target: Add TFO->abort_task for aborted task resources release
[firefly-linux-kernel-4.4.55.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * (c) Copyright 2002-2013 Datera, Inc.
7  *
8  * Nicholas A. Bellinger <nab@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  *
24  ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <asm/unaligned.h>
38 #include <net/sock.h>
39 #include <net/tcp.h>
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_tcq.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 #include <target/target_core_configfs.h>
48
49 #include "target_core_internal.h"
50 #include "target_core_alua.h"
51 #include "target_core_pr.h"
52 #include "target_core_ua.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/target.h>
56
57 static struct workqueue_struct *target_completion_wq;
58 static struct kmem_cache *se_sess_cache;
59 struct kmem_cache *se_ua_cache;
60 struct kmem_cache *t10_pr_reg_cache;
61 struct kmem_cache *t10_alua_lu_gp_cache;
62 struct kmem_cache *t10_alua_lu_gp_mem_cache;
63 struct kmem_cache *t10_alua_tg_pt_gp_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
65 struct kmem_cache *t10_alua_lba_map_cache;
66 struct kmem_cache *t10_alua_lba_map_mem_cache;
67
68 static void transport_complete_task_attr(struct se_cmd *cmd);
69 static void transport_handle_queue_full(struct se_cmd *cmd,
70                 struct se_device *dev);
71 static int transport_put_cmd(struct se_cmd *cmd);
72 static void target_complete_ok_work(struct work_struct *work);
73
74 int init_se_kmem_caches(void)
75 {
76         se_sess_cache = kmem_cache_create("se_sess_cache",
77                         sizeof(struct se_session), __alignof__(struct se_session),
78                         0, NULL);
79         if (!se_sess_cache) {
80                 pr_err("kmem_cache_create() for struct se_session"
81                                 " failed\n");
82                 goto out;
83         }
84         se_ua_cache = kmem_cache_create("se_ua_cache",
85                         sizeof(struct se_ua), __alignof__(struct se_ua),
86                         0, NULL);
87         if (!se_ua_cache) {
88                 pr_err("kmem_cache_create() for struct se_ua failed\n");
89                 goto out_free_sess_cache;
90         }
91         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
92                         sizeof(struct t10_pr_registration),
93                         __alignof__(struct t10_pr_registration), 0, NULL);
94         if (!t10_pr_reg_cache) {
95                 pr_err("kmem_cache_create() for struct t10_pr_registration"
96                                 " failed\n");
97                 goto out_free_ua_cache;
98         }
99         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
100                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
101                         0, NULL);
102         if (!t10_alua_lu_gp_cache) {
103                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
104                                 " failed\n");
105                 goto out_free_pr_reg_cache;
106         }
107         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
108                         sizeof(struct t10_alua_lu_gp_member),
109                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
110         if (!t10_alua_lu_gp_mem_cache) {
111                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
112                                 "cache failed\n");
113                 goto out_free_lu_gp_cache;
114         }
115         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
116                         sizeof(struct t10_alua_tg_pt_gp),
117                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
118         if (!t10_alua_tg_pt_gp_cache) {
119                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
120                                 "cache failed\n");
121                 goto out_free_lu_gp_mem_cache;
122         }
123         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
124                         "t10_alua_tg_pt_gp_mem_cache",
125                         sizeof(struct t10_alua_tg_pt_gp_member),
126                         __alignof__(struct t10_alua_tg_pt_gp_member),
127                         0, NULL);
128         if (!t10_alua_tg_pt_gp_mem_cache) {
129                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
130                                 "mem_t failed\n");
131                 goto out_free_tg_pt_gp_cache;
132         }
133         t10_alua_lba_map_cache = kmem_cache_create(
134                         "t10_alua_lba_map_cache",
135                         sizeof(struct t10_alua_lba_map),
136                         __alignof__(struct t10_alua_lba_map), 0, NULL);
137         if (!t10_alua_lba_map_cache) {
138                 pr_err("kmem_cache_create() for t10_alua_lba_map_"
139                                 "cache failed\n");
140                 goto out_free_tg_pt_gp_mem_cache;
141         }
142         t10_alua_lba_map_mem_cache = kmem_cache_create(
143                         "t10_alua_lba_map_mem_cache",
144                         sizeof(struct t10_alua_lba_map_member),
145                         __alignof__(struct t10_alua_lba_map_member), 0, NULL);
146         if (!t10_alua_lba_map_mem_cache) {
147                 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
148                                 "cache failed\n");
149                 goto out_free_lba_map_cache;
150         }
151
152         target_completion_wq = alloc_workqueue("target_completion",
153                                                WQ_MEM_RECLAIM, 0);
154         if (!target_completion_wq)
155                 goto out_free_lba_map_mem_cache;
156
157         return 0;
158
159 out_free_lba_map_mem_cache:
160         kmem_cache_destroy(t10_alua_lba_map_mem_cache);
161 out_free_lba_map_cache:
162         kmem_cache_destroy(t10_alua_lba_map_cache);
163 out_free_tg_pt_gp_mem_cache:
164         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
165 out_free_tg_pt_gp_cache:
166         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
167 out_free_lu_gp_mem_cache:
168         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
169 out_free_lu_gp_cache:
170         kmem_cache_destroy(t10_alua_lu_gp_cache);
171 out_free_pr_reg_cache:
172         kmem_cache_destroy(t10_pr_reg_cache);
173 out_free_ua_cache:
174         kmem_cache_destroy(se_ua_cache);
175 out_free_sess_cache:
176         kmem_cache_destroy(se_sess_cache);
177 out:
178         return -ENOMEM;
179 }
180
181 void release_se_kmem_caches(void)
182 {
183         destroy_workqueue(target_completion_wq);
184         kmem_cache_destroy(se_sess_cache);
185         kmem_cache_destroy(se_ua_cache);
186         kmem_cache_destroy(t10_pr_reg_cache);
187         kmem_cache_destroy(t10_alua_lu_gp_cache);
188         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
189         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
190         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
191         kmem_cache_destroy(t10_alua_lba_map_cache);
192         kmem_cache_destroy(t10_alua_lba_map_mem_cache);
193 }
194
195 /* This code ensures unique mib indexes are handed out. */
196 static DEFINE_SPINLOCK(scsi_mib_index_lock);
197 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
198
199 /*
200  * Allocate a new row index for the entry type specified
201  */
202 u32 scsi_get_new_index(scsi_index_t type)
203 {
204         u32 new_index;
205
206         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
207
208         spin_lock(&scsi_mib_index_lock);
209         new_index = ++scsi_mib_index[type];
210         spin_unlock(&scsi_mib_index_lock);
211
212         return new_index;
213 }
214
215 void transport_subsystem_check_init(void)
216 {
217         int ret;
218         static int sub_api_initialized;
219
220         if (sub_api_initialized)
221                 return;
222
223         ret = request_module("target_core_iblock");
224         if (ret != 0)
225                 pr_err("Unable to load target_core_iblock\n");
226
227         ret = request_module("target_core_file");
228         if (ret != 0)
229                 pr_err("Unable to load target_core_file\n");
230
231         ret = request_module("target_core_pscsi");
232         if (ret != 0)
233                 pr_err("Unable to load target_core_pscsi\n");
234
235         sub_api_initialized = 1;
236 }
237
238 struct se_session *transport_init_session(void)
239 {
240         struct se_session *se_sess;
241
242         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
243         if (!se_sess) {
244                 pr_err("Unable to allocate struct se_session from"
245                                 " se_sess_cache\n");
246                 return ERR_PTR(-ENOMEM);
247         }
248         INIT_LIST_HEAD(&se_sess->sess_list);
249         INIT_LIST_HEAD(&se_sess->sess_acl_list);
250         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
251         INIT_LIST_HEAD(&se_sess->sess_wait_list);
252         spin_lock_init(&se_sess->sess_cmd_lock);
253         kref_init(&se_sess->sess_kref);
254
255         return se_sess;
256 }
257 EXPORT_SYMBOL(transport_init_session);
258
259 int transport_alloc_session_tags(struct se_session *se_sess,
260                                  unsigned int tag_num, unsigned int tag_size)
261 {
262         int rc;
263
264         se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
265                                         GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
266         if (!se_sess->sess_cmd_map) {
267                 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
268                 if (!se_sess->sess_cmd_map) {
269                         pr_err("Unable to allocate se_sess->sess_cmd_map\n");
270                         return -ENOMEM;
271                 }
272         }
273
274         rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
275         if (rc < 0) {
276                 pr_err("Unable to init se_sess->sess_tag_pool,"
277                         " tag_num: %u\n", tag_num);
278                 if (is_vmalloc_addr(se_sess->sess_cmd_map))
279                         vfree(se_sess->sess_cmd_map);
280                 else
281                         kfree(se_sess->sess_cmd_map);
282                 se_sess->sess_cmd_map = NULL;
283                 return -ENOMEM;
284         }
285
286         return 0;
287 }
288 EXPORT_SYMBOL(transport_alloc_session_tags);
289
290 struct se_session *transport_init_session_tags(unsigned int tag_num,
291                                                unsigned int tag_size)
292 {
293         struct se_session *se_sess;
294         int rc;
295
296         se_sess = transport_init_session();
297         if (IS_ERR(se_sess))
298                 return se_sess;
299
300         rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
301         if (rc < 0) {
302                 transport_free_session(se_sess);
303                 return ERR_PTR(-ENOMEM);
304         }
305
306         return se_sess;
307 }
308 EXPORT_SYMBOL(transport_init_session_tags);
309
310 /*
311  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
312  */
313 void __transport_register_session(
314         struct se_portal_group *se_tpg,
315         struct se_node_acl *se_nacl,
316         struct se_session *se_sess,
317         void *fabric_sess_ptr)
318 {
319         unsigned char buf[PR_REG_ISID_LEN];
320
321         se_sess->se_tpg = se_tpg;
322         se_sess->fabric_sess_ptr = fabric_sess_ptr;
323         /*
324          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
325          *
326          * Only set for struct se_session's that will actually be moving I/O.
327          * eg: *NOT* discovery sessions.
328          */
329         if (se_nacl) {
330                 /*
331                  * If the fabric module supports an ISID based TransportID,
332                  * save this value in binary from the fabric I_T Nexus now.
333                  */
334                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
335                         memset(&buf[0], 0, PR_REG_ISID_LEN);
336                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
337                                         &buf[0], PR_REG_ISID_LEN);
338                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
339                 }
340                 kref_get(&se_nacl->acl_kref);
341
342                 spin_lock_irq(&se_nacl->nacl_sess_lock);
343                 /*
344                  * The se_nacl->nacl_sess pointer will be set to the
345                  * last active I_T Nexus for each struct se_node_acl.
