target: Add se_node_acl->acl_kref for ->acl_free_comp usage
[firefly-linux-kernel-4.4.55.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <linux/ratelimit.h>
41 #include <asm/unaligned.h>
42 #include <net/sock.h>
43 #include <net/tcp.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_tcq.h>
47
48 #include <target/target_core_base.h>
49 #include <target/target_core_backend.h>
50 #include <target/target_core_fabric.h>
51 #include <target/target_core_configfs.h>
52
53 #include "target_core_internal.h"
54 #include "target_core_alua.h"
55 #include "target_core_pr.h"
56 #include "target_core_ua.h"
57
58 static int sub_api_initialized;
59
60 static struct workqueue_struct *target_completion_wq;
61 static struct kmem_cache *se_sess_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74                 struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void target_complete_ok_work(struct work_struct *work);
81
82 int init_se_kmem_caches(void)
83 {
84         se_sess_cache = kmem_cache_create("se_sess_cache",
85                         sizeof(struct se_session), __alignof__(struct se_session),
86                         0, NULL);
87         if (!se_sess_cache) {
88                 pr_err("kmem_cache_create() for struct se_session"
89                                 " failed\n");
90                 goto out;
91         }
92         se_ua_cache = kmem_cache_create("se_ua_cache",
93                         sizeof(struct se_ua), __alignof__(struct se_ua),
94                         0, NULL);
95         if (!se_ua_cache) {
96                 pr_err("kmem_cache_create() for struct se_ua failed\n");
97                 goto out_free_sess_cache;
98         }
99         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
100                         sizeof(struct t10_pr_registration),
101                         __alignof__(struct t10_pr_registration), 0, NULL);
102         if (!t10_pr_reg_cache) {
103                 pr_err("kmem_cache_create() for struct t10_pr_registration"
104                                 " failed\n");
105                 goto out_free_ua_cache;
106         }
107         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
108                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
109                         0, NULL);
110         if (!t10_alua_lu_gp_cache) {
111                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
112                                 " failed\n");
113                 goto out_free_pr_reg_cache;
114         }
115         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
116                         sizeof(struct t10_alua_lu_gp_member),
117                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
118         if (!t10_alua_lu_gp_mem_cache) {
119                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
120                                 "cache failed\n");
121                 goto out_free_lu_gp_cache;
122         }
123         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
124                         sizeof(struct t10_alua_tg_pt_gp),
125                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
126         if (!t10_alua_tg_pt_gp_cache) {
127                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
128                                 "cache failed\n");
129                 goto out_free_lu_gp_mem_cache;
130         }
131         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
132                         "t10_alua_tg_pt_gp_mem_cache",
133                         sizeof(struct t10_alua_tg_pt_gp_member),
134                         __alignof__(struct t10_alua_tg_pt_gp_member),
135                         0, NULL);
136         if (!t10_alua_tg_pt_gp_mem_cache) {
137                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
138                                 "mem_t failed\n");
139                 goto out_free_tg_pt_gp_cache;
140         }
141
142         target_completion_wq = alloc_workqueue("target_completion",
143                                                WQ_MEM_RECLAIM, 0);
144         if (!target_completion_wq)
145                 goto out_free_tg_pt_gp_mem_cache;
146
147         return 0;
148
149 out_free_tg_pt_gp_mem_cache:
150         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
151 out_free_tg_pt_gp_cache:
152         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156         kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158         kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160         kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162         kmem_cache_destroy(se_sess_cache);
163 out:
164         return -ENOMEM;
165 }
166
167 void release_se_kmem_caches(void)
168 {
169         destroy_workqueue(target_completion_wq);
170         kmem_cache_destroy(se_sess_cache);
171         kmem_cache_destroy(se_ua_cache);
172         kmem_cache_destroy(t10_pr_reg_cache);
173         kmem_cache_destroy(t10_alua_lu_gp_cache);
174         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
177 }
178
179 /* This code ensures unique mib indexes are handed out. */
180 static DEFINE_SPINLOCK(scsi_mib_index_lock);
181 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
182
183 /*
184  * Allocate a new row index for the entry type specified
185  */
186 u32 scsi_get_new_index(scsi_index_t type)
187 {
188         u32 new_index;
189
190         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
191
192         spin_lock(&scsi_mib_index_lock);
193         new_index = ++scsi_mib_index[type];
194         spin_unlock(&scsi_mib_index_lock);
195
196         return new_index;
197 }
198
199 static void transport_init_queue_obj(struct se_queue_obj *qobj)
200 {
201         atomic_set(&qobj->queue_cnt, 0);
202         INIT_LIST_HEAD(&qobj->qobj_list);
203         init_waitqueue_head(&qobj->thread_wq);
204         spin_lock_init(&qobj->cmd_queue_lock);
205 }
206
207 void transport_subsystem_check_init(void)
208 {
209         int ret;
210
211         if (sub_api_initialized)
212                 return;
213
214         ret = request_module("target_core_iblock");
215         if (ret != 0)
216                 pr_err("Unable to load target_core_iblock\n");
217
218         ret = request_module("target_core_file");
219         if (ret != 0)
220                 pr_err("Unable to load target_core_file\n");
221
222         ret = request_module("target_core_pscsi");
223         if (ret != 0)
224                 pr_err("Unable to load target_core_pscsi\n");
225
226         ret = request_module("target_core_stgt");
227         if (ret != 0)
228                 pr_err("Unable to load target_core_stgt\n");
229
230         sub_api_initialized = 1;
231         return;
232 }
233
234 struct se_session *transport_init_session(void)
235 {
236         struct se_session *se_sess;
237
238         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
239         if (!se_sess) {
240                 pr_err("Unable to allocate struct se_session from"
241                                 " se_sess_cache\n");
242                 return ERR_PTR(-ENOMEM);
243         }
244         INIT_LIST_HEAD(&se_sess->sess_list);
245         INIT_LIST_HEAD(&se_sess->sess_acl_list);
246         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
247         INIT_LIST_HEAD(&se_sess->sess_wait_list);
248         spin_lock_init(&se_sess->sess_cmd_lock);
249         kref_init(&se_sess->sess_kref);
250
251         return se_sess;
252 }
253 EXPORT_SYMBOL(transport_init_session);
254
255 /*
256  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
257  */
258 void __transport_register_session(
259         struct se_portal_group *se_tpg,
260         struct se_node_acl *se_nacl,
261         struct se_session *se_sess,
262         void *fabric_sess_ptr)
263 {
264         unsigned char buf[PR_REG_ISID_LEN];
265
266         se_sess->se_tpg = se_tpg;
267         se_sess->fabric_sess_ptr = fabric_sess_ptr;
268         /*
269          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
270          *
271          * Only set for struct se_session's that will actually be moving I/O.
272          * eg: *NOT* discovery sessions.
273          */
274         if (se_nacl) {
275                 /*
276                  * If the fabric module supports an ISID based TransportID,
277                  * save this value in binary from the fabric I_T Nexus now.
278                  */
279                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
280                         memset(&buf[0], 0, PR_REG_ISID_LEN);
281                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
282                                         &buf[0], PR_REG_ISID_LEN);
283                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
284                 }
285                 kref_get(&se_nacl->acl_kref);
286
287                 spin_lock_irq(&se_nacl->nacl_sess_lock);
288                 /*
289                  * The se_nacl->nacl_sess pointer will be set to the
290                  * last active I_T Nexus for each struct se_node_acl.
291                  */
292                 se_nacl->nacl_sess = se_sess;
293
294                 list_add_tail(&se_sess->sess_acl_list,
295                               &se_nacl->acl_sess_list);
296                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
297         }
298         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
299
300         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
301                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
302 }
303 EXPORT_SYMBOL(__transport_register_session);
304
305 void transport_register_session(
306         struct se_portal_group *se_tpg,
307         struct se_node_acl *se_nacl,
308         struct se_session *se_sess,
309         void *fabric_sess_ptr)
310 {
311         unsigned long flags;
312
313         spin_lock_irqsave(&se_tpg->session_lock, flags);
314         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
315         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
316 }
317 EXPORT_SYMBOL(transport_register_session);
318
319 static void target_release_session(struct kref *kref)
320 {
321         struct se_session *se_sess = container_of(kref,
322                         struct se_session, sess_kref);
323         struct se_portal_group *se_tpg = se_sess->se_tpg;
324
325         se_tpg->se_tpg_tfo->close_session(se_sess);
326 }
327
328 void target_get_session(struct se_session *se_sess)
329 {
330         kref_get(&se_sess->sess_kref);
331 }
332 EXPORT_SYMBOL(target_get_session);
333
334 int target_put_session(struct se_session *se_sess)
335 {
336         return kref_put(&se_sess->sess_kref, target_release_session);
337 }
338 EXPORT_SYMBOL(target_put_session);
339
340 static void target_complete_nacl(struct kref *kref)
341 {
342         struct se_node_acl *nacl = container_of(kref,
343                                 struct se_node_acl, acl_kref);
344
345         complete(&nacl->acl_free_comp);
346 }
347
348 void target_put_nacl(struct se_node_acl *nacl)
349 {
350         kref_put(&nacl->acl_kref, target_complete_nacl);
351 }
352
353 void transport_deregister_session_configfs(struct se_session *se_sess)
354 {
355         struct se_node_acl *se_nacl;
356         unsigned long flags;
357         /*
358          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
359          */
360         se_nacl = se_sess->se_node_acl;
361         if (se_nacl) {
362                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
363                 list_del(&se_sess->sess_acl_list);
364                 /*
365                  * If the session list is empty, then clear the pointer.
366                  * Otherwise, set the struct se_session pointer from the tail
367                  * element of the per struct se_node_acl active session list.
368                  */
369                 if (list_empty(&se_nacl->acl_sess_list))
370                         se_nacl->nacl_sess = NULL;
371                 else {
372                         se_nacl->nacl_sess = container_of(
373                                         se_nacl->acl_sess_list.prev,
374                                         struct se_session, sess_acl_list);
375                 }
376                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
377         }
378 }
379 EXPORT_SYMBOL(transport_deregister_session_configfs);
380
381 void transport_free_session(struct se_session *se_sess)
382 {
383         kmem_cache_free(se_sess_cache, se_sess);
384 }
385 EXPORT_SYMBOL(transport_free_session);
386
387 void transport_deregister_session(struct se_session *se_sess)
388 {
389         struct se_portal_group *se_tpg = se_sess->se_tpg;
390         struct target_core_fabric_ops *se_tfo;
391         struct se_node_acl *se_nacl;
392         unsigned long flags;
393         bool comp_nacl = true;
394
395         if (!se_tpg) {
396                 transport_free_session(se_sess);
397                 return;
398         }
399         se_tfo = se_tpg->se_tpg_tfo;
400
401         spin_lock_irqsave(&se_tpg->session_lock, flags);
402         list_del(&se_sess->sess_list);
403         se_sess->se_tpg = NULL;
404         se_sess->fabric_sess_ptr = NULL;
405         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
406
407         /*
408          * Determine if we need to do extra work for this initiator node's
409          * struct se_node_acl if it had been previously dynamically generated.
410          */
411         se_nacl = se_sess->se_node_acl;
412
413         spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
414         if (se_nacl && se_nacl->dynamic_node_acl) {
415                 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
416                         list_del(&se_nacl->acl_list);
417                         se_tpg->num_node_acls--;
418                         spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
419                         core_tpg_wait_for_nacl_pr_ref(se_nacl);
420                         core_free_device_list_for_node(se_nacl, se_tpg);
421                         se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
422
423                         comp_nacl = false;
424                         spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
425                 }
426         }
427         spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
428
429         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
430                 se_tpg->se_tpg_tfo->get_fabric_name());
431         /*
432          * If last kref is dropping now for an explict NodeACL, awake sleeping
433          * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
434          * removal context.
435          */
436         if (se_nacl && comp_nacl == true)
437                 target_put_nacl(se_nacl);
438
439         transport_free_session(se_sess);
440 }
441 EXPORT_SYMBOL(transport_deregister_session);
442
443 /*
444  * Called with cmd->t_state_lock held.
445  */
446 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
447 {
448         struct se_device *dev = cmd->se_dev;
449         struct se_task *task;
450         unsigned long flags;
451
452         if (!dev)
453                 return;
454
455         list_for_each_entry(task, &cmd->t_task_list, t_list) {
456                 if (task->task_flags & TF_ACTIVE)
457                         continue;
458
459                 spin_lock_irqsave(&dev->execute_task_lock, flags);
460                 if (task->t_state_active) {
461                         pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
462                                 cmd->se_tfo->get_task_tag(cmd), dev, task);
463
464                         list_del(&task->t_state_list);
465                         atomic_dec(&cmd->t_task_cdbs_ex_left);
466                         task->t_state_active = false;
467                 }
468                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
469         }
470
471 }
472
473 /*      transport_cmd_check_stop():
474  *
475  *      'transport_off = 1' determines if CMD_T_ACTIVE should be cleared.
476  *      'transport_off = 2' determines if task_dev_state should be removed.
477  *
478  *      A non-zero u8 t_state sets cmd->t_state.
479  *      Returns 1 when command is stopped, else 0.
480  */
481 static int transport_cmd_check_stop(
482         struct se_cmd *cmd,
483         int transport_off,
484         u8 t_state)
485 {
486         unsigned long flags;
487
488         spin_lock_irqsave(&cmd->t_state_lock, flags);
489         /*
490          * Determine if IOCTL context caller in requesting the stopping of this
491          * command for LUN shutdown purposes.
492          */
493         if (cmd->transport_state & CMD_T_LUN_STOP) {
494                 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
495                         __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
496
497                 cmd->transport_state &= ~CMD_T_ACTIVE;
498                 if (transport_off == 2)
499                         transport_all_task_dev_remove_state(cmd);
500                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
501
502                 complete(&cmd->transport_lun_stop_comp);
503                 return 1;
504         }
505         /*
506          * Determine if frontend context caller is requesting the stopping of
507          * this command for frontend exceptions.
508          */
509         if (cmd->transport_state & CMD_T_STOP) {
510                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
511                         __func__, __LINE__,
512                         cmd->se_tfo->get_task_tag(cmd));
513
514                 if (transport_off == 2)
515                         transport_all_task_dev_remove_state(cmd);
516
517                 /*
518                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
519                  * to FE.
520                  */
521                 if (transport_off == 2)
522                         cmd->se_lun = NULL;
523                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
524
525                 complete(&cmd->t_transport_stop_comp);
526                 return 1;
527         }
528         if (transport_off) {
529                 cmd->transport_state &= ~CMD_T_ACTIVE;
530                 if (transport_off == 2) {
531                         transport_all_task_dev_remove_state(cmd);
532                         /*
533                          * Clear struct se_cmd->se_lun before the transport_off == 2
534                          * handoff to fabric module.
535                          */
536                         cmd->se_lun = NULL;
537                         /*
538                          * Some fabric modules like tcm_loop can release
539                          * their internally allocated I/O reference now and
540                          * struct se_cmd now.
541                          *
542                          * Fabric modules are expected to return '1' here if the
543                          * se_cmd being passed is released at this point,
544                          * or zero if not being released.
545                          */
546                         if (cmd->se_tfo->check_stop_free != NULL) {
547                                 spin_unlock_irqrestore(
548                                         &cmd->t_state_lock, flags);
549
550                                 return cmd->se_tfo->check_stop_free(cmd);
551                         }
552                 }
553                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
554
555                 return 0;
556         } else if (t_state)
557                 cmd->t_state = t_state;
558         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
559
560         return 0;
561 }
562
563 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
564 {
565         return transport_cmd_check_stop(cmd, 2, 0);
566 }
567
568 static void transport_lun_remove_cmd(struct se_cmd *cmd)
569 {
570         struct se_lun *lun = cmd->se_lun;
571         unsigned long flags;
572
573         if (!lun)
574                 return;
575
576         spin_lock_irqsave(&cmd->t_state_lock, flags);
577         if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
578                 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
579                 transport_all_task_dev_remove_state(cmd);
580         }
581         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
582
583         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
584         if (!list_empty(&cmd->se_lun_node))
585                 list_del_init(&cmd->se_lun_node);
586         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
587 }
588
589 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
590 {
591         if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
592                 transport_lun_remove_cmd(cmd);
593
594         if (transport_cmd_check_stop_to_fabric(cmd))
595                 return;
596         if (remove) {
597                 transport_remove_cmd_from_queue(cmd);
598                 transport_put_cmd(cmd);
599         }
600 }
601
602 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
603                 bool at_head)
604 {
605         struct se_device *dev = cmd->se_dev;
606         struct se_queue_obj *qobj = &dev->dev_queue_obj;
607         unsigned long flags;
608
609         if (t_state) {
610                 spin_lock_irqsave(&cmd->t_state_lock, flags);
611                 cmd->t_state = t_state;
612                 cmd->transport_state |= CMD_T_ACTIVE;
613                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
614         }
615
616         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
617
618         /* If the cmd is already on the list, remove it before we add it */
619         if (!list_empty(&cmd->se_queue_node))
620                 list_del(&cmd->se_queue_node);
621         else
622                 atomic_inc(&qobj->queue_cnt);
623
624         if (at_head)
625                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
626         else
627                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
628         cmd->transport_state |= CMD_T_QUEUED;
629         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
630
631         wake_up_interruptible(&qobj->thread_wq);
632 }
633
634 static struct se_cmd *
635 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
636 {
637         struct se_cmd *cmd;
638         unsigned long flags;
639
640         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
641         if (list_empty(&qobj->qobj_list)) {
642                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
643                 return NULL;
644         }
645         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
646
647         cmd->transport_state &= ~CMD_T_QUEUED;
648         list_del_init(&cmd->se_queue_node);
649         atomic_dec(&qobj->queue_cnt);
650         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
651
652         return cmd;
653 }
654
655 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
656 {
657         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
658         unsigned long flags;
659
660         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
661         if (!(cmd->transport_state & CMD_T_QUEUED)) {
662                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
663                 return;
664         }
665         cmd->transport_state &= ~CMD_T_QUEUED;
666         atomic_dec(&qobj->queue_cnt);
667         list_del_init(&cmd->se_queue_node);
668         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
669 }
670
671 /*
672  * Completion function used by TCM subsystem plugins (such as FILEIO)
673  * for queueing up response from struct se_subsystem_api->do_task()
674  */
675 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
676 {
677         struct se_task *task = list_entry(cmd->t_task_list.next,
678                                 struct se_task, t_list);
679
680         if (good) {
681                 cmd->scsi_status = SAM_STAT_GOOD;
682                 task->task_scsi_status = GOOD;
683         } else {
684                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
685                 task->task_se_cmd->scsi_sense_reason =
686                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
687
688         }
689
690         transport_complete_task(task, good);
691 }
692 EXPORT_SYMBOL(transport_complete_sync_cache);
693
694 static void target_complete_failure_work(struct work_struct *work)
695 {
696         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
697
698         transport_generic_request_failure(cmd);
699 }
700
701 /*      transport_complete_task():
702  *
703  *      Called from interrupt and non interrupt context depending
704  *      on the transport plugin.
