target: Enable WRITE_INSERT emulation in target_execute_cmd
[firefly-linux-kernel-4.4.55.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * (c) Copyright 2002-2013 Datera, Inc.
7  *
8  * Nicholas A. Bellinger <nab@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  *
24  ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <asm/unaligned.h>
38 #include <net/sock.h>
39 #include <net/tcp.h>
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_tcq.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 #include <target/target_core_configfs.h>
48
49 #include "target_core_internal.h"
50 #include "target_core_alua.h"
51 #include "target_core_pr.h"
52 #include "target_core_ua.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/target.h>
56
57 static struct workqueue_struct *target_completion_wq;
58 static struct kmem_cache *se_sess_cache;
59 struct kmem_cache *se_ua_cache;
60 struct kmem_cache *t10_pr_reg_cache;
61 struct kmem_cache *t10_alua_lu_gp_cache;
62 struct kmem_cache *t10_alua_lu_gp_mem_cache;
63 struct kmem_cache *t10_alua_tg_pt_gp_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
65 struct kmem_cache *t10_alua_lba_map_cache;
66 struct kmem_cache *t10_alua_lba_map_mem_cache;
67
68 static void transport_complete_task_attr(struct se_cmd *cmd);
69 static void transport_handle_queue_full(struct se_cmd *cmd,
70                 struct se_device *dev);
71 static int transport_put_cmd(struct se_cmd *cmd);
72 static void target_complete_ok_work(struct work_struct *work);
73
74 int init_se_kmem_caches(void)
75 {
76         se_sess_cache = kmem_cache_create("se_sess_cache",
77                         sizeof(struct se_session), __alignof__(struct se_session),
78                         0, NULL);
79         if (!se_sess_cache) {
80                 pr_err("kmem_cache_create() for struct se_session"
81                                 " failed\n");
82                 goto out;
83         }
84         se_ua_cache = kmem_cache_create("se_ua_cache",
85                         sizeof(struct se_ua), __alignof__(struct se_ua),
86                         0, NULL);
87         if (!se_ua_cache) {
88                 pr_err("kmem_cache_create() for struct se_ua failed\n");
89                 goto out_free_sess_cache;
90         }
91         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
92                         sizeof(struct t10_pr_registration),
93                         __alignof__(struct t10_pr_registration), 0, NULL);
94         if (!t10_pr_reg_cache) {
95                 pr_err("kmem_cache_create() for struct t10_pr_registration"
96                                 " failed\n");
97                 goto out_free_ua_cache;
98         }
99         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
100                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
101                         0, NULL);
102         if (!t10_alua_lu_gp_cache) {
103                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
104                                 " failed\n");
105                 goto out_free_pr_reg_cache;
106         }
107         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
108                         sizeof(struct t10_alua_lu_gp_member),
109                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
110         if (!t10_alua_lu_gp_mem_cache) {
111                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
112                                 "cache failed\n");
113                 goto out_free_lu_gp_cache;
114         }
115         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
116                         sizeof(struct t10_alua_tg_pt_gp),
117                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
118         if (!t10_alua_tg_pt_gp_cache) {
119                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
120                                 "cache failed\n");
121                 goto out_free_lu_gp_mem_cache;
122         }
123         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
124                         "t10_alua_tg_pt_gp_mem_cache",
125                         sizeof(struct t10_alua_tg_pt_gp_member),
126                         __alignof__(struct t10_alua_tg_pt_gp_member),
127                         0, NULL);
128         if (!t10_alua_tg_pt_gp_mem_cache) {
129                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
130                                 "mem_t failed\n");
131                 goto out_free_tg_pt_gp_cache;
132         }
133         t10_alua_lba_map_cache = kmem_cache_create(
134                         "t10_alua_lba_map_cache",
135                         sizeof(struct t10_alua_lba_map),
136                         __alignof__(struct t10_alua_lba_map), 0, NULL);
137         if (!t10_alua_lba_map_cache) {
138                 pr_err("kmem_cache_create() for t10_alua_lba_map_"
139                                 "cache failed\n");
140                 goto out_free_tg_pt_gp_mem_cache;
141         }
142         t10_alua_lba_map_mem_cache = kmem_cache_create(
143                         "t10_alua_lba_map_mem_cache",
144                         sizeof(struct t10_alua_lba_map_member),
145                         __alignof__(struct t10_alua_lba_map_member), 0, NULL);
146         if (!t10_alua_lba_map_mem_cache) {
147                 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
148                                 "cache failed\n");
149                 goto out_free_lba_map_cache;
150         }
151
152         target_completion_wq = alloc_workqueue("target_completion",
153                                                WQ_MEM_RECLAIM, 0);
154         if (!target_completion_wq)
155                 goto out_free_lba_map_mem_cache;
156
157         return 0;
158
159 out_free_lba_map_mem_cache:
160         kmem_cache_destroy(t10_alua_lba_map_mem_cache);
161 out_free_lba_map_cache:
162         kmem_cache_destroy(t10_alua_lba_map_cache);
163 out_free_tg_pt_gp_mem_cache:
164         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
165 out_free_tg_pt_gp_cache:
166         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
167 out_free_lu_gp_mem_cache:
168         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
169 out_free_lu_gp_cache:
170         kmem_cache_destroy(t10_alua_lu_gp_cache);
171 out_free_pr_reg_cache:
172         kmem_cache_destroy(t10_pr_reg_cache);
173 out_free_ua_cache:
174         kmem_cache_destroy(se_ua_cache);
175 out_free_sess_cache:
176         kmem_cache_destroy(se_sess_cache);
177 out:
178         return -ENOMEM;
179 }
180
181 void release_se_kmem_caches(void)
182 {
183         destroy_workqueue(target_completion_wq);
184         kmem_cache_destroy(se_sess_cache);
185         kmem_cache_destroy(se_ua_cache);
186         kmem_cache_destroy(t10_pr_reg_cache);
187         kmem_cache_destroy(t10_alua_lu_gp_cache);
188         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
189         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
190         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
191         kmem_cache_destroy(t10_alua_lba_map_cache);
192         kmem_cache_destroy(t10_alua_lba_map_mem_cache);
193 }
194
195 /* This code ensures unique mib indexes are handed out. */
196 static DEFINE_SPINLOCK(scsi_mib_index_lock);
197 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
198
199 /*
200  * Allocate a new row index for the entry type specified
201  */
202 u32 scsi_get_new_index(scsi_index_t type)
203 {
204         u32 new_index;
205
206         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
207
208         spin_lock(&scsi_mib_index_lock);
209         new_index = ++scsi_mib_index[type];
210         spin_unlock(&scsi_mib_index_lock);
211
212         return new_index;
213 }
214
215 void transport_subsystem_check_init(void)
216 {
217         int ret;
218         static int sub_api_initialized;
219
220         if (sub_api_initialized)
221                 return;
222
223         ret = request_module("target_core_iblock");
224         if (ret != 0)
225                 pr_err("Unable to load target_core_iblock\n");
226
227         ret = request_module("target_core_file");
228         if (ret != 0)
229                 pr_err("Unable to load target_core_file\n");
230
231         ret = request_module("target_core_pscsi");
232         if (ret != 0)
233                 pr_err("Unable to load target_core_pscsi\n");
234
235         sub_api_initialized = 1;
236 }
237
238 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
239 {
240         struct se_session *se_sess;
241
242         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
243         if (!se_sess) {
244                 pr_err("Unable to allocate struct se_session from"
245                                 " se_sess_cache\n");
246                 return ERR_PTR(-ENOMEM);
247         }
248         INIT_LIST_HEAD(&se_sess->sess_list);
249         INIT_LIST_HEAD(&se_sess->sess_acl_list);
250         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
251         INIT_LIST_HEAD(&se_sess->sess_wait_list);
252         spin_lock_init(&se_sess->sess_cmd_lock);
253         kref_init(&se_sess->sess_kref);
254         se_sess->sup_prot_ops = sup_prot_ops;
255
256         return se_sess;
257 }
258 EXPORT_SYMBOL(transport_init_session);
259
260 int transport_alloc_session_tags(struct se_session *se_sess,
261                                  unsigned int tag_num, unsigned int tag_size)
262 {
263         int rc;
264
265         se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
266                                         GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
267         if (!se_sess->sess_cmd_map) {
268                 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
269                 if (!se_sess->sess_cmd_map) {
270                         pr_err("Unable to allocate se_sess->sess_cmd_map\n");
271                         return -ENOMEM;
272                 }
273         }
274
275         rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
276         if (rc < 0) {
277                 pr_err("Unable to init se_sess->sess_tag_pool,"
278                         " tag_num: %u\n", tag_num);
279                 if (is_vmalloc_addr(se_sess->sess_cmd_map))
280                         vfree(se_sess->sess_cmd_map);
281                 else
282                         kfree(se_sess->sess_cmd_map);
283                 se_sess->sess_cmd_map = NULL;
284                 return -ENOMEM;
285         }
286
287         return 0;
288 }
289 EXPORT_SYMBOL(transport_alloc_session_tags);
290
291 struct se_session *transport_init_session_tags(unsigned int tag_num,
292                                                unsigned int tag_size,
293                                                enum target_prot_op sup_prot_ops)
294 {
295         struct se_session *se_sess;
296         int rc;
297
298         se_sess = transport_init_session(sup_prot_ops);
299         if (IS_ERR(se_sess))
300                 return se_sess;
301
302         rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
303         if (rc < 0) {
304                 transport_free_session(se_sess);
305                 return ERR_PTR(-ENOMEM);
306         }
307
308         return se_sess;
309 }
310 EXPORT_SYMBOL(transport_init_session_tags);
311
312 /*
313  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
314  */
315 void __transport_register_session(
316         struct se_portal_group *se_tpg,
317         struct se_node_acl *se_nacl,
318         struct se_session *se_sess,
319         void *fabric_sess_ptr)
320 {
321         unsigned char buf[PR_REG_ISID_LEN];
322
323         se_sess->se_tpg = se_tpg;
324         se_sess->fabric_sess_ptr = fabric_sess_ptr;
325         /*
326          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
327          *
328          * Only set for struct se_session's that will actually be moving I/O.
329          * eg: *NOT* discovery sessions.
330          */
331         if (se_nacl) {
332                 /*
333                  * If the fabric module supports an ISID based TransportID,
334                  * save this value in binary from the fabric I_T Nexus now.
335                  */
336                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
337                         memset(&buf[0], 0, PR_REG_ISID_LEN);
338                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
339                                         &buf[0], PR_REG_ISID_LEN);
340                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
341                 }
342                 kref_get(&se_nacl->acl_kref);
343
344                 spin_lock_irq(&se_nacl->nacl_sess_lock);
345                 /*
346                  * The se_nacl->nacl_sess pointer will be set to the
347                  * last active I_T Nexus for each struct se_node_acl.
