eb8055aa6e61b26ad4ab853ef0fde6b4ee95ccda
[firefly-linux-kernel-4.4.55.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/version.h>
30 #include <linux/net.h>
31 #include <linux/delay.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/slab.h>
35 #include <linux/blkdev.h>
36 #include <linux/spinlock.h>
37 #include <linux/kthread.h>
38 #include <linux/in.h>
39 #include <linux/cdrom.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
46
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
54
55 #include "target_core_alua.h"
56 #include "target_core_hba.h"
57 #include "target_core_pr.h"
58 #include "target_core_scdb.h"
59 #include "target_core_ua.h"
60
61 static int sub_api_initialized;
62
63 static struct kmem_cache *se_cmd_cache;
64 static struct kmem_cache *se_sess_cache;
65 struct kmem_cache *se_tmr_req_cache;
66 struct kmem_cache *se_ua_cache;
67 struct kmem_cache *t10_pr_reg_cache;
68 struct kmem_cache *t10_alua_lu_gp_cache;
69 struct kmem_cache *t10_alua_lu_gp_mem_cache;
70 struct kmem_cache *t10_alua_tg_pt_gp_cache;
71 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
72
73 /* Used for transport_dev_get_map_*() */
74 typedef int (*map_func_t)(struct se_task *, u32);
75
76 static int transport_generic_write_pending(struct se_cmd *);
77 static int transport_processing_thread(void *param);
78 static int __transport_execute_tasks(struct se_device *dev);
79 static void transport_complete_task_attr(struct se_cmd *cmd);
80 static int transport_complete_qf(struct se_cmd *cmd);
81 static void transport_handle_queue_full(struct se_cmd *cmd,
82                 struct se_device *dev, int (*qf_callback)(struct se_cmd *));
83 static void transport_direct_request_timeout(struct se_cmd *cmd);
84 static void transport_free_dev_tasks(struct se_cmd *cmd);
85 static u32 transport_allocate_tasks(struct se_cmd *cmd,
86                 unsigned long long starting_lba,
87                 enum dma_data_direction data_direction,
88                 struct scatterlist *sgl, unsigned int nents);
89 static int transport_generic_get_mem(struct se_cmd *cmd);
90 static int transport_generic_remove(struct se_cmd *cmd,
91                 int session_reinstatement);
92 static void transport_release_fe_cmd(struct se_cmd *cmd);
93 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
94                 struct se_queue_obj *qobj);
95 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
96 static void transport_stop_all_task_timers(struct se_cmd *cmd);
97
98 int init_se_kmem_caches(void)
99 {
100         se_cmd_cache = kmem_cache_create("se_cmd_cache",
101                         sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
102         if (!se_cmd_cache) {
103                 pr_err("kmem_cache_create for struct se_cmd failed\n");
104                 goto out;
105         }
106         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
107                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
108                         0, NULL);
109         if (!se_tmr_req_cache) {
110                 pr_err("kmem_cache_create() for struct se_tmr_req"
111                                 " failed\n");
112                 goto out;
113         }
114         se_sess_cache = kmem_cache_create("se_sess_cache",
115                         sizeof(struct se_session), __alignof__(struct se_session),
116                         0, NULL);
117         if (!se_sess_cache) {
118                 pr_err("kmem_cache_create() for struct se_session"
119                                 " failed\n");
120                 goto out;
121         }
122         se_ua_cache = kmem_cache_create("se_ua_cache",
123                         sizeof(struct se_ua), __alignof__(struct se_ua),
124                         0, NULL);
125         if (!se_ua_cache) {
126                 pr_err("kmem_cache_create() for struct se_ua failed\n");
127                 goto out;
128         }
129         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
130                         sizeof(struct t10_pr_registration),
131                         __alignof__(struct t10_pr_registration), 0, NULL);
132         if (!t10_pr_reg_cache) {
133                 pr_err("kmem_cache_create() for struct t10_pr_registration"
134                                 " failed\n");
135                 goto out;
136         }
137         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
138                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
139                         0, NULL);
140         if (!t10_alua_lu_gp_cache) {
141                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
142                                 " failed\n");
143                 goto out;
144         }
145         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
146                         sizeof(struct t10_alua_lu_gp_member),
147                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
148         if (!t10_alua_lu_gp_mem_cache) {
149                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
150                                 "cache failed\n");
151                 goto out;
152         }
153         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
154                         sizeof(struct t10_alua_tg_pt_gp),
155                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
156         if (!t10_alua_tg_pt_gp_cache) {
157                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
158                                 "cache failed\n");
159                 goto out;
160         }
161         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
162                         "t10_alua_tg_pt_gp_mem_cache",
163                         sizeof(struct t10_alua_tg_pt_gp_member),
164                         __alignof__(struct t10_alua_tg_pt_gp_member),
165                         0, NULL);
166         if (!t10_alua_tg_pt_gp_mem_cache) {
167                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
168                                 "mem_t failed\n");
169                 goto out;
170         }
171
172         return 0;
173 out:
174         if (se_cmd_cache)
175                 kmem_cache_destroy(se_cmd_cache);
176         if (se_tmr_req_cache)
177                 kmem_cache_destroy(se_tmr_req_cache);
178         if (se_sess_cache)
179                 kmem_cache_destroy(se_sess_cache);
180         if (se_ua_cache)
181                 kmem_cache_destroy(se_ua_cache);
182         if (t10_pr_reg_cache)
183                 kmem_cache_destroy(t10_pr_reg_cache);
184         if (t10_alua_lu_gp_cache)
185                 kmem_cache_destroy(t10_alua_lu_gp_cache);
186         if (t10_alua_lu_gp_mem_cache)
187                 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
188         if (t10_alua_tg_pt_gp_cache)
189                 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
190         if (t10_alua_tg_pt_gp_mem_cache)
191                 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
192         return -ENOMEM;
193 }
194
195 void release_se_kmem_caches(void)
196 {
197         kmem_cache_destroy(se_cmd_cache);
198         kmem_cache_destroy(se_tmr_req_cache);
199         kmem_cache_destroy(se_sess_cache);
200         kmem_cache_destroy(se_ua_cache);
201         kmem_cache_destroy(t10_pr_reg_cache);
202         kmem_cache_destroy(t10_alua_lu_gp_cache);
203         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
204         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
205         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
206 }
207
208 /* This code ensures unique mib indexes are handed out. */
209 static DEFINE_SPINLOCK(scsi_mib_index_lock);
210 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
211
212 /*
213  * Allocate a new row index for the entry type specified
214  */
215 u32 scsi_get_new_index(scsi_index_t type)
216 {
217         u32 new_index;
218
219         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
220
221         spin_lock(&scsi_mib_index_lock);
222         new_index = ++scsi_mib_index[type];
223         spin_unlock(&scsi_mib_index_lock);
224
225         return new_index;
226 }
227
228 void transport_init_queue_obj(struct se_queue_obj *qobj)
229 {
230         atomic_set(&qobj->queue_cnt, 0);
231         INIT_LIST_HEAD(&qobj->qobj_list);
232         init_waitqueue_head(&qobj->thread_wq);
233         spin_lock_init(&qobj->cmd_queue_lock);
234 }
235 EXPORT_SYMBOL(transport_init_queue_obj);
236
237 static int transport_subsystem_reqmods(void)
238 {
239         int ret;
240
241         ret = request_module("target_core_iblock");
242         if (ret != 0)
243                 pr_err("Unable to load target_core_iblock\n");
244
245         ret = request_module("target_core_file");
246         if (ret != 0)
247                 pr_err("Unable to load target_core_file\n");
248
249         ret = request_module("target_core_pscsi");
250         if (ret != 0)
251                 pr_err("Unable to load target_core_pscsi\n");
252
253         ret = request_module("target_core_stgt");
254         if (ret != 0)
255                 pr_err("Unable to load target_core_stgt\n");
256
257         return 0;
258 }
259
260 int transport_subsystem_check_init(void)
261 {
262         int ret;
263
264         if (sub_api_initialized)
265                 return 0;
266         /*
267          * Request the loading of known TCM subsystem plugins..
268          */
269         ret = transport_subsystem_reqmods();
270         if (ret < 0)
271                 return ret;
272
273         sub_api_initialized = 1;
274         return 0;
275 }
276
277 struct se_session *transport_init_session(void)
278 {
279         struct se_session *se_sess;
280
281         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
282         if (!se_sess) {
283                 pr_err("Unable to allocate struct se_session from"
284                                 " se_sess_cache\n");
285                 return ERR_PTR(-ENOMEM);
286         }
287         INIT_LIST_HEAD(&se_sess->sess_list);
288         INIT_LIST_HEAD(&se_sess->sess_acl_list);
289
290         return se_sess;
291 }
292 EXPORT_SYMBOL(transport_init_session);
293
294 /*
295  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
296  */
297 void __transport_register_session(
298         struct se_portal_group *se_tpg,
299         struct se_node_acl *se_nacl,
300         struct se_session *se_sess,
301         void *fabric_sess_ptr)
302 {
303         unsigned char buf[PR_REG_ISID_LEN];
304
305         se_sess->se_tpg = se_tpg;
306         se_sess->fabric_sess_ptr = fabric_sess_ptr;
307         /*
308          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
309          *
310          * Only set for struct se_session's that will actually be moving I/O.
311          * eg: *NOT* discovery sessions.
312          */
313         if (se_nacl) {
314                 /*
315                  * If the fabric module supports an ISID based TransportID,
316                  * save this value in binary from the fabric I_T Nexus now.
317                  */
318                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
319                         memset(&buf[0], 0, PR_REG_ISID_LEN);
320                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
321                                         &buf[0], PR_REG_ISID_LEN);
322                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
323                 }
324                 spin_lock_irq(&se_nacl->nacl_sess_lock);
325                 /*
326                  * The se_nacl->nacl_sess pointer will be set to the
327                  * last active I_T Nexus for each struct se_node_acl.
328                  */
329                 se_nacl->nacl_sess = se_sess;
330
331                 list_add_tail(&se_sess->sess_acl_list,
332                               &se_nacl->acl_sess_list);
333                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
334         }
335         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
336
337         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
338                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
339 }
340 EXPORT_SYMBOL(__transport_register_session);
341
342 void transport_register_session(
343         struct se_portal_group *se_tpg,
344         struct se_node_acl *se_nacl,
345         struct se_session *se_sess,
346         void *fabric_sess_ptr)
347 {
348         spin_lock_bh(&se_tpg->session_lock);
349         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
350         spin_unlock_bh(&se_tpg->session_lock);
351 }
352 EXPORT_SYMBOL(transport_register_session);
353
354 void transport_deregister_session_configfs(struct se_session *se_sess)
355 {
356         struct se_node_acl *se_nacl;
357         unsigned long flags;
358         /*
359          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
360          */
361         se_nacl = se_sess->se_node_acl;
362         if (se_nacl) {
363                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
364                 list_del(&se_sess->sess_acl_list);
365                 /*
366                  * If the session list is empty, then clear the pointer.
367                  * Otherwise, set the struct se_session pointer from the tail
368                  * element of the per struct se_node_acl active session list.
369                  */
370                 if (list_empty(&se_nacl->acl_sess_list))
371                         se_nacl->nacl_sess = NULL;
372                 else {
373                         se_nacl->nacl_sess = container_of(
374                                         se_nacl->acl_sess_list.prev,
375                                         struct se_session, sess_acl_list);
376                 }
377                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
378         }
379 }
380 EXPORT_SYMBOL(transport_deregister_session_configfs);
381
382 void transport_free_session(struct se_session *se_sess)
383 {
384         kmem_cache_free(se_sess_cache, se_sess);
385 }
386 EXPORT_SYMBOL(transport_free_session);
387
388 void transport_deregister_session(struct se_session *se_sess)
389 {
390         struct se_portal_group *se_tpg = se_sess->se_tpg;
391         struct se_node_acl *se_nacl;
392
393         if (!se_tpg) {
394                 transport_free_session(se_sess);
395                 return;
396         }
397
398         spin_lock_bh(&se_tpg->session_lock);
399         list_del(&se_sess->sess_list);
400         se_sess->se_tpg = NULL;
401         se_sess->fabric_sess_ptr = NULL;
402         spin_unlock_bh(&se_tpg->session_lock);
403
404         /*
405          * Determine if we need to do extra work for this initiator node's
406          * struct se_node_acl if it had been previously dynamically generated.
407          */
408         se_nacl = se_sess->se_node_acl;
409         if (se_nacl) {
410                 spin_lock_bh(&se_tpg->acl_node_lock);
411                 if (se_nacl->dynamic_node_acl) {
412                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
413                                         se_tpg)) {
414                                 list_del(&se_nacl->acl_list);
415                                 se_tpg->num_node_acls--;
416                                 spin_unlock_bh(&se_tpg->acl_node_lock);
417
418                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
419                                 core_free_device_list_for_node(se_nacl, se_tpg);
420                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
421                                                 se_nacl);
422                                 spin_lock_bh(&se_tpg->acl_node_lock);
423                         }
424                 }
425                 spin_unlock_bh(&se_tpg->acl_node_lock);
426         }
427
428         transport_free_session(se_sess);
429
430         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
431                 se_tpg->se_tpg_tfo->get_fabric_name());
432 }
433 EXPORT_SYMBOL(transport_deregister_session);
434
435 /*
436  * Called with cmd->t_state_lock held.
437  */
438 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
439 {
440         struct se_device *dev;
441         struct se_task *task;
442         unsigned long flags;
443
444         list_for_each_entry(task, &cmd->t_task_list, t_list) {
445                 dev = task->se_dev;
446                 if (!dev)
447                         continue;
448
449                 if (atomic_read(&task->task_active))
450                         continue;
451
452                 if (!atomic_read(&task->task_state_active))
453                         continue;
454
455                 spin_lock_irqsave(&dev->execute_task_lock, flags);
456                 list_del(&task->t_state_list);
457                 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
458                         cmd->se_tfo->get_task_tag(cmd), dev, task);
459                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
460
461                 atomic_set(&task->task_state_active, 0);
462                 atomic_dec(&cmd->t_task_cdbs_ex_left);
463         }
464 }
465
466 /*      transport_cmd_check_stop():
467  *
468  *      'transport_off = 1' determines if t_transport_active should be cleared.
469  *      'transport_off = 2' determines if task_dev_state should be removed.
470  *
471  *      A non-zero u8 t_state sets cmd->t_state.
472  *      Returns 1 when command is stopped, else 0.
473  */
474 static int transport_cmd_check_stop(
475         struct se_cmd *cmd,
476         int transport_off,
477         u8 t_state)
478 {
479         unsigned long flags;
480
481         spin_lock_irqsave(&cmd->t_state_lock, flags);
482         /*
483          * Determine if IOCTL context caller in requesting the stopping of this
484          * command for LUN shutdown purposes.
485          */
486         if (atomic_read(&cmd->transport_lun_stop)) {
487                 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
488                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
489                         cmd->se_tfo->get_task_tag(cmd));
490
491                 cmd->deferred_t_state = cmd->t_state;
492                 cmd->t_state = TRANSPORT_DEFERRED_CMD;
493                 atomic_set(&cmd->t_transport_active, 0);
494                 if (transport_off == 2)
495                         transport_all_task_dev_remove_state(cmd);
496                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
497
498                 complete(&cmd->transport_lun_stop_comp);
499                 return 1;
500         }
501         /*
502          * Determine if frontend context caller is requesting the stopping of
503          * this command for frontend exceptions.
504          */
505         if (atomic_read(&cmd->t_transport_stop)) {
506                 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
507                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
508                         cmd->se_tfo->get_task_tag(cmd));
509
510                 cmd->deferred_t_state = cmd->t_state;
511                 cmd->t_state = TRANSPORT_DEFERRED_CMD;
512                 if (transport_off == 2)
513                         transport_all_task_dev_remove_state(cmd);
514
515                 /*
516                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
517                  * to FE.
518                  */
519                 if (transport_off == 2)
520                         cmd->se_lun = NULL;
521                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
522
523                 complete(&cmd->t_transport_stop_comp);
524                 return 1;
525         }
526         if (transport_off) {
527                 atomic_set(&cmd->t_transport_active, 0);
528                 if (transport_off == 2) {
529                         transport_all_task_dev_remove_state(cmd);
530                         /*
531                          * Clear struct se_cmd->se_lun before the transport_off == 2
532                          * handoff to fabric module.
533                          */
534                         cmd->se_lun = NULL;
535                         /*
536                          * Some fabric modules like tcm_loop can release
537                          * their internally allocated I/O reference now and
538                          * struct se_cmd now.
539                          */
540                         if (cmd->se_tfo->check_stop_free != NULL) {
541                                 spin_unlock_irqrestore(
542                                         &cmd->t_state_lock, flags);
543
544                                 cmd->se_tfo->check_stop_free(cmd);
545                                 return 1;
546                         }
547                 }
548                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
549
550                 return 0;
551         } else if (t_state)
552                 cmd->t_state = t_state;
553         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
554
555         return 0;
556 }
557
558 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
559 {
560         return transport_cmd_check_stop(cmd, 2, 0);
561 }
562
563 static void transport_lun_remove_cmd(struct se_cmd *cmd)
564 {
565         struct se_lun *lun = cmd->se_lun;
566         unsigned long flags;
567
568         if (!lun)
569                 return;
570
571         spin_lock_irqsave(&cmd->t_state_lock, flags);
572         if (!atomic_read(&cmd->transport_dev_active)) {
573                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
574                 goto check_lun;
575         }
576         atomic_set(&cmd->transport_dev_active, 0);
577         transport_all_task_dev_remove_state(cmd);
578         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
579
580
581 check_lun:
582         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
583         if (atomic_read(&cmd->transport_lun_active)) {
584                 list_del(&cmd->se_lun_node);
585                 atomic_set(&cmd->transport_lun_active, 0);
586 #if 0
587                 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
588                         cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
589 #endif
590         }
591         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
592 }
593
594 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
595 {
596         transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
597         transport_lun_remove_cmd(cmd);
598
599         if (transport_cmd_check_stop_to_fabric(cmd))
600                 return;
601         if (remove)
602                 transport_generic_remove(cmd, 0);
603 }
604
605 void transport_cmd_finish_abort_tmr(struct se_cmd *cmd)
606 {
607         transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
608
609         if (transport_cmd_check_stop_to_fabric(cmd))
610                 return;
611
612         transport_generic_remove(cmd, 0);
613 }
614
615 static void transport_add_cmd_to_queue(
616         struct se_cmd *cmd,
617         int t_state)
618 {
619         struct se_device *dev = cmd->se_dev;
620         struct se_queue_obj *qobj = &dev->dev_queue_obj;
621         unsigned long flags;
622
623         INIT_LIST_HEAD(&cmd->se_queue_node);
624
625         if (t_state) {
626                 spin_lock_irqsave(&cmd->t_state_lock, flags);
627                 cmd->t_state = t_state;
628                 atomic_set(&cmd->t_transport_active, 1);
629                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
630         }
631
632         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
633         if (cmd->se_cmd_flags & SCF_EMULATE_QUEUE_FULL) {
634                 cmd->se_cmd_flags &= ~SCF_EMULATE_QUEUE_FULL;
635                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
636         } else
637                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
638         atomic_inc(&cmd->t_transport_queue_active);
639         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
640
641         atomic_inc(&qobj->queue_cnt);
642         wake_up_interruptible(&qobj->thread_wq);
643 }
644
645 static struct se_cmd *
646 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
647 {
648         struct se_cmd *cmd;
649         unsigned long flags;
650
651         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
652         if (list_empty(&qobj->qobj_list)) {
653                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
654                 return NULL;
655         }
656         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
657
658         atomic_dec(&cmd->t_transport_queue_active);
659
660         list_del(&cmd->se_queue_node);
661         atomic_dec(&qobj->queue_cnt);
662         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
663
664         return cmd;
665 }
666
667 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
668                 struct se_queue_obj *qobj)
669 {
670         struct se_cmd *t;
671         unsigned long flags;
672
673         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
674         if (!atomic_read(&cmd->t_transport_queue_active)) {
675                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
676                 return;
677         }
678
679         list_for_each_entry(t, &qobj->qobj_list, se_queue_node)
680                 if (t == cmd) {
681                         atomic_dec(&cmd->t_transport_queue_active);
682                         atomic_dec(&qobj->queue_cnt);
683                         list_del(&cmd->se_queue_node);
684                         break;
685                 }
686         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
687
688         if (atomic_read(&cmd->t_transport_queue_active)) {
689                 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
690                         cmd->se_tfo->get_task_tag(cmd),
691                         atomic_read(&cmd->t_transport_queue_active));
692         }
693 }
694
695 /*
696  * Completion function used by TCM subsystem plugins (such as FILEIO)
697  * for queueing up response from struct se_subsystem_api->do_task()
698  */
699 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
700 {
701         struct se_task *task = list_entry(cmd->t_task_list.next,
702                                 struct se_task, t_list);
703
704         if (good) {
705                 cmd->scsi_status = SAM_STAT_GOOD;
706                 task->task_scsi_status = GOOD;
707         } else {
708                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
709                 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
710                 task->task_se_cmd->transport_error_status =
711                                         PYX_TRANSPORT_ILLEGAL_REQUEST;
712         }
713
714         transport_complete_task(task, good);
715 }
716 EXPORT_SYMBOL(transport_complete_sync_cache);
717
718 /*      transport_complete_task():
719  *
720  *      Called from interrupt and non interrupt context depending
721  *      on the transport plugin.
