSET_DONT_CARE:
2713                         ptxdesc->data_sc = 0;
2714                         break;
2715
2716                 case HAL_PRIME_CHNL_OFFSET_LOWER:
2717                         ptxdesc->data_sc = 1;
2718                         break;
2719
2720                 case HAL_PRIME_CHNL_OFFSET_UPPER:
2721                         ptxdesc->data_sc = 2;
2722                         break;
2723
2724                 default:
2725                         ptxdesc->data_sc = 3;   /*  Duplicate */
2726                         break;
2727                 }
2728         }
2729 }
2730
2731 static void rtl8723a_fill_default_txdesc(struct xmit_frame *pxmitframe,
2732                                          u8 *pbuf)
2733 {
2734         struct rtw_adapter *padapter;
2735         struct hal_data_8723a *pHalData;
2736         struct dm_priv *pdmpriv;
2737         struct mlme_ext_priv *pmlmeext;
2738         struct mlme_ext_info *pmlmeinfo;
2739         struct pkt_attrib *pattrib;
2740         struct txdesc_8723a *ptxdesc;
2741         s32 bmcst;
2742
2743         padapter = pxmitframe->padapter;
2744         pHalData = GET_HAL_DATA(padapter);
2745         pdmpriv = &pHalData->dmpriv;
2746         pmlmeext = &padapter->mlmeextpriv;
2747         pmlmeinfo = &pmlmeext->mlmext_info;
2748
2749         pattrib = &pxmitframe->attrib;
2750         bmcst = is_multicast_ether_addr(pattrib->ra);
2751
2752         ptxdesc = (struct txdesc_8723a *)pbuf;
2753
2754         if (pxmitframe->frame_tag == DATA_FRAMETAG) {
2755                 ptxdesc->macid = pattrib->mac_id;       /*  CAM_ID(MAC_ID) */
2756
2757                 if (pattrib->ampdu_en == true)
2758                         ptxdesc->agg_en = 1;    /*  AGG EN */
2759                 else
2760                         ptxdesc->bk = 1;        /*  AGG BK */
2761
2762                 ptxdesc->qsel = pattrib->qsel;
2763                 ptxdesc->rate_id = pattrib->raid;
2764
2765                 fill_txdesc_sectype(pattrib, ptxdesc);
2766
2767                 ptxdesc->seq = pattrib->seqnum;
2768
2769                 if ((pattrib->ether_type != 0x888e) &&
2770                     (pattrib->ether_type != 0x0806) &&
2771                     (pattrib->dhcp_pkt != 1)) {
2772                         /*  Non EAP & ARP & DHCP type data packet */
2773
2774                         fill_txdesc_vcs(pattrib, ptxdesc);
2775                         fill_txdesc_phy(pattrib, ptxdesc);
2776
2777                         ptxdesc->rtsrate = 8;   /*  RTS Rate = 24M */
2778                         ptxdesc->data_ratefb_lmt = 0x1F;
2779                         ptxdesc->rts_ratefb_lmt = 0xF;
2780
2781                         /*  use REG_INIDATA_RATE_SEL value */
2782                         ptxdesc->datarate =
2783                                 pdmpriv->INIDATA_RATE[pattrib->mac_id];
2784
2785                 } else {
2786                         /*  EAP data packet and ARP packet. */
2787                         /*  Use the 1M data rate to send the EAP/ARP packet. */
2788                         /*  This will maybe make the handshake smooth. */
2789
2790                         ptxdesc->bk = 1;        /*  AGG BK */
2791                         ptxdesc->userate = 1;   /*  driver uses rate */
2792                         if (pmlmeinfo->preamble_mode == PREAMBLE_SHORT)
2793                                 ptxdesc->data_short = 1;
2794                         ptxdesc->datarate = MRateToHwRate23a(pmlmeext->tx_rate);
2795                 }
2796         } else if (pxmitframe->frame_tag == MGNT_FRAMETAG) {
2797 /*              RT_TRACE(_module_hal_xmit_c_, _drv_notice_,
2798                 ("%s: MGNT_FRAMETAG\n", __func__)); */
2799
