Merge branch 'next' (accumulated 3.16 merge window patches) into master
[firefly-linux-kernel-4.4.55.git] / drivers / thermal / samsung / exynos_tmu.c
1 /*
2  * exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit)
3  *
4  *  Copyright (C) 2011 Samsung Electronics
5  *  Donggeun Kim <dg77.kim@samsung.com>
6  *  Amit Daniel Kachhap <amit.kachhap@linaro.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23
24 #include <linux/clk.h>
25 #include <linux/io.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/platform_device.h>
32 #include <linux/regulator/consumer.h>
33
34 #include "exynos_thermal_common.h"
35 #include "exynos_tmu.h"
36 #include "exynos_tmu_data.h"
37
38 /**
39  * struct exynos_tmu_data : A structure to hold the private data of the TMU
40         driver
41  * @id: identifier of the one instance of the TMU controller.
42  * @pdata: pointer to the tmu platform/configuration data
43  * @base: base address of the single instance of the TMU controller.
44  * @base_common: base address of the common registers of the TMU controller.
45  * @irq: irq number of the TMU controller.
46  * @soc: id of the SOC type.
47  * @irq_work: pointer to the irq work structure.
48  * @lock: lock to implement synchronization.
49  * @clk: pointer to the clock structure.
50  * @temp_error1: fused value of the first point trim.
51  * @temp_error2: fused value of the second point trim.
52  * @regulator: pointer to the TMU regulator structure.
53  * @reg_conf: pointer to structure to register with core thermal.
54  */
55 struct exynos_tmu_data {
56         int id;
57         struct exynos_tmu_platform_data *pdata;
58         void __iomem *base;
59         void __iomem *base_common;
60         int irq;
61         enum soc_type soc;
62         struct work_struct irq_work;
63         struct mutex lock;
64         struct clk *clk;
65         u8 temp_error1, temp_error2;
66         struct regulator *regulator;
67         struct thermal_sensor_conf *reg_conf;
68 };
69
70 /*
71  * TMU treats temperature as a mapped temperature code.
72  * The temperature is converted differently depending on the calibration type.
73  */
74 static int temp_to_code(struct exynos_tmu_data *data, u8 temp)
75 {
76         struct exynos_tmu_platform_data *pdata = data->pdata;
77         int temp_code;
78
79         if (pdata->cal_mode == HW_MODE)
80                 return temp;
81
82         if (data->soc == SOC_ARCH_EXYNOS4210)
83                 /* temp should range between 25 and 125 */
84                 if (temp < 25 || temp > 125) {
85                         temp_code = -EINVAL;
86                         goto out;
87                 }
88
89         switch (pdata->cal_type) {
90         case TYPE_TWO_POINT_TRIMMING:
91                 temp_code = (temp - pdata->first_point_trim) *
92                         (data->temp_error2 - data->temp_error1) /
93                         (pdata->second_point_trim - pdata->first_point_trim) +
94                         data->temp_error1;
95                 break;
96         case TYPE_ONE_POINT_TRIMMING:
97                 temp_code = temp + data->temp_error1 - pdata->first_point_trim;
98                 break;
99         default:
100                 temp_code = temp + pdata->default_temp_offset;
101                 break;
102         }
103 out:
104         return temp_code;
105 }
106
107 /*
108  * Calculate a temperature value from a temperature code.
109  * The unit of the temperature is degree Celsius.
