Target/dif: Introduce protection-passthough-only mode
[firefly-linux-kernel-4.4.55.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * (c) Copyright 2002-2013 Datera, Inc.
7  *
8  * Nicholas A. Bellinger <nab@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  *
24  ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <asm/unaligned.h>
38 #include <net/sock.h>
39 #include <net/tcp.h>
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_tcq.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 #include <target/target_core_configfs.h>
48
49 #include "target_core_internal.h"
50 #include "target_core_alua.h"
51 #include "target_core_pr.h"
52 #include "target_core_ua.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/target.h>
56
57 static struct workqueue_struct *target_completion_wq;
58 static struct kmem_cache *se_sess_cache;
59 struct kmem_cache *se_ua_cache;
60 struct kmem_cache *t10_pr_reg_cache;
61 struct kmem_cache *t10_alua_lu_gp_cache;
62 struct kmem_cache *t10_alua_lu_gp_mem_cache;
63 struct kmem_cache *t10_alua_tg_pt_gp_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
65 struct kmem_cache *t10_alua_lba_map_cache;
66 struct kmem_cache *t10_alua_lba_map_mem_cache;
67
68 static void transport_complete_task_attr(struct se_cmd *cmd);
69 static void transport_handle_queue_full(struct se_cmd *cmd,
70                 struct se_device *dev);
71 static int transport_put_cmd(struct se_cmd *cmd);
72 static void target_complete_ok_work(struct work_struct *work);
73
74 int init_se_kmem_caches(void)
75 {
76         se_sess_cache = kmem_cache_create("se_sess_cache",
77                         sizeof(struct se_session), __alignof__(struct se_session),
78                         0, NULL);
79         if (!se_sess_cache) {
80                 pr_err("kmem_cache_create() for struct se_session"
81                                 " failed\n");
82                 goto out;
83         }
84         se_ua_cache = kmem_cache_create("se_ua_cache",
85                         sizeof(struct se_ua), __alignof__(struct se_ua),
86                         0, NULL);
87         if (!se_ua_cache) {
88                 pr_err("kmem_cache_create() for struct se_ua failed\n");
89                 goto out_free_sess_cache;
90         }
91         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
92                         sizeof(struct t10_pr_registration),
93                         __alignof__(struct t10_pr_registration), 0, NULL);
94         if (!t10_pr_reg_cache) {
95                 pr_err("kmem_cache_create() for struct t10_pr_registration"
96                                 " failed\n");
97                 goto out_free_ua_cache;
98         }
99         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
100                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
101                         0, NULL);
102         if (!t10_alua_lu_gp_cache) {
103                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
104                                 " failed\n");
105                 goto out_free_pr_reg_cache;
106         }
107         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
108                         sizeof(struct t10_alua_lu_gp_member),
109                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
110         if (!t10_alua_lu_gp_mem_cache) {
111                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
112                                 "cache failed\n");
113                 goto out_free_lu_gp_cache;
114         }
115         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
116                         sizeof(struct t10_alua_tg_pt_gp),
117                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
118         if (!t10_alua_tg_pt_gp_cache) {
119                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
120                                 "cache failed\n");
121                 goto out_free_lu_gp_mem_cache;
122         }
123         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
124                         "t10_alua_tg_pt_gp_mem_cache",
125                         sizeof(struct t10_alua_tg_pt_gp_member),
126                         __alignof__(struct t10_alua_tg_pt_gp_member),
127                         0, NULL);
128         if (!t10_alua_tg_pt_gp_mem_cache) {
129                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
130                                 "mem_t failed\n");
131                 goto out_free_tg_pt_gp_cache;
132         }
133         t10_alua_lba_map_cache = kmem_cache_create(
134                         "t10_alua_lba_map_cache",
135                         sizeof(struct t10_alua_lba_map),
136                         __alignof__(struct t10_alua_lba_map), 0, NULL);
137         if (!t10_alua_lba_map_cache) {
138                 pr_err("kmem_cache_create() for t10_alua_lba_map_"
139                                 "cache failed\n");
140                 goto out_free_tg_pt_gp_mem_cache;
141         }
142         t10_alua_lba_map_mem_cache = kmem_cache_create(
143                         "t10_alua_lba_map_mem_cache",
144                         sizeof(struct t10_alua_lba_map_member),
145                         __alignof__(struct t10_alua_lba_map_member), 0, NULL);
146         if (!t10_alua_lba_map_mem_cache) {
147                 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
148                                 "cache failed\n");
149                 goto out_free_lba_map_cache;
150         }
151
152         target_completion_wq = alloc_workqueue("target_completion",
153                                                WQ_MEM_RECLAIM, 0);
154         if (!target_completion_wq)
155                 goto out_free_lba_map_mem_cache;
156
157         return 0;
158
159 out_free_lba_map_mem_cache:
160         kmem_cache_destroy(t10_alua_lba_map_mem_cache);
161 out_free_lba_map_cache:
162         kmem_cache_destroy(t10_alua_lba_map_cache);
163 out_free_tg_pt_gp_mem_cache:
164         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
165 out_free_tg_pt_gp_cache:
166         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
167 out_free_lu_gp_mem_cache:
168         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
169 out_free_lu_gp_cache:
170         kmem_cache_destroy(t10_alua_lu_gp_cache);
171 out_free_pr_reg_cache:
172         kmem_cache_destroy(t10_pr_reg_cache);
173 out_free_ua_cache:
174         kmem_cache_destroy(se_ua_cache);
175 out_free_sess_cache:
176         kmem_cache_destroy(se_sess_cache);
177 out:
178         return -ENOMEM;
179 }
180
181 void release_se_kmem_caches(void)
182 {
183         destroy_workqueue(target_completion_wq);
184         kmem_cache_destroy(se_sess_cache);
185         kmem_cache_destroy(se_ua_cache);
186         kmem_cache_destroy(t10_pr_reg_cache);
187         kmem_cache_destroy(t10_alua_lu_gp_cache);
188         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
189         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
190         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
191         kmem_cache_destroy(t10_alua_lba_map_cache);
192         kmem_cache_destroy(t10_alua_lba_map_mem_cache);
193 }
194
195 /* This code ensures unique mib indexes are handed out. */
196 static DEFINE_SPINLOCK(scsi_mib_index_lock);
197 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
198
199 /*
200  * Allocate a new row index for the entry type specified
201  */
202 u32 scsi_get_new_index(scsi_index_t type)
203 {
204         u32 new_index;
205
206         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
207
208         spin_lock(&scsi_mib_index_lock);
209         new_index = ++scsi_mib_index[type];
210         spin_unlock(&scsi_mib_index_lock);
211
212         return new_index;
213 }
214
215 void transport_subsystem_check_init(void)
216 {
217         int ret;
218         static int sub_api_initialized;
219
220         if (sub_api_initialized)
221                 return;
222
223         ret = request_module("target_core_iblock");
224         if (ret != 0)
225                 pr_err("Unable to load target_core_iblock\n");
226
227         ret = request_module("target_core_file");
228         if (ret != 0)
229                 pr_err("Unable to load target_core_file\n");
230
231         ret = request_module("target_core_pscsi");
232         if (ret != 0)
233                 pr_err("Unable to load target_core_pscsi\n");
234
235         sub_api_initialized = 1;
236 }
237
238 struct se_session *transport_init_session(void)
239 {
240         struct se_session *se_sess;
241
242         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
243         if (!se_sess) {
244                 pr_err("Unable to allocate struct se_session from"
245                                 " se_sess_cache\n");
246                 return ERR_PTR(-ENOMEM);
247         }
248         INIT_LIST_HEAD(&se_sess->sess_list);
249         INIT_LIST_HEAD(&se_sess->sess_acl_list);
250         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
251         INIT_LIST_HEAD(&se_sess->sess_wait_list);
252         spin_lock_init(&se_sess->sess_cmd_lock);
253         kref_init(&se_sess->sess_kref);
254
255         return se_sess;
256 }
257 EXPORT_SYMBOL(transport_init_session);
258
259 int transport_alloc_session_tags(struct se_session *se_sess,
260                                  unsigned int tag_num, unsigned int tag_size)
261 {
262         int rc;
263
264         se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
265                                         GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
266         if (!se_sess->sess_cmd_map) {
267                 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
268                 if (!se_sess->sess_cmd_map) {
269                         pr_err("Unable to allocate se_sess->sess_cmd_map\n");
270                         return -ENOMEM;
271                 }
272         }
273
274         rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
275         if (rc < 0) {
276                 pr_err("Unable to init se_sess->sess_tag_pool,"
277                         " tag_num: %u\n", tag_num);
278                 if (is_vmalloc_addr(se_sess->sess_cmd_map))
279                         vfree(se_sess->sess_cmd_map);
280                 else
281                         kfree(se_sess->sess_cmd_map);
282                 se_sess->sess_cmd_map = NULL;
283                 return -ENOMEM;
284         }
285
286         return 0;
287 }
288 EXPORT_SYMBOL(transport_alloc_session_tags);
289
290 struct se_session *transport_init_session_tags(unsigned int tag_num,
291                                                unsigned int tag_size)
292 {
293         struct se_session *se_sess;
294         int rc;
295
296         se_sess = transport_init_session();
297         if (IS_ERR(se_sess))
298                 return se_sess;
299
300         rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
301         if (rc < 0) {
302                 transport_free_session(se_sess);
303                 return ERR_PTR(-ENOMEM);
304         }
305
306         return se_sess;
307 }
308 EXPORT_SYMBOL(transport_init_session_tags);
309
310 /*
311  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
312  */
313 void __transport_register_session(
314         struct se_portal_group *se_tpg,
315         struct se_node_acl *se_nacl,
316         struct se_session *se_sess,
317         void *fabric_sess_ptr)
318 {
319         unsigned char buf[PR_REG_ISID_LEN];
320
321         se_sess->se_tpg = se_tpg;
322         se_sess->fabric_sess_ptr = fabric_sess_ptr;
323         /*
324          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
325          *
326          * Only set for struct se_session's that will actually be moving I/O.
327          * eg: *NOT* discovery sessions.
328          */
329         if (se_nacl) {
330                 /*
331                  * If the fabric module supports an ISID based TransportID,
332                  * save this value in binary from the fabric I_T Nexus now.
333                  */
334                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
335                         memset(&buf[0], 0, PR_REG_ISID_LEN);
336                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
337                                         &buf[0], PR_REG_ISID_LEN);
338                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
339                 }
340                 kref_get(&se_nacl->acl_kref);
341
342                 spin_lock_irq(&se_nacl->nacl_sess_lock);
343                 /*
344                  * The se_nacl->nacl_sess pointer will be set to the
345                  * last active I_T Nexus for each struct se_node_acl.