2800                 ptxdesc->macid = pattrib->mac_id;       /*  CAM_ID(MAC_ID) */
2801                 ptxdesc->qsel = pattrib->qsel;
2802                 ptxdesc->rate_id = pattrib->raid;       /*  Rate ID */
2803                 ptxdesc->seq = pattrib->seqnum;
2804                 ptxdesc->userate = 1;   /*  driver uses rate, 1M */
2805                 ptxdesc->rty_lmt_en = 1;        /*  retry limit enable */
2806                 ptxdesc->data_rt_lmt = 6;       /*  retry limit = 6 */
2807
2808                 /* CCX-TXRPT ack for xmit mgmt frames. */
2809                 if (pxmitframe->ack_report)
2810                         ptxdesc->ccx = 1;
2811
2812                 ptxdesc->datarate = MRateToHwRate23a(pmlmeext->tx_rate);
2813         } else if (pxmitframe->frame_tag == TXAGG_FRAMETAG) {
2814                 RT_TRACE(_module_hal_xmit_c_, _drv_warning_,
2815                          ("%s: TXAGG_FRAMETAG\n", __func__));
2816         } else {
2817                 RT_TRACE(_module_hal_xmit_c_, _drv_warning_,
2818                          ("%s: frame_tag = 0x%x\n", __func__,
2819                           pxmitframe->frame_tag));
2820
2821                 ptxdesc->macid = 4;     /*  CAM_ID(MAC_ID) */
2822                 ptxdesc->rate_id = 6;   /*  Rate ID */
2823                 ptxdesc->seq = pattrib->seqnum;
2824                 ptxdesc->userate = 1;   /*  driver uses rate */
2825                 ptxdesc->datarate = MRateToHwRate23a(pmlmeext->tx_rate);
2826         }
2827
2828         ptxdesc->pktlen = pattrib->last_txcmdsz;
2829         ptxdesc->offset = TXDESC_SIZE + OFFSET_SZ;
2830         if (bmcst)
2831                 ptxdesc->bmc = 1;
2832         ptxdesc->ls = 1;
2833         ptxdesc->fs = 1;
2834         ptxdesc->own = 1;
2835
2836         /*  2009.11.05. tynli_test. Suggested by SD4 Filen for FW LPS. */
2837         /*  (1) The sequence number of each non-Qos frame / broadcast /
2838          *   multicast / mgnt frame should be controled by Hw because Fw
2839          * will also send null data which we cannot control when Fw LPS enable.
2840          *  --> default enable non-Qos data sequense number.
2841          2010.06.23. by tynli. */
2842         /*  (2) Enable HW SEQ control for beacon packet,
2843          * because we use Hw beacon. */
2844         /*  (3) Use HW Qos SEQ to control the seq num of Ext port
2845          * non-Qos packets. */
2846         /*  2010.06.23. Added by tynli. */
2847         if (!pattrib->qos_en) {
2848                 /*  Hw set sequence number */
2849                 ptxdesc->hwseq_en = 1;  /*  HWSEQ_EN */
2850                 ptxdesc->hwseq_sel = 0; /*  HWSEQ_SEL */
2851         }
2852 }
2853
2854 /*
2855  *      Description:
2856  *
2857  *      Parameters:
2858  *              pxmitframe      xmitframe
2859  *              pbuf            where to fill tx desc
2860  */
2861 void rtl8723a_update_txdesc(struct xmit_frame *pxmitframe, u8 *pbuf)
2862 {
2863         struct tx_desc *pdesc;
2864
2865         pdesc = (struct tx_desc *)pbuf;
2866         memset(pdesc, 0, sizeof(struct tx_desc));
2867
2868         rtl8723a_fill_default_txdesc(pxmitframe, pbuf);
2869
2870         pdesc->txdw0 = cpu_to_le32(pdesc->txdw0);
2871         pdesc->txdw1 = cpu_to_le32(pdesc->txdw1);
2872         pdesc->txdw2 = cpu_to_le32(pdesc->txdw2);
2873         pdesc->txdw3 = cpu_to_le32(pdesc->txdw3);
2874         pdesc->txdw4 = cpu_to_le32(pdesc->txdw4);
2875         pdesc->txdw5 = cpu_to_le32(pdesc->txdw5);
2876         pdesc->txdw6 = cpu_to_le32(pdesc->txdw6);
2877         pdesc->txdw7 = cpu_to_le32(pdesc->txdw7);
2878         rtl8723a_cal_txdesc_chksum(pdesc);
2879 }
2880
2881 /*
2882  *  Description: In normal chip, we should send some packet to Hw which