110  */
111 static int code_to_temp(struct exynos_tmu_data *data, u8 temp_code)
112 {
113         struct exynos_tmu_platform_data *pdata = data->pdata;
114         int temp;
115
116         if (pdata->cal_mode == HW_MODE)
117                 return temp_code;
118
119         if (data->soc == SOC_ARCH_EXYNOS4210)
120                 /* temp_code should range between 75 and 175 */
121                 if (temp_code < 75 || temp_code > 175) {
122                         temp = -ENODATA;
123                         goto out;
124                 }
125
126         switch (pdata->cal_type) {
127         case TYPE_TWO_POINT_TRIMMING:
128                 temp = (temp_code - data->temp_error1) *
129                         (pdata->second_point_trim - pdata->first_point_trim) /
130                         (data->temp_error2 - data->temp_error1) +
131                         pdata->first_point_trim;
132                 break;
133         case TYPE_ONE_POINT_TRIMMING:
134                 temp = temp_code - data->temp_error1 + pdata->first_point_trim;
135                 break;
136         default:
137                 temp = temp_code - pdata->default_temp_offset;
138                 break;
139         }
140 out:
141         return temp;
142 }
143
144 static int exynos_tmu_initialize(struct platform_device *pdev)
145 {
146         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
147         struct exynos_tmu_platform_data *pdata = data->pdata;
148         const struct exynos_tmu_registers *reg = pdata->registers;
149         unsigned int status, trim_info = 0, con;
150         unsigned int rising_threshold = 0, falling_threshold = 0;
151         int ret = 0, threshold_code, i, trigger_levs = 0;
152
153         mutex_lock(&data->lock);
154         clk_enable(data->clk);
155
156         if (TMU_SUPPORTS(pdata, READY_STATUS)) {
157                 status = readb(data->base + reg->tmu_status);
158                 if (!status) {
159                         ret = -EBUSY;
160                         goto out;
161                 }
162         }
163
164         if (TMU_SUPPORTS(pdata, TRIM_RELOAD))
165                 __raw_writel(1, data->base + reg->triminfo_ctrl);
166
167         if (pdata->cal_mode == HW_MODE)
168                 goto skip_calib_data;
169
170         /* Save trimming info in order to perform calibration */
171         if (data->soc == SOC_ARCH_EXYNOS5440) {
172                 /*
173                  * For exynos5440 soc triminfo value is swapped between TMU0 and
174                  * TMU2, so the below logic is needed.
175                  */
176                 switch (data->id) {
177                 case 0:
178                         trim_info = readl(data->base +
179                         EXYNOS5440_EFUSE_SWAP_OFFSET + reg->triminfo_data);
180                         break;
181                 case 1:
182                         trim_info = readl(data->base + reg->triminfo_data);
183                         break;
184                 case 2:
185                         trim_info = readl(data->base -
186                         EXYNOS5440_EFUSE_SWAP_OFFSET + reg->triminfo_data);
187                 }
188         } else {
189                 trim_info = readl(data->base + reg->triminfo_data);
190         }
191         data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK;
192         data->temp_error2 = ((trim_info >> reg->triminfo_85_shift) &
193                                 EXYNOS_TMU_TEMP_MASK);
194
195         if (!data->temp_error1 ||
196                 (pdata->min_efuse_value > data->temp_error1) ||
197                 (data->temp_error1 > pdata->max_efuse_value))
198                 data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK;
199
200         if (!data->temp_error2)
201                 data->temp_error2 =
202                         (pdata->efuse_value >> reg->triminfo_85_shift) &
203                         EXYNOS_TMU_TEMP_MASK;
204
205 skip_calib_data:
206         if (pdata->max_trigger_level > MAX_THRESHOLD_LEVS) {
207                 dev_err(&pdev->dev, "Invalid max trigger level\n");
208                 ret = -EINVAL;
209                 goto out;
210         }
211
212         for (i = 0; i < pdata->max_trigger_level; i++) {
213                 if (!pdata->trigger_levels[i])
214                         continue;
215
216                 if ((pdata->trigger_type[i] == HW_TRIP) &&
217                 (!pdata->trigger_levels[pdata->max_trigger_level - 1])) {