346                  */
347                 se_nacl->nacl_sess = se_sess;
348
349                 list_add_tail(&se_sess->sess_acl_list,
350                               &se_nacl->acl_sess_list);
351                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
352         }
353         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
354
355         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
356                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
357 }
358 EXPORT_SYMBOL(__transport_register_session);
359
360 void transport_register_session(
361         struct se_portal_group *se_tpg,
362         struct se_node_acl *se_nacl,
363         struct se_session *se_sess,
364         void *fabric_sess_ptr)
365 {
366         unsigned long flags;
367
368         spin_lock_irqsave(&se_tpg->session_lock, flags);
369         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
370         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
371 }
372 EXPORT_SYMBOL(transport_register_session);
373
374 static void target_release_session(struct kref *kref)
375 {
376         struct se_session *se_sess = container_of(kref,
377                         struct se_session, sess_kref);
378         struct se_portal_group *se_tpg = se_sess->se_tpg;
379
380         se_tpg->se_tpg_tfo->close_session(se_sess);
381 }
382
383 void target_get_session(struct se_session *se_sess)
384 {
385         kref_get(&se_sess->sess_kref);
386 }
387 EXPORT_SYMBOL(target_get_session);
388
389 void target_put_session(struct se_session *se_sess)
390 {
391         struct se_portal_group *tpg = se_sess->se_tpg;
392
393         if (tpg->se_tpg_tfo->put_session != NULL) {
394                 tpg->se_tpg_tfo->put_session(se_sess);
395                 return;
396         }
397         kref_put(&se_sess->sess_kref, target_release_session);
398 }
399 EXPORT_SYMBOL(target_put_session);
400
401 static void target_complete_nacl(struct kref *kref)
402 {
403         struct se_node_acl *nacl = container_of(kref,
404                                 struct se_node_acl, acl_kref);
405
406         complete(&nacl->acl_free_comp);
407 }
408
409 void target_put_nacl(struct se_node_acl *nacl)
410 {
411         kref_put(&nacl->acl_kref, target_complete_nacl);
412 }
413
414 void transport_deregister_session_configfs(struct se_session *se_sess)
415 {
416         struct se_node_acl *se_nacl;
417         unsigned long flags;
418         /*
419          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
420          */
421         se_nacl = se_sess->se_node_acl;
422         if (se_nacl) {
423                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
424                 if (se_nacl->acl_stop == 0)
425                         list_del(&se_sess->sess_acl_list);
426                 /*
427                  * If the session list is empty, then clear the pointer.
428                  * Otherwise, set the struct se_session pointer from the tail
429                  * element of the per struct se_node_acl active session list.
430                  */
431                 if (list_empty(&se_nacl->acl_sess_list))
432                         se_nacl->nacl_sess = NULL;
433                 else {
434                         se_nacl->nacl_sess = container_of(
435                                         se_nacl->acl_sess_list.prev,
436                                         struct se_session, sess_acl_list);
437                 }
438                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
439         }
440 }
441 EXPORT_SYMBOL(transport_deregister_session_configfs);
442
443 void transport_free_session(struct se_session *se_sess)
444 {
445         if (se_sess->sess_cmd_map) {
446                 percpu_ida_destroy(&se_sess->sess_tag_pool);
447                 if (is_vmalloc_addr(se_sess->sess_cmd_map))
448                         vfree(se_sess->sess_cmd_map);
449                 else
450                         kfree(se_sess->sess_cmd_map);
451         }
452         kmem_cache_free(se_sess_cache, se_sess);
453 }
454 EXPORT_SYMBOL(transport_free_session);
455
456 void transport_deregister_session(struct se_session *se_sess)
457 {
458         struct se_portal_group *se_tpg = se_sess->se_tpg;
459         struct target_core_fabric_ops *se_tfo;
460         struct se_node_acl *se_nacl;
461         unsigned long flags;
462         bool comp_nacl = true;
463
464         if (!se_tpg) {
465                 transport_free_session(se_sess);
466                 return;
467         }
468         se_tfo = se_tpg->se_tpg_tfo;
469
470         spin_lock_irqsave(&se_tpg->session_lock, flags);
471         list_del(&se_sess->sess_list);
472         se_sess->se_tpg = NULL;
473         se_sess->fabric_sess_ptr = NULL;
474         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
475
476         /*
477          * Determine if we need to do extra work for this initiator node's
478          * struct se_node_acl if it had been previously dynamically generated.
479          */
480         se_nacl = se_sess->se_node_acl;
481
482         spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
483         if (se_nacl && se_nacl->dynamic_node_acl) {
484                 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
485                         list_del(&se_nacl->acl_list);
486                         se_tpg->num_node_acls--;
487                         spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
488                         core_tpg_wait_for_nacl_pr_ref(se_nacl);
489                         core_free_device_list_for_node(se_nacl, se_tpg);
490                         se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
491
492                         comp_nacl = false;
493                         spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
494                 }
495         }
496         spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
497
498         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
499                 se_tpg->se_tpg_tfo->get_fabric_name());
500         /*
501          * If last kref is dropping now for an explicit NodeACL, awake sleeping
502          * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
503          * removal context.
504          */
505         if (se_nacl && comp_nacl == true)
506                 target_put_nacl(se_nacl);
507
508         transport_free_session(se_sess);
509 }
510 EXPORT_SYMBOL(transport_deregister_session);
511
512 /*
513  * Called with cmd->t_state_lock held.
514  */
515 static void target_remove_from_state_list(struct se_cmd *cmd)
516 {
517         struct se_device *dev = cmd->se_dev;
518         unsigned long flags;
519
520         if (!dev)
521                 return;
522
523         if (cmd->transport_state & CMD_T_BUSY)
524                 return;
525
526         spin_lock_irqsave(&dev->execute_task_lock, flags);
527         if (cmd->state_active) {
528                 list_del(&cmd->state_list);
529                 cmd->state_active = false;
530         }
531         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
532 }
533
534 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
535                                     bool write_pending)
536 {
537         unsigned long flags;
538
539         spin_lock_irqsave(&cmd->t_state_lock, flags);
540         if (write_pending)
541                 cmd->t_state = TRANSPORT_WRITE_PENDING;
542
543         if (remove_from_lists) {
544                 target_remove_from_state_list(cmd);
545
546                 /*
547                  * Clear struct se_cmd->se_lun before the handoff to FE.
548                  */
549                 cmd->se_lun = NULL;
550         }
551
552         /*
553          * Determine if frontend context caller is requesting the stopping of
554          * this command for frontend exceptions.
555          */
556         if (cmd->transport_state & CMD_T_STOP) {
557                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
558                         __func__, __LINE__,
559                         cmd->se_tfo->get_task_tag(cmd));
560
561                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
562
563                 complete(&cmd->t_transport_stop_comp);
564                 return 1;
565         }
566
567         cmd->transport_state &= ~CMD_T_ACTIVE;
568         if (remove_from_lists) {
569                 /*
570                  * Some fabric modules like tcm_loop can release
571                  * their internally allocated I/O reference now and
572                  * struct se_cmd now.
573                  *
574                  * Fabric modules are expected to return '1' here if the
575                  * se_cmd being passed is released at this point,
576                  * or zero if not being released.
577                  */
578                 if (cmd->se_tfo->check_stop_free != NULL) {
579                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
580                         return cmd->se_tfo->check_stop_free(cmd);
581                 }
582         }
583
584         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
585         return 0;
586 }
587
588 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
589 {
590         return transport_cmd_check_stop(cmd, true, false);
591 }
592
593 static void transport_lun_remove_cmd(struct se_cmd *cmd)
594 {
595         struct se_lun *lun = cmd->se_lun;
596
597         if (!lun)
598                 return;
599
600         if (cmpxchg(&cmd->lun_ref_active, true, false))
601                 percpu_ref_put(&lun->lun_ref);
602 }
603
604 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
605 {
606         if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
607                 transport_lun_remove_cmd(cmd);
608         /*
609          * Allow the fabric driver to unmap any resources before
610          * releasing the descriptor via TFO->release_cmd()
611          */
612         if (remove)
613                 cmd->se_tfo->aborted_task(cmd);
614
615         if (transport_cmd_check_stop_to_fabric(cmd))
616                 return;
617         if (remove)
618                 transport_put_cmd(cmd);
619 }
620
621 static void target_complete_failure_work(struct work_struct *work)
622 {
623         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
624
625         transport_generic_request_failure(cmd,
626                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
627 }
628
629 /*
630  * Used when asking transport to copy Sense Data from the underlying
631  * Linux/SCSI struct scsi_cmnd
632  */
633 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
634 {
635         struct se_device *dev = cmd->se_dev;
636
637         WARN_ON(!cmd->se_lun);
638
639         if (!dev)
640                 return NULL;
641
642         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
643                 return NULL;
644
645         cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
646
647         pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
648                 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
649         return cmd->sense_buffer;
650 }
651
652 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
653 {
654         struct se_device *dev = cmd->se_dev;
655         int success = scsi_status == GOOD;
656         unsigned long flags;
657
658         cmd->scsi_status = scsi_status;
659
660
661         spin_lock_irqsave(&cmd->t_state_lock, flags);
662         cmd->transport_state &= ~CMD_T_BUSY;
663
664         if (dev && dev->transport->transport_complete) {
665                 dev->transport->transport_complete(cmd,
666                                 cmd->t_data_sg,
667                                 transport_get_sense_buffer(cmd));
668                 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
669                         success = 1;
670         }
671
672         /*
673          * See if we are waiting to complete for an exception condition.
674          */
675         if (cmd->transport_state & CMD_T_REQUEST_STOP) {
676                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
677                 complete(&cmd->task_stop_comp);
678                 return;
679         }
680
681         /*
682          * Check for case where an explicit ABORT_TASK has been received
683          * and transport_wait_for_tasks() will be waiting for completion..