2883  *  will be used by Fw in FW LPS mode. The function is to fill the Tx
2884  * descriptor of this packets, then
2885  */
2886 /*                      Fw can tell Hw to send these packet derectly. */
2887 /*  Added by tynli. 2009.10.15. */
2888 /*  */
2889 void rtl8723a_fill_fake_txdesc(struct rtw_adapter *padapter, u8 *pDesc,
2890                                u32 BufferLen, u8 IsPsPoll, u8 IsBTQosNull)
2891 {
2892         struct tx_desc *ptxdesc;
2893
2894         /*  Clear all status */
2895         ptxdesc = (struct tx_desc *)pDesc;
2896         memset(pDesc, 0, TXDESC_SIZE);
2897
2898         /* offset 0 */
2899         /* own, bFirstSeg, bLastSeg; */
2900         ptxdesc->txdw0 |= cpu_to_le32(OWN | FSG | LSG);
2901
2902         /* 32 bytes for TX Desc */
2903         ptxdesc->txdw0 |= cpu_to_le32(((TXDESC_SIZE + OFFSET_SZ) <<
2904                                        OFFSET_SHT) & 0x00ff0000);
2905
2906         /*  Buffer size + command header */
2907         ptxdesc->txdw0 |= cpu_to_le32(BufferLen & 0x0000ffff);
2908
2909         /* offset 4 */
2910         /*  Fixed queue of Mgnt queue */
2911         ptxdesc->txdw1 |= cpu_to_le32((QSLT_MGNT << QSEL_SHT) & 0x00001f00);
2912
2913         /* Set NAVUSEHDR to prevent Ps-poll AId filed to be changed
2914            to error vlaue by Hw. */
2915         if (IsPsPoll) {
2916                 ptxdesc->txdw1 |= cpu_to_le32(NAVUSEHDR);
2917         } else {
2918                 /*  Hw set sequence number */
2919                 ptxdesc->txdw4 |= cpu_to_le32(BIT(7));
2920                 /* set bit3 to 1. Suugested by TimChen. 2009.12.29. */
2921                 ptxdesc->txdw3 |= cpu_to_le32((8 << 28));
2922         }
2923
2924         if (true == IsBTQosNull) {
2925                 ptxdesc->txdw2 |= cpu_to_le32(BIT(23)); /*  BT NULL */
2926         }
2927
2928         /* offset 16 */
2929         ptxdesc->txdw4 |= cpu_to_le32(BIT(8));  /* driver uses rate */
2930
2931         /*  USB interface drop packet if the checksum of descriptor isn't
2932             correct. */
2933         /*  Using this checksum can let hardware recovery from packet bulk
2934             out error (e.g. Cancel URC, Bulk out error.). */
2935         rtl8723a_cal_txdesc_chksum(ptxdesc);
2936 }
2937
2938 static void hw_var_set_opmode(struct rtw_adapter *padapter, u8 mode)
2939 {
2940         u8 val8;
2941
2942         if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
2943                 StopTxBeacon(padapter);
2944
2945                 /*  disable atim wnd */
2946                 val8 = DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_ATIM;
2947                 SetBcnCtrlReg23a(padapter, val8, ~val8);
2948         } else if ((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_) */) {
2949                 ResumeTxBeacon(padapter);
2950
2951                 val8 = DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB;
2952                 SetBcnCtrlReg23a(padapter, val8, ~val8);
2953         } else if (mode == _HW_STATE_AP_) {
2954 #ifdef CONFIG_8723AU_BT_COEXIST
2955                 /*  add NULL Data and BT NULL Data Packets to FW RSVD Page */
2956                 rtl8723a_set_BTCoex_AP_mode_FwRsvdPkt_cmd(padapter);
2957 #endif
2958
2959                 ResumeTxBeacon(padapter);
2960
2961                 val8 = DIS_TSF_UDT | DIS_BCNQ_SUB;
2962                 SetBcnCtrlReg23a(padapter, val8, ~val8);
2963
2964                 /*  Set RCR */
2965                 /* rtw_write32(padapter, REG_RCR, 0x70002a8e);
2966                    CBSSID_DATA must set to 0 */
2967                 /* CBSSID_DATA must set to 0 */
2968                 rtw_write32(padapter, REG_RCR, 0x7000228e);
