target: Fix target_submit_tmr se_tmr_req allocation failures
[firefly-linux-kernel-4.4.55.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <linux/ratelimit.h>
41 #include <asm/unaligned.h>
42 #include <net/sock.h>
43 #include <net/tcp.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_tcq.h>
47
48 #include <target/target_core_base.h>
49 #include <target/target_core_backend.h>
50 #include <target/target_core_fabric.h>
51 #include <target/target_core_configfs.h>
52
53 #include "target_core_internal.h"
54 #include "target_core_alua.h"
55 #include "target_core_pr.h"
56 #include "target_core_ua.h"
57
58 static int sub_api_initialized;
59
60 static struct workqueue_struct *target_completion_wq;
61 static struct kmem_cache *se_sess_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74                 struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void target_complete_ok_work(struct work_struct *work);
81
82 int init_se_kmem_caches(void)
83 {
84         se_sess_cache = kmem_cache_create("se_sess_cache",
85                         sizeof(struct se_session), __alignof__(struct se_session),
86                         0, NULL);
87         if (!se_sess_cache) {
88                 pr_err("kmem_cache_create() for struct se_session"
89                                 " failed\n");
90                 goto out;
91         }
92         se_ua_cache = kmem_cache_create("se_ua_cache",
93                         sizeof(struct se_ua), __alignof__(struct se_ua),
94                         0, NULL);
95         if (!se_ua_cache) {
96                 pr_err("kmem_cache_create() for struct se_ua failed\n");
97                 goto out_free_sess_cache;
98         }
99         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
100                         sizeof(struct t10_pr_registration),
101                         __alignof__(struct t10_pr_registration), 0, NULL);
102         if (!t10_pr_reg_cache) {
103                 pr_err("kmem_cache_create() for struct t10_pr_registration"
104                                 " failed\n");
105                 goto out_free_ua_cache;
106         }
107         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
108                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
109                         0, NULL);
110         if (!t10_alua_lu_gp_cache) {
111                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
112                                 " failed\n");
113                 goto out_free_pr_reg_cache;
114         }
115         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
116                         sizeof(struct t10_alua_lu_gp_member),
117                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
118         if (!t10_alua_lu_gp_mem_cache) {
119                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
120                                 "cache failed\n");
121                 goto out_free_lu_gp_cache;
122         }
123         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
124                         sizeof(struct t10_alua_tg_pt_gp),
125                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
126         if (!t10_alua_tg_pt_gp_cache) {
127                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
128                                 "cache failed\n");
129                 goto out_free_lu_gp_mem_cache;
130         }
131         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
132                         "t10_alua_tg_pt_gp_mem_cache",
133                         sizeof(struct t10_alua_tg_pt_gp_member),
134                         __alignof__(struct t10_alua_tg_pt_gp_member),
135                         0, NULL);
136         if (!t10_alua_tg_pt_gp_mem_cache) {
137                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
138                                 "mem_t failed\n");
139                 goto out_free_tg_pt_gp_cache;
140         }
141
142         target_completion_wq = alloc_workqueue("target_completion",
143                                                WQ_MEM_RECLAIM, 0);
144         if (!target_completion_wq)
145                 goto out_free_tg_pt_gp_mem_cache;
146
147         return 0;
148
149 out_free_tg_pt_gp_mem_cache:
150         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
151 out_free_tg_pt_gp_cache:
152         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156         kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158         kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160         kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162         kmem_cache_destroy(se_sess_cache);
163 out:
164         return -ENOMEM;
165 }
166
167 void release_se_kmem_caches(void)
168 {
169         destroy_workqueue(target_completion_wq);
170         kmem_cache_destroy(se_sess_cache);
171         kmem_cache_destroy(se_ua_cache);
172         kmem_cache_destroy(t10_pr_reg_cache);
173         kmem_cache_destroy(t10_alua_lu_gp_cache);
174         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
177 }
178
179 /* This code ensures unique mib indexes are handed out. */
180 static DEFINE_SPINLOCK(scsi_mib_index_lock);
181 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
182
183 /*
184  * Allocate a new row index for the entry type specified
185  */
186 u32 scsi_get_new_index(scsi_index_t type)
187 {
188         u32 new_index;
189
190         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
191
192         spin_lock(&scsi_mib_index_lock);
193         new_index = ++scsi_mib_index[type];
194         spin_unlock(&scsi_mib_index_lock);
195
196         return new_index;
197 }
198
199 static void transport_init_queue_obj(struct se_queue_obj *qobj)
200 {
201         atomic_set(&qobj->queue_cnt, 0);
202         INIT_LIST_HEAD(&qobj->qobj_list);
203         init_waitqueue_head(&qobj->thread_wq);
204         spin_lock_init(&qobj->cmd_queue_lock);
205 }
206
207 void transport_subsystem_check_init(void)
208 {
209         int ret;
210
211         if (sub_api_initialized)
212                 return;
213
214         ret = request_module("target_core_iblock");
215         if (ret != 0)
216                 pr_err("Unable to load target_core_iblock\n");
217
218         ret = request_module("target_core_file");
219         if (ret != 0)
220                 pr_err("Unable to load target_core_file\n");
221
222         ret = request_module("target_core_pscsi");
223         if (ret != 0)
224                 pr_err("Unable to load target_core_pscsi\n");
225
226         ret = request_module("target_core_stgt");
227         if (ret != 0)
228                 pr_err("Unable to load target_core_stgt\n");
229
230         sub_api_initialized = 1;
231         return;
232 }
233
234 struct se_session *transport_init_session(void)
235 {
236         struct se_session *se_sess;
237
238         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
239         if (!se_sess) {
240                 pr_err("Unable to allocate struct se_session from"
241                                 " se_sess_cache\n");
242                 return ERR_PTR(-ENOMEM);
243         }
244         INIT_LIST_HEAD(&se_sess->sess_list);
245         INIT_LIST_HEAD(&se_sess->sess_acl_list);
246         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
247         INIT_LIST_HEAD(&se_sess->sess_wait_list);
248         spin_lock_init(&se_sess->sess_cmd_lock);
249
250         return se_sess;
251 }
252 EXPORT_SYMBOL(transport_init_session);
253
254 /*
255  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
256  */
257 void __transport_register_session(
258         struct se_portal_group *se_tpg,
259         struct se_node_acl *se_nacl,
260         struct se_session *se_sess,
261         void *fabric_sess_ptr)
262 {
263         unsigned char buf[PR_REG_ISID_LEN];
264
265         se_sess->se_tpg = se_tpg;
266         se_sess->fabric_sess_ptr = fabric_sess_ptr;
267         /*
268          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
269          *
270          * Only set for struct se_session's that will actually be moving I/O.
271          * eg: *NOT* discovery sessions.
272          */
273         if (se_nacl) {
274                 /*
275                  * If the fabric module supports an ISID based TransportID,
276                  * save this value in binary from the fabric I_T Nexus now.
277                  */
278                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
279                         memset(&buf[0], 0, PR_REG_ISID_LEN);
280                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
281                                         &buf[0], PR_REG_ISID_LEN);
282                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
283                 }
284                 spin_lock_irq(&se_nacl->nacl_sess_lock);
285                 /*
286                  * The se_nacl->nacl_sess pointer will be set to the
287                  * last active I_T Nexus for each struct se_node_acl.
288                  */
289                 se_nacl->nacl_sess = se_sess;
290
291                 list_add_tail(&se_sess->sess_acl_list,
292                               &se_nacl->acl_sess_list);
293                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
294         }
295         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
296
297         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
298                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
299 }
300 EXPORT_SYMBOL(__transport_register_session);
301
302 void transport_register_session(
303         struct se_portal_group *se_tpg,
304         struct se_node_acl *se_nacl,
305         struct se_session *se_sess,
306         void *fabric_sess_ptr)
307 {
308         spin_lock_bh(&se_tpg->session_lock);
309         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
310         spin_unlock_bh(&se_tpg->session_lock);
311 }
312 EXPORT_SYMBOL(transport_register_session);
313
314 void transport_deregister_session_configfs(struct se_session *se_sess)
315 {
316         struct se_node_acl *se_nacl;
317         unsigned long flags;
318         /*
319          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
320          */
321         se_nacl = se_sess->se_node_acl;
322         if (se_nacl) {
323                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
324                 list_del(&se_sess->sess_acl_list);
325                 /*
326                  * If the session list is empty, then clear the pointer.
327                  * Otherwise, set the struct se_session pointer from the tail
328                  * element of the per struct se_node_acl active session list.
329                  */
330                 if (list_empty(&se_nacl->acl_sess_list))
331                         se_nacl->nacl_sess = NULL;
332                 else {
333                         se_nacl->nacl_sess = container_of(
334                                         se_nacl->acl_sess_list.prev,
335                                         struct se_session, sess_acl_list);
336                 }
337                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
338         }
339 }
340 EXPORT_SYMBOL(transport_deregister_session_configfs);
341
342 void transport_free_session(struct se_session *se_sess)
343 {
344         kmem_cache_free(se_sess_cache, se_sess);
345 }
346 EXPORT_SYMBOL(transport_free_session);
347
348 void transport_deregister_session(struct se_session *se_sess)
349 {
350         struct se_portal_group *se_tpg = se_sess->se_tpg;
351         struct se_node_acl *se_nacl;
352         unsigned long flags;
353
354         if (!se_tpg) {
355                 transport_free_session(se_sess);
356                 return;
357         }
358
359         spin_lock_irqsave(&se_tpg->session_lock, flags);
360         list_del(&se_sess->sess_list);
361         se_sess->se_tpg = NULL;
362         se_sess->fabric_sess_ptr = NULL;
363         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
364
365         /*
366          * Determine if we need to do extra work for this initiator node's
367          * struct se_node_acl if it had been previously dynamically generated.
368          */
369         se_nacl = se_sess->se_node_acl;
370         if (se_nacl) {
371                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
372                 if (se_nacl->dynamic_node_acl) {
373                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
374                                         se_tpg)) {
375                                 list_del(&se_nacl->acl_list);
376                                 se_tpg->num_node_acls--;
377                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
378
379                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
380                                 core_free_device_list_for_node(se_nacl, se_tpg);
381                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
382                                                 se_nacl);
383                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
384                         }
385                 }
386                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
387         }
388
389         transport_free_session(se_sess);
390
391         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
392                 se_tpg->se_tpg_tfo->get_fabric_name());
393 }
394 EXPORT_SYMBOL(transport_deregister_session);
395
396 /*
397  * Called with cmd->t_state_lock held.
398  */
399 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
400 {
401         struct se_device *dev = cmd->se_dev;
402         struct se_task *task;
403         unsigned long flags;
404
405         if (!dev)
406                 return;
407
408         list_for_each_entry(task, &cmd->t_task_list, t_list) {
409                 if (task->task_flags & TF_ACTIVE)
410                         continue;
411
412                 spin_lock_irqsave(&dev->execute_task_lock, flags);
413                 if (task->t_state_active) {
414                         pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
415                                 cmd->se_tfo->get_task_tag(cmd), dev, task);
416
417                         list_del(&task->t_state_list);
418                         atomic_dec(&cmd->t_task_cdbs_ex_left);
419                         task->t_state_active = false;
420                 }
421                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
422         }
423
424 }
425
426 /*      transport_cmd_check_stop():
427  *
428  *      'transport_off = 1' determines if CMD_T_ACTIVE should be cleared.
429  *      'transport_off = 2' determines if task_dev_state should be removed.
430  *
431  *      A non-zero u8 t_state sets cmd->t_state.
432  *      Returns 1 when command is stopped, else 0.
433  */
434 static int transport_cmd_check_stop(
435         struct se_cmd *cmd,
436         int transport_off,
437         u8 t_state)
438 {
439         unsigned long flags;
440
441         spin_lock_irqsave(&cmd->t_state_lock, flags);
442         /*
443          * Determine if IOCTL context caller in requesting the stopping of this
444          * command for LUN shutdown purposes.
445          */
446         if (cmd->transport_state & CMD_T_LUN_STOP) {
447                 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
448                         __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
449
450                 cmd->transport_state &= ~CMD_T_ACTIVE;
451                 if (transport_off == 2)
452                         transport_all_task_dev_remove_state(cmd);
453                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
454
455                 complete(&cmd->transport_lun_stop_comp);
456                 return 1;
457         }
458         /*
459          * Determine if frontend context caller is requesting the stopping of
460          * this command for frontend exceptions.
461          */
462         if (cmd->transport_state & CMD_T_STOP) {
463                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
464                         __func__, __LINE__,
465                         cmd->se_tfo->get_task_tag(cmd));
466
467                 if (transport_off == 2)
468                         transport_all_task_dev_remove_state(cmd);
469
470                 /*
471                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
472                  * to FE.
473                  */
474                 if (transport_off == 2)
475                         cmd->se_lun = NULL;
476                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
477
478                 complete(&cmd->t_transport_stop_comp);
479                 return 1;
480         }
481         if (transport_off) {
482                 cmd->transport_state &= ~CMD_T_ACTIVE;
483                 if (transport_off == 2) {
484                         transport_all_task_dev_remove_state(cmd);
485                         /*
486                          * Clear struct se_cmd->se_lun before the transport_off == 2
487                          * handoff to fabric module.
488                          */
489                         cmd->se_lun = NULL;
490                         /*
491                          * Some fabric modules like tcm_loop can release
492                          * their internally allocated I/O reference now and
493                          * struct se_cmd now.
494                          *
495                          * Fabric modules are expected to return '1' here if the
496                          * se_cmd being passed is released at this point,
497                          * or zero if not being released.
498                          */
499                         if (cmd->se_tfo->check_stop_free != NULL) {
500                                 spin_unlock_irqrestore(
501                                         &cmd->t_state_lock, flags);
502
503                                 return cmd->se_tfo->check_stop_free(cmd);
504                         }
505                 }
506                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
507
508                 return 0;
509         } else if (t_state)
510                 cmd->t_state = t_state;
511         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
512
513         return 0;
514 }
515
516 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
517 {
518         return transport_cmd_check_stop(cmd, 2, 0);
519 }
520
521 static void transport_lun_remove_cmd(struct se_cmd *cmd)
522 {
523         struct se_lun *lun = cmd->se_lun;
524         unsigned long flags;
525
526         if (!lun)
527                 return;
528
529         spin_lock_irqsave(&cmd->t_state_lock, flags);
530         if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
531                 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
532                 transport_all_task_dev_remove_state(cmd);
533         }
534         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
535
536         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
537         if (!list_empty(&cmd->se_lun_node))
538                 list_del_init(&cmd->se_lun_node);
539         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
540 }
541
542 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
543 {
544         if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
545                 transport_lun_remove_cmd(cmd);
546
547         if (transport_cmd_check_stop_to_fabric(cmd))
548                 return;
549         if (remove) {
550                 transport_remove_cmd_from_queue(cmd);
551                 transport_put_cmd(cmd);
552         }
553 }
554
555 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
556                 bool at_head)
557 {
558         struct se_device *dev = cmd->se_dev;
559         struct se_queue_obj *qobj = &dev->dev_queue_obj;
560         unsigned long flags;
561
562         if (t_state) {
563                 spin_lock_irqsave(&cmd->t_state_lock, flags);
564                 cmd->t_state = t_state;
565                 cmd->transport_state |= CMD_T_ACTIVE;
566                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
567         }
568
569         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
570
571         /* If the cmd is already on the list, remove it before we add it */
572         if (!list_empty(&cmd->se_queue_node))
573                 list_del(&cmd->se_queue_node);
574         else
575                 atomic_inc(&qobj->queue_cnt);
576
577         if (at_head)
578                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
579         else
580                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
581         cmd->transport_state |= CMD_T_QUEUED;
582         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
583
584         wake_up_interruptible(&qobj->thread_wq);
585 }
586
587 static struct se_cmd *
588 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
589 {
590         struct se_cmd *cmd;
591         unsigned long flags;
592
593         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
594         if (list_empty(&qobj->qobj_list)) {
595                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
596                 return NULL;
597         }
598         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
599
600         cmd->transport_state &= ~CMD_T_QUEUED;
601         list_del_init(&cmd->se_queue_node);
602         atomic_dec(&qobj->queue_cnt);
603         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
604
605         return cmd;
606 }
607
608 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
609 {
610         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
611         unsigned long flags;
612
613         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
614         if (!(cmd->transport_state & CMD_T_QUEUED)) {
615                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
616                 return;
617         }
618         cmd->transport_state &= ~CMD_T_QUEUED;
619         atomic_dec(&qobj->queue_cnt);
620         list_del_init(&cmd->se_queue_node);
621         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
622 }
623
624 /*
625  * Completion function used by TCM subsystem plugins (such as FILEIO)
626  * for queueing up response from struct se_subsystem_api->do_task()
627  */
628 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
629 {
630         struct se_task *task = list_entry(cmd->t_task_list.next,
631                                 struct se_task, t_list);
632
633         if (good) {
634                 cmd->scsi_status = SAM_STAT_GOOD;
635                 task->task_scsi_status = GOOD;
636         } else {
637                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
638                 task->task_se_cmd->scsi_sense_reason =
639                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
640
641         }
642
643         transport_complete_task(task, good);
644 }
645 EXPORT_SYMBOL(transport_complete_sync_cache);
646
647 static void target_complete_failure_work(struct work_struct *work)
648 {
649         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
650
651         transport_generic_request_failure(cmd);
652 }
653
654 /*      transport_complete_task():
655  *
656  *      Called from interrupt and non interrupt context depending
657  *      on the transport plugin.
658  */
659 void transport_complete_task(struct se_task *task, int success)
660 {
661         struct se_cmd *cmd = task->task_se_cmd;
662         struct se_device *dev = cmd->se_dev;
663         unsigned long flags;
664
665         spin_lock_irqsave(&cmd->t_state_lock, flags);
666         task->task_flags &= ~TF_ACTIVE;
667
668         /*
669          * See if any sense data exists, if so set the TASK_SENSE flag.
670          * Also check for any other post completion work that needs to be
671          * done by the plugins.