346                  */
347                 se_nacl->nacl_sess = se_sess;
348
349                 list_add_tail(&se_sess->sess_acl_list,
350                               &se_nacl->acl_sess_list);
351                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
352         }
353         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
354
355         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
356                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
357 }
358 EXPORT_SYMBOL(__transport_register_session);
359
360 void transport_register_session(
361         struct se_portal_group *se_tpg,
362         struct se_node_acl *se_nacl,
363         struct se_session *se_sess,
364         void *fabric_sess_ptr)
365 {
366         unsigned long flags;
367
368         spin_lock_irqsave(&se_tpg->session_lock, flags);
369         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
370         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
371 }
372 EXPORT_SYMBOL(transport_register_session);
373
374 static void target_release_session(struct kref *kref)
375 {
376         struct se_session *se_sess = container_of(kref,
377                         struct se_session, sess_kref);
378         struct se_portal_group *se_tpg = se_sess->se_tpg;
379
380         se_tpg->se_tpg_tfo->close_session(se_sess);
381 }
382
383 void target_get_session(struct se_session *se_sess)
384 {
385         kref_get(&se_sess->sess_kref);
386 }
387 EXPORT_SYMBOL(target_get_session);
388
389 void target_put_session(struct se_session *se_sess)
390 {
391         struct se_portal_group *tpg = se_sess->se_tpg;
392
393         if (tpg->se_tpg_tfo->put_session != NULL) {
394                 tpg->se_tpg_tfo->put_session(se_sess);
395                 return;
396         }
397         kref_put(&se_sess->sess_kref, target_release_session);
398 }
399 EXPORT_SYMBOL(target_put_session);
400
401 static void target_complete_nacl(struct kref *kref)
402 {
403         struct se_node_acl *nacl = container_of(kref,
404                                 struct se_node_acl, acl_kref);
405
406         complete(&nacl->acl_free_comp);
407 }
408
409 void target_put_nacl(struct se_node_acl *nacl)
410 {
411         kref_put(&nacl->acl_kref, target_complete_nacl);
412 }
413
414 void transport_deregister_session_configfs(struct se_session *se_sess)
415 {
416         struct se_node_acl *se_nacl;
417         unsigned long flags;
418         /*
419          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
420          */
421         se_nacl = se_sess->se_node_acl;
422         if (se_nacl) {
423                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
424                 if (se_nacl->acl_stop == 0)
425                         list_del(&se_sess->sess_acl_list);
426                 /*
427                  * If the session list is empty, then clear the pointer.
428                  * Otherwise, set the struct se_session pointer from the tail
429                  * element of the per struct se_node_acl active session list.
430                  */
431                 if (list_empty(&se_nacl->acl_sess_list))
432                         se_nacl->nacl_sess = NULL;
433                 else {
434                         se_nacl->nacl_sess = container_of(
435                                         se_nacl->acl_sess_list.prev,
436                                         struct se_session, sess_acl_list);
437                 }
438                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
439         }
440 }
441 EXPORT_SYMBOL(transport_deregister_session_configfs);
442
443 void transport_free_session(struct se_session *se_sess)
444 {
445         if (se_sess->sess_cmd_map) {
446                 percpu_ida_destroy(&se_sess->sess_tag_pool);
447                 if (is_vmalloc_addr(se_sess->sess_cmd_map))
448                         vfree(se_sess->sess_cmd_map);
449                 else
450                         kfree(se_sess->sess_cmd_map);
451         }
452         kmem_cache_free(se_sess_cache, se_sess);
453 }
454 EXPORT_SYMBOL(transport_free_session);
455
456 void transport_deregister_session(struct se_session *se_sess)
457 {
458         struct se_portal_group *se_tpg = se_sess->se_tpg;
459         struct target_core_fabric_ops *se_tfo;
460         struct se_node_acl *se_nacl;
461         unsigned long flags;
462         bool comp_nacl = true;
463
464         if (!se_tpg) {
465                 transport_free_session(se_sess);
466                 return;
467         }
468         se_tfo = se_tpg->se_tpg_tfo;
469
470         spin_lock_irqsave(&se_tpg->session_lock, flags);
471         list_del(&se_sess->sess_list);
472         se_sess->se_tpg = NULL;
473         se_sess->fabric_sess_ptr = NULL;
474         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
475
476         /*
477          * Determine if we need to do extra work for this initiator node's
478          * struct se_node_acl if it had been previously dynamically generated.
479          */
480         se_nacl = se_sess->se_node_acl;
481
482         spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
483         if (se_nacl && se_nacl->dynamic_node_acl) {
484                 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
485                         list_del(&se_nacl->acl_list);
486                         se_tpg->num_node_acls--;
487                         spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
488                         core_tpg_wait_for_nacl_pr_ref(se_nacl);
489                         core_free_device_list_for_node(se_nacl, se_tpg);
490                         se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
491
492                         comp_nacl = false;
493                         spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
494                 }
495         }
496         spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
497
498         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
499                 se_tpg->se_tpg_tfo->get_fabric_name());
500         /*
501          * If last kref is dropping now for an explicit NodeACL, awake sleeping
502          * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
503          * removal context.
504          */
505         if (se_nacl && comp_nacl == true)
506                 target_put_nacl(se_nacl);
507
508         transport_free_session(se_sess);
509 }
510 EXPORT_SYMBOL(transport_deregister_session);
511
512 /*
513  * Called with cmd->t_state_lock held.
514  */
515 static void target_remove_from_state_list(struct se_cmd *cmd)
516 {
517         struct se_device *dev = cmd->se_dev;
518         unsigned long flags;
519
520         if (!dev)
521                 return;
522
523         if (cmd->transport_state & CMD_T_BUSY)
524                 return;
525
526         spin_lock_irqsave(&dev->execute_task_lock, flags);
527         if (cmd->state_active) {
528                 list_del(&cmd->state_list);
529                 cmd->state_active = false;
530         }
531         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
532 }
533
534 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
535                                     bool write_pending)
536 {
537         unsigned long flags;
538
539         spin_lock_irqsave(&cmd->t_state_lock, flags);
540         if (write_pending)
541                 cmd->t_state = TRANSPORT_WRITE_PENDING;
542
543         if (remove_from_lists) {
544                 target_remove_from_state_list(cmd);
545
546                 /*
547                  * Clear struct se_cmd->se_lun before the handoff to FE.
548                  */
549                 cmd->se_lun = NULL;
550         }
551
552         /*
553          * Determine if frontend context caller is requesting the stopping of
554          * this command for frontend exceptions.
555          */
556         if (cmd->transport_state & CMD_T_STOP) {
557                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
558                         __func__, __LINE__,
559                         cmd->se_tfo->get_task_tag(cmd));
560
561                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
562
563                 complete(&cmd->t_transport_stop_comp);
564                 return 1;
565         }
566
567         cmd->transport_state &= ~CMD_T_ACTIVE;
568         if (remove_from_lists) {
569                 /*
570                  * Some fabric modules like tcm_loop can release
571                  * their internally allocated I/O reference now and
572                  * struct se_cmd now.
573                  *
574                  * Fabric modules are expected to return '1' here if the
575                  * se_cmd being passed is released at this point,
576                  * or zero if not being released.
577                  */
578                 if (cmd->se_tfo->check_stop_free != NULL) {
579                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
580                         return cmd->se_tfo->check_stop_free(cmd);
581                 }
582         }
583
584         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
585         return 0;
586 }
587
588 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
589 {
590         return transport_cmd_check_stop(cmd, true, false);
591 }
592
593 static void transport_lun_remove_cmd(struct se_cmd *cmd)
594 {
595         struct se_lun *lun = cmd->se_lun;
596
597         if (!lun)
598                 return;
599
600         if (cmpxchg(&cmd->lun_ref_active, true, false))
601                 percpu_ref_put(&lun->lun_ref);
602 }
603
604 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
605 {
606         if (transport_cmd_check_stop_to_fabric(cmd))
607                 return;
608         if (remove)
609                 transport_put_cmd(cmd);
610 }
611
612 static void target_complete_failure_work(struct work_struct *work)
613 {
614         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
615
616         transport_generic_request_failure(cmd,
617                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
618 }
619
620 /*
621  * Used when asking transport to copy Sense Data from the underlying
622  * Linux/SCSI struct scsi_cmnd
623  */
624 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
625 {
626         struct se_device *dev = cmd->se_dev;
627
628         WARN_ON(!cmd->se_lun);
629
630         if (!dev)
631                 return NULL;
632
633         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
634                 return NULL;
635
636         cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
637
638         pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
639                 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
640         return cmd->sense_buffer;
641 }
642
643 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
644 {
645         struct se_device *dev = cmd->se_dev;
646         int success = scsi_status == GOOD;
647         unsigned long flags;
648
649         cmd->scsi_status = scsi_status;
650
651
652         spin_lock_irqsave(&cmd->t_state_lock, flags);
653         cmd->transport_state &= ~CMD_T_BUSY;
654
655         if (dev && dev->transport->transport_complete) {
656                 dev->transport->transport_complete(cmd,
657                                 cmd->t_data_sg,
658                                 transport_get_sense_buffer(cmd));
659                 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
660                         success = 1;
661         }
662
663         /*
664          * See if we are waiting to complete for an exception condition.
665          */
666         if (cmd->transport_state & CMD_T_REQUEST_STOP) {
667                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
668                 complete(&cmd->task_stop_comp);
669                 return;
670         }
671
672         /*
673          * Check for case where an explicit ABORT_TASK has been received
674          * and transport_wait_for_tasks() will be waiting for completion..