2969                 /*  enable to rx data frame */
2970                 rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
2971                 /*  enable to rx ps-poll */
2972                 rtw_write16(padapter, REG_RXFLTMAP1, 0x0400);
2973
2974                 /*  Beacon Control related register for first time */
2975                 rtw_write8(padapter, REG_BCNDMATIM, 0x02);      /*  2ms */
2976                 rtw_write8(padapter, REG_DRVERLYINT, 0x05);     /*  5ms */
2977                 rtw_write8(padapter, REG_ATIMWND, 0x0a); /*  10ms for port0 */
2978                 rtw_write16(padapter, REG_BCNTCFG, 0x00);
2979                 rtw_write16(padapter, REG_TBTT_PROHIBIT, 0xff04);
2980                 /*  +32767 (~32ms) */
2981                 rtw_write16(padapter, REG_TSFTR_SYN_OFFSET, 0x7fff);
2982
2983                 /*  reset TSF */
2984                 rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
2985
2986                 /*  enable BCN Function */
2987                 /*  don't enable update TSF (due to TSF update when
2988                     beacon/probe rsp are received) */
2989                 val8 = DIS_TSF_UDT | EN_BCN_FUNCTION |
2990                        EN_TXBCN_RPT | DIS_BCNQ_SUB;
2991                 SetBcnCtrlReg23a(padapter, val8, ~val8);
2992         }
2993
2994         val8 = rtw_read8(padapter, MSR);
2995         val8 = (val8 & 0xC) | mode;
2996         rtw_write8(padapter, MSR, val8);
2997 }
2998
2999 static void hw_var_set_macaddr(struct rtw_adapter *padapter, u8 *val)
3000 {
3001         u8 idx = 0;
3002         u32 reg_macid;
3003
3004         reg_macid = REG_MACID;
3005
3006         for (idx = 0; idx < 6; idx++)
3007                 rtw_write8(padapter, (reg_macid + idx), val[idx]);
3008 }
3009
3010 static void hw_var_set_bssid(struct rtw_adapter *padapter, u8 *val)
3011 {
3012         u8 idx = 0;
3013         u32 reg_bssid;
3014
3015         reg_bssid = REG_BSSID;
3016
3017         for (idx = 0; idx < 6; idx++)
3018                 rtw_write8(padapter, (reg_bssid + idx), val[idx]);
3019 }
3020
3021 static void hw_var_set_correct_tsf(struct rtw_adapter *padapter)
3022 {
3023         u64 tsf;
3024         u32 reg_tsftr;
3025         struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
3026         struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
3027
3028         /* tsf = pmlmeext->TSFValue - ((u32)pmlmeext->TSFValue %
3029            (pmlmeinfo->bcn_interval*1024)) - 1024; us */
3030         tsf = pmlmeext->TSFValue -
3031                 rtw_modular6423a(pmlmeext->TSFValue,
3032                               (pmlmeinfo->bcn_interval * 1024)) - 1024; /* us */
3033
3034         if (((pmlmeinfo->state & 0x03) == WIFI_FW_ADHOC_STATE) ||
3035             ((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE)) {
3036                 /* pHalData->RegTxPause |= STOP_BCNQ;BIT(6) */
3037                 /* rtw_write8(padapter, REG_TXPAUSE,
3038                    (rtw_read8(Adapter, REG_TXPAUSE)|BIT(6))); */
3039                 StopTxBeacon(padapter);
3040         }
3041
3042         reg_tsftr = REG_TSFTR;
3043
3044         /*  disable related TSF function */
3045         SetBcnCtrlReg23a(padapter, 0, EN_BCN_FUNCTION);
3046
3047         rtw_write32(padapter, reg_tsftr, tsf);
3048         rtw_write32(padapter, reg_tsftr + 4, tsf >> 32);
3049
3050         /* enable related TSF function */
3051         SetBcnCtrlReg23a(padapter, EN_BCN_FUNCTION, 0);
3052
3053         if (((pmlmeinfo->state & 0x03) == WIFI_FW_ADHOC_STATE) ||
3054             ((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE))
3055                 ResumeTxBeacon(padapter);
3056 }
3057