218                         dev_err(&pdev->dev, "Invalid hw trigger level\n");
219                         ret = -EINVAL;
220                         goto out;
221                 }
222
223                 /* Count trigger levels except the HW trip*/
224                 if (!(pdata->trigger_type[i] == HW_TRIP))
225                         trigger_levs++;
226         }
227
228         if (data->soc == SOC_ARCH_EXYNOS4210) {
229                 /* Write temperature code for threshold */
230                 threshold_code = temp_to_code(data, pdata->threshold);
231                 if (threshold_code < 0) {
232                         ret = threshold_code;
233                         goto out;
234                 }
235                 writeb(threshold_code,
236                         data->base + reg->threshold_temp);
237                 for (i = 0; i < trigger_levs; i++)
238                         writeb(pdata->trigger_levels[i], data->base +
239                         reg->threshold_th0 + i * sizeof(reg->threshold_th0));
240
241                 writel(reg->inten_rise_mask, data->base + reg->tmu_intclear);
242         } else {
243                 /* Write temperature code for rising and falling threshold */
244                 for (i = 0;
245                 i < trigger_levs && i < EXYNOS_MAX_TRIGGER_PER_REG; i++) {
246                         threshold_code = temp_to_code(data,
247                                                 pdata->trigger_levels[i]);
248                         if (threshold_code < 0) {
249                                 ret = threshold_code;
250                                 goto out;
251                         }
252                         rising_threshold |= threshold_code << 8 * i;
253                         if (pdata->threshold_falling) {
254                                 threshold_code = temp_to_code(data,
255                                                 pdata->trigger_levels[i] -
256                                                 pdata->threshold_falling);
257                                 if (threshold_code > 0)
258                                         falling_threshold |=
259                                                 threshold_code << 8 * i;
260                         }
261                 }
262
263                 writel(rising_threshold,
264                                 data->base + reg->threshold_th0);
265                 writel(falling_threshold,
266                                 data->base + reg->threshold_th1);
267
268                 writel((reg->inten_rise_mask << reg->inten_rise_shift) |
269                         (reg->inten_fall_mask << reg->inten_fall_shift),
270                                 data->base + reg->tmu_intclear);
271
272                 /* if last threshold limit is also present */
273                 i = pdata->max_trigger_level - 1;
274                 if (pdata->trigger_levels[i] &&
275                                 (pdata->trigger_type[i] == HW_TRIP)) {
276                         threshold_code = temp_to_code(data,
277                                                 pdata->trigger_levels[i]);
278                         if (threshold_code < 0) {
279                                 ret = threshold_code;
280                                 goto out;
281                         }
282                         if (i == EXYNOS_MAX_TRIGGER_PER_REG - 1) {
283                                 /* 1-4 level to be assigned in th0 reg */
284                                 rising_threshold |= threshold_code << 8 * i;
285                                 writel(rising_threshold,
286                                         data->base + reg->threshold_th0);
287                         } else if (i == EXYNOS_MAX_TRIGGER_PER_REG) {
288                                 /* 5th level to be assigned in th2 reg */
289                                 rising_threshold =
290                                 threshold_code << reg->threshold_th3_l0_shift;
291                                 writel(rising_threshold,
292                                         data->base + reg->threshold_th2);
293                         }
294                         con = readl(data->base + reg->tmu_ctrl);
295                         con |= (1 << reg->therm_trip_en_shift);
296                         writel(con, data->base + reg->tmu_ctrl);
297                 }
298         }
299         /*Clear the PMIN in the common TMU register*/