722  */
723 void transport_complete_task(struct se_task *task, int success)
724 {
725         struct se_cmd *cmd = task->task_se_cmd;
726         struct se_device *dev = task->se_dev;
727         int t_state;
728         unsigned long flags;
729 #if 0
730         pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
731                         cmd->t_task_cdb[0], dev);
732 #endif
733         if (dev)
734                 atomic_inc(&dev->depth_left);
735
736         spin_lock_irqsave(&cmd->t_state_lock, flags);
737         atomic_set(&task->task_active, 0);
738
739         /*
740          * See if any sense data exists, if so set the TASK_SENSE flag.
741          * Also check for any other post completion work that needs to be
742          * done by the plugins.
743          */
744         if (dev && dev->transport->transport_complete) {
745                 if (dev->transport->transport_complete(task) != 0) {
746                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
747                         task->task_sense = 1;
748                         success = 1;
749                 }
750         }
751
752         /*
753          * See if we are waiting for outstanding struct se_task
754          * to complete for an exception condition
755          */
756         if (atomic_read(&task->task_stop)) {
757                 /*
758                  * Decrement cmd->t_se_count if this task had
759                  * previously thrown its timeout exception handler.
760                  */
761                 if (atomic_read(&task->task_timeout)) {
762                         atomic_dec(&cmd->t_se_count);
763                         atomic_set(&task->task_timeout, 0);
764                 }
765                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
766
767                 complete(&task->task_stop_comp);
768                 return;
769         }
770         /*
771          * If the task's timeout handler has fired, use the t_task_cdbs_timeout
772          * left counter to determine when the struct se_cmd is ready to be queued to
773          * the processing thread.
774          */
775         if (atomic_read(&task->task_timeout)) {
776                 if (!atomic_dec_and_test(
777                                 &cmd->t_task_cdbs_timeout_left)) {
778                         spin_unlock_irqrestore(&cmd->t_state_lock,
779                                 flags);
780                         return;
781                 }
782                 t_state = TRANSPORT_COMPLETE_TIMEOUT;
783                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
784
785                 transport_add_cmd_to_queue(cmd, t_state);
786                 return;
787         }
788         atomic_dec(&cmd->t_task_cdbs_timeout_left);
789
790         /*
791          * Decrement the outstanding t_task_cdbs_left count.  The last
792          * struct se_task from struct se_cmd will complete itself into the
793          * device queue depending upon int success.
794          */
795         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
796                 if (!success)
797                         cmd->t_tasks_failed = 1;
798
799                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
800                 return;
801         }
802
803         if (!success || cmd->t_tasks_failed) {
804                 t_state = TRANSPORT_COMPLETE_FAILURE;
805                 if (!task->task_error_status) {
806                         task->task_error_status =
807                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
808                         cmd->transport_error_status =
809                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
810                 }
811         } else {
812                 atomic_set(&cmd->t_transport_complete, 1);
813                 t_state = TRANSPORT_COMPLETE_OK;
814         }
815         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
816
817         transport_add_cmd_to_queue(cmd, t_state);
818 }
819 EXPORT_SYMBOL(transport_complete_task);
820
821 /*
822  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
823  * struct se_task list are ready to be added to the active execution list
824  * struct se_device
825
826  * Called with se_dev_t->execute_task_lock called.
827  */
828 static inline int transport_add_task_check_sam_attr(
829         struct se_task *task,
830         struct se_task *task_prev,
831         struct se_device *dev)
832 {
833         /*
834          * No SAM Task attribute emulation enabled, add to tail of
835          * execution queue
836          */
837         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
838                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
839                 return 0;
840         }
841         /*
842          * HEAD_OF_QUEUE attribute for received CDB, which means
843          * the first task that is associated with a struct se_cmd goes to
844          * head of the struct se_device->execute_task_list, and task_prev
845          * after that for each subsequent task
846          */
847         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
848                 list_add(&task->t_execute_list,
849                                 (task_prev != NULL) ?
850                                 &task_prev->t_execute_list :
851                                 &dev->execute_task_list);
852
853                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
854                                 " in execution queue\n",
855                                 task->task_se_cmd->t_task_cdb[0]);
856                 return 1;
857         }
858         /*
859          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
860          * transitioned from Dermant -> Active state, and are added to the end
861          * of the struct se_device->execute_task_list
862          */
863         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
864         return 0;
865 }
866
867 /*      __transport_add_task_to_execute_queue():
868  *
869  *      Called with se_dev_t->execute_task_lock called.
870  */
871 static void __transport_add_task_to_execute_queue(
872         struct se_task *task,
873         struct se_task *task_prev,
874         struct se_device *dev)
875 {
876         int head_of_queue;
877
878         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
879         atomic_inc(&dev->execute_tasks);
880
881         if (atomic_read(&task->task_state_active))
882                 return;
883         /*
884          * Determine if this task needs to go to HEAD_OF_QUEUE for the
885          * state list as well.  Running with SAM Task Attribute emulation
886          * will always return head_of_queue == 0 here
887          */
888         if (head_of_queue)
889                 list_add(&task->t_state_list, (task_prev) ?
890                                 &task_prev->t_state_list :
891                                 &dev->state_task_list);
892         else
893                 list_add_tail(&task->t_state_list, &dev->state_task_list);
894
895         atomic_set(&task->task_state_active, 1);
896
897         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
898                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
899                 task, dev);
900 }
901
902 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
903 {
904         struct se_device *dev;
905         struct se_task *task;
906         unsigned long flags;
907
908         spin_lock_irqsave(&cmd->t_state_lock, flags);
909         list_for_each_entry(task, &cmd->t_task_list, t_list) {
910                 dev = task->se_dev;
911
912                 if (atomic_read(&task->task_state_active))
913                         continue;
914
915                 spin_lock(&dev->execute_task_lock);
916                 list_add_tail(&task->t_state_list, &dev->state_task_list);
917                 atomic_set(&task->task_state_active, 1);
918
919                 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
920                         task->task_se_cmd->se_tfo->get_task_tag(
921                         task->task_se_cmd), task, dev);
922
923                 spin_unlock(&dev->execute_task_lock);
924         }
925         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
926 }
927
928 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
929 {
930         struct se_device *dev = cmd->se_dev;
931         struct se_task *task, *task_prev = NULL;
932         unsigned long flags;
933
934         spin_lock_irqsave(&dev->execute_task_lock, flags);
935         list_for_each_entry(task, &cmd->t_task_list, t_list) {
936                 if (atomic_read(&task->task_execute_queue))
937                         continue;
938                 /*
939                  * __transport_add_task_to_execute_queue() handles the
940                  * SAM Task Attribute emulation if enabled
941                  */
942                 __transport_add_task_to_execute_queue(task, task_prev, dev);
943                 atomic_set(&task->task_execute_queue, 1);
944                 task_prev = task;
945         }
946         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
947 }
948
949 /*      transport_remove_task_from_execute_queue():
950  *
951  *
952  */
953 void transport_remove_task_from_execute_queue(
954         struct se_task *task,
955         struct se_device *dev)
956 {
957         unsigned long flags;
958
959         if (atomic_read(&task->task_execute_queue) == 0) {
960                 dump_stack();
961                 return;
962         }
963
964         spin_lock_irqsave(&dev->execute_task_lock, flags);
965         list_del(&task->t_execute_list);
966         atomic_set(&task->task_execute_queue, 0);
967         atomic_dec(&dev->execute_tasks);
968         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
969 }
970
971 /*
972  * Handle QUEUE_FULL / -EAGAIN status
973  */
974
975 static void target_qf_do_work(struct work_struct *work)
976 {
977         struct se_device *dev = container_of(work, struct se_device,
978                                         qf_work_queue);
979         struct se_cmd *cmd, *cmd_tmp;
980
981         spin_lock_irq(&dev->qf_cmd_lock);
982         list_for_each_entry_safe(cmd, cmd_tmp, &dev->qf_cmd_list, se_qf_node) {
983
984                 list_del(&cmd->se_qf_node);
985                 atomic_dec(&dev->dev_qf_count);
986                 smp_mb__after_atomic_dec();
987                 spin_unlock_irq(&dev->qf_cmd_lock);
988
989                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
990                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
991                         (cmd->t_state == TRANSPORT_COMPLETE_OK) ? "COMPLETE_OK" :
992                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
993                         : "UNKNOWN");
994                 /*
995                  * The SCF_EMULATE_QUEUE_FULL flag will be cleared once se_cmd
996                  * has been added to head of queue
997                  */
998                 transport_add_cmd_to_queue(cmd, cmd->t_state);
999
1000                 spin_lock_irq(&dev->qf_cmd_lock);
1001         }
1002         spin_unlock_irq(&dev->qf_cmd_lock);
1003 }
1004
1005 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1006 {
1007         switch (cmd->data_direction) {
1008         case DMA_NONE:
1009                 return "NONE";
1010         case DMA_FROM_DEVICE:
1011                 return "READ";
1012         case DMA_TO_DEVICE:
1013                 return "WRITE";
1014         case DMA_BIDIRECTIONAL:
1015                 return "BIDI";
1016         default:
1017                 break;
1018         }
1019
1020         return "UNKNOWN";
1021 }
1022
1023 void transport_dump_dev_state(
1024         struct se_device *dev,
1025         char *b,
1026         int *bl)
1027 {
1028         *bl += sprintf(b + *bl, "Status: ");
1029         switch (dev->dev_status) {
1030         case TRANSPORT_DEVICE_ACTIVATED:
1031                 *bl += sprintf(b + *bl, "ACTIVATED");
1032                 break;
1033         case TRANSPORT_DEVICE_DEACTIVATED:
1034                 *bl += sprintf(b + *bl, "DEACTIVATED");
1035                 break;
1036         case TRANSPORT_DEVICE_SHUTDOWN:
1037                 *bl += sprintf(b + *bl, "SHUTDOWN");
1038                 break;
1039         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1040         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1041                 *bl += sprintf(b + *bl, "OFFLINE");
1042                 break;
1043         default:
1044                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1045                 break;
1046         }
1047
1048         *bl += sprintf(b + *bl, "  Execute/Left/Max Queue Depth: %d/%d/%d",
1049                 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1050                 dev->queue_depth);
1051         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
1052                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1053         *bl += sprintf(b + *bl, "        ");
1054 }
1055
1056 /*      transport_release_all_cmds():
1057  *
1058  *
1059  */
1060 static void transport_release_all_cmds(struct se_device *dev)
1061 {
1062         struct se_cmd *cmd, *tcmd;
1063         int bug_out = 0, t_state;
1064         unsigned long flags;
1065
1066         spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1067         list_for_each_entry_safe(cmd, tcmd, &dev->dev_queue_obj.qobj_list,
1068                                 se_queue_node) {
1069                 t_state = cmd->t_state;
1070                 list_del(&cmd->se_queue_node);
1071                 spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock,
1072                                 flags);
1073
1074                 pr_err("Releasing ITT: 0x%08x, i_state: %u,"
1075                         " t_state: %u directly\n",
1076                         cmd->se_tfo->get_task_tag(cmd),
1077                         cmd->se_tfo->get_cmd_state(cmd), t_state);
1078
1079                 transport_release_fe_cmd(cmd);
1080                 bug_out = 1;
1081
1082                 spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1083         }
1084         spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock, flags);
1085 #if 0
1086         if (bug_out)
1087                 BUG();
1088 #endif
1089 }
1090
1091 void transport_dump_vpd_proto_id(
1092         struct t10_vpd *vpd,
1093         unsigned char *p_buf,
1094         int p_buf_len)
1095 {
1096         unsigned char buf[VPD_TMP_BUF_SIZE];
1097         int len;
1098
1099         memset(buf, 0, VPD_TMP_BUF_SIZE);
1100         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1101
1102         switch (vpd->protocol_identifier) {
1103         case 0x00:
1104                 sprintf(buf+len, "Fibre Channel\n");
1105                 break;
1106         case 0x10:
1107                 sprintf(buf+len, "Parallel SCSI\n");
1108                 break;
1109         case 0x20:
1110                 sprintf(buf+len, "SSA\n");
1111                 break;
1112         case 0x30:
1113                 sprintf(buf+len, "IEEE 1394\n");
1114                 break;
1115         case 0x40:
1116                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1117                                 " Protocol\n");
1118                 break;
1119         case 0x50:
1120                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1121                 break;
1122         case 0x60:
1123                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1124                 break;
1125         case 0x70:
1126                 sprintf(buf+len, "Automation/Drive Interface Transport"
1127                                 " Protocol\n");
1128                 break;
1129         case 0x80:
1130                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1131                 break;
1132         default:
1133                 sprintf(buf+len, "Unknown 0x%02x\n",
1134                                 vpd->protocol_identifier);
1135                 break;
1136         }
1137
1138         if (p_buf)
1139                 strncpy(p_buf, buf, p_buf_len);
1140         else
1141                 pr_debug("%s", buf);
1142 }
1143
1144 void
1145 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1146 {
1147         /*
1148          * Check if the Protocol Identifier Valid (PIV) bit is set..
1149          *
1150          * from spc3r23.pdf section 7.5.1
1151          */
1152          if (page_83[1] & 0x80) {
1153                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1154                 vpd->protocol_identifier_set = 1;
1155                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1156         }
1157 }
1158 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1159
1160 int transport_dump_vpd_assoc(
1161         struct t10_vpd *vpd,
1162         unsigned char *p_buf,
1163         int p_buf_len)
1164 {
1165         unsigned char buf[VPD_TMP_BUF_SIZE];
1166         int ret = 0;
1167         int len;
1168
1169         memset(buf, 0, VPD_TMP_BUF_SIZE);
1170         len = sprintf(buf, "T10 VPD Identifier Association: ");
1171
1172         switch (vpd->association) {
1173         case 0x00:
1174                 sprintf(buf+len, "addressed logical unit\n");
1175                 break;
1176         case 0x10:
1177                 sprintf(buf+len, "target port\n");
1178                 break;
1179         case 0x20:
1180                 sprintf(buf+len, "SCSI target device\n");
1181                 break;
1182         default:
1183                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1184                 ret = -EINVAL;
1185                 break;
1186         }
1187
1188         if (p_buf)
1189                 strncpy(p_buf, buf, p_buf_len);
1190         else
1191                 pr_debug("%s", buf);
1192
1193         return ret;
1194 }
1195
1196 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1197 {
1198         /*
1199          * The VPD identification association..
1200          *
1201          * from spc3r23.pdf Section 7.6.3.1 Table 297
1202          */
1203         vpd->association = (page_83[1] & 0x30);
1204         return transport_dump_vpd_assoc(vpd, NULL, 0);
1205 }
1206 EXPORT_SYMBOL(transport_set_vpd_assoc);
1207
1208 int transport_dump_vpd_ident_type(
1209         struct t10_vpd *vpd,
1210         unsigned char *p_buf,
1211         int p_buf_len)
1212 {
1213         unsigned char buf[VPD_TMP_BUF_SIZE];
1214         int ret = 0;
1215         int len;
1216
1217         memset(buf, 0, VPD_TMP_BUF_SIZE);
1218         len = sprintf(buf, "T10 VPD Identifier Type: ");
1219
1220         switch (vpd->device_identifier_type) {
1221         case 0x00:
1222                 sprintf(buf+len, "Vendor specific\n");
1223                 break;
1224         case 0x01:
1225                 sprintf(buf+len, "T10 Vendor ID based\n");
1226                 break;
1227         case 0x02:
1228                 sprintf(buf+len, "EUI-64 based\n");
1229                 break;
1230         case 0x03:
1231                 sprintf(buf+len, "NAA\n");
1232                 break;
1233         case 0x04:
1234                 sprintf(buf+len, "Relative target port identifier\n");
1235                 break;
1236         case 0x08:
1237                 sprintf(buf+len, "SCSI name string\n");
1238                 break;
1239         default:
1240                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1241                                 vpd->device_identifier_type);
1242                 ret = -EINVAL;
1243                 break;
1244         }
1245
1246         if (p_buf) {
1247                 if (p_buf_len < strlen(buf)+1)
1248                         return -EINVAL;
1249                 strncpy(p_buf, buf, p_buf_len);
1250         } else {
1251                 pr_debug("%s", buf);
1252         }
1253
1254         return ret;
1255 }
1256
1257 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1258 {
1259         /*
1260          * The VPD identifier type..
1261          *
1262          * from spc3r23.pdf Section 7.6.3.1 Table 298
1263          */
1264         vpd->device_identifier_type = (page_83[1] & 0x0f);
1265         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1266 }
1267 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1268
1269 int transport_dump_vpd_ident(
1270         struct t10_vpd *vpd,
1271         unsigned char *p_buf,
1272         int p_buf_len)
1273 {
1274         unsigned char buf[VPD_TMP_BUF_SIZE];
1275         int ret = 0;
1276
1277         memset(buf, 0, VPD_TMP_BUF_SIZE);
1278
1279         switch (vpd->device_identifier_code_set) {
1280         case 0x01: /* Binary */
1281                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1282                         &vpd->device_identifier[0]);
1283                 break;
1284         case 0x02: /* ASCII */
1285                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1286                         &vpd->device_identifier[0]);
1287                 break;
1288         case 0x03: /* UTF-8 */
1289                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1290                         &vpd->device_identifier[0]);
1291                 break;
1292         default:
1293                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1294                         " 0x%02x", vpd->device_identifier_code_set);
1295                 ret = -EINVAL;
1296                 break;
1297         }
1298
1299         if (p_buf)
1300                 strncpy(p_buf, buf, p_buf_len);
1301         else
1302                 pr_debug("%s", buf);
1303
1304         return ret;
1305 }
1306
1307 int
1308 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1309 {
1310         static const char hex_str[] = "0123456789abcdef";
1311         int j = 0, i = 4; /* offset to start of the identifer */
1312
1313         /*
1314          * The VPD Code Set (encoding)
1315          *
1316          * from spc3r23.pdf Section 7.6.3.1 Table 296
1317          */
1318         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1319         switch (vpd->device_identifier_code_set) {
1320         case 0x01: /* Binary */
1321                 vpd->device_identifier[j++] =
1322                                 hex_str[vpd->device_identifier_type];
1323                 while (i < (4 + page_83[3])) {
1324                         vpd->device_identifier[j++] =
1325                                 hex_str[(page_83[i] & 0xf0) >> 4];
1326                         vpd->device_identifier[j++] =
1327                                 hex_str[page_83[i] & 0x0f];
1328                         i++;
1329                 }
1330                 break;
1331         case 0x02: /* ASCII */
1332         case 0x03: /* UTF-8 */
1333                 while (i < (4 + page_83[3]))
1334                         vpd->device_identifier[j++] = page_83[i++];
1335                 break;
1336         default:
1337                 break;
1338         }
1339
1340         return transport_dump_vpd_ident(vpd, NULL, 0);
1341 }
1342 EXPORT_SYMBOL(transport_set_vpd_ident);
1343
1344 static void core_setup_task_attr_emulation(struct se_device *dev)
1345 {
1346         /*
1347          * If this device is from Target_Core_Mod/pSCSI, disable the
1348          * SAM Task Attribute emulation.