705  */
706 void transport_complete_task(struct se_task *task, int success)
707 {
708         struct se_cmd *cmd = task->task_se_cmd;
709         struct se_device *dev = cmd->se_dev;
710         unsigned long flags;
711
712         spin_lock_irqsave(&cmd->t_state_lock, flags);
713         task->task_flags &= ~TF_ACTIVE;
714
715         /*
716          * See if any sense data exists, if so set the TASK_SENSE flag.
717          * Also check for any other post completion work that needs to be
718          * done by the plugins.
719          */
720         if (dev && dev->transport->transport_complete) {
721                 if (dev->transport->transport_complete(task) != 0) {
722                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
723                         task->task_flags |= TF_HAS_SENSE;
724                         success = 1;
725                 }
726         }
727
728         /*
729          * See if we are waiting for outstanding struct se_task
730          * to complete for an exception condition
731          */
732         if (task->task_flags & TF_REQUEST_STOP) {
733                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
734                 complete(&task->task_stop_comp);
735                 return;
736         }
737
738         if (!success)
739                 cmd->transport_state |= CMD_T_FAILED;
740
741         /*
742          * Decrement the outstanding t_task_cdbs_left count.  The last
743          * struct se_task from struct se_cmd will complete itself into the
744          * device queue depending upon int success.
745          */
746         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
747                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
748                 return;
749         }
750         /*
751          * Check for case where an explict ABORT_TASK has been received
752          * and transport_wait_for_tasks() will be waiting for completion..
753          */
754         if (cmd->transport_state & CMD_T_ABORTED &&
755             cmd->transport_state & CMD_T_STOP) {
756                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
757                 complete(&cmd->t_transport_stop_comp);
758                 return;
759         } else if (cmd->transport_state & CMD_T_FAILED) {
760                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
761                 INIT_WORK(&cmd->work, target_complete_failure_work);
762         } else {
763                 INIT_WORK(&cmd->work, target_complete_ok_work);
764         }
765
766         cmd->t_state = TRANSPORT_COMPLETE;
767         cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
768         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
769
770         queue_work(target_completion_wq, &cmd->work);
771 }
772 EXPORT_SYMBOL(transport_complete_task);
773
774 /*
775  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
776  * struct se_task list are ready to be added to the active execution list
777  * struct se_device
778
779  * Called with se_dev_t->execute_task_lock called.
780  */
781 static inline int transport_add_task_check_sam_attr(
782         struct se_task *task,
783         struct se_task *task_prev,
784         struct se_device *dev)
785 {
786         /*
787          * No SAM Task attribute emulation enabled, add to tail of
788          * execution queue
789          */
790         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
791                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
792                 return 0;
793         }
794         /*
795          * HEAD_OF_QUEUE attribute for received CDB, which means
796          * the first task that is associated with a struct se_cmd goes to
797          * head of the struct se_device->execute_task_list, and task_prev
798          * after that for each subsequent task
799          */
800         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
801                 list_add(&task->t_execute_list,
802                                 (task_prev != NULL) ?
803                                 &task_prev->t_execute_list :
804                                 &dev->execute_task_list);
805
806                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
807                                 " in execution queue\n",
808                                 task->task_se_cmd->t_task_cdb[0]);
809                 return 1;
810         }
811         /*
812          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
813          * transitioned from Dermant -> Active state, and are added to the end
814          * of the struct se_device->execute_task_list
815          */
816         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
817         return 0;
818 }
819
820 /*      __transport_add_task_to_execute_queue():
821  *
822  *      Called with se_dev_t->execute_task_lock called.
823  */
824 static void __transport_add_task_to_execute_queue(
825         struct se_task *task,
826         struct se_task *task_prev,
827         struct se_device *dev)
828 {
829         int head_of_queue;
830
831         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
832         atomic_inc(&dev->execute_tasks);
833
834         if (task->t_state_active)
835                 return;
836         /*
837          * Determine if this task needs to go to HEAD_OF_QUEUE for the
838          * state list as well.  Running with SAM Task Attribute emulation
839          * will always return head_of_queue == 0 here
840          */
841         if (head_of_queue)
842                 list_add(&task->t_state_list, (task_prev) ?
843                                 &task_prev->t_state_list :
844                                 &dev->state_task_list);
845         else
846                 list_add_tail(&task->t_state_list, &dev->state_task_list);
847
848         task->t_state_active = true;
849
850         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
851                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
852                 task, dev);
853 }
854
855 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
856 {
857         struct se_device *dev = cmd->se_dev;
858         struct se_task *task;
859         unsigned long flags;
860
861         spin_lock_irqsave(&cmd->t_state_lock, flags);
862         list_for_each_entry(task, &cmd->t_task_list, t_list) {
863                 spin_lock(&dev->execute_task_lock);
864                 if (!task->t_state_active) {
865                         list_add_tail(&task->t_state_list,
866                                       &dev->state_task_list);
867                         task->t_state_active = true;
868
869                         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
870                                 task->task_se_cmd->se_tfo->get_task_tag(
871                                 task->task_se_cmd), task, dev);
872                 }
873                 spin_unlock(&dev->execute_task_lock);
874         }
875         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
876 }
877
878 static void __transport_add_tasks_from_cmd(struct se_cmd *cmd)
879 {
880         struct se_device *dev = cmd->se_dev;
881         struct se_task *task, *task_prev = NULL;
882
883         list_for_each_entry(task, &cmd->t_task_list, t_list) {
884                 if (!list_empty(&task->t_execute_list))
885                         continue;
886                 /*
887                  * __transport_add_task_to_execute_queue() handles the
888                  * SAM Task Attribute emulation if enabled
889                  */
890                 __transport_add_task_to_execute_queue(task, task_prev, dev);
891                 task_prev = task;
892         }
893 }
894
895 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
896 {
897         unsigned long flags;
898         struct se_device *dev = cmd->se_dev;
899
900         spin_lock_irqsave(&dev->execute_task_lock, flags);
901         __transport_add_tasks_from_cmd(cmd);
902         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
903 }
904
905 void __transport_remove_task_from_execute_queue(struct se_task *task,
906                 struct se_device *dev)
907 {
908         list_del_init(&task->t_execute_list);
909         atomic_dec(&dev->execute_tasks);
910 }
911
912 static void transport_remove_task_from_execute_queue(
913         struct se_task *task,
914         struct se_device *dev)
915 {
916         unsigned long flags;
917
918         if (WARN_ON(list_empty(&task->t_execute_list)))
919                 return;
920
921         spin_lock_irqsave(&dev->execute_task_lock, flags);
922         __transport_remove_task_from_execute_queue(task, dev);
923         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
924 }
925
926 /*
927  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
928  */
929
930 static void target_qf_do_work(struct work_struct *work)
931 {
932         struct se_device *dev = container_of(work, struct se_device,
933                                         qf_work_queue);
934         LIST_HEAD(qf_cmd_list);
935         struct se_cmd *cmd, *cmd_tmp;
936
937         spin_lock_irq(&dev->qf_cmd_lock);
938         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
939         spin_unlock_irq(&dev->qf_cmd_lock);
940
941         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
942                 list_del(&cmd->se_qf_node);
943                 atomic_dec(&dev->dev_qf_count);
944                 smp_mb__after_atomic_dec();
945
946                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
947                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
948                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
949                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
950                         : "UNKNOWN");
951
952                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
953         }
954 }
955
956 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
957 {
958         switch (cmd->data_direction) {
959         case DMA_NONE:
960                 return "NONE";
961         case DMA_FROM_DEVICE:
962                 return "READ";
963         case DMA_TO_DEVICE:
964                 return "WRITE";
965         case DMA_BIDIRECTIONAL:
966                 return "BIDI";
967         default:
968                 break;
969         }
970
971         return "UNKNOWN";
972 }
973
974 void transport_dump_dev_state(
975         struct se_device *dev,
976         char *b,
977         int *bl)
978 {
979         *bl += sprintf(b + *bl, "Status: ");
980         switch (dev->dev_status) {
981         case TRANSPORT_DEVICE_ACTIVATED:
982                 *bl += sprintf(b + *bl, "ACTIVATED");
983                 break;
984         case TRANSPORT_DEVICE_DEACTIVATED:
985                 *bl += sprintf(b + *bl, "DEACTIVATED");
986                 break;
987         case TRANSPORT_DEVICE_SHUTDOWN:
988                 *bl += sprintf(b + *bl, "SHUTDOWN");
989                 break;
990         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
991         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
992                 *bl += sprintf(b + *bl, "OFFLINE");
993                 break;
994         default:
995                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
996                 break;
997         }
998
999         *bl += sprintf(b + *bl, "  Execute/Max Queue Depth: %d/%d",
1000                 atomic_read(&dev->execute_tasks), dev->queue_depth);
1001         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
1002                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1003         *bl += sprintf(b + *bl, "        ");
1004 }
1005
1006 void transport_dump_vpd_proto_id(
1007         struct t10_vpd *vpd,
1008         unsigned char *p_buf,
1009         int p_buf_len)
1010 {
1011         unsigned char buf[VPD_TMP_BUF_SIZE];
1012         int len;
1013
1014         memset(buf, 0, VPD_TMP_BUF_SIZE);
1015         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1016
1017         switch (vpd->protocol_identifier) {
1018         case 0x00:
1019                 sprintf(buf+len, "Fibre Channel\n");
1020                 break;
1021         case 0x10:
1022                 sprintf(buf+len, "Parallel SCSI\n");
1023                 break;
1024         case 0x20:
1025                 sprintf(buf+len, "SSA\n");
1026                 break;
1027         case 0x30:
1028                 sprintf(buf+len, "IEEE 1394\n");
1029                 break;
1030         case 0x40:
1031                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1032                                 " Protocol\n");
1033                 break;
1034         case 0x50:
1035                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1036                 break;
1037         case 0x60:
1038                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1039                 break;
1040         case 0x70:
1041                 sprintf(buf+len, "Automation/Drive Interface Transport"
1042                                 " Protocol\n");
1043                 break;
1044         case 0x80:
1045                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1046                 break;
1047         default:
1048                 sprintf(buf+len, "Unknown 0x%02x\n",
1049                                 vpd->protocol_identifier);
1050                 break;
1051         }
1052
1053         if (p_buf)
1054                 strncpy(p_buf, buf, p_buf_len);
1055         else
1056                 pr_debug("%s", buf);
1057 }
1058
1059 void
1060 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1061 {
1062         /*
1063          * Check if the Protocol Identifier Valid (PIV) bit is set..
1064          *
1065          * from spc3r23.pdf section 7.5.1
1066          */
1067          if (page_83[1] & 0x80) {
1068                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1069                 vpd->protocol_identifier_set = 1;
1070                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1071         }
1072 }
1073 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1074
1075 int transport_dump_vpd_assoc(
1076         struct t10_vpd *vpd,
1077         unsigned char *p_buf,
1078         int p_buf_len)
1079 {
1080         unsigned char buf[VPD_TMP_BUF_SIZE];
1081         int ret = 0;
1082         int len;
1083
1084         memset(buf, 0, VPD_TMP_BUF_SIZE);
1085         len = sprintf(buf, "T10 VPD Identifier Association: ");
1086
1087         switch (vpd->association) {
1088         case 0x00:
1089                 sprintf(buf+len, "addressed logical unit\n");
1090                 break;
1091         case 0x10:
1092                 sprintf(buf+len, "target port\n");
1093                 break;
1094         case 0x20:
1095                 sprintf(buf+len, "SCSI target device\n");
1096                 break;
1097         default:
1098                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1099                 ret = -EINVAL;
1100                 break;
1101         }
1102
1103         if (p_buf)
1104                 strncpy(p_buf, buf, p_buf_len);
1105         else
1106                 pr_debug("%s", buf);
1107
1108         return ret;
1109 }
1110
1111 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1112 {
1113         /*
1114          * The VPD identification association..
1115          *
1116          * from spc3r23.pdf Section 7.6.3.1 Table 297
1117          */
1118         vpd->association = (page_83[1] & 0x30);
1119         return transport_dump_vpd_assoc(vpd, NULL, 0);
1120 }
1121 EXPORT_SYMBOL(transport_set_vpd_assoc);
1122
1123 int transport_dump_vpd_ident_type(
1124         struct t10_vpd *vpd,
1125         unsigned char *p_buf,
1126         int p_buf_len)
1127 {
1128         unsigned char buf[VPD_TMP_BUF_SIZE];
1129         int ret = 0;
1130         int len;
1131
1132         memset(buf, 0, VPD_TMP_BUF_SIZE);
1133         len = sprintf(buf, "T10 VPD Identifier Type: ");
1134
1135         switch (vpd->device_identifier_type) {
1136         case 0x00:
1137                 sprintf(buf+len, "Vendor specific\n");
1138                 break;
1139         case 0x01:
1140                 sprintf(buf+len, "T10 Vendor ID based\n");
1141                 break;
1142         case 0x02:
1143                 sprintf(buf+len, "EUI-64 based\n");
1144                 break;
1145         case 0x03:
1146                 sprintf(buf+len, "NAA\n");
1147                 break;
1148         case 0x04:
1149                 sprintf(buf+len, "Relative target port identifier\n");
1150                 break;
1151         case 0x08:
1152                 sprintf(buf+len, "SCSI name string\n");
1153                 break;
1154         default:
1155                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1156                                 vpd->device_identifier_type);
1157                 ret = -EINVAL;
1158                 break;
1159         }
1160
1161         if (p_buf) {
1162                 if (p_buf_len < strlen(buf)+1)
1163                         return -EINVAL;
1164                 strncpy(p_buf, buf, p_buf_len);
1165         } else {
1166                 pr_debug("%s", buf);
1167         }
1168
1169         return ret;
1170 }
1171
1172 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1173 {
1174         /*
1175          * The VPD identifier type..
1176          *
1177          * from spc3r23.pdf Section 7.6.3.1 Table 298
1178          */
1179         vpd->device_identifier_type = (page_83[1] & 0x0f);
1180         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1181 }
1182 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1183
1184 int transport_dump_vpd_ident(
1185         struct t10_vpd *vpd,
1186         unsigned char *p_buf,
1187         int p_buf_len)
1188 {
1189         unsigned char buf[VPD_TMP_BUF_SIZE];
1190         int ret = 0;
1191
1192         memset(buf, 0, VPD_TMP_BUF_SIZE);
1193
1194         switch (vpd->device_identifier_code_set) {
1195         case 0x01: /* Binary */
1196                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1197                         &vpd->device_identifier[0]);
1198                 break;
1199         case 0x02: /* ASCII */
1200                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1201                         &vpd->device_identifier[0]);
1202                 break;
1203         case 0x03: /* UTF-8 */
1204                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1205                         &vpd->device_identifier[0]);
1206                 break;
1207         default:
1208                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1209                         " 0x%02x", vpd->device_identifier_code_set);
1210                 ret = -EINVAL;
1211                 break;
1212         }
1213
1214         if (p_buf)
1215                 strncpy(p_buf, buf, p_buf_len);
1216         else
1217                 pr_debug("%s", buf);
1218
1219         return ret;
1220 }
1221
1222 int
1223 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1224 {
1225         static const char hex_str[] = "0123456789abcdef";
1226         int j = 0, i = 4; /* offset to start of the identifer */
1227
1228         /*
1229          * The VPD Code Set (encoding)
1230          *
1231          * from spc3r23.pdf Section 7.6.3.1 Table 296
1232          */
1233         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1234         switch (vpd->device_identifier_code_set) {
1235         case 0x01: /* Binary */
1236                 vpd->device_identifier[j++] =
1237                                 hex_str[vpd->device_identifier_type];
1238                 while (i < (4 + page_83[3])) {
1239                         vpd->device_identifier[j++] =
1240                                 hex_str[(page_83[i] & 0xf0) >> 4];
1241                         vpd->device_identifier[j++] =
1242                                 hex_str[page_83[i] & 0x0f];
1243                         i++;
1244                 }
1245                 break;
1246         case 0x02: /* ASCII */
1247         case 0x03: /* UTF-8 */
1248                 while (i < (4 + page_83[3]))
1249                         vpd->device_identifier[j++] = page_83[i++];
1250                 break;
1251         default:
1252                 break;
1253         }
1254
1255         return transport_dump_vpd_ident(vpd, NULL, 0);
1256 }
1257 EXPORT_SYMBOL(transport_set_vpd_ident);
1258
1259 static void core_setup_task_attr_emulation(struct se_device *dev)
1260 {
1261         /*
1262          * If this device is from Target_Core_Mod/pSCSI, disable the
1263          * SAM Task Attribute emulation.