300         if (reg->tmu_pmin && !data->id)
301                 writel(0, data->base_common + reg->tmu_pmin);
302 out:
303         clk_disable(data->clk);
304         mutex_unlock(&data->lock);
305
306         return ret;
307 }
308
309 static void exynos_tmu_control(struct platform_device *pdev, bool on)
310 {
311         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
312         struct exynos_tmu_platform_data *pdata = data->pdata;
313         const struct exynos_tmu_registers *reg = pdata->registers;
314         unsigned int con, interrupt_en, cal_val;
315
316         mutex_lock(&data->lock);
317         clk_enable(data->clk);
318
319         con = readl(data->base + reg->tmu_ctrl);
320
321         if (pdata->test_mux)
322                 con |= (pdata->test_mux << reg->test_mux_addr_shift);
323
324         if (pdata->reference_voltage) {
325                 con &= ~(reg->buf_vref_sel_mask << reg->buf_vref_sel_shift);
326                 con |= pdata->reference_voltage << reg->buf_vref_sel_shift;
327         }
328
329         if (pdata->gain) {
330                 con &= ~(reg->buf_slope_sel_mask << reg->buf_slope_sel_shift);
331                 con |= (pdata->gain << reg->buf_slope_sel_shift);
332         }
333
334         if (pdata->noise_cancel_mode) {
335                 con &= ~(reg->therm_trip_mode_mask <<
336                                         reg->therm_trip_mode_shift);
337                 con |= (pdata->noise_cancel_mode << reg->therm_trip_mode_shift);
338         }
339
340         if (pdata->cal_mode == HW_MODE) {
341                 con &= ~(reg->calib_mode_mask << reg->calib_mode_shift);
342                 cal_val = 0;
343                 switch (pdata->cal_type) {
344                 case TYPE_TWO_POINT_TRIMMING:
345                         cal_val = 3;
346                         break;
347                 case TYPE_ONE_POINT_TRIMMING_85:
348                         cal_val = 2;
349                         break;
350                 case TYPE_ONE_POINT_TRIMMING_25:
351                         cal_val = 1;
352                         break;
353                 case TYPE_NONE:
354                         break;
355                 default:
356                         dev_err(&pdev->dev, "Invalid calibration type, using none\n");
357                 }
358                 con |= cal_val << reg->calib_mode_shift;
359         }
360
361         if (on) {
362                 con |= (1 << reg->core_en_shift);
363                 interrupt_en =
364                         pdata->trigger_enable[3] << reg->inten_rise3_shift |
365                         pdata->trigger_enable[2] << reg->inten_rise2_shift |
366                         pdata->trigger_enable[1] << reg->inten_rise1_shift |
367                         pdata->trigger_enable[0] << reg->inten_rise0_shift;
368                 if (TMU_SUPPORTS(pdata, FALLING_TRIP))
369                         interrupt_en |=
370                                 interrupt_en << reg->inten_fall0_shift;
371         } else {
372                 con &= ~(1 << reg->core_en_shift);
373                 interrupt_en = 0; /* Disable all interrupts */
374         }
375         writel(interrupt_en, data->base + reg->tmu_inten);
376         writel(con, data->base + reg->tmu_ctrl);
377
378         clk_disable(data->clk);
379         mutex_unlock(&data->lock);
380 }
381
382 static int exynos_tmu_read(struct exynos_tmu_data *data)
383 {
384         struct exynos_tmu_platform_data *pdata = data->pdata;
385         const struct exynos_tmu_registers *reg = pdata->registers;
386         u8 temp_code;
387         int temp;
388
389         mutex_lock(&data->lock);
390         clk_enable(data->clk);
391
392         temp_code = readb(data->base + reg->tmu_cur_temp);
393         temp = code_to_temp(data, temp_code);
394
395         clk_disable(data->clk);
396         mutex_unlock(&data->lock);
397
398         return temp;
399 }
400
401 #ifdef CONFIG_THERMAL_EMULATION
402 static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp)
403 {
404         struct exynos_tmu_data *data = drv_data;
405         struct exynos_tmu_platform_data *pdata = data->pdata;
406         const struct exynos_tmu_registers *reg = pdata->registers;
407         unsigned int val;
408         int ret = -EINVAL;
409
410         if (!TMU_SUPPORTS(pdata, EMULATION))
411                 goto out;
412
413         if (temp && temp < MCELSIUS)
414                 goto out;