672          */
673         if (dev && dev->transport->transport_complete) {
674                 if (dev->transport->transport_complete(task) != 0) {
675                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
676                         task->task_flags |= TF_HAS_SENSE;
677                         success = 1;
678                 }
679         }
680
681         /*
682          * See if we are waiting for outstanding struct se_task
683          * to complete for an exception condition
684          */
685         if (task->task_flags & TF_REQUEST_STOP) {
686                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
687                 complete(&task->task_stop_comp);
688                 return;
689         }
690
691         if (!success)
692                 cmd->transport_state |= CMD_T_FAILED;
693
694         /*
695          * Decrement the outstanding t_task_cdbs_left count.  The last
696          * struct se_task from struct se_cmd will complete itself into the
697          * device queue depending upon int success.
698          */
699         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
700                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
701                 return;
702         }
703         /*
704          * Check for case where an explict ABORT_TASK has been received
705          * and transport_wait_for_tasks() will be waiting for completion..
706          */
707         if (cmd->transport_state & CMD_T_ABORTED &&
708             cmd->transport_state & CMD_T_STOP) {
709                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
710                 complete(&cmd->t_transport_stop_comp);
711                 return;
712         } else if (cmd->transport_state & CMD_T_FAILED) {
713                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
714                 INIT_WORK(&cmd->work, target_complete_failure_work);
715         } else {
716                 INIT_WORK(&cmd->work, target_complete_ok_work);
717         }
718
719         cmd->t_state = TRANSPORT_COMPLETE;
720         cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
721         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
722
723         queue_work(target_completion_wq, &cmd->work);
724 }
725 EXPORT_SYMBOL(transport_complete_task);
726
727 /*
728  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
729  * struct se_task list are ready to be added to the active execution list
730  * struct se_device
731
732  * Called with se_dev_t->execute_task_lock called.
733  */
734 static inline int transport_add_task_check_sam_attr(
735         struct se_task *task,
736         struct se_task *task_prev,
737         struct se_device *dev)
738 {
739         /*
740          * No SAM Task attribute emulation enabled, add to tail of
741          * execution queue
742          */
743         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
744                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
745                 return 0;
746         }
747         /*
748          * HEAD_OF_QUEUE attribute for received CDB, which means
749          * the first task that is associated with a struct se_cmd goes to
750          * head of the struct se_device->execute_task_list, and task_prev
751          * after that for each subsequent task
752          */
753         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
754                 list_add(&task->t_execute_list,
755                                 (task_prev != NULL) ?
756                                 &task_prev->t_execute_list :
757                                 &dev->execute_task_list);
758
759                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
760                                 " in execution queue\n",
761                                 task->task_se_cmd->t_task_cdb[0]);
762                 return 1;
763         }
764         /*
765          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
766          * transitioned from Dermant -> Active state, and are added to the end
767          * of the struct se_device->execute_task_list
768          */
769         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
770         return 0;
771 }
772
773 /*      __transport_add_task_to_execute_queue():
774  *
775  *      Called with se_dev_t->execute_task_lock called.
776  */
777 static void __transport_add_task_to_execute_queue(
778         struct se_task *task,
779         struct se_task *task_prev,
780         struct se_device *dev)
781 {
782         int head_of_queue;
783
784         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
785         atomic_inc(&dev->execute_tasks);
786
787         if (task->t_state_active)
788                 return;
789         /*
790          * Determine if this task needs to go to HEAD_OF_QUEUE for the
791          * state list as well.  Running with SAM Task Attribute emulation
792          * will always return head_of_queue == 0 here
793          */
794         if (head_of_queue)
795                 list_add(&task->t_state_list, (task_prev) ?
796                                 &task_prev->t_state_list :
797                                 &dev->state_task_list);
798         else
799                 list_add_tail(&task->t_state_list, &dev->state_task_list);
800
801         task->t_state_active = true;
802
803         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
804                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
805                 task, dev);
806 }
807
808 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
809 {
810         struct se_device *dev = cmd->se_dev;
811         struct se_task *task;
812         unsigned long flags;
813
814         spin_lock_irqsave(&cmd->t_state_lock, flags);
815         list_for_each_entry(task, &cmd->t_task_list, t_list) {
816                 spin_lock(&dev->execute_task_lock);
817                 if (!task->t_state_active) {
818                         list_add_tail(&task->t_state_list,
819                                       &dev->state_task_list);
820                         task->t_state_active = true;
821
822                         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
823                                 task->task_se_cmd->se_tfo->get_task_tag(
824                                 task->task_se_cmd), task, dev);
825                 }
826                 spin_unlock(&dev->execute_task_lock);
827         }
828         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
829 }
830
831 static void __transport_add_tasks_from_cmd(struct se_cmd *cmd)
832 {
833         struct se_device *dev = cmd->se_dev;
834         struct se_task *task, *task_prev = NULL;
835
836         list_for_each_entry(task, &cmd->t_task_list, t_list) {
837                 if (!list_empty(&task->t_execute_list))
838                         continue;
839                 /*
840                  * __transport_add_task_to_execute_queue() handles the
841                  * SAM Task Attribute emulation if enabled
842                  */
843                 __transport_add_task_to_execute_queue(task, task_prev, dev);
844                 task_prev = task;
845         }
846 }
847
848 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
849 {
850         unsigned long flags;
851         struct se_device *dev = cmd->se_dev;
852
853         spin_lock_irqsave(&dev->execute_task_lock, flags);
854         __transport_add_tasks_from_cmd(cmd);
855         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
856 }
857
858 void __transport_remove_task_from_execute_queue(struct se_task *task,
859                 struct se_device *dev)
860 {
861         list_del_init(&task->t_execute_list);
862         atomic_dec(&dev->execute_tasks);
863 }
864
865 static void transport_remove_task_from_execute_queue(
866         struct se_task *task,
867         struct se_device *dev)
868 {
869         unsigned long flags;
870
871         if (WARN_ON(list_empty(&task->t_execute_list)))
872                 return;
873
874         spin_lock_irqsave(&dev->execute_task_lock, flags);
875         __transport_remove_task_from_execute_queue(task, dev);
876         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
877 }
878
879 /*
880  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
881  */
882
883 static void target_qf_do_work(struct work_struct *work)
884 {
885         struct se_device *dev = container_of(work, struct se_device,
886                                         qf_work_queue);
887         LIST_HEAD(qf_cmd_list);
888         struct se_cmd *cmd, *cmd_tmp;
889
890         spin_lock_irq(&dev->qf_cmd_lock);
891         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
892         spin_unlock_irq(&dev->qf_cmd_lock);
893
894         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
895                 list_del(&cmd->se_qf_node);
896                 atomic_dec(&dev->dev_qf_count);
897                 smp_mb__after_atomic_dec();
898
899                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
900                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
901                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
902                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
903                         : "UNKNOWN");
904
905                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
906         }
907 }
908
909 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
910 {
911         switch (cmd->data_direction) {
912         case DMA_NONE:
913                 return "NONE";
914         case DMA_FROM_DEVICE:
915                 return "READ";
916         case DMA_TO_DEVICE:
917                 return "WRITE";
918         case DMA_BIDIRECTIONAL:
919                 return "BIDI";
920         default:
921                 break;
922         }
923
924         return "UNKNOWN";
925 }
926
927 void transport_dump_dev_state(
928         struct se_device *dev,
929         char *b,
930         int *bl)
931 {
932         *bl += sprintf(b + *bl, "Status: ");
933         switch (dev->dev_status) {
934         case TRANSPORT_DEVICE_ACTIVATED:
935                 *bl += sprintf(b + *bl, "ACTIVATED");
936                 break;
937         case TRANSPORT_DEVICE_DEACTIVATED:
938                 *bl += sprintf(b + *bl, "DEACTIVATED");
939                 break;
940         case TRANSPORT_DEVICE_SHUTDOWN:
941                 *bl += sprintf(b + *bl, "SHUTDOWN");
942                 break;
943         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
944         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
945                 *bl += sprintf(b + *bl, "OFFLINE");
946                 break;
947         default:
948                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
949                 break;
950         }
951
952         *bl += sprintf(b + *bl, "  Execute/Max Queue Depth: %d/%d",
953                 atomic_read(&dev->execute_tasks), dev->queue_depth);
954         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
955                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
956         *bl += sprintf(b + *bl, "        ");
957 }
958
959 void transport_dump_vpd_proto_id(
960         struct t10_vpd *vpd,
961         unsigned char *p_buf,
962         int p_buf_len)
963 {
964         unsigned char buf[VPD_TMP_BUF_SIZE];
965         int len;
966
967         memset(buf, 0, VPD_TMP_BUF_SIZE);
968         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
969
970         switch (vpd->protocol_identifier) {
971         case 0x00:
972                 sprintf(buf+len, "Fibre Channel\n");
973                 break;
974         case 0x10:
975                 sprintf(buf+len, "Parallel SCSI\n");
976                 break;
977         case 0x20:
978                 sprintf(buf+len, "SSA\n");
979                 break;
980         case 0x30:
981                 sprintf(buf+len, "IEEE 1394\n");
982                 break;
983         case 0x40:
984                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
985                                 " Protocol\n");
986                 break;
987         case 0x50:
988                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
989                 break;
990         case 0x60:
991                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
992                 break;
993         case 0x70:
994                 sprintf(buf+len, "Automation/Drive Interface Transport"
995                                 " Protocol\n");
996                 break;
997         case 0x80:
998                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
999                 break;
1000         default:
1001                 sprintf(buf+len, "Unknown 0x%02x\n",
1002                                 vpd->protocol_identifier);
1003                 break;
1004         }
1005
1006         if (p_buf)
1007                 strncpy(p_buf, buf, p_buf_len);
1008         else
1009                 pr_debug("%s", buf);
1010 }
1011
1012 void
1013 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1014 {
1015         /*
1016          * Check if the Protocol Identifier Valid (PIV) bit is set..
1017          *
1018          * from spc3r23.pdf section 7.5.1
1019          */
1020          if (page_83[1] & 0x80) {
1021                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1022                 vpd->protocol_identifier_set = 1;
1023                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1024         }
1025 }
1026 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1027
1028 int transport_dump_vpd_assoc(
1029         struct t10_vpd *vpd,
1030         unsigned char *p_buf,
1031         int p_buf_len)
1032 {
1033         unsigned char buf[VPD_TMP_BUF_SIZE];
1034         int ret = 0;
1035         int len;
1036
1037         memset(buf, 0, VPD_TMP_BUF_SIZE);
1038         len = sprintf(buf, "T10 VPD Identifier Association: ");
1039
1040         switch (vpd->association) {
1041         case 0x00:
1042                 sprintf(buf+len, "addressed logical unit\n");
1043                 break;
1044         case 0x10:
1045                 sprintf(buf+len, "target port\n");
1046                 break;
1047         case 0x20:
1048                 sprintf(buf+len, "SCSI target device\n");
1049                 break;
1050         default:
1051                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1052                 ret = -EINVAL;
1053                 break;
1054         }
1055
1056         if (p_buf)
1057                 strncpy(p_buf, buf, p_buf_len);
1058         else
1059                 pr_debug("%s", buf);
1060
1061         return ret;
1062 }
1063
1064 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1065 {
1066         /*
1067          * The VPD identification association..
1068          *
1069          * from spc3r23.pdf Section 7.6.3.1 Table 297
1070          */
1071         vpd->association = (page_83[1] & 0x30);
1072         return transport_dump_vpd_assoc(vpd, NULL, 0);
1073 }
1074 EXPORT_SYMBOL(transport_set_vpd_assoc);
1075
1076 int transport_dump_vpd_ident_type(
1077         struct t10_vpd *vpd,
1078         unsigned char *p_buf,
1079         int p_buf_len)
1080 {
1081         unsigned char buf[VPD_TMP_BUF_SIZE];
1082         int ret = 0;
1083         int len;
1084
1085         memset(buf, 0, VPD_TMP_BUF_SIZE);
1086         len = sprintf(buf, "T10 VPD Identifier Type: ");
1087
1088         switch (vpd->device_identifier_type) {
1089         case 0x00:
1090                 sprintf(buf+len, "Vendor specific\n");
1091                 break;
1092         case 0x01:
1093                 sprintf(buf+len, "T10 Vendor ID based\n");
1094                 break;
1095         case 0x02:
1096                 sprintf(buf+len, "EUI-64 based\n");
1097                 break;
1098         case 0x03:
1099                 sprintf(buf+len, "NAA\n");
1100                 break;
1101         case 0x04:
1102                 sprintf(buf+len, "Relative target port identifier\n");
1103                 break;
1104         case 0x08:
1105                 sprintf(buf+len, "SCSI name string\n");
1106                 break;
1107         default:
1108                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1109                                 vpd->device_identifier_type);
1110                 ret = -EINVAL;
1111                 break;
1112         }
1113
1114         if (p_buf) {
1115                 if (p_buf_len < strlen(buf)+1)
1116                         return -EINVAL;
1117                 strncpy(p_buf, buf, p_buf_len);
1118         } else {
1119                 pr_debug("%s", buf);
1120         }
1121
1122         return ret;
1123 }
1124
1125 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1126 {
1127         /*
1128          * The VPD identifier type..
1129          *
1130          * from spc3r23.pdf Section 7.6.3.1 Table 298
1131          */
1132         vpd->device_identifier_type = (page_83[1] & 0x0f);
1133         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1134 }
1135 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1136
1137 int transport_dump_vpd_ident(
1138         struct t10_vpd *vpd,
1139         unsigned char *p_buf,
1140         int p_buf_len)
1141 {
1142         unsigned char buf[VPD_TMP_BUF_SIZE];
1143         int ret = 0;
1144
1145         memset(buf, 0, VPD_TMP_BUF_SIZE);
1146
1147         switch (vpd->device_identifier_code_set) {
1148         case 0x01: /* Binary */
1149                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1150                         &vpd->device_identifier[0]);
1151                 break;
1152         case 0x02: /* ASCII */
1153                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1154                         &vpd->device_identifier[0]);
1155                 break;
1156         case 0x03: /* UTF-8 */
1157                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1158                         &vpd->device_identifier[0]);
1159                 break;
1160         default:
1161                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1162                         " 0x%02x", vpd->device_identifier_code_set);
1163                 ret = -EINVAL;
1164                 break;
1165         }
1166
1167         if (p_buf)
1168                 strncpy(p_buf, buf, p_buf_len);
1169         else
1170                 pr_debug("%s", buf);
1171
1172         return ret;
1173 }
1174
1175 int
1176 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1177 {
1178         static const char hex_str[] = "0123456789abcdef";
1179         int j = 0, i = 4; /* offset to start of the identifer */
1180
1181         /*
1182          * The VPD Code Set (encoding)
1183          *
1184          * from spc3r23.pdf Section 7.6.3.1 Table 296
1185          */
1186         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1187         switch (vpd->device_identifier_code_set) {
1188         case 0x01: /* Binary */
1189                 vpd->device_identifier[j++] =
1190                                 hex_str[vpd->device_identifier_type];
1191                 while (i < (4 + page_83[3])) {
1192                         vpd->device_identifier[j++] =
1193                                 hex_str[(page_83[i] & 0xf0) >> 4];
1194                         vpd->device_identifier[j++] =
1195                                 hex_str[page_83[i] & 0x0f];
1196                         i++;
1197                 }
1198                 break;
1199         case 0x02: /* ASCII */
1200         case 0x03: /* UTF-8 */
1201                 while (i < (4 + page_83[3]))
1202                         vpd->device_identifier[j++] = page_83[i++];
1203                 break;
1204         default:
1205                 break;
1206         }
1207
1208         return transport_dump_vpd_ident(vpd, NULL, 0);
1209 }
1210 EXPORT_SYMBOL(transport_set_vpd_ident);
1211
1212 static void core_setup_task_attr_emulation(struct se_device *dev)
1213 {
1214         /*
1215          * If this device is from Target_Core_Mod/pSCSI, disable the
1216          * SAM Task Attribute emulation.
1217          *
1218          * This is currently not available in upsream Linux/SCSI Target
1219          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1220          */
1221         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1222                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1223                 return;
1224         }
1225
1226         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1227         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1228                 " device\n", dev->transport->name,
1229                 dev->transport->get_device_rev(dev));
1230 }
1231
1232 static void scsi_dump_inquiry(struct se_device *dev)
1233 {
1234         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1235         char buf[17];
1236         int i, device_type;
1237         /*
1238          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1239          */
1240         for (i = 0; i < 8; i++)
1241                 if (wwn->vendor[i] >= 0x20)
1242                         buf[i] = wwn->vendor[i];
1243                 else
1244                         buf[i] = ' ';
1245         buf[i] = '\0';
1246         pr_debug("  Vendor: %s\n", buf);
1247
1248         for (i = 0; i < 16; i++)
1249                 if (wwn->model[i] >= 0x20)
1250                         buf[i] = wwn->model[i];
1251                 else
1252                         buf[i] = ' ';
1253         buf[i] = '\0';
1254         pr_debug("  Model: %s\n", buf);
1255
1256         for (i = 0; i < 4; i++)
1257                 if (wwn->revision[i] >= 0x20)
1258                         buf[i] = wwn->revision[i];
1259                 else
1260                         buf[i] = ' ';
1261         buf[i] = '\0';
1262         pr_debug("  Revision: %s\n", buf);
1263
1264         device_type = dev->transport->get_device_type(dev);
1265         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1266         pr_debug("                 ANSI SCSI revision: %02x\n",
1267                                 dev->transport->get_device_rev(dev));
1268 }
1269
1270 struct se_device *transport_add_device_to_core_hba(
1271         struct se_hba *hba,
1272         struct se_subsystem_api *transport,
1273         struct se_subsystem_dev *se_dev,
1274         u32 device_flags,
1275         void *transport_dev,
1276         struct se_dev_limits *dev_limits,
1277         const char *inquiry_prod,
1278         const char *inquiry_rev)
1279 {
1280         int force_pt;
1281         struct se_device  *dev;
1282
1283         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1284         if (!dev) {
1285                 pr_err("Unable to allocate memory for se_dev_t\n");
1286                 return NULL;
1287         }
1288
1289         transport_init_queue_obj(&dev->dev_queue_obj);
1290         dev->dev_flags          = device_flags;
1291         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1292         dev->dev_ptr            = transport_dev;
1293         dev->se_hba             = hba;
1294         dev->se_sub_dev         = se_dev;
1295         dev->transport          = transport;
1296         INIT_LIST_HEAD(&dev->dev_list);
1297         INIT_LIST_HEAD(&dev->dev_sep_list);
1298         INIT_LIST_HEAD(&dev->dev_tmr_list);
1299         INIT_LIST_HEAD(&dev->execute_task_list);
1300         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1301         INIT_LIST_HEAD(&dev->state_task_list);
1302         INIT_LIST_HEAD(&dev->qf_cmd_list);
1303         spin_lock_init(&dev->execute_task_lock);
1304         spin_lock_init(&dev->delayed_cmd_lock);
1305         spin_lock_init(&dev->dev_reservation_lock);
1306         spin_lock_init(&dev->dev_status_lock);
1307         spin_lock_init(&dev->se_port_lock);
1308         spin_lock_init(&dev->se_tmr_lock);
1309         spin_lock_init(&dev->qf_cmd_lock);
1310         atomic_set(&dev->dev_ordered_id, 0);
1311
1312         se_dev_set_default_attribs(dev, dev_limits);
1313
1314         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1315         dev->creation_time = get_jiffies_64();
1316         spin_lock_init(&dev->stats_lock);
1317
1318         spin_lock(&hba->device_lock);
1319         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1320         hba->dev_count++;
1321         spin_unlock(&hba->device_lock);
1322         /*
1323          * Setup the SAM Task Attribute emulation for struct se_device
1324          */
1325         core_setup_task_attr_emulation(dev);
1326         /*
1327          * Force PR and ALUA passthrough emulation with internal object use.