1264          *
1265          * This is currently not available in upsream Linux/SCSI Target
1266          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1267          */
1268         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1269                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1270                 return;
1271         }
1272
1273         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1274         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1275                 " device\n", dev->transport->name,
1276                 dev->transport->get_device_rev(dev));
1277 }
1278
1279 static void scsi_dump_inquiry(struct se_device *dev)
1280 {
1281         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1282         char buf[17];
1283         int i, device_type;
1284         /*
1285          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1286          */
1287         for (i = 0; i < 8; i++)
1288                 if (wwn->vendor[i] >= 0x20)
1289                         buf[i] = wwn->vendor[i];
1290                 else
1291                         buf[i] = ' ';
1292         buf[i] = '\0';
1293         pr_debug("  Vendor: %s\n", buf);
1294
1295         for (i = 0; i < 16; i++)
1296                 if (wwn->model[i] >= 0x20)
1297                         buf[i] = wwn->model[i];
1298                 else
1299                         buf[i] = ' ';
1300         buf[i] = '\0';
1301         pr_debug("  Model: %s\n", buf);
1302
1303         for (i = 0; i < 4; i++)
1304                 if (wwn->revision[i] >= 0x20)
1305                         buf[i] = wwn->revision[i];
1306                 else
1307                         buf[i] = ' ';
1308         buf[i] = '\0';
1309         pr_debug("  Revision: %s\n", buf);
1310
1311         device_type = dev->transport->get_device_type(dev);
1312         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1313         pr_debug("                 ANSI SCSI revision: %02x\n",
1314                                 dev->transport->get_device_rev(dev));
1315 }
1316
1317 struct se_device *transport_add_device_to_core_hba(
1318         struct se_hba *hba,
1319         struct se_subsystem_api *transport,
1320         struct se_subsystem_dev *se_dev,
1321         u32 device_flags,
1322         void *transport_dev,
1323         struct se_dev_limits *dev_limits,
1324         const char *inquiry_prod,
1325         const char *inquiry_rev)
1326 {
1327         int force_pt;
1328         struct se_device  *dev;
1329
1330         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1331         if (!dev) {
1332                 pr_err("Unable to allocate memory for se_dev_t\n");
1333                 return NULL;
1334         }
1335
1336         transport_init_queue_obj(&dev->dev_queue_obj);
1337         dev->dev_flags          = device_flags;
1338         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1339         dev->dev_ptr            = transport_dev;
1340         dev->se_hba             = hba;
1341         dev->se_sub_dev         = se_dev;
1342         dev->transport          = transport;
1343         INIT_LIST_HEAD(&dev->dev_list);
1344         INIT_LIST_HEAD(&dev->dev_sep_list);
1345         INIT_LIST_HEAD(&dev->dev_tmr_list);
1346         INIT_LIST_HEAD(&dev->execute_task_list);
1347         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1348         INIT_LIST_HEAD(&dev->state_task_list);
1349         INIT_LIST_HEAD(&dev->qf_cmd_list);
1350         spin_lock_init(&dev->execute_task_lock);
1351         spin_lock_init(&dev->delayed_cmd_lock);
1352         spin_lock_init(&dev->dev_reservation_lock);
1353         spin_lock_init(&dev->dev_status_lock);
1354         spin_lock_init(&dev->se_port_lock);
1355         spin_lock_init(&dev->se_tmr_lock);
1356         spin_lock_init(&dev->qf_cmd_lock);
1357         atomic_set(&dev->dev_ordered_id, 0);
1358
1359         se_dev_set_default_attribs(dev, dev_limits);
1360
1361         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1362         dev->creation_time = get_jiffies_64();
1363         spin_lock_init(&dev->stats_lock);
1364
1365         spin_lock(&hba->device_lock);
1366         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1367         hba->dev_count++;
1368         spin_unlock(&hba->device_lock);
1369         /*
1370          * Setup the SAM Task Attribute emulation for struct se_device
1371          */
1372         core_setup_task_attr_emulation(dev);
1373         /*
1374          * Force PR and ALUA passthrough emulation with internal object use.
1375          */
1376         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1377         /*
1378          * Setup the Reservations infrastructure for struct se_device
1379          */
1380         core_setup_reservations(dev, force_pt);
1381         /*
1382          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1383          */
1384         if (core_setup_alua(dev, force_pt) < 0)
1385                 goto out;
1386
1387         /*
1388          * Startup the struct se_device processing thread
1389          */
1390         dev->process_thread = kthread_run(transport_processing_thread, dev,
1391                                           "LIO_%s", dev->transport->name);
1392         if (IS_ERR(dev->process_thread)) {
1393                 pr_err("Unable to create kthread: LIO_%s\n",
1394                         dev->transport->name);
1395                 goto out;
1396         }
1397         /*
1398          * Setup work_queue for QUEUE_FULL
1399          */
1400         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1401         /*
1402          * Preload the initial INQUIRY const values if we are doing
1403          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1404          * passthrough because this is being provided by the backend LLD.
1405          * This is required so that transport_get_inquiry() copies these
1406          * originals once back into DEV_T10_WWN(dev) for the virtual device
1407          * setup.
1408          */
1409         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1410                 if (!inquiry_prod || !inquiry_rev) {
1411                         pr_err("All non TCM/pSCSI plugins require"
1412                                 " INQUIRY consts\n");
1413                         goto out;
1414                 }
1415
1416                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1417                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1418                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1419         }
1420         scsi_dump_inquiry(dev);
1421
1422         return dev;
1423 out:
1424         kthread_stop(dev->process_thread);
1425
1426         spin_lock(&hba->device_lock);
1427         list_del(&dev->dev_list);
1428         hba->dev_count--;
1429         spin_unlock(&hba->device_lock);
1430
1431         se_release_vpd_for_dev(dev);
1432
1433         kfree(dev);
1434
1435         return NULL;
1436 }
1437 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1438
1439 /*      transport_generic_prepare_cdb():
1440  *
1441  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1442  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1443  *      The point of this is since we are mapping iSCSI LUNs to
1444  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1445  *      devices and HBAs for a loop.
1446  */
1447 static inline void transport_generic_prepare_cdb(
1448         unsigned char *cdb)
1449 {
1450         switch (cdb[0]) {
1451         case READ_10: /* SBC - RDProtect */
1452         case READ_12: /* SBC - RDProtect */
1453         case READ_16: /* SBC - RDProtect */
1454         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1455         case VERIFY: /* SBC - VRProtect */
1456         case VERIFY_16: /* SBC - VRProtect */
1457         case WRITE_VERIFY: /* SBC - VRProtect */
1458         case WRITE_VERIFY_12: /* SBC - VRProtect */
1459                 break;
1460         default:
1461                 cdb[1] &= 0x1f; /* clear logical unit number */
1462                 break;
1463         }
1464 }
1465
1466 static struct se_task *
1467 transport_generic_get_task(struct se_cmd *cmd,
1468                 enum dma_data_direction data_direction)
1469 {
1470         struct se_task *task;
1471         struct se_device *dev = cmd->se_dev;
1472
1473         task = dev->transport->alloc_task(cmd->t_task_cdb);
1474         if (!task) {
1475                 pr_err("Unable to allocate struct se_task\n");
1476                 return NULL;
1477         }
1478
1479         INIT_LIST_HEAD(&task->t_list);
1480         INIT_LIST_HEAD(&task->t_execute_list);
1481         INIT_LIST_HEAD(&task->t_state_list);
1482         init_completion(&task->task_stop_comp);
1483         task->task_se_cmd = cmd;
1484         task->task_data_direction = data_direction;
1485
1486         return task;
1487 }
1488
1489 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1490
1491 /*
1492  * Used by fabric modules containing a local struct se_cmd within their
1493  * fabric dependent per I/O descriptor.
1494  */
1495 void transport_init_se_cmd(
1496         struct se_cmd *cmd,
1497         struct target_core_fabric_ops *tfo,
1498         struct se_session *se_sess,
1499         u32 data_length,
1500         int data_direction,
1501         int task_attr,
1502         unsigned char *sense_buffer)
1503 {
1504         INIT_LIST_HEAD(&cmd->se_lun_node);
1505         INIT_LIST_HEAD(&cmd->se_delayed_node);
1506         INIT_LIST_HEAD(&cmd->se_qf_node);
1507         INIT_LIST_HEAD(&cmd->se_queue_node);
1508         INIT_LIST_HEAD(&cmd->se_cmd_list);
1509         INIT_LIST_HEAD(&cmd->t_task_list);
1510         init_completion(&cmd->transport_lun_fe_stop_comp);
1511         init_completion(&cmd->transport_lun_stop_comp);
1512         init_completion(&cmd->t_transport_stop_comp);
1513         init_completion(&cmd->cmd_wait_comp);
1514         spin_lock_init(&cmd->t_state_lock);
1515         cmd->transport_state = CMD_T_DEV_ACTIVE;
1516
1517         cmd->se_tfo = tfo;
1518         cmd->se_sess = se_sess;
1519         cmd->data_length = data_length;
1520         cmd->data_direction = data_direction;
1521         cmd->sam_task_attr = task_attr;
1522         cmd->sense_buffer = sense_buffer;
1523 }
1524 EXPORT_SYMBOL(transport_init_se_cmd);
1525
1526 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1527 {
1528         /*
1529          * Check if SAM Task Attribute emulation is enabled for this
1530          * struct se_device storage object
1531          */
1532         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1533                 return 0;
1534
1535         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1536                 pr_debug("SAM Task Attribute ACA"
1537                         " emulation is not supported\n");
1538                 return -EINVAL;
1539         }
1540         /*
1541          * Used to determine when ORDERED commands should go from
1542          * Dormant to Active status.
1543          */
1544         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1545         smp_mb__after_atomic_inc();
1546         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1547                         cmd->se_ordered_id, cmd->sam_task_attr,
1548                         cmd->se_dev->transport->name);
1549         return 0;
1550 }
1551
1552 /*      transport_generic_allocate_tasks():
1553  *
1554  *      Called from fabric RX Thread.
1555  */
1556 int transport_generic_allocate_tasks(
1557         struct se_cmd *cmd,
1558         unsigned char *cdb)
1559 {
1560         int ret;
1561
1562         transport_generic_prepare_cdb(cdb);
1563         /*
1564          * Ensure that the received CDB is less than the max (252 + 8) bytes
1565          * for VARIABLE_LENGTH_CMD
1566          */
1567         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1568                 pr_err("Received SCSI CDB with command_size: %d that"
1569                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1570                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1571                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1572                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1573                 return -EINVAL;
1574         }
1575         /*
1576          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1577          * allocate the additional extended CDB buffer now..  Otherwise
1578          * setup the pointer from __t_task_cdb to t_task_cdb.
1579          */
1580         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1581                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1582                                                 GFP_KERNEL);
1583                 if (!cmd->t_task_cdb) {
1584                         pr_err("Unable to allocate cmd->t_task_cdb"
1585                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1586                                 scsi_command_size(cdb),
1587                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1588                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1589                         cmd->scsi_sense_reason =
1590                                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1591                         return -ENOMEM;
1592                 }
1593         } else
1594                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1595         /*
1596          * Copy the original CDB into cmd->
1597          */
1598         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1599         /*
1600          * Setup the received CDB based on SCSI defined opcodes and
1601          * perform unit attention, persistent reservations and ALUA
1602          * checks for virtual device backends.  The cmd->t_task_cdb
1603          * pointer is expected to be setup before we reach this point.
1604          */
1605         ret = transport_generic_cmd_sequencer(cmd, cdb);
1606         if (ret < 0)
1607                 return ret;
1608         /*
1609          * Check for SAM Task Attribute Emulation
1610          */
1611         if (transport_check_alloc_task_attr(cmd) < 0) {
1612                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1613                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1614                 return -EINVAL;
1615         }
1616         spin_lock(&cmd->se_lun->lun_sep_lock);
1617         if (cmd->se_lun->lun_sep)
1618                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1619         spin_unlock(&cmd->se_lun->lun_sep_lock);
1620         return 0;
1621 }
1622 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1623
1624 /*
1625  * Used by fabric module frontends to queue tasks directly.
1626  * Many only be used from process context only
1627  */
1628 int transport_handle_cdb_direct(
1629         struct se_cmd *cmd)
1630 {
1631         int ret;
1632
1633         if (!cmd->se_lun) {
1634                 dump_stack();
1635                 pr_err("cmd->se_lun is NULL\n");
1636                 return -EINVAL;
1637         }
1638         if (in_interrupt()) {
1639                 dump_stack();
1640                 pr_err("transport_generic_handle_cdb cannot be called"
1641                                 " from interrupt context\n");
1642                 return -EINVAL;
1643         }
1644         /*
1645          * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE following
1646          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1647          * in existing usage to ensure that outstanding descriptors are handled
1648          * correctly during shutdown via transport_wait_for_tasks()
1649          *
1650          * Also, we don't take cmd->t_state_lock here as we only expect
1651          * this to be called for initial descriptor submission.
1652          */
1653         cmd->t_state = TRANSPORT_NEW_CMD;
1654         cmd->transport_state |= CMD_T_ACTIVE;
1655
1656         /*
1657          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1658          * so follow TRANSPORT_NEW_CMD processing thread context usage
1659          * and call transport_generic_request_failure() if necessary..
1660          */
1661         ret = transport_generic_new_cmd(cmd);
1662         if (ret < 0)
1663                 transport_generic_request_failure(cmd);
1664
1665         return 0;
1666 }
1667 EXPORT_SYMBOL(transport_handle_cdb_direct);
1668
1669 /**
1670  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1671  *
1672  * @se_cmd: command descriptor to submit
1673  * @se_sess: associated se_sess for endpoint
1674  * @cdb: pointer to SCSI CDB
1675  * @sense: pointer to SCSI sense buffer
1676  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1677  * @data_length: fabric expected data transfer length
1678  * @task_addr: SAM task attribute
1679  * @data_dir: DMA data direction
1680  * @flags: flags for command submission from target_sc_flags_tables
1681  *
1682  * This may only be called from process context, and also currently
1683  * assumes internal allocation of fabric payload buffer by target-core.
1684  **/
1685 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1686                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1687                 u32 data_length, int task_attr, int data_dir, int flags)
1688 {
1689         struct se_portal_group *se_tpg;
1690         int rc;
1691
1692         se_tpg = se_sess->se_tpg;
1693         BUG_ON(!se_tpg);
1694         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1695         BUG_ON(in_interrupt());
1696         /*
1697          * Initialize se_cmd for target operation.  From this point
1698          * exceptions are handled by sending exception status via
1699          * target_core_fabric_ops->queue_status() callback
1700          */
1701         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1702                                 data_length, data_dir, task_attr, sense);
1703         /*
1704          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1705          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1706          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1707          * kref_put() to happen during fabric packet acknowledgement.
1708          */
1709         target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1710         /*
1711          * Signal bidirectional data payloads to target-core
1712          */
1713         if (flags & TARGET_SCF_BIDI_OP)
1714                 se_cmd->se_cmd_flags |= SCF_BIDI;
1715         /*
1716          * Locate se_lun pointer and attach it to struct se_cmd
1717          */
1718         if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1719                 transport_send_check_condition_and_sense(se_cmd,
1720                                 se_cmd->scsi_sense_reason, 0);
1721                 target_put_sess_cmd(se_sess, se_cmd);
1722                 return;
1723         }
1724         /*
1725          * Sanitize CDBs via transport_generic_cmd_sequencer() and
1726          * allocate the necessary tasks to complete the received CDB+data
1727          */
1728         rc = transport_generic_allocate_tasks(se_cmd, cdb);
1729         if (rc != 0) {
1730                 transport_generic_request_failure(se_cmd);
1731                 return;
1732         }
1733         /*
1734          * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1735          * for immediate execution of READs, otherwise wait for
1736          * transport_generic_handle_data() to be called for WRITEs
1737          * when fabric has filled the incoming buffer.
1738          */
1739         transport_handle_cdb_direct(se_cmd);
1740         return;
1741 }
1742 EXPORT_SYMBOL(target_submit_cmd);
1743
1744 static void target_complete_tmr_failure(struct work_struct *work)
1745 {
1746         struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1747
1748         se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1749         se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1750         transport_generic_free_cmd(se_cmd, 0);
1751 }
1752
1753 /**
1754  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1755  *                     for TMR CDBs
1756  *
1757  * @se_cmd: command descriptor to submit
1758  * @se_sess: associated se_sess for endpoint
1759  * @sense: pointer to SCSI sense buffer
1760  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1761  * @fabric_context: fabric context for TMR req
1762  * @tm_type: Type of TM request
1763  * @gfp: gfp type for caller
1764  * @tag: referenced task tag for TMR_ABORT_TASK
1765  * @flags: submit cmd flags
1766  *
1767  * Callable from all contexts.
1768  **/
1769
1770 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1771                 unsigned char *sense, u32 unpacked_lun,
1772                 void *fabric_tmr_ptr, unsigned char tm_type,
1773                 gfp_t gfp, unsigned int tag, int flags)
1774 {
1775         struct se_portal_group *se_tpg;
1776         int ret;
1777
1778         se_tpg = se_sess->se_tpg;
1779         BUG_ON(!se_tpg);
1780
1781         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1782                               0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1783         /*
1784          * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1785          * allocation failure.
1786          */
1787         ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1788         if (ret < 0)
1789                 return -ENOMEM;
1790
1791         if (tm_type == TMR_ABORT_TASK)
1792                 se_cmd->se_tmr_req->ref_task_tag = tag;
1793
1794         /* See target_submit_cmd for commentary */
1795         target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1796
1797         ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1798         if (ret) {
1799                 /*
1800                  * For callback during failure handling, push this work off
1801                  * to process context with TMR_LUN_DOES_NOT_EXIST status.
1802                  */
1803                 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1804                 schedule_work(&se_cmd->work);
1805                 return 0;
1806         }
1807         transport_generic_handle_tmr(se_cmd);
1808         return 0;
1809 }
1810 EXPORT_SYMBOL(target_submit_tmr);
1811
1812 /*
1813  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1814  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1815  * complete setup in TCM process context w/ TFO->new_cmd_map().
1816  */
1817 int transport_generic_handle_cdb_map(
1818         struct se_cmd *cmd)
1819 {
1820         if (!cmd->se_lun) {
1821                 dump_stack();
1822                 pr_err("cmd->se_lun is NULL\n");
1823                 return -EINVAL;
1824         }
1825
1826         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1827         return 0;
1828 }
1829 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1830
1831 /*      transport_generic_handle_data():
1832  *
1833  *
1834  */
1835 int transport_generic_handle_data(
1836         struct se_cmd *cmd)
1837 {
1838         /*
1839          * For the software fabric case, then we assume the nexus is being
1840          * failed/shutdown when signals are pending from the kthread context
1841          * caller, so we return a failure.  For the HW target mode case running
1842          * in interrupt code, the signal_pending() check is skipped.
1843          */
1844         if (!in_interrupt() && signal_pending(current))
1845                 return -EPERM;
1846         /*
1847          * If the received CDB has aleady been ABORTED by the generic
1848          * target engine, we now call transport_check_aborted_status()
1849          * to queue any delated TASK_ABORTED status for the received CDB to the
1850          * fabric module as we are expecting no further incoming DATA OUT
1851          * sequences at this point.
