target: use a workqueue for I/O completions
[firefly-linux-kernel-4.4.55.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
40 #include <net/sock.h>
41 #include <net/tcp.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
45
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
53
54 #include "target_core_alua.h"
55 #include "target_core_hba.h"
56 #include "target_core_pr.h"
57 #include "target_core_ua.h"
58
59 static int sub_api_initialized;
60
61 static struct workqueue_struct *target_completion_wq;
62 static struct kmem_cache *se_cmd_cache;
63 static struct kmem_cache *se_sess_cache;
64 struct kmem_cache *se_tmr_req_cache;
65 struct kmem_cache *se_ua_cache;
66 struct kmem_cache *t10_pr_reg_cache;
67 struct kmem_cache *t10_alua_lu_gp_cache;
68 struct kmem_cache *t10_alua_lu_gp_mem_cache;
69 struct kmem_cache *t10_alua_tg_pt_gp_cache;
70 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
71
72 static int transport_generic_write_pending(struct se_cmd *);
73 static int transport_processing_thread(void *param);
74 static int __transport_execute_tasks(struct se_device *dev);
75 static void transport_complete_task_attr(struct se_cmd *cmd);
76 static void transport_handle_queue_full(struct se_cmd *cmd,
77                 struct se_device *dev);
78 static void transport_direct_request_timeout(struct se_cmd *cmd);
79 static void transport_free_dev_tasks(struct se_cmd *cmd);
80 static u32 transport_allocate_tasks(struct se_cmd *cmd,
81                 unsigned long long starting_lba,
82                 enum dma_data_direction data_direction,
83                 struct scatterlist *sgl, unsigned int nents);
84 static int transport_generic_get_mem(struct se_cmd *cmd);
85 static void transport_put_cmd(struct se_cmd *cmd);
86 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
87 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
88 static void transport_generic_request_failure(struct se_cmd *, int, int);
89 static void target_complete_ok_work(struct work_struct *work);
90
91 int init_se_kmem_caches(void)
92 {
93         se_cmd_cache = kmem_cache_create("se_cmd_cache",
94                         sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
95         if (!se_cmd_cache) {
96                 pr_err("kmem_cache_create for struct se_cmd failed\n");
97                 goto out;
98         }
99         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
100                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
101                         0, NULL);
102         if (!se_tmr_req_cache) {
103                 pr_err("kmem_cache_create() for struct se_tmr_req"
104                                 " failed\n");
105                 goto out_free_cmd_cache;
106         }
107         se_sess_cache = kmem_cache_create("se_sess_cache",
108                         sizeof(struct se_session), __alignof__(struct se_session),
109                         0, NULL);
110         if (!se_sess_cache) {
111                 pr_err("kmem_cache_create() for struct se_session"
112                                 " failed\n");
113                 goto out_free_tmr_req_cache;
114         }
115         se_ua_cache = kmem_cache_create("se_ua_cache",
116                         sizeof(struct se_ua), __alignof__(struct se_ua),
117                         0, NULL);
118         if (!se_ua_cache) {
119                 pr_err("kmem_cache_create() for struct se_ua failed\n");
120                 goto out_free_sess_cache;
121         }
122         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
123                         sizeof(struct t10_pr_registration),
124                         __alignof__(struct t10_pr_registration), 0, NULL);
125         if (!t10_pr_reg_cache) {
126                 pr_err("kmem_cache_create() for struct t10_pr_registration"
127                                 " failed\n");
128                 goto out_free_ua_cache;
129         }
130         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
131                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
132                         0, NULL);
133         if (!t10_alua_lu_gp_cache) {
134                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
135                                 " failed\n");
136                 goto out_free_pr_reg_cache;
137         }
138         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
139                         sizeof(struct t10_alua_lu_gp_member),
140                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
141         if (!t10_alua_lu_gp_mem_cache) {
142                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
143                                 "cache failed\n");
144                 goto out_free_lu_gp_cache;
145         }
146         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
147                         sizeof(struct t10_alua_tg_pt_gp),
148                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
149         if (!t10_alua_tg_pt_gp_cache) {
150                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
151                                 "cache failed\n");
152                 goto out_free_lu_gp_mem_cache;
153         }
154         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
155                         "t10_alua_tg_pt_gp_mem_cache",
156                         sizeof(struct t10_alua_tg_pt_gp_member),
157                         __alignof__(struct t10_alua_tg_pt_gp_member),
158                         0, NULL);
159         if (!t10_alua_tg_pt_gp_mem_cache) {
160                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
161                                 "mem_t failed\n");
162                 goto out_free_tg_pt_gp_cache;
163         }
164
165         target_completion_wq = alloc_workqueue("target_completion",
166                                                WQ_MEM_RECLAIM, 0);
167         if (!target_completion_wq)
168                 goto out_free_tg_pt_gp_mem_cache;
169
170         return 0;
171
172 out_free_tg_pt_gp_mem_cache:
173         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
174 out_free_tg_pt_gp_cache:
175         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 out_free_lu_gp_mem_cache:
177         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
178 out_free_lu_gp_cache:
179         kmem_cache_destroy(t10_alua_lu_gp_cache);
180 out_free_pr_reg_cache:
181         kmem_cache_destroy(t10_pr_reg_cache);
182 out_free_ua_cache:
183         kmem_cache_destroy(se_ua_cache);
184 out_free_sess_cache:
185         kmem_cache_destroy(se_sess_cache);
186 out_free_tmr_req_cache:
187         kmem_cache_destroy(se_tmr_req_cache);
188 out_free_cmd_cache:
189         kmem_cache_destroy(se_cmd_cache);
190 out:
191         return -ENOMEM;
192 }
193
194 void release_se_kmem_caches(void)
195 {
196         destroy_workqueue(target_completion_wq);
197         kmem_cache_destroy(se_cmd_cache);
198         kmem_cache_destroy(se_tmr_req_cache);
199         kmem_cache_destroy(se_sess_cache);
200         kmem_cache_destroy(se_ua_cache);
201         kmem_cache_destroy(t10_pr_reg_cache);
202         kmem_cache_destroy(t10_alua_lu_gp_cache);
203         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
204         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
205         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
206 }
207
208 /* This code ensures unique mib indexes are handed out. */
209 static DEFINE_SPINLOCK(scsi_mib_index_lock);
210 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
211
212 /*
213  * Allocate a new row index for the entry type specified
214  */
215 u32 scsi_get_new_index(scsi_index_t type)
216 {
217         u32 new_index;
218
219         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
220
221         spin_lock(&scsi_mib_index_lock);
222         new_index = ++scsi_mib_index[type];
223         spin_unlock(&scsi_mib_index_lock);
224
225         return new_index;
226 }
227
228 void transport_init_queue_obj(struct se_queue_obj *qobj)
229 {
230         atomic_set(&qobj->queue_cnt, 0);
231         INIT_LIST_HEAD(&qobj->qobj_list);
232         init_waitqueue_head(&qobj->thread_wq);
233         spin_lock_init(&qobj->cmd_queue_lock);
234 }
235 EXPORT_SYMBOL(transport_init_queue_obj);
236
237 static int transport_subsystem_reqmods(void)
238 {
239         int ret;
240
241         ret = request_module("target_core_iblock");
242         if (ret != 0)
243                 pr_err("Unable to load target_core_iblock\n");
244
245         ret = request_module("target_core_file");
246         if (ret != 0)
247                 pr_err("Unable to load target_core_file\n");
248
249         ret = request_module("target_core_pscsi");
250         if (ret != 0)
251                 pr_err("Unable to load target_core_pscsi\n");
252
253         ret = request_module("target_core_stgt");
254         if (ret != 0)
255                 pr_err("Unable to load target_core_stgt\n");
256
257         return 0;
258 }
259
260 int transport_subsystem_check_init(void)
261 {
262         int ret;
263
264         if (sub_api_initialized)
265                 return 0;
266         /*
267          * Request the loading of known TCM subsystem plugins..
268          */
269         ret = transport_subsystem_reqmods();
270         if (ret < 0)
271                 return ret;
272
273         sub_api_initialized = 1;
274         return 0;
275 }
276
277 struct se_session *transport_init_session(void)
278 {
279         struct se_session *se_sess;
280
281         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
282         if (!se_sess) {
283                 pr_err("Unable to allocate struct se_session from"
284                                 " se_sess_cache\n");
285                 return ERR_PTR(-ENOMEM);
286         }
287         INIT_LIST_HEAD(&se_sess->sess_list);
288         INIT_LIST_HEAD(&se_sess->sess_acl_list);
289
290         return se_sess;
291 }
292 EXPORT_SYMBOL(transport_init_session);
293
294 /*
295  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
296  */
297 void __transport_register_session(
298         struct se_portal_group *se_tpg,
299         struct se_node_acl *se_nacl,
300         struct se_session *se_sess,
301         void *fabric_sess_ptr)
302 {
303         unsigned char buf[PR_REG_ISID_LEN];
304
305         se_sess->se_tpg = se_tpg;
306         se_sess->fabric_sess_ptr = fabric_sess_ptr;
307         /*
308          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
309          *
310          * Only set for struct se_session's that will actually be moving I/O.
311          * eg: *NOT* discovery sessions.
312          */
313         if (se_nacl) {
314                 /*
315                  * If the fabric module supports an ISID based TransportID,
316                  * save this value in binary from the fabric I_T Nexus now.
317                  */
318                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
319                         memset(&buf[0], 0, PR_REG_ISID_LEN);
320                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
321                                         &buf[0], PR_REG_ISID_LEN);
322                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
323                 }
324                 spin_lock_irq(&se_nacl->nacl_sess_lock);
325                 /*
326                  * The se_nacl->nacl_sess pointer will be set to the
327                  * last active I_T Nexus for each struct se_node_acl.
328                  */
329                 se_nacl->nacl_sess = se_sess;
330
331                 list_add_tail(&se_sess->sess_acl_list,
332                               &se_nacl->acl_sess_list);
333                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
334         }
335         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
336
337         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
338                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
339 }
340 EXPORT_SYMBOL(__transport_register_session);
341
342 void transport_register_session(
343         struct se_portal_group *se_tpg,
344         struct se_node_acl *se_nacl,
345         struct se_session *se_sess,
346         void *fabric_sess_ptr)
347 {
348         spin_lock_bh(&se_tpg->session_lock);
349         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
350         spin_unlock_bh(&se_tpg->session_lock);
351 }
352 EXPORT_SYMBOL(transport_register_session);
353
354 void transport_deregister_session_configfs(struct se_session *se_sess)
355 {
356         struct se_node_acl *se_nacl;
357         unsigned long flags;
358         /*
359          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
360          */
361         se_nacl = se_sess->se_node_acl;
362         if (se_nacl) {
363                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
364                 list_del(&se_sess->sess_acl_list);
365                 /*
366                  * If the session list is empty, then clear the pointer.
367                  * Otherwise, set the struct se_session pointer from the tail
368                  * element of the per struct se_node_acl active session list.
369                  */
370                 if (list_empty(&se_nacl->acl_sess_list))
371                         se_nacl->nacl_sess = NULL;
372                 else {
373                         se_nacl->nacl_sess = container_of(
374                                         se_nacl->acl_sess_list.prev,
375                                         struct se_session, sess_acl_list);
376                 }
377                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
378         }
379 }
380 EXPORT_SYMBOL(transport_deregister_session_configfs);
381
382 void transport_free_session(struct se_session *se_sess)
383 {
384         kmem_cache_free(se_sess_cache, se_sess);
385 }
386 EXPORT_SYMBOL(transport_free_session);
387
388 void transport_deregister_session(struct se_session *se_sess)
389 {
390         struct se_portal_group *se_tpg = se_sess->se_tpg;
391         struct se_node_acl *se_nacl;
392         unsigned long flags;
393
394         if (!se_tpg) {
395                 transport_free_session(se_sess);
396                 return;
397         }
398
399         spin_lock_irqsave(&se_tpg->session_lock, flags);
400         list_del(&se_sess->sess_list);
401         se_sess->se_tpg = NULL;
402         se_sess->fabric_sess_ptr = NULL;
403         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
404
405         /*
406          * Determine if we need to do extra work for this initiator node's
407          * struct se_node_acl if it had been previously dynamically generated.
408          */
409         se_nacl = se_sess->se_node_acl;
410         if (se_nacl) {
411                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
412                 if (se_nacl->dynamic_node_acl) {
413                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
414                                         se_tpg)) {
415                                 list_del(&se_nacl->acl_list);
416                                 se_tpg->num_node_acls--;
417                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
418
419                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
420                                 core_free_device_list_for_node(se_nacl, se_tpg);
421                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
422                                                 se_nacl);
423                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
424                         }
425                 }
426                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
427         }
428
429         transport_free_session(se_sess);
430
431         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
432                 se_tpg->se_tpg_tfo->get_fabric_name());
433 }
434 EXPORT_SYMBOL(transport_deregister_session);
435
436 /*
437  * Called with cmd->t_state_lock held.
438  */
439 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
440 {
441         struct se_device *dev = cmd->se_dev;
442         struct se_task *task;
443         unsigned long flags;
444
445         if (!dev)
446                 return;
447
448         list_for_each_entry(task, &cmd->t_task_list, t_list) {
449                 if (task->task_flags & TF_ACTIVE)
450                         continue;
451
452                 if (!atomic_read(&task->task_state_active))
453                         continue;
454
455                 spin_lock_irqsave(&dev->execute_task_lock, flags);
456                 list_del(&task->t_state_list);
457                 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
458                         cmd->se_tfo->get_task_tag(cmd), dev, task);
459                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
460
461                 atomic_set(&task->task_state_active, 0);
462                 atomic_dec(&cmd->t_task_cdbs_ex_left);
463         }
464 }
465
466 /*      transport_cmd_check_stop():
467  *
468  *      'transport_off = 1' determines if t_transport_active should be cleared.
469  *      'transport_off = 2' determines if task_dev_state should be removed.
470  *
471  *      A non-zero u8 t_state sets cmd->t_state.
472  *      Returns 1 when command is stopped, else 0.
473  */
474 static int transport_cmd_check_stop(
475         struct se_cmd *cmd,
476         int transport_off,
477         u8 t_state)
478 {
479         unsigned long flags;
480
481         spin_lock_irqsave(&cmd->t_state_lock, flags);
482         /*
483          * Determine if IOCTL context caller in requesting the stopping of this
484          * command for LUN shutdown purposes.
485          */
486         if (atomic_read(&cmd->transport_lun_stop)) {
487                 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
488                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
489                         cmd->se_tfo->get_task_tag(cmd));
490
491                 atomic_set(&cmd->t_transport_active, 0);
492                 if (transport_off == 2)
493                         transport_all_task_dev_remove_state(cmd);
494                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
495
496                 complete(&cmd->transport_lun_stop_comp);
497                 return 1;
498         }
499         /*
500          * Determine if frontend context caller is requesting the stopping of
501          * this command for frontend exceptions.
502          */
503         if (atomic_read(&cmd->t_transport_stop)) {
504                 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
505                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
506                         cmd->se_tfo->get_task_tag(cmd));
507
508                 if (transport_off == 2)
509                         transport_all_task_dev_remove_state(cmd);
510
511                 /*
512                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
513                  * to FE.
514                  */
515                 if (transport_off == 2)
516                         cmd->se_lun = NULL;
517                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
518
519                 complete(&cmd->t_transport_stop_comp);
520                 return 1;
521         }
522         if (transport_off) {
523                 atomic_set(&cmd->t_transport_active, 0);
524                 if (transport_off == 2) {
525                         transport_all_task_dev_remove_state(cmd);
526                         /*
527                          * Clear struct se_cmd->se_lun before the transport_off == 2
528                          * handoff to fabric module.
529                          */
530                         cmd->se_lun = NULL;
531                         /*
532                          * Some fabric modules like tcm_loop can release
533                          * their internally allocated I/O reference now and
534                          * struct se_cmd now.
535                          */
536                         if (cmd->se_tfo->check_stop_free != NULL) {
537                                 spin_unlock_irqrestore(
538                                         &cmd->t_state_lock, flags);
539
540                                 cmd->se_tfo->check_stop_free(cmd);
541                                 return 1;
542                         }
543                 }
544                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545
546                 return 0;
547         } else if (t_state)
548                 cmd->t_state = t_state;
549         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
550
551         return 0;
552 }
553
554 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
555 {
556         return transport_cmd_check_stop(cmd, 2, 0);
557 }
558
559 static void transport_lun_remove_cmd(struct se_cmd *cmd)
560 {
561         struct se_lun *lun = cmd->se_lun;
562         unsigned long flags;
563
564         if (!lun)
565                 return;
566
567         spin_lock_irqsave(&cmd->t_state_lock, flags);
568         if (!atomic_read(&cmd->transport_dev_active)) {
569                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
570                 goto check_lun;
571         }
572         atomic_set(&cmd->transport_dev_active, 0);
573         transport_all_task_dev_remove_state(cmd);
574         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
575
576
577 check_lun:
578         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
579         if (atomic_read(&cmd->transport_lun_active)) {
580                 list_del(&cmd->se_lun_node);
581                 atomic_set(&cmd->transport_lun_active, 0);
582 #if 0
583                 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
584                         cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
585 #endif
586         }
587         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
588 }
589
590 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
591 {
592         if (!cmd->se_tmr_req)
593                 transport_lun_remove_cmd(cmd);
594
595         if (transport_cmd_check_stop_to_fabric(cmd))
596                 return;
597         if (remove) {
598                 transport_remove_cmd_from_queue(cmd);
599                 transport_put_cmd(cmd);
600         }
601 }
602
603 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
604                 bool at_head)
605 {
606         struct se_device *dev = cmd->se_dev;
607         struct se_queue_obj *qobj = &dev->dev_queue_obj;
608         unsigned long flags;
609
610         if (t_state) {
611                 spin_lock_irqsave(&cmd->t_state_lock, flags);
612                 cmd->t_state = t_state;
613                 atomic_set(&cmd->t_transport_active, 1);
614                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
615         }
616
617         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
618
619         /* If the cmd is already on the list, remove it before we add it */
620         if (!list_empty(&cmd->se_queue_node))
621                 list_del(&cmd->se_queue_node);
622         else
623                 atomic_inc(&qobj->queue_cnt);
624
625         if (at_head)
626                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
627         else
628                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
629         atomic_set(&cmd->t_transport_queue_active, 1);
630         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
631
632         wake_up_interruptible(&qobj->thread_wq);
633 }
634
635 static struct se_cmd *
636 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
637 {
638         struct se_cmd *cmd;
639         unsigned long flags;
640
641         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
642         if (list_empty(&qobj->qobj_list)) {
643                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
644                 return NULL;
645         }
646         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
647
648         atomic_set(&cmd->t_transport_queue_active, 0);
649
650         list_del_init(&cmd->se_queue_node);
651         atomic_dec(&qobj->queue_cnt);
652         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
653
654         return cmd;
655 }
656
657 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
658 {
659         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
660         unsigned long flags;
661
662         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
663         if (!atomic_read(&cmd->t_transport_queue_active)) {
664                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
665                 return;
666         }
667         atomic_set(&cmd->t_transport_queue_active, 0);
668         atomic_dec(&qobj->queue_cnt);
669         list_del_init(&cmd->se_queue_node);
670         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
671
672         if (atomic_read(&cmd->t_transport_queue_active)) {
673                 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
674                         cmd->se_tfo->get_task_tag(cmd),
675                         atomic_read(&cmd->t_transport_queue_active));
676         }
677 }
678
679 /*
680  * Completion function used by TCM subsystem plugins (such as FILEIO)
681  * for queueing up response from struct se_subsystem_api->do_task()
682  */
683 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
684 {
685         struct se_task *task = list_entry(cmd->t_task_list.next,
686                                 struct se_task, t_list);
687
688         if (good) {
689                 cmd->scsi_status = SAM_STAT_GOOD;
690                 task->task_scsi_status = GOOD;
691         } else {
692                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
693                 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
694                 task->task_se_cmd->transport_error_status =
695                                         PYX_TRANSPORT_ILLEGAL_REQUEST;
696         }
697
698         transport_complete_task(task, good);
699 }
700 EXPORT_SYMBOL(transport_complete_sync_cache);
701
702 static void target_complete_timeout_work(struct work_struct *work)
703 {
704         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
705         unsigned long flags;
706
707         /*
708          * Reset cmd->t_se_count to allow transport_put_cmd()
709          * to allow last call to free memory resources.