1328          */
1329         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1330         /*
1331          * Setup the Reservations infrastructure for struct se_device
1332          */
1333         core_setup_reservations(dev, force_pt);
1334         /*
1335          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1336          */
1337         if (core_setup_alua(dev, force_pt) < 0)
1338                 goto out;
1339
1340         /*
1341          * Startup the struct se_device processing thread
1342          */
1343         dev->process_thread = kthread_run(transport_processing_thread, dev,
1344                                           "LIO_%s", dev->transport->name);
1345         if (IS_ERR(dev->process_thread)) {
1346                 pr_err("Unable to create kthread: LIO_%s\n",
1347                         dev->transport->name);
1348                 goto out;
1349         }
1350         /*
1351          * Setup work_queue for QUEUE_FULL
1352          */
1353         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1354         /*
1355          * Preload the initial INQUIRY const values if we are doing
1356          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1357          * passthrough because this is being provided by the backend LLD.
1358          * This is required so that transport_get_inquiry() copies these
1359          * originals once back into DEV_T10_WWN(dev) for the virtual device
1360          * setup.
1361          */
1362         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1363                 if (!inquiry_prod || !inquiry_rev) {
1364                         pr_err("All non TCM/pSCSI plugins require"
1365                                 " INQUIRY consts\n");
1366                         goto out;
1367                 }
1368
1369                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1370                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1371                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1372         }
1373         scsi_dump_inquiry(dev);
1374
1375         return dev;
1376 out:
1377         kthread_stop(dev->process_thread);
1378
1379         spin_lock(&hba->device_lock);
1380         list_del(&dev->dev_list);
1381         hba->dev_count--;
1382         spin_unlock(&hba->device_lock);
1383
1384         se_release_vpd_for_dev(dev);
1385
1386         kfree(dev);
1387
1388         return NULL;
1389 }
1390 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1391
1392 /*      transport_generic_prepare_cdb():
1393  *
1394  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1395  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1396  *      The point of this is since we are mapping iSCSI LUNs to
1397  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1398  *      devices and HBAs for a loop.
1399  */
1400 static inline void transport_generic_prepare_cdb(
1401         unsigned char *cdb)
1402 {
1403         switch (cdb[0]) {
1404         case READ_10: /* SBC - RDProtect */
1405         case READ_12: /* SBC - RDProtect */
1406         case READ_16: /* SBC - RDProtect */
1407         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1408         case VERIFY: /* SBC - VRProtect */
1409         case VERIFY_16: /* SBC - VRProtect */
1410         case WRITE_VERIFY: /* SBC - VRProtect */
1411         case WRITE_VERIFY_12: /* SBC - VRProtect */
1412                 break;
1413         default:
1414                 cdb[1] &= 0x1f; /* clear logical unit number */
1415                 break;
1416         }
1417 }
1418
1419 static struct se_task *
1420 transport_generic_get_task(struct se_cmd *cmd,
1421                 enum dma_data_direction data_direction)
1422 {
1423         struct se_task *task;
1424         struct se_device *dev = cmd->se_dev;
1425
1426         task = dev->transport->alloc_task(cmd->t_task_cdb);
1427         if (!task) {
1428                 pr_err("Unable to allocate struct se_task\n");
1429                 return NULL;
1430         }
1431
1432         INIT_LIST_HEAD(&task->t_list);
1433         INIT_LIST_HEAD(&task->t_execute_list);
1434         INIT_LIST_HEAD(&task->t_state_list);
1435         init_completion(&task->task_stop_comp);
1436         task->task_se_cmd = cmd;
1437         task->task_data_direction = data_direction;
1438
1439         return task;
1440 }
1441
1442 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1443
1444 /*
1445  * Used by fabric modules containing a local struct se_cmd within their
1446  * fabric dependent per I/O descriptor.
1447  */
1448 void transport_init_se_cmd(
1449         struct se_cmd *cmd,
1450         struct target_core_fabric_ops *tfo,
1451         struct se_session *se_sess,
1452         u32 data_length,
1453         int data_direction,
1454         int task_attr,
1455         unsigned char *sense_buffer)
1456 {
1457         INIT_LIST_HEAD(&cmd->se_lun_node);
1458         INIT_LIST_HEAD(&cmd->se_delayed_node);
1459         INIT_LIST_HEAD(&cmd->se_qf_node);
1460         INIT_LIST_HEAD(&cmd->se_queue_node);
1461         INIT_LIST_HEAD(&cmd->se_cmd_list);
1462         INIT_LIST_HEAD(&cmd->t_task_list);
1463         init_completion(&cmd->transport_lun_fe_stop_comp);
1464         init_completion(&cmd->transport_lun_stop_comp);
1465         init_completion(&cmd->t_transport_stop_comp);
1466         init_completion(&cmd->cmd_wait_comp);
1467         spin_lock_init(&cmd->t_state_lock);
1468         cmd->transport_state = CMD_T_DEV_ACTIVE;
1469
1470         cmd->se_tfo = tfo;
1471         cmd->se_sess = se_sess;
1472         cmd->data_length = data_length;
1473         cmd->data_direction = data_direction;
1474         cmd->sam_task_attr = task_attr;
1475         cmd->sense_buffer = sense_buffer;
1476 }
1477 EXPORT_SYMBOL(transport_init_se_cmd);
1478
1479 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1480 {
1481         /*
1482          * Check if SAM Task Attribute emulation is enabled for this
1483          * struct se_device storage object
1484          */
1485         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1486                 return 0;
1487
1488         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1489                 pr_debug("SAM Task Attribute ACA"
1490                         " emulation is not supported\n");
1491                 return -EINVAL;
1492         }
1493         /*
1494          * Used to determine when ORDERED commands should go from
1495          * Dormant to Active status.
1496          */
1497         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1498         smp_mb__after_atomic_inc();
1499         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1500                         cmd->se_ordered_id, cmd->sam_task_attr,
1501                         cmd->se_dev->transport->name);
1502         return 0;
1503 }
1504
1505 /*      transport_generic_allocate_tasks():
1506  *
1507  *      Called from fabric RX Thread.
1508  */
1509 int transport_generic_allocate_tasks(
1510         struct se_cmd *cmd,
1511         unsigned char *cdb)
1512 {
1513         int ret;
1514
1515         transport_generic_prepare_cdb(cdb);
1516         /*
1517          * Ensure that the received CDB is less than the max (252 + 8) bytes
1518          * for VARIABLE_LENGTH_CMD
1519          */
1520         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1521                 pr_err("Received SCSI CDB with command_size: %d that"
1522                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1523                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1524                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1525                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1526                 return -EINVAL;
1527         }
1528         /*
1529          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1530          * allocate the additional extended CDB buffer now..  Otherwise
1531          * setup the pointer from __t_task_cdb to t_task_cdb.
1532          */
1533         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1534                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1535                                                 GFP_KERNEL);
1536                 if (!cmd->t_task_cdb) {
1537                         pr_err("Unable to allocate cmd->t_task_cdb"
1538                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1539                                 scsi_command_size(cdb),
1540                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1541                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1542                         cmd->scsi_sense_reason =
1543                                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1544                         return -ENOMEM;
1545                 }
1546         } else
1547                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1548         /*
1549          * Copy the original CDB into cmd->
1550          */
1551         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1552         /*
1553          * Setup the received CDB based on SCSI defined opcodes and
1554          * perform unit attention, persistent reservations and ALUA
1555          * checks for virtual device backends.  The cmd->t_task_cdb
1556          * pointer is expected to be setup before we reach this point.
1557          */
1558         ret = transport_generic_cmd_sequencer(cmd, cdb);
1559         if (ret < 0)
1560                 return ret;
1561         /*
1562          * Check for SAM Task Attribute Emulation
1563          */
1564         if (transport_check_alloc_task_attr(cmd) < 0) {
1565                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1566                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1567                 return -EINVAL;
1568         }
1569         spin_lock(&cmd->se_lun->lun_sep_lock);
1570         if (cmd->se_lun->lun_sep)
1571                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1572         spin_unlock(&cmd->se_lun->lun_sep_lock);
1573         return 0;
1574 }
1575 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1576
1577 /*
1578  * Used by fabric module frontends to queue tasks directly.
1579  * Many only be used from process context only
1580  */
1581 int transport_handle_cdb_direct(
1582         struct se_cmd *cmd)
1583 {
1584         int ret;
1585
1586         if (!cmd->se_lun) {
1587                 dump_stack();
1588                 pr_err("cmd->se_lun is NULL\n");
1589                 return -EINVAL;
1590         }
1591         if (in_interrupt()) {
1592                 dump_stack();
1593                 pr_err("transport_generic_handle_cdb cannot be called"
1594                                 " from interrupt context\n");
1595                 return -EINVAL;
1596         }
1597         /*
1598          * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE following
1599          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1600          * in existing usage to ensure that outstanding descriptors are handled
1601          * correctly during shutdown via transport_wait_for_tasks()
1602          *
1603          * Also, we don't take cmd->t_state_lock here as we only expect
1604          * this to be called for initial descriptor submission.
1605          */
1606         cmd->t_state = TRANSPORT_NEW_CMD;
1607         cmd->transport_state |= CMD_T_ACTIVE;
1608
1609         /*
1610          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1611          * so follow TRANSPORT_NEW_CMD processing thread context usage
1612          * and call transport_generic_request_failure() if necessary..
1613          */
1614         ret = transport_generic_new_cmd(cmd);
1615         if (ret < 0)
1616                 transport_generic_request_failure(cmd);
1617
1618         return 0;
1619 }
1620 EXPORT_SYMBOL(transport_handle_cdb_direct);
1621
1622 /**
1623  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1624  *
1625  * @se_cmd: command descriptor to submit
1626  * @se_sess: associated se_sess for endpoint
1627  * @cdb: pointer to SCSI CDB
1628  * @sense: pointer to SCSI sense buffer
1629  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1630  * @data_length: fabric expected data transfer length
1631  * @task_addr: SAM task attribute
1632  * @data_dir: DMA data direction
1633  * @flags: flags for command submission from target_sc_flags_tables
1634  *
1635  * This may only be called from process context, and also currently
1636  * assumes internal allocation of fabric payload buffer by target-core.
1637  **/
1638 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1639                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1640                 u32 data_length, int task_attr, int data_dir, int flags)
1641 {
1642         struct se_portal_group *se_tpg;
1643         int rc;
1644
1645         se_tpg = se_sess->se_tpg;
1646         BUG_ON(!se_tpg);
1647         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1648         BUG_ON(in_interrupt());
1649         /*
1650          * Initialize se_cmd for target operation.  From this point
1651          * exceptions are handled by sending exception status via
1652          * target_core_fabric_ops->queue_status() callback
1653          */
1654         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1655                                 data_length, data_dir, task_attr, sense);
1656         /*
1657          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1658          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1659          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1660          * kref_put() to happen during fabric packet acknowledgement.
1661          */
1662         target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1663         /*
1664          * Signal bidirectional data payloads to target-core
1665          */
1666         if (flags & TARGET_SCF_BIDI_OP)
1667                 se_cmd->se_cmd_flags |= SCF_BIDI;
1668         /*
1669          * Locate se_lun pointer and attach it to struct se_cmd
1670          */
1671         if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1672                 transport_send_check_condition_and_sense(se_cmd,
1673                                 se_cmd->scsi_sense_reason, 0);
1674                 target_put_sess_cmd(se_sess, se_cmd);
1675                 return;
1676         }
1677         /*
1678          * Sanitize CDBs via transport_generic_cmd_sequencer() and
1679          * allocate the necessary tasks to complete the received CDB+data
1680          */
1681         rc = transport_generic_allocate_tasks(se_cmd, cdb);
1682         if (rc != 0) {
1683                 transport_generic_request_failure(se_cmd);
1684                 return;
1685         }
1686         /*
1687          * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1688          * for immediate execution of READs, otherwise wait for
1689          * transport_generic_handle_data() to be called for WRITEs
1690          * when fabric has filled the incoming buffer.
1691          */
1692         transport_handle_cdb_direct(se_cmd);
1693         return;
1694 }
1695 EXPORT_SYMBOL(target_submit_cmd);
1696
1697 /**
1698  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1699  *                     for TMR CDBs
1700  *
1701  * @se_cmd: command descriptor to submit
1702  * @se_sess: associated se_sess for endpoint
1703  * @sense: pointer to SCSI sense buffer
1704  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1705  * @fabric_context: fabric context for TMR req
1706  * @tm_type: Type of TM request
1707  * @flags: submit cmd flags
1708  *
1709  * Callable from all contexts.
1710  **/
1711
1712 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1713                 unsigned char *sense, u32 unpacked_lun,
1714                 void *fabric_tmr_ptr, unsigned char tm_type, int flags)
1715 {
1716         struct se_portal_group *se_tpg;
1717         int ret;
1718
1719         se_tpg = se_sess->se_tpg;
1720         BUG_ON(!se_tpg);
1721
1722         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1723                               0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1724         /*
1725          * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1726          * allocation failure.
1727          */
1728         ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, GFP_KERNEL);
1729         if (ret < 0)
1730                 return -ENOMEM;
1731
1732         /* See target_submit_cmd for commentary */
1733         target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1734
1735         ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1736         if (ret) {
1737                 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1738                 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1739                 transport_generic_free_cmd(se_cmd, 0);
1740                 return 0;
1741         }
1742         transport_generic_handle_tmr(se_cmd);
1743         return 0;
1744 }
1745 EXPORT_SYMBOL(target_submit_tmr);
1746
1747 /*
1748  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1749  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1750  * complete setup in TCM process context w/ TFO->new_cmd_map().
1751  */
1752 int transport_generic_handle_cdb_map(
1753         struct se_cmd *cmd)
1754 {
1755         if (!cmd->se_lun) {
1756                 dump_stack();
1757                 pr_err("cmd->se_lun is NULL\n");
1758                 return -EINVAL;
1759         }
1760
1761         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1762         return 0;
1763 }
1764 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1765
1766 /*      transport_generic_handle_data():
1767  *
1768  *
1769  */
1770 int transport_generic_handle_data(
1771         struct se_cmd *cmd)
1772 {
1773         /*
1774          * For the software fabric case, then we assume the nexus is being
1775          * failed/shutdown when signals are pending from the kthread context
1776          * caller, so we return a failure.  For the HW target mode case running
1777          * in interrupt code, the signal_pending() check is skipped.
1778          */
1779         if (!in_interrupt() && signal_pending(current))
1780                 return -EPERM;
1781         /*
1782          * If the received CDB has aleady been ABORTED by the generic
1783          * target engine, we now call transport_check_aborted_status()
1784          * to queue any delated TASK_ABORTED status for the received CDB to the
1785          * fabric module as we are expecting no further incoming DATA OUT
1786          * sequences at this point.
1787          */
1788         if (transport_check_aborted_status(cmd, 1) != 0)
1789                 return 0;
1790
1791         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1792         return 0;
1793 }
1794 EXPORT_SYMBOL(transport_generic_handle_data);
1795
1796 /*      transport_generic_handle_tmr():
1797  *
1798  *
1799  */
1800 int transport_generic_handle_tmr(
1801         struct se_cmd *cmd)
1802 {
1803         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1804         return 0;
1805 }
1806 EXPORT_SYMBOL(transport_generic_handle_tmr);
1807
1808 /*
1809  * If the task is active, request it to be stopped and sleep until it
1810  * has completed.
1811  */
1812 bool target_stop_task(struct se_task *task, unsigned long *flags)
1813 {
1814         struct se_cmd *cmd = task->task_se_cmd;
1815         bool was_active = false;
1816
1817         if (task->task_flags & TF_ACTIVE) {
1818                 task->task_flags |= TF_REQUEST_STOP;
1819                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1820
1821                 pr_debug("Task %p waiting to complete\n", task);
1822                 wait_for_completion(&task->task_stop_comp);
1823                 pr_debug("Task %p stopped successfully\n", task);
1824
1825                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1826                 atomic_dec(&cmd->t_task_cdbs_left);
1827                 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1828                 was_active = true;
1829         }
1830
1831         return was_active;
1832 }
1833
1834 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1835 {
1836         struct se_task *task, *task_tmp;
1837         unsigned long flags;
1838         int ret = 0;
1839
1840         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1841                 cmd->se_tfo->get_task_tag(cmd));
1842
1843         /*
1844          * No tasks remain in the execution queue
1845          */
1846         spin_lock_irqsave(&cmd->t_state_lock, flags);
1847         list_for_each_entry_safe(task, task_tmp,
1848                                 &cmd->t_task_list, t_list) {
1849                 pr_debug("Processing task %p\n", task);
1850                 /*
1851                  * If the struct se_task has not been sent and is not active,
1852                  * remove the struct se_task from the execution queue.