1349          *
1350          * This is currently not available in upsream Linux/SCSI Target
1351          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1352          */
1353         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1354                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1355                 return;
1356         }
1357
1358         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1359         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1360                 " device\n", dev->transport->name,
1361                 dev->transport->get_device_rev(dev));
1362 }
1363
1364 static void scsi_dump_inquiry(struct se_device *dev)
1365 {
1366         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1367         int i, device_type;
1368         /*
1369          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1370          */
1371         pr_debug("  Vendor: ");
1372         for (i = 0; i < 8; i++)
1373                 if (wwn->vendor[i] >= 0x20)
1374                         pr_debug("%c", wwn->vendor[i]);
1375                 else
1376                         pr_debug(" ");
1377
1378         pr_debug("  Model: ");
1379         for (i = 0; i < 16; i++)
1380                 if (wwn->model[i] >= 0x20)
1381                         pr_debug("%c", wwn->model[i]);
1382                 else
1383                         pr_debug(" ");
1384
1385         pr_debug("  Revision: ");
1386         for (i = 0; i < 4; i++)
1387                 if (wwn->revision[i] >= 0x20)
1388                         pr_debug("%c", wwn->revision[i]);
1389                 else
1390                         pr_debug(" ");
1391
1392         pr_debug("\n");
1393
1394         device_type = dev->transport->get_device_type(dev);
1395         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1396         pr_debug("                 ANSI SCSI revision: %02x\n",
1397                                 dev->transport->get_device_rev(dev));
1398 }
1399
1400 struct se_device *transport_add_device_to_core_hba(
1401         struct se_hba *hba,
1402         struct se_subsystem_api *transport,
1403         struct se_subsystem_dev *se_dev,
1404         u32 device_flags,
1405         void *transport_dev,
1406         struct se_dev_limits *dev_limits,
1407         const char *inquiry_prod,
1408         const char *inquiry_rev)
1409 {
1410         int force_pt;
1411         struct se_device  *dev;
1412
1413         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1414         if (!dev) {
1415                 pr_err("Unable to allocate memory for se_dev_t\n");
1416                 return NULL;
1417         }
1418
1419         transport_init_queue_obj(&dev->dev_queue_obj);
1420         dev->dev_flags          = device_flags;
1421         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1422         dev->dev_ptr            = transport_dev;
1423         dev->se_hba             = hba;
1424         dev->se_sub_dev         = se_dev;
1425         dev->transport          = transport;
1426         atomic_set(&dev->active_cmds, 0);
1427         INIT_LIST_HEAD(&dev->dev_list);
1428         INIT_LIST_HEAD(&dev->dev_sep_list);
1429         INIT_LIST_HEAD(&dev->dev_tmr_list);
1430         INIT_LIST_HEAD(&dev->execute_task_list);
1431         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1432         INIT_LIST_HEAD(&dev->ordered_cmd_list);
1433         INIT_LIST_HEAD(&dev->state_task_list);
1434         INIT_LIST_HEAD(&dev->qf_cmd_list);
1435         spin_lock_init(&dev->execute_task_lock);
1436         spin_lock_init(&dev->delayed_cmd_lock);
1437         spin_lock_init(&dev->ordered_cmd_lock);
1438         spin_lock_init(&dev->state_task_lock);
1439         spin_lock_init(&dev->dev_alua_lock);
1440         spin_lock_init(&dev->dev_reservation_lock);
1441         spin_lock_init(&dev->dev_status_lock);
1442         spin_lock_init(&dev->dev_status_thr_lock);
1443         spin_lock_init(&dev->se_port_lock);
1444         spin_lock_init(&dev->se_tmr_lock);
1445         spin_lock_init(&dev->qf_cmd_lock);
1446
1447         dev->queue_depth        = dev_limits->queue_depth;
1448         atomic_set(&dev->depth_left, dev->queue_depth);
1449         atomic_set(&dev->dev_ordered_id, 0);
1450
1451         se_dev_set_default_attribs(dev, dev_limits);
1452
1453         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1454         dev->creation_time = get_jiffies_64();
1455         spin_lock_init(&dev->stats_lock);
1456
1457         spin_lock(&hba->device_lock);
1458         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1459         hba->dev_count++;
1460         spin_unlock(&hba->device_lock);
1461         /*
1462          * Setup the SAM Task Attribute emulation for struct se_device
1463          */
1464         core_setup_task_attr_emulation(dev);
1465         /*
1466          * Force PR and ALUA passthrough emulation with internal object use.
1467          */
1468         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1469         /*
1470          * Setup the Reservations infrastructure for struct se_device
1471          */
1472         core_setup_reservations(dev, force_pt);
1473         /*
1474          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1475          */
1476         if (core_setup_alua(dev, force_pt) < 0)
1477                 goto out;
1478
1479         /*
1480          * Startup the struct se_device processing thread
1481          */
1482         dev->process_thread = kthread_run(transport_processing_thread, dev,
1483                                           "LIO_%s", dev->transport->name);
1484         if (IS_ERR(dev->process_thread)) {
1485                 pr_err("Unable to create kthread: LIO_%s\n",
1486                         dev->transport->name);
1487                 goto out;
1488         }
1489         /*
1490          * Setup work_queue for QUEUE_FULL
1491          */
1492         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1493         /*
1494          * Preload the initial INQUIRY const values if we are doing
1495          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1496          * passthrough because this is being provided by the backend LLD.
1497          * This is required so that transport_get_inquiry() copies these
1498          * originals once back into DEV_T10_WWN(dev) for the virtual device
1499          * setup.
1500          */
1501         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1502                 if (!inquiry_prod || !inquiry_rev) {
1503                         pr_err("All non TCM/pSCSI plugins require"
1504                                 " INQUIRY consts\n");
1505                         goto out;
1506                 }
1507
1508                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1509                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1510                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1511         }
1512         scsi_dump_inquiry(dev);
1513
1514         return dev;
1515 out:
1516         kthread_stop(dev->process_thread);
1517
1518         spin_lock(&hba->device_lock);
1519         list_del(&dev->dev_list);
1520         hba->dev_count--;
1521         spin_unlock(&hba->device_lock);
1522
1523         se_release_vpd_for_dev(dev);
1524
1525         kfree(dev);
1526
1527         return NULL;
1528 }
1529 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1530
1531 /*      transport_generic_prepare_cdb():
1532  *
1533  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1534  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1535  *      The point of this is since we are mapping iSCSI LUNs to
1536  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1537  *      devices and HBAs for a loop.
1538  */
1539 static inline void transport_generic_prepare_cdb(
1540         unsigned char *cdb)
1541 {
1542         switch (cdb[0]) {
1543         case READ_10: /* SBC - RDProtect */
1544         case READ_12: /* SBC - RDProtect */
1545         case READ_16: /* SBC - RDProtect */
1546         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1547         case VERIFY: /* SBC - VRProtect */
1548         case VERIFY_16: /* SBC - VRProtect */
1549         case WRITE_VERIFY: /* SBC - VRProtect */
1550         case WRITE_VERIFY_12: /* SBC - VRProtect */
1551                 break;
1552         default:
1553                 cdb[1] &= 0x1f; /* clear logical unit number */
1554                 break;
1555         }
1556 }
1557
1558 static struct se_task *
1559 transport_generic_get_task(struct se_cmd *cmd,
1560                 enum dma_data_direction data_direction)
1561 {
1562         struct se_task *task;
1563         struct se_device *dev = cmd->se_dev;
1564
1565         task = dev->transport->alloc_task(cmd->t_task_cdb);
1566         if (!task) {
1567                 pr_err("Unable to allocate struct se_task\n");
1568                 return NULL;
1569         }
1570
1571         INIT_LIST_HEAD(&task->t_list);
1572         INIT_LIST_HEAD(&task->t_execute_list);
1573         INIT_LIST_HEAD(&task->t_state_list);
1574         init_completion(&task->task_stop_comp);
1575         task->task_se_cmd = cmd;
1576         task->se_dev = dev;
1577         task->task_data_direction = data_direction;
1578
1579         return task;
1580 }
1581
1582 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1583
1584 /*
1585  * Used by fabric modules containing a local struct se_cmd within their
1586  * fabric dependent per I/O descriptor.
1587  */
1588 void transport_init_se_cmd(
1589         struct se_cmd *cmd,
1590         struct target_core_fabric_ops *tfo,
1591         struct se_session *se_sess,
1592         u32 data_length,
1593         int data_direction,
1594         int task_attr,
1595         unsigned char *sense_buffer)
1596 {
1597         INIT_LIST_HEAD(&cmd->se_lun_node);
1598         INIT_LIST_HEAD(&cmd->se_delayed_node);
1599         INIT_LIST_HEAD(&cmd->se_ordered_node);
1600         INIT_LIST_HEAD(&cmd->se_qf_node);
1601
1602         INIT_LIST_HEAD(&cmd->t_task_list);
1603         init_completion(&cmd->transport_lun_fe_stop_comp);
1604         init_completion(&cmd->transport_lun_stop_comp);
1605         init_completion(&cmd->t_transport_stop_comp);
1606         spin_lock_init(&cmd->t_state_lock);
1607         atomic_set(&cmd->transport_dev_active, 1);
1608
1609         cmd->se_tfo = tfo;
1610         cmd->se_sess = se_sess;
1611         cmd->data_length = data_length;
1612         cmd->data_direction = data_direction;
1613         cmd->sam_task_attr = task_attr;
1614         cmd->sense_buffer = sense_buffer;
1615 }
1616 EXPORT_SYMBOL(transport_init_se_cmd);
1617
1618 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1619 {
1620         /*
1621          * Check if SAM Task Attribute emulation is enabled for this
1622          * struct se_device storage object
1623          */
1624         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1625                 return 0;
1626
1627         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1628                 pr_debug("SAM Task Attribute ACA"
1629                         " emulation is not supported\n");
1630                 return -EINVAL;
1631         }
1632         /*
1633          * Used to determine when ORDERED commands should go from
1634          * Dormant to Active status.
1635          */
1636         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1637         smp_mb__after_atomic_inc();
1638         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1639                         cmd->se_ordered_id, cmd->sam_task_attr,
1640                         cmd->se_dev->transport->name);
1641         return 0;
1642 }
1643
1644 void transport_free_se_cmd(
1645         struct se_cmd *se_cmd)
1646 {
1647         if (se_cmd->se_tmr_req)
1648                 core_tmr_release_req(se_cmd->se_tmr_req);
1649         /*
1650          * Check and free any extended CDB buffer that was allocated
1651          */
1652         if (se_cmd->t_task_cdb != se_cmd->__t_task_cdb)
1653                 kfree(se_cmd->t_task_cdb);
1654 }
1655 EXPORT_SYMBOL(transport_free_se_cmd);
1656
1657 static void transport_generic_wait_for_tasks(struct se_cmd *, int, int);
1658
1659 /*      transport_generic_allocate_tasks():
1660  *
1661  *      Called from fabric RX Thread.
1662  */
1663 int transport_generic_allocate_tasks(
1664         struct se_cmd *cmd,
1665         unsigned char *cdb)
1666 {
1667         int ret;
1668
1669         transport_generic_prepare_cdb(cdb);
1670
1671         /*
1672          * This is needed for early exceptions.
1673          */
1674         cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1675
1676         /*
1677          * Ensure that the received CDB is less than the max (252 + 8) bytes
1678          * for VARIABLE_LENGTH_CMD
1679          */
1680         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1681                 pr_err("Received SCSI CDB with command_size: %d that"
1682                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1683                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1684                 return -EINVAL;
1685         }
1686         /*
1687          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1688          * allocate the additional extended CDB buffer now..  Otherwise
1689          * setup the pointer from __t_task_cdb to t_task_cdb.
1690          */
1691         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1692                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1693                                                 GFP_KERNEL);
1694                 if (!cmd->t_task_cdb) {
1695                         pr_err("Unable to allocate cmd->t_task_cdb"
1696                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1697                                 scsi_command_size(cdb),
1698                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1699                         return -ENOMEM;
1700                 }
1701         } else
1702                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1703         /*
1704          * Copy the original CDB into cmd->
1705          */
1706         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1707         /*
1708          * Setup the received CDB based on SCSI defined opcodes and
1709          * perform unit attention, persistent reservations and ALUA
1710          * checks for virtual device backends.  The cmd->t_task_cdb
1711          * pointer is expected to be setup before we reach this point.
1712          */
1713         ret = transport_generic_cmd_sequencer(cmd, cdb);
1714         if (ret < 0)
1715                 return ret;
1716         /*
1717          * Check for SAM Task Attribute Emulation
1718          */
1719         if (transport_check_alloc_task_attr(cmd) < 0) {
1720                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1721                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1722                 return -EINVAL;
1723         }
1724         spin_lock(&cmd->se_lun->lun_sep_lock);
1725         if (cmd->se_lun->lun_sep)
1726                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1727         spin_unlock(&cmd->se_lun->lun_sep_lock);
1728         return 0;
1729 }
1730 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1731
1732 /*
1733  * Used by fabric module frontends not defining a TFO->new_cmd_map()
1734  * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1735  */
1736 int transport_generic_handle_cdb(
1737         struct se_cmd *cmd)
1738 {
1739         if (!cmd->se_lun) {
1740                 dump_stack();
1741                 pr_err("cmd->se_lun is NULL\n");
1742                 return -EINVAL;
1743         }
1744
1745         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD);
1746         return 0;
1747 }
1748 EXPORT_SYMBOL(transport_generic_handle_cdb);
1749
1750 static void transport_generic_request_failure(struct se_cmd *,
1751                         struct se_device *, int, int);
1752 /*
1753  * Used by fabric module frontends to queue tasks directly.
1754  * Many only be used from process context only
1755  */
1756 int transport_handle_cdb_direct(
1757         struct se_cmd *cmd)
1758 {
1759         int ret;
1760
1761         if (!cmd->se_lun) {
1762                 dump_stack();
1763                 pr_err("cmd->se_lun is NULL\n");
1764                 return -EINVAL;
1765         }
1766         if (in_interrupt()) {
1767                 dump_stack();
1768                 pr_err("transport_generic_handle_cdb cannot be called"
1769                                 " from interrupt context\n");
1770                 return -EINVAL;
1771         }
1772         /*
1773          * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1774          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1775          * in existing usage to ensure that outstanding descriptors are handled
1776          * correctly during shutdown via transport_generic_wait_for_tasks()
1777          *
1778          * Also, we don't take cmd->t_state_lock here as we only expect
1779          * this to be called for initial descriptor submission.
1780          */
1781         cmd->t_state = TRANSPORT_NEW_CMD;
1782         atomic_set(&cmd->t_transport_active, 1);
1783         /*
1784          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1785          * so follow TRANSPORT_NEW_CMD processing thread context usage
1786          * and call transport_generic_request_failure() if necessary..
1787          */
1788         ret = transport_generic_new_cmd(cmd);
1789         if (ret == -EAGAIN)
1790                 return 0;
1791         else if (ret < 0) {
1792                 cmd->transport_error_status = ret;
1793                 transport_generic_request_failure(cmd, NULL, 0,
1794                                 (cmd->data_direction != DMA_TO_DEVICE));
1795         }
1796         return 0;
1797 }
1798 EXPORT_SYMBOL(transport_handle_cdb_direct);
1799
1800 /*
1801  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1802  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1803  * complete setup in TCM process context w/ TFO->new_cmd_map().
1804  */
1805 int transport_generic_handle_cdb_map(
1806         struct se_cmd *cmd)
1807 {
1808         if (!cmd->se_lun) {
1809                 dump_stack();
1810                 pr_err("cmd->se_lun is NULL\n");
1811                 return -EINVAL;
1812         }
1813
1814         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
1815         return 0;
1816 }
1817 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1818
1819 /*      transport_generic_handle_data():
1820  *
1821  *
1822  */
1823 int transport_generic_handle_data(
1824         struct se_cmd *cmd)
1825 {
1826         /*
1827          * For the software fabric case, then we assume the nexus is being
1828          * failed/shutdown when signals are pending from the kthread context
1829          * caller, so we return a failure.  For the HW target mode case running
1830          * in interrupt code, the signal_pending() check is skipped.
1831          */
1832         if (!in_interrupt() && signal_pending(current))
1833                 return -EPERM;
1834         /*
1835          * If the received CDB has aleady been ABORTED by the generic
1836          * target engine, we now call transport_check_aborted_status()
1837          * to queue any delated TASK_ABORTED status for the received CDB to the
1838          * fabric module as we are expecting no further incoming DATA OUT
1839          * sequences at this point.
1840          */
1841         if (transport_check_aborted_status(cmd, 1) != 0)
1842                 return 0;
1843
1844         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
1845         return 0;
1846 }
1847 EXPORT_SYMBOL(transport_generic_handle_data);
1848
1849 /*      transport_generic_handle_tmr():
1850  *
1851  *
1852  */
1853 int transport_generic_handle_tmr(
1854         struct se_cmd *cmd)
1855 {
1856         /*
1857          * This is needed for early exceptions.
1858          */
1859         cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1860
1861         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
1862         return 0;
1863 }
1864 EXPORT_SYMBOL(transport_generic_handle_tmr);
1865
1866 void transport_generic_free_cmd_intr(
1867         struct se_cmd *cmd)
1868 {
1869         transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
1870 }
1871 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1872
1873 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1874 {
1875         struct se_task *task, *task_tmp;
1876         unsigned long flags;
1877         int ret = 0;
1878
1879         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1880                 cmd->se_tfo->get_task_tag(cmd));
1881
1882         /*
1883          * No tasks remain in the execution queue
1884          */
1885         spin_lock_irqsave(&cmd->t_state_lock, flags);
1886         list_for_each_entry_safe(task, task_tmp,
1887                                 &cmd->t_task_list, t_list) {
1888                 pr_debug("task_no[%d] - Processing task %p\n",
1889                                 task->task_no, task);
1890                 /*
1891                  * If the struct se_task has not been sent and is not active,
1892                  * remove the struct se_task from the execution queue.
1893                  */
1894                 if (!atomic_read(&task->task_sent) &&
1895                     !atomic_read(&task->task_active)) {
1896                         spin_unlock_irqrestore(&cmd->t_state_lock,
1897                                         flags);
1898                         transport_remove_task_from_execute_queue(task,
1899                                         task->se_dev);
1900
1901                         pr_debug("task_no[%d] - Removed from execute queue\n",
1902                                 task->task_no);
1903                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1904                         continue;
1905                 }
1906
1907                 /*
1908                  * If the struct se_task is active, sleep until it is returned
1909                  * from the plugin.
1910                  */
1911                 if (atomic_read(&task->task_active)) {
1912                         atomic_set(&task->task_stop, 1);
1913                         spin_unlock_irqrestore(&cmd->t_state_lock,
1914                                         flags);
1915
1916                         pr_debug("task_no[%d] - Waiting to complete\n",
1917                                 task->task_no);
1918                         wait_for_completion(&task->task_stop_comp);
1919                         pr_debug("task_no[%d] - Stopped successfully\n",
1920                                 task->task_no);
1921
1922                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1923                         atomic_dec(&cmd->t_task_cdbs_left);
1924
1925                         atomic_set(&task->task_active, 0);
1926                         atomic_set(&task->task_stop, 0);
1927                 } else {
1928                         pr_debug("task_no[%d] - Did nothing\n", task->task_no);
1929                         ret++;
1930                 }
1931
1932                 __transport_stop_task_timer(task, &flags);
1933         }
1934         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1935
1936         return ret;
1937 }
1938
1939 /*
1940  * Handle SAM-esque emulation for generic transport request failures.
1941  */
1942 static void transport_generic_request_failure(
1943         struct se_cmd *cmd,
1944         struct se_device *dev,
1945         int complete,
1946         int sc)
1947 {
1948         int ret = 0;
1949
1950         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1951                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1952                 cmd->t_task_cdb[0]);
1953         pr_debug("-----[ i_state: %d t_state/def_t_state:"
1954                 " %d/%d transport_error_status: %d\n",
1955                 cmd->se_tfo->get_cmd_state(cmd),
1956                 cmd->t_state, cmd->deferred_t_state,
1957                 cmd->transport_error_status);
1958         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1959                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1960                 " t_transport_active: %d t_transport_stop: %d"
1961                 " t_transport_sent: %d\n", cmd->t_task_list_num,
1962                 atomic_read(&cmd->t_task_cdbs_left),
1963                 atomic_read(&cmd->t_task_cdbs_sent),
1964                 atomic_read(&cmd->t_task_cdbs_ex_left),
1965                 atomic_read(&cmd->t_transport_active),
1966                 atomic_read(&cmd->t_transport_stop),
1967                 atomic_read(&cmd->t_transport_sent));
1968
1969         transport_stop_all_task_timers(cmd);
1970
1971         if (dev)
1972                 atomic_inc(&dev->depth_left);
1973         /*
1974          * For SAM Task Attribute emulation for failed struct se_cmd
1975          */
1976         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1977                 transport_complete_task_attr(cmd);
1978
1979         if (complete) {
1980                 transport_direct_request_timeout(cmd);
1981                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1982         }
1983
1984         switch (cmd->transport_error_status) {
1985         case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1986                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1987                 break;
1988         case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1989                 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1990                 break;
1991         case PYX_TRANSPORT_INVALID_CDB_FIELD:
1992                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1993                 break;
1994         case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1995                 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1996                 break;
1997         case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1998                 if (!sc)
1999                         transport_new_cmd_failure(cmd);
2000                 /*
2001                  * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
2002                  * we force this session to fall back to session
2003                  * recovery.