3058 static void hw_var_set_mlme_disconnect(struct rtw_adapter *padapter)
3059 {
3060         /*  reject all data frames */
3061         rtw_write16(padapter, REG_RXFLTMAP2, 0);
3062
3063         /*  reset TSF */
3064         rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
3065
3066         /*  disable update TSF */
3067         SetBcnCtrlReg23a(padapter, DIS_TSF_UDT, 0);
3068 }
3069
3070 static void hw_var_set_mlme_join(struct rtw_adapter *padapter, u8 type)
3071 {
3072         u8 RetryLimit = 0x30;
3073
3074         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
3075         struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
3076
3077         if (type == 0) {        /*  prepare to join */
3078                 u32 v32;
3079
3080                 /*  enable to rx data frame.Accept all data frame */
3081                 /* rtw_write32(padapter, REG_RCR,
3082                    rtw_read32(padapter, REG_RCR)|RCR_ADF); */
3083                 rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3084
3085                 v32 = rtw_read32(padapter, REG_RCR);
3086                 v32 |= RCR_CBSSID_DATA | RCR_CBSSID_BCN;
3087                 rtw_write32(padapter, REG_RCR, v32);
3088
3089                 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == true)
3090                         RetryLimit =
3091                             (pHalData->CustomerID == RT_CID_CCX) ? 7 : 48;
3092                 else            /*  Ad-hoc Mode */
3093                         RetryLimit = 0x7;
3094         } else if (type == 1) { /*  joinbss_event callback when join res < 0 */
3095                 /*  config RCR to receive different BSSID & not to
3096                     receive data frame during linking */
3097                 rtw_write16(padapter, REG_RXFLTMAP2, 0);
3098         } else if (type == 2) { /*  sta add event callback */
3099                 /*  enable update TSF */
3100                 SetBcnCtrlReg23a(padapter, 0, DIS_TSF_UDT);
3101
3102                 if (check_fwstate(pmlmepriv,
3103                                   WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3104                         /*  fixed beacon issue for 8191su........... */
3105                         rtw_write8(padapter, 0x542, 0x02);
3106                         RetryLimit = 0x7;
3107                 }
3108         }
3109
3110         rtw_write16(padapter, REG_RL,
3111                     RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit <<
3112                     RETRY_LIMIT_LONG_SHIFT);
3113
3114 #ifdef CONFIG_8723AU_BT_COEXIST
3115         switch (type) {
3116         case 0:
3117                 /*  prepare to join */
3118                 BT_WifiAssociateNotify(padapter, true);
3119                 break;
3120         case 1:
3121                 /*  joinbss_event callback when join res < 0 */
3122                 BT_WifiAssociateNotify(padapter, false);
3123                 break;
3124         case 2:
3125                 /*  sta add event callback */
3126 /*              BT_WifiMediaStatusNotify(padapter, RT_MEDIA_CONNECT); */
3127                 break;
3128         }
3129 #endif
3130 }
3131
3132 void SetHwReg8723A(struct rtw_adapter *padapter, u8 variable, u8 *val)
3133 {
3134         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
3135         u32 *val32 = (u32 *)val;
3136
3137         switch (variable) {
3138         case HW_VAR_MEDIA_STATUS:
3139                 rtl8723a_set_media_status(padapter, *val);
3140                 break;
3141
3142         case HW_VAR_MEDIA_STATUS1:
3143                 rtl8723a_set_media_status1(padapter, *val);
3144                 break;
3145
3146         case HW_VAR_SET_OPMODE:
3147                 hw_var_set_opmode(padapter, *val);