1852          */
1853         if (transport_check_aborted_status(cmd, 1) != 0)
1854                 return 0;
1855
1856         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1857         return 0;
1858 }
1859 EXPORT_SYMBOL(transport_generic_handle_data);
1860
1861 /*      transport_generic_handle_tmr():
1862  *
1863  *
1864  */
1865 int transport_generic_handle_tmr(
1866         struct se_cmd *cmd)
1867 {
1868         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1869         return 0;
1870 }
1871 EXPORT_SYMBOL(transport_generic_handle_tmr);
1872
1873 /*
1874  * If the task is active, request it to be stopped and sleep until it
1875  * has completed.
1876  */
1877 bool target_stop_task(struct se_task *task, unsigned long *flags)
1878 {
1879         struct se_cmd *cmd = task->task_se_cmd;
1880         bool was_active = false;
1881
1882         if (task->task_flags & TF_ACTIVE) {
1883                 task->task_flags |= TF_REQUEST_STOP;
1884                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1885
1886                 pr_debug("Task %p waiting to complete\n", task);
1887                 wait_for_completion(&task->task_stop_comp);
1888                 pr_debug("Task %p stopped successfully\n", task);
1889
1890                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1891                 atomic_dec(&cmd->t_task_cdbs_left);
1892                 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1893                 was_active = true;
1894         }
1895
1896         return was_active;
1897 }
1898
1899 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1900 {
1901         struct se_task *task, *task_tmp;
1902         unsigned long flags;
1903         int ret = 0;
1904
1905         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1906                 cmd->se_tfo->get_task_tag(cmd));
1907
1908         /*
1909          * No tasks remain in the execution queue
1910          */
1911         spin_lock_irqsave(&cmd->t_state_lock, flags);
1912         list_for_each_entry_safe(task, task_tmp,
1913                                 &cmd->t_task_list, t_list) {
1914                 pr_debug("Processing task %p\n", task);
1915                 /*
1916                  * If the struct se_task has not been sent and is not active,
1917                  * remove the struct se_task from the execution queue.
1918                  */
1919                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1920                         spin_unlock_irqrestore(&cmd->t_state_lock,
1921                                         flags);
1922                         transport_remove_task_from_execute_queue(task,
1923                                         cmd->se_dev);
1924
1925                         pr_debug("Task %p removed from execute queue\n", task);
1926                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1927                         continue;
1928                 }
1929
1930                 if (!target_stop_task(task, &flags)) {
1931                         pr_debug("Task %p - did nothing\n", task);
1932                         ret++;
1933                 }
1934         }
1935         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1936
1937         return ret;
1938 }
1939
1940 /*
1941  * Handle SAM-esque emulation for generic transport request failures.
1942  */
1943 void transport_generic_request_failure(struct se_cmd *cmd)
1944 {
1945         int ret = 0;
1946
1947         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1948                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1949                 cmd->t_task_cdb[0]);
1950         pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1951                 cmd->se_tfo->get_cmd_state(cmd),
1952                 cmd->t_state, cmd->scsi_sense_reason);
1953         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1954                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1955                 " CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1956                 cmd->t_task_list_num,
1957                 atomic_read(&cmd->t_task_cdbs_left),
1958                 atomic_read(&cmd->t_task_cdbs_sent),
1959                 atomic_read(&cmd->t_task_cdbs_ex_left),
1960                 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1961                 (cmd->transport_state & CMD_T_STOP) != 0,
1962                 (cmd->transport_state & CMD_T_SENT) != 0);
1963
1964         /*
1965          * For SAM Task Attribute emulation for failed struct se_cmd
1966          */
1967         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1968                 transport_complete_task_attr(cmd);
1969
1970         switch (cmd->scsi_sense_reason) {
1971         case TCM_NON_EXISTENT_LUN:
1972         case TCM_UNSUPPORTED_SCSI_OPCODE:
1973         case TCM_INVALID_CDB_FIELD:
1974         case TCM_INVALID_PARAMETER_LIST:
1975         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1976         case TCM_UNKNOWN_MODE_PAGE:
1977         case TCM_WRITE_PROTECTED:
1978         case TCM_CHECK_CONDITION_ABORT_CMD:
1979         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1980         case TCM_CHECK_CONDITION_NOT_READY:
1981                 break;
1982         case TCM_RESERVATION_CONFLICT:
1983                 /*
1984                  * No SENSE Data payload for this case, set SCSI Status
1985                  * and queue the response to $FABRIC_MOD.
1986                  *
1987                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1988                  */
1989                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1990                 /*
1991                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1992                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1993                  * CONFLICT STATUS.
1994                  *
1995                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1996                  */
1997                 if (cmd->se_sess &&
1998                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1999                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2000                                 cmd->orig_fe_lun, 0x2C,
2001                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2002
2003                 ret = cmd->se_tfo->queue_status(cmd);
2004                 if (ret == -EAGAIN || ret == -ENOMEM)
2005                         goto queue_full;
2006                 goto check_stop;
2007         default:
2008                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2009                         cmd->t_task_cdb[0], cmd->scsi_sense_reason);
2010                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2011                 break;
2012         }
2013         /*
2014          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
2015          * make the call to transport_send_check_condition_and_sense()
2016          * directly.  Otherwise expect the fabric to make the call to
2017          * transport_send_check_condition_and_sense() after handling
2018          * possible unsoliticied write data payloads.
2019          */
2020         ret = transport_send_check_condition_and_sense(cmd,
2021                         cmd->scsi_sense_reason, 0);
2022         if (ret == -EAGAIN || ret == -ENOMEM)
2023                 goto queue_full;
2024
2025 check_stop:
2026         transport_lun_remove_cmd(cmd);
2027         if (!transport_cmd_check_stop_to_fabric(cmd))
2028                 ;
2029         return;
2030
2031 queue_full:
2032         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2033         transport_handle_queue_full(cmd, cmd->se_dev);
2034 }
2035 EXPORT_SYMBOL(transport_generic_request_failure);
2036
2037 static inline u32 transport_lba_21(unsigned char *cdb)
2038 {
2039         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2040 }
2041
2042 static inline u32 transport_lba_32(unsigned char *cdb)
2043 {
2044         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2045 }
2046
2047 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2048 {
2049         unsigned int __v1, __v2;
2050
2051         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2052         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2053
2054         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2055 }
2056
2057 /*
2058  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2059  */
2060 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2061 {
2062         unsigned int __v1, __v2;
2063
2064         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2065         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2066
2067         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2068 }
2069
2070 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2071 {
2072         unsigned long flags;
2073
2074         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2075         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2076         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2077 }
2078
2079 /*
2080  * Called from Fabric Module context from transport_execute_tasks()
2081  *
2082  * The return of this function determins if the tasks from struct se_cmd
2083  * get added to the execution queue in transport_execute_tasks(),
2084  * or are added to the delayed or ordered lists here.
2085  */
2086 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2087 {
2088         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2089                 return 1;
2090         /*
2091          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2092          * to allow the passed struct se_cmd list of tasks to the front of the list.
2093          */
2094          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2095                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2096                         " 0x%02x, se_ordered_id: %u\n",
2097                         cmd->t_task_cdb[0],
2098                         cmd->se_ordered_id);
2099                 return 1;
2100         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2101                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2102                 smp_mb__after_atomic_inc();
2103
2104                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2105                                 " list, se_ordered_id: %u\n",
2106                                 cmd->t_task_cdb[0],
2107                                 cmd->se_ordered_id);
2108                 /*
2109                  * Add ORDERED command to tail of execution queue if
2110                  * no other older commands exist that need to be
2111                  * completed first.
2112                  */
2113                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2114                         return 1;
2115         } else {
2116                 /*
2117                  * For SIMPLE and UNTAGGED Task Attribute commands
2118                  */
2119                 atomic_inc(&cmd->se_dev->simple_cmds);
2120                 smp_mb__after_atomic_inc();
2121         }
2122         /*
2123          * Otherwise if one or more outstanding ORDERED task attribute exist,
2124          * add the dormant task(s) built for the passed struct se_cmd to the
2125          * execution queue and become in Active state for this struct se_device.
2126          */
2127         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2128                 /*
2129                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2130                  * will be drained upon completion of HEAD_OF_QUEUE task.
2131                  */
2132                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2133                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2134                 list_add_tail(&cmd->se_delayed_node,
2135                                 &cmd->se_dev->delayed_cmd_list);
2136                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2137
2138                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2139                         " delayed CMD list, se_ordered_id: %u\n",
2140                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2141                         cmd->se_ordered_id);
2142                 /*
2143                  * Return zero to let transport_execute_tasks() know
2144                  * not to add the delayed tasks to the execution list.
2145                  */
2146                 return 0;
2147         }
2148         /*
2149          * Otherwise, no ORDERED task attributes exist..
2150          */
2151         return 1;
2152 }
2153
2154 /*
2155  * Called from fabric module context in transport_generic_new_cmd() and
2156  * transport_generic_process_write()
2157  */
2158 static int transport_execute_tasks(struct se_cmd *cmd)
2159 {
2160         int add_tasks;
2161         struct se_device *se_dev = cmd->se_dev;
2162         /*
2163          * Call transport_cmd_check_stop() to see if a fabric exception
2164          * has occurred that prevents execution.
2165          */
2166         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2167                 /*
2168                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2169                  * attribute for the tasks of the received struct se_cmd CDB
2170                  */
2171                 add_tasks = transport_execute_task_attr(cmd);
2172                 if (!add_tasks)
2173                         goto execute_tasks;
2174                 /*
2175                  * __transport_execute_tasks() -> __transport_add_tasks_from_cmd()
2176                  * adds associated se_tasks while holding dev->execute_task_lock
2177                  * before I/O dispath to avoid a double spinlock access.
2178                  */
2179                 __transport_execute_tasks(se_dev, cmd);
2180                 return 0;
2181         }
2182
2183 execute_tasks:
2184         __transport_execute_tasks(se_dev, NULL);
2185         return 0;
2186 }
2187
2188 /*
2189  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2190  * from struct se_device->execute_task_list and
2191  *
2192  * Called from transport_processing_thread()
2193  */
2194 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2195 {
2196         int error;
2197         struct se_cmd *cmd = NULL;
2198         struct se_task *task = NULL;
2199         unsigned long flags;
2200
2201 check_depth:
2202         spin_lock_irq(&dev->execute_task_lock);
2203         if (new_cmd != NULL)
2204                 __transport_add_tasks_from_cmd(new_cmd);
2205
2206         if (list_empty(&dev->execute_task_list)) {
2207                 spin_unlock_irq(&dev->execute_task_lock);
2208                 return 0;
2209         }
2210         task = list_first_entry(&dev->execute_task_list,
2211                                 struct se_task, t_execute_list);
2212         __transport_remove_task_from_execute_queue(task, dev);
2213         spin_unlock_irq(&dev->execute_task_lock);
2214
2215         cmd = task->task_se_cmd;
2216         spin_lock_irqsave(&cmd->t_state_lock, flags);
2217         task->task_flags |= (TF_ACTIVE | TF_SENT);
2218         atomic_inc(&cmd->t_task_cdbs_sent);
2219
2220         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2221             cmd->t_task_list_num)
2222                 cmd->transport_state |= CMD_T_SENT;
2223
2224         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2225
2226         if (cmd->execute_task)
2227                 error = cmd->execute_task(task);
2228         else
2229                 error = dev->transport->do_task(task);
2230         if (error != 0) {
2231                 spin_lock_irqsave(&cmd->t_state_lock, flags);
2232                 task->task_flags &= ~TF_ACTIVE;
2233                 cmd->transport_state &= ~CMD_T_SENT;
2234                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2235
2236                 transport_stop_tasks_for_cmd(cmd);
2237                 transport_generic_request_failure(cmd);
2238         }
2239
2240         new_cmd = NULL;
2241         goto check_depth;
2242
2243         return 0;
2244 }
2245
2246 static inline u32 transport_get_sectors_6(
2247         unsigned char *cdb,
2248         struct se_cmd *cmd,
2249         int *ret)
2250 {
2251         struct se_device *dev = cmd->se_dev;
2252
2253         /*
2254          * Assume TYPE_DISK for non struct se_device objects.
2255          * Use 8-bit sector value.
2256          */
2257         if (!dev)
2258                 goto type_disk;
2259
2260         /*
2261          * Use 24-bit allocation length for TYPE_TAPE.
2262          */
2263         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2264                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2265
2266         /*
2267          * Everything else assume TYPE_DISK Sector CDB location.
2268          * Use 8-bit sector value.  SBC-3 says:
2269          *
2270          *   A TRANSFER LENGTH field set to zero specifies that 256
2271          *   logical blocks shall be written.  Any other value
2272          *   specifies the number of logical blocks that shall be
2273          *   written.
2274          */
2275 type_disk:
2276         return cdb[4] ? : 256;
2277 }
2278
2279 static inline u32 transport_get_sectors_10(
2280         unsigned char *cdb,
2281         struct se_cmd *cmd,
2282         int *ret)
2283 {
2284         struct se_device *dev = cmd->se_dev;
2285
2286         /*
2287          * Assume TYPE_DISK for non struct se_device objects.
2288          * Use 16-bit sector value.
2289          */
2290         if (!dev)
2291                 goto type_disk;
2292
2293         /*
2294          * XXX_10 is not defined in SSC, throw an exception
2295          */
2296         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2297                 *ret = -EINVAL;
2298                 return 0;
2299         }
2300
2301         /*
2302          * Everything else assume TYPE_DISK Sector CDB location.
2303          * Use 16-bit sector value.
2304          */
2305 type_disk:
2306         return (u32)(cdb[7] << 8) + cdb[8];
2307 }
2308
2309 static inline u32 transport_get_sectors_12(
2310         unsigned char *cdb,
2311         struct se_cmd *cmd,
2312         int *ret)
2313 {
2314         struct se_device *dev = cmd->se_dev;
2315
2316         /*
2317          * Assume TYPE_DISK for non struct se_device objects.
2318          * Use 32-bit sector value.
2319          */
2320         if (!dev)
2321                 goto type_disk;
2322
2323         /*
2324          * XXX_12 is not defined in SSC, throw an exception
2325          */
2326         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2327                 *ret = -EINVAL;
2328                 return 0;
2329         }
2330
2331         /*
2332          * Everything else assume TYPE_DISK Sector CDB location.
2333          * Use 32-bit sector value.
2334          */
2335 type_disk:
2336         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2337 }
2338
2339 static inline u32 transport_get_sectors_16(
2340         unsigned char *cdb,
2341         struct se_cmd *cmd,
2342         int *ret)
2343 {
2344         struct se_device *dev = cmd->se_dev;
2345
2346         /*
2347          * Assume TYPE_DISK for non struct se_device objects.
2348          * Use 32-bit sector value.
2349          */
2350         if (!dev)
2351                 goto type_disk;
2352
2353         /*
2354          * Use 24-bit allocation length for TYPE_TAPE.
2355          */
2356         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2357                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2358
2359 type_disk:
2360         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2361                     (cdb[12] << 8) + cdb[13];
2362 }
2363
2364 /*
2365  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2366  */
2367 static inline u32 transport_get_sectors_32(
2368         unsigned char *cdb,
2369         struct se_cmd *cmd,
2370         int *ret)
2371 {
2372         /*
2373          * Assume TYPE_DISK for non struct se_device objects.
2374          * Use 32-bit sector value.
2375          */
2376         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2377                     (cdb[30] << 8) + cdb[31];
2378
2379 }
2380
2381 static inline u32 transport_get_size(
2382         u32 sectors,
2383         unsigned char *cdb,
2384         struct se_cmd *cmd)
2385 {
2386         struct se_device *dev = cmd->se_dev;
2387
2388         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2389                 if (cdb[1] & 1) { /* sectors */
2390                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2391                 } else /* bytes */
2392                         return sectors;
2393         }
2394 #if 0
2395         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2396                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2397                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2398                         dev->transport->name);
2399 #endif
2400         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2401 }
2402
2403 static void transport_xor_callback(struct se_cmd *cmd)
2404 {
2405         unsigned char *buf, *addr;
2406         struct scatterlist *sg;
2407         unsigned int offset;
2408         int i;
2409         int count;
2410         /*
2411          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2412          *
2413          * 1) read the specified logical block(s);
2414          * 2) transfer logical blocks from the data-out buffer;
2415          * 3) XOR the logical blocks transferred from the data-out buffer with
2416          *    the logical blocks read, storing the resulting XOR data in a buffer;
2417          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2418          *    blocks transferred from the data-out buffer; and
2419          * 5) transfer the resulting XOR data to the data-in buffer.