684          */
685         if (cmd->transport_state & CMD_T_ABORTED &&
686             cmd->transport_state & CMD_T_STOP) {
687                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
688                 complete(&cmd->t_transport_stop_comp);
689                 return;
690         } else if (!success) {
691                 INIT_WORK(&cmd->work, target_complete_failure_work);
692         } else {
693                 INIT_WORK(&cmd->work, target_complete_ok_work);
694         }
695
696         cmd->t_state = TRANSPORT_COMPLETE;
697         cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
698         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
699
700         queue_work(target_completion_wq, &cmd->work);
701 }
702 EXPORT_SYMBOL(target_complete_cmd);
703
704 static void target_add_to_state_list(struct se_cmd *cmd)
705 {
706         struct se_device *dev = cmd->se_dev;
707         unsigned long flags;
708
709         spin_lock_irqsave(&dev->execute_task_lock, flags);
710         if (!cmd->state_active) {
711                 list_add_tail(&cmd->state_list, &dev->state_list);
712                 cmd->state_active = true;
713         }
714         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
715 }
716
717 /*
718  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
719  */
720 static void transport_write_pending_qf(struct se_cmd *cmd);
721 static void transport_complete_qf(struct se_cmd *cmd);
722
723 void target_qf_do_work(struct work_struct *work)
724 {
725         struct se_device *dev = container_of(work, struct se_device,
726                                         qf_work_queue);
727         LIST_HEAD(qf_cmd_list);
728         struct se_cmd *cmd, *cmd_tmp;
729
730         spin_lock_irq(&dev->qf_cmd_lock);
731         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
732         spin_unlock_irq(&dev->qf_cmd_lock);
733
734         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
735                 list_del(&cmd->se_qf_node);
736                 atomic_dec(&dev->dev_qf_count);
737                 smp_mb__after_atomic_dec();
738
739                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
740                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
741                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
742                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
743                         : "UNKNOWN");
744
745                 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
746                         transport_write_pending_qf(cmd);
747                 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
748                         transport_complete_qf(cmd);
749         }
750 }
751
752 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
753 {
754         switch (cmd->data_direction) {
755         case DMA_NONE:
756                 return "NONE";
757         case DMA_FROM_DEVICE:
758                 return "READ";
759         case DMA_TO_DEVICE:
760                 return "WRITE";
761         case DMA_BIDIRECTIONAL:
762                 return "BIDI";
763         default:
764                 break;
765         }
766
767         return "UNKNOWN";
768 }
769
770 void transport_dump_dev_state(
771         struct se_device *dev,
772         char *b,
773         int *bl)
774 {
775         *bl += sprintf(b + *bl, "Status: ");
776         if (dev->export_count)
777                 *bl += sprintf(b + *bl, "ACTIVATED");
778         else
779                 *bl += sprintf(b + *bl, "DEACTIVATED");
780
781         *bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
782         *bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
783                 dev->dev_attrib.block_size,
784                 dev->dev_attrib.hw_max_sectors);
785         *bl += sprintf(b + *bl, "        ");
786 }
787
788 void transport_dump_vpd_proto_id(
789         struct t10_vpd *vpd,
790         unsigned char *p_buf,
791         int p_buf_len)
792 {
793         unsigned char buf[VPD_TMP_BUF_SIZE];
794         int len;
795
796         memset(buf, 0, VPD_TMP_BUF_SIZE);
797         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
798
799         switch (vpd->protocol_identifier) {
800         case 0x00:
801                 sprintf(buf+len, "Fibre Channel\n");
802                 break;
803         case 0x10:
804                 sprintf(buf+len, "Parallel SCSI\n");
805                 break;
806         case 0x20:
807                 sprintf(buf+len, "SSA\n");
808                 break;
809         case 0x30:
810                 sprintf(buf+len, "IEEE 1394\n");
811                 break;
812         case 0x40:
813                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
814                                 " Protocol\n");
815                 break;
816         case 0x50:
817                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
818                 break;
819         case 0x60:
820                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
821                 break;
822         case 0x70:
823                 sprintf(buf+len, "Automation/Drive Interface Transport"
824                                 " Protocol\n");
825                 break;
826         case 0x80:
827                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
828                 break;
829         default:
830                 sprintf(buf+len, "Unknown 0x%02x\n",
831                                 vpd->protocol_identifier);
832                 break;
833         }
834
835         if (p_buf)
836                 strncpy(p_buf, buf, p_buf_len);
837         else
838                 pr_debug("%s", buf);
839 }
840
841 void
842 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
843 {
844         /*
845          * Check if the Protocol Identifier Valid (PIV) bit is set..
846          *
847          * from spc3r23.pdf section 7.5.1
848          */
849          if (page_83[1] & 0x80) {
850                 vpd->protocol_identifier = (page_83[0] & 0xf0);
851                 vpd->protocol_identifier_set = 1;
852                 transport_dump_vpd_proto_id(vpd, NULL, 0);
853         }
854 }
855 EXPORT_SYMBOL(transport_set_vpd_proto_id);
856
857 int transport_dump_vpd_assoc(
858         struct t10_vpd *vpd,
859         unsigned char *p_buf,
860         int p_buf_len)
861 {
862         unsigned char buf[VPD_TMP_BUF_SIZE];
863         int ret = 0;
864         int len;
865
866         memset(buf, 0, VPD_TMP_BUF_SIZE);
867         len = sprintf(buf, "T10 VPD Identifier Association: ");
868
869         switch (vpd->association) {
870         case 0x00:
871                 sprintf(buf+len, "addressed logical unit\n");
872                 break;
873         case 0x10:
874                 sprintf(buf+len, "target port\n");
875                 break;
876         case 0x20:
877                 sprintf(buf+len, "SCSI target device\n");
878                 break;
879         default:
880                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
881                 ret = -EINVAL;
882                 break;
883         }
884
885         if (p_buf)
886                 strncpy(p_buf, buf, p_buf_len);
887         else
888                 pr_debug("%s", buf);
889
890         return ret;
891 }
892
893 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
894 {
895         /*
896          * The VPD identification association..
897          *
898          * from spc3r23.pdf Section 7.6.3.1 Table 297
899          */
900         vpd->association = (page_83[1] & 0x30);
901         return transport_dump_vpd_assoc(vpd, NULL, 0);
902 }
903 EXPORT_SYMBOL(transport_set_vpd_assoc);
904
905 int transport_dump_vpd_ident_type(
906         struct t10_vpd *vpd,
907         unsigned char *p_buf,
908         int p_buf_len)
909 {
910         unsigned char buf[VPD_TMP_BUF_SIZE];
911         int ret = 0;
912         int len;
913
914         memset(buf, 0, VPD_TMP_BUF_SIZE);
915         len = sprintf(buf, "T10 VPD Identifier Type: ");
916
917         switch (vpd->device_identifier_type) {
918         case 0x00:
919                 sprintf(buf+len, "Vendor specific\n");
920                 break;
921         case 0x01:
922                 sprintf(buf+len, "T10 Vendor ID based\n");
923                 break;
924         case 0x02:
925                 sprintf(buf+len, "EUI-64 based\n");
926                 break;
927         case 0x03:
928                 sprintf(buf+len, "NAA\n");
929                 break;
930         case 0x04:
931                 sprintf(buf+len, "Relative target port identifier\n");
932                 break;
933         case 0x08:
934                 sprintf(buf+len, "SCSI name string\n");
935                 break;
936         default:
937                 sprintf(buf+len, "Unsupported: 0x%02x\n",
938                                 vpd->device_identifier_type);
939                 ret = -EINVAL;
940                 break;
941         }
942
943         if (p_buf) {
944                 if (p_buf_len < strlen(buf)+1)
945                         return -EINVAL;
946                 strncpy(p_buf, buf, p_buf_len);
947         } else {
948                 pr_debug("%s", buf);
949         }
950
951         return ret;
952 }
953
954 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
955 {
956         /*
957          * The VPD identifier type..
958          *
959          * from spc3r23.pdf Section 7.6.3.1 Table 298
960          */
961         vpd->device_identifier_type = (page_83[1] & 0x0f);
962         return transport_dump_vpd_ident_type(vpd, NULL, 0);
963 }
964 EXPORT_SYMBOL(transport_set_vpd_ident_type);
965
966 int transport_dump_vpd_ident(
967         struct t10_vpd *vpd,
968         unsigned char *p_buf,
969         int p_buf_len)
970 {
971         unsigned char buf[VPD_TMP_BUF_SIZE];
972         int ret = 0;
973
974         memset(buf, 0, VPD_TMP_BUF_SIZE);
975
976         switch (vpd->device_identifier_code_set) {
977         case 0x01: /* Binary */
978                 snprintf(buf, sizeof(buf),
979                         "T10 VPD Binary Device Identifier: %s\n",
980                         &vpd->device_identifier[0]);
981                 break;
982         case 0x02: /* ASCII */
983                 snprintf(buf, sizeof(buf),
984                         "T10 VPD ASCII Device Identifier: %s\n",
985                         &vpd->device_identifier[0]);
986                 break;
987         case 0x03: /* UTF-8 */
988                 snprintf(buf, sizeof(buf),
989                         "T10 VPD UTF-8 Device Identifier: %s\n",
990                         &vpd->device_identifier[0]);
991                 break;
992         default:
993                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
994                         " 0x%02x", vpd->device_identifier_code_set);
995                 ret = -EINVAL;
996                 break;
997         }
998
999         if (p_buf)
1000                 strncpy(p_buf, buf, p_buf_len);
1001         else
1002                 pr_debug("%s", buf);
1003
1004         return ret;
1005 }
1006
1007 int
1008 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1009 {
1010         static const char hex_str[] = "0123456789abcdef";
1011         int j = 0, i = 4; /* offset to start of the identifier */
1012
1013         /*
1014          * The VPD Code Set (encoding)
1015          *
1016          * from spc3r23.pdf Section 7.6.3.1 Table 296
1017          */
1018         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1019         switch (vpd->device_identifier_code_set) {
1020         case 0x01: /* Binary */
1021                 vpd->device_identifier[j++] =
1022                                 hex_str[vpd->device_identifier_type];
1023                 while (i < (4 + page_83[3])) {
1024                         vpd->device_identifier[j++] =
1025                                 hex_str[(page_83[i] & 0xf0) >> 4];
1026                         vpd->device_identifier[j++] =
1027                                 hex_str[page_83[i] & 0x0f];
1028                         i++;
1029                 }
1030                 break;
1031         case 0x02: /* ASCII */
1032         case 0x03: /* UTF-8 */
1033                 while (i < (4 + page_83[3]))
1034                         vpd->device_identifier[j++] = page_83[i++];
1035                 break;
1036         default:
1037                 break;
1038         }
1039
1040         return transport_dump_vpd_ident(vpd, NULL, 0);
1041 }
1042 EXPORT_SYMBOL(transport_set_vpd_ident);
1043
1044 sense_reason_t
1045 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1046 {
1047         struct se_device *dev = cmd->se_dev;
1048
1049         if (cmd->unknown_data_length) {
1050                 cmd->data_length = size;
1051         } else if (size != cmd->data_length) {
1052                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1053                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1054                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1055                                 cmd->data_length, size, cmd->t_task_cdb[0]);
1056
1057                 if (cmd->data_direction == DMA_TO_DEVICE) {
1058                         pr_err("Rejecting underflow/overflow"
1059                                         " WRITE data\n");
1060                         return TCM_INVALID_CDB_FIELD;
1061                 }
1062                 /*
1063                  * Reject READ_* or WRITE_* with overflow/underflow for
1064                  * type SCF_SCSI_DATA_CDB.
1065                  */
1066                 if (dev->dev_attrib.block_size != 512)  {
1067                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1068                                 " CDB on non 512-byte sector setup subsystem"
1069                                 " plugin: %s\n", dev->transport->name);
1070                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1071                         return TCM_INVALID_CDB_FIELD;
1072                 }
1073                 /*
1074                  * For the overflow case keep the existing fabric provided
1075                  * ->data_length.  Otherwise for the underflow case, reset
1076                  * ->data_length to the smaller SCSI expected data transfer
1077                  * length.
1078                  */
1079                 if (size > cmd->data_length) {
1080                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1081                         cmd->residual_count = (size - cmd->data_length);
1082                 } else {
1083                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1084                         cmd->residual_count = (cmd->data_length - size);
1085                         cmd->data_length = size;
1086                 }
1087         }
1088
1089         return 0;
1090
1091 }
1092
1093 /*
1094  * Used by fabric modules containing a local struct se_cmd within their
1095  * fabric dependent per I/O descriptor.