3148                 break;
3149
3150         case HW_VAR_MAC_ADDR:
3151                 hw_var_set_macaddr(padapter, val);
3152                 break;
3153
3154         case HW_VAR_BSSID:
3155                 hw_var_set_bssid(padapter, val);
3156                 break;
3157
3158         case HW_VAR_BASIC_RATE:
3159                 HalSetBrateCfg23a(padapter, val);
3160                 break;
3161
3162         case HW_VAR_TXPAUSE:
3163                 rtl8723a_set_tx_pause(padapter, *val);
3164                 break;
3165
3166         case HW_VAR_BCN_FUNC:
3167                 rtl8723a_set_bcn_func(padapter, *val);
3168                 break;
3169
3170         case HW_VAR_CORRECT_TSF:
3171                 hw_var_set_correct_tsf(padapter);
3172                 break;
3173
3174         case HW_VAR_CHECK_BSSID:
3175                 rtl8723a_check_bssid(padapter, *val);
3176                 break;
3177
3178         case HW_VAR_MLME_DISCONNECT:
3179                 hw_var_set_mlme_disconnect(padapter);
3180                 break;
3181
3182         case HW_VAR_MLME_SITESURVEY:
3183                 rtl8723a_mlme_sitesurvey(padapter, *val);
3184                 break;
3185
3186         case HW_VAR_MLME_JOIN:
3187                 hw_var_set_mlme_join(padapter, *val);
3188                 break;
3189
3190         case HW_VAR_ON_RCR_AM:
3191                 rtl8723a_on_rcr_am(padapter);
3192                 break;
3193
3194         case HW_VAR_OFF_RCR_AM:
3195                 rtl8723a_off_rcr_am(padapter);
3196                 break;
3197
3198         case HW_VAR_BEACON_INTERVAL:
3199                 rtl8723a_set_beacon_interval(padapter, *((u16 *) val));
3200                 break;
3201
3202         case HW_VAR_SLOT_TIME:
3203                 rtl8723a_set_slot_time(padapter, *val);
3204                 break;
3205
3206         case HW_VAR_RESP_SIFS:
3207                 rtl8723a_set_resp_sifs(padapter, val[0], val[1],
3208                                        val[2], val[3]);
3209                 break;
3210
3211         case HW_VAR_ACK_PREAMBLE:
3212                 rtl8723a_ack_preamble(padapter, *val);
3213                 break;
3214
3215         case HW_VAR_SEC_CFG:
3216                 rtl8723a_set_sec_cfg(padapter, *val);
3217                 break;
3218
3219         case HW_VAR_DM_FLAG:
3220                 rtl8723a_odm_support_ability_write(padapter, *val32);
3221                 break;
3222         case HW_VAR_DM_FUNC_OP:
3223                 rtl8723a_odm_support_ability_backup(padapter, *val);
3224                 break;
3225         case HW_VAR_DM_FUNC_SET:
3226                 rtl8723a_odm_support_ability_set(padapter, *val32);
3227                 break;
3228
3229         case HW_VAR_DM_FUNC_CLR:
3230                 rtl8723a_odm_support_ability_clr(padapter, *val32);
3231                 break;
3232
3233         case HW_VAR_CAM_EMPTY_ENTRY:
3234                 rtl8723a_cam_empty_entry(padapter, *val);
3235                 break;
3236
3237         case HW_VAR_CAM_INVALID_ALL:
3238                 rtl8723a_cam_invalid_all(padapter);
3239                 break;
3240
3241         case HW_VAR_CAM_WRITE:
3242                 rtl8723a_cam_write(padapter, val32[0], val32[1]);
3243                 break;
3244
3245         case HW_VAR_AC_PARAM_VO:
3246                 rtl8723a_set_ac_param_vo(padapter, *val32);
3247                 break;
3248
3249         case HW_VAR_AC_PARAM_VI:
3250                 rtl8723a_set_ac_param_vi(padapter, *val32);
3251                 break;
3252
3253         case HW_VAR_AC_PARAM_BE:
3254                 rtl8723a_set_ac_param_be(padapter, *val32);
3255                 break;
3256
3257         case HW_VAR_AC_PARAM_BK:
3258                 rtl8723a_set_ac_param_bk(padapter, *val32);
3259                 break;
3260
3261         case HW_VAR_ACM_CTRL:
3262                 rtl8723a_set_acm_ctrl(padapter, *val);
3263                 break;
3264
3265         case HW_VAR_AMPDU_MIN_SPACE:
3266                 rtl8723a_set_ampdu_min_space(padapter, *val);
3267                 break;
3268
3269         case HW_VAR_AMPDU_FACTOR:
3270                 rtl8723a_set_ampdu_factor(padapter, *val);
3271                 break;
3272
3273         case HW_VAR_RXDMA_AGG_PG_TH:
3274                 rtl8723a_set_rxdma_agg_pg_th(padapter, *val);
3275                 break;
3276
3277         case HW_VAR_H2C_FW_PWRMODE:
3278                 rtl8723a_set_FwPwrMode_cmd(padapter, *val);
3279                 break;
3280
3281         case HW_VAR_H2C_FW_JOINBSSRPT:
3282                 rtl8723a_set_FwJoinBssReport_cmd(padapter, *val);
3283                 break;
3284
3285 #ifdef CONFIG_8723AU_P2P
3286         case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
3287                 rtl8723a_set_p2p_ps_offload_cmd(padapter, *val);
3288                 break;
3289 #endif /* CONFIG_8723AU_P2P */
3290
3291         case HW_VAR_INITIAL_GAIN:
3292                 rtl8723a_set_initial_gain(padapter, *val32);
3293                 break;
3294         case HW_VAR_EFUSE_BYTES:
3295                 pHalData->EfuseUsedBytes = *((u16 *) val);
3296                 break;
3297         case HW_VAR_EFUSE_BT_BYTES:
3298                 pHalData->BTEfuseUsedBytes = *((u16 *) val);
3299                 break;
3300         case HW_VAR_FIFO_CLEARN_UP:
3301                 rtl8723a_fifo_cleanup(padapter);
3302                 break;
3303         case HW_VAR_CHECK_TXBUF:
3304                 break;
3305         case HW_VAR_APFM_ON_MAC:
3306                 rtl8723a_set_apfm_on_mac(padapter, *val);
3307                 break;
3308
3309         case HW_VAR_NAV_UPPER:
3310                 rtl8723a_set_nav_upper(padapter, *val32);
3311                 break;
3312         case HW_VAR_BCN_VALID:
3313                 rtl8723a_bcn_valid(padapter);
3314                 break;
3315         default:
3316                 break;
3317         }
3318
3319 }
3320
3321 void GetHwReg8723A(struct rtw_adapter *padapter, u8 variable, u8 *val)
3322 {
3323         struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
3324
3325         switch (variable) {
3326         case HW_VAR_BASIC_RATE:
3327                 *((u16 *) val) = pHalData->BasicRateSet;
3328                 break;
3329
3330         case HW_VAR_TXPAUSE:
3331                 *val = rtw_read8(padapter, REG_TXPAUSE);
3332                 break;
3333
3334         case HW_VAR_BCN_VALID:
3335                 /* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
3336                 val[0] = (BIT0 & rtw_read8(padapter, REG_TDECTRL + 2)) ? true :
3337                         false;
3338                 break;
3339
3340         case HW_VAR_RF_TYPE:
3341                 *val = pHalData->rf_type;
3342                 break;
3343
3344         case HW_VAR_DM_FLAG:
3345         {
3346                 struct dm_odm_t *podmpriv = &pHalData->odmpriv;
3347                 *((u32 *) val) = podmpriv->SupportAbility;
3348         }
3349                 break;
3350
3351         case HW_VAR_FWLPS_RF_ON:
3352         {
3353                 /*  When we halt NIC, we should check if FW LPS is leave. */
3354                 u32 valRCR;
3355
3356                 if ((padapter->bSurpriseRemoved == true) ||
3357                     (padapter->pwrctrlpriv.rf_pwrstate == rf_off)) {
3358                         /*  If it is in HW/SW Radio OFF or IPS state, we do