710          */
711         spin_lock_irqsave(&cmd->t_state_lock, flags);
712         if (atomic_read(&cmd->t_transport_timeout) > 1) {
713                 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
714
715                 atomic_sub(tmp, &cmd->t_se_count);
716         }
717         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
718
719         transport_put_cmd(cmd);
720 }
721
722 static void target_complete_failure_work(struct work_struct *work)
723 {
724         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
725
726         transport_generic_request_failure(cmd, 1, 1);
727 }
728
729 /*      transport_complete_task():
730  *
731  *      Called from interrupt and non interrupt context depending
732  *      on the transport plugin.
733  */
734 void transport_complete_task(struct se_task *task, int success)
735 {
736         struct se_cmd *cmd = task->task_se_cmd;
737         struct se_device *dev = cmd->se_dev;
738         unsigned long flags;
739 #if 0
740         pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
741                         cmd->t_task_cdb[0], dev);
742 #endif
743         if (dev)
744                 atomic_inc(&dev->depth_left);
745
746         del_timer(&task->task_timer);
747
748         spin_lock_irqsave(&cmd->t_state_lock, flags);
749         task->task_flags &= ~TF_ACTIVE;
750
751         /*
752          * See if any sense data exists, if so set the TASK_SENSE flag.
753          * Also check for any other post completion work that needs to be
754          * done by the plugins.
755          */
756         if (dev && dev->transport->transport_complete) {
757                 if (dev->transport->transport_complete(task) != 0) {
758                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
759                         task->task_sense = 1;
760                         success = 1;
761                 }
762         }
763
764         /*
765          * See if we are waiting for outstanding struct se_task
766          * to complete for an exception condition
767          */
768         if (task->task_flags & TF_REQUEST_STOP) {
769                 /*
770                  * Decrement cmd->t_se_count if this task had
771                  * previously thrown its timeout exception handler.
772                  */
773                 if (task->task_flags & TF_TIMEOUT) {
774                         atomic_dec(&cmd->t_se_count);
775                         task->task_flags &= ~TF_TIMEOUT;
776                 }
777                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
778
779                 complete(&task->task_stop_comp);
780                 return;
781         }
782         /*
783          * If the task's timeout handler has fired, use the t_task_cdbs_timeout
784          * left counter to determine when the struct se_cmd is ready to be queued to
785          * the processing thread.
786          */
787         if (task->task_flags & TF_TIMEOUT) {
788                 if (!atomic_dec_and_test(&cmd->t_task_cdbs_timeout_left)) {
789                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
790                         return;
791                 }
792                 INIT_WORK(&cmd->work, target_complete_timeout_work);
793                 goto out_queue;
794         }
795         atomic_dec(&cmd->t_task_cdbs_timeout_left);
796
797         /*
798          * Decrement the outstanding t_task_cdbs_left count.  The last
799          * struct se_task from struct se_cmd will complete itself into the
800          * device queue depending upon int success.
801          */
802         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
803                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
804                 return;
805         }
806
807         if (!success || cmd->t_tasks_failed) {
808                 if (!task->task_error_status) {
809                         task->task_error_status =
810                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
811                         cmd->transport_error_status =
812                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
813                 }
814                 INIT_WORK(&cmd->work, target_complete_failure_work);
815         } else {
816                 atomic_set(&cmd->t_transport_complete, 1);
817                 INIT_WORK(&cmd->work, target_complete_ok_work);
818         }
819
820 out_queue:
821         cmd->t_state = TRANSPORT_COMPLETE;
822         atomic_set(&cmd->t_transport_active, 1);
823         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
824
825         queue_work(target_completion_wq, &cmd->work);
826 }
827 EXPORT_SYMBOL(transport_complete_task);
828
829 /*
830  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
831  * struct se_task list are ready to be added to the active execution list
832  * struct se_device
833
834  * Called with se_dev_t->execute_task_lock called.
835  */
836 static inline int transport_add_task_check_sam_attr(
837         struct se_task *task,
838         struct se_task *task_prev,
839         struct se_device *dev)
840 {
841         /*
842          * No SAM Task attribute emulation enabled, add to tail of
843          * execution queue
844          */
845         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
846                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
847                 return 0;
848         }
849         /*
850          * HEAD_OF_QUEUE attribute for received CDB, which means
851          * the first task that is associated with a struct se_cmd goes to
852          * head of the struct se_device->execute_task_list, and task_prev
853          * after that for each subsequent task
854          */
855         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
856                 list_add(&task->t_execute_list,
857                                 (task_prev != NULL) ?
858                                 &task_prev->t_execute_list :
859                                 &dev->execute_task_list);
860
861                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
862                                 " in execution queue\n",
863                                 task->task_se_cmd->t_task_cdb[0]);
864                 return 1;
865         }
866         /*
867          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
868          * transitioned from Dermant -> Active state, and are added to the end
869          * of the struct se_device->execute_task_list
870          */
871         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
872         return 0;
873 }
874
875 /*      __transport_add_task_to_execute_queue():
876  *
877  *      Called with se_dev_t->execute_task_lock called.
878  */
879 static void __transport_add_task_to_execute_queue(
880         struct se_task *task,
881         struct se_task *task_prev,
882         struct se_device *dev)
883 {
884         int head_of_queue;
885
886         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
887         atomic_inc(&dev->execute_tasks);
888
889         if (atomic_read(&task->task_state_active))
890                 return;
891         /*
892          * Determine if this task needs to go to HEAD_OF_QUEUE for the
893          * state list as well.  Running with SAM Task Attribute emulation
894          * will always return head_of_queue == 0 here
895          */
896         if (head_of_queue)
897                 list_add(&task->t_state_list, (task_prev) ?
898                                 &task_prev->t_state_list :
899                                 &dev->state_task_list);
900         else
901                 list_add_tail(&task->t_state_list, &dev->state_task_list);
902
903         atomic_set(&task->task_state_active, 1);
904
905         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
906                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
907                 task, dev);
908 }
909
910 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
911 {
912         struct se_device *dev = cmd->se_dev;
913         struct se_task *task;
914         unsigned long flags;
915
916         spin_lock_irqsave(&cmd->t_state_lock, flags);
917         list_for_each_entry(task, &cmd->t_task_list, t_list) {
918                 if (atomic_read(&task->task_state_active))
919                         continue;
920
921                 spin_lock(&dev->execute_task_lock);
922                 list_add_tail(&task->t_state_list, &dev->state_task_list);
923                 atomic_set(&task->task_state_active, 1);
924
925                 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
926                         task->task_se_cmd->se_tfo->get_task_tag(
927                         task->task_se_cmd), task, dev);
928
929                 spin_unlock(&dev->execute_task_lock);
930         }
931         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
932 }
933
934 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
935 {
936         struct se_device *dev = cmd->se_dev;
937         struct se_task *task, *task_prev = NULL;
938         unsigned long flags;
939
940         spin_lock_irqsave(&dev->execute_task_lock, flags);
941         list_for_each_entry(task, &cmd->t_task_list, t_list) {
942                 if (!list_empty(&task->t_execute_list))
943                         continue;
944                 /*
945                  * __transport_add_task_to_execute_queue() handles the
946                  * SAM Task Attribute emulation if enabled
947                  */
948                 __transport_add_task_to_execute_queue(task, task_prev, dev);
949                 task_prev = task;
950         }
951         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
952 }
953
954 void __transport_remove_task_from_execute_queue(struct se_task *task,
955                 struct se_device *dev)
956 {
957         list_del_init(&task->t_execute_list);
958         atomic_dec(&dev->execute_tasks);
959 }
960
961 void transport_remove_task_from_execute_queue(
962         struct se_task *task,
963         struct se_device *dev)
964 {
965         unsigned long flags;
966
967         if (WARN_ON(list_empty(&task->t_execute_list)))
968                 return;
969
970         spin_lock_irqsave(&dev->execute_task_lock, flags);
971         __transport_remove_task_from_execute_queue(task, dev);
972         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
973 }
974
975 /*
976  * Handle QUEUE_FULL / -EAGAIN status
977  */
978
979 static void target_qf_do_work(struct work_struct *work)
980 {
981         struct se_device *dev = container_of(work, struct se_device,
982                                         qf_work_queue);
983         LIST_HEAD(qf_cmd_list);
984         struct se_cmd *cmd, *cmd_tmp;
985
986         spin_lock_irq(&dev->qf_cmd_lock);
987         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
988         spin_unlock_irq(&dev->qf_cmd_lock);
989
990         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
991                 list_del(&cmd->se_qf_node);
992                 atomic_dec(&dev->dev_qf_count);
993                 smp_mb__after_atomic_dec();
994
995                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
996                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
997                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
998                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
999                         : "UNKNOWN");
1000
1001                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
1002         }
1003 }
1004
1005 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1006 {
1007         switch (cmd->data_direction) {
1008         case DMA_NONE:
1009                 return "NONE";
1010         case DMA_FROM_DEVICE:
1011                 return "READ";
1012         case DMA_TO_DEVICE:
1013                 return "WRITE";
1014         case DMA_BIDIRECTIONAL:
1015                 return "BIDI";
1016         default:
1017                 break;
1018         }
1019
1020         return "UNKNOWN";
1021 }
1022
1023 void transport_dump_dev_state(
1024         struct se_device *dev,
1025         char *b,
1026         int *bl)
1027 {
1028         *bl += sprintf(b + *bl, "Status: ");
1029         switch (dev->dev_status) {
1030         case TRANSPORT_DEVICE_ACTIVATED:
1031                 *bl += sprintf(b + *bl, "ACTIVATED");
1032                 break;
1033         case TRANSPORT_DEVICE_DEACTIVATED:
1034                 *bl += sprintf(b + *bl, "DEACTIVATED");
1035                 break;
1036         case TRANSPORT_DEVICE_SHUTDOWN:
1037                 *bl += sprintf(b + *bl, "SHUTDOWN");
1038                 break;
1039         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1040         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1041                 *bl += sprintf(b + *bl, "OFFLINE");
1042                 break;
1043         default:
1044                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1045                 break;
1046         }
1047
1048         *bl += sprintf(b + *bl, "  Execute/Left/Max Queue Depth: %d/%d/%d",
1049                 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1050                 dev->queue_depth);
1051         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
1052                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1053         *bl += sprintf(b + *bl, "        ");
1054 }
1055
1056 void transport_dump_vpd_proto_id(
1057         struct t10_vpd *vpd,
1058         unsigned char *p_buf,
1059         int p_buf_len)
1060 {
1061         unsigned char buf[VPD_TMP_BUF_SIZE];
1062         int len;
1063
1064         memset(buf, 0, VPD_TMP_BUF_SIZE);
1065         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1066
1067         switch (vpd->protocol_identifier) {
1068         case 0x00:
1069                 sprintf(buf+len, "Fibre Channel\n");
1070                 break;
1071         case 0x10:
1072                 sprintf(buf+len, "Parallel SCSI\n");
1073                 break;
1074         case 0x20:
1075                 sprintf(buf+len, "SSA\n");
1076                 break;
1077         case 0x30:
1078                 sprintf(buf+len, "IEEE 1394\n");
1079                 break;
1080         case 0x40:
1081                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1082                                 " Protocol\n");
1083                 break;
1084         case 0x50:
1085                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1086                 break;
1087         case 0x60:
1088                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1089                 break;
1090         case 0x70:
1091                 sprintf(buf+len, "Automation/Drive Interface Transport"
1092                                 " Protocol\n");
1093                 break;
1094         case 0x80:
1095                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1096                 break;
1097         default:
1098                 sprintf(buf+len, "Unknown 0x%02x\n",
1099                                 vpd->protocol_identifier);
1100                 break;
1101         }
1102
1103         if (p_buf)
1104                 strncpy(p_buf, buf, p_buf_len);
1105         else
1106                 pr_debug("%s", buf);
1107 }
1108
1109 void
1110 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1111 {
1112         /*
1113          * Check if the Protocol Identifier Valid (PIV) bit is set..
1114          *
1115          * from spc3r23.pdf section 7.5.1
1116          */
1117          if (page_83[1] & 0x80) {
1118                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1119                 vpd->protocol_identifier_set = 1;
1120                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1121         }
1122 }
1123 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1124
1125 int transport_dump_vpd_assoc(
1126         struct t10_vpd *vpd,
1127         unsigned char *p_buf,
1128         int p_buf_len)
1129 {
1130         unsigned char buf[VPD_TMP_BUF_SIZE];
1131         int ret = 0;
1132         int len;
1133
1134         memset(buf, 0, VPD_TMP_BUF_SIZE);
1135         len = sprintf(buf, "T10 VPD Identifier Association: ");
1136
1137         switch (vpd->association) {
1138         case 0x00:
1139                 sprintf(buf+len, "addressed logical unit\n");
1140                 break;
1141         case 0x10:
1142                 sprintf(buf+len, "target port\n");
1143                 break;
1144         case 0x20:
1145                 sprintf(buf+len, "SCSI target device\n");
1146                 break;
1147         default:
1148                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1149                 ret = -EINVAL;
1150                 break;
1151         }
1152
1153         if (p_buf)
1154                 strncpy(p_buf, buf, p_buf_len);
1155         else
1156                 pr_debug("%s", buf);
1157
1158         return ret;
1159 }
1160
1161 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1162 {
1163         /*
1164          * The VPD identification association..
1165          *
1166          * from spc3r23.pdf Section 7.6.3.1 Table 297
1167          */
1168         vpd->association = (page_83[1] & 0x30);
1169         return transport_dump_vpd_assoc(vpd, NULL, 0);
1170 }
1171 EXPORT_SYMBOL(transport_set_vpd_assoc);
1172
1173 int transport_dump_vpd_ident_type(
1174         struct t10_vpd *vpd,
1175         unsigned char *p_buf,
1176         int p_buf_len)
1177 {
1178         unsigned char buf[VPD_TMP_BUF_SIZE];
1179         int ret = 0;
1180         int len;
1181
1182         memset(buf, 0, VPD_TMP_BUF_SIZE);
1183         len = sprintf(buf, "T10 VPD Identifier Type: ");
1184
1185         switch (vpd->device_identifier_type) {
1186         case 0x00:
1187                 sprintf(buf+len, "Vendor specific\n");
1188                 break;
1189         case 0x01:
1190                 sprintf(buf+len, "T10 Vendor ID based\n");
1191                 break;
1192         case 0x02:
1193                 sprintf(buf+len, "EUI-64 based\n");
1194                 break;
1195         case 0x03:
1196                 sprintf(buf+len, "NAA\n");
1197                 break;
1198         case 0x04:
1199                 sprintf(buf+len, "Relative target port identifier\n");
1200                 break;
1201         case 0x08:
1202                 sprintf(buf+len, "SCSI name string\n");
1203                 break;
1204         default:
1205                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1206                                 vpd->device_identifier_type);
1207                 ret = -EINVAL;
1208                 break;
1209         }
1210
1211         if (p_buf) {
1212                 if (p_buf_len < strlen(buf)+1)
1213                         return -EINVAL;
1214                 strncpy(p_buf, buf, p_buf_len);
1215         } else {
1216                 pr_debug("%s", buf);
1217         }
1218
1219         return ret;
1220 }
1221
1222 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1223 {
1224         /*
1225          * The VPD identifier type..