415
416         mutex_lock(&data->lock);
417         clk_enable(data->clk);
418
419         val = readl(data->base + reg->emul_con);
420
421         if (temp) {
422                 temp /= MCELSIUS;
423
424                 if (TMU_SUPPORTS(pdata, EMUL_TIME)) {
425                         val &= ~(EXYNOS_EMUL_TIME_MASK << reg->emul_time_shift);
426                         val |= (EXYNOS_EMUL_TIME << reg->emul_time_shift);
427                 }
428                 val &= ~(EXYNOS_EMUL_DATA_MASK << reg->emul_temp_shift);
429                 val |= (temp_to_code(data, temp) << reg->emul_temp_shift) |
430                         EXYNOS_EMUL_ENABLE;
431         } else {
432                 val &= ~EXYNOS_EMUL_ENABLE;
433         }
434
435         writel(val, data->base + reg->emul_con);
436
437         clk_disable(data->clk);
438         mutex_unlock(&data->lock);
439         return 0;
440 out:
441         return ret;
442 }
443 #else
444 static int exynos_tmu_set_emulation(void *drv_data,     unsigned long temp)
445         { return -EINVAL; }
446 #endif/*CONFIG_THERMAL_EMULATION*/
447
448 static void exynos_tmu_work(struct work_struct *work)
449 {
450         struct exynos_tmu_data *data = container_of(work,
451                         struct exynos_tmu_data, irq_work);
452         struct exynos_tmu_platform_data *pdata = data->pdata;
453         const struct exynos_tmu_registers *reg = pdata->registers;
454         unsigned int val_irq, val_type;
455
456         /* Find which sensor generated this interrupt */
457         if (reg->tmu_irqstatus) {
458                 val_type = readl(data->base_common + reg->tmu_irqstatus);
459                 if (!((val_type >> data->id) & 0x1))
460                         goto out;
461         }
462
463         exynos_report_trigger(data->reg_conf);
464         mutex_lock(&data->lock);
465         clk_enable(data->clk);
466
467         /* TODO: take action based on particular interrupt */
468         val_irq = readl(data->base + reg->tmu_intstat);
469         /* clear the interrupts */
470         writel(val_irq, data->base + reg->tmu_intclear);
471
472         clk_disable(data->clk);
473         mutex_unlock(&data->lock);
474 out:
475         enable_irq(data->irq);
476 }
477
478 static irqreturn_t exynos_tmu_irq(int irq, void *id)
479 {
480         struct exynos_tmu_data *data = id;
481
482         disable_irq_nosync(irq);
483         schedule_work(&data->irq_work);
484
485         return IRQ_HANDLED;
486 }
487
488 static const struct of_device_id exynos_tmu_match[] = {
489         {
490                 .compatible = "samsung,exynos4210-tmu",
491                 .data = (void *)EXYNOS4210_TMU_DRV_DATA,
492         },
493         {
494                 .compatible = "samsung,exynos4412-tmu",
495                 .data = (void *)EXYNOS4412_TMU_DRV_DATA,
496         },
497         {
498                 .compatible = "samsung,exynos5250-tmu",
499                 .data = (void *)EXYNOS5250_TMU_DRV_DATA,
500         },
501         {
502                 .compatible = "samsung,exynos5440-tmu",
503                 .data = (void *)EXYNOS5440_TMU_DRV_DATA,
504         },
505         {},
506 };
507 MODULE_DEVICE_TABLE(of, exynos_tmu_match);
508
509 static inline struct  exynos_tmu_platform_data *exynos_get_driver_data(
510                         struct platform_device *pdev, int id)
511 {
512         struct  exynos_tmu_init_data *data_table;
513         struct exynos_tmu_platform_data *tmu_data;
514         const struct of_device_id *match;
515
516         match = of_match_node(exynos_tmu_match, pdev->dev.of_node);
517         if (!match)
518                 return NULL;
519         data_table = (struct exynos_tmu_init_data *) match->data;
520         if (!data_table || id >= data_table->tmu_count)
521                 return NULL;
522         tmu_data = data_table->tmu_data;
523         return (struct exynos_tmu_platform_data *) (tmu_data + id);
524 }
525
526 static int exynos_map_dt_data(struct platform_device *pdev)
527 {
528         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
529         struct exynos_tmu_platform_data *pdata;
530         struct resource res;
531         int ret;
532
533         if (!data || !pdev->dev.of_node)
534                 return -ENODEV;
535
536         /*
537          * Try enabling the regulator if found
538          * TODO: Add regulator as an SOC feature, so that regulator enable
539          * is a compulsory call.