2420          */
2421         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2422         if (!buf) {
2423                 pr_err("Unable to allocate xor_callback buf\n");
2424                 return;
2425         }
2426         /*
2427          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2428          * into the locally allocated *buf
2429          */
2430         sg_copy_to_buffer(cmd->t_data_sg,
2431                           cmd->t_data_nents,
2432                           buf,
2433                           cmd->data_length);
2434
2435         /*
2436          * Now perform the XOR against the BIDI read memory located at
2437          * cmd->t_mem_bidi_list
2438          */
2439
2440         offset = 0;
2441         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2442                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2443                 if (!addr)
2444                         goto out;
2445
2446                 for (i = 0; i < sg->length; i++)
2447                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2448
2449                 offset += sg->length;
2450                 kunmap_atomic(addr, KM_USER0);
2451         }
2452
2453 out:
2454         kfree(buf);
2455 }
2456
2457 /*
2458  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2459  */
2460 static int transport_get_sense_data(struct se_cmd *cmd)
2461 {
2462         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2463         struct se_device *dev = cmd->se_dev;
2464         struct se_task *task = NULL, *task_tmp;
2465         unsigned long flags;
2466         u32 offset = 0;
2467
2468         WARN_ON(!cmd->se_lun);
2469
2470         if (!dev)
2471                 return 0;
2472
2473         spin_lock_irqsave(&cmd->t_state_lock, flags);
2474         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2475                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2476                 return 0;
2477         }
2478
2479         list_for_each_entry_safe(task, task_tmp,
2480                                 &cmd->t_task_list, t_list) {
2481                 if (!(task->task_flags & TF_HAS_SENSE))
2482                         continue;
2483
2484                 if (!dev->transport->get_sense_buffer) {
2485                         pr_err("dev->transport->get_sense_buffer"
2486                                         " is NULL\n");
2487                         continue;
2488                 }
2489
2490                 sense_buffer = dev->transport->get_sense_buffer(task);
2491                 if (!sense_buffer) {
2492                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2493                                 " sense buffer for task with sense\n",
2494                                 cmd->se_tfo->get_task_tag(cmd), task);
2495                         continue;
2496                 }
2497                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2498
2499                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2500                                 TRANSPORT_SENSE_BUFFER);
2501
2502                 memcpy(&buffer[offset], sense_buffer,
2503                                 TRANSPORT_SENSE_BUFFER);
2504                 cmd->scsi_status = task->task_scsi_status;
2505                 /* Automatically padded */
2506                 cmd->scsi_sense_length =
2507                                 (TRANSPORT_SENSE_BUFFER + offset);
2508
2509                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2510                                 " and sense\n",
2511                         dev->se_hba->hba_id, dev->transport->name,
2512                                 cmd->scsi_status);
2513                 return 0;
2514         }
2515         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2516
2517         return -1;
2518 }
2519
2520 static inline long long transport_dev_end_lba(struct se_device *dev)
2521 {
2522         return dev->transport->get_blocks(dev) + 1;
2523 }
2524
2525 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2526 {
2527         struct se_device *dev = cmd->se_dev;
2528         u32 sectors;
2529
2530         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2531                 return 0;
2532
2533         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2534
2535         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2536                 pr_err("LBA: %llu Sectors: %u exceeds"
2537                         " transport_dev_end_lba(): %llu\n",
2538                         cmd->t_task_lba, sectors,
2539                         transport_dev_end_lba(dev));
2540                 return -EINVAL;
2541         }
2542
2543         return 0;
2544 }
2545
2546 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2547 {
2548         /*
2549          * Determine if the received WRITE_SAME is used to for direct
2550          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2551          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2552          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2553          */
2554         int passthrough = (dev->transport->transport_type ==
2555                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2556
2557         if (!passthrough) {
2558                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2559                         pr_err("WRITE_SAME PBDATA and LBDATA"
2560                                 " bits not supported for Block Discard"
2561                                 " Emulation\n");
2562                         return -ENOSYS;
2563                 }
2564                 /*
2565                  * Currently for the emulated case we only accept
2566                  * tpws with the UNMAP=1 bit set.
2567                  */
2568                 if (!(flags[0] & 0x08)) {
2569                         pr_err("WRITE_SAME w/o UNMAP bit not"
2570                                 " supported for Block Discard Emulation\n");
2571                         return -ENOSYS;
2572                 }
2573         }
2574
2575         return 0;
2576 }
2577
2578 /*      transport_generic_cmd_sequencer():
2579  *
2580  *      Generic Command Sequencer that should work for most DAS transport
2581  *      drivers.
2582  *
2583  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2584  *      RX Thread.
2585  *
2586  *      FIXME: Need to support other SCSI OPCODES where as well.
2587  */
2588 static int transport_generic_cmd_sequencer(
2589         struct se_cmd *cmd,
2590         unsigned char *cdb)
2591 {
2592         struct se_device *dev = cmd->se_dev;
2593         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2594         int ret = 0, sector_ret = 0, passthrough;
2595         u32 sectors = 0, size = 0, pr_reg_type = 0;
2596         u16 service_action;
2597         u8 alua_ascq = 0;
2598         /*
2599          * Check for an existing UNIT ATTENTION condition
2600          */
2601         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2602                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2603                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2604                 return -EINVAL;
2605         }
2606         /*
2607          * Check status of Asymmetric Logical Unit Assignment port
2608          */
2609         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2610         if (ret != 0) {
2611                 /*
2612                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2613                  * The ALUA additional sense code qualifier (ASCQ) is determined
2614                  * by the ALUA primary or secondary access state..
2615                  */
2616                 if (ret > 0) {
2617 #if 0
2618                         pr_debug("[%s]: ALUA TG Port not available,"
2619                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2620                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2621 #endif
2622                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2623                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2624                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2625                         return -EINVAL;
2626                 }
2627                 goto out_invalid_cdb_field;
2628         }
2629         /*
2630          * Check status for SPC-3 Persistent Reservations
2631          */
2632         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2633                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2634                                         cmd, cdb, pr_reg_type) != 0) {
2635                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2636                         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2637                         cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2638                         return -EBUSY;
2639                 }
2640                 /*
2641                  * This means the CDB is allowed for the SCSI Initiator port
2642                  * when said port is *NOT* holding the legacy SPC-2 or
2643                  * SPC-3 Persistent Reservation.
2644                  */
2645         }
2646
2647         /*
2648          * If we operate in passthrough mode we skip most CDB emulation and
2649          * instead hand the commands down to the physical SCSI device.
2650          */
2651         passthrough =
2652                 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2653
2654         switch (cdb[0]) {
2655         case READ_6:
2656                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2657                 if (sector_ret)
2658                         goto out_unsupported_cdb;
2659                 size = transport_get_size(sectors, cdb, cmd);
2660                 cmd->t_task_lba = transport_lba_21(cdb);
2661                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2662                 break;
2663         case READ_10:
2664                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2665                 if (sector_ret)
2666                         goto out_unsupported_cdb;
2667                 size = transport_get_size(sectors, cdb, cmd);
2668                 cmd->t_task_lba = transport_lba_32(cdb);
2669                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2670                 break;
2671         case READ_12:
2672                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2673                 if (sector_ret)
2674                         goto out_unsupported_cdb;
2675                 size = transport_get_size(sectors, cdb, cmd);
2676                 cmd->t_task_lba = transport_lba_32(cdb);
2677                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2678                 break;
2679         case READ_16:
2680                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2681                 if (sector_ret)
2682                         goto out_unsupported_cdb;
2683                 size = transport_get_size(sectors, cdb, cmd);
2684                 cmd->t_task_lba = transport_lba_64(cdb);
2685                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2686                 break;
2687         case WRITE_6:
2688                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2689                 if (sector_ret)
2690                         goto out_unsupported_cdb;
2691                 size = transport_get_size(sectors, cdb, cmd);
2692                 cmd->t_task_lba = transport_lba_21(cdb);
2693                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2694                 break;
2695         case WRITE_10:
2696                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2697                 if (sector_ret)
2698                         goto out_unsupported_cdb;
2699                 size = transport_get_size(sectors, cdb, cmd);
2700                 cmd->t_task_lba = transport_lba_32(cdb);
2701                 if (cdb[1] & 0x8)
2702                         cmd->se_cmd_flags |= SCF_FUA;
2703                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2704                 break;
2705         case WRITE_12:
2706                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2707                 if (sector_ret)
2708                         goto out_unsupported_cdb;
2709                 size = transport_get_size(sectors, cdb, cmd);
2710                 cmd->t_task_lba = transport_lba_32(cdb);
2711                 if (cdb[1] & 0x8)
2712                         cmd->se_cmd_flags |= SCF_FUA;
2713                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2714                 break;
2715         case WRITE_16:
2716                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2717                 if (sector_ret)
2718                         goto out_unsupported_cdb;
2719                 size = transport_get_size(sectors, cdb, cmd);
2720                 cmd->t_task_lba = transport_lba_64(cdb);
2721                 if (cdb[1] & 0x8)
2722                         cmd->se_cmd_flags |= SCF_FUA;
2723                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2724                 break;
2725         case XDWRITEREAD_10:
2726                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2727                     !(cmd->se_cmd_flags & SCF_BIDI))
2728                         goto out_invalid_cdb_field;
2729                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2730                 if (sector_ret)
2731                         goto out_unsupported_cdb;
2732                 size = transport_get_size(sectors, cdb, cmd);
2733                 cmd->t_task_lba = transport_lba_32(cdb);
2734                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2735
2736                 /*
2737                  * Do now allow BIDI commands for passthrough mode.
2738                  */
2739                 if (passthrough)
2740                         goto out_unsupported_cdb;
2741
2742                 /*
2743                  * Setup BIDI XOR callback to be run after I/O completion.
2744                  */
2745                 cmd->transport_complete_callback = &transport_xor_callback;
2746                 if (cdb[1] & 0x8)
2747                         cmd->se_cmd_flags |= SCF_FUA;
2748                 break;
2749         case VARIABLE_LENGTH_CMD:
2750                 service_action = get_unaligned_be16(&cdb[8]);
2751                 switch (service_action) {
2752                 case XDWRITEREAD_32:
2753                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2754                         if (sector_ret)
2755                                 goto out_unsupported_cdb;
2756                         size = transport_get_size(sectors, cdb, cmd);
2757                         /*
2758                          * Use WRITE_32 and READ_32 opcodes for the emulated
2759                          * XDWRITE_READ_32 logic.
2760                          */
2761                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2762                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2763
2764                         /*
2765                          * Do now allow BIDI commands for passthrough mode.
2766                          */
2767                         if (passthrough)
2768                                 goto out_unsupported_cdb;
2769
2770                         /*
2771                          * Setup BIDI XOR callback to be run during after I/O
2772                          * completion.
2773                          */
2774                         cmd->transport_complete_callback = &transport_xor_callback;
2775                         if (cdb[1] & 0x8)
2776                                 cmd->se_cmd_flags |= SCF_FUA;
2777                         break;
2778                 case WRITE_SAME_32:
2779                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2780                         if (sector_ret)
2781                                 goto out_unsupported_cdb;
2782
2783                         if (sectors)
2784                                 size = transport_get_size(1, cdb, cmd);
2785                         else {
2786                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2787                                        " supported\n");
2788                                 goto out_invalid_cdb_field;
2789                         }
2790
2791                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2792                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2793
2794                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2795                                 goto out_unsupported_cdb;
2796                         if (!passthrough)
2797                                 cmd->execute_task = target_emulate_write_same;
2798                         break;
2799                 default:
2800                         pr_err("VARIABLE_LENGTH_CMD service action"
2801                                 " 0x%04x not supported\n", service_action);
2802                         goto out_unsupported_cdb;
2803                 }
2804                 break;
2805         case MAINTENANCE_IN:
2806                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2807                         /* MAINTENANCE_IN from SCC-2 */
2808                         /*
2809                          * Check for emulated MI_REPORT_TARGET_PGS.
2810                          */
2811                         if (cdb[1] == MI_REPORT_TARGET_PGS &&
2812                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2813                                 cmd->execute_task =
2814                                         target_emulate_report_target_port_groups;
2815                         }
2816                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2817                                (cdb[8] << 8) | cdb[9];
2818                 } else {
2819                         /* GPCMD_SEND_KEY from multi media commands */
2820                         size = (cdb[8] << 8) + cdb[9];
2821                 }
2822                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2823                 break;
2824         case MODE_SELECT:
2825                 size = cdb[4];
2826                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2827                 break;
2828         case MODE_SELECT_10:
2829                 size = (cdb[7] << 8) + cdb[8];
2830                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2831                 break;
2832         case MODE_SENSE:
2833                 size = cdb[4];
2834                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2835                 if (!passthrough)
2836                         cmd->execute_task = target_emulate_modesense;
2837                 break;
2838         case MODE_SENSE_10:
2839                 size = (cdb[7] << 8) + cdb[8];
2840                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2841                 if (!passthrough)
2842                         cmd->execute_task = target_emulate_modesense;
2843                 break;
2844         case GPCMD_READ_BUFFER_CAPACITY:
2845         case GPCMD_SEND_OPC:
2846         case LOG_SELECT:
2847         case LOG_SENSE:
2848                 size = (cdb[7] << 8) + cdb[8];
2849                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2850                 break;
2851         case READ_BLOCK_LIMITS:
2852                 size = READ_BLOCK_LEN;
2853                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2854                 break;
2855         case GPCMD_GET_CONFIGURATION:
2856         case GPCMD_READ_FORMAT_CAPACITIES:
2857         case GPCMD_READ_DISC_INFO:
2858         case GPCMD_READ_TRACK_RZONE_INFO:
2859                 size = (cdb[7] << 8) + cdb[8];
2860                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2861                 break;
2862         case PERSISTENT_RESERVE_IN:
2863                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2864                         cmd->execute_task = target_scsi3_emulate_pr_in;
2865                 size = (cdb[7] << 8) + cdb[8];
2866                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2867                 break;
2868         case PERSISTENT_RESERVE_OUT:
2869                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2870                         cmd->execute_task = target_scsi3_emulate_pr_out;
2871                 size = (cdb[7] << 8) + cdb[8];
2872                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2873                 break;
2874         case GPCMD_MECHANISM_STATUS:
2875         case GPCMD_READ_DVD_STRUCTURE:
2876                 size = (cdb[8] << 8) + cdb[9];
2877                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2878                 break;
2879         case READ_POSITION:
2880                 size = READ_POSITION_LEN;
2881                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2882                 break;
2883         case MAINTENANCE_OUT:
2884                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2885                         /* MAINTENANCE_OUT from SCC-2
2886                          *
2887                          * Check for emulated MO_SET_TARGET_PGS.
2888                          */
2889                         if (cdb[1] == MO_SET_TARGET_PGS &&
2890                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2891                                 cmd->execute_task =
2892                                         target_emulate_set_target_port_groups;
2893                         }
2894
2895                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2896                                (cdb[8] << 8) | cdb[9];
2897                 } else  {
2898                         /* GPCMD_REPORT_KEY from multi media commands */
2899                         size = (cdb[8] << 8) + cdb[9];
2900                 }
2901                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2902                 break;
2903         case INQUIRY:
2904                 size = (cdb[3] << 8) + cdb[4];
2905                 /*
2906                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2907                  * See spc4r17 section 5.3
2908                  */
2909                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2910                         cmd->sam_task_attr = MSG_HEAD_TAG;
2911                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2912                 if (!passthrough)
2913                         cmd->execute_task = target_emulate_inquiry;
2914                 break;
2915         case READ_BUFFER:
2916                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2917                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2918                 break;
2919         case READ_CAPACITY:
2920                 size = READ_CAP_LEN;
2921                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2922                 if (!passthrough)
2923                         cmd->execute_task = target_emulate_readcapacity;
2924                 break;
2925         case READ_MEDIA_SERIAL_NUMBER:
2926         case SECURITY_PROTOCOL_IN:
2927         case SECURITY_PROTOCOL_OUT:
2928                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2929                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2930                 break;
2931         case SERVICE_ACTION_IN:
2932                 switch (cmd->t_task_cdb[1] & 0x1f) {
2933                 case SAI_READ_CAPACITY_16:
2934                         if (!passthrough)
2935                                 cmd->execute_task =
2936                                         target_emulate_readcapacity_16;
2937                         break;
2938                 default:
2939                         if (passthrough)
2940                                 break;
2941
2942                         pr_err("Unsupported SA: 0x%02x\n",
2943                                 cmd->t_task_cdb[1] & 0x1f);
2944                         goto out_unsupported_cdb;
2945                 }
2946                 /*FALLTHROUGH*/
2947         case ACCESS_CONTROL_IN:
2948         case ACCESS_CONTROL_OUT:
2949         case EXTENDED_COPY:
2950         case READ_ATTRIBUTE:
2951         case RECEIVE_COPY_RESULTS:
2952         case WRITE_ATTRIBUTE:
2953                 size = (cdb[10] << 24) | (cdb[11] << 16) |
2954                        (cdb[12] << 8) | cdb[13];
2955                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2956                 break;
2957         case RECEIVE_DIAGNOSTIC:
2958         case SEND_DIAGNOSTIC:
2959                 size = (cdb[3] << 8) | cdb[4];
2960                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2961                 break;
2962 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2963 #if 0
2964         case GPCMD_READ_CD:
2965                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2966                 size = (2336 * sectors);
2967                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2968                 break;
2969 #endif
2970         case READ_TOC:
2971                 size = cdb[8];
2972                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2973                 break;
2974         case REQUEST_SENSE:
2975                 size = cdb[4];
2976                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2977                 if (!passthrough)
2978                         cmd->execute_task = target_emulate_request_sense;
2979                 break;
2980         case READ_ELEMENT_STATUS:
2981                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2982                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2983                 break;
2984         case WRITE_BUFFER:
2985                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2986                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2987                 break;
2988         case RESERVE:
2989         case RESERVE_10:
2990                 /*
2991                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2992                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2993                  */
2994                 if (cdb[0] == RESERVE_10)
2995                         size = (cdb[7] << 8) | cdb[8];
2996                 else
2997                         size = cmd->data_length;
2998
2999                 /*
3000                  * Setup the legacy emulated handler for SPC-2 and
3001                  * >= SPC-3 compatible reservation handling (CRH=1)
3002                  * Otherwise, we assume the underlying SCSI logic is
3003                  * is running in SPC_PASSTHROUGH, and wants reservations
3004                  * emulation disabled.