2004                  */
2005                 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
2006                 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
2007
2008                 goto check_stop;
2009         case PYX_TRANSPORT_LU_COMM_FAILURE:
2010         case PYX_TRANSPORT_ILLEGAL_REQUEST:
2011                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2012                 break;
2013         case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
2014                 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
2015                 break;
2016         case PYX_TRANSPORT_WRITE_PROTECTED:
2017                 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
2018                 break;
2019         case PYX_TRANSPORT_RESERVATION_CONFLICT:
2020                 /*
2021                  * No SENSE Data payload for this case, set SCSI Status
2022                  * and queue the response to $FABRIC_MOD.
2023                  *
2024                  * Uses linux/include/scsi/scsi.h SAM status codes defs
2025                  */
2026                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2027                 /*
2028                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2029                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2030                  * CONFLICT STATUS.
2031                  *
2032                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2033                  */
2034                 if (cmd->se_sess &&
2035                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2036                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2037                                 cmd->orig_fe_lun, 0x2C,
2038                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2039
2040                 ret = cmd->se_tfo->queue_status(cmd);
2041                 if (ret == -EAGAIN)
2042                         goto queue_full;
2043                 goto check_stop;
2044         case PYX_TRANSPORT_USE_SENSE_REASON:
2045                 /*
2046                  * struct se_cmd->scsi_sense_reason already set
2047                  */
2048                 break;
2049         default:
2050                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2051                         cmd->t_task_cdb[0],
2052                         cmd->transport_error_status);
2053                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2054                 break;
2055         }
2056         /*
2057          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
2058          * make the call to transport_send_check_condition_and_sense()
2059          * directly.  Otherwise expect the fabric to make the call to
2060          * transport_send_check_condition_and_sense() after handling
2061          * possible unsoliticied write data payloads.
2062          */
2063         if (!sc && !cmd->se_tfo->new_cmd_map)
2064                 transport_new_cmd_failure(cmd);
2065         else {
2066                 ret = transport_send_check_condition_and_sense(cmd,
2067                                 cmd->scsi_sense_reason, 0);
2068                 if (ret == -EAGAIN)
2069                         goto queue_full;
2070         }
2071
2072 check_stop:
2073         transport_lun_remove_cmd(cmd);
2074         if (!transport_cmd_check_stop_to_fabric(cmd))
2075                 ;
2076         return;
2077
2078 queue_full:
2079         cmd->t_state = TRANSPORT_COMPLETE_OK;
2080         transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
2081 }
2082
2083 static void transport_direct_request_timeout(struct se_cmd *cmd)
2084 {
2085         unsigned long flags;
2086
2087         spin_lock_irqsave(&cmd->t_state_lock, flags);
2088         if (!atomic_read(&cmd->t_transport_timeout)) {
2089                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2090                 return;
2091         }
2092         if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
2093                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2094                 return;
2095         }
2096
2097         atomic_sub(atomic_read(&cmd->t_transport_timeout),
2098                    &cmd->t_se_count);
2099         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2100 }
2101
2102 static void transport_generic_request_timeout(struct se_cmd *cmd)
2103 {
2104         unsigned long flags;
2105
2106         /*
2107          * Reset cmd->t_se_count to allow transport_generic_remove()
2108          * to allow last call to free memory resources.
2109          */
2110         spin_lock_irqsave(&cmd->t_state_lock, flags);
2111         if (atomic_read(&cmd->t_transport_timeout) > 1) {
2112                 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
2113
2114                 atomic_sub(tmp, &cmd->t_se_count);
2115         }
2116         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2117
2118         transport_generic_remove(cmd, 0);
2119 }
2120
2121 static inline u32 transport_lba_21(unsigned char *cdb)
2122 {
2123         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2124 }
2125
2126 static inline u32 transport_lba_32(unsigned char *cdb)
2127 {
2128         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2129 }
2130
2131 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2132 {
2133         unsigned int __v1, __v2;
2134
2135         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2136         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2137
2138         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2139 }
2140
2141 /*
2142  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2143  */
2144 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2145 {
2146         unsigned int __v1, __v2;
2147
2148         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2149         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2150
2151         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2152 }
2153
2154 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2155 {
2156         unsigned long flags;
2157
2158         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2159         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2160         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2161 }
2162
2163 /*
2164  * Called from interrupt context.
2165  */
2166 static void transport_task_timeout_handler(unsigned long data)
2167 {
2168         struct se_task *task = (struct se_task *)data;
2169         struct se_cmd *cmd = task->task_se_cmd;
2170         unsigned long flags;
2171
2172         pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2173
2174         spin_lock_irqsave(&cmd->t_state_lock, flags);
2175         if (task->task_flags & TF_STOP) {
2176                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2177                 return;
2178         }
2179         task->task_flags &= ~TF_RUNNING;
2180
2181         /*
2182          * Determine if transport_complete_task() has already been called.
2183          */
2184         if (!atomic_read(&task->task_active)) {
2185                 pr_debug("transport task: %p cmd: %p timeout task_active"
2186                                 " == 0\n", task, cmd);
2187                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2188                 return;
2189         }
2190
2191         atomic_inc(&cmd->t_se_count);
2192         atomic_inc(&cmd->t_transport_timeout);
2193         cmd->t_tasks_failed = 1;
2194
2195         atomic_set(&task->task_timeout, 1);
2196         task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2197         task->task_scsi_status = 1;
2198
2199         if (atomic_read(&task->task_stop)) {
2200                 pr_debug("transport task: %p cmd: %p timeout task_stop"
2201                                 " == 1\n", task, cmd);
2202                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2203                 complete(&task->task_stop_comp);
2204                 return;
2205         }
2206
2207         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2208                 pr_debug("transport task: %p cmd: %p timeout non zero"
2209                                 " t_task_cdbs_left\n", task, cmd);
2210                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2211                 return;
2212         }
2213         pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2214                         task, cmd);
2215
2216         cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2217         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2218
2219         transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2220 }
2221
2222 /*
2223  * Called with cmd->t_state_lock held.
2224  */
2225 static void transport_start_task_timer(struct se_task *task)
2226 {
2227         struct se_device *dev = task->se_dev;
2228         int timeout;
2229
2230         if (task->task_flags & TF_RUNNING)
2231                 return;
2232         /*
2233          * If the task_timeout is disabled, exit now.
2234          */
2235         timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2236         if (!timeout)
2237                 return;
2238
2239         init_timer(&task->task_timer);
2240         task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2241         task->task_timer.data = (unsigned long) task;
2242         task->task_timer.function = transport_task_timeout_handler;
2243
2244         task->task_flags |= TF_RUNNING;
2245         add_timer(&task->task_timer);
2246 #if 0
2247         pr_debug("Starting task timer for cmd: %p task: %p seconds:"
2248                 " %d\n", task->task_se_cmd, task, timeout);
2249 #endif
2250 }
2251
2252 /*
2253  * Called with spin_lock_irq(&cmd->t_state_lock) held.
2254  */
2255 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2256 {
2257         struct se_cmd *cmd = task->task_se_cmd;
2258
2259         if (!task->task_flags & TF_RUNNING)
2260                 return;
2261
2262         task->task_flags |= TF_STOP;
2263         spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2264
2265         del_timer_sync(&task->task_timer);
2266
2267         spin_lock_irqsave(&cmd->t_state_lock, *flags);
2268         task->task_flags &= ~TF_RUNNING;
2269         task->task_flags &= ~TF_STOP;
2270 }
2271
2272 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2273 {
2274         struct se_task *task = NULL, *task_tmp;
2275         unsigned long flags;
2276
2277         spin_lock_irqsave(&cmd->t_state_lock, flags);
2278         list_for_each_entry_safe(task, task_tmp,
2279                                 &cmd->t_task_list, t_list)
2280                 __transport_stop_task_timer(task, &flags);
2281         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2282 }
2283
2284 static inline int transport_tcq_window_closed(struct se_device *dev)
2285 {
2286         if (dev->dev_tcq_window_closed++ <
2287                         PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2288                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2289         } else
2290                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2291
2292         wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2293         return 0;
2294 }
2295
2296 /*
2297  * Called from Fabric Module context from transport_execute_tasks()
2298  *
2299  * The return of this function determins if the tasks from struct se_cmd
2300  * get added to the execution queue in transport_execute_tasks(),
2301  * or are added to the delayed or ordered lists here.
2302  */
2303 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2304 {
2305         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2306                 return 1;
2307         /*
2308          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2309          * to allow the passed struct se_cmd list of tasks to the front of the list.
2310          */
2311          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2312                 atomic_inc(&cmd->se_dev->dev_hoq_count);
2313                 smp_mb__after_atomic_inc();
2314                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2315                         " 0x%02x, se_ordered_id: %u\n",
2316                         cmd->t_task_cdb[0],
2317                         cmd->se_ordered_id);
2318                 return 1;
2319         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2320                 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2321                 list_add_tail(&cmd->se_ordered_node,
2322                                 &cmd->se_dev->ordered_cmd_list);
2323                 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2324
2325                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2326                 smp_mb__after_atomic_inc();
2327
2328                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2329                                 " list, se_ordered_id: %u\n",
2330                                 cmd->t_task_cdb[0],
2331                                 cmd->se_ordered_id);
2332                 /*
2333                  * Add ORDERED command to tail of execution queue if
2334                  * no other older commands exist that need to be
2335                  * completed first.
2336                  */
2337                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2338                         return 1;
2339         } else {
2340                 /*
2341                  * For SIMPLE and UNTAGGED Task Attribute commands
2342                  */
2343                 atomic_inc(&cmd->se_dev->simple_cmds);
2344                 smp_mb__after_atomic_inc();
2345         }
2346         /*
2347          * Otherwise if one or more outstanding ORDERED task attribute exist,
2348          * add the dormant task(s) built for the passed struct se_cmd to the
2349          * execution queue and become in Active state for this struct se_device.
2350          */
2351         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2352                 /*
2353                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2354                  * will be drained upon completion of HEAD_OF_QUEUE task.
2355                  */
2356                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2357                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2358                 list_add_tail(&cmd->se_delayed_node,
2359                                 &cmd->se_dev->delayed_cmd_list);
2360                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2361
2362                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2363                         " delayed CMD list, se_ordered_id: %u\n",
2364                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2365                         cmd->se_ordered_id);
2366                 /*
2367                  * Return zero to let transport_execute_tasks() know
2368                  * not to add the delayed tasks to the execution list.
2369                  */
2370                 return 0;
2371         }
2372         /*
2373          * Otherwise, no ORDERED task attributes exist..
2374          */
2375         return 1;
2376 }
2377
2378 /*
2379  * Called from fabric module context in transport_generic_new_cmd() and
2380  * transport_generic_process_write()
2381  */
2382 static int transport_execute_tasks(struct se_cmd *cmd)
2383 {
2384         int add_tasks;
2385
2386         if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2387                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2388                 transport_generic_request_failure(cmd, NULL, 0, 1);
2389                 return 0;
2390         }
2391
2392         /*
2393          * Call transport_cmd_check_stop() to see if a fabric exception
2394          * has occurred that prevents execution.
2395          */
2396         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2397                 /*
2398                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2399                  * attribute for the tasks of the received struct se_cmd CDB
2400                  */
2401                 add_tasks = transport_execute_task_attr(cmd);
2402                 if (!add_tasks)
2403                         goto execute_tasks;
2404                 /*
2405                  * This calls transport_add_tasks_from_cmd() to handle
2406                  * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2407                  * (if enabled) in __transport_add_task_to_execute_queue() and
2408                  * transport_add_task_check_sam_attr().
2409                  */
2410                 transport_add_tasks_from_cmd(cmd);
2411         }
2412         /*
2413          * Kick the execution queue for the cmd associated struct se_device
2414          * storage object.
2415          */
2416 execute_tasks:
2417         __transport_execute_tasks(cmd->se_dev);
2418         return 0;
2419 }
2420
2421 /*
2422  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2423  * from struct se_device->execute_task_list and
2424  *
2425  * Called from transport_processing_thread()
2426  */
2427 static int __transport_execute_tasks(struct se_device *dev)
2428 {
2429         int error;
2430         struct se_cmd *cmd = NULL;
2431         struct se_task *task = NULL;
2432         unsigned long flags;
2433
2434         /*
2435          * Check if there is enough room in the device and HBA queue to send
2436          * struct se_tasks to the selected transport.
2437          */
2438 check_depth:
2439         if (!atomic_read(&dev->depth_left))
2440                 return transport_tcq_window_closed(dev);
2441
2442         dev->dev_tcq_window_closed = 0;
2443
2444         spin_lock_irq(&dev->execute_task_lock);
2445         if (list_empty(&dev->execute_task_list)) {
2446                 spin_unlock_irq(&dev->execute_task_lock);
2447                 return 0;
2448         }
2449         task = list_first_entry(&dev->execute_task_list,
2450                                 struct se_task, t_execute_list);
2451         list_del(&task->t_execute_list);
2452         atomic_set(&task->task_execute_queue, 0);
2453         atomic_dec(&dev->execute_tasks);
2454         spin_unlock_irq(&dev->execute_task_lock);
2455
2456         atomic_dec(&dev->depth_left);
2457
2458         cmd = task->task_se_cmd;
2459
2460         spin_lock_irqsave(&cmd->t_state_lock, flags);
2461         atomic_set(&task->task_active, 1);
2462         atomic_set(&task->task_sent, 1);
2463         atomic_inc(&cmd->t_task_cdbs_sent);
2464
2465         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2466             cmd->t_task_list_num)
2467                 atomic_set(&cmd->transport_sent, 1);
2468
2469         transport_start_task_timer(task);
2470         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2471         /*
2472          * The struct se_cmd->transport_emulate_cdb() function pointer is used
2473          * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2474          * struct se_subsystem_api->do_task() caller below.
2475          */
2476         if (cmd->transport_emulate_cdb) {
2477                 error = cmd->transport_emulate_cdb(cmd);
2478                 if (error != 0) {
2479                         cmd->transport_error_status = error;
2480                         atomic_set(&task->task_active, 0);
2481                         atomic_set(&cmd->transport_sent, 0);
2482                         transport_stop_tasks_for_cmd(cmd);
2483                         transport_generic_request_failure(cmd, dev, 0, 1);
2484                         goto check_depth;
2485                 }
2486                 /*
2487                  * Handle the successful completion for transport_emulate_cdb()
2488                  * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2489                  * Otherwise the caller is expected to complete the task with
2490                  * proper status.
2491                  */
2492                 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2493                         cmd->scsi_status = SAM_STAT_GOOD;
2494                         task->task_scsi_status = GOOD;
2495                         transport_complete_task(task, 1);
2496                 }
2497         } else {
2498                 /*
2499                  * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2500                  * RAMDISK we use the internal transport_emulate_control_cdb() logic
2501                  * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2502                  * LUN emulation code.
2503                  *
2504                  * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2505                  * call ->do_task() directly and let the underlying TCM subsystem plugin
2506                  * code handle the CDB emulation.
2507                  */
2508                 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2509                     (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2510                         error = transport_emulate_control_cdb(task);
2511                 else
2512                         error = dev->transport->do_task(task);
2513
2514                 if (error != 0) {
2515                         cmd->transport_error_status = error;
2516                         atomic_set(&task->task_active, 0);
2517                         atomic_set(&cmd->transport_sent, 0);
2518                         transport_stop_tasks_for_cmd(cmd);
2519                         transport_generic_request_failure(cmd, dev, 0, 1);
2520                 }
2521         }
2522
2523         goto check_depth;
2524
2525         return 0;
2526 }
2527
2528 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2529 {
2530         unsigned long flags;
2531         /*
2532          * Any unsolicited data will get dumped for failed command inside of
2533          * the fabric plugin
2534          */
2535         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2536         se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2537         se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2538         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2539 }
2540
2541 static void transport_nop_wait_for_tasks(struct se_cmd *, int, int);
2542
2543 static inline u32 transport_get_sectors_6(
2544         unsigned char *cdb,
2545         struct se_cmd *cmd,
2546         int *ret)
2547 {
2548         struct se_device *dev = cmd->se_dev;
2549
2550         /*
2551          * Assume TYPE_DISK for non struct se_device objects.
2552          * Use 8-bit sector value.
2553          */
2554         if (!dev)
2555                 goto type_disk;
2556
2557         /*
2558          * Use 24-bit allocation length for TYPE_TAPE.
2559          */
2560         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2561                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2562
2563         /*
2564          * Everything else assume TYPE_DISK Sector CDB location.
2565          * Use 8-bit sector value.
2566          */
2567 type_disk:
2568         return (u32)cdb[4];
2569 }
2570
2571 static inline u32 transport_get_sectors_10(
2572         unsigned char *cdb,
2573         struct se_cmd *cmd,
2574         int *ret)
2575 {
2576         struct se_device *dev = cmd->se_dev;
2577
2578         /*
2579          * Assume TYPE_DISK for non struct se_device objects.
2580          * Use 16-bit sector value.
2581          */
2582         if (!dev)
2583                 goto type_disk;
2584
2585         /*
2586          * XXX_10 is not defined in SSC, throw an exception
2587          */
2588         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2589                 *ret = -EINVAL;
2590                 return 0;
2591         }
2592
2593         /*
2594          * Everything else assume TYPE_DISK Sector CDB location.
2595          * Use 16-bit sector value.
2596          */
2597 type_disk:
2598         return (u32)(cdb[7] << 8) + cdb[8];
2599 }
2600
2601 static inline u32 transport_get_sectors_12(
2602         unsigned char *cdb,
2603         struct se_cmd *cmd,
2604         int *ret)
2605 {
2606         struct se_device *dev = cmd->se_dev;
2607
2608         /*
2609          * Assume TYPE_DISK for non struct se_device objects.
2610          * Use 32-bit sector value.
2611          */
2612         if (!dev)
2613                 goto type_disk;
2614
2615         /*
2616          * XXX_12 is not defined in SSC, throw an exception
2617          */
2618         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2619                 *ret = -EINVAL;
2620                 return 0;
2621         }
2622
2623         /*
2624          * Everything else assume TYPE_DISK Sector CDB location.
2625          * Use 32-bit sector value.
2626          */
2627 type_disk:
2628         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2629 }
2630
2631 static inline u32 transport_get_sectors_16(
2632         unsigned char *cdb,
2633         struct se_cmd *cmd,
2634         int *ret)
2635 {
2636         struct se_device *dev = cmd->se_dev;
2637
2638         /*
2639          * Assume TYPE_DISK for non struct se_device objects.
2640          * Use 32-bit sector value.
2641          */
2642         if (!dev)
2643                 goto type_disk;
2644
2645         /*
2646          * Use 24-bit allocation length for TYPE_TAPE.
2647          */
2648         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2649                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2650
2651 type_disk:
2652         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2653                     (cdb[12] << 8) + cdb[13];
2654 }
2655
2656 /*
2657  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2658  */
2659 static inline u32 transport_get_sectors_32(
2660         unsigned char *cdb,
2661         struct se_cmd *cmd,
2662         int *ret)
2663 {
2664         /*
2665          * Assume TYPE_DISK for non struct se_device objects.
2666          * Use 32-bit sector value.
2667          */
2668         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2669                     (cdb[30] << 8) + cdb[31];
2670
2671 }
2672
2673 static inline u32 transport_get_size(
2674         u32 sectors,
2675         unsigned char *cdb,
2676         struct se_cmd *cmd)
2677 {
2678         struct se_device *dev = cmd->se_dev;
2679
2680         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2681                 if (cdb[1] & 1) { /* sectors */
2682                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2683                 } else /* bytes */
2684                         return sectors;
2685         }
2686 #if 0
2687         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2688                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2689                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2690                         dev->transport->name);
2691 #endif
2692         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2693 }
2694
2695 static void transport_xor_callback(struct se_cmd *cmd)
2696 {
2697         unsigned char *buf, *addr;
2698         struct scatterlist *sg;
2699         unsigned int offset;
2700         int i;
2701         int count;
2702         /*
2703          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2704          *
2705          * 1) read the specified logical block(s);
2706          * 2) transfer logical blocks from the data-out buffer;
2707          * 3) XOR the logical blocks transferred from the data-out buffer with
2708          *    the logical blocks read, storing the resulting XOR data in a buffer;
2709          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2710          *    blocks transferred from the data-out buffer; and
2711          * 5) transfer the resulting XOR data to the data-in buffer.