1096  */
1097 void transport_init_se_cmd(
1098         struct se_cmd *cmd,
1099         struct target_core_fabric_ops *tfo,
1100         struct se_session *se_sess,
1101         u32 data_length,
1102         int data_direction,
1103         int task_attr,
1104         unsigned char *sense_buffer)
1105 {
1106         INIT_LIST_HEAD(&cmd->se_delayed_node);
1107         INIT_LIST_HEAD(&cmd->se_qf_node);
1108         INIT_LIST_HEAD(&cmd->se_cmd_list);
1109         INIT_LIST_HEAD(&cmd->state_list);
1110         init_completion(&cmd->t_transport_stop_comp);
1111         init_completion(&cmd->cmd_wait_comp);
1112         init_completion(&cmd->task_stop_comp);
1113         spin_lock_init(&cmd->t_state_lock);
1114         cmd->transport_state = CMD_T_DEV_ACTIVE;
1115
1116         cmd->se_tfo = tfo;
1117         cmd->se_sess = se_sess;
1118         cmd->data_length = data_length;
1119         cmd->data_direction = data_direction;
1120         cmd->sam_task_attr = task_attr;
1121         cmd->sense_buffer = sense_buffer;
1122
1123         cmd->state_active = false;
1124 }
1125 EXPORT_SYMBOL(transport_init_se_cmd);
1126
1127 static sense_reason_t
1128 transport_check_alloc_task_attr(struct se_cmd *cmd)
1129 {
1130         struct se_device *dev = cmd->se_dev;
1131
1132         /*
1133          * Check if SAM Task Attribute emulation is enabled for this
1134          * struct se_device storage object
1135          */
1136         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1137                 return 0;
1138
1139         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1140                 pr_debug("SAM Task Attribute ACA"
1141                         " emulation is not supported\n");
1142                 return TCM_INVALID_CDB_FIELD;
1143         }
1144         /*
1145          * Used to determine when ORDERED commands should go from
1146          * Dormant to Active status.
1147          */
1148         cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1149         smp_mb__after_atomic_inc();
1150         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1151                         cmd->se_ordered_id, cmd->sam_task_attr,
1152                         dev->transport->name);
1153         return 0;
1154 }
1155
1156 sense_reason_t
1157 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1158 {
1159         struct se_device *dev = cmd->se_dev;
1160         sense_reason_t ret;
1161
1162         /*
1163          * Ensure that the received CDB is less than the max (252 + 8) bytes
1164          * for VARIABLE_LENGTH_CMD
1165          */
1166         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1167                 pr_err("Received SCSI CDB with command_size: %d that"
1168                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1169                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1170                 return TCM_INVALID_CDB_FIELD;
1171         }
1172         /*
1173          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1174          * allocate the additional extended CDB buffer now..  Otherwise
1175          * setup the pointer from __t_task_cdb to t_task_cdb.
1176          */
1177         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1178                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1179                                                 GFP_KERNEL);
1180                 if (!cmd->t_task_cdb) {
1181                         pr_err("Unable to allocate cmd->t_task_cdb"
1182                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1183                                 scsi_command_size(cdb),
1184                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1185                         return TCM_OUT_OF_RESOURCES;
1186                 }
1187         } else
1188                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1189         /*
1190          * Copy the original CDB into cmd->
1191          */
1192         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1193
1194         trace_target_sequencer_start(cmd);
1195
1196         /*
1197          * Check for an existing UNIT ATTENTION condition
1198          */
1199         ret = target_scsi3_ua_check(cmd);
1200         if (ret)
1201                 return ret;
1202
1203         ret = target_alua_state_check(cmd);
1204         if (ret)
1205                 return ret;
1206
1207         ret = target_check_reservation(cmd);
1208         if (ret) {
1209                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1210                 return ret;
1211         }
1212
1213         ret = dev->transport->parse_cdb(cmd);
1214         if (ret)
1215                 return ret;
1216
1217         ret = transport_check_alloc_task_attr(cmd);
1218         if (ret)
1219                 return ret;
1220
1221         cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1222
1223         spin_lock(&cmd->se_lun->lun_sep_lock);
1224         if (cmd->se_lun->lun_sep)
1225                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1226         spin_unlock(&cmd->se_lun->lun_sep_lock);
1227         return 0;
1228 }
1229 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1230
1231 /*
1232  * Used by fabric module frontends to queue tasks directly.
1233  * Many only be used from process context only
1234  */
1235 int transport_handle_cdb_direct(
1236         struct se_cmd *cmd)
1237 {
1238         sense_reason_t ret;
1239
1240         if (!cmd->se_lun) {
1241                 dump_stack();
1242                 pr_err("cmd->se_lun is NULL\n");
1243                 return -EINVAL;
1244         }
1245         if (in_interrupt()) {
1246                 dump_stack();
1247                 pr_err("transport_generic_handle_cdb cannot be called"
1248                                 " from interrupt context\n");
1249                 return -EINVAL;
1250         }
1251         /*
1252          * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1253          * outstanding descriptors are handled correctly during shutdown via
1254          * transport_wait_for_tasks()
1255          *
1256          * Also, we don't take cmd->t_state_lock here as we only expect
1257          * this to be called for initial descriptor submission.
1258          */
1259         cmd->t_state = TRANSPORT_NEW_CMD;
1260         cmd->transport_state |= CMD_T_ACTIVE;
1261
1262         /*
1263          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1264          * so follow TRANSPORT_NEW_CMD processing thread context usage
1265          * and call transport_generic_request_failure() if necessary..
1266          */
1267         ret = transport_generic_new_cmd(cmd);
1268         if (ret)
1269                 transport_generic_request_failure(cmd, ret);
1270         return 0;
1271 }
1272 EXPORT_SYMBOL(transport_handle_cdb_direct);
1273
1274 sense_reason_t
1275 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1276                 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1277 {
1278         if (!sgl || !sgl_count)
1279                 return 0;
1280
1281         /*
1282          * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1283          * scatterlists already have been set to follow what the fabric
1284          * passes for the original expected data transfer length.
1285          */
1286         if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1287                 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1288                         " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1289                 return TCM_INVALID_CDB_FIELD;
1290         }
1291
1292         cmd->t_data_sg = sgl;
1293         cmd->t_data_nents = sgl_count;
1294
1295         if (sgl_bidi && sgl_bidi_count) {
1296                 cmd->t_bidi_data_sg = sgl_bidi;
1297                 cmd->t_bidi_data_nents = sgl_bidi_count;
1298         }
1299         cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1300         return 0;
1301 }
1302
1303 /*
1304  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1305  *                       se_cmd + use pre-allocated SGL memory.
1306  *
1307  * @se_cmd: command descriptor to submit
1308  * @se_sess: associated se_sess for endpoint
1309  * @cdb: pointer to SCSI CDB
1310  * @sense: pointer to SCSI sense buffer
1311  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1312  * @data_length: fabric expected data transfer length
1313  * @task_addr: SAM task attribute
1314  * @data_dir: DMA data direction
1315  * @flags: flags for command submission from target_sc_flags_tables
1316  * @sgl: struct scatterlist memory for unidirectional mapping
1317  * @sgl_count: scatterlist count for unidirectional mapping
1318  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1319  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1320  * @sgl_prot: struct scatterlist memory protection information
1321  * @sgl_prot_count: scatterlist count for protection information
1322  *
1323  * Returns non zero to signal active I/O shutdown failure.  All other
1324  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1325  * but still return zero here.
1326  *
1327  * This may only be called from process context, and also currently
1328  * assumes internal allocation of fabric payload buffer by target-core.
1329  */
1330 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1331                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1332                 u32 data_length, int task_attr, int data_dir, int flags,
1333                 struct scatterlist *sgl, u32 sgl_count,
1334                 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1335                 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1336 {
1337         struct se_portal_group *se_tpg;
1338         sense_reason_t rc;
1339         int ret;
1340
1341         se_tpg = se_sess->se_tpg;
1342         BUG_ON(!se_tpg);
1343         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1344         BUG_ON(in_interrupt());
1345         /*
1346          * Initialize se_cmd for target operation.  From this point
1347          * exceptions are handled by sending exception status via
1348          * target_core_fabric_ops->queue_status() callback
1349          */
1350         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1351                                 data_length, data_dir, task_attr, sense);
1352         if (flags & TARGET_SCF_UNKNOWN_SIZE)
1353                 se_cmd->unknown_data_length = 1;
1354         /*
1355          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1356          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1357          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1358          * kref_put() to happen during fabric packet acknowledgement.
1359          */
1360         ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1361         if (ret)
1362                 return ret;
1363         /*
1364          * Signal bidirectional data payloads to target-core
1365          */
1366         if (flags & TARGET_SCF_BIDI_OP)
1367                 se_cmd->se_cmd_flags |= SCF_BIDI;
1368         /*
1369          * Locate se_lun pointer and attach it to struct se_cmd
1370          */
1371         rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1372         if (rc) {
1373                 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1374                 target_put_sess_cmd(se_sess, se_cmd);
1375                 return 0;
1376         }
1377
1378         rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1379         if (rc != 0) {
1380                 transport_generic_request_failure(se_cmd, rc);
1381                 return 0;
1382         }
1383
1384         /*
1385          * Save pointers for SGLs containing protection information,
1386          * if present.
1387          */
1388         if (sgl_prot_count) {
1389                 se_cmd->t_prot_sg = sgl_prot;
1390                 se_cmd->t_prot_nents = sgl_prot_count;
1391         }
1392
1393         /*
1394          * When a non zero sgl_count has been passed perform SGL passthrough
1395          * mapping for pre-allocated fabric memory instead of having target
1396          * core perform an internal SGL allocation..
1397          */
1398         if (sgl_count != 0) {
1399                 BUG_ON(!sgl);
1400
1401                 /*
1402                  * A work-around for tcm_loop as some userspace code via
1403                  * scsi-generic do not memset their associated read buffers,
1404                  * so go ahead and do that here for type non-data CDBs.  Also
1405                  * note that this is currently guaranteed to be a single SGL
1406                  * for this case by target core in target_setup_cmd_from_cdb()
1407                  * -> transport_generic_cmd_sequencer().
1408                  */
1409                 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1410                      se_cmd->data_direction == DMA_FROM_DEVICE) {
1411                         unsigned char *buf = NULL;
1412
1413                         if (sgl)
1414                                 buf = kmap(sg_page(sgl)) + sgl->offset;
1415
1416                         if (buf) {
1417                                 memset(buf, 0, sgl->length);
1418                                 kunmap(sg_page(sgl));
1419                         }
1420                 }
1421
1422                 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1423                                 sgl_bidi, sgl_bidi_count);
1424                 if (rc != 0) {
1425                         transport_generic_request_failure(se_cmd, rc);
1426                         return 0;
1427                 }
1428         }
1429
1430         /*
1431          * Check if we need to delay processing because of ALUA
1432          * Active/NonOptimized primary access state..
1433          */
1434         core_alua_check_nonop_delay(se_cmd);
1435
1436         transport_handle_cdb_direct(se_cmd);
1437         return 0;
1438 }
1439 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1440
1441 /*
1442  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1443  *
1444  * @se_cmd: command descriptor to submit
1445  * @se_sess: associated se_sess for endpoint
1446  * @cdb: pointer to SCSI CDB
1447  * @sense: pointer to SCSI sense buffer
1448  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1449  * @data_length: fabric expected data transfer length
1450  * @task_addr: SAM task attribute
1451  * @data_dir: DMA data direction
1452  * @flags: flags for command submission from target_sc_flags_tables
1453  *
1454  * Returns non zero to signal active I/O shutdown failure.  All other
1455  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1456  * but still return zero here.
1457  *
1458  * This may only be called from process context, and also currently
1459  * assumes internal allocation of fabric payload buffer by target-core.