1853                  */
1854                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1855                         spin_unlock_irqrestore(&cmd->t_state_lock,
1856                                         flags);
1857                         transport_remove_task_from_execute_queue(task,
1858                                         cmd->se_dev);
1859
1860                         pr_debug("Task %p removed from execute queue\n", task);
1861                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1862                         continue;
1863                 }
1864
1865                 if (!target_stop_task(task, &flags)) {
1866                         pr_debug("Task %p - did nothing\n", task);
1867                         ret++;
1868                 }
1869         }
1870         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1871
1872         return ret;
1873 }
1874
1875 /*
1876  * Handle SAM-esque emulation for generic transport request failures.
1877  */
1878 void transport_generic_request_failure(struct se_cmd *cmd)
1879 {
1880         int ret = 0;
1881
1882         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1883                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1884                 cmd->t_task_cdb[0]);
1885         pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1886                 cmd->se_tfo->get_cmd_state(cmd),
1887                 cmd->t_state, cmd->scsi_sense_reason);
1888         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1889                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1890                 " CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1891                 cmd->t_task_list_num,
1892                 atomic_read(&cmd->t_task_cdbs_left),
1893                 atomic_read(&cmd->t_task_cdbs_sent),
1894                 atomic_read(&cmd->t_task_cdbs_ex_left),
1895                 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1896                 (cmd->transport_state & CMD_T_STOP) != 0,
1897                 (cmd->transport_state & CMD_T_SENT) != 0);
1898
1899         /*
1900          * For SAM Task Attribute emulation for failed struct se_cmd
1901          */
1902         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1903                 transport_complete_task_attr(cmd);
1904
1905         switch (cmd->scsi_sense_reason) {
1906         case TCM_NON_EXISTENT_LUN:
1907         case TCM_UNSUPPORTED_SCSI_OPCODE:
1908         case TCM_INVALID_CDB_FIELD:
1909         case TCM_INVALID_PARAMETER_LIST:
1910         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1911         case TCM_UNKNOWN_MODE_PAGE:
1912         case TCM_WRITE_PROTECTED:
1913         case TCM_CHECK_CONDITION_ABORT_CMD:
1914         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1915         case TCM_CHECK_CONDITION_NOT_READY:
1916                 break;
1917         case TCM_RESERVATION_CONFLICT:
1918                 /*
1919                  * No SENSE Data payload for this case, set SCSI Status
1920                  * and queue the response to $FABRIC_MOD.
1921                  *
1922                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1923                  */
1924                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1925                 /*
1926                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1927                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1928                  * CONFLICT STATUS.
1929                  *
1930                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1931                  */
1932                 if (cmd->se_sess &&
1933                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1934                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1935                                 cmd->orig_fe_lun, 0x2C,
1936                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1937
1938                 ret = cmd->se_tfo->queue_status(cmd);
1939                 if (ret == -EAGAIN || ret == -ENOMEM)
1940                         goto queue_full;
1941                 goto check_stop;
1942         default:
1943                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1944                         cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1945                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1946                 break;
1947         }
1948         /*
1949          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1950          * make the call to transport_send_check_condition_and_sense()
1951          * directly.  Otherwise expect the fabric to make the call to
1952          * transport_send_check_condition_and_sense() after handling
1953          * possible unsoliticied write data payloads.
1954          */
1955         ret = transport_send_check_condition_and_sense(cmd,
1956                         cmd->scsi_sense_reason, 0);
1957         if (ret == -EAGAIN || ret == -ENOMEM)
1958                 goto queue_full;
1959
1960 check_stop:
1961         transport_lun_remove_cmd(cmd);
1962         if (!transport_cmd_check_stop_to_fabric(cmd))
1963                 ;
1964         return;
1965
1966 queue_full:
1967         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1968         transport_handle_queue_full(cmd, cmd->se_dev);
1969 }
1970 EXPORT_SYMBOL(transport_generic_request_failure);
1971
1972 static inline u32 transport_lba_21(unsigned char *cdb)
1973 {
1974         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1975 }
1976
1977 static inline u32 transport_lba_32(unsigned char *cdb)
1978 {
1979         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1980 }
1981
1982 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1983 {
1984         unsigned int __v1, __v2;
1985
1986         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1987         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1988
1989         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1990 }
1991
1992 /*
1993  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1994  */
1995 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1996 {
1997         unsigned int __v1, __v2;
1998
1999         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2000         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2001
2002         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2003 }
2004
2005 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2006 {
2007         unsigned long flags;
2008
2009         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2010         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2011         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2012 }
2013
2014 /*
2015  * Called from Fabric Module context from transport_execute_tasks()
2016  *
2017  * The return of this function determins if the tasks from struct se_cmd
2018  * get added to the execution queue in transport_execute_tasks(),
2019  * or are added to the delayed or ordered lists here.
2020  */
2021 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2022 {
2023         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2024                 return 1;
2025         /*
2026          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2027          * to allow the passed struct se_cmd list of tasks to the front of the list.
2028          */
2029          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2030                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2031                         " 0x%02x, se_ordered_id: %u\n",
2032                         cmd->t_task_cdb[0],
2033                         cmd->se_ordered_id);
2034                 return 1;
2035         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2036                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2037                 smp_mb__after_atomic_inc();
2038
2039                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2040                                 " list, se_ordered_id: %u\n",
2041                                 cmd->t_task_cdb[0],
2042                                 cmd->se_ordered_id);
2043                 /*
2044                  * Add ORDERED command to tail of execution queue if
2045                  * no other older commands exist that need to be
2046                  * completed first.
2047                  */
2048                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2049                         return 1;
2050         } else {
2051                 /*
2052                  * For SIMPLE and UNTAGGED Task Attribute commands
2053                  */
2054                 atomic_inc(&cmd->se_dev->simple_cmds);
2055                 smp_mb__after_atomic_inc();
2056         }
2057         /*
2058          * Otherwise if one or more outstanding ORDERED task attribute exist,
2059          * add the dormant task(s) built for the passed struct se_cmd to the
2060          * execution queue and become in Active state for this struct se_device.
2061          */
2062         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2063                 /*
2064                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2065                  * will be drained upon completion of HEAD_OF_QUEUE task.
2066                  */
2067                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2068                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2069                 list_add_tail(&cmd->se_delayed_node,
2070                                 &cmd->se_dev->delayed_cmd_list);
2071                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2072
2073                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2074                         " delayed CMD list, se_ordered_id: %u\n",
2075                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2076                         cmd->se_ordered_id);
2077                 /*
2078                  * Return zero to let transport_execute_tasks() know
2079                  * not to add the delayed tasks to the execution list.
2080                  */
2081                 return 0;
2082         }
2083         /*
2084          * Otherwise, no ORDERED task attributes exist..
2085          */
2086         return 1;
2087 }
2088
2089 /*
2090  * Called from fabric module context in transport_generic_new_cmd() and
2091  * transport_generic_process_write()
2092  */
2093 static int transport_execute_tasks(struct se_cmd *cmd)
2094 {
2095         int add_tasks;
2096         struct se_device *se_dev = cmd->se_dev;
2097         /*
2098          * Call transport_cmd_check_stop() to see if a fabric exception
2099          * has occurred that prevents execution.
2100          */
2101         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2102                 /*
2103                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2104                  * attribute for the tasks of the received struct se_cmd CDB
2105                  */
2106                 add_tasks = transport_execute_task_attr(cmd);
2107                 if (!add_tasks)
2108                         goto execute_tasks;
2109                 /*
2110                  * __transport_execute_tasks() -> __transport_add_tasks_from_cmd()
2111                  * adds associated se_tasks while holding dev->execute_task_lock
2112                  * before I/O dispath to avoid a double spinlock access.
2113                  */
2114                 __transport_execute_tasks(se_dev, cmd);
2115                 return 0;
2116         }
2117
2118 execute_tasks:
2119         __transport_execute_tasks(se_dev, NULL);
2120         return 0;
2121 }
2122
2123 /*
2124  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2125  * from struct se_device->execute_task_list and
2126  *
2127  * Called from transport_processing_thread()
2128  */
2129 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2130 {
2131         int error;
2132         struct se_cmd *cmd = NULL;
2133         struct se_task *task = NULL;
2134         unsigned long flags;
2135
2136 check_depth:
2137         spin_lock_irq(&dev->execute_task_lock);
2138         if (new_cmd != NULL)
2139                 __transport_add_tasks_from_cmd(new_cmd);
2140
2141         if (list_empty(&dev->execute_task_list)) {
2142                 spin_unlock_irq(&dev->execute_task_lock);
2143                 return 0;
2144         }
2145         task = list_first_entry(&dev->execute_task_list,
2146                                 struct se_task, t_execute_list);
2147         __transport_remove_task_from_execute_queue(task, dev);
2148         spin_unlock_irq(&dev->execute_task_lock);
2149
2150         cmd = task->task_se_cmd;
2151         spin_lock_irqsave(&cmd->t_state_lock, flags);
2152         task->task_flags |= (TF_ACTIVE | TF_SENT);
2153         atomic_inc(&cmd->t_task_cdbs_sent);
2154
2155         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2156             cmd->t_task_list_num)
2157                 cmd->transport_state |= CMD_T_SENT;
2158
2159         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2160
2161         if (cmd->execute_task)
2162                 error = cmd->execute_task(task);
2163         else
2164                 error = dev->transport->do_task(task);
2165         if (error != 0) {
2166                 spin_lock_irqsave(&cmd->t_state_lock, flags);
2167                 task->task_flags &= ~TF_ACTIVE;
2168                 cmd->transport_state &= ~CMD_T_SENT;
2169                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2170
2171                 transport_stop_tasks_for_cmd(cmd);
2172                 transport_generic_request_failure(cmd);
2173         }
2174
2175         new_cmd = NULL;
2176         goto check_depth;
2177
2178         return 0;
2179 }
2180
2181 static inline u32 transport_get_sectors_6(
2182         unsigned char *cdb,
2183         struct se_cmd *cmd,
2184         int *ret)
2185 {
2186         struct se_device *dev = cmd->se_dev;
2187
2188         /*
2189          * Assume TYPE_DISK for non struct se_device objects.
2190          * Use 8-bit sector value.
2191          */
2192         if (!dev)
2193                 goto type_disk;
2194
2195         /*
2196          * Use 24-bit allocation length for TYPE_TAPE.
2197          */
2198         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2199                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2200
2201         /*
2202          * Everything else assume TYPE_DISK Sector CDB location.
2203          * Use 8-bit sector value.  SBC-3 says:
2204          *
2205          *   A TRANSFER LENGTH field set to zero specifies that 256
2206          *   logical blocks shall be written.  Any other value
2207          *   specifies the number of logical blocks that shall be
2208          *   written.
2209          */
2210 type_disk:
2211         return cdb[4] ? : 256;
2212 }
2213
2214 static inline u32 transport_get_sectors_10(
2215         unsigned char *cdb,
2216         struct se_cmd *cmd,
2217         int *ret)
2218 {
2219         struct se_device *dev = cmd->se_dev;
2220
2221         /*
2222          * Assume TYPE_DISK for non struct se_device objects.
2223          * Use 16-bit sector value.
2224          */
2225         if (!dev)
2226                 goto type_disk;
2227
2228         /*
2229          * XXX_10 is not defined in SSC, throw an exception
2230          */
2231         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2232                 *ret = -EINVAL;
2233                 return 0;
2234         }
2235
2236         /*
2237          * Everything else assume TYPE_DISK Sector CDB location.
2238          * Use 16-bit sector value.
2239          */
2240 type_disk:
2241         return (u32)(cdb[7] << 8) + cdb[8];
2242 }
2243
2244 static inline u32 transport_get_sectors_12(
2245         unsigned char *cdb,
2246         struct se_cmd *cmd,
2247         int *ret)
2248 {
2249         struct se_device *dev = cmd->se_dev;
2250
2251         /*
2252          * Assume TYPE_DISK for non struct se_device objects.
2253          * Use 32-bit sector value.
2254          */
2255         if (!dev)
2256                 goto type_disk;
2257
2258         /*
2259          * XXX_12 is not defined in SSC, throw an exception
2260          */
2261         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2262                 *ret = -EINVAL;
2263                 return 0;
2264         }
2265
2266         /*
2267          * Everything else assume TYPE_DISK Sector CDB location.
2268          * Use 32-bit sector value.
2269          */
2270 type_disk:
2271         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2272 }
2273
2274 static inline u32 transport_get_sectors_16(
2275         unsigned char *cdb,
2276         struct se_cmd *cmd,
2277         int *ret)
2278 {
2279         struct se_device *dev = cmd->se_dev;
2280
2281         /*
2282          * Assume TYPE_DISK for non struct se_device objects.
2283          * Use 32-bit sector value.
2284          */
2285         if (!dev)
2286                 goto type_disk;
2287
2288         /*
2289          * Use 24-bit allocation length for TYPE_TAPE.
2290          */
2291         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2292                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2293
2294 type_disk:
2295         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2296                     (cdb[12] << 8) + cdb[13];
2297 }
2298
2299 /*
2300  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2301  */
2302 static inline u32 transport_get_sectors_32(
2303         unsigned char *cdb,
2304         struct se_cmd *cmd,
2305         int *ret)
2306 {
2307         /*
2308          * Assume TYPE_DISK for non struct se_device objects.
2309          * Use 32-bit sector value.
2310          */
2311         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2312                     (cdb[30] << 8) + cdb[31];
2313
2314 }
2315
2316 static inline u32 transport_get_size(
2317         u32 sectors,
2318         unsigned char *cdb,
2319         struct se_cmd *cmd)
2320 {
2321         struct se_device *dev = cmd->se_dev;
2322
2323         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2324                 if (cdb[1] & 1) { /* sectors */
2325                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2326                 } else /* bytes */
2327                         return sectors;
2328         }
2329 #if 0
2330         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2331                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2332                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2333                         dev->transport->name);
2334 #endif
2335         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2336 }
2337
2338 static void transport_xor_callback(struct se_cmd *cmd)
2339 {
2340         unsigned char *buf, *addr;
2341         struct scatterlist *sg;
2342         unsigned int offset;
2343         int i;
2344         int count;
2345         /*
2346          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2347          *
2348          * 1) read the specified logical block(s);
2349          * 2) transfer logical blocks from the data-out buffer;
2350          * 3) XOR the logical blocks transferred from the data-out buffer with
2351          *    the logical blocks read, storing the resulting XOR data in a buffer;
2352          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2353          *    blocks transferred from the data-out buffer; and
2354          * 5) transfer the resulting XOR data to the data-in buffer.
2355          */
2356         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2357         if (!buf) {
2358                 pr_err("Unable to allocate xor_callback buf\n");
2359                 return;
2360         }
2361         /*
2362          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2363          * into the locally allocated *buf
2364          */
2365         sg_copy_to_buffer(cmd->t_data_sg,
2366                           cmd->t_data_nents,
2367                           buf,
2368                           cmd->data_length);
2369
2370         /*
2371          * Now perform the XOR against the BIDI read memory located at
2372          * cmd->t_mem_bidi_list
2373          */
2374
2375         offset = 0;
2376         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2377                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2378                 if (!addr)
2379                         goto out;
2380
2381                 for (i = 0; i < sg->length; i++)
2382                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2383
2384                 offset += sg->length;
2385                 kunmap_atomic(addr, KM_USER0);
2386         }
2387
2388 out:
2389         kfree(buf);
2390 }
2391
2392 /*
2393  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2394  */
2395 static int transport_get_sense_data(struct se_cmd *cmd)
2396 {
2397         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2398         struct se_device *dev = cmd->se_dev;
2399         struct se_task *task = NULL, *task_tmp;
2400         unsigned long flags;
2401         u32 offset = 0;
2402
2403         WARN_ON(!cmd->se_lun);
2404
2405         if (!dev)
2406                 return 0;
2407
2408         spin_lock_irqsave(&cmd->t_state_lock, flags);
2409         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2410                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2411                 return 0;
2412         }
2413
2414         list_for_each_entry_safe(task, task_tmp,
2415                                 &cmd->t_task_list, t_list) {
2416                 if (!(task->task_flags & TF_HAS_SENSE))
2417                         continue;
2418
2419                 if (!dev->transport->get_sense_buffer) {
2420                         pr_err("dev->transport->get_sense_buffer"
2421                                         " is NULL\n");
2422                         continue;
2423                 }
2424
2425                 sense_buffer = dev->transport->get_sense_buffer(task);
2426                 if (!sense_buffer) {
2427                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2428                                 " sense buffer for task with sense\n",
2429                                 cmd->se_tfo->get_task_tag(cmd), task);
2430                         continue;
2431                 }
2432                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2433
2434                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2435                                 TRANSPORT_SENSE_BUFFER);
2436
2437                 memcpy(&buffer[offset], sense_buffer,
2438                                 TRANSPORT_SENSE_BUFFER);
2439                 cmd->scsi_status = task->task_scsi_status;
2440                 /* Automatically padded */
2441                 cmd->scsi_sense_length =
2442                                 (TRANSPORT_SENSE_BUFFER + offset);
2443
2444                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2445                                 " and sense\n",
2446                         dev->se_hba->hba_id, dev->transport->name,
2447                                 cmd->scsi_status);
2448                 return 0;
2449         }
2450         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2451
2452         return -1;
2453 }
2454
2455 static inline long long transport_dev_end_lba(struct se_device *dev)
2456 {
2457         return dev->transport->get_blocks(dev) + 1;
2458 }
2459
2460 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2461 {
2462         struct se_device *dev = cmd->se_dev;
2463         u32 sectors;
2464
2465         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2466                 return 0;
2467
2468         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2469
2470         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2471                 pr_err("LBA: %llu Sectors: %u exceeds"
2472                         " transport_dev_end_lba(): %llu\n",
2473                         cmd->t_task_lba, sectors,
2474                         transport_dev_end_lba(dev));
2475                 return -EINVAL;
2476         }
2477
2478         return 0;
2479 }
2480
2481 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2482 {
2483         /*
2484          * Determine if the received WRITE_SAME is used to for direct
2485          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2486          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2487          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2488          */
2489         int passthrough = (dev->transport->transport_type ==
2490                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2491
2492         if (!passthrough) {
2493                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2494                         pr_err("WRITE_SAME PBDATA and LBDATA"
2495                                 " bits not supported for Block Discard"
2496                                 " Emulation\n");
2497                         return -ENOSYS;
2498                 }
2499                 /*
2500                  * Currently for the emulated case we only accept
2501                  * tpws with the UNMAP=1 bit set.
