serial:ifx6x60:Delete SPI timer when shut down port
[firefly-linux-kernel-4.4.55.git] / drivers / tty / serial / ifx6x60.c
1 /****************************************************************************
2  *
3  * Driver for the IFX 6x60 spi modem.
4  *
5  * Copyright (C) 2008 Option International
6  * Copyright (C) 2008 Filip Aben <f.aben@option.com>
7  *                    Denis Joseph Barrow <d.barow@option.com>
8  *                    Jan Dumon <j.dumon@option.com>
9  *
10  * Copyright (C) 2009, 2010 Intel Corp
11  * Russ Gorby <russ.gorby@intel.com>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
25  * USA
26  *
27  * Driver modified by Intel from Option gtm501l_spi.c
28  *
29  * Notes
30  * o    The driver currently assumes a single device only. If you need to
31  *      change this then look for saved_ifx_dev and add a device lookup
32  * o    The driver is intended to be big-endian safe but has never been
33  *      tested that way (no suitable hardware). There are a couple of FIXME
34  *      notes by areas that may need addressing
35  * o    Some of the GPIO naming/setup assumptions may need revisiting if
36  *      you need to use this driver for another platform.
37  *
38  *****************************************************************************/
39 #include <linux/module.h>
40 #include <linux/termios.h>
41 #include <linux/tty.h>
42 #include <linux/device.h>
43 #include <linux/spi/spi.h>
44 #include <linux/kfifo.h>
45 #include <linux/tty_flip.h>
46 #include <linux/timer.h>
47 #include <linux/serial.h>
48 #include <linux/interrupt.h>
49 #include <linux/irq.h>
50 #include <linux/rfkill.h>
51 #include <linux/fs.h>
52 #include <linux/ip.h>
53 #include <linux/dmapool.h>
54 #include <linux/gpio.h>
55 #include <linux/sched.h>
56 #include <linux/time.h>
57 #include <linux/wait.h>
58 #include <linux/pm.h>
59 #include <linux/pm_runtime.h>
60 #include <linux/spi/ifx_modem.h>
61 #include <linux/delay.h>
62
63 #include "ifx6x60.h"
64
65 #define IFX_SPI_MORE_MASK               0x10
66 #define IFX_SPI_MORE_BIT                12      /* bit position in u16 */
67 #define IFX_SPI_CTS_BIT                 13      /* bit position in u16 */
68 #define IFX_SPI_MODE                    SPI_MODE_1
69 #define IFX_SPI_TTY_ID                  0
70 #define IFX_SPI_TIMEOUT_SEC             2
71 #define IFX_SPI_HEADER_0                (-1)
72 #define IFX_SPI_HEADER_F                (-2)
73
74 /* forward reference */
75 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
76
77 /* local variables */
78 static int spi_bpw = 16;                /* 8, 16 or 32 bit word length */
79 static struct tty_driver *tty_drv;
80 static struct ifx_spi_device *saved_ifx_dev;
81 static struct lock_class_key ifx_spi_key;
82
83 /* GPIO/GPE settings */
84
85 /**
86  *      mrdy_set_high           -       set MRDY GPIO
87  *      @ifx: device we are controlling
88  *
89  */
90 static inline void mrdy_set_high(struct ifx_spi_device *ifx)
91 {
92         gpio_set_value(ifx->gpio.mrdy, 1);
93 }
94
95 /**
96  *      mrdy_set_low            -       clear MRDY GPIO
97  *      @ifx: device we are controlling
98  *
99  */
100 static inline void mrdy_set_low(struct ifx_spi_device *ifx)
101 {
102         gpio_set_value(ifx->gpio.mrdy, 0);
103 }
104
105 /**
106  *      ifx_spi_power_state_set
107  *      @ifx_dev: our SPI device
108  *      @val: bits to set
109  *
110  *      Set bit in power status and signal power system if status becomes non-0
111  */
112 static void
113 ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
114 {
115         unsigned long flags;
116
117         spin_lock_irqsave(&ifx_dev->power_lock, flags);
118
119         /*
120          * if power status is already non-0, just update, else
121          * tell power system
122          */
123         if (!ifx_dev->power_status)
124                 pm_runtime_get(&ifx_dev->spi_dev->dev);
125         ifx_dev->power_status |= val;
126
127         spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
128 }
129
130 /**
131  *      ifx_spi_power_state_clear       -       clear power bit
132  *      @ifx_dev: our SPI device
133  *      @val: bits to clear
134  *
135  *      clear bit in power status and signal power system if status becomes 0
136  */
137 static void
138 ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
139 {
140         unsigned long flags;