348                  */
349                 se_nacl->nacl_sess = se_sess;
350
351                 list_add_tail(&se_sess->sess_acl_list,
352                               &se_nacl->acl_sess_list);
353                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
354         }
355         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
356
357         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
358                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
359 }
360 EXPORT_SYMBOL(__transport_register_session);
361
362 void transport_register_session(
363         struct se_portal_group *se_tpg,
364         struct se_node_acl *se_nacl,
365         struct se_session *se_sess,
366         void *fabric_sess_ptr)
367 {
368         unsigned long flags;
369
370         spin_lock_irqsave(&se_tpg->session_lock, flags);
371         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
372         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
373 }
374 EXPORT_SYMBOL(transport_register_session);
375
376 static void target_release_session(struct kref *kref)
377 {
378         struct se_session *se_sess = container_of(kref,
379                         struct se_session, sess_kref);
380         struct se_portal_group *se_tpg = se_sess->se_tpg;
381
382         se_tpg->se_tpg_tfo->close_session(se_sess);
383 }
384
385 void target_get_session(struct se_session *se_sess)
386 {
387         kref_get(&se_sess->sess_kref);
388 }
389 EXPORT_SYMBOL(target_get_session);
390
391 void target_put_session(struct se_session *se_sess)
392 {
393         struct se_portal_group *tpg = se_sess->se_tpg;
394
395         if (tpg->se_tpg_tfo->put_session != NULL) {
396                 tpg->se_tpg_tfo->put_session(se_sess);
397                 return;
398         }
399         kref_put(&se_sess->sess_kref, target_release_session);
400 }
401 EXPORT_SYMBOL(target_put_session);
402
403 static void target_complete_nacl(struct kref *kref)
404 {
405         struct se_node_acl *nacl = container_of(kref,
406                                 struct se_node_acl, acl_kref);
407
408         complete(&nacl->acl_free_comp);
409 }
410
411 void target_put_nacl(struct se_node_acl *nacl)
412 {
413         kref_put(&nacl->acl_kref, target_complete_nacl);
414 }
415
416 void transport_deregister_session_configfs(struct se_session *se_sess)
417 {
418         struct se_node_acl *se_nacl;
419         unsigned long flags;
420         /*
421          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
422          */
423         se_nacl = se_sess->se_node_acl;
424         if (se_nacl) {
425                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
426                 if (se_nacl->acl_stop == 0)
427                         list_del(&se_sess->sess_acl_list);
428                 /*
429                  * If the session list is empty, then clear the pointer.
430                  * Otherwise, set the struct se_session pointer from the tail
431                  * element of the per struct se_node_acl active session list.
432                  */
433                 if (list_empty(&se_nacl->acl_sess_list))
434                         se_nacl->nacl_sess = NULL;
435                 else {
436                         se_nacl->nacl_sess = container_of(
437                                         se_nacl->acl_sess_list.prev,
438                                         struct se_session, sess_acl_list);
439                 }
440                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
441         }
442 }
443 EXPORT_SYMBOL(transport_deregister_session_configfs);
444
445 void transport_free_session(struct se_session *se_sess)
446 {
447         if (se_sess->sess_cmd_map) {
448                 percpu_ida_destroy(&se_sess->sess_tag_pool);
449                 if (is_vmalloc_addr(se_sess->sess_cmd_map))
450                         vfree(se_sess->sess_cmd_map);
451                 else
452                         kfree(se_sess->sess_cmd_map);
453         }
454         kmem_cache_free(se_sess_cache, se_sess);
455 }
456 EXPORT_SYMBOL(transport_free_session);
457
458 void transport_deregister_session(struct se_session *se_sess)
459 {
460         struct se_portal_group *se_tpg = se_sess->se_tpg;
461         struct target_core_fabric_ops *se_tfo;
462         struct se_node_acl *se_nacl;
463         unsigned long flags;
464         bool comp_nacl = true;
465
466         if (!se_tpg) {
467                 transport_free_session(se_sess);
468                 return;
469         }
470         se_tfo = se_tpg->se_tpg_tfo;
471
472         spin_lock_irqsave(&se_tpg->session_lock, flags);
473         list_del(&se_sess->sess_list);
474         se_sess->se_tpg = NULL;
475         se_sess->fabric_sess_ptr = NULL;
476         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
477
478         /*
479          * Determine if we need to do extra work for this initiator node's
480          * struct se_node_acl if it had been previously dynamically generated.
481          */
482         se_nacl = se_sess->se_node_acl;
483
484         spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
485         if (se_nacl && se_nacl->dynamic_node_acl) {
486                 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
487                         list_del(&se_nacl->acl_list);
488                         se_tpg->num_node_acls--;
489                         spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
490                         core_tpg_wait_for_nacl_pr_ref(se_nacl);
491                         core_free_device_list_for_node(se_nacl, se_tpg);
492                         se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
493
494                         comp_nacl = false;
495                         spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
496                 }
497         }
498         spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
499
500         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
501                 se_tpg->se_tpg_tfo->get_fabric_name());
502         /*
503          * If last kref is dropping now for an explicit NodeACL, awake sleeping
504          * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
505          * removal context.
506          */
507         if (se_nacl && comp_nacl == true)
508                 target_put_nacl(se_nacl);
509
510         transport_free_session(se_sess);
511 }
512 EXPORT_SYMBOL(transport_deregister_session);
513
514 /*
515  * Called with cmd->t_state_lock held.
516  */
517 static void target_remove_from_state_list(struct se_cmd *cmd)
518 {
519         struct se_device *dev = cmd->se_dev;
520         unsigned long flags;
521
522         if (!dev)
523                 return;
524
525         if (cmd->transport_state & CMD_T_BUSY)
526                 return;
527
528         spin_lock_irqsave(&dev->execute_task_lock, flags);
529         if (cmd->state_active) {
530                 list_del(&cmd->state_list);
531                 cmd->state_active = false;
532         }
533         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
534 }
535
536 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
537                                     bool write_pending)
538 {
539         unsigned long flags;
540
541         spin_lock_irqsave(&cmd->t_state_lock, flags);
542         if (write_pending)
543                 cmd->t_state = TRANSPORT_WRITE_PENDING;
544
545         if (remove_from_lists) {
546                 target_remove_from_state_list(cmd);
547
548                 /*
549                  * Clear struct se_cmd->se_lun before the handoff to FE.
550                  */
551                 cmd->se_lun = NULL;
552         }
553
554         /*
555          * Determine if frontend context caller is requesting the stopping of
556          * this command for frontend exceptions.
557          */
558         if (cmd->transport_state & CMD_T_STOP) {
559                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
560                         __func__, __LINE__,
561                         cmd->se_tfo->get_task_tag(cmd));
562
563                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
564
565                 complete(&cmd->t_transport_stop_comp);
566                 return 1;
567         }
568
569         cmd->transport_state &= ~CMD_T_ACTIVE;
570         if (remove_from_lists) {
571                 /*
572                  * Some fabric modules like tcm_loop can release
573                  * their internally allocated I/O reference now and
574                  * struct se_cmd now.
575                  *
576                  * Fabric modules are expected to return '1' here if the
577                  * se_cmd being passed is released at this point,
578                  * or zero if not being released.
579                  */
580                 if (cmd->se_tfo->check_stop_free != NULL) {
581                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
582                         return cmd->se_tfo->check_stop_free(cmd);
583                 }
584         }
585
586         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
587         return 0;
588 }
589
590 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
591 {
592         return transport_cmd_check_stop(cmd, true, false);
593 }
594
595 static void transport_lun_remove_cmd(struct se_cmd *cmd)
596 {
597         struct se_lun *lun = cmd->se_lun;
598
599         if (!lun)
600                 return;
601
602         if (cmpxchg(&cmd->lun_ref_active, true, false))
603                 percpu_ref_put(&lun->lun_ref);
604 }
605
606 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
607 {
608         if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
609                 transport_lun_remove_cmd(cmd);
610         /*
611          * Allow the fabric driver to unmap any resources before
612          * releasing the descriptor via TFO->release_cmd()
613          */
614         if (remove)
615                 cmd->se_tfo->aborted_task(cmd);
616
617         if (transport_cmd_check_stop_to_fabric(cmd))
618                 return;
619         if (remove)
620                 transport_put_cmd(cmd);
621 }
622
623 static void target_complete_failure_work(struct work_struct *work)
624 {
625         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
626
627         transport_generic_request_failure(cmd,
628                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
629 }
630
631 /*
632  * Used when asking transport to copy Sense Data from the underlying
633  * Linux/SCSI struct scsi_cmnd
634  */
635 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
636 {
637         struct se_device *dev = cmd->se_dev;
638
639         WARN_ON(!cmd->se_lun);
640
641         if (!dev)
642                 return NULL;
643
644         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
645                 return NULL;
646
647         cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
648
649         pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
650                 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
651         return cmd->sense_buffer;
652 }
653
654 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
655 {
656         struct se_device *dev = cmd->se_dev;
657         int success = scsi_status == GOOD;
658         unsigned long flags;
659
660         cmd->scsi_status = scsi_status;
661
662
663         spin_lock_irqsave(&cmd->t_state_lock, flags);
664         cmd->transport_state &= ~CMD_T_BUSY;
665
666         if (dev && dev->transport->transport_complete) {
667                 dev->transport->transport_complete(cmd,
668                                 cmd->t_data_sg,
669                                 transport_get_sense_buffer(cmd));
670                 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
671                         success = 1;
672         }
673
674         /*
675          * See if we are waiting to complete for an exception condition.
676          */
677         if (cmd->transport_state & CMD_T_REQUEST_STOP) {
678                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
679                 complete(&cmd->task_stop_comp);
680                 return;
681         }
682
683         /*
684          * Check for case where an explicit ABORT_TASK has been received
685          * and transport_wait_for_tasks() will be waiting for completion..