675          */
676         if (cmd->transport_state & CMD_T_ABORTED &&
677             cmd->transport_state & CMD_T_STOP) {
678                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
679                 complete(&cmd->t_transport_stop_comp);
680                 return;
681         } else if (!success) {
682                 INIT_WORK(&cmd->work, target_complete_failure_work);
683         } else {
684                 INIT_WORK(&cmd->work, target_complete_ok_work);
685         }
686
687         cmd->t_state = TRANSPORT_COMPLETE;
688         cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
689         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
690
691         queue_work(target_completion_wq, &cmd->work);
692 }
693 EXPORT_SYMBOL(target_complete_cmd);
694
695 static void target_add_to_state_list(struct se_cmd *cmd)
696 {
697         struct se_device *dev = cmd->se_dev;
698         unsigned long flags;
699
700         spin_lock_irqsave(&dev->execute_task_lock, flags);
701         if (!cmd->state_active) {
702                 list_add_tail(&cmd->state_list, &dev->state_list);
703                 cmd->state_active = true;
704         }
705         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
706 }
707
708 /*
709  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
710  */
711 static void transport_write_pending_qf(struct se_cmd *cmd);
712 static void transport_complete_qf(struct se_cmd *cmd);
713
714 void target_qf_do_work(struct work_struct *work)
715 {
716         struct se_device *dev = container_of(work, struct se_device,
717                                         qf_work_queue);
718         LIST_HEAD(qf_cmd_list);
719         struct se_cmd *cmd, *cmd_tmp;
720
721         spin_lock_irq(&dev->qf_cmd_lock);
722         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
723         spin_unlock_irq(&dev->qf_cmd_lock);
724
725         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
726                 list_del(&cmd->se_qf_node);
727                 atomic_dec(&dev->dev_qf_count);
728                 smp_mb__after_atomic_dec();
729
730                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
731                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
732                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
733                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
734                         : "UNKNOWN");
735
736                 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
737                         transport_write_pending_qf(cmd);
738                 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
739                         transport_complete_qf(cmd);
740         }
741 }
742
743 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
744 {
745         switch (cmd->data_direction) {
746         case DMA_NONE:
747                 return "NONE";
748         case DMA_FROM_DEVICE:
749                 return "READ";
750         case DMA_TO_DEVICE:
751                 return "WRITE";
752         case DMA_BIDIRECTIONAL:
753                 return "BIDI";
754         default:
755                 break;
756         }
757
758         return "UNKNOWN";
759 }
760
761 void transport_dump_dev_state(
762         struct se_device *dev,
763         char *b,
764         int *bl)
765 {
766         *bl += sprintf(b + *bl, "Status: ");
767         if (dev->export_count)
768                 *bl += sprintf(b + *bl, "ACTIVATED");
769         else
770                 *bl += sprintf(b + *bl, "DEACTIVATED");
771
772         *bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
773         *bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
774                 dev->dev_attrib.block_size,
775                 dev->dev_attrib.hw_max_sectors);
776         *bl += sprintf(b + *bl, "        ");
777 }
778
779 void transport_dump_vpd_proto_id(
780         struct t10_vpd *vpd,
781         unsigned char *p_buf,
782         int p_buf_len)
783 {
784         unsigned char buf[VPD_TMP_BUF_SIZE];
785         int len;
786
787         memset(buf, 0, VPD_TMP_BUF_SIZE);
788         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
789
790         switch (vpd->protocol_identifier) {
791         case 0x00:
792                 sprintf(buf+len, "Fibre Channel\n");
793                 break;
794         case 0x10:
795                 sprintf(buf+len, "Parallel SCSI\n");
796                 break;
797         case 0x20:
798                 sprintf(buf+len, "SSA\n");
799                 break;
800         case 0x30:
801                 sprintf(buf+len, "IEEE 1394\n");
802                 break;
803         case 0x40:
804                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
805                                 " Protocol\n");
806                 break;
807         case 0x50:
808                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
809                 break;
810         case 0x60:
811                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
812                 break;
813         case 0x70:
814                 sprintf(buf+len, "Automation/Drive Interface Transport"
815                                 " Protocol\n");
816                 break;
817         case 0x80:
818                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
819                 break;
820         default:
821                 sprintf(buf+len, "Unknown 0x%02x\n",
822                                 vpd->protocol_identifier);
823                 break;
824         }
825
826         if (p_buf)
827                 strncpy(p_buf, buf, p_buf_len);
828         else
829                 pr_debug("%s", buf);
830 }
831
832 void
833 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
834 {
835         /*
836          * Check if the Protocol Identifier Valid (PIV) bit is set..
837          *
838          * from spc3r23.pdf section 7.5.1
839          */
840          if (page_83[1] & 0x80) {
841                 vpd->protocol_identifier = (page_83[0] & 0xf0);
842                 vpd->protocol_identifier_set = 1;
843                 transport_dump_vpd_proto_id(vpd, NULL, 0);
844         }
845 }
846 EXPORT_SYMBOL(transport_set_vpd_proto_id);
847
848 int transport_dump_vpd_assoc(
849         struct t10_vpd *vpd,
850         unsigned char *p_buf,
851         int p_buf_len)
852 {
853         unsigned char buf[VPD_TMP_BUF_SIZE];
854         int ret = 0;
855         int len;
856
857         memset(buf, 0, VPD_TMP_BUF_SIZE);
858         len = sprintf(buf, "T10 VPD Identifier Association: ");
859
860         switch (vpd->association) {
861         case 0x00:
862                 sprintf(buf+len, "addressed logical unit\n");
863                 break;
864         case 0x10:
865                 sprintf(buf+len, "target port\n");
866                 break;
867         case 0x20:
868                 sprintf(buf+len, "SCSI target device\n");
869                 break;
870         default:
871                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
872                 ret = -EINVAL;
873                 break;
874         }
875
876         if (p_buf)
877                 strncpy(p_buf, buf, p_buf_len);
878         else
879                 pr_debug("%s", buf);
880
881         return ret;
882 }
883
884 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
885 {
886         /*
887          * The VPD identification association..
888          *
889          * from spc3r23.pdf Section 7.6.3.1 Table 297
890          */
891         vpd->association = (page_83[1] & 0x30);
892         return transport_dump_vpd_assoc(vpd, NULL, 0);
893 }
894 EXPORT_SYMBOL(transport_set_vpd_assoc);
895
896 int transport_dump_vpd_ident_type(
897         struct t10_vpd *vpd,
898         unsigned char *p_buf,
899         int p_buf_len)
900 {
901         unsigned char buf[VPD_TMP_BUF_SIZE];
902         int ret = 0;
903         int len;
904
905         memset(buf, 0, VPD_TMP_BUF_SIZE);
906         len = sprintf(buf, "T10 VPD Identifier Type: ");
907
908         switch (vpd->device_identifier_type) {
909         case 0x00:
910                 sprintf(buf+len, "Vendor specific\n");
911                 break;
912         case 0x01:
913                 sprintf(buf+len, "T10 Vendor ID based\n");
914                 break;
915         case 0x02:
916                 sprintf(buf+len, "EUI-64 based\n");
917                 break;
918         case 0x03:
919                 sprintf(buf+len, "NAA\n");
920                 break;
921         case 0x04:
922                 sprintf(buf+len, "Relative target port identifier\n");
923                 break;
924         case 0x08:
925                 sprintf(buf+len, "SCSI name string\n");
926                 break;
927         default:
928                 sprintf(buf+len, "Unsupported: 0x%02x\n",
929                                 vpd->device_identifier_type);
930                 ret = -EINVAL;
931                 break;
932         }
933
934         if (p_buf) {
935                 if (p_buf_len < strlen(buf)+1)
936                         return -EINVAL;
937                 strncpy(p_buf, buf, p_buf_len);
938         } else {
939                 pr_debug("%s", buf);
940         }
941
942         return ret;
943 }
944
945 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
946 {
947         /*
948          * The VPD identifier type..
949          *
950          * from spc3r23.pdf Section 7.6.3.1 Table 298
951          */
952         vpd->device_identifier_type = (page_83[1] & 0x0f);
953         return transport_dump_vpd_ident_type(vpd, NULL, 0);
954 }
955 EXPORT_SYMBOL(transport_set_vpd_ident_type);
956
957 int transport_dump_vpd_ident(
958         struct t10_vpd *vpd,
959         unsigned char *p_buf,
960         int p_buf_len)
961 {
962         unsigned char buf[VPD_TMP_BUF_SIZE];
963         int ret = 0;
964
965         memset(buf, 0, VPD_TMP_BUF_SIZE);
966
967         switch (vpd->device_identifier_code_set) {
968         case 0x01: /* Binary */
969                 snprintf(buf, sizeof(buf),
970                         "T10 VPD Binary Device Identifier: %s\n",
971                         &vpd->device_identifier[0]);
972                 break;
973         case 0x02: /* ASCII */
974                 snprintf(buf, sizeof(buf),
975                         "T10 VPD ASCII Device Identifier: %s\n",
976                         &vpd->device_identifier[0]);
977                 break;
978         case 0x03: /* UTF-8 */
979                 snprintf(buf, sizeof(buf),
980                         "T10 VPD UTF-8 Device Identifier: %s\n",
981                         &vpd->device_identifier[0]);
982                 break;
983         default:
984                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
985                         " 0x%02x", vpd->device_identifier_code_set);
986                 ret = -EINVAL;
987                 break;
988         }
989
990         if (p_buf)
991                 strncpy(p_buf, buf, p_buf_len);
992         else
993                 pr_debug("%s", buf);
994
995         return ret;
996 }
997
998 int
999 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1000 {
1001         static const char hex_str[] = "0123456789abcdef";
1002         int j = 0, i = 4; /* offset to start of the identifier */
1003
1004         /*
1005          * The VPD Code Set (encoding)
1006          *
1007          * from spc3r23.pdf Section 7.6.3.1 Table 296
1008          */
1009         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1010         switch (vpd->device_identifier_code_set) {
1011         case 0x01: /* Binary */
1012                 vpd->device_identifier[j++] =
1013                                 hex_str[vpd->device_identifier_type];
1014                 while (i < (4 + page_83[3])) {
1015                         vpd->device_identifier[j++] =
1016                                 hex_str[(page_83[i] & 0xf0) >> 4];
1017                         vpd->device_identifier[j++] =
1018                                 hex_str[page_83[i] & 0x0f];
1019                         i++;
1020                 }
1021                 break;
1022         case 0x02: /* ASCII */
1023         case 0x03: /* UTF-8 */
1024                 while (i < (4 + page_83[3]))
1025                         vpd->device_identifier[j++] = page_83[i++];
1026                 break;
1027         default:
1028                 break;
1029         }
1030
1031         return transport_dump_vpd_ident(vpd, NULL, 0);
1032 }
1033 EXPORT_SYMBOL(transport_set_vpd_ident);
1034
1035 sense_reason_t
1036 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1037 {
1038         struct se_device *dev = cmd->se_dev;
1039
1040         if (cmd->unknown_data_length) {
1041                 cmd->data_length = size;
1042         } else if (size != cmd->data_length) {
1043                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1044                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1045                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1046                                 cmd->data_length, size, cmd->t_task_cdb[0]);
1047
1048                 if (cmd->data_direction == DMA_TO_DEVICE) {
1049                         pr_err("Rejecting underflow/overflow"
1050                                         " WRITE data\n");
1051                         return TCM_INVALID_CDB_FIELD;
1052                 }
1053                 /*
1054                  * Reject READ_* or WRITE_* with overflow/underflow for
1055                  * type SCF_SCSI_DATA_CDB.
1056                  */
1057                 if (dev->dev_attrib.block_size != 512)  {
1058                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1059                                 " CDB on non 512-byte sector setup subsystem"
1060                                 " plugin: %s\n", dev->transport->name);
1061                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1062                         return TCM_INVALID_CDB_FIELD;
1063                 }
1064                 /*
1065                  * For the overflow case keep the existing fabric provided
1066                  * ->data_length.  Otherwise for the underflow case, reset
1067                  * ->data_length to the smaller SCSI expected data transfer
1068                  * length.
1069                  */
1070                 if (size > cmd->data_length) {
1071                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1072                         cmd->residual_count = (size - cmd->data_length);
1073                 } else {
1074                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1075                         cmd->residual_count = (cmd->data_length - size);
1076                         cmd->data_length = size;
1077                 }
1078         }
1079
1080         return 0;
1081
1082 }
1083
1084 /*
1085  * Used by fabric modules containing a local struct se_cmd within their
1086  * fabric dependent per I/O descriptor.