2502                  */
2503                 if (!(flags[0] & 0x08)) {
2504                         pr_err("WRITE_SAME w/o UNMAP bit not"
2505                                 " supported for Block Discard Emulation\n");
2506                         return -ENOSYS;
2507                 }
2508         }
2509
2510         return 0;
2511 }
2512
2513 /*      transport_generic_cmd_sequencer():
2514  *
2515  *      Generic Command Sequencer that should work for most DAS transport
2516  *      drivers.
2517  *
2518  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2519  *      RX Thread.
2520  *
2521  *      FIXME: Need to support other SCSI OPCODES where as well.
2522  */
2523 static int transport_generic_cmd_sequencer(
2524         struct se_cmd *cmd,
2525         unsigned char *cdb)
2526 {
2527         struct se_device *dev = cmd->se_dev;
2528         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2529         int ret = 0, sector_ret = 0, passthrough;
2530         u32 sectors = 0, size = 0, pr_reg_type = 0;
2531         u16 service_action;
2532         u8 alua_ascq = 0;
2533         /*
2534          * Check for an existing UNIT ATTENTION condition
2535          */
2536         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2537                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2538                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2539                 return -EINVAL;
2540         }
2541         /*
2542          * Check status of Asymmetric Logical Unit Assignment port
2543          */
2544         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2545         if (ret != 0) {
2546                 /*
2547                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2548                  * The ALUA additional sense code qualifier (ASCQ) is determined
2549                  * by the ALUA primary or secondary access state..
2550                  */
2551                 if (ret > 0) {
2552 #if 0
2553                         pr_debug("[%s]: ALUA TG Port not available,"
2554                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2555                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2556 #endif
2557                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2558                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2559                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2560                         return -EINVAL;
2561                 }
2562                 goto out_invalid_cdb_field;
2563         }
2564         /*
2565          * Check status for SPC-3 Persistent Reservations
2566          */
2567         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2568                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2569                                         cmd, cdb, pr_reg_type) != 0) {
2570                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2571                         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2572                         cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2573                         return -EBUSY;
2574                 }
2575                 /*
2576                  * This means the CDB is allowed for the SCSI Initiator port
2577                  * when said port is *NOT* holding the legacy SPC-2 or
2578                  * SPC-3 Persistent Reservation.
2579                  */
2580         }
2581
2582         /*
2583          * If we operate in passthrough mode we skip most CDB emulation and
2584          * instead hand the commands down to the physical SCSI device.
2585          */
2586         passthrough =
2587                 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2588
2589         switch (cdb[0]) {
2590         case READ_6:
2591                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2592                 if (sector_ret)
2593                         goto out_unsupported_cdb;
2594                 size = transport_get_size(sectors, cdb, cmd);
2595                 cmd->t_task_lba = transport_lba_21(cdb);
2596                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2597                 break;
2598         case READ_10:
2599                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2600                 if (sector_ret)
2601                         goto out_unsupported_cdb;
2602                 size = transport_get_size(sectors, cdb, cmd);
2603                 cmd->t_task_lba = transport_lba_32(cdb);
2604                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2605                 break;
2606         case READ_12:
2607                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2608                 if (sector_ret)
2609                         goto out_unsupported_cdb;
2610                 size = transport_get_size(sectors, cdb, cmd);
2611                 cmd->t_task_lba = transport_lba_32(cdb);
2612                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2613                 break;
2614         case READ_16:
2615                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2616                 if (sector_ret)
2617                         goto out_unsupported_cdb;
2618                 size = transport_get_size(sectors, cdb, cmd);
2619                 cmd->t_task_lba = transport_lba_64(cdb);
2620                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2621                 break;
2622         case WRITE_6:
2623                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2624                 if (sector_ret)
2625                         goto out_unsupported_cdb;
2626                 size = transport_get_size(sectors, cdb, cmd);
2627                 cmd->t_task_lba = transport_lba_21(cdb);
2628                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2629                 break;
2630         case WRITE_10:
2631                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2632                 if (sector_ret)
2633                         goto out_unsupported_cdb;
2634                 size = transport_get_size(sectors, cdb, cmd);
2635                 cmd->t_task_lba = transport_lba_32(cdb);
2636                 if (cdb[1] & 0x8)
2637                         cmd->se_cmd_flags |= SCF_FUA;
2638                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2639                 break;
2640         case WRITE_12:
2641                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2642                 if (sector_ret)
2643                         goto out_unsupported_cdb;
2644                 size = transport_get_size(sectors, cdb, cmd);
2645                 cmd->t_task_lba = transport_lba_32(cdb);
2646                 if (cdb[1] & 0x8)
2647                         cmd->se_cmd_flags |= SCF_FUA;
2648                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2649                 break;
2650         case WRITE_16:
2651                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2652                 if (sector_ret)
2653                         goto out_unsupported_cdb;
2654                 size = transport_get_size(sectors, cdb, cmd);
2655                 cmd->t_task_lba = transport_lba_64(cdb);
2656                 if (cdb[1] & 0x8)
2657                         cmd->se_cmd_flags |= SCF_FUA;
2658                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2659                 break;
2660         case XDWRITEREAD_10:
2661                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2662                     !(cmd->se_cmd_flags & SCF_BIDI))
2663                         goto out_invalid_cdb_field;
2664                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2665                 if (sector_ret)
2666                         goto out_unsupported_cdb;
2667                 size = transport_get_size(sectors, cdb, cmd);
2668                 cmd->t_task_lba = transport_lba_32(cdb);
2669                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2670
2671                 /*
2672                  * Do now allow BIDI commands for passthrough mode.
2673                  */
2674                 if (passthrough)
2675                         goto out_unsupported_cdb;
2676
2677                 /*
2678                  * Setup BIDI XOR callback to be run after I/O completion.
2679                  */
2680                 cmd->transport_complete_callback = &transport_xor_callback;
2681                 if (cdb[1] & 0x8)
2682                         cmd->se_cmd_flags |= SCF_FUA;
2683                 break;
2684         case VARIABLE_LENGTH_CMD:
2685                 service_action = get_unaligned_be16(&cdb[8]);
2686                 switch (service_action) {
2687                 case XDWRITEREAD_32:
2688                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2689                         if (sector_ret)
2690                                 goto out_unsupported_cdb;
2691                         size = transport_get_size(sectors, cdb, cmd);
2692                         /*
2693                          * Use WRITE_32 and READ_32 opcodes for the emulated
2694                          * XDWRITE_READ_32 logic.
2695                          */
2696                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2697                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2698
2699                         /*
2700                          * Do now allow BIDI commands for passthrough mode.
2701                          */
2702                         if (passthrough)
2703                                 goto out_unsupported_cdb;
2704
2705                         /*
2706                          * Setup BIDI XOR callback to be run during after I/O
2707                          * completion.
2708                          */
2709                         cmd->transport_complete_callback = &transport_xor_callback;
2710                         if (cdb[1] & 0x8)
2711                                 cmd->se_cmd_flags |= SCF_FUA;
2712                         break;
2713                 case WRITE_SAME_32:
2714                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2715                         if (sector_ret)
2716                                 goto out_unsupported_cdb;
2717
2718                         if (sectors)
2719                                 size = transport_get_size(1, cdb, cmd);
2720                         else {
2721                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2722                                        " supported\n");
2723                                 goto out_invalid_cdb_field;
2724                         }
2725
2726                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2727                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2728
2729                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2730                                 goto out_unsupported_cdb;
2731                         if (!passthrough)
2732                                 cmd->execute_task = target_emulate_write_same;
2733                         break;
2734                 default:
2735                         pr_err("VARIABLE_LENGTH_CMD service action"
2736                                 " 0x%04x not supported\n", service_action);
2737                         goto out_unsupported_cdb;
2738                 }
2739                 break;
2740         case MAINTENANCE_IN:
2741                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2742                         /* MAINTENANCE_IN from SCC-2 */
2743                         /*
2744                          * Check for emulated MI_REPORT_TARGET_PGS.
2745                          */
2746                         if (cdb[1] == MI_REPORT_TARGET_PGS &&
2747                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2748                                 cmd->execute_task =
2749                                         target_emulate_report_target_port_groups;
2750                         }
2751                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2752                                (cdb[8] << 8) | cdb[9];
2753                 } else {
2754                         /* GPCMD_SEND_KEY from multi media commands */
2755                         size = (cdb[8] << 8) + cdb[9];
2756                 }
2757                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2758                 break;
2759         case MODE_SELECT:
2760                 size = cdb[4];
2761                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2762                 break;
2763         case MODE_SELECT_10:
2764                 size = (cdb[7] << 8) + cdb[8];
2765                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2766                 break;
2767         case MODE_SENSE:
2768                 size = cdb[4];
2769                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2770                 if (!passthrough)
2771                         cmd->execute_task = target_emulate_modesense;
2772                 break;
2773         case MODE_SENSE_10:
2774                 size = (cdb[7] << 8) + cdb[8];
2775                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2776                 if (!passthrough)
2777                         cmd->execute_task = target_emulate_modesense;
2778                 break;
2779         case GPCMD_READ_BUFFER_CAPACITY:
2780         case GPCMD_SEND_OPC:
2781         case LOG_SELECT:
2782         case LOG_SENSE:
2783                 size = (cdb[7] << 8) + cdb[8];
2784                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2785                 break;
2786         case READ_BLOCK_LIMITS:
2787                 size = READ_BLOCK_LEN;
2788                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2789                 break;
2790         case GPCMD_GET_CONFIGURATION:
2791         case GPCMD_READ_FORMAT_CAPACITIES:
2792         case GPCMD_READ_DISC_INFO:
2793         case GPCMD_READ_TRACK_RZONE_INFO:
2794                 size = (cdb[7] << 8) + cdb[8];
2795                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2796                 break;
2797         case PERSISTENT_RESERVE_IN:
2798                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2799                         cmd->execute_task = target_scsi3_emulate_pr_in;
2800                 size = (cdb[7] << 8) + cdb[8];
2801                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2802                 break;
2803         case PERSISTENT_RESERVE_OUT:
2804                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2805                         cmd->execute_task = target_scsi3_emulate_pr_out;
2806                 size = (cdb[7] << 8) + cdb[8];
2807                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2808                 break;
2809         case GPCMD_MECHANISM_STATUS:
2810         case GPCMD_READ_DVD_STRUCTURE:
2811                 size = (cdb[8] << 8) + cdb[9];
2812                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2813                 break;
2814         case READ_POSITION:
2815                 size = READ_POSITION_LEN;
2816                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2817                 break;
2818         case MAINTENANCE_OUT:
2819                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2820                         /* MAINTENANCE_OUT from SCC-2
2821                          *
2822                          * Check for emulated MO_SET_TARGET_PGS.
2823                          */
2824                         if (cdb[1] == MO_SET_TARGET_PGS &&
2825                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2826                                 cmd->execute_task =
2827                                         target_emulate_set_target_port_groups;
2828                         }
2829
2830                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2831                                (cdb[8] << 8) | cdb[9];
2832                 } else  {
2833                         /* GPCMD_REPORT_KEY from multi media commands */
2834                         size = (cdb[8] << 8) + cdb[9];
2835                 }
2836                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2837                 break;
2838         case INQUIRY:
2839                 size = (cdb[3] << 8) + cdb[4];
2840                 /*
2841                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2842                  * See spc4r17 section 5.3
2843                  */
2844                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2845                         cmd->sam_task_attr = MSG_HEAD_TAG;
2846                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2847                 if (!passthrough)
2848                         cmd->execute_task = target_emulate_inquiry;
2849                 break;
2850         case READ_BUFFER:
2851                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2852                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2853                 break;
2854         case READ_CAPACITY:
2855                 size = READ_CAP_LEN;
2856                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2857                 if (!passthrough)
2858                         cmd->execute_task = target_emulate_readcapacity;
2859                 break;
2860         case READ_MEDIA_SERIAL_NUMBER:
2861         case SECURITY_PROTOCOL_IN:
2862         case SECURITY_PROTOCOL_OUT:
2863                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2864                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2865                 break;
2866         case SERVICE_ACTION_IN:
2867                 switch (cmd->t_task_cdb[1] & 0x1f) {
2868                 case SAI_READ_CAPACITY_16:
2869                         if (!passthrough)
2870                                 cmd->execute_task =
2871                                         target_emulate_readcapacity_16;
2872                         break;
2873                 default:
2874                         if (passthrough)
2875                                 break;
2876
2877                         pr_err("Unsupported SA: 0x%02x\n",
2878                                 cmd->t_task_cdb[1] & 0x1f);
2879                         goto out_unsupported_cdb;
2880                 }
2881                 /*FALLTHROUGH*/
2882         case ACCESS_CONTROL_IN:
2883         case ACCESS_CONTROL_OUT:
2884         case EXTENDED_COPY:
2885         case READ_ATTRIBUTE:
2886         case RECEIVE_COPY_RESULTS:
2887         case WRITE_ATTRIBUTE:
2888                 size = (cdb[10] << 24) | (cdb[11] << 16) |
2889                        (cdb[12] << 8) | cdb[13];
2890                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2891                 break;
2892         case RECEIVE_DIAGNOSTIC:
2893         case SEND_DIAGNOSTIC:
2894                 size = (cdb[3] << 8) | cdb[4];
2895                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2896                 break;
2897 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2898 #if 0
2899         case GPCMD_READ_CD:
2900                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2901                 size = (2336 * sectors);
2902                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2903                 break;
2904 #endif
2905         case READ_TOC:
2906                 size = cdb[8];
2907                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2908                 break;
2909         case REQUEST_SENSE:
2910                 size = cdb[4];
2911                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2912                 if (!passthrough)
2913                         cmd->execute_task = target_emulate_request_sense;
2914                 break;
2915         case READ_ELEMENT_STATUS:
2916                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2917                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2918                 break;
2919         case WRITE_BUFFER:
2920                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2921                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2922                 break;
2923         case RESERVE:
2924         case RESERVE_10:
2925                 /*
2926                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2927                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2928                  */
2929                 if (cdb[0] == RESERVE_10)
2930                         size = (cdb[7] << 8) | cdb[8];
2931                 else
2932                         size = cmd->data_length;
2933
2934                 /*
2935                  * Setup the legacy emulated handler for SPC-2 and
2936                  * >= SPC-3 compatible reservation handling (CRH=1)
2937                  * Otherwise, we assume the underlying SCSI logic is
2938                  * is running in SPC_PASSTHROUGH, and wants reservations
2939                  * emulation disabled.
2940                  */
2941                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2942                         cmd->execute_task = target_scsi2_reservation_reserve;
2943                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2944                 break;
2945         case RELEASE:
2946         case RELEASE_10:
2947                 /*
2948                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2949                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2950                 */
2951                 if (cdb[0] == RELEASE_10)
2952                         size = (cdb[7] << 8) | cdb[8];
2953                 else
2954                         size = cmd->data_length;
2955
2956                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2957                         cmd->execute_task = target_scsi2_reservation_release;
2958                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2959                 break;
2960         case SYNCHRONIZE_CACHE:
2961         case SYNCHRONIZE_CACHE_16:
2962                 /*
2963                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2964                  */
2965                 if (cdb[0] == SYNCHRONIZE_CACHE) {
2966                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2967                         cmd->t_task_lba = transport_lba_32(cdb);
2968                 } else {
2969                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2970                         cmd->t_task_lba = transport_lba_64(cdb);
2971                 }
2972                 if (sector_ret)
2973                         goto out_unsupported_cdb;
2974
2975                 size = transport_get_size(sectors, cdb, cmd);
2976                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2977
2978                 if (passthrough)
2979                         break;
2980
2981                 /*
2982                  * Check to ensure that LBA + Range does not exceed past end of
2983                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2984                  */
2985                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2986                         if (transport_cmd_get_valid_sectors(cmd) < 0)
2987                                 goto out_invalid_cdb_field;
2988                 }
2989                 cmd->execute_task = target_emulate_synchronize_cache;
2990                 break;
2991         case UNMAP:
2992                 size = get_unaligned_be16(&cdb[7]);
2993                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2994                 if (!passthrough)
2995                         cmd->execute_task = target_emulate_unmap;
2996                 break;
2997         case WRITE_SAME_16:
2998                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2999                 if (sector_ret)
3000                         goto out_unsupported_cdb;
3001
3002                 if (sectors)
3003                         size = transport_get_size(1, cdb, cmd);
3004                 else {
3005                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3006                         goto out_invalid_cdb_field;
3007                 }
3008
3009                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3010                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3011
3012                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3013                         goto out_unsupported_cdb;
3014                 if (!passthrough)
3015                         cmd->execute_task = target_emulate_write_same;
3016                 break;
3017         case WRITE_SAME:
3018                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3019                 if (sector_ret)
3020                         goto out_unsupported_cdb;
3021
3022                 if (sectors)
3023                         size = transport_get_size(1, cdb, cmd);
3024                 else {
3025                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3026                         goto out_invalid_cdb_field;
3027                 }
3028
3029                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3030                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3031                 /*
3032                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3033                  * of byte 1 bit 3 UNMAP instead of original reserved field
3034                  */
3035                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3036                         goto out_unsupported_cdb;
3037                 if (!passthrough)
3038                         cmd->execute_task = target_emulate_write_same;
3039                 break;
3040         case ALLOW_MEDIUM_REMOVAL:
3041         case ERASE:
3042         case REZERO_UNIT:
3043         case SEEK_10:
3044         case SPACE:
3045         case START_STOP:
3046         case TEST_UNIT_READY:
3047         case VERIFY:
3048         case WRITE_FILEMARKS:
3049                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3050                 if (!passthrough)
3051                         cmd->execute_task = target_emulate_noop;
3052                 break;
3053         case GPCMD_CLOSE_TRACK:
3054         case INITIALIZE_ELEMENT_STATUS:
3055         case GPCMD_LOAD_UNLOAD:
3056         case GPCMD_SET_SPEED:
3057         case MOVE_MEDIUM:
3058                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3059                 break;
3060         case REPORT_LUNS:
3061                 cmd->execute_task = target_report_luns;
3062                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3063                 /*
3064                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3065                  * See spc4r17 section 5.3
3066                  */
3067                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3068                         cmd->sam_task_attr = MSG_HEAD_TAG;
3069                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3070                 break;
3071         default:
3072                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3073                         " 0x%02x, sending CHECK_CONDITION.\n",
3074                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3075                 goto out_unsupported_cdb;
3076         }
3077
3078         if (size != cmd->data_length) {
3079                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3080                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3081                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3082                                 cmd->data_length, size, cdb[0]);
3083
3084                 cmd->cmd_spdtl = size;
3085
3086                 if (cmd->data_direction == DMA_TO_DEVICE) {
3087                         pr_err("Rejecting underflow/overflow"
3088                                         " WRITE data\n");
3089                         goto out_invalid_cdb_field;
3090                 }
3091                 /*
3092                  * Reject READ_* or WRITE_* with overflow/underflow for
3093                  * type SCF_SCSI_DATA_SG_IO_CDB.