686          */
687         if (cmd->transport_state & CMD_T_ABORTED &&
688             cmd->transport_state & CMD_T_STOP) {
689                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
690                 complete(&cmd->t_transport_stop_comp);
691                 return;
692         } else if (!success) {
693                 INIT_WORK(&cmd->work, target_complete_failure_work);
694         } else {
695                 INIT_WORK(&cmd->work, target_complete_ok_work);
696         }
697
698         cmd->t_state = TRANSPORT_COMPLETE;
699         cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
700         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
701
702         queue_work(target_completion_wq, &cmd->work);
703 }
704 EXPORT_SYMBOL(target_complete_cmd);
705
706 static void target_add_to_state_list(struct se_cmd *cmd)
707 {
708         struct se_device *dev = cmd->se_dev;
709         unsigned long flags;
710
711         spin_lock_irqsave(&dev->execute_task_lock, flags);
712         if (!cmd->state_active) {
713                 list_add_tail(&cmd->state_list, &dev->state_list);
714                 cmd->state_active = true;
715         }
716         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
717 }
718
719 /*
720  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
721  */
722 static void transport_write_pending_qf(struct se_cmd *cmd);
723 static void transport_complete_qf(struct se_cmd *cmd);
724
725 void target_qf_do_work(struct work_struct *work)
726 {
727         struct se_device *dev = container_of(work, struct se_device,
728                                         qf_work_queue);
729         LIST_HEAD(qf_cmd_list);
730         struct se_cmd *cmd, *cmd_tmp;
731
732         spin_lock_irq(&dev->qf_cmd_lock);
733         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
734         spin_unlock_irq(&dev->qf_cmd_lock);
735
736         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
737                 list_del(&cmd->se_qf_node);
738                 atomic_dec(&dev->dev_qf_count);
739                 smp_mb__after_atomic_dec();
740
741                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
742                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
743                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
744                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
745                         : "UNKNOWN");
746
747                 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
748                         transport_write_pending_qf(cmd);
749                 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
750                         transport_complete_qf(cmd);
751         }
752 }
753
754 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
755 {
756         switch (cmd->data_direction) {
757         case DMA_NONE:
758                 return "NONE";
759         case DMA_FROM_DEVICE:
760                 return "READ";
761         case DMA_TO_DEVICE:
762                 return "WRITE";
763         case DMA_BIDIRECTIONAL:
764                 return "BIDI";
765         default:
766                 break;
767         }
768
769         return "UNKNOWN";
770 }
771
772 void transport_dump_dev_state(
773         struct se_device *dev,
774         char *b,
775         int *bl)
776 {
777         *bl += sprintf(b + *bl, "Status: ");
778         if (dev->export_count)
779                 *bl += sprintf(b + *bl, "ACTIVATED");
780         else
781                 *bl += sprintf(b + *bl, "DEACTIVATED");
782
783         *bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
784         *bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
785                 dev->dev_attrib.block_size,
786                 dev->dev_attrib.hw_max_sectors);
787         *bl += sprintf(b + *bl, "        ");
788 }
789
790 void transport_dump_vpd_proto_id(
791         struct t10_vpd *vpd,
792         unsigned char *p_buf,
793         int p_buf_len)
794 {
795         unsigned char buf[VPD_TMP_BUF_SIZE];
796         int len;
797
798         memset(buf, 0, VPD_TMP_BUF_SIZE);
799         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
800
801         switch (vpd->protocol_identifier) {
802         case 0x00:
803                 sprintf(buf+len, "Fibre Channel\n");
804                 break;
805         case 0x10:
806                 sprintf(buf+len, "Parallel SCSI\n");
807                 break;
808         case 0x20:
809                 sprintf(buf+len, "SSA\n");
810                 break;
811         case 0x30:
812                 sprintf(buf+len, "IEEE 1394\n");
813                 break;
814         case 0x40:
815                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
816                                 " Protocol\n");
817                 break;
818         case 0x50:
819                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
820                 break;
821         case 0x60:
822                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
823                 break;
824         case 0x70:
825                 sprintf(buf+len, "Automation/Drive Interface Transport"
826                                 " Protocol\n");
827                 break;
828         case 0x80:
829                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
830                 break;
831         default:
832                 sprintf(buf+len, "Unknown 0x%02x\n",
833                                 vpd->protocol_identifier);
834                 break;
835         }
836
837         if (p_buf)
838                 strncpy(p_buf, buf, p_buf_len);
839         else
840                 pr_debug("%s", buf);
841 }
842
843 void
844 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
845 {
846         /*
847          * Check if the Protocol Identifier Valid (PIV) bit is set..
848          *
849          * from spc3r23.pdf section 7.5.1
850          */
851          if (page_83[1] & 0x80) {
852                 vpd->protocol_identifier = (page_83[0] & 0xf0);
853                 vpd->protocol_identifier_set = 1;
854                 transport_dump_vpd_proto_id(vpd, NULL, 0);
855         }
856 }
857 EXPORT_SYMBOL(transport_set_vpd_proto_id);
858
859 int transport_dump_vpd_assoc(
860         struct t10_vpd *vpd,
861         unsigned char *p_buf,
862         int p_buf_len)
863 {
864         unsigned char buf[VPD_TMP_BUF_SIZE];
865         int ret = 0;
866         int len;
867
868         memset(buf, 0, VPD_TMP_BUF_SIZE);
869         len = sprintf(buf, "T10 VPD Identifier Association: ");
870
871         switch (vpd->association) {
872         case 0x00:
873                 sprintf(buf+len, "addressed logical unit\n");
874                 break;
875         case 0x10:
876                 sprintf(buf+len, "target port\n");
877                 break;
878         case 0x20:
879                 sprintf(buf+len, "SCSI target device\n");
880                 break;
881         default:
882                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
883                 ret = -EINVAL;
884                 break;
885         }
886
887         if (p_buf)
888                 strncpy(p_buf, buf, p_buf_len);
889         else
890                 pr_debug("%s", buf);
891
892         return ret;
893 }
894
895 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
896 {
897         /*
898          * The VPD identification association..
899          *
900          * from spc3r23.pdf Section 7.6.3.1 Table 297
901          */
902         vpd->association = (page_83[1] & 0x30);
903         return transport_dump_vpd_assoc(vpd, NULL, 0);
904 }
905 EXPORT_SYMBOL(transport_set_vpd_assoc);
906
907 int transport_dump_vpd_ident_type(
908         struct t10_vpd *vpd,
909         unsigned char *p_buf,
910         int p_buf_len)
911 {
912         unsigned char buf[VPD_TMP_BUF_SIZE];
913         int ret = 0;
914         int len;
915
916         memset(buf, 0, VPD_TMP_BUF_SIZE);
917         len = sprintf(buf, "T10 VPD Identifier Type: ");
918
919         switch (vpd->device_identifier_type) {
920         case 0x00:
921                 sprintf(buf+len, "Vendor specific\n");
922                 break;
923         case 0x01:
924                 sprintf(buf+len, "T10 Vendor ID based\n");
925                 break;
926         case 0x02:
927                 sprintf(buf+len, "EUI-64 based\n");
928                 break;
929         case 0x03:
930                 sprintf(buf+len, "NAA\n");
931                 break;
932         case 0x04:
933                 sprintf(buf+len, "Relative target port identifier\n");
934                 break;
935         case 0x08:
936                 sprintf(buf+len, "SCSI name string\n");
937                 break;
938         default:
939                 sprintf(buf+len, "Unsupported: 0x%02x\n",
940                                 vpd->device_identifier_type);
941                 ret = -EINVAL;
942                 break;
943         }
944
945         if (p_buf) {
946                 if (p_buf_len < strlen(buf)+1)
947                         return -EINVAL;
948                 strncpy(p_buf, buf, p_buf_len);
949         } else {
950                 pr_debug("%s", buf);
951         }
952
953         return ret;
954 }
955
956 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
957 {
958         /*
959          * The VPD identifier type..
960          *
961          * from spc3r23.pdf Section 7.6.3.1 Table 298
962          */
963         vpd->device_identifier_type = (page_83[1] & 0x0f);
964         return transport_dump_vpd_ident_type(vpd, NULL, 0);
965 }
966 EXPORT_SYMBOL(transport_set_vpd_ident_type);
967
968 int transport_dump_vpd_ident(
969         struct t10_vpd *vpd,
970         unsigned char *p_buf,
971         int p_buf_len)
972 {
973         unsigned char buf[VPD_TMP_BUF_SIZE];
974         int ret = 0;
975
976         memset(buf, 0, VPD_TMP_BUF_SIZE);
977
978         switch (vpd->device_identifier_code_set) {
979         case 0x01: /* Binary */
980                 snprintf(buf, sizeof(buf),
981                         "T10 VPD Binary Device Identifier: %s\n",
982                         &vpd->device_identifier[0]);
983                 break;
984         case 0x02: /* ASCII */
985                 snprintf(buf, sizeof(buf),
986                         "T10 VPD ASCII Device Identifier: %s\n",
987                         &vpd->device_identifier[0]);
988                 break;
989         case 0x03: /* UTF-8 */
990                 snprintf(buf, sizeof(buf),
991                         "T10 VPD UTF-8 Device Identifier: %s\n",
992                         &vpd->device_identifier[0]);
993                 break;
994         default:
995                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
996                         " 0x%02x", vpd->device_identifier_code_set);
997                 ret = -EINVAL;
998                 break;
999         }
1000
1001         if (p_buf)
1002                 strncpy(p_buf, buf, p_buf_len);
1003         else
1004                 pr_debug("%s", buf);
1005
1006         return ret;
1007 }
1008
1009 int
1010 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1011 {
1012         static const char hex_str[] = "0123456789abcdef";
1013         int j = 0, i = 4; /* offset to start of the identifier */
1014
1015         /*
1016          * The VPD Code Set (encoding)
1017          *
1018          * from spc3r23.pdf Section 7.6.3.1 Table 296
1019          */
1020         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1021         switch (vpd->device_identifier_code_set) {
1022         case 0x01: /* Binary */
1023                 vpd->device_identifier[j++] =
1024                                 hex_str[vpd->device_identifier_type];
1025                 while (i < (4 + page_83[3])) {
1026                         vpd->device_identifier[j++] =
1027                                 hex_str[(page_83[i] & 0xf0) >> 4];
1028                         vpd->device_identifier[j++] =
1029                                 hex_str[page_83[i] & 0x0f];
1030                         i++;
1031                 }
1032                 break;
1033         case 0x02: /* ASCII */
1034         case 0x03: /* UTF-8 */
1035                 while (i < (4 + page_83[3]))
1036                         vpd->device_identifier[j++] = page_83[i++];
1037                 break;
1038         default:
1039                 break;
1040         }
1041
1042         return transport_dump_vpd_ident(vpd, NULL, 0);
1043 }
1044 EXPORT_SYMBOL(transport_set_vpd_ident);
1045
1046 sense_reason_t
1047 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1048 {
1049         struct se_device *dev = cmd->se_dev;
1050
1051         if (cmd->unknown_data_length) {
1052                 cmd->data_length = size;
1053         } else if (size != cmd->data_length) {
1054                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1055                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1056                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1057                                 cmd->data_length, size, cmd->t_task_cdb[0]);
1058
1059                 if (cmd->data_direction == DMA_TO_DEVICE) {
1060                         pr_err("Rejecting underflow/overflow"
1061                                         " WRITE data\n");
1062                         return TCM_INVALID_CDB_FIELD;
1063                 }
1064                 /*
1065                  * Reject READ_* or WRITE_* with overflow/underflow for
1066                  * type SCF_SCSI_DATA_CDB.
1067                  */
1068                 if (dev->dev_attrib.block_size != 512)  {
1069                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1070                                 " CDB on non 512-byte sector setup subsystem"
1071                                 " plugin: %s\n", dev->transport->name);
1072                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1073                         return TCM_INVALID_CDB_FIELD;
1074                 }
1075                 /*
1076                  * For the overflow case keep the existing fabric provided
1077                  * ->data_length.  Otherwise for the underflow case, reset
1078                  * ->data_length to the smaller SCSI expected data transfer
1079                  * length.
1080                  */
1081                 if (size > cmd->data_length) {
1082                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1083                         cmd->residual_count = (size - cmd->data_length);
1084                 } else {
1085                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1086                         cmd->residual_count = (cmd->data_length - size);
1087                         cmd->data_length = size;
1088                 }
1089         }
1090
1091         return 0;
1092
1093 }
1094
1095 /*
1096  * Used by fabric modules containing a local struct se_cmd within their
1097  * fabric dependent per I/O descriptor.