1087  */
1088 void transport_init_se_cmd(
1089         struct se_cmd *cmd,
1090         struct target_core_fabric_ops *tfo,
1091         struct se_session *se_sess,
1092         u32 data_length,
1093         int data_direction,
1094         int task_attr,
1095         unsigned char *sense_buffer)
1096 {
1097         INIT_LIST_HEAD(&cmd->se_delayed_node);
1098         INIT_LIST_HEAD(&cmd->se_qf_node);
1099         INIT_LIST_HEAD(&cmd->se_cmd_list);
1100         INIT_LIST_HEAD(&cmd->state_list);
1101         init_completion(&cmd->t_transport_stop_comp);
1102         init_completion(&cmd->cmd_wait_comp);
1103         init_completion(&cmd->task_stop_comp);
1104         spin_lock_init(&cmd->t_state_lock);
1105         cmd->transport_state = CMD_T_DEV_ACTIVE;
1106
1107         cmd->se_tfo = tfo;
1108         cmd->se_sess = se_sess;
1109         cmd->data_length = data_length;
1110         cmd->data_direction = data_direction;
1111         cmd->sam_task_attr = task_attr;
1112         cmd->sense_buffer = sense_buffer;
1113
1114         cmd->state_active = false;
1115 }
1116 EXPORT_SYMBOL(transport_init_se_cmd);
1117
1118 static sense_reason_t
1119 transport_check_alloc_task_attr(struct se_cmd *cmd)
1120 {
1121         struct se_device *dev = cmd->se_dev;
1122
1123         /*
1124          * Check if SAM Task Attribute emulation is enabled for this
1125          * struct se_device storage object
1126          */
1127         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1128                 return 0;
1129
1130         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1131                 pr_debug("SAM Task Attribute ACA"
1132                         " emulation is not supported\n");
1133                 return TCM_INVALID_CDB_FIELD;
1134         }
1135         /*
1136          * Used to determine when ORDERED commands should go from
1137          * Dormant to Active status.
1138          */
1139         cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1140         smp_mb__after_atomic_inc();
1141         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1142                         cmd->se_ordered_id, cmd->sam_task_attr,
1143                         dev->transport->name);
1144         return 0;
1145 }
1146
1147 sense_reason_t
1148 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1149 {
1150         struct se_device *dev = cmd->se_dev;
1151         sense_reason_t ret;
1152
1153         /*
1154          * Ensure that the received CDB is less than the max (252 + 8) bytes
1155          * for VARIABLE_LENGTH_CMD
1156          */
1157         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1158                 pr_err("Received SCSI CDB with command_size: %d that"
1159                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1160                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1161                 return TCM_INVALID_CDB_FIELD;
1162         }
1163         /*
1164          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1165          * allocate the additional extended CDB buffer now..  Otherwise
1166          * setup the pointer from __t_task_cdb to t_task_cdb.
1167          */
1168         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1169                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1170                                                 GFP_KERNEL);
1171                 if (!cmd->t_task_cdb) {
1172                         pr_err("Unable to allocate cmd->t_task_cdb"
1173                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1174                                 scsi_command_size(cdb),
1175                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1176                         return TCM_OUT_OF_RESOURCES;
1177                 }
1178         } else
1179                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1180         /*
1181          * Copy the original CDB into cmd->
1182          */
1183         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1184
1185         trace_target_sequencer_start(cmd);
1186
1187         /*
1188          * Check for an existing UNIT ATTENTION condition
1189          */
1190         ret = target_scsi3_ua_check(cmd);
1191         if (ret)
1192                 return ret;
1193
1194         ret = target_alua_state_check(cmd);
1195         if (ret)
1196                 return ret;
1197
1198         ret = target_check_reservation(cmd);
1199         if (ret) {
1200                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1201                 return ret;
1202         }
1203
1204         ret = dev->transport->parse_cdb(cmd);
1205         if (ret)
1206                 return ret;
1207
1208         ret = transport_check_alloc_task_attr(cmd);
1209         if (ret)
1210                 return ret;
1211
1212         cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1213
1214         spin_lock(&cmd->se_lun->lun_sep_lock);
1215         if (cmd->se_lun->lun_sep)
1216                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1217         spin_unlock(&cmd->se_lun->lun_sep_lock);
1218         return 0;
1219 }
1220 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1221
1222 /*
1223  * Used by fabric module frontends to queue tasks directly.
1224  * Many only be used from process context only
1225  */
1226 int transport_handle_cdb_direct(
1227         struct se_cmd *cmd)
1228 {
1229         sense_reason_t ret;
1230
1231         if (!cmd->se_lun) {
1232                 dump_stack();
1233                 pr_err("cmd->se_lun is NULL\n");
1234                 return -EINVAL;
1235         }
1236         if (in_interrupt()) {
1237                 dump_stack();
1238                 pr_err("transport_generic_handle_cdb cannot be called"
1239                                 " from interrupt context\n");
1240                 return -EINVAL;
1241         }
1242         /*
1243          * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1244          * outstanding descriptors are handled correctly during shutdown via
1245          * transport_wait_for_tasks()
1246          *
1247          * Also, we don't take cmd->t_state_lock here as we only expect
1248          * this to be called for initial descriptor submission.
1249          */
1250         cmd->t_state = TRANSPORT_NEW_CMD;
1251         cmd->transport_state |= CMD_T_ACTIVE;
1252
1253         /*
1254          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1255          * so follow TRANSPORT_NEW_CMD processing thread context usage
1256          * and call transport_generic_request_failure() if necessary..
1257          */
1258         ret = transport_generic_new_cmd(cmd);
1259         if (ret)
1260                 transport_generic_request_failure(cmd, ret);
1261         return 0;
1262 }
1263 EXPORT_SYMBOL(transport_handle_cdb_direct);
1264
1265 sense_reason_t
1266 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1267                 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1268 {
1269         if (!sgl || !sgl_count)
1270                 return 0;
1271
1272         /*
1273          * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1274          * scatterlists already have been set to follow what the fabric
1275          * passes for the original expected data transfer length.
1276          */
1277         if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1278                 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1279                         " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1280                 return TCM_INVALID_CDB_FIELD;
1281         }
1282
1283         cmd->t_data_sg = sgl;
1284         cmd->t_data_nents = sgl_count;
1285
1286         if (sgl_bidi && sgl_bidi_count) {
1287                 cmd->t_bidi_data_sg = sgl_bidi;
1288                 cmd->t_bidi_data_nents = sgl_bidi_count;
1289         }
1290         cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1291         return 0;
1292 }
1293
1294 /*
1295  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1296  *                       se_cmd + use pre-allocated SGL memory.
1297  *
1298  * @se_cmd: command descriptor to submit
1299  * @se_sess: associated se_sess for endpoint
1300  * @cdb: pointer to SCSI CDB
1301  * @sense: pointer to SCSI sense buffer
1302  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1303  * @data_length: fabric expected data transfer length
1304  * @task_addr: SAM task attribute
1305  * @data_dir: DMA data direction
1306  * @flags: flags for command submission from target_sc_flags_tables
1307  * @sgl: struct scatterlist memory for unidirectional mapping
1308  * @sgl_count: scatterlist count for unidirectional mapping
1309  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1310  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1311  * @sgl_prot: struct scatterlist memory protection information
1312  * @sgl_prot_count: scatterlist count for protection information
1313  *
1314  * Returns non zero to signal active I/O shutdown failure.  All other
1315  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1316  * but still return zero here.
1317  *
1318  * This may only be called from process context, and also currently
1319  * assumes internal allocation of fabric payload buffer by target-core.
1320  */
1321 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1322                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1323                 u32 data_length, int task_attr, int data_dir, int flags,
1324                 struct scatterlist *sgl, u32 sgl_count,
1325                 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1326                 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1327 {
1328         struct se_portal_group *se_tpg;
1329         sense_reason_t rc;
1330         int ret;
1331
1332         se_tpg = se_sess->se_tpg;
1333         BUG_ON(!se_tpg);
1334         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1335         BUG_ON(in_interrupt());
1336         /*
1337          * Initialize se_cmd for target operation.  From this point
1338          * exceptions are handled by sending exception status via
1339          * target_core_fabric_ops->queue_status() callback
1340          */
1341         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1342                                 data_length, data_dir, task_attr, sense);
1343         if (flags & TARGET_SCF_UNKNOWN_SIZE)
1344                 se_cmd->unknown_data_length = 1;
1345         /*
1346          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1347          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1348          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1349          * kref_put() to happen during fabric packet acknowledgement.
1350          */
1351         ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1352         if (ret)
1353                 return ret;
1354         /*
1355          * Signal bidirectional data payloads to target-core
1356          */
1357         if (flags & TARGET_SCF_BIDI_OP)
1358                 se_cmd->se_cmd_flags |= SCF_BIDI;
1359         /*
1360          * Locate se_lun pointer and attach it to struct se_cmd
1361          */
1362         rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1363         if (rc) {
1364                 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1365                 target_put_sess_cmd(se_sess, se_cmd);
1366                 return 0;
1367         }
1368
1369         rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1370         if (rc != 0) {
1371                 transport_generic_request_failure(se_cmd, rc);
1372                 return 0;
1373         }
1374
1375         /*
1376          * Save pointers for SGLs containing protection information,
1377          * if present.
1378          */
1379         if (sgl_prot_count) {
1380                 se_cmd->t_prot_sg = sgl_prot;
1381                 se_cmd->t_prot_nents = sgl_prot_count;
1382         }
1383
1384         /*
1385          * When a non zero sgl_count has been passed perform SGL passthrough
1386          * mapping for pre-allocated fabric memory instead of having target
1387          * core perform an internal SGL allocation..
1388          */
1389         if (sgl_count != 0) {
1390                 BUG_ON(!sgl);
1391
1392                 /*
1393                  * A work-around for tcm_loop as some userspace code via
1394                  * scsi-generic do not memset their associated read buffers,
1395                  * so go ahead and do that here for type non-data CDBs.  Also
1396                  * note that this is currently guaranteed to be a single SGL
1397                  * for this case by target core in target_setup_cmd_from_cdb()
1398                  * -> transport_generic_cmd_sequencer().
1399                  */
1400                 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1401                      se_cmd->data_direction == DMA_FROM_DEVICE) {
1402                         unsigned char *buf = NULL;
1403
1404                         if (sgl)
1405                                 buf = kmap(sg_page(sgl)) + sgl->offset;
1406
1407                         if (buf) {
1408                                 memset(buf, 0, sgl->length);
1409                                 kunmap(sg_page(sgl));
1410                         }
1411                 }
1412
1413                 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1414                                 sgl_bidi, sgl_bidi_count);
1415                 if (rc != 0) {
1416                         transport_generic_request_failure(se_cmd, rc);
1417                         return 0;
1418                 }
1419         }
1420
1421         /*
1422          * Check if we need to delay processing because of ALUA
1423          * Active/NonOptimized primary access state..
1424          */
1425         core_alua_check_nonop_delay(se_cmd);
1426
1427         transport_handle_cdb_direct(se_cmd);
1428         return 0;
1429 }
1430 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1431
1432 /*
1433  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1434  *
1435  * @se_cmd: command descriptor to submit
1436  * @se_sess: associated se_sess for endpoint
1437  * @cdb: pointer to SCSI CDB
1438  * @sense: pointer to SCSI sense buffer
1439  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1440  * @data_length: fabric expected data transfer length
1441  * @task_addr: SAM task attribute
1442  * @data_dir: DMA data direction
1443  * @flags: flags for command submission from target_sc_flags_tables
1444  *
1445  * Returns non zero to signal active I/O shutdown failure.  All other
1446  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1447  * but still return zero here.
1448  *
1449  * This may only be called from process context, and also currently
1450  * assumes internal allocation of fabric payload buffer by target-core.
1451  *
1452  * It also assumes interal target core SGL memory allocation.