1226          *
1227          * from spc3r23.pdf Section 7.6.3.1 Table 298
1228          */
1229         vpd->device_identifier_type = (page_83[1] & 0x0f);
1230         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1231 }
1232 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1233
1234 int transport_dump_vpd_ident(
1235         struct t10_vpd *vpd,
1236         unsigned char *p_buf,
1237         int p_buf_len)
1238 {
1239         unsigned char buf[VPD_TMP_BUF_SIZE];
1240         int ret = 0;
1241
1242         memset(buf, 0, VPD_TMP_BUF_SIZE);
1243
1244         switch (vpd->device_identifier_code_set) {
1245         case 0x01: /* Binary */
1246                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1247                         &vpd->device_identifier[0]);
1248                 break;
1249         case 0x02: /* ASCII */
1250                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1251                         &vpd->device_identifier[0]);
1252                 break;
1253         case 0x03: /* UTF-8 */
1254                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1255                         &vpd->device_identifier[0]);
1256                 break;
1257         default:
1258                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1259                         " 0x%02x", vpd->device_identifier_code_set);
1260                 ret = -EINVAL;
1261                 break;
1262         }
1263
1264         if (p_buf)
1265                 strncpy(p_buf, buf, p_buf_len);
1266         else
1267                 pr_debug("%s", buf);
1268
1269         return ret;
1270 }
1271
1272 int
1273 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1274 {
1275         static const char hex_str[] = "0123456789abcdef";
1276         int j = 0, i = 4; /* offset to start of the identifer */
1277
1278         /*
1279          * The VPD Code Set (encoding)
1280          *
1281          * from spc3r23.pdf Section 7.6.3.1 Table 296
1282          */
1283         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1284         switch (vpd->device_identifier_code_set) {
1285         case 0x01: /* Binary */
1286                 vpd->device_identifier[j++] =
1287                                 hex_str[vpd->device_identifier_type];
1288                 while (i < (4 + page_83[3])) {
1289                         vpd->device_identifier[j++] =
1290                                 hex_str[(page_83[i] & 0xf0) >> 4];
1291                         vpd->device_identifier[j++] =
1292                                 hex_str[page_83[i] & 0x0f];
1293                         i++;
1294                 }
1295                 break;
1296         case 0x02: /* ASCII */
1297         case 0x03: /* UTF-8 */
1298                 while (i < (4 + page_83[3]))
1299                         vpd->device_identifier[j++] = page_83[i++];
1300                 break;
1301         default:
1302                 break;
1303         }
1304
1305         return transport_dump_vpd_ident(vpd, NULL, 0);
1306 }
1307 EXPORT_SYMBOL(transport_set_vpd_ident);
1308
1309 static void core_setup_task_attr_emulation(struct se_device *dev)
1310 {
1311         /*
1312          * If this device is from Target_Core_Mod/pSCSI, disable the
1313          * SAM Task Attribute emulation.
1314          *
1315          * This is currently not available in upsream Linux/SCSI Target
1316          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1317          */
1318         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1319                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1320                 return;
1321         }
1322
1323         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1324         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1325                 " device\n", dev->transport->name,
1326                 dev->transport->get_device_rev(dev));
1327 }
1328
1329 static void scsi_dump_inquiry(struct se_device *dev)
1330 {
1331         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1332         int i, device_type;
1333         /*
1334          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1335          */
1336         pr_debug("  Vendor: ");
1337         for (i = 0; i < 8; i++)
1338                 if (wwn->vendor[i] >= 0x20)
1339                         pr_debug("%c", wwn->vendor[i]);
1340                 else
1341                         pr_debug(" ");
1342
1343         pr_debug("  Model: ");
1344         for (i = 0; i < 16; i++)
1345                 if (wwn->model[i] >= 0x20)
1346                         pr_debug("%c", wwn->model[i]);
1347                 else
1348                         pr_debug(" ");
1349
1350         pr_debug("  Revision: ");
1351         for (i = 0; i < 4; i++)
1352                 if (wwn->revision[i] >= 0x20)
1353                         pr_debug("%c", wwn->revision[i]);
1354                 else
1355                         pr_debug(" ");
1356
1357         pr_debug("\n");
1358
1359         device_type = dev->transport->get_device_type(dev);
1360         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1361         pr_debug("                 ANSI SCSI revision: %02x\n",
1362                                 dev->transport->get_device_rev(dev));
1363 }
1364
1365 struct se_device *transport_add_device_to_core_hba(
1366         struct se_hba *hba,
1367         struct se_subsystem_api *transport,
1368         struct se_subsystem_dev *se_dev,
1369         u32 device_flags,
1370         void *transport_dev,
1371         struct se_dev_limits *dev_limits,
1372         const char *inquiry_prod,
1373         const char *inquiry_rev)
1374 {
1375         int force_pt;
1376         struct se_device  *dev;
1377
1378         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1379         if (!dev) {
1380                 pr_err("Unable to allocate memory for se_dev_t\n");
1381                 return NULL;
1382         }
1383
1384         transport_init_queue_obj(&dev->dev_queue_obj);
1385         dev->dev_flags          = device_flags;
1386         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1387         dev->dev_ptr            = transport_dev;
1388         dev->se_hba             = hba;
1389         dev->se_sub_dev         = se_dev;
1390         dev->transport          = transport;
1391         atomic_set(&dev->active_cmds, 0);
1392         INIT_LIST_HEAD(&dev->dev_list);
1393         INIT_LIST_HEAD(&dev->dev_sep_list);
1394         INIT_LIST_HEAD(&dev->dev_tmr_list);
1395         INIT_LIST_HEAD(&dev->execute_task_list);
1396         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1397         INIT_LIST_HEAD(&dev->ordered_cmd_list);
1398         INIT_LIST_HEAD(&dev->state_task_list);
1399         INIT_LIST_HEAD(&dev->qf_cmd_list);
1400         spin_lock_init(&dev->execute_task_lock);
1401         spin_lock_init(&dev->delayed_cmd_lock);
1402         spin_lock_init(&dev->ordered_cmd_lock);
1403         spin_lock_init(&dev->state_task_lock);
1404         spin_lock_init(&dev->dev_alua_lock);
1405         spin_lock_init(&dev->dev_reservation_lock);
1406         spin_lock_init(&dev->dev_status_lock);
1407         spin_lock_init(&dev->dev_status_thr_lock);
1408         spin_lock_init(&dev->se_port_lock);
1409         spin_lock_init(&dev->se_tmr_lock);
1410         spin_lock_init(&dev->qf_cmd_lock);
1411
1412         dev->queue_depth        = dev_limits->queue_depth;
1413         atomic_set(&dev->depth_left, dev->queue_depth);
1414         atomic_set(&dev->dev_ordered_id, 0);
1415
1416         se_dev_set_default_attribs(dev, dev_limits);
1417
1418         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1419         dev->creation_time = get_jiffies_64();
1420         spin_lock_init(&dev->stats_lock);
1421
1422         spin_lock(&hba->device_lock);
1423         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1424         hba->dev_count++;
1425         spin_unlock(&hba->device_lock);
1426         /*
1427          * Setup the SAM Task Attribute emulation for struct se_device
1428          */
1429         core_setup_task_attr_emulation(dev);
1430         /*
1431          * Force PR and ALUA passthrough emulation with internal object use.
1432          */
1433         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1434         /*
1435          * Setup the Reservations infrastructure for struct se_device
1436          */
1437         core_setup_reservations(dev, force_pt);
1438         /*
1439          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1440          */
1441         if (core_setup_alua(dev, force_pt) < 0)
1442                 goto out;
1443
1444         /*
1445          * Startup the struct se_device processing thread
1446          */
1447         dev->process_thread = kthread_run(transport_processing_thread, dev,
1448                                           "LIO_%s", dev->transport->name);
1449         if (IS_ERR(dev->process_thread)) {
1450                 pr_err("Unable to create kthread: LIO_%s\n",
1451                         dev->transport->name);
1452                 goto out;
1453         }
1454         /*
1455          * Setup work_queue for QUEUE_FULL
1456          */
1457         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1458         /*
1459          * Preload the initial INQUIRY const values if we are doing
1460          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1461          * passthrough because this is being provided by the backend LLD.
1462          * This is required so that transport_get_inquiry() copies these
1463          * originals once back into DEV_T10_WWN(dev) for the virtual device
1464          * setup.
1465          */
1466         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1467                 if (!inquiry_prod || !inquiry_rev) {
1468                         pr_err("All non TCM/pSCSI plugins require"
1469                                 " INQUIRY consts\n");
1470                         goto out;
1471                 }
1472
1473                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1474                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1475                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1476         }
1477         scsi_dump_inquiry(dev);
1478
1479         return dev;
1480 out:
1481         kthread_stop(dev->process_thread);
1482
1483         spin_lock(&hba->device_lock);
1484         list_del(&dev->dev_list);
1485         hba->dev_count--;
1486         spin_unlock(&hba->device_lock);
1487
1488         se_release_vpd_for_dev(dev);
1489
1490         kfree(dev);
1491
1492         return NULL;
1493 }
1494 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1495
1496 /*      transport_generic_prepare_cdb():
1497  *
1498  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1499  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1500  *      The point of this is since we are mapping iSCSI LUNs to
1501  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1502  *      devices and HBAs for a loop.
1503  */
1504 static inline void transport_generic_prepare_cdb(
1505         unsigned char *cdb)
1506 {
1507         switch (cdb[0]) {
1508         case READ_10: /* SBC - RDProtect */
1509         case READ_12: /* SBC - RDProtect */
1510         case READ_16: /* SBC - RDProtect */
1511         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1512         case VERIFY: /* SBC - VRProtect */
1513         case VERIFY_16: /* SBC - VRProtect */
1514         case WRITE_VERIFY: /* SBC - VRProtect */
1515         case WRITE_VERIFY_12: /* SBC - VRProtect */
1516                 break;
1517         default:
1518                 cdb[1] &= 0x1f; /* clear logical unit number */
1519                 break;
1520         }
1521 }
1522
1523 static struct se_task *
1524 transport_generic_get_task(struct se_cmd *cmd,
1525                 enum dma_data_direction data_direction)
1526 {
1527         struct se_task *task;
1528         struct se_device *dev = cmd->se_dev;
1529
1530         task = dev->transport->alloc_task(cmd->t_task_cdb);
1531         if (!task) {
1532                 pr_err("Unable to allocate struct se_task\n");
1533                 return NULL;
1534         }
1535
1536         INIT_LIST_HEAD(&task->t_list);
1537         INIT_LIST_HEAD(&task->t_execute_list);
1538         INIT_LIST_HEAD(&task->t_state_list);
1539         init_timer(&task->task_timer);
1540         init_completion(&task->task_stop_comp);
1541         task->task_se_cmd = cmd;
1542         task->task_data_direction = data_direction;
1543
1544         return task;
1545 }
1546
1547 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1548
1549 /*
1550  * Used by fabric modules containing a local struct se_cmd within their
1551  * fabric dependent per I/O descriptor.
1552  */
1553 void transport_init_se_cmd(
1554         struct se_cmd *cmd,
1555         struct target_core_fabric_ops *tfo,
1556         struct se_session *se_sess,
1557         u32 data_length,
1558         int data_direction,
1559         int task_attr,
1560         unsigned char *sense_buffer)
1561 {
1562         INIT_LIST_HEAD(&cmd->se_lun_node);
1563         INIT_LIST_HEAD(&cmd->se_delayed_node);
1564         INIT_LIST_HEAD(&cmd->se_ordered_node);
1565         INIT_LIST_HEAD(&cmd->se_qf_node);
1566         INIT_LIST_HEAD(&cmd->se_queue_node);
1567
1568         INIT_LIST_HEAD(&cmd->t_task_list);
1569         init_completion(&cmd->transport_lun_fe_stop_comp);
1570         init_completion(&cmd->transport_lun_stop_comp);
1571         init_completion(&cmd->t_transport_stop_comp);
1572         spin_lock_init(&cmd->t_state_lock);
1573         atomic_set(&cmd->transport_dev_active, 1);
1574
1575         cmd->se_tfo = tfo;
1576         cmd->se_sess = se_sess;
1577         cmd->data_length = data_length;
1578         cmd->data_direction = data_direction;
1579         cmd->sam_task_attr = task_attr;
1580         cmd->sense_buffer = sense_buffer;
1581 }
1582 EXPORT_SYMBOL(transport_init_se_cmd);
1583
1584 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1585 {
1586         /*
1587          * Check if SAM Task Attribute emulation is enabled for this
1588          * struct se_device storage object
1589          */
1590         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1591                 return 0;
1592
1593         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1594                 pr_debug("SAM Task Attribute ACA"
1595                         " emulation is not supported\n");
1596                 return -EINVAL;
1597         }
1598         /*
1599          * Used to determine when ORDERED commands should go from
1600          * Dormant to Active status.
1601          */
1602         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1603         smp_mb__after_atomic_inc();
1604         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1605                         cmd->se_ordered_id, cmd->sam_task_attr,
1606                         cmd->se_dev->transport->name);
1607         return 0;
1608 }
1609
1610 /*      transport_generic_allocate_tasks():
1611  *
1612  *      Called from fabric RX Thread.
1613  */
1614 int transport_generic_allocate_tasks(
1615         struct se_cmd *cmd,
1616         unsigned char *cdb)
1617 {
1618         int ret;
1619
1620         transport_generic_prepare_cdb(cdb);
1621         /*
1622          * Ensure that the received CDB is less than the max (252 + 8) bytes
1623          * for VARIABLE_LENGTH_CMD
1624          */
1625         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1626                 pr_err("Received SCSI CDB with command_size: %d that"
1627                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1628                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1629                 return -EINVAL;
1630         }
1631         /*
1632          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1633          * allocate the additional extended CDB buffer now..  Otherwise
1634          * setup the pointer from __t_task_cdb to t_task_cdb.
1635          */
1636         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1637                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1638                                                 GFP_KERNEL);
1639                 if (!cmd->t_task_cdb) {
1640                         pr_err("Unable to allocate cmd->t_task_cdb"
1641                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1642                                 scsi_command_size(cdb),
1643                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1644                         return -ENOMEM;
1645                 }
1646         } else
1647                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1648         /*
1649          * Copy the original CDB into cmd->
1650          */
1651         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1652         /*
1653          * Setup the received CDB based on SCSI defined opcodes and
1654          * perform unit attention, persistent reservations and ALUA
1655          * checks for virtual device backends.  The cmd->t_task_cdb
1656          * pointer is expected to be setup before we reach this point.
1657          */
1658         ret = transport_generic_cmd_sequencer(cmd, cdb);
1659         if (ret < 0)
1660                 return ret;
1661         /*
1662          * Check for SAM Task Attribute Emulation
1663          */
1664         if (transport_check_alloc_task_attr(cmd) < 0) {
1665                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1666                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1667                 return -EINVAL;
1668         }
1669         spin_lock(&cmd->se_lun->lun_sep_lock);
1670         if (cmd->se_lun->lun_sep)
1671                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1672         spin_unlock(&cmd->se_lun->lun_sep_lock);
1673         return 0;
1674 }
1675 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1676
1677 /*
1678  * Used by fabric module frontends to queue tasks directly.
1679  * Many only be used from process context only
1680  */
1681 int transport_handle_cdb_direct(
1682         struct se_cmd *cmd)
1683 {
1684         int ret;
1685
1686         if (!cmd->se_lun) {
1687                 dump_stack();
1688                 pr_err("cmd->se_lun is NULL\n");
1689                 return -EINVAL;
1690         }
1691         if (in_interrupt()) {
1692                 dump_stack();
1693                 pr_err("transport_generic_handle_cdb cannot be called"
1694                                 " from interrupt context\n");
1695                 return -EINVAL;
1696         }
1697         /*
1698          * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1699          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1700          * in existing usage to ensure that outstanding descriptors are handled
1701          * correctly during shutdown via transport_wait_for_tasks()
1702          *
1703          * Also, we don't take cmd->t_state_lock here as we only expect
1704          * this to be called for initial descriptor submission.
1705          */
1706         cmd->t_state = TRANSPORT_NEW_CMD;
1707         atomic_set(&cmd->t_transport_active, 1);
1708         /*
1709          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1710          * so follow TRANSPORT_NEW_CMD processing thread context usage
1711          * and call transport_generic_request_failure() if necessary..
1712          */
1713         ret = transport_generic_new_cmd(cmd);
1714         if (ret == -EAGAIN)
1715                 return 0;
1716         else if (ret < 0) {
1717                 cmd->transport_error_status = ret;
1718                 transport_generic_request_failure(cmd, 0,
1719                                 (cmd->data_direction != DMA_TO_DEVICE));
1720         }
1721         return 0;
1722 }
1723 EXPORT_SYMBOL(transport_handle_cdb_direct);
1724
1725 /*
1726  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1727  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1728  * complete setup in TCM process context w/ TFO->new_cmd_map().
1729  */
1730 int transport_generic_handle_cdb_map(
1731         struct se_cmd *cmd)
1732 {
1733         if (!cmd->se_lun) {
1734                 dump_stack();
1735                 pr_err("cmd->se_lun is NULL\n");
1736                 return -EINVAL;
1737         }
1738
1739         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1740         return 0;
1741 }
1742 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1743
1744 /*      transport_generic_handle_data():
1745  *
1746  *
1747  */
1748 int transport_generic_handle_data(
1749         struct se_cmd *cmd)
1750 {
1751         /*
1752          * For the software fabric case, then we assume the nexus is being
1753          * failed/shutdown when signals are pending from the kthread context
1754          * caller, so we return a failure.  For the HW target mode case running
1755          * in interrupt code, the signal_pending() check is skipped.
1756          */
1757         if (!in_interrupt() && signal_pending(current))
1758                 return -EPERM;
1759         /*
1760          * If the received CDB has aleady been ABORTED by the generic
1761          * target engine, we now call transport_check_aborted_status()
1762          * to queue any delated TASK_ABORTED status for the received CDB to the
1763          * fabric module as we are expecting no further incoming DATA OUT
1764          * sequences at this point.
1765          */
1766         if (transport_check_aborted_status(cmd, 1) != 0)
1767                 return 0;
1768
1769         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1770         return 0;
1771 }
1772 EXPORT_SYMBOL(transport_generic_handle_data);
1773
1774 /*      transport_generic_handle_tmr():
1775  *
1776  *
1777  */
1778 int transport_generic_handle_tmr(
1779         struct se_cmd *cmd)
1780 {
1781         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1782         return 0;
1783 }
1784 EXPORT_SYMBOL(transport_generic_handle_tmr);
1785
1786 void transport_generic_free_cmd_intr(
1787         struct se_cmd *cmd)
1788 {
1789         transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR, false);
1790 }
1791 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1792
1793 /*
1794  * If the task is active, request it to be stopped and sleep until it
1795  * has completed.
1796  */
1797 bool target_stop_task(struct se_task *task, unsigned long *flags)
1798 {
1799         struct se_cmd *cmd = task->task_se_cmd;
1800         bool was_active = false;
1801
1802         if (task->task_flags & TF_ACTIVE) {
1803                 task->task_flags |= TF_REQUEST_STOP;
1804                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1805
1806                 pr_debug("Task %p waiting to complete\n", task);
1807                 del_timer_sync(&task->task_timer);
1808                 wait_for_completion(&task->task_stop_comp);
1809                 pr_debug("Task %p stopped successfully\n", task);
1810
1811                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1812                 atomic_dec(&cmd->t_task_cdbs_left);
1813                 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1814                 was_active = true;
1815         }
1816
1817         return was_active;
1818 }
1819
1820 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1821 {
1822         struct se_task *task, *task_tmp;
1823         unsigned long flags;
1824         int ret = 0;
1825
1826         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1827                 cmd->se_tfo->get_task_tag(cmd));
1828
1829         /*
1830          * No tasks remain in the execution queue
1831          */
1832         spin_lock_irqsave(&cmd->t_state_lock, flags);
1833         list_for_each_entry_safe(task, task_tmp,
1834                                 &cmd->t_task_list, t_list) {
1835                 pr_debug("Processing task %p\n", task);
1836                 /*
1837                  * If the struct se_task has not been sent and is not active,
1838                  * remove the struct se_task from the execution queue.