141
142         spin_lock_irqsave(&ifx_dev->power_lock, flags);
143
144         if (ifx_dev->power_status) {
145                 ifx_dev->power_status &= ~val;
146                 if (!ifx_dev->power_status)
147                         pm_runtime_put(&ifx_dev->spi_dev->dev);
148         }
149
150         spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
151 }
152
153 /**
154  *      swap_buf
155  *      @buf: our buffer
156  *      @len : number of bytes (not words) in the buffer
157  *      @end: end of buffer
158  *
159  *      Swap the contents of a buffer into big endian format
160  */
161 static inline void swap_buf(u16 *buf, int len, void *end)
162 {
163         int n;
164
165         len = ((len + 1) >> 1);
166         if ((void *)&buf[len] > end) {
167                 pr_err("swap_buf: swap exceeds boundary (%p > %p)!",
168                        &buf[len], end);
169                 return;
170         }
171         for (n = 0; n < len; n++) {
172                 *buf = cpu_to_be16(*buf);
173                 buf++;
174         }
175 }
176
177 /**
178  *      mrdy_assert             -       assert MRDY line
179  *      @ifx_dev: our SPI device
180  *
181  *      Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
182  *      now.
183  *
184  *      FIXME: Can SRDY even go high as we are running this code ?
185  */
186 static void mrdy_assert(struct ifx_spi_device *ifx_dev)
187 {
188         int val = gpio_get_value(ifx_dev->gpio.srdy);
189         if (!val) {
190                 if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
191                                       &ifx_dev->flags)) {
192                         ifx_dev->spi_timer.expires =
193                                 jiffies + IFX_SPI_TIMEOUT_SEC*HZ;
194                         add_timer(&ifx_dev->spi_timer);
195
196                 }
197         }
198         ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
199         mrdy_set_high(ifx_dev);
200 }
201
202 /**
203  *      ifx_spi_hangup          -       hang up an IFX device
204  *      @ifx_dev: our SPI device
205  *
206  *      Hang up the tty attached to the IFX device if one is currently
207  *      open. If not take no action
208  */
209 static void ifx_spi_ttyhangup(struct ifx_spi_device *ifx_dev)
210 {
211         struct tty_port *pport = &ifx_dev->tty_port;
212         struct tty_struct *tty = tty_port_tty_get(pport);
213         if (tty) {
214                 tty_hangup(tty);
215                 tty_kref_put(tty);
216         }
217 }
218
219 /**
220  *      ifx_spi_timeout         -       SPI timeout
221  *      @arg: our SPI device
222  *
223  *      The SPI has timed out: hang up the tty. Users will then see a hangup
224  *      and error events.
225  */
226 static void ifx_spi_timeout(unsigned long arg)
227 {
228         struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *)arg;
229
230         dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
231         ifx_spi_ttyhangup(ifx_dev);
232         mrdy_set_low(ifx_dev);
233         clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
234 }
235
236 /* char/tty operations */
237
238 /**
239  *      ifx_spi_tiocmget        -       get modem lines
240  *      @tty: our tty device
241  *      @filp: file handle issuing the request
242  *
243  *      Map the signal state into Linux modem flags and report the value
244  *      in Linux terms
245  */
246 static int ifx_spi_tiocmget(struct tty_struct *tty)
247 {
248         unsigned int value;
249         struct ifx_spi_device *ifx_dev = tty->driver_data;
250
251         value =
252         (test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
253         (test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
254         (test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
255         (test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
256         (test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
257         (test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
258         return value;
259 }
260
261 /**
262  *      ifx_spi_tiocmset        -       set modem bits
263  *      @tty: the tty structure
264  *      @set: bits to set
265  *      @clear: bits to clear
266  *
267  *      The IFX6x60 only supports DTR and RTS. Set them accordingly
268  *      and flag that an update to the modem is needed.