1460  *
1461  * It also assumes interal target core SGL memory allocation.
1462  */
1463 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1464                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1465                 u32 data_length, int task_attr, int data_dir, int flags)
1466 {
1467         return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1468                         unpacked_lun, data_length, task_attr, data_dir,
1469                         flags, NULL, 0, NULL, 0, NULL, 0);
1470 }
1471 EXPORT_SYMBOL(target_submit_cmd);
1472
1473 static void target_complete_tmr_failure(struct work_struct *work)
1474 {
1475         struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1476
1477         se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1478         se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1479
1480         transport_cmd_check_stop_to_fabric(se_cmd);
1481 }
1482
1483 /**
1484  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1485  *                     for TMR CDBs
1486  *
1487  * @se_cmd: command descriptor to submit
1488  * @se_sess: associated se_sess for endpoint
1489  * @sense: pointer to SCSI sense buffer
1490  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1491  * @fabric_context: fabric context for TMR req
1492  * @tm_type: Type of TM request
1493  * @gfp: gfp type for caller
1494  * @tag: referenced task tag for TMR_ABORT_TASK
1495  * @flags: submit cmd flags
1496  *
1497  * Callable from all contexts.
1498  **/
1499
1500 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1501                 unsigned char *sense, u32 unpacked_lun,
1502                 void *fabric_tmr_ptr, unsigned char tm_type,
1503                 gfp_t gfp, unsigned int tag, int flags)
1504 {
1505         struct se_portal_group *se_tpg;
1506         int ret;
1507
1508         se_tpg = se_sess->se_tpg;
1509         BUG_ON(!se_tpg);
1510
1511         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1512                               0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1513         /*
1514          * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1515          * allocation failure.
1516          */
1517         ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1518         if (ret < 0)
1519                 return -ENOMEM;
1520
1521         if (tm_type == TMR_ABORT_TASK)
1522                 se_cmd->se_tmr_req->ref_task_tag = tag;
1523
1524         /* See target_submit_cmd for commentary */
1525         ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1526         if (ret) {
1527                 core_tmr_release_req(se_cmd->se_tmr_req);
1528                 return ret;
1529         }
1530
1531         ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1532         if (ret) {
1533                 /*
1534                  * For callback during failure handling, push this work off
1535                  * to process context with TMR_LUN_DOES_NOT_EXIST status.
1536                  */
1537                 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1538                 schedule_work(&se_cmd->work);
1539                 return 0;
1540         }
1541         transport_generic_handle_tmr(se_cmd);
1542         return 0;
1543 }
1544 EXPORT_SYMBOL(target_submit_tmr);
1545
1546 /*
1547  * If the cmd is active, request it to be stopped and sleep until it
1548  * has completed.
1549  */
1550 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1551 {
1552         bool was_active = false;
1553
1554         if (cmd->transport_state & CMD_T_BUSY) {
1555                 cmd->transport_state |= CMD_T_REQUEST_STOP;
1556                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1557
1558                 pr_debug("cmd %p waiting to complete\n", cmd);
1559                 wait_for_completion(&cmd->task_stop_comp);
1560                 pr_debug("cmd %p stopped successfully\n", cmd);
1561
1562                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1563                 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1564                 cmd->transport_state &= ~CMD_T_BUSY;
1565                 was_active = true;
1566         }
1567
1568         return was_active;
1569 }
1570
1571 /*
1572  * Handle SAM-esque emulation for generic transport request failures.
1573  */
1574 void transport_generic_request_failure(struct se_cmd *cmd,
1575                 sense_reason_t sense_reason)
1576 {
1577         int ret = 0;
1578
1579         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1580                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1581                 cmd->t_task_cdb[0]);
1582         pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1583                 cmd->se_tfo->get_cmd_state(cmd),
1584                 cmd->t_state, sense_reason);
1585         pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1586                 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1587                 (cmd->transport_state & CMD_T_STOP) != 0,
1588                 (cmd->transport_state & CMD_T_SENT) != 0);
1589
1590         /*
1591          * For SAM Task Attribute emulation for failed struct se_cmd
1592          */
1593         transport_complete_task_attr(cmd);
1594         /*
1595          * Handle special case for COMPARE_AND_WRITE failure, where the
1596          * callback is expected to drop the per device ->caw_mutex.
1597          */
1598         if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1599              cmd->transport_complete_callback)
1600                 cmd->transport_complete_callback(cmd);
1601
1602         switch (sense_reason) {
1603         case TCM_NON_EXISTENT_LUN:
1604         case TCM_UNSUPPORTED_SCSI_OPCODE:
1605         case TCM_INVALID_CDB_FIELD:
1606         case TCM_INVALID_PARAMETER_LIST:
1607         case TCM_PARAMETER_LIST_LENGTH_ERROR:
1608         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1609         case TCM_UNKNOWN_MODE_PAGE:
1610         case TCM_WRITE_PROTECTED:
1611         case TCM_ADDRESS_OUT_OF_RANGE:
1612         case TCM_CHECK_CONDITION_ABORT_CMD:
1613         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1614         case TCM_CHECK_CONDITION_NOT_READY:
1615         case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1616         case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1617         case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1618                 break;
1619         case TCM_OUT_OF_RESOURCES:
1620                 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1621                 break;
1622         case TCM_RESERVATION_CONFLICT:
1623                 /*
1624                  * No SENSE Data payload for this case, set SCSI Status
1625                  * and queue the response to $FABRIC_MOD.
1626                  *
1627                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1628                  */
1629                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1630                 /*
1631                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1632                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1633                  * CONFLICT STATUS.
1634                  *
1635                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1636                  */
1637                 if (cmd->se_sess &&
1638                     cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1639                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1640                                 cmd->orig_fe_lun, 0x2C,
1641                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1642
1643                 trace_target_cmd_complete(cmd);
1644                 ret = cmd->se_tfo-> queue_status(cmd);
1645                 if (ret == -EAGAIN || ret == -ENOMEM)
1646                         goto queue_full;
1647                 goto check_stop;
1648         default:
1649                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1650                         cmd->t_task_cdb[0], sense_reason);
1651                 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1652                 break;
1653         }
1654
1655         ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1656         if (ret == -EAGAIN || ret == -ENOMEM)
1657                 goto queue_full;
1658
1659 check_stop:
1660         transport_lun_remove_cmd(cmd);
1661         if (!transport_cmd_check_stop_to_fabric(cmd))
1662                 ;
1663         return;
1664
1665 queue_full:
1666         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1667         transport_handle_queue_full(cmd, cmd->se_dev);
1668 }
1669 EXPORT_SYMBOL(transport_generic_request_failure);
1670
1671 void __target_execute_cmd(struct se_cmd *cmd)
1672 {
1673         sense_reason_t ret;
1674
1675         if (cmd->execute_cmd) {
1676                 ret = cmd->execute_cmd(cmd);
1677                 if (ret) {
1678                         spin_lock_irq(&cmd->t_state_lock);
1679                         cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1680                         spin_unlock_irq(&cmd->t_state_lock);
1681
1682                         transport_generic_request_failure(cmd, ret);
1683                 }
1684         }
1685 }
1686
1687 static bool target_handle_task_attr(struct se_cmd *cmd)
1688 {
1689         struct se_device *dev = cmd->se_dev;
1690
1691         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1692                 return false;
1693
1694         /*
1695          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1696          * to allow the passed struct se_cmd list of tasks to the front of the list.
1697          */
1698         switch (cmd->sam_task_attr) {
1699         case MSG_HEAD_TAG:
1700                 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1701                          "se_ordered_id: %u\n",
1702                          cmd->t_task_cdb[0], cmd->se_ordered_id);
1703                 return false;
1704         case MSG_ORDERED_TAG:
1705                 atomic_inc(&dev->dev_ordered_sync);
1706                 smp_mb__after_atomic_inc();
1707
1708                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1709                          " se_ordered_id: %u\n",
1710                          cmd->t_task_cdb[0], cmd->se_ordered_id);
1711
1712                 /*
1713                  * Execute an ORDERED command if no other older commands
1714                  * exist that need to be completed first.
1715                  */
1716                 if (!atomic_read(&dev->simple_cmds))
1717                         return false;
1718                 break;
1719         default:
1720                 /*
1721                  * For SIMPLE and UNTAGGED Task Attribute commands
1722                  */
1723                 atomic_inc(&dev->simple_cmds);
1724                 smp_mb__after_atomic_inc();
1725                 break;
1726         }
1727
1728         if (atomic_read(&dev->dev_ordered_sync) == 0)
1729                 return false;
1730
1731         spin_lock(&dev->delayed_cmd_lock);
1732         list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1733         spin_unlock(&dev->delayed_cmd_lock);
1734
1735         pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1736                 " delayed CMD list, se_ordered_id: %u\n",
1737                 cmd->t_task_cdb[0], cmd->sam_task_attr,
1738                 cmd->se_ordered_id);
1739         return true;
1740 }
1741
1742 void target_execute_cmd(struct se_cmd *cmd)
1743 {
1744         /*
1745          * If the received CDB has aleady been aborted stop processing it here.
1746          */
1747         if (transport_check_aborted_status(cmd, 1))
1748                 return;
1749
1750         /*
1751          * Determine if frontend context caller is requesting the stopping of
1752          * this command for frontend exceptions.
1753          */
1754         spin_lock_irq(&cmd->t_state_lock);
1755         if (cmd->transport_state & CMD_T_STOP) {
1756                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1757                         __func__, __LINE__,
1758                         cmd->se_tfo->get_task_tag(cmd));
1759
1760                 spin_unlock_irq(&cmd->t_state_lock);
1761                 complete(&cmd->t_transport_stop_comp);
1762                 return;
1763         }
1764
1765         cmd->t_state = TRANSPORT_PROCESSING;
1766         cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1767         spin_unlock_irq(&cmd->t_state_lock);
1768
1769         if (target_handle_task_attr(cmd)) {
1770                 spin_lock_irq(&cmd->t_state_lock);
1771                 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
1772                 spin_unlock_irq(&cmd->t_state_lock);
1773                 return;
1774         }
1775
1776         __target_execute_cmd(cmd);
1777 }
1778 EXPORT_SYMBOL(target_execute_cmd);
1779
1780 /*
1781  * Process all commands up to the last received ORDERED task attribute which
1782  * requires another blocking boundary
1783  */
1784 static void target_restart_delayed_cmds(struct se_device *dev)
1785 {
1786         for (;;) {
1787                 struct se_cmd *cmd;
1788
1789                 spin_lock(&dev->delayed_cmd_lock);
1790                 if (list_empty(&dev->delayed_cmd_list)) {
1791                         spin_unlock(&dev->delayed_cmd_lock);
1792                         break;
1793                 }
1794
1795                 cmd = list_entry(dev->delayed_cmd_list.next,
1796                                  struct se_cmd, se_delayed_node);
1797                 list_del(&cmd->se_delayed_node);
1798                 spin_unlock(&dev->delayed_cmd_lock);
1799
1800                 __target_execute_cmd(cmd);
1801
1802                 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1803                         break;
1804         }
1805 }
1806
1807 /*
1808  * Called from I/O completion to determine which dormant/delayed
1809  * and ordered cmds need to have their tasks added to the execution queue.