2712          */
2713         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2714         if (!buf) {
2715                 pr_err("Unable to allocate xor_callback buf\n");
2716                 return;
2717         }
2718         /*
2719          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2720          * into the locally allocated *buf
2721          */
2722         sg_copy_to_buffer(cmd->t_data_sg,
2723                           cmd->t_data_nents,
2724                           buf,
2725                           cmd->data_length);
2726
2727         /*
2728          * Now perform the XOR against the BIDI read memory located at
2729          * cmd->t_mem_bidi_list
2730          */
2731
2732         offset = 0;
2733         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2734                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2735                 if (!addr)
2736                         goto out;
2737
2738                 for (i = 0; i < sg->length; i++)
2739                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2740
2741                 offset += sg->length;
2742                 kunmap_atomic(addr, KM_USER0);
2743         }
2744
2745 out:
2746         kfree(buf);
2747 }
2748
2749 /*
2750  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2751  */
2752 static int transport_get_sense_data(struct se_cmd *cmd)
2753 {
2754         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2755         struct se_device *dev;
2756         struct se_task *task = NULL, *task_tmp;
2757         unsigned long flags;
2758         u32 offset = 0;
2759
2760         WARN_ON(!cmd->se_lun);
2761
2762         spin_lock_irqsave(&cmd->t_state_lock, flags);
2763         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2764                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2765                 return 0;
2766         }
2767
2768         list_for_each_entry_safe(task, task_tmp,
2769                                 &cmd->t_task_list, t_list) {
2770
2771                 if (!task->task_sense)
2772                         continue;
2773
2774                 dev = task->se_dev;
2775                 if (!dev)
2776                         continue;
2777
2778                 if (!dev->transport->get_sense_buffer) {
2779                         pr_err("dev->transport->get_sense_buffer"
2780                                         " is NULL\n");
2781                         continue;
2782                 }
2783
2784                 sense_buffer = dev->transport->get_sense_buffer(task);
2785                 if (!sense_buffer) {
2786                         pr_err("ITT[0x%08x]_TASK[%d]: Unable to locate"
2787                                 " sense buffer for task with sense\n",
2788                                 cmd->se_tfo->get_task_tag(cmd), task->task_no);
2789                         continue;
2790                 }
2791                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2792
2793                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2794                                 TRANSPORT_SENSE_BUFFER);
2795
2796                 memcpy(&buffer[offset], sense_buffer,
2797                                 TRANSPORT_SENSE_BUFFER);
2798                 cmd->scsi_status = task->task_scsi_status;
2799                 /* Automatically padded */
2800                 cmd->scsi_sense_length =
2801                                 (TRANSPORT_SENSE_BUFFER + offset);
2802
2803                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2804                                 " and sense\n",
2805                         dev->se_hba->hba_id, dev->transport->name,
2806                                 cmd->scsi_status);
2807                 return 0;
2808         }
2809         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2810
2811         return -1;
2812 }
2813
2814 static int
2815 transport_handle_reservation_conflict(struct se_cmd *cmd)
2816 {
2817         cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
2818         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2819         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2820         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2821         /*
2822          * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2823          * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2824          * CONFLICT STATUS.
2825          *
2826          * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2827          */
2828         if (cmd->se_sess &&
2829             cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2830                 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2831                         cmd->orig_fe_lun, 0x2C,
2832                         ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2833         return -EINVAL;
2834 }
2835
2836 static inline long long transport_dev_end_lba(struct se_device *dev)
2837 {
2838         return dev->transport->get_blocks(dev) + 1;
2839 }
2840
2841 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2842 {
2843         struct se_device *dev = cmd->se_dev;
2844         u32 sectors;
2845
2846         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2847                 return 0;
2848
2849         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2850
2851         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2852                 pr_err("LBA: %llu Sectors: %u exceeds"
2853                         " transport_dev_end_lba(): %llu\n",
2854                         cmd->t_task_lba, sectors,
2855                         transport_dev_end_lba(dev));
2856                 pr_err("  We should return CHECK_CONDITION"
2857                        " but we don't yet\n");
2858                 return 0;
2859         }
2860
2861         return sectors;
2862 }
2863
2864 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2865 {
2866         /*
2867          * Determine if the received WRITE_SAME is used to for direct
2868          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2869          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2870          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2871          */
2872         int passthrough = (dev->transport->transport_type ==
2873                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2874
2875         if (!passthrough) {
2876                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2877                         pr_err("WRITE_SAME PBDATA and LBDATA"
2878                                 " bits not supported for Block Discard"
2879                                 " Emulation\n");
2880                         return -ENOSYS;
2881                 }
2882                 /*
2883                  * Currently for the emulated case we only accept
2884                  * tpws with the UNMAP=1 bit set.
2885                  */
2886                 if (!(flags[0] & 0x08)) {
2887                         pr_err("WRITE_SAME w/o UNMAP bit not"
2888                                 " supported for Block Discard Emulation\n");
2889                         return -ENOSYS;
2890                 }
2891         }
2892
2893         return 0;
2894 }
2895
2896 /*      transport_generic_cmd_sequencer():
2897  *
2898  *      Generic Command Sequencer that should work for most DAS transport
2899  *      drivers.
2900  *
2901  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2902  *      RX Thread.
2903  *
2904  *      FIXME: Need to support other SCSI OPCODES where as well.
2905  */
2906 static int transport_generic_cmd_sequencer(
2907         struct se_cmd *cmd,
2908         unsigned char *cdb)
2909 {
2910         struct se_device *dev = cmd->se_dev;
2911         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2912         int ret = 0, sector_ret = 0, passthrough;
2913         u32 sectors = 0, size = 0, pr_reg_type = 0;
2914         u16 service_action;
2915         u8 alua_ascq = 0;
2916         /*
2917          * Check for an existing UNIT ATTENTION condition
2918          */
2919         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2920                 cmd->transport_wait_for_tasks =
2921                                 &transport_nop_wait_for_tasks;
2922                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2923                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2924                 return -EINVAL;
2925         }
2926         /*
2927          * Check status of Asymmetric Logical Unit Assignment port
2928          */
2929         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2930         if (ret != 0) {
2931                 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
2932                 /*
2933                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2934                  * The ALUA additional sense code qualifier (ASCQ) is determined
2935                  * by the ALUA primary or secondary access state..
2936                  */
2937                 if (ret > 0) {
2938 #if 0
2939                         pr_debug("[%s]: ALUA TG Port not available,"
2940                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2941                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2942 #endif
2943                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2944                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2945                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2946                         return -EINVAL;
2947                 }
2948                 goto out_invalid_cdb_field;
2949         }
2950         /*
2951          * Check status for SPC-3 Persistent Reservations
2952          */
2953         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2954                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2955                                         cmd, cdb, pr_reg_type) != 0)
2956                         return transport_handle_reservation_conflict(cmd);
2957                 /*
2958                  * This means the CDB is allowed for the SCSI Initiator port
2959                  * when said port is *NOT* holding the legacy SPC-2 or
2960                  * SPC-3 Persistent Reservation.
2961                  */
2962         }
2963
2964         switch (cdb[0]) {
2965         case READ_6:
2966                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2967                 if (sector_ret)
2968                         goto out_unsupported_cdb;
2969                 size = transport_get_size(sectors, cdb, cmd);
2970                 cmd->transport_split_cdb = &split_cdb_XX_6;
2971                 cmd->t_task_lba = transport_lba_21(cdb);
2972                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2973                 break;
2974         case READ_10:
2975                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2976                 if (sector_ret)
2977                         goto out_unsupported_cdb;
2978                 size = transport_get_size(sectors, cdb, cmd);
2979                 cmd->transport_split_cdb = &split_cdb_XX_10;
2980                 cmd->t_task_lba = transport_lba_32(cdb);
2981                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2982                 break;
2983         case READ_12:
2984                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2985                 if (sector_ret)
2986                         goto out_unsupported_cdb;
2987                 size = transport_get_size(sectors, cdb, cmd);
2988                 cmd->transport_split_cdb = &split_cdb_XX_12;
2989                 cmd->t_task_lba = transport_lba_32(cdb);
2990                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2991                 break;
2992         case READ_16:
2993                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2994                 if (sector_ret)
2995                         goto out_unsupported_cdb;
2996                 size = transport_get_size(sectors, cdb, cmd);
2997                 cmd->transport_split_cdb = &split_cdb_XX_16;
2998                 cmd->t_task_lba = transport_lba_64(cdb);
2999                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3000                 break;
3001         case WRITE_6:
3002                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3003                 if (sector_ret)
3004                         goto out_unsupported_cdb;
3005                 size = transport_get_size(sectors, cdb, cmd);
3006                 cmd->transport_split_cdb = &split_cdb_XX_6;
3007                 cmd->t_task_lba = transport_lba_21(cdb);
3008                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3009                 break;
3010         case WRITE_10:
3011                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3012                 if (sector_ret)
3013                         goto out_unsupported_cdb;
3014                 size = transport_get_size(sectors, cdb, cmd);
3015                 cmd->transport_split_cdb = &split_cdb_XX_10;
3016                 cmd->t_task_lba = transport_lba_32(cdb);
3017                 cmd->t_tasks_fua = (cdb[1] & 0x8);
3018                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3019                 break;
3020         case WRITE_12:
3021                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3022                 if (sector_ret)
3023                         goto out_unsupported_cdb;
3024                 size = transport_get_size(sectors, cdb, cmd);
3025                 cmd->transport_split_cdb = &split_cdb_XX_12;
3026                 cmd->t_task_lba = transport_lba_32(cdb);
3027                 cmd->t_tasks_fua = (cdb[1] & 0x8);
3028                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3029                 break;
3030         case WRITE_16:
3031                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3032                 if (sector_ret)
3033                         goto out_unsupported_cdb;
3034                 size = transport_get_size(sectors, cdb, cmd);
3035                 cmd->transport_split_cdb = &split_cdb_XX_16;
3036                 cmd->t_task_lba = transport_lba_64(cdb);
3037                 cmd->t_tasks_fua = (cdb[1] & 0x8);
3038                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3039                 break;
3040         case XDWRITEREAD_10:
3041                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
3042                     !(cmd->t_tasks_bidi))
3043                         goto out_invalid_cdb_field;
3044                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3045                 if (sector_ret)
3046                         goto out_unsupported_cdb;
3047                 size = transport_get_size(sectors, cdb, cmd);
3048                 cmd->transport_split_cdb = &split_cdb_XX_10;
3049                 cmd->t_task_lba = transport_lba_32(cdb);
3050                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3051                 passthrough = (dev->transport->transport_type ==
3052                                 TRANSPORT_PLUGIN_PHBA_PDEV);
3053                 /*
3054                  * Skip the remaining assignments for TCM/PSCSI passthrough
3055                  */
3056                 if (passthrough)
3057                         break;
3058                 /*
3059                  * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3060                  */
3061                 cmd->transport_complete_callback = &transport_xor_callback;
3062                 cmd->t_tasks_fua = (cdb[1] & 0x8);
3063                 break;
3064         case VARIABLE_LENGTH_CMD:
3065                 service_action = get_unaligned_be16(&cdb[8]);
3066                 /*
3067                  * Determine if this is TCM/PSCSI device and we should disable
3068                  * internal emulation for this CDB.
3069                  */
3070                 passthrough = (dev->transport->transport_type ==
3071                                         TRANSPORT_PLUGIN_PHBA_PDEV);
3072
3073                 switch (service_action) {
3074                 case XDWRITEREAD_32:
3075                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3076                         if (sector_ret)
3077                                 goto out_unsupported_cdb;
3078                         size = transport_get_size(sectors, cdb, cmd);
3079                         /*
3080                          * Use WRITE_32 and READ_32 opcodes for the emulated
3081                          * XDWRITE_READ_32 logic.
3082                          */
3083                         cmd->transport_split_cdb = &split_cdb_XX_32;
3084                         cmd->t_task_lba = transport_lba_64_ext(cdb);
3085                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3086
3087                         /*
3088                          * Skip the remaining assignments for TCM/PSCSI passthrough
3089                          */
3090                         if (passthrough)
3091                                 break;
3092
3093                         /*
3094                          * Setup BIDI XOR callback to be run during
3095                          * transport_generic_complete_ok()
3096                          */
3097                         cmd->transport_complete_callback = &transport_xor_callback;
3098                         cmd->t_tasks_fua = (cdb[10] & 0x8);
3099                         break;
3100                 case WRITE_SAME_32:
3101                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3102                         if (sector_ret)
3103                                 goto out_unsupported_cdb;
3104
3105                         if (sectors)
3106                                 size = transport_get_size(sectors, cdb, cmd);
3107                         else {
3108                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
3109                                        " supported\n");
3110                                 goto out_invalid_cdb_field;
3111                         }
3112
3113                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
3114                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3115
3116                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
3117                                 goto out_invalid_cdb_field;
3118
3119                         break;
3120                 default:
3121                         pr_err("VARIABLE_LENGTH_CMD service action"
3122                                 " 0x%04x not supported\n", service_action);
3123                         goto out_unsupported_cdb;
3124                 }
3125                 break;
3126         case MAINTENANCE_IN:
3127                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3128                         /* MAINTENANCE_IN from SCC-2 */
3129                         /*
3130                          * Check for emulated MI_REPORT_TARGET_PGS.
3131                          */
3132                         if (cdb[1] == MI_REPORT_TARGET_PGS) {
3133                                 cmd->transport_emulate_cdb =
3134                                 (su_dev->t10_alua.alua_type ==
3135                                  SPC3_ALUA_EMULATED) ?
3136                                 core_emulate_report_target_port_groups :
3137                                 NULL;
3138                         }
3139                         size = (cdb[6] << 24) | (cdb[7] << 16) |
3140                                (cdb[8] << 8) | cdb[9];
3141                 } else {
3142                         /* GPCMD_SEND_KEY from multi media commands */
3143                         size = (cdb[8] << 8) + cdb[9];
3144                 }
3145                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3146                 break;
3147         case MODE_SELECT:
3148                 size = cdb[4];
3149                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3150                 break;
3151         case MODE_SELECT_10:
3152                 size = (cdb[7] << 8) + cdb[8];
3153                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3154                 break;
3155         case MODE_SENSE:
3156                 size = cdb[4];
3157                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3158                 break;
3159         case MODE_SENSE_10:
3160         case GPCMD_READ_BUFFER_CAPACITY:
3161         case GPCMD_SEND_OPC:
3162         case LOG_SELECT:
3163         case LOG_SENSE:
3164                 size = (cdb[7] << 8) + cdb[8];
3165                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3166                 break;
3167         case READ_BLOCK_LIMITS:
3168                 size = READ_BLOCK_LEN;
3169                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3170                 break;
3171         case GPCMD_GET_CONFIGURATION:
3172         case GPCMD_READ_FORMAT_CAPACITIES:
3173         case GPCMD_READ_DISC_INFO:
3174         case GPCMD_READ_TRACK_RZONE_INFO:
3175                 size = (cdb[7] << 8) + cdb[8];
3176                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3177                 break;
3178         case PERSISTENT_RESERVE_IN:
3179         case PERSISTENT_RESERVE_OUT:
3180                 cmd->transport_emulate_cdb =
3181                         (su_dev->t10_pr.res_type ==
3182                          SPC3_PERSISTENT_RESERVATIONS) ?
3183                         core_scsi3_emulate_pr : NULL;
3184                 size = (cdb[7] << 8) + cdb[8];
3185                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3186                 break;
3187         case GPCMD_MECHANISM_STATUS:
3188         case GPCMD_READ_DVD_STRUCTURE:
3189                 size = (cdb[8] << 8) + cdb[9];
3190                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3191                 break;
3192         case READ_POSITION:
3193                 size = READ_POSITION_LEN;
3194                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3195                 break;
3196         case MAINTENANCE_OUT:
3197                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3198                         /* MAINTENANCE_OUT from SCC-2
3199                          *
3200                          * Check for emulated MO_SET_TARGET_PGS.
3201                          */
3202                         if (cdb[1] == MO_SET_TARGET_PGS) {
3203                                 cmd->transport_emulate_cdb =
3204                                 (su_dev->t10_alua.alua_type ==
3205                                         SPC3_ALUA_EMULATED) ?
3206                                 core_emulate_set_target_port_groups :
3207                                 NULL;
3208                         }
3209
3210                         size = (cdb[6] << 24) | (cdb[7] << 16) |
3211                                (cdb[8] << 8) | cdb[9];
3212                 } else  {
3213                         /* GPCMD_REPORT_KEY from multi media commands */
3214                         size = (cdb[8] << 8) + cdb[9];
3215                 }
3216                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3217                 break;
3218         case INQUIRY:
3219                 size = (cdb[3] << 8) + cdb[4];
3220                 /*
3221                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3222                  * See spc4r17 section 5.3
3223                  */
3224                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3225                         cmd->sam_task_attr = MSG_HEAD_TAG;
3226                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3227                 break;
3228         case READ_BUFFER:
3229                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3230                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3231                 break;
3232         case READ_CAPACITY:
3233                 size = READ_CAP_LEN;
3234                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3235                 break;
3236         case READ_MEDIA_SERIAL_NUMBER:
3237         case SECURITY_PROTOCOL_IN:
3238         case SECURITY_PROTOCOL_OUT:
3239                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3240                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3241                 break;
3242         case SERVICE_ACTION_IN:
3243         case ACCESS_CONTROL_IN:
3244         case ACCESS_CONTROL_OUT:
3245         case EXTENDED_COPY:
3246         case READ_ATTRIBUTE:
3247         case RECEIVE_COPY_RESULTS:
3248         case WRITE_ATTRIBUTE:
3249                 size = (cdb[10] << 24) | (cdb[11] << 16) |
3250                        (cdb[12] << 8) | cdb[13];
3251                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3252                 break;
3253         case RECEIVE_DIAGNOSTIC:
3254         case SEND_DIAGNOSTIC:
3255                 size = (cdb[3] << 8) | cdb[4];
3256                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3257                 break;
3258 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3259 #if 0
3260         case GPCMD_READ_CD:
3261                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3262                 size = (2336 * sectors);
3263                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3264                 break;
3265 #endif
3266         case READ_TOC:
3267                 size = cdb[8];
3268                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3269                 break;
3270         case REQUEST_SENSE:
3271                 size = cdb[4];
3272                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3273                 break;
3274         case READ_ELEMENT_STATUS:
3275                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3276                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3277                 break;
3278         case WRITE_BUFFER:
3279                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3280                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3281                 break;
3282         case RESERVE:
3283         case RESERVE_10:
3284                 /*
3285                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3286                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3287                  */
3288                 if (cdb[0] == RESERVE_10)
3289                         size = (cdb[7] << 8) | cdb[8];
3290                 else
3291                         size = cmd->data_length;
3292
3293                 /*
3294                  * Setup the legacy emulated handler for SPC-2 and
3295                  * >= SPC-3 compatible reservation handling (CRH=1)
3296                  * Otherwise, we assume the underlying SCSI logic is
3297                  * is running in SPC_PASSTHROUGH, and wants reservations
3298                  * emulation disabled.
3299                  */
3300                 cmd->transport_emulate_cdb =
3301                                 (su_dev->t10_pr.res_type !=
3302                                  SPC_PASSTHROUGH) ?
3303                                 core_scsi2_emulate_crh : NULL;
3304                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3305                 break;
3306         case RELEASE:
3307         case RELEASE_10:
3308                 /*
3309                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3310                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3311                 */
3312                 if (cdb[0] == RELEASE_10)
3313                         size = (cdb[7] << 8) | cdb[8];
3314                 else
3315                         size = cmd->data_length;
3316
3317                 cmd->transport_emulate_cdb =
3318                                 (su_dev->t10_pr.res_type !=
3319                                  SPC_PASSTHROUGH) ?
3320                                 core_scsi2_emulate_crh : NULL;
3321                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3322                 break;
3323         case SYNCHRONIZE_CACHE:
3324         case 0x91: /* SYNCHRONIZE_CACHE_16: */
3325                 /*
3326                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3327                  */
3328                 if (cdb[0] == SYNCHRONIZE_CACHE) {
3329                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3330                         cmd->t_task_lba = transport_lba_32(cdb);
3331                 } else {
3332                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3333                         cmd->t_task_lba = transport_lba_64(cdb);
3334                 }
3335                 if (sector_ret)
3336                         goto out_unsupported_cdb;
3337
3338                 size = transport_get_size(sectors, cdb, cmd);
3339                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3340
3341                 /*
3342                  * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3343                  */
3344                 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3345                         break;
3346                 /*
3347                  * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3348                  * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3349                  */
3350                 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3351                 /*
3352                  * Check to ensure that LBA + Range does not exceed past end of
3353                  * device.