1453  */
1454 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1455                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1456                 u32 data_length, int task_attr, int data_dir, int flags)
1457 {
1458         return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1459                         unpacked_lun, data_length, task_attr, data_dir,
1460                         flags, NULL, 0, NULL, 0, NULL, 0);
1461 }
1462 EXPORT_SYMBOL(target_submit_cmd);
1463
1464 static void target_complete_tmr_failure(struct work_struct *work)
1465 {
1466         struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1467
1468         se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1469         se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1470
1471         transport_cmd_check_stop_to_fabric(se_cmd);
1472 }
1473
1474 /**
1475  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1476  *                     for TMR CDBs
1477  *
1478  * @se_cmd: command descriptor to submit
1479  * @se_sess: associated se_sess for endpoint
1480  * @sense: pointer to SCSI sense buffer
1481  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1482  * @fabric_context: fabric context for TMR req
1483  * @tm_type: Type of TM request
1484  * @gfp: gfp type for caller
1485  * @tag: referenced task tag for TMR_ABORT_TASK
1486  * @flags: submit cmd flags
1487  *
1488  * Callable from all contexts.
1489  **/
1490
1491 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1492                 unsigned char *sense, u32 unpacked_lun,
1493                 void *fabric_tmr_ptr, unsigned char tm_type,
1494                 gfp_t gfp, unsigned int tag, int flags)
1495 {
1496         struct se_portal_group *se_tpg;
1497         int ret;
1498
1499         se_tpg = se_sess->se_tpg;
1500         BUG_ON(!se_tpg);
1501
1502         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1503                               0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1504         /*
1505          * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1506          * allocation failure.
1507          */
1508         ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1509         if (ret < 0)
1510                 return -ENOMEM;
1511
1512         if (tm_type == TMR_ABORT_TASK)
1513                 se_cmd->se_tmr_req->ref_task_tag = tag;
1514
1515         /* See target_submit_cmd for commentary */
1516         ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1517         if (ret) {
1518                 core_tmr_release_req(se_cmd->se_tmr_req);
1519                 return ret;
1520         }
1521
1522         ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1523         if (ret) {
1524                 /*
1525                  * For callback during failure handling, push this work off
1526                  * to process context with TMR_LUN_DOES_NOT_EXIST status.
1527                  */
1528                 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1529                 schedule_work(&se_cmd->work);
1530                 return 0;
1531         }
1532         transport_generic_handle_tmr(se_cmd);
1533         return 0;
1534 }
1535 EXPORT_SYMBOL(target_submit_tmr);
1536
1537 /*
1538  * If the cmd is active, request it to be stopped and sleep until it
1539  * has completed.
1540  */
1541 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1542 {
1543         bool was_active = false;
1544
1545         if (cmd->transport_state & CMD_T_BUSY) {
1546                 cmd->transport_state |= CMD_T_REQUEST_STOP;
1547                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1548
1549                 pr_debug("cmd %p waiting to complete\n", cmd);
1550                 wait_for_completion(&cmd->task_stop_comp);
1551                 pr_debug("cmd %p stopped successfully\n", cmd);
1552
1553                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1554                 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1555                 cmd->transport_state &= ~CMD_T_BUSY;
1556                 was_active = true;
1557         }
1558
1559         return was_active;
1560 }
1561
1562 /*
1563  * Handle SAM-esque emulation for generic transport request failures.
1564  */
1565 void transport_generic_request_failure(struct se_cmd *cmd,
1566                 sense_reason_t sense_reason)
1567 {
1568         int ret = 0;
1569
1570         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1571                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1572                 cmd->t_task_cdb[0]);
1573         pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1574                 cmd->se_tfo->get_cmd_state(cmd),
1575                 cmd->t_state, sense_reason);
1576         pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1577                 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1578                 (cmd->transport_state & CMD_T_STOP) != 0,
1579                 (cmd->transport_state & CMD_T_SENT) != 0);
1580
1581         /*
1582          * For SAM Task Attribute emulation for failed struct se_cmd
1583          */
1584         transport_complete_task_attr(cmd);
1585         /*
1586          * Handle special case for COMPARE_AND_WRITE failure, where the
1587          * callback is expected to drop the per device ->caw_mutex.
1588          */
1589         if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1590              cmd->transport_complete_callback)
1591                 cmd->transport_complete_callback(cmd);
1592
1593         switch (sense_reason) {
1594         case TCM_NON_EXISTENT_LUN:
1595         case TCM_UNSUPPORTED_SCSI_OPCODE:
1596         case TCM_INVALID_CDB_FIELD:
1597         case TCM_INVALID_PARAMETER_LIST:
1598         case TCM_PARAMETER_LIST_LENGTH_ERROR:
1599         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1600         case TCM_UNKNOWN_MODE_PAGE:
1601         case TCM_WRITE_PROTECTED:
1602         case TCM_ADDRESS_OUT_OF_RANGE:
1603         case TCM_CHECK_CONDITION_ABORT_CMD:
1604         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1605         case TCM_CHECK_CONDITION_NOT_READY:
1606         case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1607         case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1608         case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1609                 break;
1610         case TCM_OUT_OF_RESOURCES:
1611                 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1612                 break;
1613         case TCM_RESERVATION_CONFLICT:
1614                 /*
1615                  * No SENSE Data payload for this case, set SCSI Status
1616                  * and queue the response to $FABRIC_MOD.
1617                  *
1618                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1619                  */
1620                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1621                 /*
1622                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1623                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1624                  * CONFLICT STATUS.
1625                  *
1626                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1627                  */
1628                 if (cmd->se_sess &&
1629                     cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1630                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1631                                 cmd->orig_fe_lun, 0x2C,
1632                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1633
1634                 trace_target_cmd_complete(cmd);
1635                 ret = cmd->se_tfo-> queue_status(cmd);
1636                 if (ret == -EAGAIN || ret == -ENOMEM)
1637                         goto queue_full;
1638                 goto check_stop;
1639         default:
1640                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1641                         cmd->t_task_cdb[0], sense_reason);
1642                 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1643                 break;
1644         }
1645
1646         ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1647         if (ret == -EAGAIN || ret == -ENOMEM)
1648                 goto queue_full;
1649
1650 check_stop:
1651         transport_lun_remove_cmd(cmd);
1652         if (!transport_cmd_check_stop_to_fabric(cmd))
1653                 ;
1654         return;
1655
1656 queue_full:
1657         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1658         transport_handle_queue_full(cmd, cmd->se_dev);
1659 }
1660 EXPORT_SYMBOL(transport_generic_request_failure);
1661
1662 void __target_execute_cmd(struct se_cmd *cmd)
1663 {
1664         sense_reason_t ret;
1665
1666         if (cmd->execute_cmd) {
1667                 ret = cmd->execute_cmd(cmd);
1668                 if (ret) {
1669                         spin_lock_irq(&cmd->t_state_lock);
1670                         cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1671                         spin_unlock_irq(&cmd->t_state_lock);
1672
1673                         transport_generic_request_failure(cmd, ret);
1674                 }
1675         }
1676 }
1677
1678 static bool target_handle_task_attr(struct se_cmd *cmd)
1679 {
1680         struct se_device *dev = cmd->se_dev;
1681
1682         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1683                 return false;
1684
1685         /*
1686          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1687          * to allow the passed struct se_cmd list of tasks to the front of the list.
1688          */
1689         switch (cmd->sam_task_attr) {
1690         case MSG_HEAD_TAG:
1691                 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1692                          "se_ordered_id: %u\n",
1693                          cmd->t_task_cdb[0], cmd->se_ordered_id);
1694                 return false;
1695         case MSG_ORDERED_TAG:
1696                 atomic_inc(&dev->dev_ordered_sync);
1697                 smp_mb__after_atomic_inc();
1698
1699                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1700                          " se_ordered_id: %u\n",
1701                          cmd->t_task_cdb[0], cmd->se_ordered_id);
1702
1703                 /*
1704                  * Execute an ORDERED command if no other older commands
1705                  * exist that need to be completed first.
1706                  */
1707                 if (!atomic_read(&dev->simple_cmds))
1708                         return false;
1709                 break;
1710         default:
1711                 /*
1712                  * For SIMPLE and UNTAGGED Task Attribute commands
1713                  */
1714                 atomic_inc(&dev->simple_cmds);
1715                 smp_mb__after_atomic_inc();
1716                 break;
1717         }
1718
1719         if (atomic_read(&dev->dev_ordered_sync) == 0)
1720                 return false;
1721
1722         spin_lock(&dev->delayed_cmd_lock);
1723         list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1724         spin_unlock(&dev->delayed_cmd_lock);
1725
1726         pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1727                 " delayed CMD list, se_ordered_id: %u\n",
1728                 cmd->t_task_cdb[0], cmd->sam_task_attr,
1729                 cmd->se_ordered_id);
1730         return true;
1731 }
1732
1733 void target_execute_cmd(struct se_cmd *cmd)
1734 {
1735         /*
1736          * If the received CDB has aleady been aborted stop processing it here.
1737          */
1738         if (transport_check_aborted_status(cmd, 1))
1739                 return;
1740
1741         /*
1742          * Determine if frontend context caller is requesting the stopping of
1743          * this command for frontend exceptions.
1744          */
1745         spin_lock_irq(&cmd->t_state_lock);
1746         if (cmd->transport_state & CMD_T_STOP) {
1747                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1748                         __func__, __LINE__,
1749                         cmd->se_tfo->get_task_tag(cmd));
1750
1751                 spin_unlock_irq(&cmd->t_state_lock);
1752                 complete(&cmd->t_transport_stop_comp);
1753                 return;
1754         }
1755
1756         cmd->t_state = TRANSPORT_PROCESSING;
1757         cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1758         spin_unlock_irq(&cmd->t_state_lock);
1759
1760         if (target_handle_task_attr(cmd)) {
1761                 spin_lock_irq(&cmd->t_state_lock);
1762                 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
1763                 spin_unlock_irq(&cmd->t_state_lock);
1764                 return;
1765         }
1766
1767         __target_execute_cmd(cmd);
1768 }
1769 EXPORT_SYMBOL(target_execute_cmd);
1770
1771 /*
1772  * Process all commands up to the last received ORDERED task attribute which
1773  * requires another blocking boundary
1774  */
1775 static void target_restart_delayed_cmds(struct se_device *dev)
1776 {
1777         for (;;) {
1778                 struct se_cmd *cmd;
1779
1780                 spin_lock(&dev->delayed_cmd_lock);
1781                 if (list_empty(&dev->delayed_cmd_list)) {
1782                         spin_unlock(&dev->delayed_cmd_lock);
1783                         break;
1784                 }
1785
1786                 cmd = list_entry(dev->delayed_cmd_list.next,
1787                                  struct se_cmd, se_delayed_node);
1788                 list_del(&cmd->se_delayed_node);
1789                 spin_unlock(&dev->delayed_cmd_lock);
1790
1791                 __target_execute_cmd(cmd);
1792
1793                 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1794                         break;
1795         }
1796 }
1797
1798 /*
1799  * Called from I/O completion to determine which dormant/delayed
1800  * and ordered cmds need to have their tasks added to the execution queue.