1810  */
1811 static void transport_complete_task_attr(struct se_cmd *cmd)
1812 {
1813         struct se_device *dev = cmd->se_dev;
1814
1815         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1816                 return;
1817
1818         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1819                 atomic_dec(&dev->simple_cmds);
1820                 smp_mb__after_atomic_dec();
1821                 dev->dev_cur_ordered_id++;
1822                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1823                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1824                         cmd->se_ordered_id);
1825         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1826                 dev->dev_cur_ordered_id++;
1827                 pr_debug("Incremented dev_cur_ordered_id: %u for"
1828                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1829                         cmd->se_ordered_id);
1830         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1831                 atomic_dec(&dev->dev_ordered_sync);
1832                 smp_mb__after_atomic_dec();
1833
1834                 dev->dev_cur_ordered_id++;
1835                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1836                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1837         }
1838
1839         target_restart_delayed_cmds(dev);
1840 }
1841
1842 static void transport_complete_qf(struct se_cmd *cmd)
1843 {
1844         int ret = 0;
1845
1846         transport_complete_task_attr(cmd);
1847
1848         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1849                 trace_target_cmd_complete(cmd);
1850                 ret = cmd->se_tfo->queue_status(cmd);
1851                 if (ret)
1852                         goto out;
1853         }
1854
1855         switch (cmd->data_direction) {
1856         case DMA_FROM_DEVICE:
1857                 trace_target_cmd_complete(cmd);
1858                 ret = cmd->se_tfo->queue_data_in(cmd);
1859                 break;
1860         case DMA_TO_DEVICE:
1861                 if (cmd->se_cmd_flags & SCF_BIDI) {
1862                         ret = cmd->se_tfo->queue_data_in(cmd);
1863                         if (ret < 0)
1864                                 break;
1865                 }
1866                 /* Fall through for DMA_TO_DEVICE */
1867         case DMA_NONE:
1868                 trace_target_cmd_complete(cmd);
1869                 ret = cmd->se_tfo->queue_status(cmd);
1870                 break;
1871         default:
1872                 break;
1873         }
1874
1875 out:
1876         if (ret < 0) {
1877                 transport_handle_queue_full(cmd, cmd->se_dev);
1878                 return;
1879         }
1880         transport_lun_remove_cmd(cmd);
1881         transport_cmd_check_stop_to_fabric(cmd);
1882 }
1883
1884 static void transport_handle_queue_full(
1885         struct se_cmd *cmd,
1886         struct se_device *dev)
1887 {
1888         spin_lock_irq(&dev->qf_cmd_lock);
1889         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1890         atomic_inc(&dev->dev_qf_count);
1891         smp_mb__after_atomic_inc();
1892         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1893
1894         schedule_work(&cmd->se_dev->qf_work_queue);
1895 }
1896
1897 static void target_complete_ok_work(struct work_struct *work)
1898 {
1899         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1900         int ret;
1901
1902         /*
1903          * Check if we need to move delayed/dormant tasks from cmds on the
1904          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1905          * Attribute.
1906          */
1907         transport_complete_task_attr(cmd);
1908
1909         /*
1910          * Check to schedule QUEUE_FULL work, or execute an existing
1911          * cmd->transport_qf_callback()
1912          */
1913         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1914                 schedule_work(&cmd->se_dev->qf_work_queue);
1915
1916         /*
1917          * Check if we need to send a sense buffer from
1918          * the struct se_cmd in question.
1919          */
1920         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1921                 WARN_ON(!cmd->scsi_status);
1922                 ret = transport_send_check_condition_and_sense(
1923                                         cmd, 0, 1);
1924                 if (ret == -EAGAIN || ret == -ENOMEM)
1925                         goto queue_full;
1926
1927                 transport_lun_remove_cmd(cmd);
1928                 transport_cmd_check_stop_to_fabric(cmd);
1929                 return;
1930         }
1931         /*
1932          * Check for a callback, used by amongst other things
1933          * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
1934          */
1935         if (cmd->transport_complete_callback) {
1936                 sense_reason_t rc;
1937
1938                 rc = cmd->transport_complete_callback(cmd);
1939                 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) {
1940                         return;
1941                 } else if (rc) {
1942                         ret = transport_send_check_condition_and_sense(cmd,
1943                                                 rc, 0);
1944                         if (ret == -EAGAIN || ret == -ENOMEM)
1945                                 goto queue_full;
1946
1947                         transport_lun_remove_cmd(cmd);
1948                         transport_cmd_check_stop_to_fabric(cmd);
1949                         return;
1950                 }
1951         }
1952
1953         switch (cmd->data_direction) {
1954         case DMA_FROM_DEVICE:
1955                 spin_lock(&cmd->se_lun->lun_sep_lock);
1956                 if (cmd->se_lun->lun_sep) {
1957                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1958                                         cmd->data_length;
1959                 }
1960                 spin_unlock(&cmd->se_lun->lun_sep_lock);
1961
1962                 trace_target_cmd_complete(cmd);
1963                 ret = cmd->se_tfo->queue_data_in(cmd);
1964                 if (ret == -EAGAIN || ret == -ENOMEM)
1965                         goto queue_full;
1966                 break;
1967         case DMA_TO_DEVICE:
1968                 spin_lock(&cmd->se_lun->lun_sep_lock);
1969                 if (cmd->se_lun->lun_sep) {
1970                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
1971                                 cmd->data_length;
1972                 }
1973                 spin_unlock(&cmd->se_lun->lun_sep_lock);
1974                 /*
1975                  * Check if we need to send READ payload for BIDI-COMMAND
1976                  */
1977                 if (cmd->se_cmd_flags & SCF_BIDI) {
1978                         spin_lock(&cmd->se_lun->lun_sep_lock);
1979                         if (cmd->se_lun->lun_sep) {
1980                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1981                                         cmd->data_length;
1982                         }
1983                         spin_unlock(&cmd->se_lun->lun_sep_lock);
1984                         ret = cmd->se_tfo->queue_data_in(cmd);
1985                         if (ret == -EAGAIN || ret == -ENOMEM)
1986                                 goto queue_full;
1987                         break;
1988                 }
1989                 /* Fall through for DMA_TO_DEVICE */
1990         case DMA_NONE:
1991                 trace_target_cmd_complete(cmd);
1992                 ret = cmd->se_tfo->queue_status(cmd);
1993                 if (ret == -EAGAIN || ret == -ENOMEM)
1994                         goto queue_full;
1995                 break;
1996         default:
1997                 break;
1998         }
1999
2000         transport_lun_remove_cmd(cmd);
2001         transport_cmd_check_stop_to_fabric(cmd);
2002         return;
2003
2004 queue_full:
2005         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2006                 " data_direction: %d\n", cmd, cmd->data_direction);
2007         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2008         transport_handle_queue_full(cmd, cmd->se_dev);
2009 }
2010
2011 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2012 {
2013         struct scatterlist *sg;
2014         int count;
2015
2016         for_each_sg(sgl, sg, nents, count)
2017                 __free_page(sg_page(sg));
2018
2019         kfree(sgl);
2020 }
2021
2022 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2023 {
2024         /*
2025          * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2026          * emulation, and free + reset pointers if necessary..
2027          */
2028         if (!cmd->t_data_sg_orig)
2029                 return;
2030
2031         kfree(cmd->t_data_sg);
2032         cmd->t_data_sg = cmd->t_data_sg_orig;
2033         cmd->t_data_sg_orig = NULL;
2034         cmd->t_data_nents = cmd->t_data_nents_orig;
2035         cmd->t_data_nents_orig = 0;
2036 }
2037
2038 static inline void transport_free_pages(struct se_cmd *cmd)
2039 {
2040         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2041                 transport_reset_sgl_orig(cmd);
2042                 return;
2043         }
2044         transport_reset_sgl_orig(cmd);
2045
2046         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2047         cmd->t_data_sg = NULL;
2048         cmd->t_data_nents = 0;
2049
2050         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2051         cmd->t_bidi_data_sg = NULL;
2052         cmd->t_bidi_data_nents = 0;
2053
2054         transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2055         cmd->t_prot_sg = NULL;
2056         cmd->t_prot_nents = 0;
2057 }
2058
2059 /**
2060  * transport_release_cmd - free a command
2061  * @cmd:       command to free
2062  *
2063  * This routine unconditionally frees a command, and reference counting
2064  * or list removal must be done in the caller.
2065  */
2066 static int transport_release_cmd(struct se_cmd *cmd)
2067 {
2068         BUG_ON(!cmd->se_tfo);
2069
2070         if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2071                 core_tmr_release_req(cmd->se_tmr_req);
2072         if (cmd->t_task_cdb != cmd->__t_task_cdb)
2073                 kfree(cmd->t_task_cdb);
2074         /*
2075          * If this cmd has been setup with target_get_sess_cmd(), drop
2076          * the kref and call ->release_cmd() in kref callback.
2077          */
2078         return target_put_sess_cmd(cmd->se_sess, cmd);
2079 }
2080
2081 /**
2082  * transport_put_cmd - release a reference to a command
2083  * @cmd:       command to release
2084  *
2085  * This routine releases our reference to the command and frees it if possible.
2086  */
2087 static int transport_put_cmd(struct se_cmd *cmd)
2088 {
2089         transport_free_pages(cmd);
2090         return transport_release_cmd(cmd);
2091 }
2092
2093 void *transport_kmap_data_sg(struct se_cmd *cmd)
2094 {
2095         struct scatterlist *sg = cmd->t_data_sg;
2096         struct page **pages;
2097         int i;
2098
2099         /*
2100          * We need to take into account a possible offset here for fabrics like
2101          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2102          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2103          */
2104         if (!cmd->t_data_nents)
2105                 return NULL;
2106
2107         BUG_ON(!sg);
2108         if (cmd->t_data_nents == 1)
2109                 return kmap(sg_page(sg)) + sg->offset;
2110
2111         /* >1 page. use vmap */
2112         pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2113         if (!pages)
2114                 return NULL;
2115
2116         /* convert sg[] to pages[] */
2117         for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2118                 pages[i] = sg_page(sg);
2119         }
2120
2121         cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2122         kfree(pages);
2123         if (!cmd->t_data_vmap)
2124                 return NULL;
2125
2126         return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2127 }
2128 EXPORT_SYMBOL(transport_kmap_data_sg);
2129
2130 void transport_kunmap_data_sg(struct se_cmd *cmd)
2131 {
2132         if (!cmd->t_data_nents) {
2133                 return;
2134         } else if (cmd->t_data_nents == 1) {
2135                 kunmap(sg_page(cmd->t_data_sg));
2136                 return;
2137         }
2138
2139         vunmap(cmd->t_data_vmap);
2140         cmd->t_data_vmap = NULL;
2141 }
2142 EXPORT_SYMBOL(transport_kunmap_data_sg);
2143
2144 int
2145 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2146                  bool zero_page)
2147 {
2148         struct scatterlist *sg;
2149         struct page *page;
2150         gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2151         unsigned int nent;
2152         int i = 0;
2153
2154         nent = DIV_ROUND_UP(length, PAGE_SIZE);
2155         sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2156         if (!sg)
2157                 return -ENOMEM;
2158
2159         sg_init_table(sg, nent);
2160
2161         while (length) {
2162                 u32 page_len = min_t(u32, length, PAGE_SIZE);
2163                 page = alloc_page(GFP_KERNEL | zero_flag);
2164                 if (!page)
2165                         goto out;
2166
2167                 sg_set_page(&sg[i], page, page_len, 0);
2168                 length -= page_len;
2169                 i++;
2170         }
2171         *sgl = sg;
2172         *nents = nent;
2173         return 0;
2174
2175 out:
2176         while (i > 0) {
2177                 i--;
2178                 __free_page(sg_page(&sg[i]));
2179         }
2180         kfree(sg);
2181         return -ENOMEM;
2182 }
2183
2184 /*
2185  * Allocate any required resources to execute the command.  For writes we
2186  * might not have the payload yet, so notify the fabric via a call to
2187  * ->write_pending instead. Otherwise place it on the execution queue.