269  *
270  *      FIXME: do we need to kick the tranfers when we do this ?
271  */
272 static int ifx_spi_tiocmset(struct tty_struct *tty,
273                             unsigned int set, unsigned int clear)
274 {
275         struct ifx_spi_device *ifx_dev = tty->driver_data;
276
277         if (set & TIOCM_RTS)
278                 set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
279         if (set & TIOCM_DTR)
280                 set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
281         if (clear & TIOCM_RTS)
282                 clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
283         if (clear & TIOCM_DTR)
284                 clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
285
286         set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
287         return 0;
288 }
289
290 /**
291  *      ifx_spi_open    -       called on tty open
292  *      @tty: our tty device
293  *      @filp: file handle being associated with the tty
294  *
295  *      Open the tty interface. We let the tty_port layer do all the work
296  *      for us.
297  *
298  *      FIXME: Remove single device assumption and saved_ifx_dev
299  */
300 static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
301 {
302         return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
303 }
304
305 /**
306  *      ifx_spi_close   -       called when our tty closes
307  *      @tty: the tty being closed
308  *      @filp: the file handle being closed
309  *
310  *      Perform the close of the tty. We use the tty_port layer to do all
311  *      our hard work.
312  */
313 static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
314 {
315         struct ifx_spi_device *ifx_dev = tty->driver_data;
316         tty_port_close(&ifx_dev->tty_port, tty, filp);
317         /* FIXME: should we do an ifx_spi_reset here ? */
318 }
319
320 /**
321  *      ifx_decode_spi_header   -       decode received header
322  *      @buffer: the received data
323  *      @length: decoded length
324  *      @more: decoded more flag
325  *      @received_cts: status of cts we received
326  *
327  *      Note how received_cts is handled -- if header is all F it is left
328  *      the same as it was, if header is all 0 it is set to 0 otherwise it is
329  *      taken from the incoming header.
330  *
331  *      FIXME: endianness
332  */
333 static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
334                         unsigned char *more, unsigned char *received_cts)
335 {
336         u16 h1;
337         u16 h2;
338         u16 *in_buffer = (u16 *)buffer;
339
340         h1 = *in_buffer;
341         h2 = *(in_buffer+1);
342
343         if (h1 == 0 && h2 == 0) {
344                 *received_cts = 0;
345                 return IFX_SPI_HEADER_0;
346         } else if (h1 == 0xffff && h2 == 0xffff) {
347                 /* spi_slave_cts remains as it was */
348                 return IFX_SPI_HEADER_F;
349         }
350
351         *length = h1 & 0xfff;   /* upper bits of byte are flags */
352         *more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
353         *received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
354         return 0;
355 }
356
357 /**
358  *      ifx_setup_spi_header    -       set header fields
359  *      @txbuffer: pointer to start of SPI buffer
360  *      @tx_count: bytes
361  *      @more: indicate if more to follow
362  *
363  *      Format up an SPI header for a transfer
364  *
365  *      FIXME: endianness?