3094                  */
3095                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3096                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3097                                 " CDB on non 512-byte sector setup subsystem"
3098                                 " plugin: %s\n", dev->transport->name);
3099                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3100                         goto out_invalid_cdb_field;
3101                 }
3102
3103                 if (size > cmd->data_length) {
3104                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3105                         cmd->residual_count = (size - cmd->data_length);
3106                 } else {
3107                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3108                         cmd->residual_count = (cmd->data_length - size);
3109                 }
3110                 cmd->data_length = size;
3111         }
3112
3113         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB &&
3114             sectors > dev->se_sub_dev->se_dev_attrib.fabric_max_sectors) {
3115                 printk_ratelimited(KERN_ERR "SCSI OP %02xh with too big sectors %u\n",
3116                                    cdb[0], sectors);
3117                 goto out_invalid_cdb_field;
3118         }
3119
3120         /* reject any command that we don't have a handler for */
3121         if (!(passthrough || cmd->execute_task ||
3122              (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3123                 goto out_unsupported_cdb;
3124
3125         transport_set_supported_SAM_opcode(cmd);
3126         return ret;
3127
3128 out_unsupported_cdb:
3129         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3130         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3131         return -EINVAL;
3132 out_invalid_cdb_field:
3133         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3134         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3135         return -EINVAL;
3136 }
3137
3138 /*
3139  * Called from I/O completion to determine which dormant/delayed
3140  * and ordered cmds need to have their tasks added to the execution queue.
3141  */
3142 static void transport_complete_task_attr(struct se_cmd *cmd)
3143 {
3144         struct se_device *dev = cmd->se_dev;
3145         struct se_cmd *cmd_p, *cmd_tmp;
3146         int new_active_tasks = 0;
3147
3148         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3149                 atomic_dec(&dev->simple_cmds);
3150                 smp_mb__after_atomic_dec();
3151                 dev->dev_cur_ordered_id++;
3152                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3153                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3154                         cmd->se_ordered_id);
3155         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3156                 dev->dev_cur_ordered_id++;
3157                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3158                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3159                         cmd->se_ordered_id);
3160         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3161                 atomic_dec(&dev->dev_ordered_sync);
3162                 smp_mb__after_atomic_dec();
3163
3164                 dev->dev_cur_ordered_id++;
3165                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3166                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3167         }
3168         /*
3169          * Process all commands up to the last received
3170          * ORDERED task attribute which requires another blocking
3171          * boundary
3172          */
3173         spin_lock(&dev->delayed_cmd_lock);
3174         list_for_each_entry_safe(cmd_p, cmd_tmp,
3175                         &dev->delayed_cmd_list, se_delayed_node) {
3176
3177                 list_del(&cmd_p->se_delayed_node);
3178                 spin_unlock(&dev->delayed_cmd_lock);
3179
3180                 pr_debug("Calling add_tasks() for"
3181                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3182                         " Dormant -> Active, se_ordered_id: %u\n",
3183                         cmd_p->t_task_cdb[0],
3184                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3185
3186                 transport_add_tasks_from_cmd(cmd_p);
3187                 new_active_tasks++;
3188
3189                 spin_lock(&dev->delayed_cmd_lock);
3190                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3191                         break;
3192         }
3193         spin_unlock(&dev->delayed_cmd_lock);
3194         /*
3195          * If new tasks have become active, wake up the transport thread
3196          * to do the processing of the Active tasks.
3197          */
3198         if (new_active_tasks != 0)
3199                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3200 }
3201
3202 static void transport_complete_qf(struct se_cmd *cmd)
3203 {
3204         int ret = 0;
3205
3206         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3207                 transport_complete_task_attr(cmd);
3208
3209         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3210                 ret = cmd->se_tfo->queue_status(cmd);
3211                 if (ret)
3212                         goto out;
3213         }
3214
3215         switch (cmd->data_direction) {
3216         case DMA_FROM_DEVICE:
3217                 ret = cmd->se_tfo->queue_data_in(cmd);
3218                 break;
3219         case DMA_TO_DEVICE:
3220                 if (cmd->t_bidi_data_sg) {
3221                         ret = cmd->se_tfo->queue_data_in(cmd);
3222                         if (ret < 0)
3223                                 break;
3224                 }
3225                 /* Fall through for DMA_TO_DEVICE */
3226         case DMA_NONE:
3227                 ret = cmd->se_tfo->queue_status(cmd);
3228                 break;
3229         default:
3230                 break;
3231         }
3232
3233 out:
3234         if (ret < 0) {
3235                 transport_handle_queue_full(cmd, cmd->se_dev);
3236                 return;
3237         }
3238         transport_lun_remove_cmd(cmd);
3239         transport_cmd_check_stop_to_fabric(cmd);
3240 }
3241
3242 static void transport_handle_queue_full(
3243         struct se_cmd *cmd,
3244         struct se_device *dev)
3245 {
3246         spin_lock_irq(&dev->qf_cmd_lock);
3247         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3248         atomic_inc(&dev->dev_qf_count);
3249         smp_mb__after_atomic_inc();
3250         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3251
3252         schedule_work(&cmd->se_dev->qf_work_queue);
3253 }
3254
3255 static void target_complete_ok_work(struct work_struct *work)
3256 {
3257         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3258         int reason = 0, ret;
3259
3260         /*
3261          * Check if we need to move delayed/dormant tasks from cmds on the
3262          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3263          * Attribute.
3264          */
3265         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3266                 transport_complete_task_attr(cmd);
3267         /*
3268          * Check to schedule QUEUE_FULL work, or execute an existing
3269          * cmd->transport_qf_callback()
3270          */
3271         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3272                 schedule_work(&cmd->se_dev->qf_work_queue);
3273
3274         /*
3275          * Check if we need to retrieve a sense buffer from
3276          * the struct se_cmd in question.
3277          */
3278         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3279                 if (transport_get_sense_data(cmd) < 0)
3280                         reason = TCM_NON_EXISTENT_LUN;
3281
3282                 /*
3283                  * Only set when an struct se_task->task_scsi_status returned
3284                  * a non GOOD status.
3285                  */
3286                 if (cmd->scsi_status) {
3287                         ret = transport_send_check_condition_and_sense(
3288                                         cmd, reason, 1);
3289                         if (ret == -EAGAIN || ret == -ENOMEM)
3290                                 goto queue_full;
3291
3292                         transport_lun_remove_cmd(cmd);
3293                         transport_cmd_check_stop_to_fabric(cmd);
3294                         return;
3295                 }
3296         }
3297         /*
3298          * Check for a callback, used by amongst other things
3299          * XDWRITE_READ_10 emulation.
3300          */
3301         if (cmd->transport_complete_callback)
3302                 cmd->transport_complete_callback(cmd);
3303
3304         switch (cmd->data_direction) {
3305         case DMA_FROM_DEVICE:
3306                 spin_lock(&cmd->se_lun->lun_sep_lock);
3307                 if (cmd->se_lun->lun_sep) {
3308                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3309                                         cmd->data_length;
3310                 }
3311                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3312
3313                 ret = cmd->se_tfo->queue_data_in(cmd);
3314                 if (ret == -EAGAIN || ret == -ENOMEM)
3315                         goto queue_full;
3316                 break;
3317         case DMA_TO_DEVICE:
3318                 spin_lock(&cmd->se_lun->lun_sep_lock);
3319                 if (cmd->se_lun->lun_sep) {
3320                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3321                                 cmd->data_length;
3322                 }
3323                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3324                 /*
3325                  * Check if we need to send READ payload for BIDI-COMMAND
3326                  */
3327                 if (cmd->t_bidi_data_sg) {
3328                         spin_lock(&cmd->se_lun->lun_sep_lock);
3329                         if (cmd->se_lun->lun_sep) {
3330                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3331                                         cmd->data_length;
3332                         }
3333                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3334                         ret = cmd->se_tfo->queue_data_in(cmd);
3335                         if (ret == -EAGAIN || ret == -ENOMEM)
3336                                 goto queue_full;
3337                         break;
3338                 }
3339                 /* Fall through for DMA_TO_DEVICE */
3340         case DMA_NONE:
3341                 ret = cmd->se_tfo->queue_status(cmd);
3342                 if (ret == -EAGAIN || ret == -ENOMEM)
3343                         goto queue_full;
3344                 break;
3345         default:
3346                 break;
3347         }
3348
3349         transport_lun_remove_cmd(cmd);
3350         transport_cmd_check_stop_to_fabric(cmd);
3351         return;
3352
3353 queue_full:
3354         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3355                 " data_direction: %d\n", cmd, cmd->data_direction);
3356         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3357         transport_handle_queue_full(cmd, cmd->se_dev);
3358 }
3359
3360 static void transport_free_dev_tasks(struct se_cmd *cmd)
3361 {
3362         struct se_task *task, *task_tmp;
3363         unsigned long flags;
3364         LIST_HEAD(dispose_list);
3365
3366         spin_lock_irqsave(&cmd->t_state_lock, flags);
3367         list_for_each_entry_safe(task, task_tmp,
3368                                 &cmd->t_task_list, t_list) {
3369                 if (!(task->task_flags & TF_ACTIVE))
3370                         list_move_tail(&task->t_list, &dispose_list);
3371         }
3372         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3373
3374         while (!list_empty(&dispose_list)) {
3375                 task = list_first_entry(&dispose_list, struct se_task, t_list);
3376
3377                 if (task->task_sg != cmd->t_data_sg &&
3378                     task->task_sg != cmd->t_bidi_data_sg)
3379                         kfree(task->task_sg);
3380
3381                 list_del(&task->t_list);
3382
3383                 cmd->se_dev->transport->free_task(task);
3384         }
3385 }
3386
3387 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3388 {
3389         struct scatterlist *sg;
3390         int count;
3391
3392         for_each_sg(sgl, sg, nents, count)
3393                 __free_page(sg_page(sg));
3394
3395         kfree(sgl);
3396 }
3397
3398 static inline void transport_free_pages(struct se_cmd *cmd)
3399 {
3400         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3401                 return;
3402
3403         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3404         cmd->t_data_sg = NULL;
3405         cmd->t_data_nents = 0;
3406
3407         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3408         cmd->t_bidi_data_sg = NULL;
3409         cmd->t_bidi_data_nents = 0;
3410 }
3411
3412 /**
3413  * transport_release_cmd - free a command
3414  * @cmd:       command to free
3415  *
3416  * This routine unconditionally frees a command, and reference counting
3417  * or list removal must be done in the caller.
3418  */
3419 static void transport_release_cmd(struct se_cmd *cmd)
3420 {
3421         BUG_ON(!cmd->se_tfo);
3422
3423         if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
3424                 core_tmr_release_req(cmd->se_tmr_req);
3425         if (cmd->t_task_cdb != cmd->__t_task_cdb)
3426                 kfree(cmd->t_task_cdb);
3427         /*
3428          * If this cmd has been setup with target_get_sess_cmd(), drop
3429          * the kref and call ->release_cmd() in kref callback.
3430          */
3431          if (cmd->check_release != 0) {
3432                 target_put_sess_cmd(cmd->se_sess, cmd);
3433                 return;
3434         }
3435         cmd->se_tfo->release_cmd(cmd);
3436 }
3437
3438 /**
3439  * transport_put_cmd - release a reference to a command
3440  * @cmd:       command to release
3441  *
3442  * This routine releases our reference to the command and frees it if possible.
3443  */
3444 static void transport_put_cmd(struct se_cmd *cmd)
3445 {
3446         unsigned long flags;
3447         int free_tasks = 0;
3448
3449         spin_lock_irqsave(&cmd->t_state_lock, flags);
3450         if (atomic_read(&cmd->t_fe_count)) {
3451                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3452                         goto out_busy;
3453         }
3454
3455         if (atomic_read(&cmd->t_se_count)) {
3456                 if (!atomic_dec_and_test(&cmd->t_se_count))
3457                         goto out_busy;
3458         }
3459
3460         if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
3461                 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
3462                 transport_all_task_dev_remove_state(cmd);
3463                 free_tasks = 1;
3464         }
3465         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3466
3467         if (free_tasks != 0)
3468                 transport_free_dev_tasks(cmd);
3469
3470         transport_free_pages(cmd);
3471         transport_release_cmd(cmd);
3472         return;
3473 out_busy:
3474         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3475 }
3476
3477 /*
3478  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3479  * allocating in the core.
3480  * @cmd:  Associated se_cmd descriptor
3481  * @mem:  SGL style memory for TCM WRITE / READ
3482  * @sg_mem_num: Number of SGL elements
3483  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3484  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3485  *
3486  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3487  * of parameters.
3488  */
3489 int transport_generic_map_mem_to_cmd(
3490         struct se_cmd *cmd,
3491         struct scatterlist *sgl,
3492         u32 sgl_count,
3493         struct scatterlist *sgl_bidi,
3494         u32 sgl_bidi_count)
3495 {
3496         if (!sgl || !sgl_count)
3497                 return 0;
3498
3499         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3500             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3501                 /*
3502                  * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3503                  * scatterlists already have been set to follow what the fabric
3504                  * passes for the original expected data transfer length.
3505                  */
3506                 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3507                         pr_warn("Rejecting SCSI DATA overflow for fabric using"
3508                                 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3509                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3510                         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3511                         return -EINVAL;
3512                 }
3513
3514                 cmd->t_data_sg = sgl;
3515                 cmd->t_data_nents = sgl_count;
3516
3517                 if (sgl_bidi && sgl_bidi_count) {
3518                         cmd->t_bidi_data_sg = sgl_bidi;
3519                         cmd->t_bidi_data_nents = sgl_bidi_count;
3520                 }
3521                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3522         }
3523
3524         return 0;
3525 }
3526 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3527
3528 void *transport_kmap_data_sg(struct se_cmd *cmd)
3529 {
3530         struct scatterlist *sg = cmd->t_data_sg;
3531         struct page **pages;
3532         int i;
3533
3534         BUG_ON(!sg);
3535         /*
3536          * We need to take into account a possible offset here for fabrics like
3537          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3538          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3539          */
3540         if (!cmd->t_data_nents)
3541                 return NULL;
3542         else if (cmd->t_data_nents == 1)
3543                 return kmap(sg_page(sg)) + sg->offset;
3544
3545         /* >1 page. use vmap */
3546         pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
3547         if (!pages)
3548                 return NULL;
3549
3550         /* convert sg[] to pages[] */
3551         for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
3552                 pages[i] = sg_page(sg);
3553         }
3554
3555         cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
3556         kfree(pages);
3557         if (!cmd->t_data_vmap)
3558                 return NULL;
3559
3560         return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
3561 }
3562 EXPORT_SYMBOL(transport_kmap_data_sg);
3563
3564 void transport_kunmap_data_sg(struct se_cmd *cmd)
3565 {
3566         if (!cmd->t_data_nents) {
3567                 return;
3568         } else if (cmd->t_data_nents == 1) {
3569                 kunmap(sg_page(cmd->t_data_sg));
3570                 return;
3571         }
3572
3573         vunmap(cmd->t_data_vmap);
3574         cmd->t_data_vmap = NULL;
3575 }
3576 EXPORT_SYMBOL(transport_kunmap_data_sg);
3577
3578 static int
3579 transport_generic_get_mem(struct se_cmd *cmd)
3580 {
3581         u32 length = cmd->data_length;
3582         unsigned int nents;
3583         struct page *page;
3584         gfp_t zero_flag;
3585         int i = 0;
3586
3587         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3588         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3589         if (!cmd->t_data_sg)
3590                 return -ENOMEM;
3591
3592         cmd->t_data_nents = nents;
3593         sg_init_table(cmd->t_data_sg, nents);
3594
3595         zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO;
3596
3597         while (length) {
3598                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3599                 page = alloc_page(GFP_KERNEL | zero_flag);
3600                 if (!page)
3601                         goto out;
3602
3603                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3604                 length -= page_len;
3605                 i++;
3606         }
3607         return 0;
3608
3609 out:
3610         while (i >= 0) {
3611                 __free_page(sg_page(&cmd->t_data_sg[i]));
3612                 i--;
3613         }
3614         kfree(cmd->t_data_sg);
3615         cmd->t_data_sg = NULL;
3616         return -ENOMEM;
3617 }
3618
3619 /* Reduce sectors if they are too long for the device */
3620 static inline sector_t transport_limit_task_sectors(
3621         struct se_device *dev,
3622         unsigned long long lba,
3623         sector_t sectors)
3624 {
3625         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3626
3627         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3628                 if ((lba + sectors) > transport_dev_end_lba(dev))
3629                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3630
3631         return sectors;
3632 }
3633
3634
3635 /*
3636  * This function can be used by HW target mode drivers to create a linked
3637  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3638  * This is intended to be called during the completion path by TCM Core
3639  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3640  */
3641 void transport_do_task_sg_chain(struct se_cmd *cmd)
3642 {
3643         struct scatterlist *sg_first = NULL;
3644         struct scatterlist *sg_prev = NULL;
3645         int sg_prev_nents = 0;
3646         struct scatterlist *sg;
3647         struct se_task *task;
3648         u32 chained_nents = 0;
3649         int i;
3650
3651         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3652
3653         /*
3654          * Walk the struct se_task list and setup scatterlist chains
3655          * for each contiguously allocated struct se_task->task_sg[].