3354                  */
3355                 if (!transport_cmd_get_valid_sectors(cmd))
3356                         goto out_invalid_cdb_field;
3357                 break;
3358         case UNMAP:
3359                 size = get_unaligned_be16(&cdb[7]);
3360                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3361                 break;
3362         case WRITE_SAME_16:
3363                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3364                 if (sector_ret)
3365                         goto out_unsupported_cdb;
3366
3367                 if (sectors)
3368                         size = transport_get_size(sectors, cdb, cmd);
3369                 else {
3370                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3371                         goto out_invalid_cdb_field;
3372                 }
3373
3374                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3375                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3376
3377                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3378                         goto out_invalid_cdb_field;
3379                 break;
3380         case WRITE_SAME:
3381                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3382                 if (sector_ret)
3383                         goto out_unsupported_cdb;
3384
3385                 if (sectors)
3386                         size = transport_get_size(sectors, cdb, cmd);
3387                 else {
3388                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3389                         goto out_invalid_cdb_field;
3390                 }
3391
3392                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3393                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3394                 /*
3395                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3396                  * of byte 1 bit 3 UNMAP instead of original reserved field
3397                  */
3398                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3399                         goto out_invalid_cdb_field;
3400                 break;
3401         case ALLOW_MEDIUM_REMOVAL:
3402         case GPCMD_CLOSE_TRACK:
3403         case ERASE:
3404         case INITIALIZE_ELEMENT_STATUS:
3405         case GPCMD_LOAD_UNLOAD:
3406         case REZERO_UNIT:
3407         case SEEK_10:
3408         case GPCMD_SET_SPEED:
3409         case SPACE:
3410         case START_STOP:
3411         case TEST_UNIT_READY:
3412         case VERIFY:
3413         case WRITE_FILEMARKS:
3414         case MOVE_MEDIUM:
3415                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3416                 break;
3417         case REPORT_LUNS:
3418                 cmd->transport_emulate_cdb =
3419                                 transport_core_report_lun_response;
3420                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3421                 /*
3422                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3423                  * See spc4r17 section 5.3
3424                  */
3425                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3426                         cmd->sam_task_attr = MSG_HEAD_TAG;
3427                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3428                 break;
3429         default:
3430                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3431                         " 0x%02x, sending CHECK_CONDITION.\n",
3432                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3433                 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3434                 goto out_unsupported_cdb;
3435         }
3436
3437         if (size != cmd->data_length) {
3438                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3439                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3440                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3441                                 cmd->data_length, size, cdb[0]);
3442
3443                 cmd->cmd_spdtl = size;
3444
3445                 if (cmd->data_direction == DMA_TO_DEVICE) {
3446                         pr_err("Rejecting underflow/overflow"
3447                                         " WRITE data\n");
3448                         goto out_invalid_cdb_field;
3449                 }
3450                 /*
3451                  * Reject READ_* or WRITE_* with overflow/underflow for
3452                  * type SCF_SCSI_DATA_SG_IO_CDB.
3453                  */
3454                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3455                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3456                                 " CDB on non 512-byte sector setup subsystem"
3457                                 " plugin: %s\n", dev->transport->name);
3458                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3459                         goto out_invalid_cdb_field;
3460                 }
3461
3462                 if (size > cmd->data_length) {
3463                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3464                         cmd->residual_count = (size - cmd->data_length);
3465                 } else {
3466                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3467                         cmd->residual_count = (cmd->data_length - size);
3468                 }
3469                 cmd->data_length = size;
3470         }
3471
3472         /* Let's limit control cdbs to a page, for simplicity's sake. */
3473         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3474             size > PAGE_SIZE)
3475                 goto out_invalid_cdb_field;
3476
3477         transport_set_supported_SAM_opcode(cmd);
3478         return ret;
3479
3480 out_unsupported_cdb:
3481         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3482         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3483         return -EINVAL;
3484 out_invalid_cdb_field:
3485         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3486         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3487         return -EINVAL;
3488 }
3489
3490 /*
3491  * Called from transport_generic_complete_ok() and
3492  * transport_generic_request_failure() to determine which dormant/delayed
3493  * and ordered cmds need to have their tasks added to the execution queue.
3494  */
3495 static void transport_complete_task_attr(struct se_cmd *cmd)
3496 {
3497         struct se_device *dev = cmd->se_dev;
3498         struct se_cmd *cmd_p, *cmd_tmp;
3499         int new_active_tasks = 0;
3500
3501         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3502                 atomic_dec(&dev->simple_cmds);
3503                 smp_mb__after_atomic_dec();
3504                 dev->dev_cur_ordered_id++;
3505                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3506                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3507                         cmd->se_ordered_id);
3508         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3509                 atomic_dec(&dev->dev_hoq_count);
3510                 smp_mb__after_atomic_dec();
3511                 dev->dev_cur_ordered_id++;
3512                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3513                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3514                         cmd->se_ordered_id);
3515         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3516                 spin_lock(&dev->ordered_cmd_lock);
3517                 list_del(&cmd->se_ordered_node);
3518                 atomic_dec(&dev->dev_ordered_sync);
3519                 smp_mb__after_atomic_dec();
3520                 spin_unlock(&dev->ordered_cmd_lock);
3521
3522                 dev->dev_cur_ordered_id++;
3523                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3524                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3525         }
3526         /*
3527          * Process all commands up to the last received
3528          * ORDERED task attribute which requires another blocking
3529          * boundary
3530          */
3531         spin_lock(&dev->delayed_cmd_lock);
3532         list_for_each_entry_safe(cmd_p, cmd_tmp,
3533                         &dev->delayed_cmd_list, se_delayed_node) {
3534
3535                 list_del(&cmd_p->se_delayed_node);
3536                 spin_unlock(&dev->delayed_cmd_lock);
3537
3538                 pr_debug("Calling add_tasks() for"
3539                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3540                         " Dormant -> Active, se_ordered_id: %u\n",
3541                         cmd_p->t_task_cdb[0],
3542                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3543
3544                 transport_add_tasks_from_cmd(cmd_p);
3545                 new_active_tasks++;
3546
3547                 spin_lock(&dev->delayed_cmd_lock);
3548                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3549                         break;
3550         }
3551         spin_unlock(&dev->delayed_cmd_lock);
3552         /*
3553          * If new tasks have become active, wake up the transport thread
3554          * to do the processing of the Active tasks.
3555          */
3556         if (new_active_tasks != 0)
3557                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3558 }
3559
3560 static int transport_complete_qf(struct se_cmd *cmd)
3561 {
3562         int ret = 0;
3563
3564         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
3565                 return cmd->se_tfo->queue_status(cmd);
3566
3567         switch (cmd->data_direction) {
3568         case DMA_FROM_DEVICE:
3569                 ret = cmd->se_tfo->queue_data_in(cmd);
3570                 break;
3571         case DMA_TO_DEVICE:
3572                 if (cmd->t_bidi_data_sg) {
3573                         ret = cmd->se_tfo->queue_data_in(cmd);
3574                         if (ret < 0)
3575                                 return ret;
3576                 }
3577                 /* Fall through for DMA_TO_DEVICE */
3578         case DMA_NONE:
3579                 ret = cmd->se_tfo->queue_status(cmd);
3580                 break;
3581         default:
3582                 break;
3583         }
3584
3585         return ret;
3586 }
3587
3588 static void transport_handle_queue_full(
3589         struct se_cmd *cmd,
3590         struct se_device *dev,
3591         int (*qf_callback)(struct se_cmd *))
3592 {
3593         spin_lock_irq(&dev->qf_cmd_lock);
3594         cmd->se_cmd_flags |= SCF_EMULATE_QUEUE_FULL;
3595         cmd->transport_qf_callback = qf_callback;
3596         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3597         atomic_inc(&dev->dev_qf_count);
3598         smp_mb__after_atomic_inc();
3599         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3600
3601         schedule_work(&cmd->se_dev->qf_work_queue);
3602 }
3603
3604 static void transport_generic_complete_ok(struct se_cmd *cmd)
3605 {
3606         int reason = 0, ret;
3607         /*
3608          * Check if we need to move delayed/dormant tasks from cmds on the
3609          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3610          * Attribute.
3611          */
3612         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3613                 transport_complete_task_attr(cmd);
3614         /*
3615          * Check to schedule QUEUE_FULL work, or execute an existing
3616          * cmd->transport_qf_callback()
3617          */
3618         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3619                 schedule_work(&cmd->se_dev->qf_work_queue);
3620
3621         if (cmd->transport_qf_callback) {
3622                 ret = cmd->transport_qf_callback(cmd);
3623                 if (ret < 0)
3624                         goto queue_full;
3625
3626                 cmd->transport_qf_callback = NULL;
3627                 goto done;
3628         }
3629         /*
3630          * Check if we need to retrieve a sense buffer from
3631          * the struct se_cmd in question.
3632          */
3633         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3634                 if (transport_get_sense_data(cmd) < 0)
3635                         reason = TCM_NON_EXISTENT_LUN;
3636
3637                 /*
3638                  * Only set when an struct se_task->task_scsi_status returned
3639                  * a non GOOD status.
3640                  */
3641                 if (cmd->scsi_status) {
3642                         ret = transport_send_check_condition_and_sense(
3643                                         cmd, reason, 1);
3644                         if (ret == -EAGAIN)
3645                                 goto queue_full;
3646
3647                         transport_lun_remove_cmd(cmd);
3648                         transport_cmd_check_stop_to_fabric(cmd);
3649                         return;
3650                 }
3651         }
3652         /*
3653          * Check for a callback, used by amongst other things
3654          * XDWRITE_READ_10 emulation.
3655          */
3656         if (cmd->transport_complete_callback)
3657                 cmd->transport_complete_callback(cmd);
3658
3659         switch (cmd->data_direction) {
3660         case DMA_FROM_DEVICE:
3661                 spin_lock(&cmd->se_lun->lun_sep_lock);
3662                 if (cmd->se_lun->lun_sep) {
3663                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3664                                         cmd->data_length;
3665                 }
3666                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3667
3668                 ret = cmd->se_tfo->queue_data_in(cmd);
3669                 if (ret == -EAGAIN)
3670                         goto queue_full;
3671                 break;
3672         case DMA_TO_DEVICE:
3673                 spin_lock(&cmd->se_lun->lun_sep_lock);
3674                 if (cmd->se_lun->lun_sep) {
3675                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3676                                 cmd->data_length;
3677                 }
3678                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3679                 /*
3680                  * Check if we need to send READ payload for BIDI-COMMAND
3681                  */
3682                 if (cmd->t_bidi_data_sg) {
3683                         spin_lock(&cmd->se_lun->lun_sep_lock);
3684                         if (cmd->se_lun->lun_sep) {
3685                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3686                                         cmd->data_length;
3687                         }
3688                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3689                         ret = cmd->se_tfo->queue_data_in(cmd);
3690                         if (ret == -EAGAIN)
3691                                 goto queue_full;
3692                         break;
3693                 }
3694                 /* Fall through for DMA_TO_DEVICE */
3695         case DMA_NONE:
3696                 ret = cmd->se_tfo->queue_status(cmd);
3697                 if (ret == -EAGAIN)
3698                         goto queue_full;
3699                 break;
3700         default:
3701                 break;
3702         }
3703
3704 done:
3705         transport_lun_remove_cmd(cmd);
3706         transport_cmd_check_stop_to_fabric(cmd);
3707         return;
3708
3709 queue_full:
3710         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3711                 " data_direction: %d\n", cmd, cmd->data_direction);
3712         transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
3713 }
3714
3715 static void transport_free_dev_tasks(struct se_cmd *cmd)
3716 {
3717         struct se_task *task, *task_tmp;
3718         unsigned long flags;
3719
3720         spin_lock_irqsave(&cmd->t_state_lock, flags);
3721         list_for_each_entry_safe(task, task_tmp,
3722                                 &cmd->t_task_list, t_list) {
3723                 if (atomic_read(&task->task_active))
3724                         continue;
3725
3726                 kfree(task->task_sg_bidi);
3727                 kfree(task->task_sg);
3728
3729                 list_del(&task->t_list);
3730
3731                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3732                 if (task->se_dev)
3733                         task->se_dev->transport->free_task(task);
3734                 else
3735                         pr_err("task[%u] - task->se_dev is NULL\n",
3736                                 task->task_no);
3737                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3738         }
3739         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3740 }
3741
3742 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3743 {
3744         struct scatterlist *sg;
3745         int count;
3746
3747         for_each_sg(sgl, sg, nents, count)
3748                 __free_page(sg_page(sg));
3749
3750         kfree(sgl);
3751 }
3752
3753 static inline void transport_free_pages(struct se_cmd *cmd)
3754 {
3755         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3756                 return;
3757
3758         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3759         cmd->t_data_sg = NULL;
3760         cmd->t_data_nents = 0;
3761
3762         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3763         cmd->t_bidi_data_sg = NULL;
3764         cmd->t_bidi_data_nents = 0;
3765 }
3766
3767 static inline void transport_release_tasks(struct se_cmd *cmd)
3768 {
3769         transport_free_dev_tasks(cmd);
3770 }
3771
3772 static inline int transport_dec_and_check(struct se_cmd *cmd)
3773 {
3774         unsigned long flags;
3775
3776         spin_lock_irqsave(&cmd->t_state_lock, flags);
3777         if (atomic_read(&cmd->t_fe_count)) {
3778                 if (!atomic_dec_and_test(&cmd->t_fe_count)) {
3779                         spin_unlock_irqrestore(&cmd->t_state_lock,
3780                                         flags);
3781                         return 1;
3782                 }
3783         }
3784
3785         if (atomic_read(&cmd->t_se_count)) {
3786                 if (!atomic_dec_and_test(&cmd->t_se_count)) {
3787                         spin_unlock_irqrestore(&cmd->t_state_lock,
3788                                         flags);
3789                         return 1;
3790                 }
3791         }
3792         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3793
3794         return 0;
3795 }
3796
3797 static void transport_release_fe_cmd(struct se_cmd *cmd)
3798 {
3799         unsigned long flags;
3800
3801         if (transport_dec_and_check(cmd))
3802                 return;
3803
3804         spin_lock_irqsave(&cmd->t_state_lock, flags);
3805         if (!atomic_read(&cmd->transport_dev_active)) {
3806                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3807                 goto free_pages;
3808         }
3809         atomic_set(&cmd->transport_dev_active, 0);
3810         transport_all_task_dev_remove_state(cmd);
3811         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3812
3813         transport_release_tasks(cmd);
3814 free_pages:
3815         transport_free_pages(cmd);
3816         transport_free_se_cmd(cmd);
3817         cmd->se_tfo->release_cmd(cmd);
3818 }
3819
3820 static int
3821 transport_generic_remove(struct se_cmd *cmd, int session_reinstatement)
3822 {
3823         unsigned long flags;
3824
3825         if (transport_dec_and_check(cmd)) {
3826                 if (session_reinstatement) {
3827                         spin_lock_irqsave(&cmd->t_state_lock, flags);
3828                         transport_all_task_dev_remove_state(cmd);
3829                         spin_unlock_irqrestore(&cmd->t_state_lock,
3830                                         flags);
3831                 }
3832                 return 1;
3833         }
3834
3835         spin_lock_irqsave(&cmd->t_state_lock, flags);
3836         if (!atomic_read(&cmd->transport_dev_active)) {
3837                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3838                 goto free_pages;
3839         }
3840         atomic_set(&cmd->transport_dev_active, 0);
3841         transport_all_task_dev_remove_state(cmd);
3842         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3843
3844         transport_release_tasks(cmd);
3845
3846 free_pages:
3847         transport_free_pages(cmd);
3848         transport_release_cmd(cmd);
3849         return 0;
3850 }
3851
3852 /*
3853  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3854  * allocating in the core.
3855  * @cmd:  Associated se_cmd descriptor
3856  * @mem:  SGL style memory for TCM WRITE / READ
3857  * @sg_mem_num: Number of SGL elements
3858  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3859  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3860  *
3861  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3862  * of parameters.
3863  */
3864 int transport_generic_map_mem_to_cmd(
3865         struct se_cmd *cmd,
3866         struct scatterlist *sgl,
3867         u32 sgl_count,
3868         struct scatterlist *sgl_bidi,
3869         u32 sgl_bidi_count)
3870 {
3871         if (!sgl || !sgl_count)
3872                 return 0;
3873
3874         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3875             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3876
3877                 cmd->t_data_sg = sgl;
3878                 cmd->t_data_nents = sgl_count;
3879
3880                 if (sgl_bidi && sgl_bidi_count) {
3881                         cmd->t_bidi_data_sg = sgl_bidi;
3882                         cmd->t_bidi_data_nents = sgl_bidi_count;
3883                 }
3884                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3885         }
3886
3887         return 0;
3888 }
3889 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3890
3891 static int transport_new_cmd_obj(struct se_cmd *cmd)
3892 {
3893         struct se_device *dev = cmd->se_dev;
3894         u32 task_cdbs;
3895         u32 rc;
3896         int set_counts = 1;
3897
3898         /*
3899          * Setup any BIDI READ tasks and memory from
3900          * cmd->t_mem_bidi_list so the READ struct se_tasks
3901          * are queued first for the non pSCSI passthrough case.
3902          */
3903         if (cmd->t_bidi_data_sg &&
3904             (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3905                 rc = transport_allocate_tasks(cmd,
3906                                               cmd->t_task_lba,
3907                                               DMA_FROM_DEVICE,
3908                                               cmd->t_bidi_data_sg,
3909                                               cmd->t_bidi_data_nents);
3910                 if (rc <= 0) {
3911                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3912                         cmd->scsi_sense_reason =
3913                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3914                         return PYX_TRANSPORT_LU_COMM_FAILURE;
3915                 }
3916                 atomic_inc(&cmd->t_fe_count);
3917                 atomic_inc(&cmd->t_se_count);
3918                 set_counts = 0;
3919         }
3920         /*
3921          * Setup the tasks and memory from cmd->t_mem_list
3922          * Note for BIDI transfers this will contain the WRITE payload
3923          */
3924         task_cdbs = transport_allocate_tasks(cmd,
3925                                              cmd->t_task_lba,
3926                                              cmd->data_direction,
3927                                              cmd->t_data_sg,
3928                                              cmd->t_data_nents);
3929         if (task_cdbs <= 0) {
3930                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3931                 cmd->scsi_sense_reason =
3932                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3933                 return PYX_TRANSPORT_LU_COMM_FAILURE;
3934         }
3935
3936         if (set_counts) {
3937                 atomic_inc(&cmd->t_fe_count);
3938                 atomic_inc(&cmd->t_se_count);
3939         }
3940
3941         cmd->t_task_list_num = task_cdbs;
3942
3943         atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3944         atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3945         atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3946         return 0;
3947 }
3948
3949 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3950 {
3951         struct scatterlist *sg = cmd->t_data_sg;
3952
3953         BUG_ON(!sg);
3954         /*
3955          * We need to take into account a possible offset here for fabrics like
3956          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3957          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3958          */
3959         return kmap(sg_page(sg)) + sg->offset;
3960 }
3961 EXPORT_SYMBOL(transport_kmap_first_data_page);
3962
3963 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3964 {
3965         kunmap(sg_page(cmd->t_data_sg));
3966 }
3967 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3968
3969 static int
3970 transport_generic_get_mem(struct se_cmd *cmd)
3971 {
3972         u32 length = cmd->data_length;
3973         unsigned int nents;
3974         struct page *page;
3975         int i = 0;
3976
3977         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3978         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3979         if (!cmd->t_data_sg)
3980                 return -ENOMEM;
3981
3982         cmd->t_data_nents = nents;
3983         sg_init_table(cmd->t_data_sg, nents);
3984
3985         while (length) {
3986                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3987                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3988                 if (!page)
3989                         goto out;
3990
3991                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3992                 length -= page_len;
3993                 i++;
3994         }
3995         return 0;
3996
3997 out:
3998         while (i >= 0) {
3999                 __free_page(sg_page(&cmd->t_data_sg[i]));
4000                 i--;
4001         }
4002         kfree(cmd->t_data_sg);
4003         cmd->t_data_sg = NULL;
4004         return -ENOMEM;
4005 }
4006
4007 /* Reduce sectors if they are too long for the device */
4008 static inline sector_t transport_limit_task_sectors(
4009         struct se_device *dev,
4010         unsigned long long lba,
4011         sector_t sectors)
4012 {
4013         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
4014
4015         if (dev->transport->get_device_type(dev) == TYPE_DISK)
4016                 if ((lba + sectors) > transport_dev_end_lba(dev))
4017                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
4018
4019         return sectors;
4020 }
4021
4022
4023 /*
4024  * This function can be used by HW target mode drivers to create a linked
4025  * scatterlist from all contiguously allocated struct se_task->task_sg[].