366  */
367 static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
368                                         unsigned char more)
369 {
370         *(u16 *)(txbuffer) = tx_count;
371         *(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
372         txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
373 }
374
375 /**
376  *      ifx_spi_wakeup_serial   -       SPI space made
377  *      @port_data: our SPI device
378  *
379  *      We have emptied the FIFO enough that we want to get more data
380  *      queued into it. Poke the line discipline via tty_wakeup so that
381  *      it will feed us more bits
382  */
383 static void ifx_spi_wakeup_serial(struct ifx_spi_device *ifx_dev)
384 {
385         struct tty_struct *tty;
386
387         tty = tty_port_tty_get(&ifx_dev->tty_port);
388         if (!tty)
389                 return;
390         tty_wakeup(tty);
391         tty_kref_put(tty);
392 }
393
394 /**
395  *      ifx_spi_prepare_tx_buffer       -       prepare transmit frame
396  *      @ifx_dev: our SPI device
397  *
398  *      The transmit buffr needs a header and various other bits of
399  *      information followed by as much data as we can pull from the FIFO
400  *      and transfer. This function formats up a suitable buffer in the
401  *      ifx_dev->tx_buffer
402  *
403  *      FIXME: performance - should we wake the tty when the queue is half
404  *                           empty ?
405  */
406 static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
407 {
408         int temp_count;
409         int queue_length;
410         int tx_count;
411         unsigned char *tx_buffer;
412
413         tx_buffer = ifx_dev->tx_buffer;
414         memset(tx_buffer, 0, IFX_SPI_TRANSFER_SIZE);
415
416         /* make room for required SPI header */
417         tx_buffer += IFX_SPI_HEADER_OVERHEAD;
418         tx_count = IFX_SPI_HEADER_OVERHEAD;
419
420         /* clear to signal no more data if this turns out to be the
421          * last buffer sent in a sequence */
422         ifx_dev->spi_more = 0;
423
424         /* if modem cts is set, just send empty buffer */
425         if (!ifx_dev->spi_slave_cts) {
426                 /* see if there's tx data */
427                 queue_length = kfifo_len(&ifx_dev->tx_fifo);
428                 if (queue_length != 0) {
429                         /* data to mux -- see if there's room for it */
430                         temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
431                         temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
432                                         tx_buffer, temp_count,
433                                         &ifx_dev->fifo_lock);
434
435                         /* update buffer pointer and data count in message */
436                         tx_buffer += temp_count;
437                         tx_count += temp_count;
438                         if (temp_count == queue_length)
439                                 /* poke port to get more data */
440                                 ifx_spi_wakeup_serial(ifx_dev);
441                         else /* more data in port, use next SPI message */
442                                 ifx_dev->spi_more = 1;
443                 }
444         }
445         /* have data and info for header -- set up SPI header in buffer */
446         /* spi header needs payload size, not entire buffer size */
447         ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
448                                         tx_count-IFX_SPI_HEADER_OVERHEAD,
449                                         ifx_dev->spi_more);
450         /* swap actual data in the buffer */
451         swap_buf((u16 *)(ifx_dev->tx_buffer), tx_count,
452                 &ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
453         return tx_count;
454 }
455
456 /**
457  *      ifx_spi_write           -       line discipline write
458  *      @tty: our tty device
459  *      @buf: pointer to buffer to write (kernel space)
460  *      @count: size of buffer
461  *
462  *      Write the characters we have been given into the FIFO. If the device
463  *      is not active then activate it, when the SRDY line is asserted back
464  *      this will commence I/O
465  */
466 static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
467                          int count)
468 {
469         struct ifx_spi_device *ifx_dev = tty->driver_data;
470         unsigned char *tmp_buf = (unsigned char *)buf;
471         int tx_count = kfifo_in_locked(&ifx_dev->tx_fifo, tmp_buf, count,
472                                    &ifx_dev->fifo_lock);
473         mrdy_assert(ifx_dev);
474         return tx_count;
475 }
476
477 /**
478  *      ifx_spi_chars_in_buffer -       line discipline helper
479  *      @tty: our tty device
480  *
481  *      Report how much data we can accept before we drop bytes. As we use
482  *      a simple FIFO this is nice and easy.
483  */
484 static int ifx_spi_write_room(struct tty_struct *tty)
485 {
486         struct ifx_spi_device *ifx_dev = tty->driver_data;
487         return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
488 }
489
490 /**
491  *      ifx_spi_chars_in_buffer -       line discipline helper
492  *      @tty: our tty device
493  *
494  *      Report how many characters we have buffered. In our case this is the
495  *      number of bytes sitting in our transmit FIFO.