1098  */
1099 void transport_init_se_cmd(
1100         struct se_cmd *cmd,
1101         struct target_core_fabric_ops *tfo,
1102         struct se_session *se_sess,
1103         u32 data_length,
1104         int data_direction,
1105         int task_attr,
1106         unsigned char *sense_buffer)
1107 {
1108         INIT_LIST_HEAD(&cmd->se_delayed_node);
1109         INIT_LIST_HEAD(&cmd->se_qf_node);
1110         INIT_LIST_HEAD(&cmd->se_cmd_list);
1111         INIT_LIST_HEAD(&cmd->state_list);
1112         init_completion(&cmd->t_transport_stop_comp);
1113         init_completion(&cmd->cmd_wait_comp);
1114         init_completion(&cmd->task_stop_comp);
1115         spin_lock_init(&cmd->t_state_lock);
1116         cmd->transport_state = CMD_T_DEV_ACTIVE;
1117
1118         cmd->se_tfo = tfo;
1119         cmd->se_sess = se_sess;
1120         cmd->data_length = data_length;
1121         cmd->data_direction = data_direction;
1122         cmd->sam_task_attr = task_attr;
1123         cmd->sense_buffer = sense_buffer;
1124
1125         cmd->state_active = false;
1126 }
1127 EXPORT_SYMBOL(transport_init_se_cmd);
1128
1129 static sense_reason_t
1130 transport_check_alloc_task_attr(struct se_cmd *cmd)
1131 {
1132         struct se_device *dev = cmd->se_dev;
1133
1134         /*
1135          * Check if SAM Task Attribute emulation is enabled for this
1136          * struct se_device storage object
1137          */
1138         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1139                 return 0;
1140
1141         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1142                 pr_debug("SAM Task Attribute ACA"
1143                         " emulation is not supported\n");
1144                 return TCM_INVALID_CDB_FIELD;
1145         }
1146         /*
1147          * Used to determine when ORDERED commands should go from
1148          * Dormant to Active status.
1149          */
1150         cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1151         smp_mb__after_atomic_inc();
1152         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1153                         cmd->se_ordered_id, cmd->sam_task_attr,
1154                         dev->transport->name);
1155         return 0;
1156 }
1157
1158 sense_reason_t
1159 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1160 {
1161         struct se_device *dev = cmd->se_dev;
1162         sense_reason_t ret;
1163
1164         /*
1165          * Ensure that the received CDB is less than the max (252 + 8) bytes
1166          * for VARIABLE_LENGTH_CMD
1167          */
1168         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1169                 pr_err("Received SCSI CDB with command_size: %d that"
1170                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1171                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1172                 return TCM_INVALID_CDB_FIELD;
1173         }
1174         /*
1175          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1176          * allocate the additional extended CDB buffer now..  Otherwise
1177          * setup the pointer from __t_task_cdb to t_task_cdb.
1178          */
1179         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1180                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1181                                                 GFP_KERNEL);
1182                 if (!cmd->t_task_cdb) {
1183                         pr_err("Unable to allocate cmd->t_task_cdb"
1184                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1185                                 scsi_command_size(cdb),
1186                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1187                         return TCM_OUT_OF_RESOURCES;
1188                 }
1189         } else
1190                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1191         /*
1192          * Copy the original CDB into cmd->
1193          */
1194         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1195
1196         trace_target_sequencer_start(cmd);
1197
1198         /*
1199          * Check for an existing UNIT ATTENTION condition
1200          */
1201         ret = target_scsi3_ua_check(cmd);
1202         if (ret)
1203                 return ret;
1204
1205         ret = target_alua_state_check(cmd);
1206         if (ret)
1207                 return ret;
1208
1209         ret = target_check_reservation(cmd);
1210         if (ret) {
1211                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1212                 return ret;
1213         }
1214
1215         ret = dev->transport->parse_cdb(cmd);
1216         if (ret)
1217                 return ret;
1218
1219         ret = transport_check_alloc_task_attr(cmd);
1220         if (ret)
1221                 return ret;
1222
1223         cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1224
1225         spin_lock(&cmd->se_lun->lun_sep_lock);
1226         if (cmd->se_lun->lun_sep)
1227                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1228         spin_unlock(&cmd->se_lun->lun_sep_lock);
1229         return 0;
1230 }
1231 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1232
1233 /*
1234  * Used by fabric module frontends to queue tasks directly.
1235  * Many only be used from process context only
1236  */
1237 int transport_handle_cdb_direct(
1238         struct se_cmd *cmd)
1239 {
1240         sense_reason_t ret;
1241
1242         if (!cmd->se_lun) {
1243                 dump_stack();
1244                 pr_err("cmd->se_lun is NULL\n");
1245                 return -EINVAL;
1246         }
1247         if (in_interrupt()) {
1248                 dump_stack();
1249                 pr_err("transport_generic_handle_cdb cannot be called"
1250                                 " from interrupt context\n");
1251                 return -EINVAL;
1252         }
1253         /*
1254          * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1255          * outstanding descriptors are handled correctly during shutdown via
1256          * transport_wait_for_tasks()
1257          *
1258          * Also, we don't take cmd->t_state_lock here as we only expect
1259          * this to be called for initial descriptor submission.
1260          */
1261         cmd->t_state = TRANSPORT_NEW_CMD;
1262         cmd->transport_state |= CMD_T_ACTIVE;
1263
1264         /*
1265          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1266          * so follow TRANSPORT_NEW_CMD processing thread context usage
1267          * and call transport_generic_request_failure() if necessary..
1268          */
1269         ret = transport_generic_new_cmd(cmd);
1270         if (ret)
1271                 transport_generic_request_failure(cmd, ret);
1272         return 0;
1273 }
1274 EXPORT_SYMBOL(transport_handle_cdb_direct);
1275
1276 sense_reason_t
1277 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1278                 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1279 {
1280         if (!sgl || !sgl_count)
1281                 return 0;
1282
1283         /*
1284          * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1285          * scatterlists already have been set to follow what the fabric
1286          * passes for the original expected data transfer length.
1287          */
1288         if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1289                 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1290                         " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1291                 return TCM_INVALID_CDB_FIELD;
1292         }
1293
1294         cmd->t_data_sg = sgl;
1295         cmd->t_data_nents = sgl_count;
1296
1297         if (sgl_bidi && sgl_bidi_count) {
1298                 cmd->t_bidi_data_sg = sgl_bidi;
1299                 cmd->t_bidi_data_nents = sgl_bidi_count;
1300         }
1301         cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1302         return 0;
1303 }
1304
1305 /*
1306  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1307  *                       se_cmd + use pre-allocated SGL memory.
1308  *
1309  * @se_cmd: command descriptor to submit
1310  * @se_sess: associated se_sess for endpoint
1311  * @cdb: pointer to SCSI CDB
1312  * @sense: pointer to SCSI sense buffer
1313  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1314  * @data_length: fabric expected data transfer length
1315  * @task_addr: SAM task attribute
1316  * @data_dir: DMA data direction
1317  * @flags: flags for command submission from target_sc_flags_tables
1318  * @sgl: struct scatterlist memory for unidirectional mapping
1319  * @sgl_count: scatterlist count for unidirectional mapping
1320  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1321  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1322  * @sgl_prot: struct scatterlist memory protection information
1323  * @sgl_prot_count: scatterlist count for protection information
1324  *
1325  * Returns non zero to signal active I/O shutdown failure.  All other
1326  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1327  * but still return zero here.
1328  *
1329  * This may only be called from process context, and also currently
1330  * assumes internal allocation of fabric payload buffer by target-core.
1331  */
1332 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1333                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1334                 u32 data_length, int task_attr, int data_dir, int flags,
1335                 struct scatterlist *sgl, u32 sgl_count,
1336                 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1337                 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1338 {
1339         struct se_portal_group *se_tpg;
1340         sense_reason_t rc;
1341         int ret;
1342
1343         se_tpg = se_sess->se_tpg;
1344         BUG_ON(!se_tpg);
1345         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1346         BUG_ON(in_interrupt());
1347         /*
1348          * Initialize se_cmd for target operation.  From this point
1349          * exceptions are handled by sending exception status via
1350          * target_core_fabric_ops->queue_status() callback
1351          */
1352         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1353                                 data_length, data_dir, task_attr, sense);
1354         if (flags & TARGET_SCF_UNKNOWN_SIZE)
1355                 se_cmd->unknown_data_length = 1;
1356         /*
1357          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1358          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1359          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1360          * kref_put() to happen during fabric packet acknowledgement.
1361          */
1362         ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1363         if (ret)
1364                 return ret;
1365         /*
1366          * Signal bidirectional data payloads to target-core
1367          */
1368         if (flags & TARGET_SCF_BIDI_OP)
1369                 se_cmd->se_cmd_flags |= SCF_BIDI;
1370         /*
1371          * Locate se_lun pointer and attach it to struct se_cmd
1372          */
1373         rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1374         if (rc) {
1375                 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1376                 target_put_sess_cmd(se_sess, se_cmd);
1377                 return 0;
1378         }
1379
1380         rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1381         if (rc != 0) {
1382                 transport_generic_request_failure(se_cmd, rc);
1383                 return 0;
1384         }
1385
1386         /*
1387          * Save pointers for SGLs containing protection information,
1388          * if present.
1389          */
1390         if (sgl_prot_count) {
1391                 se_cmd->t_prot_sg = sgl_prot;
1392                 se_cmd->t_prot_nents = sgl_prot_count;
1393         }
1394
1395         /*
1396          * When a non zero sgl_count has been passed perform SGL passthrough
1397          * mapping for pre-allocated fabric memory instead of having target
1398          * core perform an internal SGL allocation..
1399          */
1400         if (sgl_count != 0) {
1401                 BUG_ON(!sgl);
1402
1403                 /*
1404                  * A work-around for tcm_loop as some userspace code via
1405                  * scsi-generic do not memset their associated read buffers,
1406                  * so go ahead and do that here for type non-data CDBs.  Also
1407                  * note that this is currently guaranteed to be a single SGL
1408                  * for this case by target core in target_setup_cmd_from_cdb()
1409                  * -> transport_generic_cmd_sequencer().
1410                  */
1411                 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1412                      se_cmd->data_direction == DMA_FROM_DEVICE) {
1413                         unsigned char *buf = NULL;
1414
1415                         if (sgl)
1416                                 buf = kmap(sg_page(sgl)) + sgl->offset;
1417
1418                         if (buf) {
1419                                 memset(buf, 0, sgl->length);
1420                                 kunmap(sg_page(sgl));
1421                         }
1422                 }
1423
1424                 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1425                                 sgl_bidi, sgl_bidi_count);
1426                 if (rc != 0) {
1427                         transport_generic_request_failure(se_cmd, rc);
1428                         return 0;
1429                 }
1430         }
1431
1432         /*
1433          * Check if we need to delay processing because of ALUA
1434          * Active/NonOptimized primary access state..
1435          */
1436         core_alua_check_nonop_delay(se_cmd);
1437
1438         transport_handle_cdb_direct(se_cmd);
1439         return 0;
1440 }
1441 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1442
1443 /*
1444  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1445  *
1446  * @se_cmd: command descriptor to submit
1447  * @se_sess: associated se_sess for endpoint
1448  * @cdb: pointer to SCSI CDB
1449  * @sense: pointer to SCSI sense buffer
1450  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1451  * @data_length: fabric expected data transfer length
1452  * @task_addr: SAM task attribute
1453  * @data_dir: DMA data direction
1454  * @flags: flags for command submission from target_sc_flags_tables
1455  *
1456  * Returns non zero to signal active I/O shutdown failure.  All other
1457  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1458  * but still return zero here.
1459  *
1460  * This may only be called from process context, and also currently
1461  * assumes internal allocation of fabric payload buffer by target-core.
1462  *
1463  * It also assumes interal target core SGL memory allocation.