2188  */
2189 sense_reason_t
2190 transport_generic_new_cmd(struct se_cmd *cmd)
2191 {
2192         int ret = 0;
2193
2194         /*
2195          * Determine is the TCM fabric module has already allocated physical
2196          * memory, and is directly calling transport_generic_map_mem_to_cmd()
2197          * beforehand.
2198          */
2199         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2200             cmd->data_length) {
2201                 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2202
2203                 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2204                     (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2205                         u32 bidi_length;
2206
2207                         if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2208                                 bidi_length = cmd->t_task_nolb *
2209                                               cmd->se_dev->dev_attrib.block_size;
2210                         else
2211                                 bidi_length = cmd->data_length;
2212
2213                         ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2214                                                &cmd->t_bidi_data_nents,
2215                                                bidi_length, zero_flag);
2216                         if (ret < 0)
2217                                 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2218                 }
2219
2220                 if (cmd->prot_op != TARGET_PROT_NORMAL) {
2221                         ret = target_alloc_sgl(&cmd->t_prot_sg,
2222                                                &cmd->t_prot_nents,
2223                                                cmd->prot_length, true);
2224                         if (ret < 0)
2225                                 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2226                 }
2227
2228                 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2229                                        cmd->data_length, zero_flag);
2230                 if (ret < 0)
2231                         return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2232         }
2233         /*
2234          * If this command is not a write we can execute it right here,
2235          * for write buffers we need to notify the fabric driver first
2236          * and let it call back once the write buffers are ready.
2237          */
2238         target_add_to_state_list(cmd);
2239         if (cmd->data_direction != DMA_TO_DEVICE) {
2240                 target_execute_cmd(cmd);
2241                 return 0;
2242         }
2243         transport_cmd_check_stop(cmd, false, true);
2244
2245         ret = cmd->se_tfo->write_pending(cmd);
2246         if (ret == -EAGAIN || ret == -ENOMEM)
2247                 goto queue_full;
2248
2249         /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2250         WARN_ON(ret);
2251
2252         return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2253
2254 queue_full:
2255         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2256         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2257         transport_handle_queue_full(cmd, cmd->se_dev);
2258         return 0;
2259 }
2260 EXPORT_SYMBOL(transport_generic_new_cmd);
2261
2262 static void transport_write_pending_qf(struct se_cmd *cmd)
2263 {
2264         int ret;
2265
2266         ret = cmd->se_tfo->write_pending(cmd);
2267         if (ret == -EAGAIN || ret == -ENOMEM) {
2268                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2269                          cmd);
2270                 transport_handle_queue_full(cmd, cmd->se_dev);
2271         }
2272 }
2273
2274 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2275 {
2276         unsigned long flags;
2277         int ret = 0;
2278
2279         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2280                 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2281                          transport_wait_for_tasks(cmd);
2282
2283                 ret = transport_release_cmd(cmd);
2284         } else {
2285                 if (wait_for_tasks)
2286                         transport_wait_for_tasks(cmd);
2287                 /*
2288                  * Handle WRITE failure case where transport_generic_new_cmd()
2289                  * has already added se_cmd to state_list, but fabric has
2290                  * failed command before I/O submission.
2291                  */
2292                 if (cmd->state_active) {
2293                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2294                         target_remove_from_state_list(cmd);
2295                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2296                 }
2297
2298                 if (cmd->se_lun)
2299                         transport_lun_remove_cmd(cmd);
2300
2301                 ret = transport_put_cmd(cmd);
2302         }
2303         return ret;
2304 }
2305 EXPORT_SYMBOL(transport_generic_free_cmd);
2306
2307 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2308  * @se_sess:    session to reference
2309  * @se_cmd:     command descriptor to add
2310  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
2311  */
2312 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2313                                bool ack_kref)
2314 {
2315         unsigned long flags;
2316         int ret = 0;
2317
2318         kref_init(&se_cmd->cmd_kref);
2319         /*
2320          * Add a second kref if the fabric caller is expecting to handle
2321          * fabric acknowledgement that requires two target_put_sess_cmd()
2322          * invocations before se_cmd descriptor release.
2323          */
2324         if (ack_kref == true) {
2325                 kref_get(&se_cmd->cmd_kref);
2326                 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2327         }
2328
2329         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2330         if (se_sess->sess_tearing_down) {
2331                 ret = -ESHUTDOWN;
2332                 goto out;
2333         }
2334         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2335 out:
2336         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2337         return ret;
2338 }
2339 EXPORT_SYMBOL(target_get_sess_cmd);
2340
2341 static void target_release_cmd_kref(struct kref *kref)
2342 {
2343         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2344         struct se_session *se_sess = se_cmd->se_sess;
2345
2346         if (list_empty(&se_cmd->se_cmd_list)) {
2347                 spin_unlock(&se_sess->sess_cmd_lock);
2348                 se_cmd->se_tfo->release_cmd(se_cmd);
2349                 return;
2350         }
2351         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2352                 spin_unlock(&se_sess->sess_cmd_lock);
2353                 complete(&se_cmd->cmd_wait_comp);
2354                 return;
2355         }
2356         list_del(&se_cmd->se_cmd_list);
2357         spin_unlock(&se_sess->sess_cmd_lock);
2358
2359         se_cmd->se_tfo->release_cmd(se_cmd);
2360 }
2361
2362 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2363  * @se_sess:    session to reference
2364  * @se_cmd:     command descriptor to drop
2365  */
2366 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2367 {
2368         return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2369                         &se_sess->sess_cmd_lock);
2370 }
2371 EXPORT_SYMBOL(target_put_sess_cmd);
2372
2373 /* target_sess_cmd_list_set_waiting - Flag all commands in
2374  *         sess_cmd_list to complete cmd_wait_comp.  Set
2375  *         sess_tearing_down so no more commands are queued.
2376  * @se_sess:    session to flag
2377  */
2378 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2379 {
2380         struct se_cmd *se_cmd;
2381         unsigned long flags;
2382
2383         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2384         if (se_sess->sess_tearing_down) {
2385                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2386                 return;
2387         }
2388         se_sess->sess_tearing_down = 1;
2389         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2390
2391         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2392                 se_cmd->cmd_wait_set = 1;
2393
2394         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2395 }
2396 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2397
2398 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2399  * @se_sess:    session to wait for active I/O
2400  */
2401 void target_wait_for_sess_cmds(struct se_session *se_sess)
2402 {
2403         struct se_cmd *se_cmd, *tmp_cmd;
2404         unsigned long flags;
2405
2406         list_for_each_entry_safe(se_cmd, tmp_cmd,
2407                                 &se_sess->sess_wait_list, se_cmd_list) {
2408                 list_del(&se_cmd->se_cmd_list);
2409
2410                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2411                         " %d\n", se_cmd, se_cmd->t_state,
2412                         se_cmd->se_tfo->get_cmd_state(se_cmd));
2413
2414                 wait_for_completion(&se_cmd->cmd_wait_comp);
2415                 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2416                         " fabric state: %d\n", se_cmd, se_cmd->t_state,
2417                         se_cmd->se_tfo->get_cmd_state(se_cmd));
2418
2419                 se_cmd->se_tfo->release_cmd(se_cmd);
2420         }
2421
2422         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2423         WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2424         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2425
2426 }
2427 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2428
2429 static int transport_clear_lun_ref_thread(void *p)
2430 {
2431         struct se_lun *lun = p;
2432
2433         percpu_ref_kill(&lun->lun_ref);
2434
2435         wait_for_completion(&lun->lun_ref_comp);
2436         complete(&lun->lun_shutdown_comp);
2437
2438         return 0;
2439 }
2440
2441 int transport_clear_lun_ref(struct se_lun *lun)
2442 {
2443         struct task_struct *kt;
2444
2445         kt = kthread_run(transport_clear_lun_ref_thread, lun,
2446                         "tcm_cl_%u", lun->unpacked_lun);
2447         if (IS_ERR(kt)) {
2448                 pr_err("Unable to start clear_lun thread\n");
2449                 return PTR_ERR(kt);
2450         }
2451         wait_for_completion(&lun->lun_shutdown_comp);
2452
2453         return 0;
2454 }
2455
2456 /**
2457  * transport_wait_for_tasks - wait for completion to occur
2458  * @cmd:        command to wait
2459  *
2460  * Called from frontend fabric context to wait for storage engine
2461  * to pause and/or release frontend generated struct se_cmd.