496  */
497 static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
498 {
499         struct ifx_spi_device *ifx_dev = tty->driver_data;
500         return kfifo_len(&ifx_dev->tx_fifo);
501 }
502
503 /**
504  *      ifx_port_hangup
505  *      @port: our tty port
506  *
507  *      tty port hang up. Called when tty_hangup processing is invoked either
508  *      by loss of carrier, or by software (eg vhangup). Serialized against
509  *      activate/shutdown by the tty layer.
510  */
511 static void ifx_spi_hangup(struct tty_struct *tty)
512 {
513         struct ifx_spi_device *ifx_dev = tty->driver_data;
514         tty_port_hangup(&ifx_dev->tty_port);
515 }
516
517 /**
518  *      ifx_port_activate
519  *      @port: our tty port
520  *
521  *      tty port activate method - called for first open. Serialized
522  *      with hangup and shutdown by the tty layer.
523  */
524 static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
525 {
526         struct ifx_spi_device *ifx_dev =
527                 container_of(port, struct ifx_spi_device, tty_port);
528
529         /* clear any old data; can't do this in 'close' */
530         kfifo_reset(&ifx_dev->tx_fifo);
531
532         /* put port data into this tty */
533         tty->driver_data = ifx_dev;
534
535         /* allows flip string push from int context */
536         tty->low_latency = 1;
537
538         return 0;
539 }
540
541 /**
542  *      ifx_port_shutdown
543  *      @port: our tty port
544  *
545  *      tty port shutdown method - called for last port close. Serialized
546  *      with hangup and activate by the tty layer.
547  */
548 static void ifx_port_shutdown(struct tty_port *port)
549 {
550         struct ifx_spi_device *ifx_dev =
551                 container_of(port, struct ifx_spi_device, tty_port);
552
553         mrdy_set_low(ifx_dev);
554         del_timer(&ifx_dev->spi_timer);
555         clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
556         tasklet_kill(&ifx_dev->io_work_tasklet);
557 }
558
559 static const struct tty_port_operations ifx_tty_port_ops = {
560         .activate = ifx_port_activate,
561         .shutdown = ifx_port_shutdown,
562 };
563
564 static const struct tty_operations ifx_spi_serial_ops = {
565         .open = ifx_spi_open,
566         .close = ifx_spi_close,
567         .write = ifx_spi_write,
568         .hangup = ifx_spi_hangup,
569         .write_room = ifx_spi_write_room,
570         .chars_in_buffer = ifx_spi_chars_in_buffer,
571         .tiocmget = ifx_spi_tiocmget,
572         .tiocmset = ifx_spi_tiocmset,
573 };
574
575 /**
576  *      ifx_spi_insert_fip_string       -       queue received data
577  *      @ifx_ser: our SPI device
578  *      @chars: buffer we have received
579  *      @size: number of chars reeived
580  *
581  *      Queue bytes to the tty assuming the tty side is currently open. If
582  *      not the discard the data.
583  */
584 static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
585                                     unsigned char *chars, size_t size)
586 {
587         struct tty_struct *tty = tty_port_tty_get(&ifx_dev->tty_port);
588         if (!tty)
589                 return;
590         tty_insert_flip_string(tty, chars, size);
591         tty_flip_buffer_push(tty);
592         tty_kref_put(tty);
593 }
594
595 /**
596  *      ifx_spi_complete        -       SPI transfer completed
597  *      @ctx: our SPI device
598  *
599  *      An SPI transfer has completed. Process any received data and kick off
600  *      any further transmits we can commence.