1464  */
1465 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1466                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1467                 u32 data_length, int task_attr, int data_dir, int flags)
1468 {
1469         return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1470                         unpacked_lun, data_length, task_attr, data_dir,
1471                         flags, NULL, 0, NULL, 0, NULL, 0);
1472 }
1473 EXPORT_SYMBOL(target_submit_cmd);
1474
1475 static void target_complete_tmr_failure(struct work_struct *work)
1476 {
1477         struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1478
1479         se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1480         se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1481
1482         transport_cmd_check_stop_to_fabric(se_cmd);
1483 }
1484
1485 /**
1486  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1487  *                     for TMR CDBs
1488  *
1489  * @se_cmd: command descriptor to submit
1490  * @se_sess: associated se_sess for endpoint
1491  * @sense: pointer to SCSI sense buffer
1492  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1493  * @fabric_context: fabric context for TMR req
1494  * @tm_type: Type of TM request
1495  * @gfp: gfp type for caller
1496  * @tag: referenced task tag for TMR_ABORT_TASK
1497  * @flags: submit cmd flags
1498  *
1499  * Callable from all contexts.
1500  **/
1501
1502 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1503                 unsigned char *sense, u32 unpacked_lun,
1504                 void *fabric_tmr_ptr, unsigned char tm_type,
1505                 gfp_t gfp, unsigned int tag, int flags)
1506 {
1507         struct se_portal_group *se_tpg;
1508         int ret;
1509
1510         se_tpg = se_sess->se_tpg;
1511         BUG_ON(!se_tpg);
1512
1513         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1514                               0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1515         /*
1516          * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1517          * allocation failure.
1518          */
1519         ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1520         if (ret < 0)
1521                 return -ENOMEM;
1522
1523         if (tm_type == TMR_ABORT_TASK)
1524                 se_cmd->se_tmr_req->ref_task_tag = tag;
1525
1526         /* See target_submit_cmd for commentary */
1527         ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1528         if (ret) {
1529                 core_tmr_release_req(se_cmd->se_tmr_req);
1530                 return ret;
1531         }
1532
1533         ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1534         if (ret) {
1535                 /*
1536                  * For callback during failure handling, push this work off
1537                  * to process context with TMR_LUN_DOES_NOT_EXIST status.
1538                  */
1539                 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1540                 schedule_work(&se_cmd->work);
1541                 return 0;
1542         }
1543         transport_generic_handle_tmr(se_cmd);
1544         return 0;
1545 }
1546 EXPORT_SYMBOL(target_submit_tmr);
1547
1548 /*
1549  * If the cmd is active, request it to be stopped and sleep until it
1550  * has completed.
1551  */
1552 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1553 {
1554         bool was_active = false;
1555
1556         if (cmd->transport_state & CMD_T_BUSY) {
1557                 cmd->transport_state |= CMD_T_REQUEST_STOP;
1558                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1559
1560                 pr_debug("cmd %p waiting to complete\n", cmd);
1561                 wait_for_completion(&cmd->task_stop_comp);
1562                 pr_debug("cmd %p stopped successfully\n", cmd);
1563
1564                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1565                 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1566                 cmd->transport_state &= ~CMD_T_BUSY;
1567                 was_active = true;
1568         }
1569
1570         return was_active;
1571 }
1572
1573 /*
1574  * Handle SAM-esque emulation for generic transport request failures.
1575  */
1576 void transport_generic_request_failure(struct se_cmd *cmd,
1577                 sense_reason_t sense_reason)
1578 {
1579         int ret = 0;
1580
1581         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1582                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1583                 cmd->t_task_cdb[0]);
1584         pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1585                 cmd->se_tfo->get_cmd_state(cmd),
1586                 cmd->t_state, sense_reason);
1587         pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1588                 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1589                 (cmd->transport_state & CMD_T_STOP) != 0,
1590                 (cmd->transport_state & CMD_T_SENT) != 0);
1591
1592         /*
1593          * For SAM Task Attribute emulation for failed struct se_cmd
1594          */
1595         transport_complete_task_attr(cmd);
1596         /*
1597          * Handle special case for COMPARE_AND_WRITE failure, where the
1598          * callback is expected to drop the per device ->caw_mutex.
1599          */
1600         if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1601              cmd->transport_complete_callback)
1602                 cmd->transport_complete_callback(cmd);
1603
1604         switch (sense_reason) {
1605         case TCM_NON_EXISTENT_LUN:
1606         case TCM_UNSUPPORTED_SCSI_OPCODE:
1607         case TCM_INVALID_CDB_FIELD:
1608         case TCM_INVALID_PARAMETER_LIST:
1609         case TCM_PARAMETER_LIST_LENGTH_ERROR:
1610         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1611         case TCM_UNKNOWN_MODE_PAGE:
1612         case TCM_WRITE_PROTECTED:
1613         case TCM_ADDRESS_OUT_OF_RANGE:
1614         case TCM_CHECK_CONDITION_ABORT_CMD:
1615         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1616         case TCM_CHECK_CONDITION_NOT_READY:
1617         case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1618         case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1619         case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1620                 break;
1621         case TCM_OUT_OF_RESOURCES:
1622                 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1623                 break;
1624         case TCM_RESERVATION_CONFLICT:
1625                 /*
1626                  * No SENSE Data payload for this case, set SCSI Status
1627                  * and queue the response to $FABRIC_MOD.
1628                  *
1629                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1630                  */
1631                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1632                 /*
1633                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1634                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1635                  * CONFLICT STATUS.
1636                  *
1637                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1638                  */
1639                 if (cmd->se_sess &&
1640                     cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1641                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1642                                 cmd->orig_fe_lun, 0x2C,
1643                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1644
1645                 trace_target_cmd_complete(cmd);
1646                 ret = cmd->se_tfo-> queue_status(cmd);
1647                 if (ret == -EAGAIN || ret == -ENOMEM)
1648                         goto queue_full;
1649                 goto check_stop;
1650         default:
1651                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1652                         cmd->t_task_cdb[0], sense_reason);
1653                 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1654                 break;
1655         }
1656
1657         ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1658         if (ret == -EAGAIN || ret == -ENOMEM)
1659                 goto queue_full;
1660
1661 check_stop:
1662         transport_lun_remove_cmd(cmd);
1663         if (!transport_cmd_check_stop_to_fabric(cmd))
1664                 ;
1665         return;
1666
1667 queue_full:
1668         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1669         transport_handle_queue_full(cmd, cmd->se_dev);
1670 }
1671 EXPORT_SYMBOL(transport_generic_request_failure);
1672
1673 void __target_execute_cmd(struct se_cmd *cmd)
1674 {
1675         sense_reason_t ret;
1676
1677         if (cmd->execute_cmd) {
1678                 ret = cmd->execute_cmd(cmd);
1679                 if (ret) {
1680                         spin_lock_irq(&cmd->t_state_lock);
1681                         cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1682                         spin_unlock_irq(&cmd->t_state_lock);
1683
1684                         transport_generic_request_failure(cmd, ret);
1685                 }
1686         }
1687 }
1688
1689 static bool target_handle_task_attr(struct se_cmd *cmd)
1690 {
1691         struct se_device *dev = cmd->se_dev;
1692
1693         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1694                 return false;
1695
1696         /*
1697          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1698          * to allow the passed struct se_cmd list of tasks to the front of the list.
1699          */
1700         switch (cmd->sam_task_attr) {
1701         case MSG_HEAD_TAG:
1702                 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1703                          "se_ordered_id: %u\n",
1704                          cmd->t_task_cdb[0], cmd->se_ordered_id);
1705                 return false;
1706         case MSG_ORDERED_TAG:
1707                 atomic_inc(&dev->dev_ordered_sync);
1708                 smp_mb__after_atomic_inc();
1709
1710                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1711                          " se_ordered_id: %u\n",
1712                          cmd->t_task_cdb[0], cmd->se_ordered_id);
1713
1714                 /*
1715                  * Execute an ORDERED command if no other older commands
1716                  * exist that need to be completed first.
1717                  */
1718                 if (!atomic_read(&dev->simple_cmds))
1719                         return false;
1720                 break;
1721         default:
1722                 /*
1723                  * For SIMPLE and UNTAGGED Task Attribute commands
1724                  */
1725                 atomic_inc(&dev->simple_cmds);
1726                 smp_mb__after_atomic_inc();
1727                 break;
1728         }
1729
1730         if (atomic_read(&dev->dev_ordered_sync) == 0)
1731                 return false;
1732
1733         spin_lock(&dev->delayed_cmd_lock);
1734         list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1735         spin_unlock(&dev->delayed_cmd_lock);
1736
1737         pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1738                 " delayed CMD list, se_ordered_id: %u\n",
1739                 cmd->t_task_cdb[0], cmd->sam_task_attr,
1740                 cmd->se_ordered_id);
1741         return true;
1742 }
1743
1744 void target_execute_cmd(struct se_cmd *cmd)
1745 {
1746         /*
1747          * If the received CDB has aleady been aborted stop processing it here.
1748          */
1749         if (transport_check_aborted_status(cmd, 1))
1750                 return;
1751
1752         /*
1753          * Determine if frontend context caller is requesting the stopping of
1754          * this command for frontend exceptions.
1755          */
1756         spin_lock_irq(&cmd->t_state_lock);
1757         if (cmd->transport_state & CMD_T_STOP) {
1758                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1759                         __func__, __LINE__,
1760                         cmd->se_tfo->get_task_tag(cmd));
1761
1762                 spin_unlock_irq(&cmd->t_state_lock);
1763                 complete(&cmd->t_transport_stop_comp);
1764                 return;
1765         }
1766
1767         cmd->t_state = TRANSPORT_PROCESSING;
1768         cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1769         spin_unlock_irq(&cmd->t_state_lock);
1770         /*
1771          * Perform WRITE_INSERT of PI using software emulation when backend
1772          * device has PI enabled, if the transport has not already generated
1773          * PI using hardware WRITE_INSERT offload.
1774          */
1775         if (cmd->prot_op == TARGET_PROT_DOUT_INSERT) {
1776                 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1777                         sbc_dif_generate(cmd);
1778         }
1779
1780         if (target_handle_task_attr(cmd)) {
1781                 spin_lock_irq(&cmd->t_state_lock);
1782                 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
1783                 spin_unlock_irq(&cmd->t_state_lock);
1784                 return;
1785         }
1786
1787         __target_execute_cmd(cmd);
1788 }
1789 EXPORT_SYMBOL(target_execute_cmd);
1790
1791 /*
1792  * Process all commands up to the last received ORDERED task attribute which
1793  * requires another blocking boundary
1794  */
1795 static void target_restart_delayed_cmds(struct se_device *dev)
1796 {
1797         for (;;) {
1798                 struct se_cmd *cmd;
1799
1800                 spin_lock(&dev->delayed_cmd_lock);
1801                 if (list_empty(&dev->delayed_cmd_list)) {
1802                         spin_unlock(&dev->delayed_cmd_lock);
1803                         break;
1804                 }
1805
1806                 cmd = list_entry(dev->delayed_cmd_list.next,
1807                                  struct se_cmd, se_delayed_node);
1808                 list_del(&cmd->se_delayed_node);
1809                 spin_unlock(&dev->delayed_cmd_lock);
1810
1811                 __target_execute_cmd(cmd);
1812
1813                 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1814                         break;
1815         }
1816 }
1817
1818 /*
1819  * Called from I/O completion to determine which dormant/delayed
1820  * and ordered cmds need to have their tasks added to the execution queue.