4026  * This is intended to be called during the completion path by TCM Core
4027  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
4028  */
4029 void transport_do_task_sg_chain(struct se_cmd *cmd)
4030 {
4031         struct scatterlist *sg_first = NULL;
4032         struct scatterlist *sg_prev = NULL;
4033         int sg_prev_nents = 0;
4034         struct scatterlist *sg;
4035         struct se_task *task;
4036         u32 chained_nents = 0;
4037         int i;
4038
4039         BUG_ON(!cmd->se_tfo->task_sg_chaining);
4040
4041         /*
4042          * Walk the struct se_task list and setup scatterlist chains
4043          * for each contiguously allocated struct se_task->task_sg[].
4044          */
4045         list_for_each_entry(task, &cmd->t_task_list, t_list) {
4046                 if (!task->task_sg)
4047                         continue;
4048
4049                 BUG_ON(!task->task_padded_sg);
4050
4051                 if (!sg_first) {
4052                         sg_first = task->task_sg;
4053                         chained_nents = task->task_sg_nents;
4054                 } else {
4055                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
4056                         chained_nents += task->task_sg_nents;
4057                 }
4058
4059                 sg_prev = task->task_sg;
4060                 sg_prev_nents = task->task_sg_nents;
4061         }
4062         /*
4063          * Setup the starting pointer and total t_tasks_sg_linked_no including
4064          * padding SGs for linking and to mark the end.
4065          */
4066         cmd->t_tasks_sg_chained = sg_first;
4067         cmd->t_tasks_sg_chained_no = chained_nents;
4068
4069         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
4070                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
4071                 cmd->t_tasks_sg_chained_no);
4072
4073         for_each_sg(cmd->t_tasks_sg_chained, sg,
4074                         cmd->t_tasks_sg_chained_no, i) {
4075
4076                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
4077                         i, sg, sg_page(sg), sg->length, sg->offset);
4078                 if (sg_is_chain(sg))
4079                         pr_debug("SG: %p sg_is_chain=1\n", sg);
4080                 if (sg_is_last(sg))
4081                         pr_debug("SG: %p sg_is_last=1\n", sg);
4082         }
4083 }
4084 EXPORT_SYMBOL(transport_do_task_sg_chain);
4085
4086 /*
4087  * Break up cmd into chunks transport can handle
4088  */
4089 static int transport_allocate_data_tasks(
4090         struct se_cmd *cmd,
4091         unsigned long long lba,
4092         enum dma_data_direction data_direction,
4093         struct scatterlist *sgl,
4094         unsigned int sgl_nents)
4095 {
4096         unsigned char *cdb = NULL;
4097         struct se_task *task;
4098         struct se_device *dev = cmd->se_dev;
4099         unsigned long flags;
4100         int task_count, i, ret;
4101         sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
4102         u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
4103         struct scatterlist *sg;
4104         struct scatterlist *cmd_sg;
4105
4106         WARN_ON(cmd->data_length % sector_size);
4107         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
4108         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
4109         
4110         cmd_sg = sgl;
4111         for (i = 0; i < task_count; i++) {
4112                 unsigned int task_size;
4113                 int count;
4114
4115                 task = transport_generic_get_task(cmd, data_direction);
4116                 if (!task)
4117                         return -ENOMEM;
4118
4119                 task->task_lba = lba;
4120                 task->task_sectors = min(sectors, dev_max_sectors);
4121                 task->task_size = task->task_sectors * sector_size;
4122
4123                 cdb = dev->transport->get_cdb(task);
4124                 BUG_ON(!cdb);
4125
4126                 memcpy(cdb, cmd->t_task_cdb,
4127                        scsi_command_size(cmd->t_task_cdb));
4128
4129                 /* Update new cdb with updated lba/sectors */
4130                 cmd->transport_split_cdb(task->task_lba, task->task_sectors, cdb);
4131
4132                 /*
4133                  * Check if the fabric module driver is requesting that all
4134                  * struct se_task->task_sg[] be chained together..  If so,
4135                  * then allocate an extra padding SG entry for linking and
4136                  * marking the end of the chained SGL.
4137                  * Possibly over-allocate task sgl size by using cmd sgl size.
4138                  * It's so much easier and only a waste when task_count > 1.
4139                  * That is extremely rare.
4140                  */
4141                 task->task_sg_nents = sgl_nents;
4142                 if (cmd->se_tfo->task_sg_chaining) {
4143                         task->task_sg_nents++;
4144                         task->task_padded_sg = 1;
4145                 }
4146
4147                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
4148                                         task->task_sg_nents, GFP_KERNEL);
4149                 if (!task->task_sg) {
4150                         cmd->se_dev->transport->free_task(task);
4151                         return -ENOMEM;
4152                 }
4153
4154                 sg_init_table(task->task_sg, task->task_sg_nents);
4155
4156                 task_size = task->task_size;
4157
4158                 /* Build new sgl, only up to task_size */
4159                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
4160                         if (cmd_sg->length > task_size)
4161                                 break;
4162
4163                         *sg = *cmd_sg;
4164                         task_size -= cmd_sg->length;
4165                         cmd_sg = sg_next(cmd_sg);
4166                 }
4167
4168                 lba += task->task_sectors;
4169                 sectors -= task->task_sectors;
4170
4171                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4172                 list_add_tail(&task->t_list, &cmd->t_task_list);
4173                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4174         }
4175         /*
4176          * Now perform the memory map of task->task_sg[] into backend
4177          * subsystem memory..
4178          */
4179         list_for_each_entry(task, &cmd->t_task_list, t_list) {
4180                 if (atomic_read(&task->task_sent))
4181                         continue;
4182                 if (!dev->transport->map_data_SG)
4183                         continue;
4184
4185                 ret = dev->transport->map_data_SG(task);
4186                 if (ret < 0)
4187                         return 0;
4188         }
4189
4190         return task_count;
4191 }
4192
4193 static int
4194 transport_allocate_control_task(struct se_cmd *cmd)
4195 {
4196         struct se_device *dev = cmd->se_dev;
4197         unsigned char *cdb;
4198         struct se_task *task;
4199         unsigned long flags;
4200         int ret = 0;
4201
4202         task = transport_generic_get_task(cmd, cmd->data_direction);
4203         if (!task)
4204                 return -ENOMEM;
4205
4206         cdb = dev->transport->get_cdb(task);
4207         BUG_ON(!cdb);
4208         memcpy(cdb, cmd->t_task_cdb,
4209                scsi_command_size(cmd->t_task_cdb));
4210
4211         task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
4212                                 GFP_KERNEL);
4213         if (!task->task_sg) {
4214                 cmd->se_dev->transport->free_task(task);
4215                 return -ENOMEM;
4216         }
4217
4218         memcpy(task->task_sg, cmd->t_data_sg,
4219                sizeof(struct scatterlist) * cmd->t_data_nents);
4220         task->task_size = cmd->data_length;
4221         task->task_sg_nents = cmd->t_data_nents;
4222
4223         spin_lock_irqsave(&cmd->t_state_lock, flags);
4224         list_add_tail(&task->t_list, &cmd->t_task_list);
4225         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4226
4227         if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) {
4228                 if (dev->transport->map_control_SG)
4229                         ret = dev->transport->map_control_SG(task);
4230         } else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) {
4231                 if (dev->transport->cdb_none)
4232                         ret = dev->transport->cdb_none(task);
4233         } else {
4234                 pr_err("target: Unknown control cmd type!\n");
4235                 BUG();
4236         }
4237
4238         /* Success! Return number of tasks allocated */
4239         if (ret == 0)
4240                 return 1;
4241         return ret;
4242 }
4243
4244 static u32 transport_allocate_tasks(
4245         struct se_cmd *cmd,
4246         unsigned long long lba,
4247         enum dma_data_direction data_direction,
4248         struct scatterlist *sgl,
4249         unsigned int sgl_nents)
4250 {
4251         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)
4252                 return transport_allocate_data_tasks(cmd, lba, data_direction,
4253                                                      sgl, sgl_nents);
4254         else
4255                 return transport_allocate_control_task(cmd);
4256
4257 }
4258
4259
4260 /*       transport_generic_new_cmd(): Called from transport_processing_thread()
4261  *
4262  *       Allocate storage transport resources from a set of values predefined
4263  *       by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4264  *       Any non zero return here is treated as an "out of resource' op here.
4265  */
4266         /*
4267          * Generate struct se_task(s) and/or their payloads for this CDB.
4268          */
4269 int transport_generic_new_cmd(struct se_cmd *cmd)
4270 {
4271         int ret = 0;
4272
4273         /*
4274          * Determine is the TCM fabric module has already allocated physical
4275          * memory, and is directly calling transport_generic_map_mem_to_cmd()
4276          * beforehand.
4277          */
4278         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4279             cmd->data_length) {
4280                 ret = transport_generic_get_mem(cmd);
4281                 if (ret < 0)
4282                         return ret;
4283         }
4284         /*
4285          * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4286          * control or data CDB types, and perform the map to backend subsystem
4287          * code from SGL memory allocated here by transport_generic_get_mem(), or
4288          * via pre-existing SGL memory setup explictly by fabric module code with
4289          * transport_generic_map_mem_to_cmd().
4290          */
4291         ret = transport_new_cmd_obj(cmd);
4292         if (ret < 0)
4293                 return ret;
4294         /*
4295          * For WRITEs, let the fabric know its buffer is ready..
4296          * This WRITE struct se_cmd (and all of its associated struct se_task's)
4297          * will be added to the struct se_device execution queue after its WRITE
4298          * data has arrived. (ie: It gets handled by the transport processing
4299          * thread a second time)
4300          */
4301         if (cmd->data_direction == DMA_TO_DEVICE) {
4302                 transport_add_tasks_to_state_queue(cmd);
4303                 return transport_generic_write_pending(cmd);
4304         }
4305         /*
4306          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4307          * to the execution queue.
4308          */
4309         transport_execute_tasks(cmd);
4310         return 0;
4311 }
4312 EXPORT_SYMBOL(transport_generic_new_cmd);
4313
4314 /*      transport_generic_process_write():
4315  *
4316  *
4317  */
4318 void transport_generic_process_write(struct se_cmd *cmd)
4319 {
4320         transport_execute_tasks(cmd);
4321 }
4322 EXPORT_SYMBOL(transport_generic_process_write);
4323
4324 static int transport_write_pending_qf(struct se_cmd *cmd)
4325 {
4326         return cmd->se_tfo->write_pending(cmd);
4327 }
4328
4329 /*      transport_generic_write_pending():
4330  *
4331  *
4332  */
4333 static int transport_generic_write_pending(struct se_cmd *cmd)
4334 {
4335         unsigned long flags;
4336         int ret;
4337
4338         spin_lock_irqsave(&cmd->t_state_lock, flags);
4339         cmd->t_state = TRANSPORT_WRITE_PENDING;
4340         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4341
4342         if (cmd->transport_qf_callback) {
4343                 ret = cmd->transport_qf_callback(cmd);
4344                 if (ret == -EAGAIN)
4345                         goto queue_full;
4346                 else if (ret < 0)
4347                         return ret;
4348
4349                 cmd->transport_qf_callback = NULL;
4350                 return 0;
4351         }
4352
4353         /*
4354          * Clear the se_cmd for WRITE_PENDING status in order to set
4355          * cmd->t_transport_active=0 so that transport_generic_handle_data
4356          * can be called from HW target mode interrupt code.  This is safe
4357          * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4358          * because the se_cmd->se_lun pointer is not being cleared.
4359          */
4360         transport_cmd_check_stop(cmd, 1, 0);
4361
4362         /*
4363          * Call the fabric write_pending function here to let the
4364          * frontend know that WRITE buffers are ready.
4365          */
4366         ret = cmd->se_tfo->write_pending(cmd);
4367         if (ret == -EAGAIN)
4368                 goto queue_full;
4369         else if (ret < 0)
4370                 return ret;
4371
4372         return PYX_TRANSPORT_WRITE_PENDING;
4373
4374 queue_full:
4375         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4376         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4377         transport_handle_queue_full(cmd, cmd->se_dev,
4378                         transport_write_pending_qf);
4379         return ret;
4380 }
4381
4382 void transport_release_cmd(struct se_cmd *cmd)
4383 {
4384         BUG_ON(!cmd->se_tfo);
4385
4386         transport_free_se_cmd(cmd);
4387         cmd->se_tfo->release_cmd(cmd);
4388 }
4389 EXPORT_SYMBOL(transport_release_cmd);
4390
4391 /*      transport_generic_free_cmd():
4392  *
4393  *      Called from processing frontend to release storage engine resources
4394  */
4395 void transport_generic_free_cmd(
4396         struct se_cmd *cmd,
4397         int wait_for_tasks,
4398         int session_reinstatement)
4399 {
4400         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD))
4401                 transport_release_cmd(cmd);
4402         else {
4403                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4404
4405                 if (cmd->se_lun) {
4406 #if 0
4407                         pr_debug("cmd: %p ITT: 0x%08x contains"
4408                                 " cmd->se_lun\n", cmd,
4409                                 cmd->se_tfo->get_task_tag(cmd));
4410 #endif
4411                         transport_lun_remove_cmd(cmd);
4412                 }
4413
4414                 if (wait_for_tasks && cmd->transport_wait_for_tasks)
4415                         cmd->transport_wait_for_tasks(cmd, 0, 0);
4416
4417                 transport_free_dev_tasks(cmd);
4418
4419                 transport_generic_remove(cmd, session_reinstatement);
4420         }
4421 }
4422 EXPORT_SYMBOL(transport_generic_free_cmd);
4423
4424 static void transport_nop_wait_for_tasks(
4425         struct se_cmd *cmd,
4426         int remove_cmd,
4427         int session_reinstatement)
4428 {
4429         return;
4430 }
4431
4432 /*      transport_lun_wait_for_tasks():
4433  *
4434  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4435  *      an struct se_lun to be successfully shutdown.
4436  */
4437 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4438 {
4439         unsigned long flags;
4440         int ret;
4441         /*
4442          * If the frontend has already requested this struct se_cmd to
4443          * be stopped, we can safely ignore this struct se_cmd.
4444          */
4445         spin_lock_irqsave(&cmd->t_state_lock, flags);
4446         if (atomic_read(&cmd->t_transport_stop)) {
4447                 atomic_set(&cmd->transport_lun_stop, 0);
4448                 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4449                         " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4450                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4451                 transport_cmd_check_stop(cmd, 1, 0);
4452                 return -EPERM;
4453         }
4454         atomic_set(&cmd->transport_lun_fe_stop, 1);
4455         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4456
4457         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4458
4459         ret = transport_stop_tasks_for_cmd(cmd);
4460
4461         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4462                         " %d\n", cmd, cmd->t_task_list_num, ret);
4463         if (!ret) {
4464                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4465                                 cmd->se_tfo->get_task_tag(cmd));
4466                 wait_for_completion(&cmd->transport_lun_stop_comp);
4467                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4468                                 cmd->se_tfo->get_task_tag(cmd));
4469         }
4470         transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
4471
4472         return 0;
4473 }
4474
4475 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4476 {
4477         struct se_cmd *cmd = NULL;
4478         unsigned long lun_flags, cmd_flags;
4479         /*
4480          * Do exception processing and return CHECK_CONDITION status to the
4481          * Initiator Port.
4482          */
4483         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4484         while (!list_empty(&lun->lun_cmd_list)) {
4485                 cmd = list_first_entry(&lun->lun_cmd_list,
4486                        struct se_cmd, se_lun_node);
4487                 list_del(&cmd->se_lun_node);
4488
4489                 atomic_set(&cmd->transport_lun_active, 0);
4490                 /*
4491                  * This will notify iscsi_target_transport.c:
4492                  * transport_cmd_check_stop() that a LUN shutdown is in
4493                  * progress for the iscsi_cmd_t.
4494                  */
4495                 spin_lock(&cmd->t_state_lock);
4496                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4497                         "_lun_stop for  ITT: 0x%08x\n",
4498                         cmd->se_lun->unpacked_lun,
4499                         cmd->se_tfo->get_task_tag(cmd));
4500                 atomic_set(&cmd->transport_lun_stop, 1);
4501                 spin_unlock(&cmd->t_state_lock);
4502
4503                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4504
4505                 if (!cmd->se_lun) {
4506                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4507                                 cmd->se_tfo->get_task_tag(cmd),
4508                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4509                         BUG();
4510                 }
4511                 /*
4512                  * If the Storage engine still owns the iscsi_cmd_t, determine
4513                  * and/or stop its context.
4514                  */
4515                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4516                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4517                         cmd->se_tfo->get_task_tag(cmd));
4518
4519                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4520                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4521                         continue;
4522                 }
4523
4524                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4525                         "_wait_for_tasks(): SUCCESS\n",
4526                         cmd->se_lun->unpacked_lun,
4527                         cmd->se_tfo->get_task_tag(cmd));
4528
4529                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4530                 if (!atomic_read(&cmd->transport_dev_active)) {
4531                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4532                         goto check_cond;
4533                 }
4534                 atomic_set(&cmd->transport_dev_active, 0);
4535                 transport_all_task_dev_remove_state(cmd);
4536                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4537
4538                 transport_free_dev_tasks(cmd);
4539                 /*
4540                  * The Storage engine stopped this struct se_cmd before it was
4541                  * send to the fabric frontend for delivery back to the
4542                  * Initiator Node.  Return this SCSI CDB back with an
4543                  * CHECK_CONDITION status.
4544                  */
4545 check_cond:
4546                 transport_send_check_condition_and_sense(cmd,
4547                                 TCM_NON_EXISTENT_LUN, 0);
4548                 /*
4549                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4550                  * be released, notify the waiting thread now that LU has
4551                  * finished accessing it.
4552                  */
4553                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4554                 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4555                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4556                                 " struct se_cmd: %p ITT: 0x%08x\n",
4557                                 lun->unpacked_lun,
4558                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4559
4560                         spin_unlock_irqrestore(&cmd->t_state_lock,
4561                                         cmd_flags);
4562                         transport_cmd_check_stop(cmd, 1, 0);
4563                         complete(&cmd->transport_lun_fe_stop_comp);
4564                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4565                         continue;
4566                 }
4567                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4568                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4569
4570                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4571                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4572         }
4573         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4574 }
4575
4576 static int transport_clear_lun_thread(void *p)
4577 {
4578         struct se_lun *lun = (struct se_lun *)p;
4579
4580         __transport_clear_lun_from_sessions(lun);
4581         complete(&lun->lun_shutdown_comp);
4582
4583         return 0;
4584 }
4585
4586 int transport_clear_lun_from_sessions(struct se_lun *lun)
4587 {
4588         struct task_struct *kt;
4589
4590         kt = kthread_run(transport_clear_lun_thread, lun,
4591                         "tcm_cl_%u", lun->unpacked_lun);
4592         if (IS_ERR(kt)) {
4593                 pr_err("Unable to start clear_lun thread\n");
4594                 return PTR_ERR(kt);
4595         }
4596         wait_for_completion(&lun->lun_shutdown_comp);
4597
4598         return 0;
4599 }
4600
4601 /*      transport_generic_wait_for_tasks():
4602  *
4603  *      Called from frontend or passthrough context to wait for storage engine
4604  *      to pause and/or release frontend generated struct se_cmd.
4605  */
4606 static void transport_generic_wait_for_tasks(
4607         struct se_cmd *cmd,
4608         int remove_cmd,
4609         int session_reinstatement)
4610 {
4611         unsigned long flags;
4612
4613         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req))
4614                 return;
4615
4616         spin_lock_irqsave(&cmd->t_state_lock, flags);
4617         /*
4618          * If we are already stopped due to an external event (ie: LUN shutdown)
4619          * sleep until the connection can have the passed struct se_cmd back.
4620          * The cmd->transport_lun_stopped_sem will be upped by
4621          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4622          * has completed its operation on the struct se_cmd.
4623          */
4624         if (atomic_read(&cmd->transport_lun_stop)) {
4625
4626                 pr_debug("wait_for_tasks: Stopping"
4627                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4628                         "_stop_comp); for ITT: 0x%08x\n",
4629                         cmd->se_tfo->get_task_tag(cmd));
4630                 /*
4631                  * There is a special case for WRITES where a FE exception +
4632                  * LUN shutdown means ConfigFS context is still sleeping on
4633                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4634                  * We go ahead and up transport_lun_stop_comp just to be sure
4635                  * here.
4636                  */
4637                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4638                 complete(&cmd->transport_lun_stop_comp);
4639                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4640                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4641
4642                 transport_all_task_dev_remove_state(cmd);
4643                 /*
4644                  * At this point, the frontend who was the originator of this
4645                  * struct se_cmd, now owns the structure and can be released through
4646                  * normal means below.