540          */
541         data->regulator = devm_regulator_get(&pdev->dev, "vtmu");
542         if (!IS_ERR(data->regulator)) {
543                 ret = regulator_enable(data->regulator);
544                 if (ret) {
545                         dev_err(&pdev->dev, "failed to enable vtmu\n");
546                         return ret;
547                 }
548         } else {
549                 dev_info(&pdev->dev, "Regulator node (vtmu) not found\n");
550         }
551
552         data->id = of_alias_get_id(pdev->dev.of_node, "tmuctrl");
553         if (data->id < 0)
554                 data->id = 0;
555
556         data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
557         if (data->irq <= 0) {
558                 dev_err(&pdev->dev, "failed to get IRQ\n");
559                 return -ENODEV;
560         }
561
562         if (of_address_to_resource(pdev->dev.of_node, 0, &res)) {
563                 dev_err(&pdev->dev, "failed to get Resource 0\n");
564                 return -ENODEV;
565         }
566
567         data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
568         if (!data->base) {
569                 dev_err(&pdev->dev, "Failed to ioremap memory\n");
570                 return -EADDRNOTAVAIL;
571         }
572
573         pdata = exynos_get_driver_data(pdev, data->id);
574         if (!pdata) {
575                 dev_err(&pdev->dev, "No platform init data supplied.\n");
576                 return -ENODEV;
577         }
578         data->pdata = pdata;
579         /*
580          * Check if the TMU shares some registers and then try to map the
581          * memory of common registers.
582          */
583         if (!TMU_SUPPORTS(pdata, SHARED_MEMORY))
584                 return 0;
585
586         if (of_address_to_resource(pdev->dev.of_node, 1, &res)) {
587                 dev_err(&pdev->dev, "failed to get Resource 1\n");
588                 return -ENODEV;
589         }
590
591         data->base_common = devm_ioremap(&pdev->dev, res.start,
592                                         resource_size(&res));
593         if (!data->base_common) {
594                 dev_err(&pdev->dev, "Failed to ioremap memory\n");
595                 return -ENOMEM;
596         }
597
598         return 0;
599 }
600
601 static int exynos_tmu_probe(struct platform_device *pdev)
602 {
603         struct exynos_tmu_data *data;
604         struct exynos_tmu_platform_data *pdata;
605         struct thermal_sensor_conf *sensor_conf;
606         int ret, i;
607
608         data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data),
609                                         GFP_KERNEL);
610         if (!data) {
611                 dev_err(&pdev->dev, "Failed to allocate driver structure\n");
612                 return -ENOMEM;
613         }
614
615         platform_set_drvdata(pdev, data);
616         mutex_init(&data->lock);
617
618         ret = exynos_map_dt_data(pdev);
619         if (ret)
620                 return ret;
621
622         pdata = data->pdata;
623
624         INIT_WORK(&data->irq_work, exynos_tmu_work);
625
626         data->clk = devm_clk_get(&pdev->dev, "tmu_apbif");
627         if (IS_ERR(data->clk)) {
628                 dev_err(&pdev->dev, "Failed to get clock\n");
629                 return  PTR_ERR(data->clk);
630         }
631
632         ret = clk_prepare(data->clk);
633         if (ret)
634                 return ret;
635
636         if (pdata->type == SOC_ARCH_EXYNOS4210 ||
637             pdata->type == SOC_ARCH_EXYNOS4412 ||
638             pdata->type == SOC_ARCH_EXYNOS5250 ||
639             pdata->type == SOC_ARCH_EXYNOS5440)
640                 data->soc = pdata->type;
641         else {
642                 ret = -EINVAL;
643                 dev_err(&pdev->dev, "Platform not supported\n");
644                 goto err_clk;
645         }
646
647         ret = exynos_tmu_initialize(pdev);
648         if (ret) {
649                 dev_err(&pdev->dev, "Failed to initialize TMU\n");
650                 goto err_clk;
651         }
652
653         exynos_tmu_control(pdev, true);
654
655         /* Allocate a structure to register with the exynos core thermal */