1821  */
1822 static void transport_complete_task_attr(struct se_cmd *cmd)
1823 {
1824         struct se_device *dev = cmd->se_dev;
1825
1826         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1827                 return;
1828
1829         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1830                 atomic_dec(&dev->simple_cmds);
1831                 smp_mb__after_atomic_dec();
1832                 dev->dev_cur_ordered_id++;
1833                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1834                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1835                         cmd->se_ordered_id);
1836         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1837                 dev->dev_cur_ordered_id++;
1838                 pr_debug("Incremented dev_cur_ordered_id: %u for"
1839                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1840                         cmd->se_ordered_id);
1841         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1842                 atomic_dec(&dev->dev_ordered_sync);
1843                 smp_mb__after_atomic_dec();
1844
1845                 dev->dev_cur_ordered_id++;
1846                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1847                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1848         }
1849
1850         target_restart_delayed_cmds(dev);
1851 }
1852
1853 static void transport_complete_qf(struct se_cmd *cmd)
1854 {
1855         int ret = 0;
1856
1857         transport_complete_task_attr(cmd);
1858
1859         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1860                 trace_target_cmd_complete(cmd);
1861                 ret = cmd->se_tfo->queue_status(cmd);
1862                 if (ret)
1863                         goto out;
1864         }
1865
1866         switch (cmd->data_direction) {
1867         case DMA_FROM_DEVICE:
1868                 trace_target_cmd_complete(cmd);
1869                 ret = cmd->se_tfo->queue_data_in(cmd);
1870                 break;
1871         case DMA_TO_DEVICE:
1872                 if (cmd->se_cmd_flags & SCF_BIDI) {
1873                         ret = cmd->se_tfo->queue_data_in(cmd);
1874                         if (ret < 0)
1875                                 break;
1876                 }
1877                 /* Fall through for DMA_TO_DEVICE */
1878         case DMA_NONE:
1879                 trace_target_cmd_complete(cmd);
1880                 ret = cmd->se_tfo->queue_status(cmd);
1881                 break;
1882         default:
1883                 break;
1884         }
1885
1886 out:
1887         if (ret < 0) {
1888                 transport_handle_queue_full(cmd, cmd->se_dev);
1889                 return;
1890         }
1891         transport_lun_remove_cmd(cmd);
1892         transport_cmd_check_stop_to_fabric(cmd);
1893 }
1894
1895 static void transport_handle_queue_full(
1896         struct se_cmd *cmd,
1897         struct se_device *dev)
1898 {
1899         spin_lock_irq(&dev->qf_cmd_lock);
1900         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1901         atomic_inc(&dev->dev_qf_count);
1902         smp_mb__after_atomic_inc();
1903         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1904
1905         schedule_work(&cmd->se_dev->qf_work_queue);
1906 }
1907
1908 static void target_complete_ok_work(struct work_struct *work)
1909 {
1910         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1911         int ret;
1912
1913         /*
1914          * Check if we need to move delayed/dormant tasks from cmds on the
1915          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1916          * Attribute.
1917          */
1918         transport_complete_task_attr(cmd);
1919
1920         /*
1921          * Check to schedule QUEUE_FULL work, or execute an existing
1922          * cmd->transport_qf_callback()
1923          */
1924         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1925                 schedule_work(&cmd->se_dev->qf_work_queue);
1926
1927         /*
1928          * Check if we need to send a sense buffer from
1929          * the struct se_cmd in question.
1930          */
1931         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1932                 WARN_ON(!cmd->scsi_status);
1933                 ret = transport_send_check_condition_and_sense(
1934                                         cmd, 0, 1);
1935                 if (ret == -EAGAIN || ret == -ENOMEM)
1936                         goto queue_full;
1937
1938                 transport_lun_remove_cmd(cmd);
1939                 transport_cmd_check_stop_to_fabric(cmd);
1940                 return;
1941         }
1942         /*
1943          * Check for a callback, used by amongst other things
1944          * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
1945          */
1946         if (cmd->transport_complete_callback) {
1947                 sense_reason_t rc;
1948
1949                 rc = cmd->transport_complete_callback(cmd);
1950                 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) {
1951                         return;
1952                 } else if (rc) {
1953                         ret = transport_send_check_condition_and_sense(cmd,
1954                                                 rc, 0);
1955                         if (ret == -EAGAIN || ret == -ENOMEM)
1956                                 goto queue_full;
1957
1958                         transport_lun_remove_cmd(cmd);
1959                         transport_cmd_check_stop_to_fabric(cmd);
1960                         return;
1961                 }
1962         }
1963
1964         switch (cmd->data_direction) {
1965         case DMA_FROM_DEVICE:
1966                 spin_lock(&cmd->se_lun->lun_sep_lock);
1967                 if (cmd->se_lun->lun_sep) {
1968                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1969                                         cmd->data_length;
1970                 }
1971                 spin_unlock(&cmd->se_lun->lun_sep_lock);
1972
1973                 trace_target_cmd_complete(cmd);
1974                 ret = cmd->se_tfo->queue_data_in(cmd);
1975                 if (ret == -EAGAIN || ret == -ENOMEM)
1976                         goto queue_full;
1977                 break;
1978         case DMA_TO_DEVICE:
1979                 spin_lock(&cmd->se_lun->lun_sep_lock);
1980                 if (cmd->se_lun->lun_sep) {
1981                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
1982                                 cmd->data_length;
1983                 }
1984                 spin_unlock(&cmd->se_lun->lun_sep_lock);
1985                 /*
1986                  * Check if we need to send READ payload for BIDI-COMMAND
1987                  */
1988                 if (cmd->se_cmd_flags & SCF_BIDI) {
1989                         spin_lock(&cmd->se_lun->lun_sep_lock);
1990                         if (cmd->se_lun->lun_sep) {
1991                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1992                                         cmd->data_length;
1993                         }
1994                         spin_unlock(&cmd->se_lun->lun_sep_lock);
1995                         ret = cmd->se_tfo->queue_data_in(cmd);
1996                         if (ret == -EAGAIN || ret == -ENOMEM)
1997                                 goto queue_full;
1998                         break;
1999                 }
2000                 /* Fall through for DMA_TO_DEVICE */
2001         case DMA_NONE:
2002                 trace_target_cmd_complete(cmd);
2003                 ret = cmd->se_tfo->queue_status(cmd);
2004                 if (ret == -EAGAIN || ret == -ENOMEM)
2005                         goto queue_full;
2006                 break;
2007         default:
2008                 break;
2009         }
2010
2011         transport_lun_remove_cmd(cmd);
2012         transport_cmd_check_stop_to_fabric(cmd);
2013         return;
2014
2015 queue_full:
2016         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2017                 " data_direction: %d\n", cmd, cmd->data_direction);
2018         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2019         transport_handle_queue_full(cmd, cmd->se_dev);
2020 }
2021
2022 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2023 {
2024         struct scatterlist *sg;
2025         int count;
2026
2027         for_each_sg(sgl, sg, nents, count)
2028                 __free_page(sg_page(sg));
2029
2030         kfree(sgl);
2031 }
2032
2033 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2034 {
2035         /*
2036          * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2037          * emulation, and free + reset pointers if necessary..
2038          */
2039         if (!cmd->t_data_sg_orig)
2040                 return;
2041
2042         kfree(cmd->t_data_sg);
2043         cmd->t_data_sg = cmd->t_data_sg_orig;
2044         cmd->t_data_sg_orig = NULL;
2045         cmd->t_data_nents = cmd->t_data_nents_orig;
2046         cmd->t_data_nents_orig = 0;
2047 }
2048
2049 static inline void transport_free_pages(struct se_cmd *cmd)
2050 {
2051         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2052                 transport_reset_sgl_orig(cmd);
2053                 return;
2054         }
2055         transport_reset_sgl_orig(cmd);
2056
2057         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2058         cmd->t_data_sg = NULL;
2059         cmd->t_data_nents = 0;
2060
2061         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2062         cmd->t_bidi_data_sg = NULL;
2063         cmd->t_bidi_data_nents = 0;
2064
2065         transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2066         cmd->t_prot_sg = NULL;
2067         cmd->t_prot_nents = 0;
2068 }
2069
2070 /**
2071  * transport_release_cmd - free a command
2072  * @cmd:       command to free
2073  *
2074  * This routine unconditionally frees a command, and reference counting
2075  * or list removal must be done in the caller.
2076  */
2077 static int transport_release_cmd(struct se_cmd *cmd)
2078 {
2079         BUG_ON(!cmd->se_tfo);
2080
2081         if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2082                 core_tmr_release_req(cmd->se_tmr_req);
2083         if (cmd->t_task_cdb != cmd->__t_task_cdb)
2084                 kfree(cmd->t_task_cdb);
2085         /*
2086          * If this cmd has been setup with target_get_sess_cmd(), drop
2087          * the kref and call ->release_cmd() in kref callback.
2088          */
2089         return target_put_sess_cmd(cmd->se_sess, cmd);
2090 }
2091
2092 /**
2093  * transport_put_cmd - release a reference to a command
2094  * @cmd:       command to release
2095  *
2096  * This routine releases our reference to the command and frees it if possible.
2097  */
2098 static int transport_put_cmd(struct se_cmd *cmd)
2099 {
2100         transport_free_pages(cmd);
2101         return transport_release_cmd(cmd);
2102 }
2103
2104 void *transport_kmap_data_sg(struct se_cmd *cmd)
2105 {
2106         struct scatterlist *sg = cmd->t_data_sg;
2107         struct page **pages;
2108         int i;
2109
2110         /*
2111          * We need to take into account a possible offset here for fabrics like
2112          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2113          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2114          */
2115         if (!cmd->t_data_nents)
2116                 return NULL;
2117
2118         BUG_ON(!sg);
2119         if (cmd->t_data_nents == 1)
2120                 return kmap(sg_page(sg)) + sg->offset;
2121
2122         /* >1 page. use vmap */
2123         pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2124         if (!pages)
2125                 return NULL;
2126
2127         /* convert sg[] to pages[] */
2128         for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2129                 pages[i] = sg_page(sg);
2130         }
2131
2132         cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2133         kfree(pages);
2134         if (!cmd->t_data_vmap)
2135                 return NULL;
2136
2137         return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2138 }
2139 EXPORT_SYMBOL(transport_kmap_data_sg);
2140
2141 void transport_kunmap_data_sg(struct se_cmd *cmd)
2142 {
2143         if (!cmd->t_data_nents) {
2144                 return;
2145         } else if (cmd->t_data_nents == 1) {
2146                 kunmap(sg_page(cmd->t_data_sg));
2147                 return;
2148         }
2149
2150         vunmap(cmd->t_data_vmap);
2151         cmd->t_data_vmap = NULL;
2152 }
2153 EXPORT_SYMBOL(transport_kunmap_data_sg);
2154
2155 int
2156 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2157                  bool zero_page)
2158 {
2159         struct scatterlist *sg;
2160         struct page *page;
2161         gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2162         unsigned int nent;
2163         int i = 0;
2164
2165         nent = DIV_ROUND_UP(length, PAGE_SIZE);
2166         sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2167         if (!sg)
2168                 return -ENOMEM;
2169
2170         sg_init_table(sg, nent);
2171
2172         while (length) {
2173                 u32 page_len = min_t(u32, length, PAGE_SIZE);
2174                 page = alloc_page(GFP_KERNEL | zero_flag);
2175                 if (!page)
2176                         goto out;
2177
2178                 sg_set_page(&sg[i], page, page_len, 0);
2179                 length -= page_len;
2180                 i++;
2181         }
2182         *sgl = sg;
2183         *nents = nent;
2184         return 0;
2185
2186 out:
2187         while (i > 0) {
2188                 i--;
2189                 __free_page(sg_page(&sg[i]));
2190         }
2191         kfree(sg);
2192         return -ENOMEM;
2193 }
2194
2195 /*
2196  * Allocate any required resources to execute the command.  For writes we
2197  * might not have the payload yet, so notify the fabric via a call to
2198  * ->write_pending instead. Otherwise place it on the execution queue.