3005                  */
3006                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
3007                         cmd->execute_task = target_scsi2_reservation_reserve;
3008                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3009                 break;
3010         case RELEASE:
3011         case RELEASE_10:
3012                 /*
3013                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3014                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3015                 */
3016                 if (cdb[0] == RELEASE_10)
3017                         size = (cdb[7] << 8) | cdb[8];
3018                 else
3019                         size = cmd->data_length;
3020
3021                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
3022                         cmd->execute_task = target_scsi2_reservation_release;
3023                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3024                 break;
3025         case SYNCHRONIZE_CACHE:
3026         case SYNCHRONIZE_CACHE_16:
3027                 /*
3028                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3029                  */
3030                 if (cdb[0] == SYNCHRONIZE_CACHE) {
3031                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3032                         cmd->t_task_lba = transport_lba_32(cdb);
3033                 } else {
3034                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3035                         cmd->t_task_lba = transport_lba_64(cdb);
3036                 }
3037                 if (sector_ret)
3038                         goto out_unsupported_cdb;
3039
3040                 size = transport_get_size(sectors, cdb, cmd);
3041                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3042
3043                 if (passthrough)
3044                         break;
3045
3046                 /*
3047                  * Check to ensure that LBA + Range does not exceed past end of
3048                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3049                  */
3050                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3051                         if (transport_cmd_get_valid_sectors(cmd) < 0)
3052                                 goto out_invalid_cdb_field;
3053                 }
3054                 cmd->execute_task = target_emulate_synchronize_cache;
3055                 break;
3056         case UNMAP:
3057                 size = get_unaligned_be16(&cdb[7]);
3058                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3059                 if (!passthrough)
3060                         cmd->execute_task = target_emulate_unmap;
3061                 break;
3062         case WRITE_SAME_16:
3063                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3064                 if (sector_ret)
3065                         goto out_unsupported_cdb;
3066
3067                 if (sectors)
3068                         size = transport_get_size(1, cdb, cmd);
3069                 else {
3070                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3071                         goto out_invalid_cdb_field;
3072                 }
3073
3074                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3075                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3076
3077                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3078                         goto out_unsupported_cdb;
3079                 if (!passthrough)
3080                         cmd->execute_task = target_emulate_write_same;
3081                 break;
3082         case WRITE_SAME:
3083                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3084                 if (sector_ret)
3085                         goto out_unsupported_cdb;
3086
3087                 if (sectors)
3088                         size = transport_get_size(1, cdb, cmd);
3089                 else {
3090                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3091                         goto out_invalid_cdb_field;
3092                 }
3093
3094                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3095                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3096                 /*
3097                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3098                  * of byte 1 bit 3 UNMAP instead of original reserved field
3099                  */
3100                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3101                         goto out_unsupported_cdb;
3102                 if (!passthrough)
3103                         cmd->execute_task = target_emulate_write_same;
3104                 break;
3105         case ALLOW_MEDIUM_REMOVAL:
3106         case ERASE:
3107         case REZERO_UNIT:
3108         case SEEK_10:
3109         case SPACE:
3110         case START_STOP:
3111         case TEST_UNIT_READY:
3112         case VERIFY:
3113         case WRITE_FILEMARKS:
3114                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3115                 if (!passthrough)
3116                         cmd->execute_task = target_emulate_noop;
3117                 break;
3118         case GPCMD_CLOSE_TRACK:
3119         case INITIALIZE_ELEMENT_STATUS:
3120         case GPCMD_LOAD_UNLOAD:
3121         case GPCMD_SET_SPEED:
3122         case MOVE_MEDIUM:
3123                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3124                 break;
3125         case REPORT_LUNS:
3126                 cmd->execute_task = target_report_luns;
3127                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3128                 /*
3129                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3130                  * See spc4r17 section 5.3
3131                  */
3132                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3133                         cmd->sam_task_attr = MSG_HEAD_TAG;
3134                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3135                 break;
3136         default:
3137                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3138                         " 0x%02x, sending CHECK_CONDITION.\n",
3139                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3140                 goto out_unsupported_cdb;
3141         }
3142
3143         if (size != cmd->data_length) {
3144                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3145                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3146                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3147                                 cmd->data_length, size, cdb[0]);
3148
3149                 cmd->cmd_spdtl = size;
3150
3151                 if (cmd->data_direction == DMA_TO_DEVICE) {
3152                         pr_err("Rejecting underflow/overflow"
3153                                         " WRITE data\n");
3154                         goto out_invalid_cdb_field;
3155                 }
3156                 /*
3157                  * Reject READ_* or WRITE_* with overflow/underflow for
3158                  * type SCF_SCSI_DATA_SG_IO_CDB.
3159                  */
3160                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3161                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3162                                 " CDB on non 512-byte sector setup subsystem"
3163                                 " plugin: %s\n", dev->transport->name);
3164                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3165                         goto out_invalid_cdb_field;
3166                 }
3167
3168                 if (size > cmd->data_length) {
3169                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3170                         cmd->residual_count = (size - cmd->data_length);
3171                 } else {
3172                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3173                         cmd->residual_count = (cmd->data_length - size);
3174                 }
3175                 cmd->data_length = size;
3176         }
3177
3178         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB &&
3179             sectors > dev->se_sub_dev->se_dev_attrib.fabric_max_sectors) {
3180                 printk_ratelimited(KERN_ERR "SCSI OP %02xh with too big sectors %u\n",
3181                                    cdb[0], sectors);
3182                 goto out_invalid_cdb_field;
3183         }
3184
3185         /* reject any command that we don't have a handler for */
3186         if (!(passthrough || cmd->execute_task ||
3187              (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3188                 goto out_unsupported_cdb;
3189
3190         transport_set_supported_SAM_opcode(cmd);
3191         return ret;
3192
3193 out_unsupported_cdb:
3194         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3195         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3196         return -EINVAL;
3197 out_invalid_cdb_field:
3198         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3199         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3200         return -EINVAL;
3201 }
3202
3203 /*
3204  * Called from I/O completion to determine which dormant/delayed
3205  * and ordered cmds need to have their tasks added to the execution queue.
3206  */
3207 static void transport_complete_task_attr(struct se_cmd *cmd)
3208 {
3209         struct se_device *dev = cmd->se_dev;
3210         struct se_cmd *cmd_p, *cmd_tmp;
3211         int new_active_tasks = 0;
3212
3213         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3214                 atomic_dec(&dev->simple_cmds);
3215                 smp_mb__after_atomic_dec();
3216                 dev->dev_cur_ordered_id++;
3217                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3218                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3219                         cmd->se_ordered_id);
3220         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3221                 dev->dev_cur_ordered_id++;
3222                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3223                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3224                         cmd->se_ordered_id);
3225         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3226                 atomic_dec(&dev->dev_ordered_sync);
3227                 smp_mb__after_atomic_dec();
3228
3229                 dev->dev_cur_ordered_id++;
3230                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3231                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3232         }
3233         /*
3234          * Process all commands up to the last received
3235          * ORDERED task attribute which requires another blocking
3236          * boundary
3237          */
3238         spin_lock(&dev->delayed_cmd_lock);
3239         list_for_each_entry_safe(cmd_p, cmd_tmp,
3240                         &dev->delayed_cmd_list, se_delayed_node) {
3241
3242                 list_del(&cmd_p->se_delayed_node);
3243                 spin_unlock(&dev->delayed_cmd_lock);
3244
3245                 pr_debug("Calling add_tasks() for"
3246                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3247                         " Dormant -> Active, se_ordered_id: %u\n",
3248                         cmd_p->t_task_cdb[0],
3249                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3250
3251                 transport_add_tasks_from_cmd(cmd_p);
3252                 new_active_tasks++;
3253
3254                 spin_lock(&dev->delayed_cmd_lock);
3255                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3256                         break;
3257         }
3258         spin_unlock(&dev->delayed_cmd_lock);
3259         /*
3260          * If new tasks have become active, wake up the transport thread
3261          * to do the processing of the Active tasks.
3262          */
3263         if (new_active_tasks != 0)
3264                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3265 }
3266
3267 static void transport_complete_qf(struct se_cmd *cmd)
3268 {
3269         int ret = 0;
3270
3271         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3272                 transport_complete_task_attr(cmd);
3273
3274         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3275                 ret = cmd->se_tfo->queue_status(cmd);
3276                 if (ret)
3277                         goto out;
3278         }
3279
3280         switch (cmd->data_direction) {
3281         case DMA_FROM_DEVICE:
3282                 ret = cmd->se_tfo->queue_data_in(cmd);
3283                 break;
3284         case DMA_TO_DEVICE:
3285                 if (cmd->t_bidi_data_sg) {
3286                         ret = cmd->se_tfo->queue_data_in(cmd);
3287                         if (ret < 0)
3288                                 break;
3289                 }
3290                 /* Fall through for DMA_TO_DEVICE */
3291         case DMA_NONE:
3292                 ret = cmd->se_tfo->queue_status(cmd);
3293                 break;
3294         default:
3295                 break;
3296         }
3297
3298 out:
3299         if (ret < 0) {
3300                 transport_handle_queue_full(cmd, cmd->se_dev);
3301                 return;
3302         }
3303         transport_lun_remove_cmd(cmd);
3304         transport_cmd_check_stop_to_fabric(cmd);
3305 }
3306
3307 static void transport_handle_queue_full(
3308         struct se_cmd *cmd,
3309         struct se_device *dev)
3310 {
3311         spin_lock_irq(&dev->qf_cmd_lock);
3312         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3313         atomic_inc(&dev->dev_qf_count);
3314         smp_mb__after_atomic_inc();
3315         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3316
3317         schedule_work(&cmd->se_dev->qf_work_queue);
3318 }
3319
3320 static void target_complete_ok_work(struct work_struct *work)
3321 {
3322         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3323         int reason = 0, ret;
3324
3325         /*
3326          * Check if we need to move delayed/dormant tasks from cmds on the
3327          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3328          * Attribute.
3329          */
3330         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3331                 transport_complete_task_attr(cmd);
3332         /*
3333          * Check to schedule QUEUE_FULL work, or execute an existing
3334          * cmd->transport_qf_callback()
3335          */
3336         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3337                 schedule_work(&cmd->se_dev->qf_work_queue);
3338
3339         /*
3340          * Check if we need to retrieve a sense buffer from
3341          * the struct se_cmd in question.
3342          */
3343         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3344                 if (transport_get_sense_data(cmd) < 0)
3345                         reason = TCM_NON_EXISTENT_LUN;
3346
3347                 /*
3348                  * Only set when an struct se_task->task_scsi_status returned
3349                  * a non GOOD status.
3350                  */
3351                 if (cmd->scsi_status) {
3352                         ret = transport_send_check_condition_and_sense(
3353                                         cmd, reason, 1);
3354                         if (ret == -EAGAIN || ret == -ENOMEM)
3355                                 goto queue_full;
3356
3357                         transport_lun_remove_cmd(cmd);
3358                         transport_cmd_check_stop_to_fabric(cmd);
3359                         return;
3360                 }
3361         }
3362         /*
3363          * Check for a callback, used by amongst other things
3364          * XDWRITE_READ_10 emulation.
3365          */
3366         if (cmd->transport_complete_callback)
3367                 cmd->transport_complete_callback(cmd);
3368
3369         switch (cmd->data_direction) {
3370         case DMA_FROM_DEVICE:
3371                 spin_lock(&cmd->se_lun->lun_sep_lock);
3372                 if (cmd->se_lun->lun_sep) {
3373                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3374                                         cmd->data_length;
3375                 }
3376                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3377
3378                 ret = cmd->se_tfo->queue_data_in(cmd);
3379                 if (ret == -EAGAIN || ret == -ENOMEM)
3380                         goto queue_full;
3381                 break;
3382         case DMA_TO_DEVICE:
3383                 spin_lock(&cmd->se_lun->lun_sep_lock);
3384                 if (cmd->se_lun->lun_sep) {
3385                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3386                                 cmd->data_length;
3387                 }
3388                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3389                 /*
3390                  * Check if we need to send READ payload for BIDI-COMMAND
3391                  */
3392                 if (cmd->t_bidi_data_sg) {
3393                         spin_lock(&cmd->se_lun->lun_sep_lock);
3394                         if (cmd->se_lun->lun_sep) {
3395                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3396                                         cmd->data_length;
3397                         }
3398                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3399                         ret = cmd->se_tfo->queue_data_in(cmd);
3400                         if (ret == -EAGAIN || ret == -ENOMEM)
3401                                 goto queue_full;
3402                         break;
3403                 }
3404                 /* Fall through for DMA_TO_DEVICE */
3405         case DMA_NONE:
3406                 ret = cmd->se_tfo->queue_status(cmd);
3407                 if (ret == -EAGAIN || ret == -ENOMEM)
3408                         goto queue_full;
3409                 break;
3410         default:
3411                 break;
3412         }
3413
3414         transport_lun_remove_cmd(cmd);
3415         transport_cmd_check_stop_to_fabric(cmd);
3416         return;
3417
3418 queue_full:
3419         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3420                 " data_direction: %d\n", cmd, cmd->data_direction);
3421         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3422         transport_handle_queue_full(cmd, cmd->se_dev);
3423 }
3424
3425 static void transport_free_dev_tasks(struct se_cmd *cmd)
3426 {
3427         struct se_task *task, *task_tmp;
3428         unsigned long flags;
3429         LIST_HEAD(dispose_list);
3430
3431         spin_lock_irqsave(&cmd->t_state_lock, flags);
3432         list_for_each_entry_safe(task, task_tmp,
3433                                 &cmd->t_task_list, t_list) {
3434                 if (!(task->task_flags & TF_ACTIVE))
3435                         list_move_tail(&task->t_list, &dispose_list);
3436         }
3437         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3438
3439         while (!list_empty(&dispose_list)) {
3440                 task = list_first_entry(&dispose_list, struct se_task, t_list);
3441
3442                 if (task->task_sg != cmd->t_data_sg &&
3443                     task->task_sg != cmd->t_bidi_data_sg)
3444                         kfree(task->task_sg);
3445
3446                 list_del(&task->t_list);
3447
3448                 cmd->se_dev->transport->free_task(task);
3449         }
3450 }
3451
3452 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3453 {
3454         struct scatterlist *sg;
3455         int count;
3456
3457         for_each_sg(sgl, sg, nents, count)
3458                 __free_page(sg_page(sg));
3459
3460         kfree(sgl);
3461 }
3462
3463 static inline void transport_free_pages(struct se_cmd *cmd)
3464 {
3465         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3466                 return;
3467
3468         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3469         cmd->t_data_sg = NULL;
3470         cmd->t_data_nents = 0;
3471
3472         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3473         cmd->t_bidi_data_sg = NULL;
3474         cmd->t_bidi_data_nents = 0;
3475 }
3476
3477 /**
3478  * transport_release_cmd - free a command
3479  * @cmd:       command to free
3480  *
3481  * This routine unconditionally frees a command, and reference counting
3482  * or list removal must be done in the caller.
3483  */
3484 static void transport_release_cmd(struct se_cmd *cmd)
3485 {
3486         BUG_ON(!cmd->se_tfo);
3487
3488         if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
3489                 core_tmr_release_req(cmd->se_tmr_req);
3490         if (cmd->t_task_cdb != cmd->__t_task_cdb)
3491                 kfree(cmd->t_task_cdb);
3492         /*
3493          * If this cmd has been setup with target_get_sess_cmd(), drop
3494          * the kref and call ->release_cmd() in kref callback.
3495          */
3496          if (cmd->check_release != 0) {
3497                 target_put_sess_cmd(cmd->se_sess, cmd);
3498                 return;
3499         }
3500         cmd->se_tfo->release_cmd(cmd);
3501 }
3502
3503 /**
3504  * transport_put_cmd - release a reference to a command
3505  * @cmd:       command to release
3506  *
3507  * This routine releases our reference to the command and frees it if possible.
3508  */
3509 static void transport_put_cmd(struct se_cmd *cmd)
3510 {
3511         unsigned long flags;
3512         int free_tasks = 0;
3513
3514         spin_lock_irqsave(&cmd->t_state_lock, flags);
3515         if (atomic_read(&cmd->t_fe_count)) {
3516                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3517                         goto out_busy;
3518         }
3519
3520         if (atomic_read(&cmd->t_se_count)) {
3521                 if (!atomic_dec_and_test(&cmd->t_se_count))
3522                         goto out_busy;
3523         }
3524
3525         if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
3526                 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
3527                 transport_all_task_dev_remove_state(cmd);
3528                 free_tasks = 1;
3529         }
3530         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3531
3532         if (free_tasks != 0)
3533                 transport_free_dev_tasks(cmd);
3534
3535         transport_free_pages(cmd);
3536         transport_release_cmd(cmd);
3537         return;
3538 out_busy:
3539         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3540 }
3541
3542 /*
3543  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3544  * allocating in the core.
3545  * @cmd:  Associated se_cmd descriptor
3546  * @mem:  SGL style memory for TCM WRITE / READ
3547  * @sg_mem_num: Number of SGL elements
3548  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3549  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3550  *
3551  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3552  * of parameters.
3553  */
3554 int transport_generic_map_mem_to_cmd(
3555         struct se_cmd *cmd,
3556         struct scatterlist *sgl,
3557         u32 sgl_count,
3558         struct scatterlist *sgl_bidi,
3559         u32 sgl_bidi_count)
3560 {
3561         if (!sgl || !sgl_count)
3562                 return 0;
3563
3564         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3565             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3566                 /*
3567                  * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3568                  * scatterlists already have been set to follow what the fabric
3569                  * passes for the original expected data transfer length.
3570                  */
3571                 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3572                         pr_warn("Rejecting SCSI DATA overflow for fabric using"
3573                                 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3574                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3575                         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3576                         return -EINVAL;
3577                 }
3578
3579                 cmd->t_data_sg = sgl;
3580                 cmd->t_data_nents = sgl_count;
3581
3582                 if (sgl_bidi && sgl_bidi_count) {
3583                         cmd->t_bidi_data_sg = sgl_bidi;
3584                         cmd->t_bidi_data_nents = sgl_bidi_count;
3585                 }
3586                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3587         }
3588
3589         return 0;
3590 }
3591 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3592
3593 void *transport_kmap_data_sg(struct se_cmd *cmd)
3594 {
3595         struct scatterlist *sg = cmd->t_data_sg;
3596         struct page **pages;
3597         int i;
3598
3599         BUG_ON(!sg);
3600         /*
3601          * We need to take into account a possible offset here for fabrics like
3602          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3603          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3604          */
3605         if (!cmd->t_data_nents)
3606                 return NULL;
3607         else if (cmd->t_data_nents == 1)
3608                 return kmap(sg_page(sg)) + sg->offset;
3609
3610         /* >1 page. use vmap */
3611         pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
3612         if (!pages)
3613                 return NULL;
3614
3615         /* convert sg[] to pages[] */
3616         for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
3617                 pages[i] = sg_page(sg);
3618         }
3619
3620         cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
3621         kfree(pages);
3622         if (!cmd->t_data_vmap)
3623                 return NULL;
3624
3625         return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
3626 }
3627 EXPORT_SYMBOL(transport_kmap_data_sg);
3628
3629 void transport_kunmap_data_sg(struct se_cmd *cmd)
3630 {
3631         if (!cmd->t_data_nents) {
3632                 return;
3633         } else if (cmd->t_data_nents == 1) {
3634                 kunmap(sg_page(cmd->t_data_sg));
3635                 return;
3636         }
3637
3638         vunmap(cmd->t_data_vmap);
3639         cmd->t_data_vmap = NULL;
3640 }
3641 EXPORT_SYMBOL(transport_kunmap_data_sg);
3642
3643 static int
3644 transport_generic_get_mem(struct se_cmd *cmd)
3645 {
3646         u32 length = cmd->data_length;
3647         unsigned int nents;
3648         struct page *page;
3649         gfp_t zero_flag;
3650         int i = 0;
3651
3652         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3653         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3654         if (!cmd->t_data_sg)
3655                 return -ENOMEM;
3656
3657         cmd->t_data_nents = nents;
3658         sg_init_table(cmd->t_data_sg, nents);
3659
3660         zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO;
3661
3662         while (length) {
3663                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3664                 page = alloc_page(GFP_KERNEL | zero_flag);
3665                 if (!page)
3666                         goto out;
3667
3668                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3669                 length -= page_len;
3670                 i++;
3671         }
3672         return 0;
3673
3674 out:
3675         while (i >= 0) {
3676                 __free_page(sg_page(&cmd->t_data_sg[i]));
3677                 i--;
3678         }
3679         kfree(cmd->t_data_sg);
3680         cmd->t_data_sg = NULL;
3681         return -ENOMEM;
3682 }
3683
3684 /* Reduce sectors if they are too long for the device */
3685 static inline sector_t transport_limit_task_sectors(
3686         struct se_device *dev,
3687         unsigned long long lba,
3688         sector_t sectors)
3689 {
3690         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3691
3692         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3693                 if ((lba + sectors) > transport_dev_end_lba(dev))
3694                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3695
3696         return sectors;
3697 }
3698
3699
3700 /*
3701  * This function can be used by HW target mode drivers to create a linked
3702  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3703  * This is intended to be called during the completion path by TCM Core
3704  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3705  */
3706 void transport_do_task_sg_chain(struct se_cmd *cmd)
3707 {
3708         struct scatterlist *sg_first = NULL;
3709         struct scatterlist *sg_prev = NULL;
3710         int sg_prev_nents = 0;
3711         struct scatterlist *sg;
3712         struct se_task *task;
3713         u32 chained_nents = 0;
3714         int i;
3715
3716         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3717
3718         /*
3719          * Walk the struct se_task list and setup scatterlist chains
3720          * for each contiguously allocated struct se_task->task_sg[].