656         sensor_conf = devm_kzalloc(&pdev->dev,
657                                 sizeof(struct thermal_sensor_conf), GFP_KERNEL);
658         if (!sensor_conf) {
659                 dev_err(&pdev->dev, "Failed to allocate registration struct\n");
660                 ret = -ENOMEM;
661                 goto err_clk;
662         }
663         sprintf(sensor_conf->name, "therm_zone%d", data->id);
664         sensor_conf->read_temperature = (int (*)(void *))exynos_tmu_read;
665         sensor_conf->write_emul_temp =
666                 (int (*)(void *, unsigned long))exynos_tmu_set_emulation;
667         sensor_conf->driver_data = data;
668         sensor_conf->trip_data.trip_count = pdata->trigger_enable[0] +
669                         pdata->trigger_enable[1] + pdata->trigger_enable[2]+
670                         pdata->trigger_enable[3];
671
672         for (i = 0; i < sensor_conf->trip_data.trip_count; i++) {
673                 sensor_conf->trip_data.trip_val[i] =
674                         pdata->threshold + pdata->trigger_levels[i];
675                 sensor_conf->trip_data.trip_type[i] =
676                                         pdata->trigger_type[i];
677         }
678
679         sensor_conf->trip_data.trigger_falling = pdata->threshold_falling;
680
681         sensor_conf->cooling_data.freq_clip_count = pdata->freq_tab_count;
682         for (i = 0; i < pdata->freq_tab_count; i++) {
683                 sensor_conf->cooling_data.freq_data[i].freq_clip_max =
684                                         pdata->freq_tab[i].freq_clip_max;
685                 sensor_conf->cooling_data.freq_data[i].temp_level =
686                                         pdata->freq_tab[i].temp_level;
687         }
688         sensor_conf->dev = &pdev->dev;
689         /* Register the sensor with thermal management interface */
690         ret = exynos_register_thermal(sensor_conf);
691         if (ret) {
692                 dev_err(&pdev->dev, "Failed to register thermal interface\n");
693                 goto err_clk;
694         }
695         data->reg_conf = sensor_conf;
696
697         ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq,
698                 IRQF_TRIGGER_RISING | IRQF_SHARED, dev_name(&pdev->dev), data);
699         if (ret) {
700                 dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq);
701                 goto err_clk;
702         }
703
704         return 0;
705 err_clk:
706         clk_unprepare(data->clk);
707         return ret;
708 }
709
710 static int exynos_tmu_remove(struct platform_device *pdev)
711 {
712         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
713
714         exynos_tmu_control(pdev, false);
715
716         exynos_unregister_thermal(data->reg_conf);
717
718         clk_unprepare(data->clk);
719
720         if (!IS_ERR(data->regulator))
721                 regulator_disable(data->regulator);
722
723         return 0;
724 }
725
726 #ifdef CONFIG_PM_SLEEP
727 static int exynos_tmu_suspend(struct device *dev)
728 {
729         exynos_tmu_control(to_platform_device(dev), false);
730
731         return 0;
732 }
733
734 static int exynos_tmu_resume(struct device *dev)
735 {
736         struct platform_device *pdev = to_platform_device(dev);
737
738         exynos_tmu_initialize(pdev);
739         exynos_tmu_control(pdev, true);
740
741         return 0;
742 }
743
744 static SIMPLE_DEV_PM_OPS(exynos_tmu_pm,
745                          exynos_tmu_suspend, exynos_tmu_resume);
746 #define EXYNOS_TMU_PM   (&exynos_tmu_pm)
747 #else
748 #define EXYNOS_TMU_PM   NULL
749 #endif
750
751 static struct platform_driver exynos_tmu_driver = {
752         .driver = {
753                 .name   = "exynos-tmu",
754                 .owner  = THIS_MODULE,
755                 .pm     = EXYNOS_TMU_PM,
756                 .of_match_table = exynos_tmu_match,
757         },
758         .probe = exynos_tmu_probe,
759         .remove = exynos_tmu_remove,
760 };
761
762 module_platform_driver(exynos_tmu_driver);
763
764 MODULE_DESCRIPTION("EXYNOS TMU Driver");
765 MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>");
766 MODULE_LICENSE("GPL");
767 MODULE_ALIAS("platform:exynos-tmu");