1801  */
1802 static void transport_complete_task_attr(struct se_cmd *cmd)
1803 {
1804         struct se_device *dev = cmd->se_dev;
1805
1806         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1807                 return;
1808
1809         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1810                 atomic_dec(&dev->simple_cmds);
1811                 smp_mb__after_atomic_dec();
1812                 dev->dev_cur_ordered_id++;
1813                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1814                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1815                         cmd->se_ordered_id);
1816         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1817                 dev->dev_cur_ordered_id++;
1818                 pr_debug("Incremented dev_cur_ordered_id: %u for"
1819                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1820                         cmd->se_ordered_id);
1821         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1822                 atomic_dec(&dev->dev_ordered_sync);
1823                 smp_mb__after_atomic_dec();
1824
1825                 dev->dev_cur_ordered_id++;
1826                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1827                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1828         }
1829
1830         target_restart_delayed_cmds(dev);
1831 }
1832
1833 static void transport_complete_qf(struct se_cmd *cmd)
1834 {
1835         int ret = 0;
1836
1837         transport_complete_task_attr(cmd);
1838
1839         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1840                 trace_target_cmd_complete(cmd);
1841                 ret = cmd->se_tfo->queue_status(cmd);
1842                 if (ret)
1843                         goto out;
1844         }
1845
1846         switch (cmd->data_direction) {
1847         case DMA_FROM_DEVICE:
1848                 trace_target_cmd_complete(cmd);
1849                 ret = cmd->se_tfo->queue_data_in(cmd);
1850                 break;
1851         case DMA_TO_DEVICE:
1852                 if (cmd->se_cmd_flags & SCF_BIDI) {
1853                         ret = cmd->se_tfo->queue_data_in(cmd);
1854                         if (ret < 0)
1855                                 break;
1856                 }
1857                 /* Fall through for DMA_TO_DEVICE */
1858         case DMA_NONE:
1859                 trace_target_cmd_complete(cmd);
1860                 ret = cmd->se_tfo->queue_status(cmd);
1861                 break;
1862         default:
1863                 break;
1864         }
1865
1866 out:
1867         if (ret < 0) {
1868                 transport_handle_queue_full(cmd, cmd->se_dev);
1869                 return;
1870         }
1871         transport_lun_remove_cmd(cmd);
1872         transport_cmd_check_stop_to_fabric(cmd);
1873 }
1874
1875 static void transport_handle_queue_full(
1876         struct se_cmd *cmd,
1877         struct se_device *dev)
1878 {
1879         spin_lock_irq(&dev->qf_cmd_lock);
1880         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1881         atomic_inc(&dev->dev_qf_count);
1882         smp_mb__after_atomic_inc();
1883         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1884
1885         schedule_work(&cmd->se_dev->qf_work_queue);
1886 }
1887
1888 static void target_complete_ok_work(struct work_struct *work)
1889 {
1890         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1891         int ret;
1892
1893         /*
1894          * Check if we need to move delayed/dormant tasks from cmds on the
1895          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1896          * Attribute.
1897          */
1898         transport_complete_task_attr(cmd);
1899
1900         /*
1901          * Check to schedule QUEUE_FULL work, or execute an existing
1902          * cmd->transport_qf_callback()
1903          */
1904         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1905                 schedule_work(&cmd->se_dev->qf_work_queue);
1906
1907         /*
1908          * Check if we need to send a sense buffer from
1909          * the struct se_cmd in question.
1910          */
1911         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1912                 WARN_ON(!cmd->scsi_status);
1913                 ret = transport_send_check_condition_and_sense(
1914                                         cmd, 0, 1);
1915                 if (ret == -EAGAIN || ret == -ENOMEM)
1916                         goto queue_full;
1917
1918                 transport_lun_remove_cmd(cmd);
1919                 transport_cmd_check_stop_to_fabric(cmd);
1920                 return;
1921         }
1922         /*
1923          * Check for a callback, used by amongst other things
1924          * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
1925          */
1926         if (cmd->transport_complete_callback) {
1927                 sense_reason_t rc;
1928
1929                 rc = cmd->transport_complete_callback(cmd);
1930                 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) {
1931                         return;
1932                 } else if (rc) {
1933                         ret = transport_send_check_condition_and_sense(cmd,
1934                                                 rc, 0);
1935                         if (ret == -EAGAIN || ret == -ENOMEM)
1936                                 goto queue_full;
1937
1938                         transport_lun_remove_cmd(cmd);
1939                         transport_cmd_check_stop_to_fabric(cmd);
1940                         return;
1941                 }
1942         }
1943
1944         switch (cmd->data_direction) {
1945         case DMA_FROM_DEVICE:
1946                 spin_lock(&cmd->se_lun->lun_sep_lock);
1947                 if (cmd->se_lun->lun_sep) {
1948                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1949                                         cmd->data_length;
1950                 }
1951                 spin_unlock(&cmd->se_lun->lun_sep_lock);
1952
1953                 trace_target_cmd_complete(cmd);
1954                 ret = cmd->se_tfo->queue_data_in(cmd);
1955                 if (ret == -EAGAIN || ret == -ENOMEM)
1956                         goto queue_full;
1957                 break;
1958         case DMA_TO_DEVICE:
1959                 spin_lock(&cmd->se_lun->lun_sep_lock);
1960                 if (cmd->se_lun->lun_sep) {
1961                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
1962                                 cmd->data_length;
1963                 }
1964                 spin_unlock(&cmd->se_lun->lun_sep_lock);
1965                 /*
1966                  * Check if we need to send READ payload for BIDI-COMMAND
1967                  */
1968                 if (cmd->se_cmd_flags & SCF_BIDI) {
1969                         spin_lock(&cmd->se_lun->lun_sep_lock);
1970                         if (cmd->se_lun->lun_sep) {
1971                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1972                                         cmd->data_length;
1973                         }
1974                         spin_unlock(&cmd->se_lun->lun_sep_lock);
1975                         ret = cmd->se_tfo->queue_data_in(cmd);
1976                         if (ret == -EAGAIN || ret == -ENOMEM)
1977                                 goto queue_full;
1978                         break;
1979                 }
1980                 /* Fall through for DMA_TO_DEVICE */
1981         case DMA_NONE:
1982                 trace_target_cmd_complete(cmd);
1983                 ret = cmd->se_tfo->queue_status(cmd);
1984                 if (ret == -EAGAIN || ret == -ENOMEM)
1985                         goto queue_full;
1986                 break;
1987         default:
1988                 break;
1989         }
1990
1991         transport_lun_remove_cmd(cmd);
1992         transport_cmd_check_stop_to_fabric(cmd);
1993         return;
1994
1995 queue_full:
1996         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
1997                 " data_direction: %d\n", cmd, cmd->data_direction);
1998         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1999         transport_handle_queue_full(cmd, cmd->se_dev);
2000 }
2001
2002 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2003 {
2004         struct scatterlist *sg;
2005         int count;
2006
2007         for_each_sg(sgl, sg, nents, count)
2008                 __free_page(sg_page(sg));
2009
2010         kfree(sgl);
2011 }
2012
2013 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2014 {
2015         /*
2016          * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2017          * emulation, and free + reset pointers if necessary..
2018          */
2019         if (!cmd->t_data_sg_orig)
2020                 return;
2021
2022         kfree(cmd->t_data_sg);
2023         cmd->t_data_sg = cmd->t_data_sg_orig;
2024         cmd->t_data_sg_orig = NULL;
2025         cmd->t_data_nents = cmd->t_data_nents_orig;
2026         cmd->t_data_nents_orig = 0;
2027 }
2028
2029 static inline void transport_free_pages(struct se_cmd *cmd)
2030 {
2031         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2032                 transport_reset_sgl_orig(cmd);
2033                 return;
2034         }
2035         transport_reset_sgl_orig(cmd);
2036
2037         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2038         cmd->t_data_sg = NULL;
2039         cmd->t_data_nents = 0;
2040
2041         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2042         cmd->t_bidi_data_sg = NULL;
2043         cmd->t_bidi_data_nents = 0;
2044
2045         transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2046         cmd->t_prot_sg = NULL;
2047         cmd->t_prot_nents = 0;
2048 }
2049
2050 /**
2051  * transport_release_cmd - free a command
2052  * @cmd:       command to free
2053  *
2054  * This routine unconditionally frees a command, and reference counting
2055  * or list removal must be done in the caller.
2056  */
2057 static int transport_release_cmd(struct se_cmd *cmd)
2058 {
2059         BUG_ON(!cmd->se_tfo);
2060
2061         if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2062                 core_tmr_release_req(cmd->se_tmr_req);
2063         if (cmd->t_task_cdb != cmd->__t_task_cdb)
2064                 kfree(cmd->t_task_cdb);
2065         /*
2066          * If this cmd has been setup with target_get_sess_cmd(), drop
2067          * the kref and call ->release_cmd() in kref callback.
2068          */
2069         return target_put_sess_cmd(cmd->se_sess, cmd);
2070 }
2071
2072 /**
2073  * transport_put_cmd - release a reference to a command
2074  * @cmd:       command to release
2075  *
2076  * This routine releases our reference to the command and frees it if possible.
2077  */
2078 static int transport_put_cmd(struct se_cmd *cmd)
2079 {
2080         transport_free_pages(cmd);
2081         return transport_release_cmd(cmd);
2082 }
2083
2084 void *transport_kmap_data_sg(struct se_cmd *cmd)
2085 {
2086         struct scatterlist *sg = cmd->t_data_sg;
2087         struct page **pages;
2088         int i;
2089
2090         /*
2091          * We need to take into account a possible offset here for fabrics like
2092          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2093          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2094          */
2095         if (!cmd->t_data_nents)
2096                 return NULL;
2097
2098         BUG_ON(!sg);
2099         if (cmd->t_data_nents == 1)
2100                 return kmap(sg_page(sg)) + sg->offset;
2101
2102         /* >1 page. use vmap */
2103         pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2104         if (!pages)
2105                 return NULL;
2106
2107         /* convert sg[] to pages[] */
2108         for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2109                 pages[i] = sg_page(sg);
2110         }
2111
2112         cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2113         kfree(pages);
2114         if (!cmd->t_data_vmap)
2115                 return NULL;
2116
2117         return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2118 }
2119 EXPORT_SYMBOL(transport_kmap_data_sg);
2120
2121 void transport_kunmap_data_sg(struct se_cmd *cmd)
2122 {
2123         if (!cmd->t_data_nents) {
2124                 return;
2125         } else if (cmd->t_data_nents == 1) {
2126                 kunmap(sg_page(cmd->t_data_sg));
2127                 return;
2128         }
2129
2130         vunmap(cmd->t_data_vmap);
2131         cmd->t_data_vmap = NULL;
2132 }
2133 EXPORT_SYMBOL(transport_kunmap_data_sg);
2134
2135 int
2136 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2137                  bool zero_page)
2138 {
2139         struct scatterlist *sg;
2140         struct page *page;
2141         gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2142         unsigned int nent;
2143         int i = 0;
2144
2145         nent = DIV_ROUND_UP(length, PAGE_SIZE);
2146         sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2147         if (!sg)
2148                 return -ENOMEM;
2149
2150         sg_init_table(sg, nent);
2151
2152         while (length) {
2153                 u32 page_len = min_t(u32, length, PAGE_SIZE);
2154                 page = alloc_page(GFP_KERNEL | zero_flag);
2155                 if (!page)
2156                         goto out;
2157
2158                 sg_set_page(&sg[i], page, page_len, 0);
2159                 length -= page_len;
2160                 i++;
2161         }
2162         *sgl = sg;
2163         *nents = nent;
2164         return 0;
2165
2166 out:
2167         while (i > 0) {
2168                 i--;
2169                 __free_page(sg_page(&sg[i]));
2170         }
2171         kfree(sg);
2172         return -ENOMEM;
2173 }
2174
2175 /*
2176  * Allocate any required resources to execute the command.  For writes we
2177  * might not have the payload yet, so notify the fabric via a call to
2178  * ->write_pending instead. Otherwise place it on the execution queue.