1839                  */
1840                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1841                         spin_unlock_irqrestore(&cmd->t_state_lock,
1842                                         flags);
1843                         transport_remove_task_from_execute_queue(task,
1844                                         cmd->se_dev);
1845
1846                         pr_debug("Task %p removed from execute queue\n", task);
1847                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1848                         continue;
1849                 }
1850
1851                 if (!target_stop_task(task, &flags)) {
1852                         pr_debug("Task %p - did nothing\n", task);
1853                         ret++;
1854                 }
1855         }
1856         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1857
1858         return ret;
1859 }
1860
1861 /*
1862  * Handle SAM-esque emulation for generic transport request failures.
1863  */
1864 static void transport_generic_request_failure(
1865         struct se_cmd *cmd,
1866         int complete,
1867         int sc)
1868 {
1869         int ret = 0;
1870
1871         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1872                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1873                 cmd->t_task_cdb[0]);
1874         pr_debug("-----[ i_state: %d t_state: %d transport_error_status: %d\n",
1875                 cmd->se_tfo->get_cmd_state(cmd),
1876                 cmd->t_state,
1877                 cmd->transport_error_status);
1878         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1879                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1880                 " t_transport_active: %d t_transport_stop: %d"
1881                 " t_transport_sent: %d\n", cmd->t_task_list_num,
1882                 atomic_read(&cmd->t_task_cdbs_left),
1883                 atomic_read(&cmd->t_task_cdbs_sent),
1884                 atomic_read(&cmd->t_task_cdbs_ex_left),
1885                 atomic_read(&cmd->t_transport_active),
1886                 atomic_read(&cmd->t_transport_stop),
1887                 atomic_read(&cmd->t_transport_sent));
1888
1889         /*
1890          * For SAM Task Attribute emulation for failed struct se_cmd
1891          */
1892         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1893                 transport_complete_task_attr(cmd);
1894
1895         if (complete) {
1896                 transport_direct_request_timeout(cmd);
1897                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1898         }
1899
1900         switch (cmd->transport_error_status) {
1901         case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1902                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1903                 break;
1904         case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1905                 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1906                 break;
1907         case PYX_TRANSPORT_INVALID_CDB_FIELD:
1908                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1909                 break;
1910         case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1911                 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1912                 break;
1913         case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1914                 if (!sc)
1915                         transport_new_cmd_failure(cmd);
1916                 /*
1917                  * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1918                  * we force this session to fall back to session
1919                  * recovery.
1920                  */
1921                 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1922                 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1923
1924                 goto check_stop;
1925         case PYX_TRANSPORT_LU_COMM_FAILURE:
1926         case PYX_TRANSPORT_ILLEGAL_REQUEST:
1927                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1928                 break;
1929         case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1930                 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1931                 break;
1932         case PYX_TRANSPORT_WRITE_PROTECTED:
1933                 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1934                 break;
1935         case PYX_TRANSPORT_RESERVATION_CONFLICT:
1936                 /*
1937                  * No SENSE Data payload for this case, set SCSI Status
1938                  * and queue the response to $FABRIC_MOD.
1939                  *
1940                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1941                  */
1942                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1943                 /*
1944                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1945                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1946                  * CONFLICT STATUS.
1947                  *
1948                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1949                  */
1950                 if (cmd->se_sess &&
1951                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1952                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1953                                 cmd->orig_fe_lun, 0x2C,
1954                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1955
1956                 ret = cmd->se_tfo->queue_status(cmd);
1957                 if (ret == -EAGAIN)
1958                         goto queue_full;
1959                 goto check_stop;
1960         case PYX_TRANSPORT_USE_SENSE_REASON:
1961                 /*
1962                  * struct se_cmd->scsi_sense_reason already set
1963                  */
1964                 break;
1965         default:
1966                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1967                         cmd->t_task_cdb[0],
1968                         cmd->transport_error_status);
1969                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1970                 break;
1971         }
1972         /*
1973          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1974          * make the call to transport_send_check_condition_and_sense()
1975          * directly.  Otherwise expect the fabric to make the call to
1976          * transport_send_check_condition_and_sense() after handling
1977          * possible unsoliticied write data payloads.
1978          */
1979         if (!sc && !cmd->se_tfo->new_cmd_map)
1980                 transport_new_cmd_failure(cmd);
1981         else {
1982                 ret = transport_send_check_condition_and_sense(cmd,
1983                                 cmd->scsi_sense_reason, 0);
1984                 if (ret == -EAGAIN)
1985                         goto queue_full;
1986         }
1987
1988 check_stop:
1989         transport_lun_remove_cmd(cmd);
1990         if (!transport_cmd_check_stop_to_fabric(cmd))
1991                 ;
1992         return;
1993
1994 queue_full:
1995         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1996         transport_handle_queue_full(cmd, cmd->se_dev);
1997 }
1998
1999 static void transport_direct_request_timeout(struct se_cmd *cmd)
2000 {
2001         unsigned long flags;
2002
2003         spin_lock_irqsave(&cmd->t_state_lock, flags);
2004         if (!atomic_read(&cmd->t_transport_timeout)) {
2005                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2006                 return;
2007         }
2008         if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
2009                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2010                 return;
2011         }
2012
2013         atomic_sub(atomic_read(&cmd->t_transport_timeout),
2014                    &cmd->t_se_count);
2015         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2016 }
2017
2018 static inline u32 transport_lba_21(unsigned char *cdb)
2019 {
2020         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2021 }
2022
2023 static inline u32 transport_lba_32(unsigned char *cdb)
2024 {
2025         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2026 }
2027
2028 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2029 {
2030         unsigned int __v1, __v2;
2031
2032         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2033         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2034
2035         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2036 }
2037
2038 /*
2039  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2040  */
2041 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2042 {
2043         unsigned int __v1, __v2;
2044
2045         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2046         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2047
2048         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2049 }
2050
2051 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2052 {
2053         unsigned long flags;
2054
2055         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2056         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2057         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2058 }
2059
2060 /*
2061  * Called from interrupt context.
2062  */
2063 static void transport_task_timeout_handler(unsigned long data)
2064 {
2065         struct se_task *task = (struct se_task *)data;
2066         struct se_cmd *cmd = task->task_se_cmd;
2067         unsigned long flags;
2068
2069         pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2070
2071         spin_lock_irqsave(&cmd->t_state_lock, flags);
2072
2073         /*
2074          * Determine if transport_complete_task() has already been called.
2075          */
2076         if (!(task->task_flags & TF_ACTIVE)) {
2077                 pr_debug("transport task: %p cmd: %p timeout !TF_ACTIVE\n",
2078                          task, cmd);
2079                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2080                 return;
2081         }
2082
2083         atomic_inc(&cmd->t_se_count);
2084         atomic_inc(&cmd->t_transport_timeout);
2085         cmd->t_tasks_failed = 1;
2086
2087         task->task_flags |= TF_TIMEOUT;
2088         task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2089         task->task_scsi_status = 1;
2090
2091         if (task->task_flags & TF_REQUEST_STOP) {
2092                 pr_debug("transport task: %p cmd: %p timeout TF_REQUEST_STOP"
2093                                 " == 1\n", task, cmd);
2094                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2095                 complete(&task->task_stop_comp);
2096                 return;
2097         }
2098
2099         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2100                 pr_debug("transport task: %p cmd: %p timeout non zero"
2101                                 " t_task_cdbs_left\n", task, cmd);
2102                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2103                 return;
2104         }
2105         pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2106                         task, cmd);
2107
2108         INIT_WORK(&cmd->work, target_complete_failure_work);
2109         cmd->t_state = TRANSPORT_COMPLETE;
2110         atomic_set(&cmd->t_transport_active, 1);
2111         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2112
2113         queue_work(target_completion_wq, &cmd->work);
2114 }
2115
2116 static void transport_start_task_timer(struct se_task *task)
2117 {
2118         struct se_device *dev = task->task_se_cmd->se_dev;
2119         int timeout;
2120
2121         /*
2122          * If the task_timeout is disabled, exit now.
2123          */
2124         timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2125         if (!timeout)
2126                 return;
2127
2128         task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2129         task->task_timer.data = (unsigned long) task;
2130         task->task_timer.function = transport_task_timeout_handler;
2131         add_timer(&task->task_timer);
2132 }
2133
2134 static inline int transport_tcq_window_closed(struct se_device *dev)
2135 {
2136         if (dev->dev_tcq_window_closed++ <
2137                         PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2138                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2139         } else
2140                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2141
2142         wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2143         return 0;
2144 }
2145
2146 /*
2147  * Called from Fabric Module context from transport_execute_tasks()
2148  *
2149  * The return of this function determins if the tasks from struct se_cmd
2150  * get added to the execution queue in transport_execute_tasks(),
2151  * or are added to the delayed or ordered lists here.
2152  */
2153 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2154 {
2155         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2156                 return 1;
2157         /*
2158          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2159          * to allow the passed struct se_cmd list of tasks to the front of the list.
2160          */
2161          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2162                 atomic_inc(&cmd->se_dev->dev_hoq_count);
2163                 smp_mb__after_atomic_inc();
2164                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2165                         " 0x%02x, se_ordered_id: %u\n",
2166                         cmd->t_task_cdb[0],
2167                         cmd->se_ordered_id);
2168                 return 1;
2169         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2170                 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2171                 list_add_tail(&cmd->se_ordered_node,
2172                                 &cmd->se_dev->ordered_cmd_list);
2173                 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2174
2175                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2176                 smp_mb__after_atomic_inc();
2177
2178                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2179                                 " list, se_ordered_id: %u\n",
2180                                 cmd->t_task_cdb[0],
2181                                 cmd->se_ordered_id);
2182                 /*
2183                  * Add ORDERED command to tail of execution queue if
2184                  * no other older commands exist that need to be
2185                  * completed first.
2186                  */
2187                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2188                         return 1;
2189         } else {
2190                 /*
2191                  * For SIMPLE and UNTAGGED Task Attribute commands
2192                  */
2193                 atomic_inc(&cmd->se_dev->simple_cmds);
2194                 smp_mb__after_atomic_inc();
2195         }
2196         /*
2197          * Otherwise if one or more outstanding ORDERED task attribute exist,
2198          * add the dormant task(s) built for the passed struct se_cmd to the
2199          * execution queue and become in Active state for this struct se_device.
2200          */
2201         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2202                 /*
2203                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2204                  * will be drained upon completion of HEAD_OF_QUEUE task.
2205                  */
2206                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2207                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2208                 list_add_tail(&cmd->se_delayed_node,
2209                                 &cmd->se_dev->delayed_cmd_list);
2210                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2211
2212                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2213                         " delayed CMD list, se_ordered_id: %u\n",
2214                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2215                         cmd->se_ordered_id);
2216                 /*
2217                  * Return zero to let transport_execute_tasks() know
2218                  * not to add the delayed tasks to the execution list.
2219                  */
2220                 return 0;
2221         }
2222         /*
2223          * Otherwise, no ORDERED task attributes exist..
2224          */
2225         return 1;
2226 }
2227
2228 /*
2229  * Called from fabric module context in transport_generic_new_cmd() and
2230  * transport_generic_process_write()
2231  */
2232 static int transport_execute_tasks(struct se_cmd *cmd)
2233 {
2234         int add_tasks;
2235
2236         if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2237                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2238                 transport_generic_request_failure(cmd, 0, 1);
2239                 return 0;
2240         }
2241
2242         /*
2243          * Call transport_cmd_check_stop() to see if a fabric exception
2244          * has occurred that prevents execution.
2245          */
2246         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2247                 /*
2248                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2249                  * attribute for the tasks of the received struct se_cmd CDB
2250                  */
2251                 add_tasks = transport_execute_task_attr(cmd);
2252                 if (!add_tasks)
2253                         goto execute_tasks;
2254                 /*
2255                  * This calls transport_add_tasks_from_cmd() to handle
2256                  * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2257                  * (if enabled) in __transport_add_task_to_execute_queue() and
2258                  * transport_add_task_check_sam_attr().
2259                  */
2260                 transport_add_tasks_from_cmd(cmd);
2261         }
2262         /*
2263          * Kick the execution queue for the cmd associated struct se_device
2264          * storage object.
2265          */
2266 execute_tasks:
2267         __transport_execute_tasks(cmd->se_dev);
2268         return 0;
2269 }
2270
2271 /*
2272  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2273  * from struct se_device->execute_task_list and
2274  *
2275  * Called from transport_processing_thread()
2276  */
2277 static int __transport_execute_tasks(struct se_device *dev)
2278 {
2279         int error;
2280         struct se_cmd *cmd = NULL;
2281         struct se_task *task = NULL;
2282         unsigned long flags;
2283
2284         /*
2285          * Check if there is enough room in the device and HBA queue to send
2286          * struct se_tasks to the selected transport.
2287          */
2288 check_depth:
2289         if (!atomic_read(&dev->depth_left))
2290                 return transport_tcq_window_closed(dev);
2291
2292         dev->dev_tcq_window_closed = 0;
2293
2294         spin_lock_irq(&dev->execute_task_lock);
2295         if (list_empty(&dev->execute_task_list)) {
2296                 spin_unlock_irq(&dev->execute_task_lock);
2297                 return 0;
2298         }
2299         task = list_first_entry(&dev->execute_task_list,
2300                                 struct se_task, t_execute_list);
2301         __transport_remove_task_from_execute_queue(task, dev);
2302         spin_unlock_irq(&dev->execute_task_lock);
2303
2304         atomic_dec(&dev->depth_left);
2305
2306         cmd = task->task_se_cmd;
2307
2308         spin_lock_irqsave(&cmd->t_state_lock, flags);
2309         task->task_flags |= (TF_ACTIVE | TF_SENT);
2310         atomic_inc(&cmd->t_task_cdbs_sent);
2311
2312         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2313             cmd->t_task_list_num)
2314                 atomic_set(&cmd->transport_sent, 1);
2315
2316         transport_start_task_timer(task);
2317         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2318         /*
2319          * The struct se_cmd->transport_emulate_cdb() function pointer is used
2320          * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2321          * struct se_subsystem_api->do_task() caller below.
2322          */
2323         if (cmd->transport_emulate_cdb) {
2324                 error = cmd->transport_emulate_cdb(cmd);
2325                 if (error != 0) {
2326                         cmd->transport_error_status = error;
2327                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2328                         task->task_flags &= ~TF_ACTIVE;
2329                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2330                         del_timer_sync(&task->task_timer);
2331                         atomic_set(&cmd->transport_sent, 0);
2332                         transport_stop_tasks_for_cmd(cmd);
2333                         atomic_inc(&dev->depth_left);
2334                         transport_generic_request_failure(cmd, 0, 1);
2335                         goto check_depth;
2336                 }
2337                 /*
2338                  * Handle the successful completion for transport_emulate_cdb()
2339                  * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2340                  * Otherwise the caller is expected to complete the task with
2341                  * proper status.
2342                  */
2343                 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2344                         cmd->scsi_status = SAM_STAT_GOOD;
2345                         task->task_scsi_status = GOOD;
2346                         transport_complete_task(task, 1);
2347                 }
2348         } else {
2349                 /*
2350                  * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2351                  * RAMDISK we use the internal transport_emulate_control_cdb() logic
2352                  * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2353                  * LUN emulation code.
2354                  *
2355                  * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2356                  * call ->do_task() directly and let the underlying TCM subsystem plugin
2357                  * code handle the CDB emulation.
2358                  */
2359                 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2360                     (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2361                         error = transport_emulate_control_cdb(task);
2362                 else
2363                         error = dev->transport->do_task(task);
2364
2365                 if (error != 0) {
2366                         cmd->transport_error_status = error;
2367                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2368                         task->task_flags &= ~TF_ACTIVE;
2369                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2370                         del_timer_sync(&task->task_timer);
2371                         atomic_set(&cmd->transport_sent, 0);
2372                         transport_stop_tasks_for_cmd(cmd);
2373                         atomic_inc(&dev->depth_left);
2374                         transport_generic_request_failure(cmd, 0, 1);
2375                 }
2376         }
2377
2378         goto check_depth;
2379
2380         return 0;
2381 }
2382
2383 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2384 {
2385         unsigned long flags;
2386         /*
2387          * Any unsolicited data will get dumped for failed command inside of
2388          * the fabric plugin
2389          */
2390         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2391         se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2392         se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2393         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2394 }
2395
2396 static inline u32 transport_get_sectors_6(
2397         unsigned char *cdb,
2398         struct se_cmd *cmd,
2399         int *ret)
2400 {
2401         struct se_device *dev = cmd->se_dev;
2402
2403         /*
2404          * Assume TYPE_DISK for non struct se_device objects.
2405          * Use 8-bit sector value.
2406          */
2407         if (!dev)
2408                 goto type_disk;
2409
2410         /*
2411          * Use 24-bit allocation length for TYPE_TAPE.
2412          */
2413         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2414                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2415
2416         /*
2417          * Everything else assume TYPE_DISK Sector CDB location.
2418          * Use 8-bit sector value.
2419          */
2420 type_disk:
2421         return (u32)cdb[4];
2422 }
2423
2424 static inline u32 transport_get_sectors_10(
2425         unsigned char *cdb,
2426         struct se_cmd *cmd,
2427         int *ret)
2428 {
2429         struct se_device *dev = cmd->se_dev;
2430
2431         /*
2432          * Assume TYPE_DISK for non struct se_device objects.
2433          * Use 16-bit sector value.
2434          */
2435         if (!dev)
2436                 goto type_disk;
2437
2438         /*
2439          * XXX_10 is not defined in SSC, throw an exception
2440          */
2441         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2442                 *ret = -EINVAL;
2443                 return 0;
2444         }
2445
2446         /*
2447          * Everything else assume TYPE_DISK Sector CDB location.