4647                  */
4648                 pr_debug("wait_for_tasks: Stopped"
4649                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4650                         "stop_comp); for ITT: 0x%08x\n",
4651                         cmd->se_tfo->get_task_tag(cmd));
4652
4653                 atomic_set(&cmd->transport_lun_stop, 0);
4654         }
4655         if (!atomic_read(&cmd->t_transport_active) ||
4656              atomic_read(&cmd->t_transport_aborted))
4657                 goto remove;
4658
4659         atomic_set(&cmd->t_transport_stop, 1);
4660
4661         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4662                 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4663                 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
4664                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
4665                 cmd->deferred_t_state);
4666
4667         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4668
4669         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4670
4671         wait_for_completion(&cmd->t_transport_stop_comp);
4672
4673         spin_lock_irqsave(&cmd->t_state_lock, flags);
4674         atomic_set(&cmd->t_transport_active, 0);
4675         atomic_set(&cmd->t_transport_stop, 0);
4676
4677         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4678                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4679                 cmd->se_tfo->get_task_tag(cmd));
4680 remove:
4681         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4682         if (!remove_cmd)
4683                 return;
4684
4685         transport_generic_free_cmd(cmd, 0, session_reinstatement);
4686 }
4687
4688 static int transport_get_sense_codes(
4689         struct se_cmd *cmd,
4690         u8 *asc,
4691         u8 *ascq)
4692 {
4693         *asc = cmd->scsi_asc;
4694         *ascq = cmd->scsi_ascq;
4695
4696         return 0;
4697 }
4698
4699 static int transport_set_sense_codes(
4700         struct se_cmd *cmd,
4701         u8 asc,
4702         u8 ascq)
4703 {
4704         cmd->scsi_asc = asc;
4705         cmd->scsi_ascq = ascq;
4706
4707         return 0;
4708 }
4709
4710 int transport_send_check_condition_and_sense(
4711         struct se_cmd *cmd,
4712         u8 reason,
4713         int from_transport)
4714 {
4715         unsigned char *buffer = cmd->sense_buffer;
4716         unsigned long flags;
4717         int offset;
4718         u8 asc = 0, ascq = 0;
4719
4720         spin_lock_irqsave(&cmd->t_state_lock, flags);
4721         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4722                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4723                 return 0;
4724         }
4725         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4726         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4727
4728         if (!reason && from_transport)
4729                 goto after_reason;
4730
4731         if (!from_transport)
4732                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4733         /*
4734          * Data Segment and SenseLength of the fabric response PDU.
4735          *
4736          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4737          * from include/scsi/scsi_cmnd.h
4738          */
4739         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4740                                 TRANSPORT_SENSE_BUFFER);
4741         /*
4742          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4743          * SENSE KEY values from include/scsi/scsi.h
4744          */
4745         switch (reason) {
4746         case TCM_NON_EXISTENT_LUN:
4747                 /* CURRENT ERROR */
4748                 buffer[offset] = 0x70;
4749                 /* ILLEGAL REQUEST */
4750                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4751                 /* LOGICAL UNIT NOT SUPPORTED */
4752                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4753                 break;
4754         case TCM_UNSUPPORTED_SCSI_OPCODE:
4755         case TCM_SECTOR_COUNT_TOO_MANY:
4756                 /* CURRENT ERROR */
4757                 buffer[offset] = 0x70;
4758                 /* ILLEGAL REQUEST */
4759                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4760                 /* INVALID COMMAND OPERATION CODE */
4761                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4762                 break;
4763         case TCM_UNKNOWN_MODE_PAGE:
4764                 /* CURRENT ERROR */
4765                 buffer[offset] = 0x70;
4766                 /* ILLEGAL REQUEST */
4767                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4768                 /* INVALID FIELD IN CDB */
4769                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4770                 break;
4771         case TCM_CHECK_CONDITION_ABORT_CMD:
4772                 /* CURRENT ERROR */
4773                 buffer[offset] = 0x70;
4774                 /* ABORTED COMMAND */
4775                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4776                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4777                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4778                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4779                 break;
4780         case TCM_INCORRECT_AMOUNT_OF_DATA:
4781                 /* CURRENT ERROR */
4782                 buffer[offset] = 0x70;
4783                 /* ABORTED COMMAND */
4784                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4785                 /* WRITE ERROR */
4786                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4787                 /* NOT ENOUGH UNSOLICITED DATA */
4788                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4789                 break;
4790         case TCM_INVALID_CDB_FIELD:
4791                 /* CURRENT ERROR */
4792                 buffer[offset] = 0x70;
4793                 /* ABORTED COMMAND */
4794                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4795                 /* INVALID FIELD IN CDB */
4796                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4797                 break;
4798         case TCM_INVALID_PARAMETER_LIST:
4799                 /* CURRENT ERROR */
4800                 buffer[offset] = 0x70;
4801                 /* ABORTED COMMAND */
4802                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4803                 /* INVALID FIELD IN PARAMETER LIST */
4804                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4805                 break;
4806         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4807                 /* CURRENT ERROR */
4808                 buffer[offset] = 0x70;
4809                 /* ABORTED COMMAND */
4810                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4811                 /* WRITE ERROR */
4812                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4813                 /* UNEXPECTED_UNSOLICITED_DATA */
4814                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4815                 break;
4816         case TCM_SERVICE_CRC_ERROR:
4817                 /* CURRENT ERROR */
4818                 buffer[offset] = 0x70;
4819                 /* ABORTED COMMAND */
4820                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4821                 /* PROTOCOL SERVICE CRC ERROR */
4822                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4823                 /* N/A */
4824                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4825                 break;
4826         case TCM_SNACK_REJECTED:
4827                 /* CURRENT ERROR */
4828                 buffer[offset] = 0x70;
4829                 /* ABORTED COMMAND */
4830                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4831                 /* READ ERROR */
4832                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4833                 /* FAILED RETRANSMISSION REQUEST */
4834                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4835                 break;
4836         case TCM_WRITE_PROTECTED:
4837                 /* CURRENT ERROR */
4838                 buffer[offset] = 0x70;
4839                 /* DATA PROTECT */
4840                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4841                 /* WRITE PROTECTED */
4842                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4843                 break;
4844         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4845                 /* CURRENT ERROR */
4846                 buffer[offset] = 0x70;
4847                 /* UNIT ATTENTION */
4848                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4849                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4850                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4851                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4852                 break;
4853         case TCM_CHECK_CONDITION_NOT_READY:
4854                 /* CURRENT ERROR */
4855                 buffer[offset] = 0x70;
4856                 /* Not Ready */
4857                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4858                 transport_get_sense_codes(cmd, &asc, &ascq);
4859                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4860                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4861                 break;
4862         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4863         default:
4864                 /* CURRENT ERROR */
4865                 buffer[offset] = 0x70;
4866                 /* ILLEGAL REQUEST */
4867                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4868                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4869                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4870                 break;
4871         }
4872         /*
4873          * This code uses linux/include/scsi/scsi.h SAM status codes!
4874          */
4875         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4876         /*
4877          * Automatically padded, this value is encoded in the fabric's
4878          * data_length response PDU containing the SCSI defined sense data.
4879          */
4880         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4881
4882 after_reason:
4883         return cmd->se_tfo->queue_status(cmd);
4884 }
4885 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4886
4887 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4888 {
4889         int ret = 0;
4890
4891         if (atomic_read(&cmd->t_transport_aborted) != 0) {
4892                 if (!send_status ||
4893                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4894                         return 1;
4895 #if 0
4896                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4897                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4898                         cmd->t_task_cdb[0],
4899                         cmd->se_tfo->get_task_tag(cmd));
4900 #endif
4901                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4902                 cmd->se_tfo->queue_status(cmd);
4903                 ret = 1;
4904         }
4905         return ret;
4906 }
4907 EXPORT_SYMBOL(transport_check_aborted_status);
4908
4909 void transport_send_task_abort(struct se_cmd *cmd)
4910 {
4911         /*
4912          * If there are still expected incoming fabric WRITEs, we wait
4913          * until until they have completed before sending a TASK_ABORTED
4914          * response.  This response with TASK_ABORTED status will be
4915          * queued back to fabric module by transport_check_aborted_status().
4916          */
4917         if (cmd->data_direction == DMA_TO_DEVICE) {
4918                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4919                         atomic_inc(&cmd->t_transport_aborted);
4920                         smp_mb__after_atomic_inc();
4921                         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4922                         transport_new_cmd_failure(cmd);
4923                         return;
4924                 }
4925         }
4926         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4927 #if 0
4928         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4929                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4930                 cmd->se_tfo->get_task_tag(cmd));
4931 #endif
4932         cmd->se_tfo->queue_status(cmd);
4933 }
4934
4935 /*      transport_generic_do_tmr():
4936  *
4937  *
4938  */
4939 int transport_generic_do_tmr(struct se_cmd *cmd)
4940 {
4941         struct se_device *dev = cmd->se_dev;
4942         struct se_tmr_req *tmr = cmd->se_tmr_req;
4943         int ret;
4944
4945         switch (tmr->function) {
4946         case TMR_ABORT_TASK:
4947                 tmr->response = TMR_FUNCTION_REJECTED;
4948                 break;
4949         case TMR_ABORT_TASK_SET:
4950         case TMR_CLEAR_ACA:
4951         case TMR_CLEAR_TASK_SET:
4952                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4953                 break;
4954         case TMR_LUN_RESET:
4955                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4956                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4957                                          TMR_FUNCTION_REJECTED;
4958                 break;
4959         case TMR_TARGET_WARM_RESET:
4960                 tmr->response = TMR_FUNCTION_REJECTED;
4961                 break;
4962         case TMR_TARGET_COLD_RESET:
4963                 tmr->response = TMR_FUNCTION_REJECTED;
4964                 break;
4965         default:
4966                 pr_err("Uknown TMR function: 0x%02x.\n",
4967                                 tmr->function);
4968                 tmr->response = TMR_FUNCTION_REJECTED;
4969                 break;
4970         }
4971
4972         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4973         cmd->se_tfo->queue_tm_rsp(cmd);
4974
4975         transport_cmd_check_stop(cmd, 2, 0);
4976         return 0;
4977 }
4978
4979 /*
4980  *      Called with spin_lock_irq(&dev->execute_task_lock); held
4981  *
4982  */
4983 static struct se_task *
4984 transport_get_task_from_state_list(struct se_device *dev)
4985 {
4986         struct se_task *task;
4987
4988         if (list_empty(&dev->state_task_list))
4989                 return NULL;
4990
4991         list_for_each_entry(task, &dev->state_task_list, t_state_list)
4992                 break;
4993
4994         list_del(&task->t_state_list);
4995         atomic_set(&task->task_state_active, 0);
4996
4997         return task;
4998 }
4999
5000 static void transport_processing_shutdown(struct se_device *dev)
5001 {
5002         struct se_cmd *cmd;
5003         struct se_task *task;
5004         unsigned long flags;
5005         /*
5006          * Empty the struct se_device's struct se_task state list.
5007          */
5008         spin_lock_irqsave(&dev->execute_task_lock, flags);
5009         while ((task = transport_get_task_from_state_list(dev))) {
5010                 if (!task->task_se_cmd) {
5011                         pr_err("task->task_se_cmd is NULL!\n");
5012                         continue;
5013                 }
5014                 cmd = task->task_se_cmd;
5015
5016                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5017
5018                 spin_lock_irqsave(&cmd->t_state_lock, flags);
5019
5020                 pr_debug("PT: cmd: %p task: %p ITT: 0x%08x,"
5021                         " i_state: %d, t_state/def_t_state:"
5022                         " %d/%d cdb: 0x%02x\n", cmd, task,
5023                         cmd->se_tfo->get_task_tag(cmd),
5024                         cmd->se_tfo->get_cmd_state(cmd),
5025                         cmd->t_state, cmd->deferred_t_state,
5026                         cmd->t_task_cdb[0]);
5027                 pr_debug("PT: ITT[0x%08x] - t_tasks: %d t_task_cdbs_left:"
5028                         " %d t_task_cdbs_sent: %d -- t_transport_active: %d"
5029                         " t_transport_stop: %d t_transport_sent: %d\n",
5030                         cmd->se_tfo->get_task_tag(cmd),
5031                         cmd->t_task_list_num,
5032                         atomic_read(&cmd->t_task_cdbs_left),
5033                         atomic_read(&cmd->t_task_cdbs_sent),
5034                         atomic_read(&cmd->t_transport_active),
5035                         atomic_read(&cmd->t_transport_stop),
5036                         atomic_read(&cmd->t_transport_sent));
5037
5038                 if (atomic_read(&task->task_active)) {
5039                         atomic_set(&task->task_stop, 1);
5040                         spin_unlock_irqrestore(
5041                                 &cmd->t_state_lock, flags);
5042
5043                         pr_debug("Waiting for task: %p to shutdown for dev:"
5044                                 " %p\n", task, dev);
5045                         wait_for_completion(&task->task_stop_comp);
5046                         pr_debug("Completed task: %p shutdown for dev: %p\n",
5047                                 task, dev);
5048
5049                         spin_lock_irqsave(&cmd->t_state_lock, flags);
5050                         atomic_dec(&cmd->t_task_cdbs_left);
5051
5052                         atomic_set(&task->task_active, 0);
5053                         atomic_set(&task->task_stop, 0);
5054                 } else {
5055                         if (atomic_read(&task->task_execute_queue) != 0)
5056                                 transport_remove_task_from_execute_queue(task, dev);
5057                 }
5058                 __transport_stop_task_timer(task, &flags);
5059
5060                 if (!atomic_dec_and_test(&cmd->t_task_cdbs_ex_left)) {
5061                         spin_unlock_irqrestore(
5062                                         &cmd->t_state_lock, flags);
5063
5064                         pr_debug("Skipping task: %p, dev: %p for"
5065                                 " t_task_cdbs_ex_left: %d\n", task, dev,
5066                                 atomic_read(&cmd->t_task_cdbs_ex_left));
5067
5068                         spin_lock_irqsave(&dev->execute_task_lock, flags);
5069                         continue;
5070                 }
5071
5072                 if (atomic_read(&cmd->t_transport_active)) {
5073                         pr_debug("got t_transport_active = 1 for task: %p, dev:"
5074                                         " %p\n", task, dev);
5075
5076                         if (atomic_read(&cmd->t_fe_count)) {
5077                                 spin_unlock_irqrestore(
5078                                         &cmd->t_state_lock, flags);
5079                                 transport_send_check_condition_and_sense(
5080                                         cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE,
5081                                         0);
5082                                 transport_remove_cmd_from_queue(cmd,
5083                                         &cmd->se_dev->dev_queue_obj);
5084
5085                                 transport_lun_remove_cmd(cmd);
5086                                 transport_cmd_check_stop(cmd, 1, 0);
5087                         } else {
5088                                 spin_unlock_irqrestore(
5089                                         &cmd->t_state_lock, flags);
5090
5091                                 transport_remove_cmd_from_queue(cmd,
5092                                         &cmd->se_dev->dev_queue_obj);
5093
5094                                 transport_lun_remove_cmd(cmd);
5095
5096                                 if (transport_cmd_check_stop(cmd, 1, 0))
5097                                         transport_generic_remove(cmd, 0);
5098                         }
5099
5100                         spin_lock_irqsave(&dev->execute_task_lock, flags);
5101                         continue;
5102                 }
5103                 pr_debug("Got t_transport_active = 0 for task: %p, dev: %p\n",
5104                                 task, dev);
5105
5106                 if (atomic_read(&cmd->t_fe_count)) {
5107                         spin_unlock_irqrestore(
5108                                 &cmd->t_state_lock, flags);
5109                         transport_send_check_condition_and_sense(cmd,
5110                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5111                         transport_remove_cmd_from_queue(cmd,
5112                                 &cmd->se_dev->dev_queue_obj);
5113
5114                         transport_lun_remove_cmd(cmd);
5115                         transport_cmd_check_stop(cmd, 1, 0);
5116                 } else {
5117                         spin_unlock_irqrestore(
5118                                 &cmd->t_state_lock, flags);
5119
5120                         transport_remove_cmd_from_queue(cmd,
5121                                 &cmd->se_dev->dev_queue_obj);
5122                         transport_lun_remove_cmd(cmd);
5123
5124                         if (transport_cmd_check_stop(cmd, 1, 0))
5125                                 transport_generic_remove(cmd, 0);
5126                 }
5127
5128                 spin_lock_irqsave(&dev->execute_task_lock, flags);
5129         }
5130         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5131         /*
5132          * Empty the struct se_device's struct se_cmd list.
5133          */
5134         while ((cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj))) {
5135
5136                 pr_debug("From Device Queue: cmd: %p t_state: %d\n",
5137                                 cmd, cmd->t_state);
5138
5139                 if (atomic_read(&cmd->t_fe_count)) {
5140                         transport_send_check_condition_and_sense(cmd,
5141                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5142
5143                         transport_lun_remove_cmd(cmd);
5144                         transport_cmd_check_stop(cmd, 1, 0);
5145                 } else {
5146                         transport_lun_remove_cmd(cmd);
5147                         if (transport_cmd_check_stop(cmd, 1, 0))
5148                                 transport_generic_remove(cmd, 0);
5149                 }
5150         }
5151 }
5152
5153 /*      transport_processing_thread():
5154  *
5155  *
5156  */
5157 static int transport_processing_thread(void *param)
5158 {
5159         int ret;
5160         struct se_cmd *cmd;
5161         struct se_device *dev = (struct se_device *) param;
5162
5163         set_user_nice(current, -20);
5164
5165         while (!kthread_should_stop()) {
5166                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
5167                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
5168                                 kthread_should_stop());
5169                 if (ret < 0)
5170                         goto out;
5171
5172                 spin_lock_irq(&dev->dev_status_lock);
5173                 if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) {
5174                         spin_unlock_irq(&dev->dev_status_lock);
5175                         transport_processing_shutdown(dev);
5176                         continue;
5177                 }
5178                 spin_unlock_irq(&dev->dev_status_lock);
5179
5180 get_cmd:
5181                 __transport_execute_tasks(dev);
5182
5183                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
5184                 if (!cmd)
5185                         continue;
5186
5187                 switch (cmd->t_state) {
5188                 case TRANSPORT_NEW_CMD_MAP:
5189                         if (!cmd->se_tfo->new_cmd_map) {
5190                                 pr_err("cmd->se_tfo->new_cmd_map is"
5191                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
5192                                 BUG();
5193                         }
5194                         ret = cmd->se_tfo->new_cmd_map(cmd);
5195                         if (ret < 0) {
5196                                 cmd->transport_error_status = ret;
5197                                 transport_generic_request_failure(cmd, NULL,
5198                                                 0, (cmd->data_direction !=
5199                                                     DMA_TO_DEVICE));
5200                                 break;
5201                         }
5202                         /* Fall through */
5203                 case TRANSPORT_NEW_CMD:
5204                         ret = transport_generic_new_cmd(cmd);
5205                         if (ret == -EAGAIN)
5206                                 break;
5207                         else if (ret < 0) {
5208                                 cmd->transport_error_status = ret;
5209                                 transport_generic_request_failure(cmd, NULL,
5210                                         0, (cmd->data_direction !=
5211                                          DMA_TO_DEVICE));
5212                         }
5213                         break;
5214                 case TRANSPORT_PROCESS_WRITE:
5215                         transport_generic_process_write(cmd);
5216                         break;
5217                 case TRANSPORT_COMPLETE_OK:
5218                         transport_stop_all_task_timers(cmd);
5219                         transport_generic_complete_ok(cmd);
5220                         break;
5221                 case TRANSPORT_REMOVE:
5222                         transport_generic_remove(cmd, 0);
5223                         break;
5224                 case TRANSPORT_FREE_CMD_INTR:
5225                         transport_generic_free_cmd(cmd, 0, 0);
5226                         break;
5227                 case TRANSPORT_PROCESS_TMR:
5228                         transport_generic_do_tmr(cmd);
5229                         break;
5230                 case TRANSPORT_COMPLETE_FAILURE:
5231                         transport_generic_request_failure(cmd, NULL, 1, 1);
5232                         break;
5233                 case TRANSPORT_COMPLETE_TIMEOUT:
5234                         transport_stop_all_task_timers(cmd);
5235                         transport_generic_request_timeout(cmd);
5236                         break;
5237                 case TRANSPORT_COMPLETE_QF_WP:
5238                         transport_generic_write_pending(cmd);
5239                         break;
5240                 default:
5241                         pr_err("Unknown t_state: %d deferred_t_state:"
5242                                 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
5243                                 " %u\n", cmd->t_state, cmd->deferred_t_state,
5244                                 cmd->se_tfo->get_task_tag(cmd),
5245                                 cmd->se_tfo->get_cmd_state(cmd),
5246                                 cmd->se_lun->unpacked_lun);
5247                         BUG();
5248                 }
5249
5250                 goto get_cmd;
5251         }
5252
5253 out:
5254         transport_release_all_cmds(dev);
5255         dev->process_thread = NULL;
5256         return 0;
5257 }