2199  */
2200 sense_reason_t
2201 transport_generic_new_cmd(struct se_cmd *cmd)
2202 {
2203         int ret = 0;
2204
2205         /*
2206          * Determine is the TCM fabric module has already allocated physical
2207          * memory, and is directly calling transport_generic_map_mem_to_cmd()
2208          * beforehand.
2209          */
2210         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2211             cmd->data_length) {
2212                 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2213
2214                 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2215                     (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2216                         u32 bidi_length;
2217
2218                         if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2219                                 bidi_length = cmd->t_task_nolb *
2220                                               cmd->se_dev->dev_attrib.block_size;
2221                         else
2222                                 bidi_length = cmd->data_length;
2223
2224                         ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2225                                                &cmd->t_bidi_data_nents,
2226                                                bidi_length, zero_flag);
2227                         if (ret < 0)
2228                                 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2229                 }
2230
2231                 if (cmd->prot_op != TARGET_PROT_NORMAL) {
2232                         ret = target_alloc_sgl(&cmd->t_prot_sg,
2233                                                &cmd->t_prot_nents,
2234                                                cmd->prot_length, true);
2235                         if (ret < 0)
2236                                 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2237                 }
2238
2239                 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2240                                        cmd->data_length, zero_flag);
2241                 if (ret < 0)
2242                         return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2243         }
2244         /*
2245          * If this command is not a write we can execute it right here,
2246          * for write buffers we need to notify the fabric driver first
2247          * and let it call back once the write buffers are ready.
2248          */
2249         target_add_to_state_list(cmd);
2250         if (cmd->data_direction != DMA_TO_DEVICE) {
2251                 target_execute_cmd(cmd);
2252                 return 0;
2253         }
2254         transport_cmd_check_stop(cmd, false, true);
2255
2256         ret = cmd->se_tfo->write_pending(cmd);
2257         if (ret == -EAGAIN || ret == -ENOMEM)
2258                 goto queue_full;
2259
2260         /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2261         WARN_ON(ret);
2262
2263         return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2264
2265 queue_full:
2266         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2267         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2268         transport_handle_queue_full(cmd, cmd->se_dev);
2269         return 0;
2270 }
2271 EXPORT_SYMBOL(transport_generic_new_cmd);
2272
2273 static void transport_write_pending_qf(struct se_cmd *cmd)
2274 {
2275         int ret;
2276
2277         ret = cmd->se_tfo->write_pending(cmd);
2278         if (ret == -EAGAIN || ret == -ENOMEM) {
2279                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2280                          cmd);
2281                 transport_handle_queue_full(cmd, cmd->se_dev);
2282         }
2283 }
2284
2285 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2286 {
2287         unsigned long flags;
2288         int ret = 0;
2289
2290         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2291                 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2292                          transport_wait_for_tasks(cmd);
2293
2294                 ret = transport_release_cmd(cmd);
2295         } else {
2296                 if (wait_for_tasks)
2297                         transport_wait_for_tasks(cmd);
2298                 /*
2299                  * Handle WRITE failure case where transport_generic_new_cmd()
2300                  * has already added se_cmd to state_list, but fabric has
2301                  * failed command before I/O submission.
2302                  */
2303                 if (cmd->state_active) {
2304                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2305                         target_remove_from_state_list(cmd);
2306                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2307                 }
2308
2309                 if (cmd->se_lun)
2310                         transport_lun_remove_cmd(cmd);
2311
2312                 ret = transport_put_cmd(cmd);
2313         }
2314         return ret;
2315 }
2316 EXPORT_SYMBOL(transport_generic_free_cmd);
2317
2318 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2319  * @se_sess:    session to reference
2320  * @se_cmd:     command descriptor to add
2321  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
2322  */
2323 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2324                                bool ack_kref)
2325 {
2326         unsigned long flags;
2327         int ret = 0;
2328
2329         kref_init(&se_cmd->cmd_kref);
2330         /*
2331          * Add a second kref if the fabric caller is expecting to handle
2332          * fabric acknowledgement that requires two target_put_sess_cmd()
2333          * invocations before se_cmd descriptor release.
2334          */
2335         if (ack_kref == true) {
2336                 kref_get(&se_cmd->cmd_kref);
2337                 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2338         }
2339
2340         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2341         if (se_sess->sess_tearing_down) {
2342                 ret = -ESHUTDOWN;
2343                 goto out;
2344         }
2345         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2346 out:
2347         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2348         return ret;
2349 }
2350 EXPORT_SYMBOL(target_get_sess_cmd);
2351
2352 static void target_release_cmd_kref(struct kref *kref)
2353 {
2354         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2355         struct se_session *se_sess = se_cmd->se_sess;
2356
2357         if (list_empty(&se_cmd->se_cmd_list)) {
2358                 spin_unlock(&se_sess->sess_cmd_lock);
2359                 se_cmd->se_tfo->release_cmd(se_cmd);
2360                 return;
2361         }
2362         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2363                 spin_unlock(&se_sess->sess_cmd_lock);
2364                 complete(&se_cmd->cmd_wait_comp);
2365                 return;
2366         }
2367         list_del(&se_cmd->se_cmd_list);
2368         spin_unlock(&se_sess->sess_cmd_lock);
2369
2370         se_cmd->se_tfo->release_cmd(se_cmd);
2371 }
2372
2373 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2374  * @se_sess:    session to reference
2375  * @se_cmd:     command descriptor to drop
2376  */
2377 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2378 {
2379         return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2380                         &se_sess->sess_cmd_lock);
2381 }
2382 EXPORT_SYMBOL(target_put_sess_cmd);
2383
2384 /* target_sess_cmd_list_set_waiting - Flag all commands in
2385  *         sess_cmd_list to complete cmd_wait_comp.  Set
2386  *         sess_tearing_down so no more commands are queued.
2387  * @se_sess:    session to flag
2388  */
2389 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2390 {
2391         struct se_cmd *se_cmd;
2392         unsigned long flags;
2393
2394         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2395         if (se_sess->sess_tearing_down) {
2396                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2397                 return;
2398         }
2399         se_sess->sess_tearing_down = 1;
2400         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2401
2402         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2403                 se_cmd->cmd_wait_set = 1;
2404
2405         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2406 }
2407 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2408
2409 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2410  * @se_sess:    session to wait for active I/O
2411  */
2412 void target_wait_for_sess_cmds(struct se_session *se_sess)
2413 {
2414         struct se_cmd *se_cmd, *tmp_cmd;
2415         unsigned long flags;
2416
2417         list_for_each_entry_safe(se_cmd, tmp_cmd,
2418                                 &se_sess->sess_wait_list, se_cmd_list) {
2419                 list_del(&se_cmd->se_cmd_list);
2420
2421                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2422                         " %d\n", se_cmd, se_cmd->t_state,
2423                         se_cmd->se_tfo->get_cmd_state(se_cmd));
2424
2425                 wait_for_completion(&se_cmd->cmd_wait_comp);
2426                 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2427                         " fabric state: %d\n", se_cmd, se_cmd->t_state,
2428                         se_cmd->se_tfo->get_cmd_state(se_cmd));
2429
2430                 se_cmd->se_tfo->release_cmd(se_cmd);
2431         }
2432
2433         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2434         WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2435         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2436
2437 }
2438 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2439
2440 static int transport_clear_lun_ref_thread(void *p)
2441 {
2442         struct se_lun *lun = p;
2443
2444         percpu_ref_kill(&lun->lun_ref);
2445
2446         wait_for_completion(&lun->lun_ref_comp);
2447         complete(&lun->lun_shutdown_comp);
2448
2449         return 0;
2450 }
2451
2452 int transport_clear_lun_ref(struct se_lun *lun)
2453 {
2454         struct task_struct *kt;
2455
2456         kt = kthread_run(transport_clear_lun_ref_thread, lun,
2457                         "tcm_cl_%u", lun->unpacked_lun);
2458         if (IS_ERR(kt)) {
2459                 pr_err("Unable to start clear_lun thread\n");
2460                 return PTR_ERR(kt);
2461         }
2462         wait_for_completion(&lun->lun_shutdown_comp);
2463
2464         return 0;
2465 }
2466
2467 /**
2468  * transport_wait_for_tasks - wait for completion to occur
2469  * @cmd:        command to wait
2470  *
2471  * Called from frontend fabric context to wait for storage engine
2472  * to pause and/or release frontend generated struct se_cmd.