601  */
602 static void ifx_spi_complete(void *ctx)
603 {
604         struct ifx_spi_device *ifx_dev = ctx;
605         struct tty_struct *tty;
606         struct tty_ldisc *ldisc = NULL;
607         int length;
608         int actual_length;
609         unsigned char more;
610         unsigned char cts;
611         int local_write_pending = 0;
612         int queue_length;
613         int srdy;
614         int decode_result;
615
616         mrdy_set_low(ifx_dev);
617
618         if (!ifx_dev->spi_msg.status) {
619                 /* check header validity, get comm flags */
620                 swap_buf((u16 *)ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
621                         &ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
622                 decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
623                                 &length, &more, &cts);
624                 if (decode_result == IFX_SPI_HEADER_0) {
625                         dev_dbg(&ifx_dev->spi_dev->dev,
626                                 "ignore input: invalid header 0");
627                         ifx_dev->spi_slave_cts = 0;
628                         goto complete_exit;
629                 } else if (decode_result == IFX_SPI_HEADER_F) {
630                         dev_dbg(&ifx_dev->spi_dev->dev,
631                                 "ignore input: invalid header F");
632                         goto complete_exit;
633                 }
634
635                 ifx_dev->spi_slave_cts = cts;
636
637                 actual_length = min((unsigned int)length,
638                                         ifx_dev->spi_msg.actual_length);
639                 swap_buf((u16 *)(ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
640                          actual_length,
641                          &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
642                 ifx_spi_insert_flip_string(
643                         ifx_dev,
644                         ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
645                         (size_t)actual_length);
646         } else {
647                 dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
648                        ifx_dev->spi_msg.status);
649         }
650
651 complete_exit:
652         if (ifx_dev->write_pending) {
653                 ifx_dev->write_pending = 0;
654                 local_write_pending = 1;
655         }
656
657         clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
658
659         queue_length = kfifo_len(&ifx_dev->tx_fifo);
660         srdy = gpio_get_value(ifx_dev->gpio.srdy);
661         if (!srdy)
662                 ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
663
664         /* schedule output if there is more to do */
665         if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
666                 tasklet_schedule(&ifx_dev->io_work_tasklet);
667         else {
668                 if (more || ifx_dev->spi_more || queue_length > 0 ||
669                         local_write_pending) {
670                         if (ifx_dev->spi_slave_cts) {
671                                 if (more)
672                                         mrdy_assert(ifx_dev);
673                         } else
674                                 mrdy_assert(ifx_dev);
675                 } else {
676                         /*
677                          * poke line discipline driver if any for more data
678                          * may or may not get more data to write
679                          * for now, say not busy
680                          */
681                         ifx_spi_power_state_clear(ifx_dev,
682                                                   IFX_SPI_POWER_DATA_PENDING);
683                         tty = tty_port_tty_get(&ifx_dev->tty_port);
684                         if (tty) {
685                                 ldisc = tty_ldisc_ref(tty);
686                                 if (ldisc) {
687                                         ldisc->ops->write_wakeup(tty);
688                                         tty_ldisc_deref(ldisc);
689                                 }
690                                 tty_kref_put(tty);
691                         }
692                 }
693         }
694 }
695
696 /**
697  *      ifx_spio_io             -       I/O tasklet
698  *      @data: our SPI device
699  *
700  *      Queue data for transmission if possible and then kick off the
701  *      transfer.