2448          * Use 16-bit sector value.
2449          */
2450 type_disk:
2451         return (u32)(cdb[7] << 8) + cdb[8];
2452 }
2453
2454 static inline u32 transport_get_sectors_12(
2455         unsigned char *cdb,
2456         struct se_cmd *cmd,
2457         int *ret)
2458 {
2459         struct se_device *dev = cmd->se_dev;
2460
2461         /*
2462          * Assume TYPE_DISK for non struct se_device objects.
2463          * Use 32-bit sector value.
2464          */
2465         if (!dev)
2466                 goto type_disk;
2467
2468         /*
2469          * XXX_12 is not defined in SSC, throw an exception
2470          */
2471         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2472                 *ret = -EINVAL;
2473                 return 0;
2474         }
2475
2476         /*
2477          * Everything else assume TYPE_DISK Sector CDB location.
2478          * Use 32-bit sector value.
2479          */
2480 type_disk:
2481         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2482 }
2483
2484 static inline u32 transport_get_sectors_16(
2485         unsigned char *cdb,
2486         struct se_cmd *cmd,
2487         int *ret)
2488 {
2489         struct se_device *dev = cmd->se_dev;
2490
2491         /*
2492          * Assume TYPE_DISK for non struct se_device objects.
2493          * Use 32-bit sector value.
2494          */
2495         if (!dev)
2496                 goto type_disk;
2497
2498         /*
2499          * Use 24-bit allocation length for TYPE_TAPE.
2500          */
2501         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2502                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2503
2504 type_disk:
2505         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2506                     (cdb[12] << 8) + cdb[13];
2507 }
2508
2509 /*
2510  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2511  */
2512 static inline u32 transport_get_sectors_32(
2513         unsigned char *cdb,
2514         struct se_cmd *cmd,
2515         int *ret)
2516 {
2517         /*
2518          * Assume TYPE_DISK for non struct se_device objects.
2519          * Use 32-bit sector value.
2520          */
2521         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2522                     (cdb[30] << 8) + cdb[31];
2523
2524 }
2525
2526 static inline u32 transport_get_size(
2527         u32 sectors,
2528         unsigned char *cdb,
2529         struct se_cmd *cmd)
2530 {
2531         struct se_device *dev = cmd->se_dev;
2532
2533         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2534                 if (cdb[1] & 1) { /* sectors */
2535                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2536                 } else /* bytes */
2537                         return sectors;
2538         }
2539 #if 0
2540         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2541                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2542                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2543                         dev->transport->name);
2544 #endif
2545         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2546 }
2547
2548 static void transport_xor_callback(struct se_cmd *cmd)
2549 {
2550         unsigned char *buf, *addr;
2551         struct scatterlist *sg;
2552         unsigned int offset;
2553         int i;
2554         int count;
2555         /*
2556          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2557          *
2558          * 1) read the specified logical block(s);
2559          * 2) transfer logical blocks from the data-out buffer;
2560          * 3) XOR the logical blocks transferred from the data-out buffer with
2561          *    the logical blocks read, storing the resulting XOR data in a buffer;
2562          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2563          *    blocks transferred from the data-out buffer; and
2564          * 5) transfer the resulting XOR data to the data-in buffer.
2565          */
2566         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2567         if (!buf) {
2568                 pr_err("Unable to allocate xor_callback buf\n");
2569                 return;
2570         }
2571         /*
2572          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2573          * into the locally allocated *buf
2574          */
2575         sg_copy_to_buffer(cmd->t_data_sg,
2576                           cmd->t_data_nents,
2577                           buf,
2578                           cmd->data_length);
2579
2580         /*
2581          * Now perform the XOR against the BIDI read memory located at
2582          * cmd->t_mem_bidi_list
2583          */
2584
2585         offset = 0;
2586         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2587                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2588                 if (!addr)
2589                         goto out;
2590
2591                 for (i = 0; i < sg->length; i++)
2592                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2593
2594                 offset += sg->length;
2595                 kunmap_atomic(addr, KM_USER0);
2596         }
2597
2598 out:
2599         kfree(buf);
2600 }
2601
2602 /*
2603  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2604  */
2605 static int transport_get_sense_data(struct se_cmd *cmd)
2606 {
2607         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2608         struct se_device *dev = cmd->se_dev;
2609         struct se_task *task = NULL, *task_tmp;
2610         unsigned long flags;
2611         u32 offset = 0;
2612
2613         WARN_ON(!cmd->se_lun);
2614
2615         if (!dev)
2616                 return 0;
2617
2618         spin_lock_irqsave(&cmd->t_state_lock, flags);
2619         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2620                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2621                 return 0;
2622         }
2623
2624         list_for_each_entry_safe(task, task_tmp,
2625                                 &cmd->t_task_list, t_list) {
2626                 if (!task->task_sense)
2627                         continue;
2628
2629                 if (!dev->transport->get_sense_buffer) {
2630                         pr_err("dev->transport->get_sense_buffer"
2631                                         " is NULL\n");
2632                         continue;
2633                 }
2634
2635                 sense_buffer = dev->transport->get_sense_buffer(task);
2636                 if (!sense_buffer) {
2637                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2638                                 " sense buffer for task with sense\n",
2639                                 cmd->se_tfo->get_task_tag(cmd), task);
2640                         continue;
2641                 }
2642                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2643
2644                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2645                                 TRANSPORT_SENSE_BUFFER);
2646
2647                 memcpy(&buffer[offset], sense_buffer,
2648                                 TRANSPORT_SENSE_BUFFER);
2649                 cmd->scsi_status = task->task_scsi_status;
2650                 /* Automatically padded */
2651                 cmd->scsi_sense_length =
2652                                 (TRANSPORT_SENSE_BUFFER + offset);
2653
2654                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2655                                 " and sense\n",
2656                         dev->se_hba->hba_id, dev->transport->name,
2657                                 cmd->scsi_status);
2658                 return 0;
2659         }
2660         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2661
2662         return -1;
2663 }
2664
2665 static int
2666 transport_handle_reservation_conflict(struct se_cmd *cmd)
2667 {
2668         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2669         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2670         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2671         /*
2672          * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2673          * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2674          * CONFLICT STATUS.
2675          *
2676          * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2677          */
2678         if (cmd->se_sess &&
2679             cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2680                 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2681                         cmd->orig_fe_lun, 0x2C,
2682                         ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2683         return -EINVAL;
2684 }
2685
2686 static inline long long transport_dev_end_lba(struct se_device *dev)
2687 {
2688         return dev->transport->get_blocks(dev) + 1;
2689 }
2690
2691 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2692 {
2693         struct se_device *dev = cmd->se_dev;
2694         u32 sectors;
2695
2696         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2697                 return 0;
2698
2699         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2700
2701         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2702                 pr_err("LBA: %llu Sectors: %u exceeds"
2703                         " transport_dev_end_lba(): %llu\n",
2704                         cmd->t_task_lba, sectors,
2705                         transport_dev_end_lba(dev));
2706                 return -EINVAL;
2707         }
2708
2709         return 0;
2710 }
2711
2712 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2713 {
2714         /*
2715          * Determine if the received WRITE_SAME is used to for direct
2716          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2717          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2718          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2719          */
2720         int passthrough = (dev->transport->transport_type ==
2721                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2722
2723         if (!passthrough) {
2724                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2725                         pr_err("WRITE_SAME PBDATA and LBDATA"
2726                                 " bits not supported for Block Discard"
2727                                 " Emulation\n");
2728                         return -ENOSYS;
2729                 }
2730                 /*
2731                  * Currently for the emulated case we only accept
2732                  * tpws with the UNMAP=1 bit set.
2733                  */
2734                 if (!(flags[0] & 0x08)) {
2735                         pr_err("WRITE_SAME w/o UNMAP bit not"
2736                                 " supported for Block Discard Emulation\n");
2737                         return -ENOSYS;
2738                 }
2739         }
2740
2741         return 0;
2742 }
2743
2744 /*      transport_generic_cmd_sequencer():
2745  *
2746  *      Generic Command Sequencer that should work for most DAS transport
2747  *      drivers.
2748  *
2749  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2750  *      RX Thread.
2751  *
2752  *      FIXME: Need to support other SCSI OPCODES where as well.
2753  */
2754 static int transport_generic_cmd_sequencer(
2755         struct se_cmd *cmd,
2756         unsigned char *cdb)
2757 {
2758         struct se_device *dev = cmd->se_dev;
2759         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2760         int ret = 0, sector_ret = 0, passthrough;
2761         u32 sectors = 0, size = 0, pr_reg_type = 0;
2762         u16 service_action;
2763         u8 alua_ascq = 0;
2764         /*
2765          * Check for an existing UNIT ATTENTION condition
2766          */
2767         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2768                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2769                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2770                 return -EINVAL;
2771         }
2772         /*
2773          * Check status of Asymmetric Logical Unit Assignment port
2774          */
2775         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2776         if (ret != 0) {
2777                 /*
2778                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2779                  * The ALUA additional sense code qualifier (ASCQ) is determined
2780                  * by the ALUA primary or secondary access state..
2781                  */
2782                 if (ret > 0) {
2783 #if 0
2784                         pr_debug("[%s]: ALUA TG Port not available,"
2785                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2786                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2787 #endif
2788                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2789                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2790                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2791                         return -EINVAL;
2792                 }
2793                 goto out_invalid_cdb_field;
2794         }
2795         /*
2796          * Check status for SPC-3 Persistent Reservations
2797          */
2798         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2799                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2800                                         cmd, cdb, pr_reg_type) != 0)
2801                         return transport_handle_reservation_conflict(cmd);
2802                 /*
2803                  * This means the CDB is allowed for the SCSI Initiator port
2804                  * when said port is *NOT* holding the legacy SPC-2 or
2805                  * SPC-3 Persistent Reservation.
2806                  */
2807         }
2808
2809         switch (cdb[0]) {
2810         case READ_6:
2811                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2812                 if (sector_ret)
2813                         goto out_unsupported_cdb;
2814                 size = transport_get_size(sectors, cdb, cmd);
2815                 cmd->t_task_lba = transport_lba_21(cdb);
2816                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2817                 break;
2818         case READ_10:
2819                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2820                 if (sector_ret)
2821                         goto out_unsupported_cdb;
2822                 size = transport_get_size(sectors, cdb, cmd);
2823                 cmd->t_task_lba = transport_lba_32(cdb);
2824                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2825                 break;
2826         case READ_12:
2827                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2828                 if (sector_ret)
2829                         goto out_unsupported_cdb;
2830                 size = transport_get_size(sectors, cdb, cmd);
2831                 cmd->t_task_lba = transport_lba_32(cdb);
2832                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2833                 break;
2834         case READ_16:
2835                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2836                 if (sector_ret)
2837                         goto out_unsupported_cdb;
2838                 size = transport_get_size(sectors, cdb, cmd);
2839                 cmd->t_task_lba = transport_lba_64(cdb);
2840                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2841                 break;
2842         case WRITE_6:
2843                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2844                 if (sector_ret)
2845                         goto out_unsupported_cdb;
2846                 size = transport_get_size(sectors, cdb, cmd);
2847                 cmd->t_task_lba = transport_lba_21(cdb);
2848                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2849                 break;
2850         case WRITE_10:
2851                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2852                 if (sector_ret)
2853                         goto out_unsupported_cdb;
2854                 size = transport_get_size(sectors, cdb, cmd);
2855                 cmd->t_task_lba = transport_lba_32(cdb);
2856                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2857                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2858                 break;
2859         case WRITE_12:
2860                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2861                 if (sector_ret)
2862                         goto out_unsupported_cdb;
2863                 size = transport_get_size(sectors, cdb, cmd);
2864                 cmd->t_task_lba = transport_lba_32(cdb);
2865                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2866                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2867                 break;
2868         case WRITE_16:
2869                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2870                 if (sector_ret)
2871                         goto out_unsupported_cdb;
2872                 size = transport_get_size(sectors, cdb, cmd);
2873                 cmd->t_task_lba = transport_lba_64(cdb);
2874                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2875                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2876                 break;
2877         case XDWRITEREAD_10:
2878                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2879                     !(cmd->t_tasks_bidi))
2880                         goto out_invalid_cdb_field;
2881                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2882                 if (sector_ret)
2883                         goto out_unsupported_cdb;
2884                 size = transport_get_size(sectors, cdb, cmd);
2885                 cmd->t_task_lba = transport_lba_32(cdb);
2886                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2887                 passthrough = (dev->transport->transport_type ==
2888                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2889                 /*
2890                  * Skip the remaining assignments for TCM/PSCSI passthrough
2891                  */
2892                 if (passthrough)
2893                         break;
2894                 /*
2895                  * Setup BIDI XOR callback to be run after I/O completion.
2896                  */
2897                 cmd->transport_complete_callback = &transport_xor_callback;
2898                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2899                 break;
2900         case VARIABLE_LENGTH_CMD:
2901                 service_action = get_unaligned_be16(&cdb[8]);
2902                 /*
2903                  * Determine if this is TCM/PSCSI device and we should disable
2904                  * internal emulation for this CDB.
2905                  */
2906                 passthrough = (dev->transport->transport_type ==
2907                                         TRANSPORT_PLUGIN_PHBA_PDEV);
2908
2909                 switch (service_action) {
2910                 case XDWRITEREAD_32:
2911                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2912                         if (sector_ret)
2913                                 goto out_unsupported_cdb;
2914                         size = transport_get_size(sectors, cdb, cmd);
2915                         /*
2916                          * Use WRITE_32 and READ_32 opcodes for the emulated
2917                          * XDWRITE_READ_32 logic.
2918                          */
2919                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2920                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2921
2922                         /*
2923                          * Skip the remaining assignments for TCM/PSCSI passthrough
2924                          */
2925                         if (passthrough)
2926                                 break;
2927
2928                         /*
2929                          * Setup BIDI XOR callback to be run during after I/O
2930                          * completion.
2931                          */
2932                         cmd->transport_complete_callback = &transport_xor_callback;
2933                         cmd->t_tasks_fua = (cdb[10] & 0x8);
2934                         break;
2935                 case WRITE_SAME_32:
2936                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2937                         if (sector_ret)
2938                                 goto out_unsupported_cdb;
2939
2940                         if (sectors)
2941                                 size = transport_get_size(1, cdb, cmd);
2942                         else {
2943                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2944                                        " supported\n");
2945                                 goto out_invalid_cdb_field;
2946                         }
2947
2948                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2949                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2950
2951                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2952                                 goto out_invalid_cdb_field;
2953
2954                         break;
2955                 default:
2956                         pr_err("VARIABLE_LENGTH_CMD service action"
2957                                 " 0x%04x not supported\n", service_action);
2958                         goto out_unsupported_cdb;
2959                 }
2960                 break;
2961         case MAINTENANCE_IN:
2962                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2963                         /* MAINTENANCE_IN from SCC-2 */
2964                         /*
2965                          * Check for emulated MI_REPORT_TARGET_PGS.
2966                          */
2967                         if (cdb[1] == MI_REPORT_TARGET_PGS) {
2968                                 cmd->transport_emulate_cdb =
2969                                 (su_dev->t10_alua.alua_type ==
2970                                  SPC3_ALUA_EMULATED) ?
2971                                 core_emulate_report_target_port_groups :
2972                                 NULL;
2973                         }
2974                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2975                                (cdb[8] << 8) | cdb[9];
2976                 } else {
2977                         /* GPCMD_SEND_KEY from multi media commands */
2978                         size = (cdb[8] << 8) + cdb[9];
2979                 }
2980                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2981                 break;
2982         case MODE_SELECT:
2983                 size = cdb[4];
2984                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2985                 break;
2986         case MODE_SELECT_10:
2987                 size = (cdb[7] << 8) + cdb[8];
2988                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2989                 break;
2990         case MODE_SENSE:
2991                 size = cdb[4];
2992                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2993                 break;
2994         case MODE_SENSE_10:
2995         case GPCMD_READ_BUFFER_CAPACITY:
2996         case GPCMD_SEND_OPC:
2997         case LOG_SELECT:
2998         case LOG_SENSE:
2999                 size = (cdb[7] << 8) + cdb[8];
3000                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3001                 break;
3002         case READ_BLOCK_LIMITS:
3003                 size = READ_BLOCK_LEN;
3004                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3005                 break;
3006         case GPCMD_GET_CONFIGURATION:
3007         case GPCMD_READ_FORMAT_CAPACITIES:
3008         case GPCMD_READ_DISC_INFO:
3009         case GPCMD_READ_TRACK_RZONE_INFO:
3010                 size = (cdb[7] << 8) + cdb[8];
3011                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3012                 break;
3013         case PERSISTENT_RESERVE_IN:
3014         case PERSISTENT_RESERVE_OUT:
3015                 cmd->transport_emulate_cdb =
3016                         (su_dev->t10_pr.res_type ==
3017                          SPC3_PERSISTENT_RESERVATIONS) ?
3018                         core_scsi3_emulate_pr : NULL;
3019                 size = (cdb[7] << 8) + cdb[8];
3020                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3021                 break;
3022         case GPCMD_MECHANISM_STATUS:
3023         case GPCMD_READ_DVD_STRUCTURE:
3024                 size = (cdb[8] << 8) + cdb[9];
3025                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3026                 break;
3027         case READ_POSITION:
3028                 size = READ_POSITION_LEN;
3029                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3030                 break;
3031         case MAINTENANCE_OUT:
3032                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3033                         /* MAINTENANCE_OUT from SCC-2
3034                          *
3035                          * Check for emulated MO_SET_TARGET_PGS.