3721          */
3722         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3723                 if (!task->task_sg)
3724                         continue;
3725
3726                 if (!sg_first) {
3727                         sg_first = task->task_sg;
3728                         chained_nents = task->task_sg_nents;
3729                 } else {
3730                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3731                         chained_nents += task->task_sg_nents;
3732                 }
3733                 /*
3734                  * For the padded tasks, use the extra SGL vector allocated
3735                  * in transport_allocate_data_tasks() for the sg_prev_nents
3736                  * offset into sg_chain() above.
3737                  *
3738                  * We do not need the padding for the last task (or a single
3739                  * task), but in that case we will never use the sg_prev_nents
3740                  * value below which would be incorrect.
3741                  */
3742                 sg_prev_nents = (task->task_sg_nents + 1);
3743                 sg_prev = task->task_sg;
3744         }
3745         /*
3746          * Setup the starting pointer and total t_tasks_sg_linked_no including
3747          * padding SGs for linking and to mark the end.
3748          */
3749         cmd->t_tasks_sg_chained = sg_first;
3750         cmd->t_tasks_sg_chained_no = chained_nents;
3751
3752         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3753                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3754                 cmd->t_tasks_sg_chained_no);
3755
3756         for_each_sg(cmd->t_tasks_sg_chained, sg,
3757                         cmd->t_tasks_sg_chained_no, i) {
3758
3759                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3760                         i, sg, sg_page(sg), sg->length, sg->offset);
3761                 if (sg_is_chain(sg))
3762                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3763                 if (sg_is_last(sg))
3764                         pr_debug("SG: %p sg_is_last=1\n", sg);
3765         }
3766 }
3767 EXPORT_SYMBOL(transport_do_task_sg_chain);
3768
3769 /*
3770  * Break up cmd into chunks transport can handle
3771  */
3772 static int
3773 transport_allocate_data_tasks(struct se_cmd *cmd,
3774         enum dma_data_direction data_direction,
3775         struct scatterlist *cmd_sg, unsigned int sgl_nents)
3776 {
3777         struct se_device *dev = cmd->se_dev;
3778         int task_count, i;
3779         unsigned long long lba;
3780         sector_t sectors, dev_max_sectors;
3781         u32 sector_size;
3782
3783         if (transport_cmd_get_valid_sectors(cmd) < 0)
3784                 return -EINVAL;
3785
3786         dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3787         sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3788
3789         WARN_ON(cmd->data_length % sector_size);
3790
3791         lba = cmd->t_task_lba;
3792         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3793         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3794
3795         /*
3796          * If we need just a single task reuse the SG list in the command
3797          * and avoid a lot of work.
3798          */
3799         if (task_count == 1) {
3800                 struct se_task *task;
3801                 unsigned long flags;
3802
3803                 task = transport_generic_get_task(cmd, data_direction);
3804                 if (!task)
3805                         return -ENOMEM;
3806
3807                 task->task_sg = cmd_sg;
3808                 task->task_sg_nents = sgl_nents;
3809
3810                 task->task_lba = lba;
3811                 task->task_sectors = sectors;
3812                 task->task_size = task->task_sectors * sector_size;
3813
3814                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3815                 list_add_tail(&task->t_list, &cmd->t_task_list);
3816                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3817
3818                 return task_count;
3819         }
3820
3821         for (i = 0; i < task_count; i++) {
3822                 struct se_task *task;
3823                 unsigned int task_size, task_sg_nents_padded;
3824                 struct scatterlist *sg;
3825                 unsigned long flags;
3826                 int count;
3827
3828                 task = transport_generic_get_task(cmd, data_direction);
3829                 if (!task)
3830                         return -ENOMEM;
3831
3832                 task->task_lba = lba;
3833                 task->task_sectors = min(sectors, dev_max_sectors);
3834                 task->task_size = task->task_sectors * sector_size;
3835
3836                 /*
3837                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3838                  * in order to calculate the number per task SGL entries
3839                  */
3840                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3841                 /*
3842                  * Check if the fabric module driver is requesting that all
3843                  * struct se_task->task_sg[] be chained together..  If so,
3844                  * then allocate an extra padding SG entry for linking and
3845                  * marking the end of the chained SGL for every task except
3846                  * the last one for (task_count > 1) operation, or skipping
3847                  * the extra padding for the (task_count == 1) case.
3848                  */
3849                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3850                         task_sg_nents_padded = (task->task_sg_nents + 1);
3851                 } else
3852                         task_sg_nents_padded = task->task_sg_nents;
3853
3854                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3855                                         task_sg_nents_padded, GFP_KERNEL);
3856                 if (!task->task_sg) {
3857                         cmd->se_dev->transport->free_task(task);
3858                         return -ENOMEM;
3859                 }
3860
3861                 sg_init_table(task->task_sg, task_sg_nents_padded);
3862
3863                 task_size = task->task_size;
3864
3865                 /* Build new sgl, only up to task_size */
3866                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3867                         if (cmd_sg->length > task_size)
3868                                 break;
3869
3870                         *sg = *cmd_sg;
3871                         task_size -= cmd_sg->length;
3872                         cmd_sg = sg_next(cmd_sg);
3873                 }
3874
3875                 lba += task->task_sectors;
3876                 sectors -= task->task_sectors;
3877
3878                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3879                 list_add_tail(&task->t_list, &cmd->t_task_list);
3880                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3881         }
3882
3883         return task_count;
3884 }
3885
3886 static int
3887 transport_allocate_control_task(struct se_cmd *cmd)
3888 {
3889         struct se_task *task;
3890         unsigned long flags;
3891
3892         /* Workaround for handling zero-length control CDBs */
3893         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3894             !cmd->data_length)
3895                 return 0;
3896
3897         task = transport_generic_get_task(cmd, cmd->data_direction);
3898         if (!task)
3899                 return -ENOMEM;
3900
3901         task->task_sg = cmd->t_data_sg;
3902         task->task_size = cmd->data_length;
3903         task->task_sg_nents = cmd->t_data_nents;
3904
3905         spin_lock_irqsave(&cmd->t_state_lock, flags);
3906         list_add_tail(&task->t_list, &cmd->t_task_list);
3907         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3908
3909         /* Success! Return number of tasks allocated */
3910         return 1;
3911 }
3912
3913 /*
3914  * Allocate any required ressources to execute the command, and either place
3915  * it on the execution queue if possible.  For writes we might not have the
3916  * payload yet, thus notify the fabric via a call to ->write_pending instead.
3917  */
3918 int transport_generic_new_cmd(struct se_cmd *cmd)
3919 {
3920         struct se_device *dev = cmd->se_dev;
3921         int task_cdbs, task_cdbs_bidi = 0;
3922         int set_counts = 1;
3923         int ret = 0;
3924
3925         /*
3926          * Determine is the TCM fabric module has already allocated physical
3927          * memory, and is directly calling transport_generic_map_mem_to_cmd()
3928          * beforehand.
3929          */
3930         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3931             cmd->data_length) {
3932                 ret = transport_generic_get_mem(cmd);
3933                 if (ret < 0)
3934                         goto out_fail;
3935         }
3936
3937         /*
3938          * For BIDI command set up the read tasks first.
3939          */
3940         if (cmd->t_bidi_data_sg &&
3941             dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3942                 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3943
3944                 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3945                                 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3946                                 cmd->t_bidi_data_nents);
3947                 if (task_cdbs_bidi <= 0)
3948                         goto out_fail;
3949
3950                 atomic_inc(&cmd->t_fe_count);
3951                 atomic_inc(&cmd->t_se_count);
3952                 set_counts = 0;
3953         }
3954
3955         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3956                 task_cdbs = transport_allocate_data_tasks(cmd,
3957                                         cmd->data_direction, cmd->t_data_sg,
3958                                         cmd->t_data_nents);
3959         } else {
3960                 task_cdbs = transport_allocate_control_task(cmd);
3961         }
3962
3963         if (task_cdbs < 0)
3964                 goto out_fail;
3965         else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3966                 spin_lock_irq(&cmd->t_state_lock);
3967                 cmd->t_state = TRANSPORT_COMPLETE;
3968                 cmd->transport_state |= CMD_T_ACTIVE;
3969                 spin_unlock_irq(&cmd->t_state_lock);
3970
3971                 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3972                         u8 ua_asc = 0, ua_ascq = 0;
3973
3974                         core_scsi3_ua_clear_for_request_sense(cmd,
3975                                         &ua_asc, &ua_ascq);
3976                 }
3977
3978                 INIT_WORK(&cmd->work, target_complete_ok_work);
3979                 queue_work(target_completion_wq, &cmd->work);
3980                 return 0;
3981         }
3982
3983         if (set_counts) {
3984                 atomic_inc(&cmd->t_fe_count);
3985                 atomic_inc(&cmd->t_se_count);
3986         }
3987
3988         cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3989         atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3990         atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3991
3992         /*
3993          * For WRITEs, let the fabric know its buffer is ready..
3994          * This WRITE struct se_cmd (and all of its associated struct se_task's)
3995          * will be added to the struct se_device execution queue after its WRITE
3996          * data has arrived. (ie: It gets handled by the transport processing
3997          * thread a second time)
3998          */
3999         if (cmd->data_direction == DMA_TO_DEVICE) {
4000                 transport_add_tasks_to_state_queue(cmd);
4001                 return transport_generic_write_pending(cmd);
4002         }
4003         /*
4004          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4005          * to the execution queue.
4006          */
4007         transport_execute_tasks(cmd);
4008         return 0;
4009
4010 out_fail:
4011         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4012         cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4013         return -EINVAL;
4014 }
4015 EXPORT_SYMBOL(transport_generic_new_cmd);
4016
4017 /*      transport_generic_process_write():
4018  *
4019  *
4020  */
4021 void transport_generic_process_write(struct se_cmd *cmd)
4022 {
4023         transport_execute_tasks(cmd);
4024 }
4025 EXPORT_SYMBOL(transport_generic_process_write);
4026
4027 static void transport_write_pending_qf(struct se_cmd *cmd)
4028 {
4029         int ret;
4030
4031         ret = cmd->se_tfo->write_pending(cmd);
4032         if (ret == -EAGAIN || ret == -ENOMEM) {
4033                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
4034                          cmd);
4035                 transport_handle_queue_full(cmd, cmd->se_dev);
4036         }
4037 }
4038
4039 static int transport_generic_write_pending(struct se_cmd *cmd)
4040 {
4041         unsigned long flags;
4042         int ret;
4043
4044         spin_lock_irqsave(&cmd->t_state_lock, flags);
4045         cmd->t_state = TRANSPORT_WRITE_PENDING;
4046         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4047
4048         /*
4049          * Clear the se_cmd for WRITE_PENDING status in order to set
4050          * CMD_T_ACTIVE so that transport_generic_handle_data can be called
4051          * from HW target mode interrupt code.  This is safe to be called
4052          * with transport_off=1 before the cmd->se_tfo->write_pending
4053          * because the se_cmd->se_lun pointer is not being cleared.
4054          */
4055         transport_cmd_check_stop(cmd, 1, 0);
4056
4057         /*
4058          * Call the fabric write_pending function here to let the
4059          * frontend know that WRITE buffers are ready.
4060          */
4061         ret = cmd->se_tfo->write_pending(cmd);
4062         if (ret == -EAGAIN || ret == -ENOMEM)
4063                 goto queue_full;
4064         else if (ret < 0)
4065                 return ret;
4066
4067         return 1;
4068
4069 queue_full:
4070         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4071         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4072         transport_handle_queue_full(cmd, cmd->se_dev);
4073         return 0;
4074 }
4075
4076 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4077 {
4078         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4079                 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
4080                          transport_wait_for_tasks(cmd);
4081
4082                 transport_release_cmd(cmd);
4083         } else {
4084                 if (wait_for_tasks)
4085                         transport_wait_for_tasks(cmd);
4086
4087                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4088
4089                 if (cmd->se_lun)
4090                         transport_lun_remove_cmd(cmd);
4091
4092                 transport_free_dev_tasks(cmd);
4093
4094                 transport_put_cmd(cmd);
4095         }
4096 }
4097 EXPORT_SYMBOL(transport_generic_free_cmd);
4098
4099 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
4100  * @se_sess:    session to reference
4101  * @se_cmd:     command descriptor to add
4102  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
4103  */
4104 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
4105                         bool ack_kref)
4106 {
4107         unsigned long flags;
4108
4109         kref_init(&se_cmd->cmd_kref);
4110         /*
4111          * Add a second kref if the fabric caller is expecting to handle
4112          * fabric acknowledgement that requires two target_put_sess_cmd()
4113          * invocations before se_cmd descriptor release.
4114          */
4115         if (ack_kref == true) {
4116                 kref_get(&se_cmd->cmd_kref);
4117                 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
4118         }
4119
4120         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4121         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
4122         se_cmd->check_release = 1;
4123         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4124 }
4125 EXPORT_SYMBOL(target_get_sess_cmd);
4126
4127 static void target_release_cmd_kref(struct kref *kref)
4128 {
4129         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
4130         struct se_session *se_sess = se_cmd->se_sess;
4131         unsigned long flags;
4132
4133         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4134         if (list_empty(&se_cmd->se_cmd_list)) {
4135                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4136                 se_cmd->se_tfo->release_cmd(se_cmd);
4137                 return;
4138         }
4139         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
4140                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4141                 complete(&se_cmd->cmd_wait_comp);
4142                 return;
4143         }
4144         list_del(&se_cmd->se_cmd_list);
4145         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4146
4147         se_cmd->se_tfo->release_cmd(se_cmd);
4148 }
4149
4150 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4151  * @se_sess:    session to reference
4152  * @se_cmd:     command descriptor to drop
4153  */
4154 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4155 {
4156         return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
4157 }
4158 EXPORT_SYMBOL(target_put_sess_cmd);
4159
4160 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4161  * @se_sess:    session to split
4162  */
4163 void target_splice_sess_cmd_list(struct se_session *se_sess)
4164 {
4165         struct se_cmd *se_cmd;
4166         unsigned long flags;
4167
4168         WARN_ON(!list_empty(&se_sess->sess_wait_list));
4169         INIT_LIST_HEAD(&se_sess->sess_wait_list);
4170
4171         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4172         se_sess->sess_tearing_down = 1;
4173
4174         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4175
4176         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4177                 se_cmd->cmd_wait_set = 1;
4178
4179         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4180 }
4181 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4182
4183 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4184  * @se_sess:    session to wait for active I/O
4185  * @wait_for_tasks:     Make extra transport_wait_for_tasks call
4186  */
4187 void target_wait_for_sess_cmds(
4188         struct se_session *se_sess,
4189         int wait_for_tasks)
4190 {
4191         struct se_cmd *se_cmd, *tmp_cmd;
4192         bool rc = false;
4193
4194         list_for_each_entry_safe(se_cmd, tmp_cmd,
4195                                 &se_sess->sess_wait_list, se_cmd_list) {
4196                 list_del(&se_cmd->se_cmd_list);
4197
4198                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4199                         " %d\n", se_cmd, se_cmd->t_state,
4200                         se_cmd->se_tfo->get_cmd_state(se_cmd));
4201
4202                 if (wait_for_tasks) {
4203                         pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4204                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4205                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4206
4207                         rc = transport_wait_for_tasks(se_cmd);
4208
4209                         pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4210                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4211                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4212                 }
4213
4214                 if (!rc) {
4215                         wait_for_completion(&se_cmd->cmd_wait_comp);
4216                         pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4217                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4218                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4219                 }
4220
4221                 se_cmd->se_tfo->release_cmd(se_cmd);
4222         }
4223 }
4224 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4225
4226 /*      transport_lun_wait_for_tasks():
4227  *
4228  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4229  *      an struct se_lun to be successfully shutdown.
4230  */
4231 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4232 {
4233         unsigned long flags;
4234         int ret;
4235         /*
4236          * If the frontend has already requested this struct se_cmd to
4237          * be stopped, we can safely ignore this struct se_cmd.
4238          */
4239         spin_lock_irqsave(&cmd->t_state_lock, flags);
4240         if (cmd->transport_state & CMD_T_STOP) {
4241                 cmd->transport_state &= ~CMD_T_LUN_STOP;
4242
4243                 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
4244                          cmd->se_tfo->get_task_tag(cmd));
4245                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4246                 transport_cmd_check_stop(cmd, 1, 0);
4247                 return -EPERM;
4248         }
4249         cmd->transport_state |= CMD_T_LUN_FE_STOP;
4250         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4251
4252         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4253
4254         ret = transport_stop_tasks_for_cmd(cmd);
4255
4256         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4257                         " %d\n", cmd, cmd->t_task_list_num, ret);
4258         if (!ret) {
4259                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4260                                 cmd->se_tfo->get_task_tag(cmd));
4261                 wait_for_completion(&cmd->transport_lun_stop_comp);
4262                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4263                                 cmd->se_tfo->get_task_tag(cmd));
4264         }
4265         transport_remove_cmd_from_queue(cmd);
4266
4267         return 0;
4268 }
4269
4270 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4271 {
4272         struct se_cmd *cmd = NULL;
4273         unsigned long lun_flags, cmd_flags;
4274         /*
4275          * Do exception processing and return CHECK_CONDITION status to the
4276          * Initiator Port.