3359                             not check Fw LPS Leave, because Fw is unload. */
3360                         *val = true;
3361                 } else {
3362                         valRCR = rtw_read32(padapter, REG_RCR);
3363                         valRCR &= 0x00070000;
3364                         if (valRCR)
3365                                 *val = false;
3366                         else
3367                                 *val = true;
3368                 }
3369         }
3370                 break;
3371         case HW_VAR_EFUSE_BYTES:
3372                 *((u16 *) val) = pHalData->EfuseUsedBytes;
3373                 break;
3374
3375         case HW_VAR_EFUSE_BT_BYTES:
3376                 *((u16 *) val) = pHalData->BTEfuseUsedBytes;
3377                 break;
3378
3379         case HW_VAR_APFM_ON_MAC:
3380                 *val = pHalData->bMacPwrCtrlOn;
3381                 break;
3382         case HW_VAR_CHK_HI_QUEUE_EMPTY:
3383                 *val =
3384                     ((rtw_read32(padapter, REG_HGQ_INFORMATION) & 0x0000ff00) ==
3385                      0) ? true : false;
3386                 break;
3387         }
3388 }
3389
3390 #ifdef CONFIG_8723AU_BT_COEXIST
3391
3392 void rtl8723a_SingleDualAntennaDetection(struct rtw_adapter *padapter)
3393 {
3394         struct hal_data_8723a *pHalData;
3395         struct dm_odm_t *pDM_Odm;
3396         struct sw_ant_sw *pDM_SWAT_Table;
3397         u8 i;
3398
3399         pHalData = GET_HAL_DATA(padapter);
3400         pDM_Odm = &pHalData->odmpriv;
3401         pDM_SWAT_Table = &pDM_Odm->DM_SWAT_Table;
3402
3403         /*  */
3404         /*  <Roger_Notes> RTL8723A Single and Dual antenna dynamic detection
3405             mechanism when RF power state is on. */
3406         /*  We should take power tracking, IQK, LCK, RCK RF read/write
3407             operation into consideration. */
3408         /*  2011.12.15. */
3409         /*  */
3410         if (!pHalData->bAntennaDetected) {
3411                 u8 btAntNum = BT_GetPGAntNum(padapter);
3412
3413                 /*  Set default antenna B status */
3414                 if (btAntNum == Ant_x2)
3415                         pDM_SWAT_Table->ANTB_ON = true;
3416                 else if (btAntNum == Ant_x1)
3417                         pDM_SWAT_Table->ANTB_ON = false;
3418                 else
3419                         pDM_SWAT_Table->ANTB_ON = true;
3420
3421                 if (pHalData->CustomerID != RT_CID_TOSHIBA) {
3422                         for (i = 0; i < MAX_ANTENNA_DETECTION_CNT; i++) {
3423                                 if (ODM_SingleDualAntennaDetection
3424                                     (&pHalData->odmpriv, ANTTESTALL) == true)
3425                                         break;
3426                         }
3427
3428                         /*  Set default antenna number for BT coexistence */
3429                         if (btAntNum == Ant_x2)
3430                                 BT_SetBtCoexCurrAntNum(padapter,
3431                                                        pDM_SWAT_Table->
3432                                                        ANTB_ON ? 2 : 1);
3433                 }
3434                 pHalData->bAntennaDetected = true;
3435         }
3436 }
3437 #endif /*  CONFIG_8723AU_BT_COEXIST */
3438
3439 void rtl8723a_clone_haldata(struct rtw_adapter *dst_adapter,
3440                             struct rtw_adapter *src_adapter)
3441 {
3442         memcpy(dst_adapter->HalData, src_adapter->HalData,
3443                dst_adapter->hal_data_sz);
3444 }
3445
3446 void rtl8723a_start_thread(struct rtw_adapter *padapter)
3447 {
3448 }
3449
3450 void rtl8723a_stop_thread(struct rtw_adapter *padapter)
3451 {
3452 }