2179  */
2180 sense_reason_t
2181 transport_generic_new_cmd(struct se_cmd *cmd)
2182 {
2183         int ret = 0;
2184
2185         /*
2186          * Determine is the TCM fabric module has already allocated physical
2187          * memory, and is directly calling transport_generic_map_mem_to_cmd()
2188          * beforehand.
2189          */
2190         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2191             cmd->data_length) {
2192                 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2193
2194                 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2195                     (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2196                         u32 bidi_length;
2197
2198                         if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2199                                 bidi_length = cmd->t_task_nolb *
2200                                               cmd->se_dev->dev_attrib.block_size;
2201                         else
2202                                 bidi_length = cmd->data_length;
2203
2204                         ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2205                                                &cmd->t_bidi_data_nents,
2206                                                bidi_length, zero_flag);
2207                         if (ret < 0)
2208                                 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2209                 }
2210
2211                 if (cmd->prot_op != TARGET_PROT_NORMAL) {
2212                         ret = target_alloc_sgl(&cmd->t_prot_sg,
2213                                                &cmd->t_prot_nents,
2214                                                cmd->prot_length, true);
2215                         if (ret < 0)
2216                                 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2217                 }
2218
2219                 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2220                                        cmd->data_length, zero_flag);
2221                 if (ret < 0)
2222                         return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2223         }
2224         /*
2225          * If this command is not a write we can execute it right here,
2226          * for write buffers we need to notify the fabric driver first
2227          * and let it call back once the write buffers are ready.
2228          */
2229         target_add_to_state_list(cmd);
2230         if (cmd->data_direction != DMA_TO_DEVICE) {
2231                 target_execute_cmd(cmd);
2232                 return 0;
2233         }
2234         transport_cmd_check_stop(cmd, false, true);
2235
2236         ret = cmd->se_tfo->write_pending(cmd);
2237         if (ret == -EAGAIN || ret == -ENOMEM)
2238                 goto queue_full;
2239
2240         /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2241         WARN_ON(ret);
2242
2243         return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2244
2245 queue_full:
2246         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2247         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2248         transport_handle_queue_full(cmd, cmd->se_dev);
2249         return 0;
2250 }
2251 EXPORT_SYMBOL(transport_generic_new_cmd);
2252
2253 static void transport_write_pending_qf(struct se_cmd *cmd)
2254 {
2255         int ret;
2256
2257         ret = cmd->se_tfo->write_pending(cmd);
2258         if (ret == -EAGAIN || ret == -ENOMEM) {
2259                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2260                          cmd);
2261                 transport_handle_queue_full(cmd, cmd->se_dev);
2262         }
2263 }
2264
2265 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2266 {
2267         unsigned long flags;
2268         int ret = 0;
2269
2270         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2271                 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2272                          transport_wait_for_tasks(cmd);
2273
2274                 ret = transport_release_cmd(cmd);
2275         } else {
2276                 if (wait_for_tasks)
2277                         transport_wait_for_tasks(cmd);
2278                 /*
2279                  * Handle WRITE failure case where transport_generic_new_cmd()
2280                  * has already added se_cmd to state_list, but fabric has
2281                  * failed command before I/O submission.
2282                  */
2283                 if (cmd->state_active) {
2284                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2285                         target_remove_from_state_list(cmd);
2286                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2287                 }
2288
2289                 if (cmd->se_lun)
2290                         transport_lun_remove_cmd(cmd);
2291
2292                 ret = transport_put_cmd(cmd);
2293         }
2294         return ret;
2295 }
2296 EXPORT_SYMBOL(transport_generic_free_cmd);
2297
2298 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2299  * @se_sess:    session to reference
2300  * @se_cmd:     command descriptor to add
2301  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
2302  */
2303 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2304                                bool ack_kref)
2305 {
2306         unsigned long flags;
2307         int ret = 0;
2308
2309         kref_init(&se_cmd->cmd_kref);
2310         /*
2311          * Add a second kref if the fabric caller is expecting to handle
2312          * fabric acknowledgement that requires two target_put_sess_cmd()
2313          * invocations before se_cmd descriptor release.
2314          */
2315         if (ack_kref == true) {
2316                 kref_get(&se_cmd->cmd_kref);
2317                 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2318         }
2319
2320         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2321         if (se_sess->sess_tearing_down) {
2322                 ret = -ESHUTDOWN;
2323                 goto out;
2324         }
2325         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2326 out:
2327         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2328         return ret;
2329 }
2330 EXPORT_SYMBOL(target_get_sess_cmd);
2331
2332 static void target_release_cmd_kref(struct kref *kref)
2333 {
2334         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2335         struct se_session *se_sess = se_cmd->se_sess;
2336
2337         if (list_empty(&se_cmd->se_cmd_list)) {
2338                 spin_unlock(&se_sess->sess_cmd_lock);
2339                 se_cmd->se_tfo->release_cmd(se_cmd);
2340                 return;
2341         }
2342         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2343                 spin_unlock(&se_sess->sess_cmd_lock);
2344                 complete(&se_cmd->cmd_wait_comp);
2345                 return;
2346         }
2347         list_del(&se_cmd->se_cmd_list);
2348         spin_unlock(&se_sess->sess_cmd_lock);
2349
2350         se_cmd->se_tfo->release_cmd(se_cmd);
2351 }
2352
2353 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2354  * @se_sess:    session to reference
2355  * @se_cmd:     command descriptor to drop
2356  */
2357 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2358 {
2359         return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2360                         &se_sess->sess_cmd_lock);
2361 }
2362 EXPORT_SYMBOL(target_put_sess_cmd);
2363
2364 /* target_sess_cmd_list_set_waiting - Flag all commands in
2365  *         sess_cmd_list to complete cmd_wait_comp.  Set
2366  *         sess_tearing_down so no more commands are queued.
2367  * @se_sess:    session to flag
2368  */
2369 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2370 {
2371         struct se_cmd *se_cmd;
2372         unsigned long flags;
2373
2374         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2375         if (se_sess->sess_tearing_down) {
2376                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2377                 return;
2378         }
2379         se_sess->sess_tearing_down = 1;
2380         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2381
2382         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2383                 se_cmd->cmd_wait_set = 1;
2384
2385         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2386 }
2387 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2388
2389 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2390  * @se_sess:    session to wait for active I/O
2391  */
2392 void target_wait_for_sess_cmds(struct se_session *se_sess)
2393 {
2394         struct se_cmd *se_cmd, *tmp_cmd;
2395         unsigned long flags;
2396
2397         list_for_each_entry_safe(se_cmd, tmp_cmd,
2398                                 &se_sess->sess_wait_list, se_cmd_list) {
2399                 list_del(&se_cmd->se_cmd_list);
2400
2401                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2402                         " %d\n", se_cmd, se_cmd->t_state,
2403                         se_cmd->se_tfo->get_cmd_state(se_cmd));
2404
2405                 wait_for_completion(&se_cmd->cmd_wait_comp);
2406                 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2407                         " fabric state: %d\n", se_cmd, se_cmd->t_state,
2408                         se_cmd->se_tfo->get_cmd_state(se_cmd));
2409
2410                 se_cmd->se_tfo->release_cmd(se_cmd);
2411         }
2412
2413         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2414         WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2415         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2416
2417 }
2418 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2419
2420 static int transport_clear_lun_ref_thread(void *p)
2421 {
2422         struct se_lun *lun = p;
2423
2424         percpu_ref_kill(&lun->lun_ref);
2425
2426         wait_for_completion(&lun->lun_ref_comp);
2427         complete(&lun->lun_shutdown_comp);
2428
2429         return 0;
2430 }
2431
2432 int transport_clear_lun_ref(struct se_lun *lun)
2433 {
2434         struct task_struct *kt;
2435
2436         kt = kthread_run(transport_clear_lun_ref_thread, lun,
2437                         "tcm_cl_%u", lun->unpacked_lun);
2438         if (IS_ERR(kt)) {
2439                 pr_err("Unable to start clear_lun thread\n");
2440                 return PTR_ERR(kt);
2441         }
2442         wait_for_completion(&lun->lun_shutdown_comp);
2443
2444         return 0;
2445 }
2446
2447 /**
2448  * transport_wait_for_tasks - wait for completion to occur
2449  * @cmd:        command to wait
2450  *
2451  * Called from frontend fabric context to wait for storage engine
2452  * to pause and/or release frontend generated struct se_cmd.