2473  */
2474 bool transport_wait_for_tasks(struct se_cmd *cmd)
2475 {
2476         unsigned long flags;
2477
2478         spin_lock_irqsave(&cmd->t_state_lock, flags);
2479         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2480             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2481                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2482                 return false;
2483         }
2484
2485         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2486             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2487                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2488                 return false;
2489         }
2490
2491         if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2492                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2493                 return false;
2494         }
2495
2496         cmd->transport_state |= CMD_T_STOP;
2497
2498         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2499                 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2500                 cmd, cmd->se_tfo->get_task_tag(cmd),
2501                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2502
2503         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2504
2505         wait_for_completion(&cmd->t_transport_stop_comp);
2506
2507         spin_lock_irqsave(&cmd->t_state_lock, flags);
2508         cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2509
2510         pr_debug("wait_for_tasks: Stopped wait_for_completion("
2511                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2512                 cmd->se_tfo->get_task_tag(cmd));
2513
2514         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2515
2516         return true;
2517 }
2518 EXPORT_SYMBOL(transport_wait_for_tasks);
2519
2520 static int transport_get_sense_codes(
2521         struct se_cmd *cmd,
2522         u8 *asc,
2523         u8 *ascq)
2524 {
2525         *asc = cmd->scsi_asc;
2526         *ascq = cmd->scsi_ascq;
2527
2528         return 0;
2529 }
2530
2531 static
2532 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector)
2533 {
2534         /* Place failed LBA in sense data information descriptor 0. */
2535         buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc;
2536         buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */
2537         buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa;
2538         buffer[SPC_VALIDITY_OFFSET] = 0x80;
2539
2540         /* Descriptor Information: failing sector */
2541         put_unaligned_be64(bad_sector, &buffer[12]);
2542 }
2543
2544 int
2545 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2546                 sense_reason_t reason, int from_transport)
2547 {
2548         unsigned char *buffer = cmd->sense_buffer;
2549         unsigned long flags;
2550         u8 asc = 0, ascq = 0;
2551
2552         spin_lock_irqsave(&cmd->t_state_lock, flags);
2553         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2554                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2555                 return 0;
2556         }
2557         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2558         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2559
2560         if (!reason && from_transport)
2561                 goto after_reason;
2562
2563         if (!from_transport)
2564                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2565
2566         /*
2567          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
2568          * SENSE KEY values from include/scsi/scsi.h
2569          */
2570         switch (reason) {
2571         case TCM_NO_SENSE:
2572                 /* CURRENT ERROR */
2573                 buffer[0] = 0x70;
2574                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2575                 /* Not Ready */
2576                 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2577                 /* NO ADDITIONAL SENSE INFORMATION */
2578                 buffer[SPC_ASC_KEY_OFFSET] = 0;
2579                 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2580                 break;
2581         case TCM_NON_EXISTENT_LUN:
2582                 /* CURRENT ERROR */
2583                 buffer[0] = 0x70;
2584                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2585                 /* ILLEGAL REQUEST */
2586                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2587                 /* LOGICAL UNIT NOT SUPPORTED */
2588                 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2589                 break;
2590         case TCM_UNSUPPORTED_SCSI_OPCODE:
2591         case TCM_SECTOR_COUNT_TOO_MANY:
2592                 /* CURRENT ERROR */
2593                 buffer[0] = 0x70;
2594                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2595                 /* ILLEGAL REQUEST */
2596                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2597                 /* INVALID COMMAND OPERATION CODE */
2598                 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2599                 break;
2600         case TCM_UNKNOWN_MODE_PAGE:
2601                 /* CURRENT ERROR */
2602                 buffer[0] = 0x70;
2603                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2604                 /* ILLEGAL REQUEST */
2605                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2606                 /* INVALID FIELD IN CDB */
2607                 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2608                 break;
2609         case TCM_CHECK_CONDITION_ABORT_CMD:
2610                 /* CURRENT ERROR */
2611                 buffer[0] = 0x70;
2612                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2613                 /* ABORTED COMMAND */
2614                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2615                 /* BUS DEVICE RESET FUNCTION OCCURRED */
2616                 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2617                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2618                 break;
2619         case TCM_INCORRECT_AMOUNT_OF_DATA:
2620                 /* CURRENT ERROR */
2621                 buffer[0] = 0x70;
2622                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2623                 /* ABORTED COMMAND */
2624                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2625                 /* WRITE ERROR */
2626                 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2627                 /* NOT ENOUGH UNSOLICITED DATA */
2628                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2629                 break;
2630         case TCM_INVALID_CDB_FIELD:
2631                 /* CURRENT ERROR */
2632                 buffer[0] = 0x70;
2633                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2634                 /* ILLEGAL REQUEST */
2635                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2636                 /* INVALID FIELD IN CDB */
2637                 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2638                 break;
2639         case TCM_INVALID_PARAMETER_LIST:
2640                 /* CURRENT ERROR */
2641                 buffer[0] = 0x70;
2642                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2643                 /* ILLEGAL REQUEST */
2644                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2645                 /* INVALID FIELD IN PARAMETER LIST */
2646                 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2647                 break;
2648         case TCM_PARAMETER_LIST_LENGTH_ERROR:
2649                 /* CURRENT ERROR */
2650                 buffer[0] = 0x70;
2651                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2652                 /* ILLEGAL REQUEST */
2653                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2654                 /* PARAMETER LIST LENGTH ERROR */
2655                 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2656                 break;
2657         case TCM_UNEXPECTED_UNSOLICITED_DATA:
2658                 /* CURRENT ERROR */
2659                 buffer[0] = 0x70;
2660                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2661                 /* ABORTED COMMAND */
2662                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2663                 /* WRITE ERROR */
2664                 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2665                 /* UNEXPECTED_UNSOLICITED_DATA */
2666                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2667                 break;
2668         case TCM_SERVICE_CRC_ERROR:
2669                 /* CURRENT ERROR */
2670                 buffer[0] = 0x70;
2671                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2672                 /* ABORTED COMMAND */
2673                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2674                 /* PROTOCOL SERVICE CRC ERROR */
2675                 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2676                 /* N/A */
2677                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2678                 break;
2679         case TCM_SNACK_REJECTED:
2680                 /* CURRENT ERROR */
2681                 buffer[0] = 0x70;
2682                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2683                 /* ABORTED COMMAND */
2684                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2685                 /* READ ERROR */
2686                 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2687                 /* FAILED RETRANSMISSION REQUEST */
2688                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2689                 break;
2690         case TCM_WRITE_PROTECTED:
2691                 /* CURRENT ERROR */
2692                 buffer[0] = 0x70;
2693                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2694                 /* DATA PROTECT */
2695                 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2696                 /* WRITE PROTECTED */
2697                 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2698                 break;
2699         case TCM_ADDRESS_OUT_OF_RANGE:
2700                 /* CURRENT ERROR */
2701                 buffer[0] = 0x70;
2702                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2703                 /* ILLEGAL REQUEST */
2704                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2705                 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2706                 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2707                 break;
2708         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2709                 /* CURRENT ERROR */
2710                 buffer[0] = 0x70;
2711                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2712                 /* UNIT ATTENTION */
2713                 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2714                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2715                 buffer[SPC_ASC_KEY_OFFSET] = asc;
2716                 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2717                 break;
2718         case TCM_CHECK_CONDITION_NOT_READY:
2719                 /* CURRENT ERROR */
2720                 buffer[0] = 0x70;
2721                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2722                 /* Not Ready */
2723                 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2724                 transport_get_sense_codes(cmd, &asc, &ascq);
2725                 buffer[SPC_ASC_KEY_OFFSET] = asc;
2726                 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2727                 break;
2728         case TCM_MISCOMPARE_VERIFY:
2729                 /* CURRENT ERROR */
2730                 buffer[0] = 0x70;
2731                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2732                 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2733                 /* MISCOMPARE DURING VERIFY OPERATION */
2734                 buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2735                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2736                 break;
2737         case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2738                 /* CURRENT ERROR */
2739                 buffer[0] = 0x70;
2740                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2741                 /* ILLEGAL REQUEST */
2742                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2743                 /* LOGICAL BLOCK GUARD CHECK FAILED */
2744                 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2745                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x01;
2746                 transport_err_sector_info(buffer, cmd->bad_sector);
2747                 break;
2748         case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2749                 /* CURRENT ERROR */
2750                 buffer[0] = 0x70;
2751                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2752                 /* ILLEGAL REQUEST */
2753                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2754                 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2755                 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2756                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x02;
2757                 transport_err_sector_info(buffer, cmd->bad_sector);
2758                 break;
2759         case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2760                 /* CURRENT ERROR */
2761                 buffer[0] = 0x70;
2762                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2763                 /* ILLEGAL REQUEST */
2764                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2765                 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2766                 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2767                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2768                 transport_err_sector_info(buffer, cmd->bad_sector);
2769                 break;
2770         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2771         default:
2772                 /* CURRENT ERROR */
2773                 buffer[0] = 0x70;
2774                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2775                 /*
2776                  * Returning ILLEGAL REQUEST would cause immediate IO errors on
2777                  * Solaris initiators.  Returning NOT READY instead means the
2778                  * operations will be retried a finite number of times and we
2779                  * can survive intermittent errors.
2780                  */
2781                 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2782                 /* LOGICAL UNIT COMMUNICATION FAILURE */
2783                 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2784                 break;
2785         }
2786         /*
2787          * This code uses linux/include/scsi/scsi.h SAM status codes!
2788          */
2789         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2790         /*
2791          * Automatically padded, this value is encoded in the fabric's
2792          * data_length response PDU containing the SCSI defined sense data.
2793          */
2794         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
2795
2796 after_reason:
2797         trace_target_cmd_complete(cmd);
2798         return cmd->se_tfo->queue_status(cmd);
2799 }
2800 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2801
2802 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2803 {
2804         if (!(cmd->transport_state & CMD_T_ABORTED))
2805                 return 0;
2806
2807         /*
2808          * If cmd has been aborted but either no status is to be sent or it has
2809          * already been sent, just return
2810          */
2811         if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS))
2812                 return 1;
2813
2814         pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2815                  cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2816
2817         cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2818         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2819         trace_target_cmd_complete(cmd);
2820         cmd->se_tfo->queue_status(cmd);
2821
2822         return 1;
2823 }
2824 EXPORT_SYMBOL(transport_check_aborted_status);
2825
2826 void transport_send_task_abort(struct se_cmd *cmd)
2827 {
2828         unsigned long flags;
2829
2830         spin_lock_irqsave(&cmd->t_state_lock, flags);
2831         if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
2832                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2833                 return;
2834         }
2835         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2836
2837         /*
2838          * If there are still expected incoming fabric WRITEs, we wait
2839          * until until they have completed before sending a TASK_ABORTED
2840          * response.  This response with TASK_ABORTED status will be
2841          * queued back to fabric module by transport_check_aborted_status().
2842          */
2843         if (cmd->data_direction == DMA_TO_DEVICE) {
2844                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2845                         cmd->transport_state |= CMD_T_ABORTED;
2846                         cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2847                         smp_mb__after_atomic_inc();
2848                         return;
2849                 }
2850         }
2851         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2852
2853         transport_lun_remove_cmd(cmd);
2854
2855         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2856                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
2857                 cmd->se_tfo->get_task_tag(cmd));
2858
2859         trace_target_cmd_complete(cmd);
2860         cmd->se_tfo->queue_status(cmd);
2861 }
2862
2863 static void target_tmr_work(struct work_struct *work)
2864 {
2865         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2866         struct se_device *dev = cmd->se_dev;
2867         struct se_tmr_req *tmr = cmd->se_tmr_req;
2868         int ret;
2869
2870         switch (tmr->function) {
2871         case TMR_ABORT_TASK:
2872                 core_tmr_abort_task(dev, tmr, cmd->se_sess);
2873                 break;
2874         case TMR_ABORT_TASK_SET:
2875         case TMR_CLEAR_ACA:
2876         case TMR_CLEAR_TASK_SET:
2877                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
2878                 break;
2879         case TMR_LUN_RESET:
2880                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
2881                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
2882                                          TMR_FUNCTION_REJECTED;
2883                 break;
2884         case TMR_TARGET_WARM_RESET:
2885                 tmr->response = TMR_FUNCTION_REJECTED;
2886                 break;
2887         case TMR_TARGET_COLD_RESET:
2888                 tmr->response = TMR_FUNCTION_REJECTED;
2889                 break;
2890         default:
2891                 pr_err("Uknown TMR function: 0x%02x.\n",
2892                                 tmr->function);
2893                 tmr->response = TMR_FUNCTION_REJECTED;
2894                 break;
2895         }
2896
2897         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2898         cmd->se_tfo->queue_tm_rsp(cmd);
2899
2900         transport_cmd_check_stop_to_fabric(cmd);
2901 }
2902
2903 int transport_generic_handle_tmr(
2904         struct se_cmd *cmd)
2905 {
2906         INIT_WORK(&cmd->work, target_tmr_work);
2907         queue_work(cmd->se_dev->tmr_wq, &cmd->work);
2908         return 0;
2909 }
2910 EXPORT_SYMBOL(transport_generic_handle_tmr);