702  */
703 static void ifx_spi_io(unsigned long data)
704 {
705         int retval;
706         struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
707
708         if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags)) {
709                 if (ifx_dev->gpio.unack_srdy_int_nb > 0)
710                         ifx_dev->gpio.unack_srdy_int_nb--;
711
712                 ifx_spi_prepare_tx_buffer(ifx_dev);
713
714                 spi_message_init(&ifx_dev->spi_msg);
715                 INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
716
717                 ifx_dev->spi_msg.context = ifx_dev;
718                 ifx_dev->spi_msg.complete = ifx_spi_complete;
719
720                 /* set up our spi transfer */
721                 /* note len is BYTES, not transfers */
722                 ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
723                 ifx_dev->spi_xfer.cs_change = 0;
724                 ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
725                 /* ifx_dev->spi_xfer.speed_hz = 390625; */
726                 ifx_dev->spi_xfer.bits_per_word = spi_bpw;
727
728                 ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
729                 ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
730
731                 /*
732                  * setup dma pointers
733                  */
734                 if (ifx_dev->use_dma) {
735                         ifx_dev->spi_msg.is_dma_mapped = 1;
736                         ifx_dev->tx_dma = ifx_dev->tx_bus;
737                         ifx_dev->rx_dma = ifx_dev->rx_bus;
738                         ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
739                         ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
740                 } else {
741                         ifx_dev->spi_msg.is_dma_mapped = 0;
742                         ifx_dev->tx_dma = (dma_addr_t)0;
743                         ifx_dev->rx_dma = (dma_addr_t)0;
744                         ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
745                         ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
746                 }
747
748                 spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
749
750                 /* Assert MRDY. This may have already been done by the write
751                  * routine.
752                  */
753                 mrdy_assert(ifx_dev);
754
755                 retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
756                 if (retval) {
757                         clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
758                                   &ifx_dev->flags);
759                         tasklet_schedule(&ifx_dev->io_work_tasklet);
760                         return;
761                 }
762         } else
763                 ifx_dev->write_pending = 1;
764 }
765
766 /**
767  *      ifx_spi_free_port       -       free up the tty side
768  *      @ifx_dev: IFX device going away
769  *
770  *      Unregister and free up a port when the device goes away
771  */
772 static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
773 {
774         if (ifx_dev->tty_dev)
775                 tty_unregister_device(tty_drv, ifx_dev->minor);
776         kfifo_free(&ifx_dev->tx_fifo);
777 }
778
779 /**
780  *      ifx_spi_create_port     -       create a new port
781  *      @ifx_dev: our spi device
782  *
783  *      Allocate and initialise the tty port that goes with this interface
784  *      and add it to the tty layer so that it can be opened.
785  */
786 static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
787 {
788         int ret = 0;
789         struct tty_port *pport = &ifx_dev->tty_port;
790
791         spin_lock_init(&ifx_dev->fifo_lock);
792         lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
793                 &ifx_spi_key, 0);
794
795         if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
796                 ret = -ENOMEM;
797                 goto error_ret;
798         }
799
800         tty_port_init(pport);
801         pport->ops = &ifx_tty_port_ops;
802         ifx_dev->minor = IFX_SPI_TTY_ID;
803         ifx_dev->tty_dev = tty_register_device(tty_drv, ifx_dev->minor,
804                                                &ifx_dev->spi_dev->dev);
805         if (IS_ERR(ifx_dev->tty_dev)) {
806                 dev_dbg(&ifx_dev->spi_dev->dev,
807                         "%s: registering tty device failed", __func__);
808                 ret = PTR_ERR(ifx_dev->tty_dev);
809                 goto error_ret;
810         }
811         return 0;
812
813 error_ret:
814         ifx_spi_free_port(ifx_dev);
815         return ret;
816 }
817
818 /**
819  *      ifx_spi_handle_srdy             -       handle SRDY
820  *      @ifx_dev: device asserting SRDY
821  *
822  *      Check our device state and see what we need to kick off when SRDY
823  *      is asserted. This usually means killing the timer and firing off the
824  *      I/O processing.
825  */
826 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
827 {
828         if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
829                 del_timer_sync(&ifx_dev->spi_timer);
830                 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
831         }
832
833         ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
834
835         if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
836                 tasklet_schedule(&ifx_dev->io_work_tasklet);
837         else
838                 set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
839 }
840
841 /**
842  *      ifx_spi_srdy_interrupt  -       SRDY asserted
843  *      @irq: our IRQ number
844  *      @dev: our ifx device
845  *
846  *      The modem asserted SRDY. Handle the srdy event
847  */
848 static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
849 {
850         struct ifx_spi_device *ifx_dev = dev;
851         ifx_dev->gpio.unack_srdy_int_nb++;
852         ifx_spi_handle_srdy(ifx_dev);
853         return IRQ_HANDLED;
854 }
855
856 /**
857  *      ifx_spi_reset_interrupt -       Modem has changed reset state
858  *      @irq: interrupt number
859  *      @dev: our device pointer
860  *
861  *      The modem has either entered or left reset state. Check the GPIO
862  *      line to see which.