3656          */
3657         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3658                 if (!task->task_sg)
3659                         continue;
3660
3661                 if (!sg_first) {
3662                         sg_first = task->task_sg;
3663                         chained_nents = task->task_sg_nents;
3664                 } else {
3665                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3666                         chained_nents += task->task_sg_nents;
3667                 }
3668                 /*
3669                  * For the padded tasks, use the extra SGL vector allocated
3670                  * in transport_allocate_data_tasks() for the sg_prev_nents
3671                  * offset into sg_chain() above.
3672                  *
3673                  * We do not need the padding for the last task (or a single
3674                  * task), but in that case we will never use the sg_prev_nents
3675                  * value below which would be incorrect.
3676                  */
3677                 sg_prev_nents = (task->task_sg_nents + 1);
3678                 sg_prev = task->task_sg;
3679         }
3680         /*
3681          * Setup the starting pointer and total t_tasks_sg_linked_no including
3682          * padding SGs for linking and to mark the end.
3683          */
3684         cmd->t_tasks_sg_chained = sg_first;
3685         cmd->t_tasks_sg_chained_no = chained_nents;
3686
3687         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3688                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3689                 cmd->t_tasks_sg_chained_no);
3690
3691         for_each_sg(cmd->t_tasks_sg_chained, sg,
3692                         cmd->t_tasks_sg_chained_no, i) {
3693
3694                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3695                         i, sg, sg_page(sg), sg->length, sg->offset);
3696                 if (sg_is_chain(sg))
3697                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3698                 if (sg_is_last(sg))
3699                         pr_debug("SG: %p sg_is_last=1\n", sg);
3700         }
3701 }
3702 EXPORT_SYMBOL(transport_do_task_sg_chain);
3703
3704 /*
3705  * Break up cmd into chunks transport can handle
3706  */
3707 static int
3708 transport_allocate_data_tasks(struct se_cmd *cmd,
3709         enum dma_data_direction data_direction,
3710         struct scatterlist *cmd_sg, unsigned int sgl_nents)
3711 {
3712         struct se_device *dev = cmd->se_dev;
3713         int task_count, i;
3714         unsigned long long lba;
3715         sector_t sectors, dev_max_sectors;
3716         u32 sector_size;
3717
3718         if (transport_cmd_get_valid_sectors(cmd) < 0)
3719                 return -EINVAL;
3720
3721         dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3722         sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3723
3724         WARN_ON(cmd->data_length % sector_size);
3725
3726         lba = cmd->t_task_lba;
3727         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3728         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3729
3730         /*
3731          * If we need just a single task reuse the SG list in the command
3732          * and avoid a lot of work.
3733          */
3734         if (task_count == 1) {
3735                 struct se_task *task;
3736                 unsigned long flags;
3737
3738                 task = transport_generic_get_task(cmd, data_direction);
3739                 if (!task)
3740                         return -ENOMEM;
3741
3742                 task->task_sg = cmd_sg;
3743                 task->task_sg_nents = sgl_nents;
3744
3745                 task->task_lba = lba;
3746                 task->task_sectors = sectors;
3747                 task->task_size = task->task_sectors * sector_size;
3748
3749                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3750                 list_add_tail(&task->t_list, &cmd->t_task_list);
3751                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3752
3753                 return task_count;
3754         }
3755
3756         for (i = 0; i < task_count; i++) {
3757                 struct se_task *task;
3758                 unsigned int task_size, task_sg_nents_padded;
3759                 struct scatterlist *sg;
3760                 unsigned long flags;
3761                 int count;
3762
3763                 task = transport_generic_get_task(cmd, data_direction);
3764                 if (!task)
3765                         return -ENOMEM;
3766
3767                 task->task_lba = lba;
3768                 task->task_sectors = min(sectors, dev_max_sectors);
3769                 task->task_size = task->task_sectors * sector_size;
3770
3771                 /*
3772                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3773                  * in order to calculate the number per task SGL entries
3774                  */
3775                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3776                 /*
3777                  * Check if the fabric module driver is requesting that all
3778                  * struct se_task->task_sg[] be chained together..  If so,
3779                  * then allocate an extra padding SG entry for linking and
3780                  * marking the end of the chained SGL for every task except
3781                  * the last one for (task_count > 1) operation, or skipping
3782                  * the extra padding for the (task_count == 1) case.
3783                  */
3784                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3785                         task_sg_nents_padded = (task->task_sg_nents + 1);
3786                 } else
3787                         task_sg_nents_padded = task->task_sg_nents;
3788
3789                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3790                                         task_sg_nents_padded, GFP_KERNEL);
3791                 if (!task->task_sg) {
3792                         cmd->se_dev->transport->free_task(task);
3793                         return -ENOMEM;
3794                 }
3795
3796                 sg_init_table(task->task_sg, task_sg_nents_padded);
3797
3798                 task_size = task->task_size;
3799
3800                 /* Build new sgl, only up to task_size */
3801                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3802                         if (cmd_sg->length > task_size)
3803                                 break;
3804
3805                         *sg = *cmd_sg;
3806                         task_size -= cmd_sg->length;
3807                         cmd_sg = sg_next(cmd_sg);
3808                 }
3809
3810                 lba += task->task_sectors;
3811                 sectors -= task->task_sectors;
3812
3813                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3814                 list_add_tail(&task->t_list, &cmd->t_task_list);
3815                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3816         }
3817
3818         return task_count;
3819 }
3820
3821 static int
3822 transport_allocate_control_task(struct se_cmd *cmd)
3823 {
3824         struct se_task *task;
3825         unsigned long flags;
3826
3827         /* Workaround for handling zero-length control CDBs */
3828         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3829             !cmd->data_length)
3830                 return 0;
3831
3832         task = transport_generic_get_task(cmd, cmd->data_direction);
3833         if (!task)
3834                 return -ENOMEM;
3835
3836         task->task_sg = cmd->t_data_sg;
3837         task->task_size = cmd->data_length;
3838         task->task_sg_nents = cmd->t_data_nents;
3839
3840         spin_lock_irqsave(&cmd->t_state_lock, flags);
3841         list_add_tail(&task->t_list, &cmd->t_task_list);
3842         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3843
3844         /* Success! Return number of tasks allocated */
3845         return 1;
3846 }
3847
3848 /*
3849  * Allocate any required ressources to execute the command, and either place
3850  * it on the execution queue if possible.  For writes we might not have the
3851  * payload yet, thus notify the fabric via a call to ->write_pending instead.
3852  */
3853 int transport_generic_new_cmd(struct se_cmd *cmd)
3854 {
3855         struct se_device *dev = cmd->se_dev;
3856         int task_cdbs, task_cdbs_bidi = 0;
3857         int set_counts = 1;
3858         int ret = 0;
3859
3860         /*
3861          * Determine is the TCM fabric module has already allocated physical
3862          * memory, and is directly calling transport_generic_map_mem_to_cmd()
3863          * beforehand.
3864          */
3865         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3866             cmd->data_length) {
3867                 ret = transport_generic_get_mem(cmd);
3868                 if (ret < 0)
3869                         goto out_fail;
3870         }
3871
3872         /*
3873          * For BIDI command set up the read tasks first.
3874          */
3875         if (cmd->t_bidi_data_sg &&
3876             dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3877                 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3878
3879                 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3880                                 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3881                                 cmd->t_bidi_data_nents);
3882                 if (task_cdbs_bidi <= 0)
3883                         goto out_fail;
3884
3885                 atomic_inc(&cmd->t_fe_count);
3886                 atomic_inc(&cmd->t_se_count);
3887                 set_counts = 0;
3888         }
3889
3890         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3891                 task_cdbs = transport_allocate_data_tasks(cmd,
3892                                         cmd->data_direction, cmd->t_data_sg,
3893                                         cmd->t_data_nents);
3894         } else {
3895                 task_cdbs = transport_allocate_control_task(cmd);
3896         }
3897
3898         if (task_cdbs < 0)
3899                 goto out_fail;
3900         else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3901                 spin_lock_irq(&cmd->t_state_lock);
3902                 cmd->t_state = TRANSPORT_COMPLETE;
3903                 cmd->transport_state |= CMD_T_ACTIVE;
3904                 spin_unlock_irq(&cmd->t_state_lock);
3905
3906                 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3907                         u8 ua_asc = 0, ua_ascq = 0;
3908
3909                         core_scsi3_ua_clear_for_request_sense(cmd,
3910                                         &ua_asc, &ua_ascq);
3911                 }
3912
3913                 INIT_WORK(&cmd->work, target_complete_ok_work);
3914                 queue_work(target_completion_wq, &cmd->work);
3915                 return 0;
3916         }
3917
3918         if (set_counts) {
3919                 atomic_inc(&cmd->t_fe_count);
3920                 atomic_inc(&cmd->t_se_count);
3921         }
3922
3923         cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3924         atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3925         atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3926
3927         /*
3928          * For WRITEs, let the fabric know its buffer is ready..
3929          * This WRITE struct se_cmd (and all of its associated struct se_task's)
3930          * will be added to the struct se_device execution queue after its WRITE
3931          * data has arrived. (ie: It gets handled by the transport processing
3932          * thread a second time)
3933          */
3934         if (cmd->data_direction == DMA_TO_DEVICE) {
3935                 transport_add_tasks_to_state_queue(cmd);
3936                 return transport_generic_write_pending(cmd);
3937         }
3938         /*
3939          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3940          * to the execution queue.
3941          */
3942         transport_execute_tasks(cmd);
3943         return 0;
3944
3945 out_fail:
3946         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3947         cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3948         return -EINVAL;
3949 }
3950 EXPORT_SYMBOL(transport_generic_new_cmd);
3951
3952 /*      transport_generic_process_write():
3953  *
3954  *
3955  */
3956 void transport_generic_process_write(struct se_cmd *cmd)
3957 {
3958         transport_execute_tasks(cmd);
3959 }
3960 EXPORT_SYMBOL(transport_generic_process_write);
3961
3962 static void transport_write_pending_qf(struct se_cmd *cmd)
3963 {
3964         int ret;
3965
3966         ret = cmd->se_tfo->write_pending(cmd);
3967         if (ret == -EAGAIN || ret == -ENOMEM) {
3968                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3969                          cmd);
3970                 transport_handle_queue_full(cmd, cmd->se_dev);
3971         }
3972 }
3973
3974 static int transport_generic_write_pending(struct se_cmd *cmd)
3975 {
3976         unsigned long flags;
3977         int ret;
3978
3979         spin_lock_irqsave(&cmd->t_state_lock, flags);
3980         cmd->t_state = TRANSPORT_WRITE_PENDING;
3981         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3982
3983         /*
3984          * Clear the se_cmd for WRITE_PENDING status in order to set
3985          * CMD_T_ACTIVE so that transport_generic_handle_data can be called
3986          * from HW target mode interrupt code.  This is safe to be called
3987          * with transport_off=1 before the cmd->se_tfo->write_pending
3988          * because the se_cmd->se_lun pointer is not being cleared.
3989          */
3990         transport_cmd_check_stop(cmd, 1, 0);
3991
3992         /*
3993          * Call the fabric write_pending function here to let the
3994          * frontend know that WRITE buffers are ready.
3995          */
3996         ret = cmd->se_tfo->write_pending(cmd);
3997         if (ret == -EAGAIN || ret == -ENOMEM)
3998                 goto queue_full;
3999         else if (ret < 0)
4000                 return ret;
4001
4002         return 1;
4003
4004 queue_full:
4005         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4006         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4007         transport_handle_queue_full(cmd, cmd->se_dev);
4008         return 0;
4009 }
4010
4011 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4012 {
4013         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4014                 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
4015                          transport_wait_for_tasks(cmd);
4016
4017                 transport_release_cmd(cmd);
4018         } else {
4019                 if (wait_for_tasks)
4020                         transport_wait_for_tasks(cmd);
4021
4022                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4023
4024                 if (cmd->se_lun)
4025                         transport_lun_remove_cmd(cmd);
4026
4027                 transport_free_dev_tasks(cmd);
4028
4029                 transport_put_cmd(cmd);
4030         }
4031 }
4032 EXPORT_SYMBOL(transport_generic_free_cmd);
4033
4034 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
4035  * @se_sess:    session to reference
4036  * @se_cmd:     command descriptor to add
4037  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
4038  */
4039 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
4040                         bool ack_kref)
4041 {
4042         unsigned long flags;
4043
4044         kref_init(&se_cmd->cmd_kref);
4045         /*
4046          * Add a second kref if the fabric caller is expecting to handle
4047          * fabric acknowledgement that requires two target_put_sess_cmd()
4048          * invocations before se_cmd descriptor release.
4049          */
4050         if (ack_kref == true) {
4051                 kref_get(&se_cmd->cmd_kref);
4052                 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
4053         }
4054
4055         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4056         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
4057         se_cmd->check_release = 1;
4058         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4059 }
4060 EXPORT_SYMBOL(target_get_sess_cmd);
4061
4062 static void target_release_cmd_kref(struct kref *kref)
4063 {
4064         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
4065         struct se_session *se_sess = se_cmd->se_sess;
4066         unsigned long flags;
4067
4068         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4069         if (list_empty(&se_cmd->se_cmd_list)) {
4070                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4071                 se_cmd->se_tfo->release_cmd(se_cmd);
4072                 return;
4073         }
4074         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
4075                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4076                 complete(&se_cmd->cmd_wait_comp);
4077                 return;
4078         }
4079         list_del(&se_cmd->se_cmd_list);
4080         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4081
4082         se_cmd->se_tfo->release_cmd(se_cmd);
4083 }
4084
4085 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4086  * @se_sess:    session to reference
4087  * @se_cmd:     command descriptor to drop
4088  */
4089 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4090 {
4091         return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
4092 }
4093 EXPORT_SYMBOL(target_put_sess_cmd);
4094
4095 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4096  * @se_sess:    session to split
4097  */
4098 void target_splice_sess_cmd_list(struct se_session *se_sess)
4099 {
4100         struct se_cmd *se_cmd;
4101         unsigned long flags;
4102
4103         WARN_ON(!list_empty(&se_sess->sess_wait_list));
4104         INIT_LIST_HEAD(&se_sess->sess_wait_list);
4105
4106         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4107         se_sess->sess_tearing_down = 1;
4108
4109         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4110
4111         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4112                 se_cmd->cmd_wait_set = 1;
4113
4114         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4115 }
4116 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4117
4118 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4119  * @se_sess:    session to wait for active I/O
4120  * @wait_for_tasks:     Make extra transport_wait_for_tasks call
4121  */
4122 void target_wait_for_sess_cmds(
4123         struct se_session *se_sess,
4124         int wait_for_tasks)
4125 {
4126         struct se_cmd *se_cmd, *tmp_cmd;
4127         bool rc = false;
4128
4129         list_for_each_entry_safe(se_cmd, tmp_cmd,
4130                                 &se_sess->sess_wait_list, se_cmd_list) {
4131                 list_del(&se_cmd->se_cmd_list);
4132
4133                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4134                         " %d\n", se_cmd, se_cmd->t_state,
4135                         se_cmd->se_tfo->get_cmd_state(se_cmd));
4136
4137                 if (wait_for_tasks) {
4138                         pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4139                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4140                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4141
4142                         rc = transport_wait_for_tasks(se_cmd);
4143
4144                         pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4145                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4146                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4147                 }
4148
4149                 if (!rc) {
4150                         wait_for_completion(&se_cmd->cmd_wait_comp);
4151                         pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4152                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4153                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4154                 }
4155
4156                 se_cmd->se_tfo->release_cmd(se_cmd);
4157         }
4158 }
4159 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4160
4161 /*      transport_lun_wait_for_tasks():
4162  *
4163  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4164  *      an struct se_lun to be successfully shutdown.
4165  */
4166 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4167 {
4168         unsigned long flags;
4169         int ret;
4170         /*
4171          * If the frontend has already requested this struct se_cmd to
4172          * be stopped, we can safely ignore this struct se_cmd.
4173          */
4174         spin_lock_irqsave(&cmd->t_state_lock, flags);
4175         if (cmd->transport_state & CMD_T_STOP) {
4176                 cmd->transport_state &= ~CMD_T_LUN_STOP;
4177
4178                 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
4179                          cmd->se_tfo->get_task_tag(cmd));
4180                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4181                 transport_cmd_check_stop(cmd, 1, 0);
4182                 return -EPERM;
4183         }
4184         cmd->transport_state |= CMD_T_LUN_FE_STOP;
4185         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4186
4187         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4188
4189         ret = transport_stop_tasks_for_cmd(cmd);
4190
4191         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4192                         " %d\n", cmd, cmd->t_task_list_num, ret);
4193         if (!ret) {
4194                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4195                                 cmd->se_tfo->get_task_tag(cmd));
4196                 wait_for_completion(&cmd->transport_lun_stop_comp);
4197                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4198                                 cmd->se_tfo->get_task_tag(cmd));
4199         }
4200         transport_remove_cmd_from_queue(cmd);
4201
4202         return 0;
4203 }
4204
4205 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4206 {
4207         struct se_cmd *cmd = NULL;
4208         unsigned long lun_flags, cmd_flags;
4209         /*
4210          * Do exception processing and return CHECK_CONDITION status to the
4211          * Initiator Port.