4277          */
4278         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4279         while (!list_empty(&lun->lun_cmd_list)) {
4280                 cmd = list_first_entry(&lun->lun_cmd_list,
4281                        struct se_cmd, se_lun_node);
4282                 list_del_init(&cmd->se_lun_node);
4283
4284                 /*
4285                  * This will notify iscsi_target_transport.c:
4286                  * transport_cmd_check_stop() that a LUN shutdown is in
4287                  * progress for the iscsi_cmd_t.
4288                  */
4289                 spin_lock(&cmd->t_state_lock);
4290                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4291                         "_lun_stop for  ITT: 0x%08x\n",
4292                         cmd->se_lun->unpacked_lun,
4293                         cmd->se_tfo->get_task_tag(cmd));
4294                 cmd->transport_state |= CMD_T_LUN_STOP;
4295                 spin_unlock(&cmd->t_state_lock);
4296
4297                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4298
4299                 if (!cmd->se_lun) {
4300                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4301                                 cmd->se_tfo->get_task_tag(cmd),
4302                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4303                         BUG();
4304                 }
4305                 /*
4306                  * If the Storage engine still owns the iscsi_cmd_t, determine
4307                  * and/or stop its context.
4308                  */
4309                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4310                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4311                         cmd->se_tfo->get_task_tag(cmd));
4312
4313                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4314                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4315                         continue;
4316                 }
4317
4318                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4319                         "_wait_for_tasks(): SUCCESS\n",
4320                         cmd->se_lun->unpacked_lun,
4321                         cmd->se_tfo->get_task_tag(cmd));
4322
4323                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4324                 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
4325                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4326                         goto check_cond;
4327                 }
4328                 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
4329                 transport_all_task_dev_remove_state(cmd);
4330                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4331
4332                 transport_free_dev_tasks(cmd);
4333                 /*
4334                  * The Storage engine stopped this struct se_cmd before it was
4335                  * send to the fabric frontend for delivery back to the
4336                  * Initiator Node.  Return this SCSI CDB back with an
4337                  * CHECK_CONDITION status.
4338                  */
4339 check_cond:
4340                 transport_send_check_condition_and_sense(cmd,
4341                                 TCM_NON_EXISTENT_LUN, 0);
4342                 /*
4343                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4344                  * be released, notify the waiting thread now that LU has
4345                  * finished accessing it.
4346                  */
4347                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4348                 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
4349                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4350                                 " struct se_cmd: %p ITT: 0x%08x\n",
4351                                 lun->unpacked_lun,
4352                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4353
4354                         spin_unlock_irqrestore(&cmd->t_state_lock,
4355                                         cmd_flags);
4356                         transport_cmd_check_stop(cmd, 1, 0);
4357                         complete(&cmd->transport_lun_fe_stop_comp);
4358                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4359                         continue;
4360                 }
4361                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4362                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4363
4364                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4365                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4366         }
4367         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4368 }
4369
4370 static int transport_clear_lun_thread(void *p)
4371 {
4372         struct se_lun *lun = p;
4373
4374         __transport_clear_lun_from_sessions(lun);
4375         complete(&lun->lun_shutdown_comp);
4376
4377         return 0;
4378 }
4379
4380 int transport_clear_lun_from_sessions(struct se_lun *lun)
4381 {
4382         struct task_struct *kt;
4383
4384         kt = kthread_run(transport_clear_lun_thread, lun,
4385                         "tcm_cl_%u", lun->unpacked_lun);
4386         if (IS_ERR(kt)) {
4387                 pr_err("Unable to start clear_lun thread\n");
4388                 return PTR_ERR(kt);
4389         }
4390         wait_for_completion(&lun->lun_shutdown_comp);
4391
4392         return 0;
4393 }
4394
4395 /**
4396  * transport_wait_for_tasks - wait for completion to occur
4397  * @cmd:        command to wait
4398  *
4399  * Called from frontend fabric context to wait for storage engine
4400  * to pause and/or release frontend generated struct se_cmd.
4401  */
4402 bool transport_wait_for_tasks(struct se_cmd *cmd)
4403 {
4404         unsigned long flags;
4405
4406         spin_lock_irqsave(&cmd->t_state_lock, flags);
4407         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
4408             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
4409                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4410                 return false;
4411         }
4412         /*
4413          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4414          * has been set in transport_set_supported_SAM_opcode().
4415          */
4416         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
4417             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
4418                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4419                 return false;
4420         }
4421         /*
4422          * If we are already stopped due to an external event (ie: LUN shutdown)
4423          * sleep until the connection can have the passed struct se_cmd back.
4424          * The cmd->transport_lun_stopped_sem will be upped by
4425          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4426          * has completed its operation on the struct se_cmd.
4427          */
4428         if (cmd->transport_state & CMD_T_LUN_STOP) {
4429                 pr_debug("wait_for_tasks: Stopping"
4430                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4431                         "_stop_comp); for ITT: 0x%08x\n",
4432                         cmd->se_tfo->get_task_tag(cmd));
4433                 /*
4434                  * There is a special case for WRITES where a FE exception +
4435                  * LUN shutdown means ConfigFS context is still sleeping on
4436                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4437                  * We go ahead and up transport_lun_stop_comp just to be sure
4438                  * here.
4439                  */
4440                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4441                 complete(&cmd->transport_lun_stop_comp);
4442                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4443                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4444
4445                 transport_all_task_dev_remove_state(cmd);
4446                 /*
4447                  * At this point, the frontend who was the originator of this
4448                  * struct se_cmd, now owns the structure and can be released through
4449                  * normal means below.
4450                  */
4451                 pr_debug("wait_for_tasks: Stopped"
4452                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4453                         "stop_comp); for ITT: 0x%08x\n",
4454                         cmd->se_tfo->get_task_tag(cmd));
4455
4456                 cmd->transport_state &= ~CMD_T_LUN_STOP;
4457         }
4458
4459         if (!(cmd->transport_state & CMD_T_ACTIVE)) {
4460                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4461                 return false;
4462         }
4463
4464         cmd->transport_state |= CMD_T_STOP;
4465
4466         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4467                 " i_state: %d, t_state: %d, CMD_T_STOP\n",
4468                 cmd, cmd->se_tfo->get_task_tag(cmd),
4469                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4470
4471         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4472
4473         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4474
4475         wait_for_completion(&cmd->t_transport_stop_comp);
4476
4477         spin_lock_irqsave(&cmd->t_state_lock, flags);
4478         cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
4479
4480         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4481                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4482                 cmd->se_tfo->get_task_tag(cmd));
4483
4484         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4485
4486         return true;
4487 }
4488 EXPORT_SYMBOL(transport_wait_for_tasks);
4489
4490 static int transport_get_sense_codes(
4491         struct se_cmd *cmd,
4492         u8 *asc,
4493         u8 *ascq)
4494 {
4495         *asc = cmd->scsi_asc;
4496         *ascq = cmd->scsi_ascq;
4497
4498         return 0;
4499 }
4500
4501 static int transport_set_sense_codes(
4502         struct se_cmd *cmd,
4503         u8 asc,
4504         u8 ascq)
4505 {
4506         cmd->scsi_asc = asc;
4507         cmd->scsi_ascq = ascq;
4508
4509         return 0;
4510 }
4511
4512 int transport_send_check_condition_and_sense(
4513         struct se_cmd *cmd,
4514         u8 reason,
4515         int from_transport)
4516 {
4517         unsigned char *buffer = cmd->sense_buffer;
4518         unsigned long flags;
4519         int offset;
4520         u8 asc = 0, ascq = 0;
4521
4522         spin_lock_irqsave(&cmd->t_state_lock, flags);
4523         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4524                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4525                 return 0;
4526         }
4527         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4528         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4529
4530         if (!reason && from_transport)
4531                 goto after_reason;
4532
4533         if (!from_transport)
4534                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4535         /*
4536          * Data Segment and SenseLength of the fabric response PDU.
4537          *
4538          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4539          * from include/scsi/scsi_cmnd.h
4540          */
4541         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4542                                 TRANSPORT_SENSE_BUFFER);
4543         /*
4544          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4545          * SENSE KEY values from include/scsi/scsi.h
4546          */
4547         switch (reason) {
4548         case TCM_NON_EXISTENT_LUN:
4549                 /* CURRENT ERROR */
4550                 buffer[offset] = 0x70;
4551                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4552                 /* ILLEGAL REQUEST */
4553                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4554                 /* LOGICAL UNIT NOT SUPPORTED */
4555                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4556                 break;
4557         case TCM_UNSUPPORTED_SCSI_OPCODE:
4558         case TCM_SECTOR_COUNT_TOO_MANY:
4559                 /* CURRENT ERROR */
4560                 buffer[offset] = 0x70;
4561                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4562                 /* ILLEGAL REQUEST */
4563                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4564                 /* INVALID COMMAND OPERATION CODE */
4565                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4566                 break;
4567         case TCM_UNKNOWN_MODE_PAGE:
4568                 /* CURRENT ERROR */
4569                 buffer[offset] = 0x70;
4570                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4571                 /* ILLEGAL REQUEST */
4572                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4573                 /* INVALID FIELD IN CDB */
4574                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4575                 break;
4576         case TCM_CHECK_CONDITION_ABORT_CMD:
4577                 /* CURRENT ERROR */
4578                 buffer[offset] = 0x70;
4579                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4580                 /* ABORTED COMMAND */
4581                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4582                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4583                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4584                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4585                 break;
4586         case TCM_INCORRECT_AMOUNT_OF_DATA:
4587                 /* CURRENT ERROR */
4588                 buffer[offset] = 0x70;
4589                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4590                 /* ABORTED COMMAND */
4591                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4592                 /* WRITE ERROR */
4593                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4594                 /* NOT ENOUGH UNSOLICITED DATA */
4595                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4596                 break;
4597         case TCM_INVALID_CDB_FIELD:
4598                 /* CURRENT ERROR */
4599                 buffer[offset] = 0x70;
4600                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4601                 /* ILLEGAL REQUEST */
4602                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4603                 /* INVALID FIELD IN CDB */
4604                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4605                 break;
4606         case TCM_INVALID_PARAMETER_LIST:
4607                 /* CURRENT ERROR */
4608                 buffer[offset] = 0x70;
4609                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4610                 /* ILLEGAL REQUEST */
4611                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4612                 /* INVALID FIELD IN PARAMETER LIST */
4613                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4614                 break;
4615         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4616                 /* CURRENT ERROR */
4617                 buffer[offset] = 0x70;
4618                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4619                 /* ABORTED COMMAND */
4620                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4621                 /* WRITE ERROR */
4622                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4623                 /* UNEXPECTED_UNSOLICITED_DATA */
4624                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4625                 break;
4626         case TCM_SERVICE_CRC_ERROR:
4627                 /* CURRENT ERROR */
4628                 buffer[offset] = 0x70;
4629                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4630                 /* ABORTED COMMAND */
4631                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4632                 /* PROTOCOL SERVICE CRC ERROR */
4633                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4634                 /* N/A */
4635                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4636                 break;
4637         case TCM_SNACK_REJECTED:
4638                 /* CURRENT ERROR */
4639                 buffer[offset] = 0x70;
4640                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4641                 /* ABORTED COMMAND */
4642                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4643                 /* READ ERROR */
4644                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4645                 /* FAILED RETRANSMISSION REQUEST */
4646                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4647                 break;
4648         case TCM_WRITE_PROTECTED:
4649                 /* CURRENT ERROR */
4650                 buffer[offset] = 0x70;
4651                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4652                 /* DATA PROTECT */
4653                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4654                 /* WRITE PROTECTED */
4655                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4656                 break;
4657         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4658                 /* CURRENT ERROR */
4659                 buffer[offset] = 0x70;
4660                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4661                 /* UNIT ATTENTION */
4662                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4663                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4664                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4665                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4666                 break;
4667         case TCM_CHECK_CONDITION_NOT_READY:
4668                 /* CURRENT ERROR */
4669                 buffer[offset] = 0x70;
4670                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4671                 /* Not Ready */
4672                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4673                 transport_get_sense_codes(cmd, &asc, &ascq);
4674                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4675                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4676                 break;
4677         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4678         default:
4679                 /* CURRENT ERROR */
4680                 buffer[offset] = 0x70;
4681                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4682                 /* ILLEGAL REQUEST */
4683                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4684                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4685                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4686                 break;
4687         }
4688         /*
4689          * This code uses linux/include/scsi/scsi.h SAM status codes!
4690          */
4691         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4692         /*
4693          * Automatically padded, this value is encoded in the fabric's
4694          * data_length response PDU containing the SCSI defined sense data.
4695          */
4696         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4697
4698 after_reason:
4699         return cmd->se_tfo->queue_status(cmd);
4700 }
4701 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4702
4703 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4704 {
4705         int ret = 0;
4706
4707         if (cmd->transport_state & CMD_T_ABORTED) {
4708                 if (!send_status ||
4709                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4710                         return 1;
4711 #if 0
4712                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4713                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4714                         cmd->t_task_cdb[0],
4715                         cmd->se_tfo->get_task_tag(cmd));
4716 #endif
4717                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4718                 cmd->se_tfo->queue_status(cmd);
4719                 ret = 1;
4720         }
4721         return ret;
4722 }
4723 EXPORT_SYMBOL(transport_check_aborted_status);
4724
4725 void transport_send_task_abort(struct se_cmd *cmd)
4726 {
4727         unsigned long flags;
4728
4729         spin_lock_irqsave(&cmd->t_state_lock, flags);
4730         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4731                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4732                 return;
4733         }
4734         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4735
4736         /*
4737          * If there are still expected incoming fabric WRITEs, we wait
4738          * until until they have completed before sending a TASK_ABORTED
4739          * response.  This response with TASK_ABORTED status will be
4740          * queued back to fabric module by transport_check_aborted_status().
4741          */
4742         if (cmd->data_direction == DMA_TO_DEVICE) {
4743                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4744                         cmd->transport_state |= CMD_T_ABORTED;
4745                         smp_mb__after_atomic_inc();
4746                 }
4747         }
4748         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4749 #if 0
4750         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4751                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4752                 cmd->se_tfo->get_task_tag(cmd));
4753 #endif
4754         cmd->se_tfo->queue_status(cmd);
4755 }
4756
4757 static int transport_generic_do_tmr(struct se_cmd *cmd)
4758 {
4759         struct se_device *dev = cmd->se_dev;
4760         struct se_tmr_req *tmr = cmd->se_tmr_req;
4761         int ret;
4762
4763         switch (tmr->function) {
4764         case TMR_ABORT_TASK:
4765                 core_tmr_abort_task(dev, tmr, cmd->se_sess);
4766                 break;
4767         case TMR_ABORT_TASK_SET:
4768         case TMR_CLEAR_ACA:
4769         case TMR_CLEAR_TASK_SET:
4770                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4771                 break;
4772         case TMR_LUN_RESET:
4773                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4774                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4775                                          TMR_FUNCTION_REJECTED;
4776                 break;
4777         case TMR_TARGET_WARM_RESET:
4778                 tmr->response = TMR_FUNCTION_REJECTED;
4779                 break;
4780         case TMR_TARGET_COLD_RESET:
4781                 tmr->response = TMR_FUNCTION_REJECTED;
4782                 break;
4783         default:
4784                 pr_err("Uknown TMR function: 0x%02x.\n",
4785                                 tmr->function);
4786                 tmr->response = TMR_FUNCTION_REJECTED;
4787                 break;
4788         }
4789
4790         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4791         cmd->se_tfo->queue_tm_rsp(cmd);
4792
4793         transport_cmd_check_stop_to_fabric(cmd);
4794         return 0;
4795 }
4796
4797 /*      transport_processing_thread():
4798  *
4799  *
4800  */
4801 static int transport_processing_thread(void *param)
4802 {
4803         int ret;
4804         struct se_cmd *cmd;
4805         struct se_device *dev = param;
4806
4807         while (!kthread_should_stop()) {
4808                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4809                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4810                                 kthread_should_stop());
4811                 if (ret < 0)
4812                         goto out;
4813
4814 get_cmd:
4815                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4816                 if (!cmd)
4817                         continue;
4818
4819                 switch (cmd->t_state) {
4820                 case TRANSPORT_NEW_CMD:
4821                         BUG();
4822                         break;
4823                 case TRANSPORT_NEW_CMD_MAP:
4824                         if (!cmd->se_tfo->new_cmd_map) {
4825                                 pr_err("cmd->se_tfo->new_cmd_map is"
4826                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4827                                 BUG();
4828                         }
4829                         ret = cmd->se_tfo->new_cmd_map(cmd);
4830                         if (ret < 0) {
4831                                 transport_generic_request_failure(cmd);
4832                                 break;
4833                         }
4834                         ret = transport_generic_new_cmd(cmd);
4835                         if (ret < 0) {
4836                                 transport_generic_request_failure(cmd);
4837                                 break;
4838                         }
4839                         break;
4840                 case TRANSPORT_PROCESS_WRITE:
4841                         transport_generic_process_write(cmd);
4842                         break;
4843                 case TRANSPORT_PROCESS_TMR:
4844                         transport_generic_do_tmr(cmd);
4845                         break;
4846                 case TRANSPORT_COMPLETE_QF_WP:
4847                         transport_write_pending_qf(cmd);
4848                         break;
4849                 case TRANSPORT_COMPLETE_QF_OK:
4850                         transport_complete_qf(cmd);
4851                         break;
4852                 default:
4853                         pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4854                                 "i_state: %d on SE LUN: %u\n",
4855                                 cmd->t_state,
4856                                 cmd->se_tfo->get_task_tag(cmd),
4857                                 cmd->se_tfo->get_cmd_state(cmd),
4858                                 cmd->se_lun->unpacked_lun);
4859                         BUG();
4860                 }
4861
4862                 goto get_cmd;
4863         }
4864
4865 out:
4866         WARN_ON(!list_empty(&dev->state_task_list));
4867         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4868         dev->process_thread = NULL;
4869         return 0;
4870 }