3036                          */
3037                         if (cdb[1] == MO_SET_TARGET_PGS) {
3038                                 cmd->transport_emulate_cdb =
3039                                 (su_dev->t10_alua.alua_type ==
3040                                         SPC3_ALUA_EMULATED) ?
3041                                 core_emulate_set_target_port_groups :
3042                                 NULL;
3043                         }
3044
3045                         size = (cdb[6] << 24) | (cdb[7] << 16) |
3046                                (cdb[8] << 8) | cdb[9];
3047                 } else  {
3048                         /* GPCMD_REPORT_KEY from multi media commands */
3049                         size = (cdb[8] << 8) + cdb[9];
3050                 }
3051                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3052                 break;
3053         case INQUIRY:
3054                 size = (cdb[3] << 8) + cdb[4];
3055                 /*
3056                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3057                  * See spc4r17 section 5.3
3058                  */
3059                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3060                         cmd->sam_task_attr = MSG_HEAD_TAG;
3061                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3062                 break;
3063         case READ_BUFFER:
3064                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3065                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3066                 break;
3067         case READ_CAPACITY:
3068                 size = READ_CAP_LEN;
3069                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3070                 break;
3071         case READ_MEDIA_SERIAL_NUMBER:
3072         case SECURITY_PROTOCOL_IN:
3073         case SECURITY_PROTOCOL_OUT:
3074                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3075                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3076                 break;
3077         case SERVICE_ACTION_IN:
3078         case ACCESS_CONTROL_IN:
3079         case ACCESS_CONTROL_OUT:
3080         case EXTENDED_COPY:
3081         case READ_ATTRIBUTE:
3082         case RECEIVE_COPY_RESULTS:
3083         case WRITE_ATTRIBUTE:
3084                 size = (cdb[10] << 24) | (cdb[11] << 16) |
3085                        (cdb[12] << 8) | cdb[13];
3086                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3087                 break;
3088         case RECEIVE_DIAGNOSTIC:
3089         case SEND_DIAGNOSTIC:
3090                 size = (cdb[3] << 8) | cdb[4];
3091                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3092                 break;
3093 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3094 #if 0
3095         case GPCMD_READ_CD:
3096                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3097                 size = (2336 * sectors);
3098                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3099                 break;
3100 #endif
3101         case READ_TOC:
3102                 size = cdb[8];
3103                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3104                 break;
3105         case REQUEST_SENSE:
3106                 size = cdb[4];
3107                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3108                 break;
3109         case READ_ELEMENT_STATUS:
3110                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3111                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3112                 break;
3113         case WRITE_BUFFER:
3114                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3115                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3116                 break;
3117         case RESERVE:
3118         case RESERVE_10:
3119                 /*
3120                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3121                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3122                  */
3123                 if (cdb[0] == RESERVE_10)
3124                         size = (cdb[7] << 8) | cdb[8];
3125                 else
3126                         size = cmd->data_length;
3127
3128                 /*
3129                  * Setup the legacy emulated handler for SPC-2 and
3130                  * >= SPC-3 compatible reservation handling (CRH=1)
3131                  * Otherwise, we assume the underlying SCSI logic is
3132                  * is running in SPC_PASSTHROUGH, and wants reservations
3133                  * emulation disabled.
3134                  */
3135                 cmd->transport_emulate_cdb =
3136                                 (su_dev->t10_pr.res_type !=
3137                                  SPC_PASSTHROUGH) ?
3138                                 core_scsi2_emulate_crh : NULL;
3139                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3140                 break;
3141         case RELEASE:
3142         case RELEASE_10:
3143                 /*
3144                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3145                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3146                 */
3147                 if (cdb[0] == RELEASE_10)
3148                         size = (cdb[7] << 8) | cdb[8];
3149                 else
3150                         size = cmd->data_length;
3151
3152                 cmd->transport_emulate_cdb =
3153                                 (su_dev->t10_pr.res_type !=
3154                                  SPC_PASSTHROUGH) ?
3155                                 core_scsi2_emulate_crh : NULL;
3156                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3157                 break;
3158         case SYNCHRONIZE_CACHE:
3159         case 0x91: /* SYNCHRONIZE_CACHE_16: */
3160                 /*
3161                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3162                  */
3163                 if (cdb[0] == SYNCHRONIZE_CACHE) {
3164                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3165                         cmd->t_task_lba = transport_lba_32(cdb);
3166                 } else {
3167                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3168                         cmd->t_task_lba = transport_lba_64(cdb);
3169                 }
3170                 if (sector_ret)
3171                         goto out_unsupported_cdb;
3172
3173                 size = transport_get_size(sectors, cdb, cmd);
3174                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3175
3176                 /*
3177                  * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3178                  */
3179                 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3180                         break;
3181                 /*
3182                  * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3183                  * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3184                  */
3185                 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3186                 /*
3187                  * Check to ensure that LBA + Range does not exceed past end of
3188                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3189                  */
3190                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3191                         if (transport_cmd_get_valid_sectors(cmd) < 0)
3192                                 goto out_invalid_cdb_field;
3193                 }
3194                 break;
3195         case UNMAP:
3196                 size = get_unaligned_be16(&cdb[7]);
3197                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3198                 break;
3199         case WRITE_SAME_16:
3200                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3201                 if (sector_ret)
3202                         goto out_unsupported_cdb;
3203
3204                 if (sectors)
3205                         size = transport_get_size(1, cdb, cmd);
3206                 else {
3207                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3208                         goto out_invalid_cdb_field;
3209                 }
3210
3211                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3212                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3213
3214                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3215                         goto out_invalid_cdb_field;
3216                 break;
3217         case WRITE_SAME:
3218                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3219                 if (sector_ret)
3220                         goto out_unsupported_cdb;
3221
3222                 if (sectors)
3223                         size = transport_get_size(1, cdb, cmd);
3224                 else {
3225                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3226                         goto out_invalid_cdb_field;
3227                 }
3228
3229                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3230                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3231                 /*
3232                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3233                  * of byte 1 bit 3 UNMAP instead of original reserved field
3234                  */
3235                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3236                         goto out_invalid_cdb_field;
3237                 break;
3238         case ALLOW_MEDIUM_REMOVAL:
3239         case GPCMD_CLOSE_TRACK:
3240         case ERASE:
3241         case INITIALIZE_ELEMENT_STATUS:
3242         case GPCMD_LOAD_UNLOAD:
3243         case REZERO_UNIT:
3244         case SEEK_10:
3245         case GPCMD_SET_SPEED:
3246         case SPACE:
3247         case START_STOP:
3248         case TEST_UNIT_READY:
3249         case VERIFY:
3250         case WRITE_FILEMARKS:
3251         case MOVE_MEDIUM:
3252                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3253                 break;
3254         case REPORT_LUNS:
3255                 cmd->transport_emulate_cdb =
3256                                 transport_core_report_lun_response;
3257                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3258                 /*
3259                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3260                  * See spc4r17 section 5.3
3261                  */
3262                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3263                         cmd->sam_task_attr = MSG_HEAD_TAG;
3264                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3265                 break;
3266         default:
3267                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3268                         " 0x%02x, sending CHECK_CONDITION.\n",
3269                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3270                 goto out_unsupported_cdb;
3271         }
3272
3273         if (size != cmd->data_length) {
3274                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3275                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3276                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3277                                 cmd->data_length, size, cdb[0]);
3278
3279                 cmd->cmd_spdtl = size;
3280
3281                 if (cmd->data_direction == DMA_TO_DEVICE) {
3282                         pr_err("Rejecting underflow/overflow"
3283                                         " WRITE data\n");
3284                         goto out_invalid_cdb_field;
3285                 }
3286                 /*
3287                  * Reject READ_* or WRITE_* with overflow/underflow for
3288                  * type SCF_SCSI_DATA_SG_IO_CDB.
3289                  */
3290                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3291                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3292                                 " CDB on non 512-byte sector setup subsystem"
3293                                 " plugin: %s\n", dev->transport->name);
3294                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3295                         goto out_invalid_cdb_field;
3296                 }
3297
3298                 if (size > cmd->data_length) {
3299                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3300                         cmd->residual_count = (size - cmd->data_length);
3301                 } else {
3302                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3303                         cmd->residual_count = (cmd->data_length - size);
3304                 }
3305                 cmd->data_length = size;
3306         }
3307
3308         /* Let's limit control cdbs to a page, for simplicity's sake. */
3309         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3310             size > PAGE_SIZE)
3311                 goto out_invalid_cdb_field;
3312
3313         transport_set_supported_SAM_opcode(cmd);
3314         return ret;
3315
3316 out_unsupported_cdb:
3317         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3318         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3319         return -EINVAL;
3320 out_invalid_cdb_field:
3321         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3322         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3323         return -EINVAL;
3324 }
3325
3326 /*
3327  * Called from I/O completion to determine which dormant/delayed
3328  * and ordered cmds need to have their tasks added to the execution queue.
3329  */
3330 static void transport_complete_task_attr(struct se_cmd *cmd)
3331 {
3332         struct se_device *dev = cmd->se_dev;
3333         struct se_cmd *cmd_p, *cmd_tmp;
3334         int new_active_tasks = 0;
3335
3336         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3337                 atomic_dec(&dev->simple_cmds);
3338                 smp_mb__after_atomic_dec();
3339                 dev->dev_cur_ordered_id++;
3340                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3341                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3342                         cmd->se_ordered_id);
3343         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3344                 atomic_dec(&dev->dev_hoq_count);
3345                 smp_mb__after_atomic_dec();
3346                 dev->dev_cur_ordered_id++;
3347                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3348                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3349                         cmd->se_ordered_id);
3350         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3351                 spin_lock(&dev->ordered_cmd_lock);
3352                 list_del(&cmd->se_ordered_node);
3353                 atomic_dec(&dev->dev_ordered_sync);
3354                 smp_mb__after_atomic_dec();
3355                 spin_unlock(&dev->ordered_cmd_lock);
3356
3357                 dev->dev_cur_ordered_id++;
3358                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3359                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3360         }
3361         /*
3362          * Process all commands up to the last received
3363          * ORDERED task attribute which requires another blocking
3364          * boundary
3365          */
3366         spin_lock(&dev->delayed_cmd_lock);
3367         list_for_each_entry_safe(cmd_p, cmd_tmp,
3368                         &dev->delayed_cmd_list, se_delayed_node) {
3369
3370                 list_del(&cmd_p->se_delayed_node);
3371                 spin_unlock(&dev->delayed_cmd_lock);
3372
3373                 pr_debug("Calling add_tasks() for"
3374                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3375                         " Dormant -> Active, se_ordered_id: %u\n",
3376                         cmd_p->t_task_cdb[0],
3377                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3378
3379                 transport_add_tasks_from_cmd(cmd_p);
3380                 new_active_tasks++;
3381
3382                 spin_lock(&dev->delayed_cmd_lock);
3383                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3384                         break;
3385         }
3386         spin_unlock(&dev->delayed_cmd_lock);
3387         /*
3388          * If new tasks have become active, wake up the transport thread
3389          * to do the processing of the Active tasks.
3390          */
3391         if (new_active_tasks != 0)
3392                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3393 }
3394
3395 static void transport_complete_qf(struct se_cmd *cmd)
3396 {
3397         int ret = 0;
3398
3399         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3400                 transport_complete_task_attr(cmd);
3401
3402         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3403                 ret = cmd->se_tfo->queue_status(cmd);
3404                 if (ret)
3405                         goto out;
3406         }
3407
3408         switch (cmd->data_direction) {
3409         case DMA_FROM_DEVICE:
3410                 ret = cmd->se_tfo->queue_data_in(cmd);
3411                 break;
3412         case DMA_TO_DEVICE:
3413                 if (cmd->t_bidi_data_sg) {
3414                         ret = cmd->se_tfo->queue_data_in(cmd);
3415                         if (ret < 0)
3416                                 break;
3417                 }
3418                 /* Fall through for DMA_TO_DEVICE */
3419         case DMA_NONE:
3420                 ret = cmd->se_tfo->queue_status(cmd);
3421                 break;
3422         default:
3423                 break;
3424         }
3425
3426 out:
3427         if (ret < 0) {
3428                 transport_handle_queue_full(cmd, cmd->se_dev);
3429                 return;
3430         }
3431         transport_lun_remove_cmd(cmd);
3432         transport_cmd_check_stop_to_fabric(cmd);
3433 }
3434
3435 static void transport_handle_queue_full(
3436         struct se_cmd *cmd,
3437         struct se_device *dev)
3438 {
3439         spin_lock_irq(&dev->qf_cmd_lock);
3440         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3441         atomic_inc(&dev->dev_qf_count);
3442         smp_mb__after_atomic_inc();
3443         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3444
3445         schedule_work(&cmd->se_dev->qf_work_queue);
3446 }
3447
3448 static void target_complete_ok_work(struct work_struct *work)
3449 {
3450         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3451         int reason = 0, ret;
3452
3453         /*
3454          * Check if we need to move delayed/dormant tasks from cmds on the
3455          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3456          * Attribute.
3457          */
3458         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3459                 transport_complete_task_attr(cmd);
3460         /*
3461          * Check to schedule QUEUE_FULL work, or execute an existing
3462          * cmd->transport_qf_callback()
3463          */
3464         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3465                 schedule_work(&cmd->se_dev->qf_work_queue);
3466
3467         /*
3468          * Check if we need to retrieve a sense buffer from
3469          * the struct se_cmd in question.
3470          */
3471         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3472                 if (transport_get_sense_data(cmd) < 0)
3473                         reason = TCM_NON_EXISTENT_LUN;
3474
3475                 /*
3476                  * Only set when an struct se_task->task_scsi_status returned
3477                  * a non GOOD status.
3478                  */
3479                 if (cmd->scsi_status) {
3480                         ret = transport_send_check_condition_and_sense(
3481                                         cmd, reason, 1);
3482                         if (ret == -EAGAIN)
3483                                 goto queue_full;
3484
3485                         transport_lun_remove_cmd(cmd);
3486                         transport_cmd_check_stop_to_fabric(cmd);
3487                         return;
3488                 }
3489         }
3490         /*
3491          * Check for a callback, used by amongst other things
3492          * XDWRITE_READ_10 emulation.
3493          */
3494         if (cmd->transport_complete_callback)
3495                 cmd->transport_complete_callback(cmd);
3496
3497         switch (cmd->data_direction) {
3498         case DMA_FROM_DEVICE:
3499                 spin_lock(&cmd->se_lun->lun_sep_lock);
3500                 if (cmd->se_lun->lun_sep) {
3501                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3502                                         cmd->data_length;
3503                 }
3504                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3505
3506                 ret = cmd->se_tfo->queue_data_in(cmd);
3507                 if (ret == -EAGAIN)
3508                         goto queue_full;
3509                 break;
3510         case DMA_TO_DEVICE:
3511                 spin_lock(&cmd->se_lun->lun_sep_lock);
3512                 if (cmd->se_lun->lun_sep) {
3513                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3514                                 cmd->data_length;
3515                 }
3516                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3517                 /*
3518                  * Check if we need to send READ payload for BIDI-COMMAND
3519                  */
3520                 if (cmd->t_bidi_data_sg) {
3521                         spin_lock(&cmd->se_lun->lun_sep_lock);
3522                         if (cmd->se_lun->lun_sep) {
3523                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3524                                         cmd->data_length;
3525                         }
3526                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3527                         ret = cmd->se_tfo->queue_data_in(cmd);
3528                         if (ret == -EAGAIN)
3529                                 goto queue_full;
3530                         break;
3531                 }
3532                 /* Fall through for DMA_TO_DEVICE */
3533         case DMA_NONE:
3534                 ret = cmd->se_tfo->queue_status(cmd);
3535                 if (ret == -EAGAIN)
3536                         goto queue_full;
3537                 break;
3538         default:
3539                 break;
3540         }
3541
3542         transport_lun_remove_cmd(cmd);
3543         transport_cmd_check_stop_to_fabric(cmd);
3544         return;
3545
3546 queue_full:
3547         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3548                 " data_direction: %d\n", cmd, cmd->data_direction);
3549         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3550         transport_handle_queue_full(cmd, cmd->se_dev);
3551 }
3552
3553 static void transport_free_dev_tasks(struct se_cmd *cmd)
3554 {
3555         struct se_task *task, *task_tmp;
3556         unsigned long flags;
3557         LIST_HEAD(dispose_list);
3558
3559         spin_lock_irqsave(&cmd->t_state_lock, flags);
3560         list_for_each_entry_safe(task, task_tmp,
3561                                 &cmd->t_task_list, t_list) {
3562                 if (!(task->task_flags & TF_ACTIVE))
3563                         list_move_tail(&task->t_list, &dispose_list);
3564         }
3565         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3566
3567         while (!list_empty(&dispose_list)) {
3568                 task = list_first_entry(&dispose_list, struct se_task, t_list);
3569
3570                 /*
3571                  * We already cancelled all pending timers in
3572                  * transport_complete_task, but that was just a pure del_timer,
3573                  * so do a full del_timer_sync here to make sure any handler
3574                  * that was running at that point has finished execution.
3575                  */
3576                 del_timer_sync(&task->task_timer);
3577
3578                 kfree(task->task_sg_bidi);
3579                 kfree(task->task_sg);
3580
3581                 list_del(&task->t_list);
3582
3583                 cmd->se_dev->transport->free_task(task);
3584         }
3585 }
3586
3587 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3588 {
3589         struct scatterlist *sg;
3590         int count;
3591
3592         for_each_sg(sgl, sg, nents, count)
3593                 __free_page(sg_page(sg));
3594
3595         kfree(sgl);
3596 }
3597
3598 static inline void transport_free_pages(struct se_cmd *cmd)
3599 {
3600         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3601                 return;
3602
3603         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3604         cmd->t_data_sg = NULL;
3605         cmd->t_data_nents = 0;
3606
3607         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3608         cmd->t_bidi_data_sg = NULL;
3609         cmd->t_bidi_data_nents = 0;
3610 }
3611
3612 /**
3613  * transport_put_cmd - release a reference to a command
3614  * @cmd:       command to release
3615  *
3616  * This routine releases our reference to the command and frees it if possible.
3617  */
3618 static void transport_put_cmd(struct se_cmd *cmd)
3619 {
3620         unsigned long flags;
3621         int free_tasks = 0;
3622
3623         spin_lock_irqsave(&cmd->t_state_lock, flags);
3624         if (atomic_read(&cmd->t_fe_count)) {
3625                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3626                         goto out_busy;
3627         }
3628
3629         if (atomic_read(&cmd->t_se_count)) {
3630                 if (!atomic_dec_and_test(&cmd->t_se_count))
3631                         goto out_busy;
3632         }
3633
3634         if (atomic_read(&cmd->transport_dev_active)) {
3635                 atomic_set(&cmd->transport_dev_active, 0);
3636                 transport_all_task_dev_remove_state(cmd);
3637                 free_tasks = 1;
3638         }
3639         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3640
3641         if (free_tasks != 0)
3642                 transport_free_dev_tasks(cmd);
3643
3644         transport_free_pages(cmd);
3645         transport_release_cmd(cmd);
3646         return;
3647 out_busy:
3648         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3649 }
3650
3651 /*
3652  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3653  * allocating in the core.