4212          */
4213         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4214         while (!list_empty(&lun->lun_cmd_list)) {
4215                 cmd = list_first_entry(&lun->lun_cmd_list,
4216                        struct se_cmd, se_lun_node);
4217                 list_del_init(&cmd->se_lun_node);
4218
4219                 /*
4220                  * This will notify iscsi_target_transport.c:
4221                  * transport_cmd_check_stop() that a LUN shutdown is in
4222                  * progress for the iscsi_cmd_t.
4223                  */
4224                 spin_lock(&cmd->t_state_lock);
4225                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4226                         "_lun_stop for  ITT: 0x%08x\n",
4227                         cmd->se_lun->unpacked_lun,
4228                         cmd->se_tfo->get_task_tag(cmd));
4229                 cmd->transport_state |= CMD_T_LUN_STOP;
4230                 spin_unlock(&cmd->t_state_lock);
4231
4232                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4233
4234                 if (!cmd->se_lun) {
4235                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4236                                 cmd->se_tfo->get_task_tag(cmd),
4237                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4238                         BUG();
4239                 }
4240                 /*
4241                  * If the Storage engine still owns the iscsi_cmd_t, determine
4242                  * and/or stop its context.
4243                  */
4244                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4245                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4246                         cmd->se_tfo->get_task_tag(cmd));
4247
4248                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4249                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4250                         continue;
4251                 }
4252
4253                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4254                         "_wait_for_tasks(): SUCCESS\n",
4255                         cmd->se_lun->unpacked_lun,
4256                         cmd->se_tfo->get_task_tag(cmd));
4257
4258                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4259                 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
4260                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4261                         goto check_cond;
4262                 }
4263                 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
4264                 transport_all_task_dev_remove_state(cmd);
4265                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4266
4267                 transport_free_dev_tasks(cmd);
4268                 /*
4269                  * The Storage engine stopped this struct se_cmd before it was
4270                  * send to the fabric frontend for delivery back to the
4271                  * Initiator Node.  Return this SCSI CDB back with an
4272                  * CHECK_CONDITION status.
4273                  */
4274 check_cond:
4275                 transport_send_check_condition_and_sense(cmd,
4276                                 TCM_NON_EXISTENT_LUN, 0);
4277                 /*
4278                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4279                  * be released, notify the waiting thread now that LU has
4280                  * finished accessing it.
4281                  */
4282                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4283                 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
4284                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4285                                 " struct se_cmd: %p ITT: 0x%08x\n",
4286                                 lun->unpacked_lun,
4287                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4288
4289                         spin_unlock_irqrestore(&cmd->t_state_lock,
4290                                         cmd_flags);
4291                         transport_cmd_check_stop(cmd, 1, 0);
4292                         complete(&cmd->transport_lun_fe_stop_comp);
4293                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4294                         continue;
4295                 }
4296                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4297                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4298
4299                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4300                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4301         }
4302         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4303 }
4304
4305 static int transport_clear_lun_thread(void *p)
4306 {
4307         struct se_lun *lun = p;
4308
4309         __transport_clear_lun_from_sessions(lun);
4310         complete(&lun->lun_shutdown_comp);
4311
4312         return 0;
4313 }
4314
4315 int transport_clear_lun_from_sessions(struct se_lun *lun)
4316 {
4317         struct task_struct *kt;
4318
4319         kt = kthread_run(transport_clear_lun_thread, lun,
4320                         "tcm_cl_%u", lun->unpacked_lun);
4321         if (IS_ERR(kt)) {
4322                 pr_err("Unable to start clear_lun thread\n");
4323                 return PTR_ERR(kt);
4324         }
4325         wait_for_completion(&lun->lun_shutdown_comp);
4326
4327         return 0;
4328 }
4329
4330 /**
4331  * transport_wait_for_tasks - wait for completion to occur
4332  * @cmd:        command to wait
4333  *
4334  * Called from frontend fabric context to wait for storage engine
4335  * to pause and/or release frontend generated struct se_cmd.
4336  */
4337 bool transport_wait_for_tasks(struct se_cmd *cmd)
4338 {
4339         unsigned long flags;
4340
4341         spin_lock_irqsave(&cmd->t_state_lock, flags);
4342         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
4343             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
4344                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4345                 return false;
4346         }
4347         /*
4348          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4349          * has been set in transport_set_supported_SAM_opcode().
4350          */
4351         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
4352             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
4353                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4354                 return false;
4355         }
4356         /*
4357          * If we are already stopped due to an external event (ie: LUN shutdown)
4358          * sleep until the connection can have the passed struct se_cmd back.
4359          * The cmd->transport_lun_stopped_sem will be upped by
4360          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4361          * has completed its operation on the struct se_cmd.
4362          */
4363         if (cmd->transport_state & CMD_T_LUN_STOP) {
4364                 pr_debug("wait_for_tasks: Stopping"
4365                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4366                         "_stop_comp); for ITT: 0x%08x\n",
4367                         cmd->se_tfo->get_task_tag(cmd));
4368                 /*
4369                  * There is a special case for WRITES where a FE exception +
4370                  * LUN shutdown means ConfigFS context is still sleeping on
4371                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4372                  * We go ahead and up transport_lun_stop_comp just to be sure
4373                  * here.
4374                  */
4375                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4376                 complete(&cmd->transport_lun_stop_comp);
4377                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4378                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4379
4380                 transport_all_task_dev_remove_state(cmd);
4381                 /*
4382                  * At this point, the frontend who was the originator of this
4383                  * struct se_cmd, now owns the structure and can be released through
4384                  * normal means below.
4385                  */
4386                 pr_debug("wait_for_tasks: Stopped"
4387                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4388                         "stop_comp); for ITT: 0x%08x\n",
4389                         cmd->se_tfo->get_task_tag(cmd));
4390
4391                 cmd->transport_state &= ~CMD_T_LUN_STOP;
4392         }
4393
4394         if (!(cmd->transport_state & CMD_T_ACTIVE)) {
4395                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4396                 return false;
4397         }
4398
4399         cmd->transport_state |= CMD_T_STOP;
4400
4401         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4402                 " i_state: %d, t_state: %d, CMD_T_STOP\n",
4403                 cmd, cmd->se_tfo->get_task_tag(cmd),
4404                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4405
4406         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4407
4408         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4409
4410         wait_for_completion(&cmd->t_transport_stop_comp);
4411
4412         spin_lock_irqsave(&cmd->t_state_lock, flags);
4413         cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
4414
4415         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4416                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4417                 cmd->se_tfo->get_task_tag(cmd));
4418
4419         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4420
4421         return true;
4422 }
4423 EXPORT_SYMBOL(transport_wait_for_tasks);
4424
4425 static int transport_get_sense_codes(
4426         struct se_cmd *cmd,
4427         u8 *asc,
4428         u8 *ascq)
4429 {
4430         *asc = cmd->scsi_asc;
4431         *ascq = cmd->scsi_ascq;
4432
4433         return 0;
4434 }
4435
4436 static int transport_set_sense_codes(
4437         struct se_cmd *cmd,
4438         u8 asc,
4439         u8 ascq)
4440 {
4441         cmd->scsi_asc = asc;
4442         cmd->scsi_ascq = ascq;
4443
4444         return 0;
4445 }
4446
4447 int transport_send_check_condition_and_sense(
4448         struct se_cmd *cmd,
4449         u8 reason,
4450         int from_transport)
4451 {
4452         unsigned char *buffer = cmd->sense_buffer;
4453         unsigned long flags;
4454         int offset;
4455         u8 asc = 0, ascq = 0;
4456
4457         spin_lock_irqsave(&cmd->t_state_lock, flags);
4458         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4459                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4460                 return 0;
4461         }
4462         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4463         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4464
4465         if (!reason && from_transport)
4466                 goto after_reason;
4467
4468         if (!from_transport)
4469                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4470         /*
4471          * Data Segment and SenseLength of the fabric response PDU.
4472          *
4473          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4474          * from include/scsi/scsi_cmnd.h
4475          */
4476         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4477                                 TRANSPORT_SENSE_BUFFER);
4478         /*
4479          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4480          * SENSE KEY values from include/scsi/scsi.h
4481          */
4482         switch (reason) {
4483         case TCM_NON_EXISTENT_LUN:
4484                 /* CURRENT ERROR */
4485                 buffer[offset] = 0x70;
4486                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4487                 /* ILLEGAL REQUEST */
4488                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4489                 /* LOGICAL UNIT NOT SUPPORTED */
4490                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4491                 break;
4492         case TCM_UNSUPPORTED_SCSI_OPCODE:
4493         case TCM_SECTOR_COUNT_TOO_MANY:
4494                 /* CURRENT ERROR */
4495                 buffer[offset] = 0x70;
4496                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4497                 /* ILLEGAL REQUEST */
4498                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4499                 /* INVALID COMMAND OPERATION CODE */
4500                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4501                 break;
4502         case TCM_UNKNOWN_MODE_PAGE:
4503                 /* CURRENT ERROR */
4504                 buffer[offset] = 0x70;
4505                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4506                 /* ILLEGAL REQUEST */
4507                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4508                 /* INVALID FIELD IN CDB */
4509                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4510                 break;
4511         case TCM_CHECK_CONDITION_ABORT_CMD:
4512                 /* CURRENT ERROR */
4513                 buffer[offset] = 0x70;
4514                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4515                 /* ABORTED COMMAND */
4516                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4517                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4518                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4519                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4520                 break;
4521         case TCM_INCORRECT_AMOUNT_OF_DATA:
4522                 /* CURRENT ERROR */
4523                 buffer[offset] = 0x70;
4524                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4525                 /* ABORTED COMMAND */
4526                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4527                 /* WRITE ERROR */
4528                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4529                 /* NOT ENOUGH UNSOLICITED DATA */
4530                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4531                 break;
4532         case TCM_INVALID_CDB_FIELD:
4533                 /* CURRENT ERROR */
4534                 buffer[offset] = 0x70;
4535                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4536                 /* ILLEGAL REQUEST */
4537                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4538                 /* INVALID FIELD IN CDB */
4539                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4540                 break;
4541         case TCM_INVALID_PARAMETER_LIST:
4542                 /* CURRENT ERROR */
4543                 buffer[offset] = 0x70;
4544                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4545                 /* ILLEGAL REQUEST */
4546                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4547                 /* INVALID FIELD IN PARAMETER LIST */
4548                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4549                 break;
4550         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4551                 /* CURRENT ERROR */
4552                 buffer[offset] = 0x70;
4553                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4554                 /* ABORTED COMMAND */
4555                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4556                 /* WRITE ERROR */
4557                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4558                 /* UNEXPECTED_UNSOLICITED_DATA */
4559                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4560                 break;
4561         case TCM_SERVICE_CRC_ERROR:
4562                 /* CURRENT ERROR */
4563                 buffer[offset] = 0x70;
4564                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4565                 /* ABORTED COMMAND */
4566                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4567                 /* PROTOCOL SERVICE CRC ERROR */
4568                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4569                 /* N/A */
4570                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4571                 break;
4572         case TCM_SNACK_REJECTED:
4573                 /* CURRENT ERROR */
4574                 buffer[offset] = 0x70;
4575                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4576                 /* ABORTED COMMAND */
4577                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4578                 /* READ ERROR */
4579                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4580                 /* FAILED RETRANSMISSION REQUEST */
4581                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4582                 break;
4583         case TCM_WRITE_PROTECTED:
4584                 /* CURRENT ERROR */
4585                 buffer[offset] = 0x70;
4586                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4587                 /* DATA PROTECT */
4588                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4589                 /* WRITE PROTECTED */
4590                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4591                 break;
4592         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4593                 /* CURRENT ERROR */
4594                 buffer[offset] = 0x70;
4595                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4596                 /* UNIT ATTENTION */
4597                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4598                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4599                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4600                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4601                 break;
4602         case TCM_CHECK_CONDITION_NOT_READY:
4603                 /* CURRENT ERROR */
4604                 buffer[offset] = 0x70;
4605                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4606                 /* Not Ready */
4607                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4608                 transport_get_sense_codes(cmd, &asc, &ascq);
4609                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4610                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4611                 break;
4612         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4613         default:
4614                 /* CURRENT ERROR */
4615                 buffer[offset] = 0x70;
4616                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4617                 /* ILLEGAL REQUEST */
4618                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4619                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4620                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4621                 break;
4622         }
4623         /*
4624          * This code uses linux/include/scsi/scsi.h SAM status codes!
4625          */
4626         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4627         /*
4628          * Automatically padded, this value is encoded in the fabric's
4629          * data_length response PDU containing the SCSI defined sense data.
4630          */
4631         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4632
4633 after_reason:
4634         return cmd->se_tfo->queue_status(cmd);
4635 }
4636 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4637
4638 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4639 {
4640         int ret = 0;
4641
4642         if (cmd->transport_state & CMD_T_ABORTED) {
4643                 if (!send_status ||
4644                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4645                         return 1;
4646 #if 0
4647                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4648                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4649                         cmd->t_task_cdb[0],
4650                         cmd->se_tfo->get_task_tag(cmd));
4651 #endif
4652                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4653                 cmd->se_tfo->queue_status(cmd);
4654                 ret = 1;
4655         }
4656         return ret;
4657 }
4658 EXPORT_SYMBOL(transport_check_aborted_status);
4659
4660 void transport_send_task_abort(struct se_cmd *cmd)
4661 {
4662         unsigned long flags;
4663
4664         spin_lock_irqsave(&cmd->t_state_lock, flags);
4665         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4666                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4667                 return;
4668         }
4669         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4670
4671         /*
4672          * If there are still expected incoming fabric WRITEs, we wait
4673          * until until they have completed before sending a TASK_ABORTED
4674          * response.  This response with TASK_ABORTED status will be
4675          * queued back to fabric module by transport_check_aborted_status().
4676          */
4677         if (cmd->data_direction == DMA_TO_DEVICE) {
4678                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4679                         cmd->transport_state |= CMD_T_ABORTED;
4680                         smp_mb__after_atomic_inc();
4681                 }
4682         }
4683         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4684 #if 0
4685         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4686                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4687                 cmd->se_tfo->get_task_tag(cmd));
4688 #endif
4689         cmd->se_tfo->queue_status(cmd);
4690 }
4691
4692 static int transport_generic_do_tmr(struct se_cmd *cmd)
4693 {
4694         struct se_device *dev = cmd->se_dev;
4695         struct se_tmr_req *tmr = cmd->se_tmr_req;
4696         int ret;
4697
4698         switch (tmr->function) {
4699         case TMR_ABORT_TASK:
4700                 core_tmr_abort_task(dev, tmr, cmd->se_sess);
4701                 break;
4702         case TMR_ABORT_TASK_SET:
4703         case TMR_CLEAR_ACA:
4704         case TMR_CLEAR_TASK_SET:
4705                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4706                 break;
4707         case TMR_LUN_RESET:
4708                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4709                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4710                                          TMR_FUNCTION_REJECTED;
4711                 break;
4712         case TMR_TARGET_WARM_RESET:
4713                 tmr->response = TMR_FUNCTION_REJECTED;
4714                 break;
4715         case TMR_TARGET_COLD_RESET:
4716                 tmr->response = TMR_FUNCTION_REJECTED;
4717                 break;
4718         default:
4719                 pr_err("Uknown TMR function: 0x%02x.\n",
4720                                 tmr->function);
4721                 tmr->response = TMR_FUNCTION_REJECTED;
4722                 break;
4723         }
4724
4725         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4726         cmd->se_tfo->queue_tm_rsp(cmd);
4727
4728         transport_cmd_check_stop_to_fabric(cmd);
4729         return 0;
4730 }
4731
4732 /*      transport_processing_thread():
4733  *
4734  *
4735  */
4736 static int transport_processing_thread(void *param)
4737 {
4738         int ret;
4739         struct se_cmd *cmd;
4740         struct se_device *dev = param;
4741
4742         while (!kthread_should_stop()) {
4743                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4744                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4745                                 kthread_should_stop());
4746                 if (ret < 0)
4747                         goto out;
4748
4749 get_cmd:
4750                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4751                 if (!cmd)
4752                         continue;
4753
4754                 switch (cmd->t_state) {
4755                 case TRANSPORT_NEW_CMD:
4756                         BUG();
4757                         break;
4758                 case TRANSPORT_NEW_CMD_MAP:
4759                         if (!cmd->se_tfo->new_cmd_map) {
4760                                 pr_err("cmd->se_tfo->new_cmd_map is"
4761                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4762                                 BUG();
4763                         }
4764                         ret = cmd->se_tfo->new_cmd_map(cmd);
4765                         if (ret < 0) {
4766                                 transport_generic_request_failure(cmd);
4767                                 break;
4768                         }
4769                         ret = transport_generic_new_cmd(cmd);
4770                         if (ret < 0) {
4771                                 transport_generic_request_failure(cmd);
4772                                 break;
4773                         }
4774                         break;
4775                 case TRANSPORT_PROCESS_WRITE:
4776                         transport_generic_process_write(cmd);
4777                         break;
4778                 case TRANSPORT_PROCESS_TMR:
4779                         transport_generic_do_tmr(cmd);
4780                         break;
4781                 case TRANSPORT_COMPLETE_QF_WP:
4782                         transport_write_pending_qf(cmd);
4783                         break;
4784                 case TRANSPORT_COMPLETE_QF_OK:
4785                         transport_complete_qf(cmd);
4786                         break;
4787                 default:
4788                         pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4789                                 "i_state: %d on SE LUN: %u\n",
4790                                 cmd->t_state,
4791                                 cmd->se_tfo->get_task_tag(cmd),
4792                                 cmd->se_tfo->get_cmd_state(cmd),
4793                                 cmd->se_lun->unpacked_lun);
4794                         BUG();
4795                 }
4796
4797                 goto get_cmd;
4798         }
4799
4800 out:
4801         WARN_ON(!list_empty(&dev->state_task_list));
4802         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4803         dev->process_thread = NULL;
4804         return 0;
4805 }