2462  */
2463 bool transport_wait_for_tasks(struct se_cmd *cmd)
2464 {
2465         unsigned long flags;
2466
2467         spin_lock_irqsave(&cmd->t_state_lock, flags);
2468         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2469             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2470                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2471                 return false;
2472         }
2473
2474         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2475             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2476                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2477                 return false;
2478         }
2479
2480         if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2481                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2482                 return false;
2483         }
2484
2485         cmd->transport_state |= CMD_T_STOP;
2486
2487         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2488                 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2489                 cmd, cmd->se_tfo->get_task_tag(cmd),
2490                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2491
2492         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2493
2494         wait_for_completion(&cmd->t_transport_stop_comp);
2495
2496         spin_lock_irqsave(&cmd->t_state_lock, flags);
2497         cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2498
2499         pr_debug("wait_for_tasks: Stopped wait_for_completion("
2500                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2501                 cmd->se_tfo->get_task_tag(cmd));
2502
2503         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2504
2505         return true;
2506 }
2507 EXPORT_SYMBOL(transport_wait_for_tasks);
2508
2509 static int transport_get_sense_codes(
2510         struct se_cmd *cmd,
2511         u8 *asc,
2512         u8 *ascq)
2513 {
2514         *asc = cmd->scsi_asc;
2515         *ascq = cmd->scsi_ascq;
2516
2517         return 0;
2518 }
2519
2520 static
2521 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector)
2522 {
2523         /* Place failed LBA in sense data information descriptor 0. */
2524         buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc;
2525         buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */
2526         buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa;
2527         buffer[SPC_VALIDITY_OFFSET] = 0x80;
2528
2529         /* Descriptor Information: failing sector */
2530         put_unaligned_be64(bad_sector, &buffer[12]);
2531 }
2532
2533 int
2534 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2535                 sense_reason_t reason, int from_transport)
2536 {
2537         unsigned char *buffer = cmd->sense_buffer;
2538         unsigned long flags;
2539         u8 asc = 0, ascq = 0;
2540
2541         spin_lock_irqsave(&cmd->t_state_lock, flags);
2542         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2543                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2544                 return 0;
2545         }
2546         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2547         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2548
2549         if (!reason && from_transport)
2550                 goto after_reason;
2551
2552         if (!from_transport)
2553                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2554
2555         /*
2556          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
2557          * SENSE KEY values from include/scsi/scsi.h
2558          */
2559         switch (reason) {
2560         case TCM_NO_SENSE:
2561                 /* CURRENT ERROR */
2562                 buffer[0] = 0x70;
2563                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2564                 /* Not Ready */
2565                 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2566                 /* NO ADDITIONAL SENSE INFORMATION */
2567                 buffer[SPC_ASC_KEY_OFFSET] = 0;
2568                 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2569                 break;
2570         case TCM_NON_EXISTENT_LUN:
2571                 /* CURRENT ERROR */
2572                 buffer[0] = 0x70;
2573                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2574                 /* ILLEGAL REQUEST */
2575                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2576                 /* LOGICAL UNIT NOT SUPPORTED */
2577                 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2578                 break;
2579         case TCM_UNSUPPORTED_SCSI_OPCODE:
2580         case TCM_SECTOR_COUNT_TOO_MANY:
2581                 /* CURRENT ERROR */
2582                 buffer[0] = 0x70;
2583                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2584                 /* ILLEGAL REQUEST */
2585                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2586                 /* INVALID COMMAND OPERATION CODE */
2587                 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2588                 break;
2589         case TCM_UNKNOWN_MODE_PAGE:
2590                 /* CURRENT ERROR */
2591                 buffer[0] = 0x70;
2592                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2593                 /* ILLEGAL REQUEST */
2594                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2595                 /* INVALID FIELD IN CDB */
2596                 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2597                 break;
2598         case TCM_CHECK_CONDITION_ABORT_CMD:
2599                 /* CURRENT ERROR */
2600                 buffer[0] = 0x70;
2601                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2602                 /* ABORTED COMMAND */
2603                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2604                 /* BUS DEVICE RESET FUNCTION OCCURRED */
2605                 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2606                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2607                 break;
2608         case TCM_INCORRECT_AMOUNT_OF_DATA:
2609                 /* CURRENT ERROR */
2610                 buffer[0] = 0x70;
2611                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2612                 /* ABORTED COMMAND */
2613                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2614                 /* WRITE ERROR */
2615                 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2616                 /* NOT ENOUGH UNSOLICITED DATA */
2617                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2618                 break;
2619         case TCM_INVALID_CDB_FIELD:
2620                 /* CURRENT ERROR */
2621                 buffer[0] = 0x70;
2622                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2623                 /* ILLEGAL REQUEST */
2624                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2625                 /* INVALID FIELD IN CDB */
2626                 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2627                 break;
2628         case TCM_INVALID_PARAMETER_LIST:
2629                 /* CURRENT ERROR */
2630                 buffer[0] = 0x70;
2631                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2632                 /* ILLEGAL REQUEST */
2633                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2634                 /* INVALID FIELD IN PARAMETER LIST */
2635                 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2636                 break;
2637         case TCM_PARAMETER_LIST_LENGTH_ERROR:
2638                 /* CURRENT ERROR */
2639                 buffer[0] = 0x70;
2640                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2641                 /* ILLEGAL REQUEST */
2642                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2643                 /* PARAMETER LIST LENGTH ERROR */
2644                 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2645                 break;
2646         case TCM_UNEXPECTED_UNSOLICITED_DATA:
2647                 /* CURRENT ERROR */
2648                 buffer[0] = 0x70;
2649                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2650                 /* ABORTED COMMAND */
2651                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2652                 /* WRITE ERROR */
2653                 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2654                 /* UNEXPECTED_UNSOLICITED_DATA */
2655                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2656                 break;
2657         case TCM_SERVICE_CRC_ERROR:
2658                 /* CURRENT ERROR */
2659                 buffer[0] = 0x70;
2660                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2661                 /* ABORTED COMMAND */
2662                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2663                 /* PROTOCOL SERVICE CRC ERROR */
2664                 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2665                 /* N/A */
2666                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2667                 break;
2668         case TCM_SNACK_REJECTED:
2669                 /* CURRENT ERROR */
2670                 buffer[0] = 0x70;
2671                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2672                 /* ABORTED COMMAND */
2673                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2674                 /* READ ERROR */
2675                 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2676                 /* FAILED RETRANSMISSION REQUEST */
2677                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2678                 break;
2679         case TCM_WRITE_PROTECTED:
2680                 /* CURRENT ERROR */
2681                 buffer[0] = 0x70;
2682                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2683                 /* DATA PROTECT */
2684                 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2685                 /* WRITE PROTECTED */
2686                 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2687                 break;
2688         case TCM_ADDRESS_OUT_OF_RANGE:
2689                 /* CURRENT ERROR */
2690                 buffer[0] = 0x70;
2691                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2692                 /* ILLEGAL REQUEST */
2693                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2694                 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2695                 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2696                 break;
2697         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2698                 /* CURRENT ERROR */
2699                 buffer[0] = 0x70;
2700                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2701                 /* UNIT ATTENTION */
2702                 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2703                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2704                 buffer[SPC_ASC_KEY_OFFSET] = asc;
2705                 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2706                 break;
2707         case TCM_CHECK_CONDITION_NOT_READY:
2708                 /* CURRENT ERROR */
2709                 buffer[0] = 0x70;
2710                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2711                 /* Not Ready */
2712                 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2713                 transport_get_sense_codes(cmd, &asc, &ascq);
2714                 buffer[SPC_ASC_KEY_OFFSET] = asc;
2715                 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2716                 break;
2717         case TCM_MISCOMPARE_VERIFY:
2718                 /* CURRENT ERROR */
2719                 buffer[0] = 0x70;
2720                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2721                 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2722                 /* MISCOMPARE DURING VERIFY OPERATION */
2723                 buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2724                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2725                 break;
2726         case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2727                 /* CURRENT ERROR */
2728                 buffer[0] = 0x70;
2729                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2730                 /* ILLEGAL REQUEST */
2731                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2732                 /* LOGICAL BLOCK GUARD CHECK FAILED */
2733                 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2734                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x01;
2735                 transport_err_sector_info(buffer, cmd->bad_sector);
2736                 break;
2737         case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2738                 /* CURRENT ERROR */
2739                 buffer[0] = 0x70;
2740                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2741                 /* ILLEGAL REQUEST */
2742                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2743                 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2744                 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2745                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x02;
2746                 transport_err_sector_info(buffer, cmd->bad_sector);
2747                 break;
2748         case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2749                 /* CURRENT ERROR */
2750                 buffer[0] = 0x70;
2751                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2752                 /* ILLEGAL REQUEST */
2753                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2754                 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2755                 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2756                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2757                 transport_err_sector_info(buffer, cmd->bad_sector);
2758                 break;
2759         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2760         default:
2761                 /* CURRENT ERROR */
2762                 buffer[0] = 0x70;
2763                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2764                 /*
2765                  * Returning ILLEGAL REQUEST would cause immediate IO errors on
2766                  * Solaris initiators.  Returning NOT READY instead means the
2767                  * operations will be retried a finite number of times and we
2768                  * can survive intermittent errors.
2769                  */
2770                 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2771                 /* LOGICAL UNIT COMMUNICATION FAILURE */
2772                 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2773                 break;
2774         }
2775         /*
2776          * This code uses linux/include/scsi/scsi.h SAM status codes!
2777          */
2778         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2779         /*
2780          * Automatically padded, this value is encoded in the fabric's
2781          * data_length response PDU containing the SCSI defined sense data.
2782          */
2783         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
2784
2785 after_reason:
2786         trace_target_cmd_complete(cmd);
2787         return cmd->se_tfo->queue_status(cmd);
2788 }
2789 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2790
2791 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2792 {
2793         if (!(cmd->transport_state & CMD_T_ABORTED))
2794                 return 0;
2795
2796         /*
2797          * If cmd has been aborted but either no status is to be sent or it has
2798          * already been sent, just return
2799          */
2800         if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS))
2801                 return 1;
2802
2803         pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2804                  cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2805
2806         cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2807         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2808         trace_target_cmd_complete(cmd);
2809         cmd->se_tfo->queue_status(cmd);
2810
2811         return 1;
2812 }
2813 EXPORT_SYMBOL(transport_check_aborted_status);
2814
2815 void transport_send_task_abort(struct se_cmd *cmd)
2816 {
2817         unsigned long flags;
2818
2819         spin_lock_irqsave(&cmd->t_state_lock, flags);
2820         if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
2821                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2822                 return;
2823         }
2824         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2825
2826         /*
2827          * If there are still expected incoming fabric WRITEs, we wait
2828          * until until they have completed before sending a TASK_ABORTED
2829          * response.  This response with TASK_ABORTED status will be
2830          * queued back to fabric module by transport_check_aborted_status().
2831          */
2832         if (cmd->data_direction == DMA_TO_DEVICE) {
2833                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2834                         cmd->transport_state |= CMD_T_ABORTED;
2835                         cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2836                         smp_mb__after_atomic_inc();
2837                         return;
2838                 }
2839         }
2840         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2841
2842         transport_lun_remove_cmd(cmd);
2843
2844         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2845                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
2846                 cmd->se_tfo->get_task_tag(cmd));
2847
2848         trace_target_cmd_complete(cmd);
2849         cmd->se_tfo->queue_status(cmd);
2850 }
2851
2852 static void target_tmr_work(struct work_struct *work)
2853 {
2854         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2855         struct se_device *dev = cmd->se_dev;
2856         struct se_tmr_req *tmr = cmd->se_tmr_req;
2857         int ret;
2858
2859         switch (tmr->function) {
2860         case TMR_ABORT_TASK:
2861                 core_tmr_abort_task(dev, tmr, cmd->se_sess);
2862                 break;
2863         case TMR_ABORT_TASK_SET:
2864         case TMR_CLEAR_ACA:
2865         case TMR_CLEAR_TASK_SET:
2866                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
2867                 break;
2868         case TMR_LUN_RESET:
2869                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
2870                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
2871                                          TMR_FUNCTION_REJECTED;
2872                 break;
2873         case TMR_TARGET_WARM_RESET:
2874                 tmr->response = TMR_FUNCTION_REJECTED;
2875                 break;
2876         case TMR_TARGET_COLD_RESET:
2877                 tmr->response = TMR_FUNCTION_REJECTED;
2878                 break;
2879         default:
2880                 pr_err("Uknown TMR function: 0x%02x.\n",
2881                                 tmr->function);
2882                 tmr->response = TMR_FUNCTION_REJECTED;
2883                 break;
2884         }
2885
2886         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2887         cmd->se_tfo->queue_tm_rsp(cmd);
2888
2889         transport_cmd_check_stop_to_fabric(cmd);
2890 }
2891
2892 int transport_generic_handle_tmr(
2893         struct se_cmd *cmd)
2894 {
2895         INIT_WORK(&cmd->work, target_tmr_work);
2896         queue_work(cmd->se_dev->tmr_wq, &cmd->work);
2897         return 0;
2898 }
2899 EXPORT_SYMBOL(transport_generic_handle_tmr);