3654  * @cmd:  Associated se_cmd descriptor
3655  * @mem:  SGL style memory for TCM WRITE / READ
3656  * @sg_mem_num: Number of SGL elements
3657  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3658  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3659  *
3660  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3661  * of parameters.
3662  */
3663 int transport_generic_map_mem_to_cmd(
3664         struct se_cmd *cmd,
3665         struct scatterlist *sgl,
3666         u32 sgl_count,
3667         struct scatterlist *sgl_bidi,
3668         u32 sgl_bidi_count)
3669 {
3670         if (!sgl || !sgl_count)
3671                 return 0;
3672
3673         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3674             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3675
3676                 cmd->t_data_sg = sgl;
3677                 cmd->t_data_nents = sgl_count;
3678
3679                 if (sgl_bidi && sgl_bidi_count) {
3680                         cmd->t_bidi_data_sg = sgl_bidi;
3681                         cmd->t_bidi_data_nents = sgl_bidi_count;
3682                 }
3683                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3684         }
3685
3686         return 0;
3687 }
3688 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3689
3690 static int transport_new_cmd_obj(struct se_cmd *cmd)
3691 {
3692         struct se_device *dev = cmd->se_dev;
3693         int set_counts = 1, rc, task_cdbs;
3694
3695         /*
3696          * Setup any BIDI READ tasks and memory from
3697          * cmd->t_mem_bidi_list so the READ struct se_tasks
3698          * are queued first for the non pSCSI passthrough case.
3699          */
3700         if (cmd->t_bidi_data_sg &&
3701             (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3702                 rc = transport_allocate_tasks(cmd,
3703                                               cmd->t_task_lba,
3704                                               DMA_FROM_DEVICE,
3705                                               cmd->t_bidi_data_sg,
3706                                               cmd->t_bidi_data_nents);
3707                 if (rc <= 0) {
3708                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3709                         cmd->scsi_sense_reason =
3710                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3711                         return -EINVAL;
3712                 }
3713                 atomic_inc(&cmd->t_fe_count);
3714                 atomic_inc(&cmd->t_se_count);
3715                 set_counts = 0;
3716         }
3717         /*
3718          * Setup the tasks and memory from cmd->t_mem_list
3719          * Note for BIDI transfers this will contain the WRITE payload
3720          */
3721         task_cdbs = transport_allocate_tasks(cmd,
3722                                              cmd->t_task_lba,
3723                                              cmd->data_direction,
3724                                              cmd->t_data_sg,
3725                                              cmd->t_data_nents);
3726         if (task_cdbs <= 0) {
3727                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3728                 cmd->scsi_sense_reason =
3729                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3730                 return -EINVAL;
3731         }
3732
3733         if (set_counts) {
3734                 atomic_inc(&cmd->t_fe_count);
3735                 atomic_inc(&cmd->t_se_count);
3736         }
3737
3738         cmd->t_task_list_num = task_cdbs;
3739
3740         atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3741         atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3742         atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3743         return 0;
3744 }
3745
3746 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3747 {
3748         struct scatterlist *sg = cmd->t_data_sg;
3749
3750         BUG_ON(!sg);
3751         /*
3752          * We need to take into account a possible offset here for fabrics like
3753          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3754          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3755          */
3756         return kmap(sg_page(sg)) + sg->offset;
3757 }
3758 EXPORT_SYMBOL(transport_kmap_first_data_page);
3759
3760 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3761 {
3762         kunmap(sg_page(cmd->t_data_sg));
3763 }
3764 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3765
3766 static int
3767 transport_generic_get_mem(struct se_cmd *cmd)
3768 {
3769         u32 length = cmd->data_length;
3770         unsigned int nents;
3771         struct page *page;
3772         int i = 0;
3773
3774         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3775         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3776         if (!cmd->t_data_sg)
3777                 return -ENOMEM;
3778
3779         cmd->t_data_nents = nents;
3780         sg_init_table(cmd->t_data_sg, nents);
3781
3782         while (length) {
3783                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3784                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3785                 if (!page)
3786                         goto out;
3787
3788                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3789                 length -= page_len;
3790                 i++;
3791         }
3792         return 0;
3793
3794 out:
3795         while (i >= 0) {
3796                 __free_page(sg_page(&cmd->t_data_sg[i]));
3797                 i--;
3798         }
3799         kfree(cmd->t_data_sg);
3800         cmd->t_data_sg = NULL;
3801         return -ENOMEM;
3802 }
3803
3804 /* Reduce sectors if they are too long for the device */
3805 static inline sector_t transport_limit_task_sectors(
3806         struct se_device *dev,
3807         unsigned long long lba,
3808         sector_t sectors)
3809 {
3810         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3811
3812         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3813                 if ((lba + sectors) > transport_dev_end_lba(dev))
3814                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3815
3816         return sectors;
3817 }
3818
3819
3820 /*
3821  * This function can be used by HW target mode drivers to create a linked
3822  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3823  * This is intended to be called during the completion path by TCM Core
3824  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3825  */
3826 void transport_do_task_sg_chain(struct se_cmd *cmd)
3827 {
3828         struct scatterlist *sg_first = NULL;
3829         struct scatterlist *sg_prev = NULL;
3830         int sg_prev_nents = 0;
3831         struct scatterlist *sg;
3832         struct se_task *task;
3833         u32 chained_nents = 0;
3834         int i;
3835
3836         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3837
3838         /*
3839          * Walk the struct se_task list and setup scatterlist chains
3840          * for each contiguously allocated struct se_task->task_sg[].
3841          */
3842         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3843                 if (!task->task_sg)
3844                         continue;
3845
3846                 if (!sg_first) {
3847                         sg_first = task->task_sg;
3848                         chained_nents = task->task_sg_nents;
3849                 } else {
3850                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3851                         chained_nents += task->task_sg_nents;
3852                 }
3853                 /*
3854                  * For the padded tasks, use the extra SGL vector allocated
3855                  * in transport_allocate_data_tasks() for the sg_prev_nents
3856                  * offset into sg_chain() above.
3857                  *
3858                  * We do not need the padding for the last task (or a single
3859                  * task), but in that case we will never use the sg_prev_nents
3860                  * value below which would be incorrect.
3861                  */
3862                 sg_prev_nents = (task->task_sg_nents + 1);
3863                 sg_prev = task->task_sg;
3864         }
3865         /*
3866          * Setup the starting pointer and total t_tasks_sg_linked_no including
3867          * padding SGs for linking and to mark the end.
3868          */
3869         cmd->t_tasks_sg_chained = sg_first;
3870         cmd->t_tasks_sg_chained_no = chained_nents;
3871
3872         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3873                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3874                 cmd->t_tasks_sg_chained_no);
3875
3876         for_each_sg(cmd->t_tasks_sg_chained, sg,
3877                         cmd->t_tasks_sg_chained_no, i) {
3878
3879                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3880                         i, sg, sg_page(sg), sg->length, sg->offset);
3881                 if (sg_is_chain(sg))
3882                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3883                 if (sg_is_last(sg))
3884                         pr_debug("SG: %p sg_is_last=1\n", sg);
3885         }
3886 }
3887 EXPORT_SYMBOL(transport_do_task_sg_chain);
3888
3889 /*
3890  * Break up cmd into chunks transport can handle
3891  */
3892 static int transport_allocate_data_tasks(
3893         struct se_cmd *cmd,
3894         unsigned long long lba,
3895         enum dma_data_direction data_direction,
3896         struct scatterlist *sgl,
3897         unsigned int sgl_nents)
3898 {
3899         struct se_task *task;
3900         struct se_device *dev = cmd->se_dev;
3901         unsigned long flags;
3902         int task_count, i;
3903         sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3904         u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3905         struct scatterlist *sg;
3906         struct scatterlist *cmd_sg;
3907
3908         WARN_ON(cmd->data_length % sector_size);
3909         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3910         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3911         
3912         cmd_sg = sgl;
3913         for (i = 0; i < task_count; i++) {
3914                 unsigned int task_size, task_sg_nents_padded;
3915                 int count;
3916
3917                 task = transport_generic_get_task(cmd, data_direction);
3918                 if (!task)
3919                         return -ENOMEM;
3920
3921                 task->task_lba = lba;
3922                 task->task_sectors = min(sectors, dev_max_sectors);
3923                 task->task_size = task->task_sectors * sector_size;
3924
3925                 /*
3926                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3927                  * in order to calculate the number per task SGL entries
3928                  */
3929                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3930                 /*
3931                  * Check if the fabric module driver is requesting that all
3932                  * struct se_task->task_sg[] be chained together..  If so,
3933                  * then allocate an extra padding SG entry for linking and
3934                  * marking the end of the chained SGL for every task except
3935                  * the last one for (task_count > 1) operation, or skipping
3936                  * the extra padding for the (task_count == 1) case.
3937                  */
3938                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3939                         task_sg_nents_padded = (task->task_sg_nents + 1);
3940                 } else
3941                         task_sg_nents_padded = task->task_sg_nents;
3942
3943                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3944                                         task_sg_nents_padded, GFP_KERNEL);
3945                 if (!task->task_sg) {
3946                         cmd->se_dev->transport->free_task(task);
3947                         return -ENOMEM;
3948                 }
3949
3950                 sg_init_table(task->task_sg, task_sg_nents_padded);
3951
3952                 task_size = task->task_size;
3953
3954                 /* Build new sgl, only up to task_size */
3955                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3956                         if (cmd_sg->length > task_size)
3957                                 break;
3958
3959                         *sg = *cmd_sg;
3960                         task_size -= cmd_sg->length;
3961                         cmd_sg = sg_next(cmd_sg);
3962                 }
3963
3964                 lba += task->task_sectors;
3965                 sectors -= task->task_sectors;
3966
3967                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3968                 list_add_tail(&task->t_list, &cmd->t_task_list);
3969                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3970         }
3971
3972         return task_count;
3973 }
3974
3975 static int
3976 transport_allocate_control_task(struct se_cmd *cmd)
3977 {
3978         struct se_task *task;
3979         unsigned long flags;
3980
3981         task = transport_generic_get_task(cmd, cmd->data_direction);
3982         if (!task)
3983                 return -ENOMEM;
3984
3985         task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
3986                                 GFP_KERNEL);
3987         if (!task->task_sg) {
3988                 cmd->se_dev->transport->free_task(task);
3989                 return -ENOMEM;
3990         }
3991
3992         memcpy(task->task_sg, cmd->t_data_sg,
3993                sizeof(struct scatterlist) * cmd->t_data_nents);
3994         task->task_size = cmd->data_length;
3995         task->task_sg_nents = cmd->t_data_nents;
3996
3997         spin_lock_irqsave(&cmd->t_state_lock, flags);
3998         list_add_tail(&task->t_list, &cmd->t_task_list);
3999         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4000
4001         /* Success! Return number of tasks allocated */
4002         return 1;
4003 }
4004
4005 static u32 transport_allocate_tasks(
4006         struct se_cmd *cmd,
4007         unsigned long long lba,
4008         enum dma_data_direction data_direction,
4009         struct scatterlist *sgl,
4010         unsigned int sgl_nents)
4011 {
4012         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4013                 if (transport_cmd_get_valid_sectors(cmd) < 0)
4014                         return -EINVAL;
4015
4016                 return transport_allocate_data_tasks(cmd, lba, data_direction,
4017                                                      sgl, sgl_nents);
4018         } else
4019                 return transport_allocate_control_task(cmd);
4020
4021 }
4022
4023
4024 /*       transport_generic_new_cmd(): Called from transport_processing_thread()
4025  *
4026  *       Allocate storage transport resources from a set of values predefined
4027  *       by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4028  *       Any non zero return here is treated as an "out of resource' op here.
4029  */
4030         /*
4031          * Generate struct se_task(s) and/or their payloads for this CDB.
4032          */
4033 int transport_generic_new_cmd(struct se_cmd *cmd)
4034 {
4035         int ret = 0;
4036
4037         /*
4038          * Determine is the TCM fabric module has already allocated physical
4039          * memory, and is directly calling transport_generic_map_mem_to_cmd()
4040          * beforehand.
4041          */
4042         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4043             cmd->data_length) {
4044                 ret = transport_generic_get_mem(cmd);
4045                 if (ret < 0)
4046                         return ret;
4047         }
4048         /*
4049          * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4050          * control or data CDB types, and perform the map to backend subsystem
4051          * code from SGL memory allocated here by transport_generic_get_mem(), or
4052          * via pre-existing SGL memory setup explictly by fabric module code with
4053          * transport_generic_map_mem_to_cmd().
4054          */
4055         ret = transport_new_cmd_obj(cmd);
4056         if (ret < 0)
4057                 return ret;
4058         /*
4059          * For WRITEs, let the fabric know its buffer is ready..
4060          * This WRITE struct se_cmd (and all of its associated struct se_task's)
4061          * will be added to the struct se_device execution queue after its WRITE
4062          * data has arrived. (ie: It gets handled by the transport processing
4063          * thread a second time)
4064          */
4065         if (cmd->data_direction == DMA_TO_DEVICE) {
4066                 transport_add_tasks_to_state_queue(cmd);
4067                 return transport_generic_write_pending(cmd);
4068         }
4069         /*
4070          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4071          * to the execution queue.
4072          */
4073         transport_execute_tasks(cmd);
4074         return 0;
4075 }
4076 EXPORT_SYMBOL(transport_generic_new_cmd);
4077
4078 /*      transport_generic_process_write():
4079  *
4080  *
4081  */
4082 void transport_generic_process_write(struct se_cmd *cmd)
4083 {
4084         transport_execute_tasks(cmd);
4085 }
4086 EXPORT_SYMBOL(transport_generic_process_write);
4087
4088 static void transport_write_pending_qf(struct se_cmd *cmd)
4089 {
4090         if (cmd->se_tfo->write_pending(cmd) == -EAGAIN) {
4091                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
4092                          cmd);
4093                 transport_handle_queue_full(cmd, cmd->se_dev);
4094         }
4095 }
4096
4097 static int transport_generic_write_pending(struct se_cmd *cmd)
4098 {
4099         unsigned long flags;
4100         int ret;
4101
4102         spin_lock_irqsave(&cmd->t_state_lock, flags);
4103         cmd->t_state = TRANSPORT_WRITE_PENDING;
4104         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4105
4106         /*
4107          * Clear the se_cmd for WRITE_PENDING status in order to set
4108          * cmd->t_transport_active=0 so that transport_generic_handle_data
4109          * can be called from HW target mode interrupt code.  This is safe
4110          * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4111          * because the se_cmd->se_lun pointer is not being cleared.
4112          */
4113         transport_cmd_check_stop(cmd, 1, 0);
4114
4115         /*
4116          * Call the fabric write_pending function here to let the
4117          * frontend know that WRITE buffers are ready.
4118          */
4119         ret = cmd->se_tfo->write_pending(cmd);
4120         if (ret == -EAGAIN)
4121                 goto queue_full;
4122         else if (ret < 0)
4123                 return ret;
4124
4125         return PYX_TRANSPORT_WRITE_PENDING;
4126
4127 queue_full:
4128         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4129         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4130         transport_handle_queue_full(cmd, cmd->se_dev);
4131         return ret;
4132 }
4133
4134 /**
4135  * transport_release_cmd - free a command
4136  * @cmd:       command to free
4137  *
4138  * This routine unconditionally frees a command, and reference counting
4139  * or list removal must be done in the caller.
4140  */
4141 void transport_release_cmd(struct se_cmd *cmd)
4142 {
4143         BUG_ON(!cmd->se_tfo);
4144
4145         if (cmd->se_tmr_req)
4146                 core_tmr_release_req(cmd->se_tmr_req);
4147         if (cmd->t_task_cdb != cmd->__t_task_cdb)
4148                 kfree(cmd->t_task_cdb);
4149         cmd->se_tfo->release_cmd(cmd);
4150 }
4151 EXPORT_SYMBOL(transport_release_cmd);
4152
4153 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4154 {
4155         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4156                 if (wait_for_tasks && cmd->se_tmr_req)
4157                          transport_wait_for_tasks(cmd);
4158
4159                 transport_release_cmd(cmd);
4160         } else {
4161                 if (wait_for_tasks)
4162                         transport_wait_for_tasks(cmd);
4163
4164                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4165
4166                 if (cmd->se_lun)
4167                         transport_lun_remove_cmd(cmd);
4168
4169                 transport_free_dev_tasks(cmd);
4170
4171                 transport_put_cmd(cmd);
4172         }
4173 }
4174 EXPORT_SYMBOL(transport_generic_free_cmd);
4175
4176 /*      transport_lun_wait_for_tasks():
4177  *
4178  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4179  *      an struct se_lun to be successfully shutdown.
4180  */
4181 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4182 {
4183         unsigned long flags;
4184         int ret;
4185         /*
4186          * If the frontend has already requested this struct se_cmd to
4187          * be stopped, we can safely ignore this struct se_cmd.
4188          */
4189         spin_lock_irqsave(&cmd->t_state_lock, flags);
4190         if (atomic_read(&cmd->t_transport_stop)) {
4191                 atomic_set(&cmd->transport_lun_stop, 0);
4192                 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4193                         " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4194                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4195                 transport_cmd_check_stop(cmd, 1, 0);
4196                 return -EPERM;
4197         }
4198         atomic_set(&cmd->transport_lun_fe_stop, 1);
4199         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4200
4201         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4202
4203         ret = transport_stop_tasks_for_cmd(cmd);
4204
4205         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4206                         " %d\n", cmd, cmd->t_task_list_num, ret);
4207         if (!ret) {
4208                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4209                                 cmd->se_tfo->get_task_tag(cmd));
4210                 wait_for_completion(&cmd->transport_lun_stop_comp);
4211                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4212                                 cmd->se_tfo->get_task_tag(cmd));
4213         }
4214         transport_remove_cmd_from_queue(cmd);
4215
4216         return 0;
4217 }
4218
4219 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4220 {
4221         struct se_cmd *cmd = NULL;
4222         unsigned long lun_flags, cmd_flags;
4223         /*
4224          * Do exception processing and return CHECK_CONDITION status to the
4225          * Initiator Port.
4226          */
4227         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4228         while (!list_empty(&lun->lun_cmd_list)) {
4229                 cmd = list_first_entry(&lun->lun_cmd_list,
4230                        struct se_cmd, se_lun_node);
4231                 list_del(&cmd->se_lun_node);
4232
4233                 atomic_set(&cmd->transport_lun_active, 0);
4234                 /*
4235                  * This will notify iscsi_target_transport.c:
4236                  * transport_cmd_check_stop() that a LUN shutdown is in
4237                  * progress for the iscsi_cmd_t.