2453  */
2454 bool transport_wait_for_tasks(struct se_cmd *cmd)
2455 {
2456         unsigned long flags;
2457
2458         spin_lock_irqsave(&cmd->t_state_lock, flags);
2459         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2460             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2461                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2462                 return false;
2463         }
2464
2465         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2466             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2467                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2468                 return false;
2469         }
2470
2471         if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2472                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2473                 return false;
2474         }
2475
2476         cmd->transport_state |= CMD_T_STOP;
2477
2478         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2479                 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2480                 cmd, cmd->se_tfo->get_task_tag(cmd),
2481                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2482
2483         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2484
2485         wait_for_completion(&cmd->t_transport_stop_comp);
2486
2487         spin_lock_irqsave(&cmd->t_state_lock, flags);
2488         cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2489
2490         pr_debug("wait_for_tasks: Stopped wait_for_completion("
2491                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2492                 cmd->se_tfo->get_task_tag(cmd));
2493
2494         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2495
2496         return true;
2497 }
2498 EXPORT_SYMBOL(transport_wait_for_tasks);
2499
2500 static int transport_get_sense_codes(
2501         struct se_cmd *cmd,
2502         u8 *asc,
2503         u8 *ascq)
2504 {
2505         *asc = cmd->scsi_asc;
2506         *ascq = cmd->scsi_ascq;
2507
2508         return 0;
2509 }
2510
2511 static
2512 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector)
2513 {
2514         /* Place failed LBA in sense data information descriptor 0. */
2515         buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc;
2516         buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */
2517         buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa;
2518         buffer[SPC_VALIDITY_OFFSET] = 0x80;
2519
2520         /* Descriptor Information: failing sector */
2521         put_unaligned_be64(bad_sector, &buffer[12]);
2522 }
2523
2524 int
2525 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2526                 sense_reason_t reason, int from_transport)
2527 {
2528         unsigned char *buffer = cmd->sense_buffer;
2529         unsigned long flags;
2530         u8 asc = 0, ascq = 0;
2531
2532         spin_lock_irqsave(&cmd->t_state_lock, flags);
2533         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2534                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2535                 return 0;
2536         }
2537         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2538         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2539
2540         if (!reason && from_transport)
2541                 goto after_reason;
2542
2543         if (!from_transport)
2544                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2545
2546         /*
2547          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
2548          * SENSE KEY values from include/scsi/scsi.h
2549          */
2550         switch (reason) {
2551         case TCM_NO_SENSE:
2552                 /* CURRENT ERROR */
2553                 buffer[0] = 0x70;
2554                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2555                 /* Not Ready */
2556                 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2557                 /* NO ADDITIONAL SENSE INFORMATION */
2558                 buffer[SPC_ASC_KEY_OFFSET] = 0;
2559                 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2560                 break;
2561         case TCM_NON_EXISTENT_LUN:
2562                 /* CURRENT ERROR */
2563                 buffer[0] = 0x70;
2564                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2565                 /* ILLEGAL REQUEST */
2566                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2567                 /* LOGICAL UNIT NOT SUPPORTED */
2568                 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2569                 break;
2570         case TCM_UNSUPPORTED_SCSI_OPCODE:
2571         case TCM_SECTOR_COUNT_TOO_MANY:
2572                 /* CURRENT ERROR */
2573                 buffer[0] = 0x70;
2574                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2575                 /* ILLEGAL REQUEST */
2576                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2577                 /* INVALID COMMAND OPERATION CODE */
2578                 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2579                 break;
2580         case TCM_UNKNOWN_MODE_PAGE:
2581                 /* CURRENT ERROR */
2582                 buffer[0] = 0x70;
2583                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2584                 /* ILLEGAL REQUEST */
2585                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2586                 /* INVALID FIELD IN CDB */
2587                 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2588                 break;
2589         case TCM_CHECK_CONDITION_ABORT_CMD:
2590                 /* CURRENT ERROR */
2591                 buffer[0] = 0x70;
2592                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2593                 /* ABORTED COMMAND */
2594                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2595                 /* BUS DEVICE RESET FUNCTION OCCURRED */
2596                 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2597                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2598                 break;
2599         case TCM_INCORRECT_AMOUNT_OF_DATA:
2600                 /* CURRENT ERROR */
2601                 buffer[0] = 0x70;
2602                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2603                 /* ABORTED COMMAND */
2604                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2605                 /* WRITE ERROR */
2606                 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2607                 /* NOT ENOUGH UNSOLICITED DATA */
2608                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2609                 break;
2610         case TCM_INVALID_CDB_FIELD:
2611                 /* CURRENT ERROR */
2612                 buffer[0] = 0x70;
2613                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2614                 /* ILLEGAL REQUEST */
2615                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2616                 /* INVALID FIELD IN CDB */
2617                 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2618                 break;
2619         case TCM_INVALID_PARAMETER_LIST:
2620                 /* CURRENT ERROR */
2621                 buffer[0] = 0x70;
2622                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2623                 /* ILLEGAL REQUEST */
2624                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2625                 /* INVALID FIELD IN PARAMETER LIST */
2626                 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2627                 break;
2628         case TCM_PARAMETER_LIST_LENGTH_ERROR:
2629                 /* CURRENT ERROR */
2630                 buffer[0] = 0x70;
2631                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2632                 /* ILLEGAL REQUEST */
2633                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2634                 /* PARAMETER LIST LENGTH ERROR */
2635                 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2636                 break;
2637         case TCM_UNEXPECTED_UNSOLICITED_DATA:
2638                 /* CURRENT ERROR */
2639                 buffer[0] = 0x70;
2640                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2641                 /* ABORTED COMMAND */
2642                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2643                 /* WRITE ERROR */
2644                 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2645                 /* UNEXPECTED_UNSOLICITED_DATA */
2646                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2647                 break;
2648         case TCM_SERVICE_CRC_ERROR:
2649                 /* CURRENT ERROR */
2650                 buffer[0] = 0x70;
2651                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2652                 /* ABORTED COMMAND */
2653                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2654                 /* PROTOCOL SERVICE CRC ERROR */
2655                 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2656                 /* N/A */
2657                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2658                 break;
2659         case TCM_SNACK_REJECTED:
2660                 /* CURRENT ERROR */
2661                 buffer[0] = 0x70;
2662                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2663                 /* ABORTED COMMAND */
2664                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2665                 /* READ ERROR */
2666                 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2667                 /* FAILED RETRANSMISSION REQUEST */
2668                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2669                 break;
2670         case TCM_WRITE_PROTECTED:
2671                 /* CURRENT ERROR */
2672                 buffer[0] = 0x70;
2673                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2674                 /* DATA PROTECT */
2675                 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2676                 /* WRITE PROTECTED */
2677                 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2678                 break;
2679         case TCM_ADDRESS_OUT_OF_RANGE:
2680                 /* CURRENT ERROR */
2681                 buffer[0] = 0x70;
2682                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2683                 /* ILLEGAL REQUEST */
2684                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2685                 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2686                 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2687                 break;
2688         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2689                 /* CURRENT ERROR */
2690                 buffer[0] = 0x70;
2691                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2692                 /* UNIT ATTENTION */
2693                 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2694                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2695                 buffer[SPC_ASC_KEY_OFFSET] = asc;
2696                 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2697                 break;
2698         case TCM_CHECK_CONDITION_NOT_READY:
2699                 /* CURRENT ERROR */
2700                 buffer[0] = 0x70;
2701                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2702                 /* Not Ready */
2703                 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2704                 transport_get_sense_codes(cmd, &asc, &ascq);
2705                 buffer[SPC_ASC_KEY_OFFSET] = asc;
2706                 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2707                 break;
2708         case TCM_MISCOMPARE_VERIFY:
2709                 /* CURRENT ERROR */
2710                 buffer[0] = 0x70;
2711                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2712                 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2713                 /* MISCOMPARE DURING VERIFY OPERATION */
2714                 buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2715                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2716                 break;
2717         case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2718                 /* CURRENT ERROR */
2719                 buffer[0] = 0x70;
2720                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2721                 /* ILLEGAL REQUEST */
2722                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2723                 /* LOGICAL BLOCK GUARD CHECK FAILED */
2724                 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2725                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x01;
2726                 transport_err_sector_info(buffer, cmd->bad_sector);
2727                 break;
2728         case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2729                 /* CURRENT ERROR */
2730                 buffer[0] = 0x70;
2731                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2732                 /* ILLEGAL REQUEST */
2733                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2734                 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2735                 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2736                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x02;
2737                 transport_err_sector_info(buffer, cmd->bad_sector);
2738                 break;
2739         case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2740                 /* CURRENT ERROR */
2741                 buffer[0] = 0x70;
2742                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2743                 /* ILLEGAL REQUEST */
2744                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2745                 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2746                 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2747                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2748                 transport_err_sector_info(buffer, cmd->bad_sector);
2749                 break;
2750         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2751         default:
2752                 /* CURRENT ERROR */
2753                 buffer[0] = 0x70;
2754                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2755                 /*
2756                  * Returning ILLEGAL REQUEST would cause immediate IO errors on
2757                  * Solaris initiators.  Returning NOT READY instead means the
2758                  * operations will be retried a finite number of times and we
2759                  * can survive intermittent errors.
2760                  */
2761                 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2762                 /* LOGICAL UNIT COMMUNICATION FAILURE */
2763                 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2764                 break;
2765         }
2766         /*
2767          * This code uses linux/include/scsi/scsi.h SAM status codes!
2768          */
2769         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2770         /*
2771          * Automatically padded, this value is encoded in the fabric's
2772          * data_length response PDU containing the SCSI defined sense data.
2773          */
2774         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
2775
2776 after_reason:
2777         trace_target_cmd_complete(cmd);
2778         return cmd->se_tfo->queue_status(cmd);
2779 }
2780 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2781
2782 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2783 {
2784         if (!(cmd->transport_state & CMD_T_ABORTED))
2785                 return 0;
2786
2787         if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
2788                 return 1;
2789
2790         pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2791                  cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2792
2793         cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
2794         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2795         trace_target_cmd_complete(cmd);
2796         cmd->se_tfo->queue_status(cmd);
2797
2798         return 1;
2799 }
2800 EXPORT_SYMBOL(transport_check_aborted_status);
2801
2802 void transport_send_task_abort(struct se_cmd *cmd)
2803 {
2804         unsigned long flags;
2805
2806         spin_lock_irqsave(&cmd->t_state_lock, flags);
2807         if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) {
2808                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2809                 return;
2810         }
2811         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2812
2813         /*
2814          * If there are still expected incoming fabric WRITEs, we wait
2815          * until until they have completed before sending a TASK_ABORTED
2816          * response.  This response with TASK_ABORTED status will be
2817          * queued back to fabric module by transport_check_aborted_status().
2818          */
2819         if (cmd->data_direction == DMA_TO_DEVICE) {
2820                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2821                         cmd->transport_state |= CMD_T_ABORTED;
2822                         smp_mb__after_atomic_inc();
2823                         return;
2824                 }
2825         }
2826         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2827
2828         transport_lun_remove_cmd(cmd);
2829
2830         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2831                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
2832                 cmd->se_tfo->get_task_tag(cmd));
2833
2834         trace_target_cmd_complete(cmd);
2835         cmd->se_tfo->queue_status(cmd);
2836 }
2837
2838 static void target_tmr_work(struct work_struct *work)
2839 {
2840         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2841         struct se_device *dev = cmd->se_dev;
2842         struct se_tmr_req *tmr = cmd->se_tmr_req;
2843         int ret;
2844
2845         switch (tmr->function) {
2846         case TMR_ABORT_TASK:
2847                 core_tmr_abort_task(dev, tmr, cmd->se_sess);
2848                 break;
2849         case TMR_ABORT_TASK_SET:
2850         case TMR_CLEAR_ACA:
2851         case TMR_CLEAR_TASK_SET:
2852                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
2853                 break;
2854         case TMR_LUN_RESET:
2855                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
2856                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
2857                                          TMR_FUNCTION_REJECTED;
2858                 break;
2859         case TMR_TARGET_WARM_RESET:
2860                 tmr->response = TMR_FUNCTION_REJECTED;
2861                 break;
2862         case TMR_TARGET_COLD_RESET:
2863                 tmr->response = TMR_FUNCTION_REJECTED;
2864                 break;
2865         default:
2866                 pr_err("Uknown TMR function: 0x%02x.\n",
2867                                 tmr->function);
2868                 tmr->response = TMR_FUNCTION_REJECTED;
2869                 break;
2870         }
2871
2872         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2873         cmd->se_tfo->queue_tm_rsp(cmd);
2874
2875         transport_cmd_check_stop_to_fabric(cmd);
2876 }
2877
2878 int transport_generic_handle_tmr(
2879         struct se_cmd *cmd)
2880 {
2881         INIT_WORK(&cmd->work, target_tmr_work);
2882         queue_work(cmd->se_dev->tmr_wq, &cmd->work);
2883         return 0;
2884 }
2885 EXPORT_SYMBOL(transport_generic_handle_tmr);