4238                  */
4239                 spin_lock(&cmd->t_state_lock);
4240                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4241                         "_lun_stop for  ITT: 0x%08x\n",
4242                         cmd->se_lun->unpacked_lun,
4243                         cmd->se_tfo->get_task_tag(cmd));
4244                 atomic_set(&cmd->transport_lun_stop, 1);
4245                 spin_unlock(&cmd->t_state_lock);
4246
4247                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4248
4249                 if (!cmd->se_lun) {
4250                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4251                                 cmd->se_tfo->get_task_tag(cmd),
4252                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4253                         BUG();
4254                 }
4255                 /*
4256                  * If the Storage engine still owns the iscsi_cmd_t, determine
4257                  * and/or stop its context.
4258                  */
4259                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4260                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4261                         cmd->se_tfo->get_task_tag(cmd));
4262
4263                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4264                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4265                         continue;
4266                 }
4267
4268                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4269                         "_wait_for_tasks(): SUCCESS\n",
4270                         cmd->se_lun->unpacked_lun,
4271                         cmd->se_tfo->get_task_tag(cmd));
4272
4273                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4274                 if (!atomic_read(&cmd->transport_dev_active)) {
4275                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4276                         goto check_cond;
4277                 }
4278                 atomic_set(&cmd->transport_dev_active, 0);
4279                 transport_all_task_dev_remove_state(cmd);
4280                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4281
4282                 transport_free_dev_tasks(cmd);
4283                 /*
4284                  * The Storage engine stopped this struct se_cmd before it was
4285                  * send to the fabric frontend for delivery back to the
4286                  * Initiator Node.  Return this SCSI CDB back with an
4287                  * CHECK_CONDITION status.
4288                  */
4289 check_cond:
4290                 transport_send_check_condition_and_sense(cmd,
4291                                 TCM_NON_EXISTENT_LUN, 0);
4292                 /*
4293                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4294                  * be released, notify the waiting thread now that LU has
4295                  * finished accessing it.
4296                  */
4297                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4298                 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4299                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4300                                 " struct se_cmd: %p ITT: 0x%08x\n",
4301                                 lun->unpacked_lun,
4302                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4303
4304                         spin_unlock_irqrestore(&cmd->t_state_lock,
4305                                         cmd_flags);
4306                         transport_cmd_check_stop(cmd, 1, 0);
4307                         complete(&cmd->transport_lun_fe_stop_comp);
4308                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4309                         continue;
4310                 }
4311                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4312                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4313
4314                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4315                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4316         }
4317         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4318 }
4319
4320 static int transport_clear_lun_thread(void *p)
4321 {
4322         struct se_lun *lun = (struct se_lun *)p;
4323
4324         __transport_clear_lun_from_sessions(lun);
4325         complete(&lun->lun_shutdown_comp);
4326
4327         return 0;
4328 }
4329
4330 int transport_clear_lun_from_sessions(struct se_lun *lun)
4331 {
4332         struct task_struct *kt;
4333
4334         kt = kthread_run(transport_clear_lun_thread, lun,
4335                         "tcm_cl_%u", lun->unpacked_lun);
4336         if (IS_ERR(kt)) {
4337                 pr_err("Unable to start clear_lun thread\n");
4338                 return PTR_ERR(kt);
4339         }
4340         wait_for_completion(&lun->lun_shutdown_comp);
4341
4342         return 0;
4343 }
4344
4345 /**
4346  * transport_wait_for_tasks - wait for completion to occur
4347  * @cmd:        command to wait
4348  *
4349  * Called from frontend fabric context to wait for storage engine
4350  * to pause and/or release frontend generated struct se_cmd.
4351  */
4352 void transport_wait_for_tasks(struct se_cmd *cmd)
4353 {
4354         unsigned long flags;
4355
4356         spin_lock_irqsave(&cmd->t_state_lock, flags);
4357         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4358                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4359                 return;
4360         }
4361         /*
4362          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4363          * has been set in transport_set_supported_SAM_opcode().
4364          */
4365         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4366                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4367                 return;
4368         }
4369         /*
4370          * If we are already stopped due to an external event (ie: LUN shutdown)
4371          * sleep until the connection can have the passed struct se_cmd back.
4372          * The cmd->transport_lun_stopped_sem will be upped by
4373          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4374          * has completed its operation on the struct se_cmd.
4375          */
4376         if (atomic_read(&cmd->transport_lun_stop)) {
4377
4378                 pr_debug("wait_for_tasks: Stopping"
4379                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4380                         "_stop_comp); for ITT: 0x%08x\n",
4381                         cmd->se_tfo->get_task_tag(cmd));
4382                 /*
4383                  * There is a special case for WRITES where a FE exception +
4384                  * LUN shutdown means ConfigFS context is still sleeping on
4385                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4386                  * We go ahead and up transport_lun_stop_comp just to be sure
4387                  * here.
4388                  */
4389                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4390                 complete(&cmd->transport_lun_stop_comp);
4391                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4392                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4393
4394                 transport_all_task_dev_remove_state(cmd);
4395                 /*
4396                  * At this point, the frontend who was the originator of this
4397                  * struct se_cmd, now owns the structure and can be released through
4398                  * normal means below.
4399                  */
4400                 pr_debug("wait_for_tasks: Stopped"
4401                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4402                         "stop_comp); for ITT: 0x%08x\n",
4403                         cmd->se_tfo->get_task_tag(cmd));
4404
4405                 atomic_set(&cmd->transport_lun_stop, 0);
4406         }
4407         if (!atomic_read(&cmd->t_transport_active) ||
4408              atomic_read(&cmd->t_transport_aborted)) {
4409                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4410                 return;
4411         }
4412
4413         atomic_set(&cmd->t_transport_stop, 1);
4414
4415         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4416                 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4417                 cmd, cmd->se_tfo->get_task_tag(cmd),
4418                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4419
4420         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4421
4422         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4423
4424         wait_for_completion(&cmd->t_transport_stop_comp);
4425
4426         spin_lock_irqsave(&cmd->t_state_lock, flags);
4427         atomic_set(&cmd->t_transport_active, 0);
4428         atomic_set(&cmd->t_transport_stop, 0);
4429
4430         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4431                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4432                 cmd->se_tfo->get_task_tag(cmd));
4433
4434         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4435 }
4436 EXPORT_SYMBOL(transport_wait_for_tasks);
4437
4438 static int transport_get_sense_codes(
4439         struct se_cmd *cmd,
4440         u8 *asc,
4441         u8 *ascq)
4442 {
4443         *asc = cmd->scsi_asc;
4444         *ascq = cmd->scsi_ascq;
4445
4446         return 0;
4447 }
4448
4449 static int transport_set_sense_codes(
4450         struct se_cmd *cmd,
4451         u8 asc,
4452         u8 ascq)
4453 {
4454         cmd->scsi_asc = asc;
4455         cmd->scsi_ascq = ascq;
4456
4457         return 0;
4458 }
4459
4460 int transport_send_check_condition_and_sense(
4461         struct se_cmd *cmd,
4462         u8 reason,
4463         int from_transport)
4464 {
4465         unsigned char *buffer = cmd->sense_buffer;
4466         unsigned long flags;
4467         int offset;
4468         u8 asc = 0, ascq = 0;
4469
4470         spin_lock_irqsave(&cmd->t_state_lock, flags);
4471         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4472                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4473                 return 0;
4474         }
4475         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4476         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4477
4478         if (!reason && from_transport)
4479                 goto after_reason;
4480
4481         if (!from_transport)
4482                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4483         /*
4484          * Data Segment and SenseLength of the fabric response PDU.
4485          *
4486          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4487          * from include/scsi/scsi_cmnd.h
4488          */
4489         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4490                                 TRANSPORT_SENSE_BUFFER);
4491         /*
4492          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4493          * SENSE KEY values from include/scsi/scsi.h
4494          */
4495         switch (reason) {
4496         case TCM_NON_EXISTENT_LUN:
4497                 /* CURRENT ERROR */
4498                 buffer[offset] = 0x70;
4499                 /* ILLEGAL REQUEST */
4500                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4501                 /* LOGICAL UNIT NOT SUPPORTED */
4502                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4503                 break;
4504         case TCM_UNSUPPORTED_SCSI_OPCODE:
4505         case TCM_SECTOR_COUNT_TOO_MANY:
4506                 /* CURRENT ERROR */
4507                 buffer[offset] = 0x70;
4508                 /* ILLEGAL REQUEST */
4509                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4510                 /* INVALID COMMAND OPERATION CODE */
4511                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4512                 break;
4513         case TCM_UNKNOWN_MODE_PAGE:
4514                 /* CURRENT ERROR */
4515                 buffer[offset] = 0x70;
4516                 /* ILLEGAL REQUEST */
4517                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4518                 /* INVALID FIELD IN CDB */
4519                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4520                 break;
4521         case TCM_CHECK_CONDITION_ABORT_CMD:
4522                 /* CURRENT ERROR */
4523                 buffer[offset] = 0x70;
4524                 /* ABORTED COMMAND */
4525                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4526                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4527                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4528                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4529                 break;
4530         case TCM_INCORRECT_AMOUNT_OF_DATA:
4531                 /* CURRENT ERROR */
4532                 buffer[offset] = 0x70;
4533                 /* ABORTED COMMAND */
4534                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4535                 /* WRITE ERROR */
4536                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4537                 /* NOT ENOUGH UNSOLICITED DATA */
4538                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4539                 break;
4540         case TCM_INVALID_CDB_FIELD:
4541                 /* CURRENT ERROR */
4542                 buffer[offset] = 0x70;
4543                 /* ABORTED COMMAND */
4544                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4545                 /* INVALID FIELD IN CDB */
4546                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4547                 break;
4548         case TCM_INVALID_PARAMETER_LIST:
4549                 /* CURRENT ERROR */
4550                 buffer[offset] = 0x70;
4551                 /* ABORTED COMMAND */
4552                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4553                 /* INVALID FIELD IN PARAMETER LIST */
4554                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4555                 break;
4556         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4557                 /* CURRENT ERROR */
4558                 buffer[offset] = 0x70;
4559                 /* ABORTED COMMAND */
4560                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4561                 /* WRITE ERROR */
4562                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4563                 /* UNEXPECTED_UNSOLICITED_DATA */
4564                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4565                 break;
4566         case TCM_SERVICE_CRC_ERROR:
4567                 /* CURRENT ERROR */
4568                 buffer[offset] = 0x70;
4569                 /* ABORTED COMMAND */
4570                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4571                 /* PROTOCOL SERVICE CRC ERROR */
4572                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4573                 /* N/A */
4574                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4575                 break;
4576         case TCM_SNACK_REJECTED:
4577                 /* CURRENT ERROR */
4578                 buffer[offset] = 0x70;
4579                 /* ABORTED COMMAND */
4580                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4581                 /* READ ERROR */
4582                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4583                 /* FAILED RETRANSMISSION REQUEST */
4584                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4585                 break;
4586         case TCM_WRITE_PROTECTED:
4587                 /* CURRENT ERROR */
4588                 buffer[offset] = 0x70;
4589                 /* DATA PROTECT */
4590                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4591                 /* WRITE PROTECTED */
4592                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4593                 break;
4594         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4595                 /* CURRENT ERROR */
4596                 buffer[offset] = 0x70;
4597                 /* UNIT ATTENTION */
4598                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4599                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4600                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4601                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4602                 break;
4603         case TCM_CHECK_CONDITION_NOT_READY:
4604                 /* CURRENT ERROR */
4605                 buffer[offset] = 0x70;
4606                 /* Not Ready */
4607                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4608                 transport_get_sense_codes(cmd, &asc, &ascq);
4609                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4610                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4611                 break;
4612         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4613         default:
4614                 /* CURRENT ERROR */
4615                 buffer[offset] = 0x70;
4616                 /* ILLEGAL REQUEST */
4617                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4618                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4619                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4620                 break;
4621         }
4622         /*
4623          * This code uses linux/include/scsi/scsi.h SAM status codes!
4624          */
4625         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4626         /*
4627          * Automatically padded, this value is encoded in the fabric's
4628          * data_length response PDU containing the SCSI defined sense data.
4629          */
4630         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4631
4632 after_reason:
4633         return cmd->se_tfo->queue_status(cmd);
4634 }
4635 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4636
4637 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4638 {
4639         int ret = 0;
4640
4641         if (atomic_read(&cmd->t_transport_aborted) != 0) {
4642                 if (!send_status ||
4643                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4644                         return 1;
4645 #if 0
4646                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4647                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4648                         cmd->t_task_cdb[0],
4649                         cmd->se_tfo->get_task_tag(cmd));
4650 #endif
4651                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4652                 cmd->se_tfo->queue_status(cmd);
4653                 ret = 1;
4654         }
4655         return ret;
4656 }
4657 EXPORT_SYMBOL(transport_check_aborted_status);
4658
4659 void transport_send_task_abort(struct se_cmd *cmd)
4660 {
4661         unsigned long flags;
4662
4663         spin_lock_irqsave(&cmd->t_state_lock, flags);
4664         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4665                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4666                 return;
4667         }
4668         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4669
4670         /*
4671          * If there are still expected incoming fabric WRITEs, we wait
4672          * until until they have completed before sending a TASK_ABORTED
4673          * response.  This response with TASK_ABORTED status will be
4674          * queued back to fabric module by transport_check_aborted_status().
4675          */
4676         if (cmd->data_direction == DMA_TO_DEVICE) {
4677                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4678                         atomic_inc(&cmd->t_transport_aborted);
4679                         smp_mb__after_atomic_inc();
4680                         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4681                         transport_new_cmd_failure(cmd);
4682                         return;
4683                 }
4684         }
4685         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4686 #if 0
4687         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4688                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4689                 cmd->se_tfo->get_task_tag(cmd));
4690 #endif
4691         cmd->se_tfo->queue_status(cmd);
4692 }
4693
4694 /*      transport_generic_do_tmr():
4695  *
4696  *
4697  */
4698 int transport_generic_do_tmr(struct se_cmd *cmd)
4699 {
4700         struct se_device *dev = cmd->se_dev;
4701         struct se_tmr_req *tmr = cmd->se_tmr_req;
4702         int ret;
4703
4704         switch (tmr->function) {
4705         case TMR_ABORT_TASK:
4706                 tmr->response = TMR_FUNCTION_REJECTED;
4707                 break;
4708         case TMR_ABORT_TASK_SET:
4709         case TMR_CLEAR_ACA:
4710         case TMR_CLEAR_TASK_SET:
4711                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4712                 break;
4713         case TMR_LUN_RESET:
4714                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4715                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4716                                          TMR_FUNCTION_REJECTED;
4717                 break;
4718         case TMR_TARGET_WARM_RESET:
4719                 tmr->response = TMR_FUNCTION_REJECTED;
4720                 break;
4721         case TMR_TARGET_COLD_RESET:
4722                 tmr->response = TMR_FUNCTION_REJECTED;
4723                 break;
4724         default:
4725                 pr_err("Uknown TMR function: 0x%02x.\n",
4726                                 tmr->function);
4727                 tmr->response = TMR_FUNCTION_REJECTED;
4728                 break;
4729         }
4730
4731         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4732         cmd->se_tfo->queue_tm_rsp(cmd);
4733
4734         transport_cmd_check_stop_to_fabric(cmd);
4735         return 0;
4736 }
4737
4738 /*      transport_processing_thread():
4739  *
4740  *
4741  */
4742 static int transport_processing_thread(void *param)
4743 {
4744         int ret;
4745         struct se_cmd *cmd;
4746         struct se_device *dev = (struct se_device *) param;
4747
4748         set_user_nice(current, -20);
4749
4750         while (!kthread_should_stop()) {
4751                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4752                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4753                                 kthread_should_stop());
4754                 if (ret < 0)
4755                         goto out;
4756
4757 get_cmd:
4758                 __transport_execute_tasks(dev);
4759
4760                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4761                 if (!cmd)
4762                         continue;
4763
4764                 switch (cmd->t_state) {
4765                 case TRANSPORT_NEW_CMD:
4766                         BUG();
4767                         break;
4768                 case TRANSPORT_NEW_CMD_MAP:
4769                         if (!cmd->se_tfo->new_cmd_map) {
4770                                 pr_err("cmd->se_tfo->new_cmd_map is"
4771                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4772                                 BUG();
4773                         }
4774                         ret = cmd->se_tfo->new_cmd_map(cmd);
4775                         if (ret < 0) {
4776                                 cmd->transport_error_status = ret;
4777                                 transport_generic_request_failure(cmd,
4778                                                 0, (cmd->data_direction !=
4779                                                     DMA_TO_DEVICE));
4780                                 break;
4781                         }
4782                         ret = transport_generic_new_cmd(cmd);
4783                         if (ret == -EAGAIN)
4784                                 break;
4785                         else if (ret < 0) {
4786                                 cmd->transport_error_status = ret;
4787                                 transport_generic_request_failure(cmd,
4788                                         0, (cmd->data_direction !=
4789                                          DMA_TO_DEVICE));
4790                         }
4791                         break;
4792                 case TRANSPORT_PROCESS_WRITE:
4793                         transport_generic_process_write(cmd);
4794                         break;
4795                 case TRANSPORT_FREE_CMD_INTR:
4796                         transport_generic_free_cmd(cmd, 0);
4797                         break;
4798                 case TRANSPORT_PROCESS_TMR:
4799                         transport_generic_do_tmr(cmd);
4800                         break;
4801                 case TRANSPORT_COMPLETE_QF_WP:
4802                         transport_write_pending_qf(cmd);
4803                         break;
4804                 case TRANSPORT_COMPLETE_QF_OK:
4805                         transport_complete_qf(cmd);
4806                         break;
4807                 default:
4808                         pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4809                                 "i_state: %d on SE LUN: %u\n",
4810                                 cmd->t_state,
4811                                 cmd->se_tfo->get_task_tag(cmd),
4812                                 cmd->se_tfo->get_cmd_state(cmd),
4813                                 cmd->se_lun->unpacked_lun);
4814                         BUG();
4815                 }
4816
4817                 goto get_cmd;
4818         }
4819
4820 out:
4821         WARN_ON(!list_empty(&dev->state_task_list));
4822         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4823         dev->process_thread = NULL;
4824         return 0;
4825 }