863  *
864  *      FIXME: review locking on MR_INPROGRESS versus
865  *      parallel unsolicited reset/solicited reset
866  */
867 static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
868 {
869         struct ifx_spi_device *ifx_dev = dev;
870         int val = gpio_get_value(ifx_dev->gpio.reset_out);
871         int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
872
873         if (val == 0) {
874                 /* entered reset */
875                 set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
876                 if (!solreset) {
877                         /* unsolicited reset  */
878                         ifx_spi_ttyhangup(ifx_dev);
879                 }
880         } else {
881                 /* exited reset */
882                 clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
883                 if (solreset) {
884                         set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
885                         wake_up(&ifx_dev->mdm_reset_wait);
886                 }
887         }
888         return IRQ_HANDLED;
889 }
890
891 /**
892  *      ifx_spi_free_device - free device
893  *      @ifx_dev: device to free
894  *
895  *      Free the IFX device
896  */
897 static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
898 {
899         ifx_spi_free_port(ifx_dev);
900         dma_free_coherent(&ifx_dev->spi_dev->dev,
901                                 IFX_SPI_TRANSFER_SIZE,
902                                 ifx_dev->tx_buffer,
903                                 ifx_dev->tx_bus);
904         dma_free_coherent(&ifx_dev->spi_dev->dev,
905                                 IFX_SPI_TRANSFER_SIZE,
906                                 ifx_dev->rx_buffer,
907                                 ifx_dev->rx_bus);
908 }
909
910 /**
911  *      ifx_spi_reset   -       reset modem
912  *      @ifx_dev: modem to reset
913  *
914  *      Perform a reset on the modem
915  */
916 static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
917 {
918         int ret;
919         /*
920          * set up modem power, reset
921          *
922          * delays are required on some platforms for the modem
923          * to reset properly
924          */
925         set_bit(MR_START, &ifx_dev->mdm_reset_state);
926         gpio_set_value(ifx_dev->gpio.po, 0);
927         gpio_set_value(ifx_dev->gpio.reset, 0);
928         msleep(25);
929         gpio_set_value(ifx_dev->gpio.reset, 1);
930         msleep(1);
931         gpio_set_value(ifx_dev->gpio.po, 1);
932         msleep(1);
933         gpio_set_value(ifx_dev->gpio.po, 0);
934         ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
935                                  test_bit(MR_COMPLETE,
936                                           &ifx_dev->mdm_reset_state),
937                                  IFX_RESET_TIMEOUT);
938         if (!ret)
939                 dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
940                          ifx_dev->mdm_reset_state);
941
942         ifx_dev->mdm_reset_state = 0;
943         return ret;
944 }
945
946 /**
947  *      ifx_spi_spi_probe       -       probe callback
948  *      @spi: our possible matching SPI device
949  *
950  *      Probe for a 6x60 modem on SPI bus. Perform any needed device and
951  *      GPIO setup.
952  *
953  *      FIXME:
954  *      -       Support for multiple devices
955  *      -       Split out MID specific GPIO handling eventually
956  */
957
958 static int ifx_spi_spi_probe(struct spi_device *spi)
959 {
960         int ret;
961         int srdy;
962         struct ifx_modem_platform_data *pl_data;
963         struct ifx_spi_device *ifx_dev;
964
965         if (saved_ifx_dev) {
966                 dev_dbg(&spi->dev, "ignoring subsequent detection");
967                 return -ENODEV;
968         }
969
970         pl_data = (struct ifx_modem_platform_data *)spi->dev.platform_data;
971         if (!pl_data) {
972                 dev_err(&spi->dev, "missing platform data!");
973                 return -ENODEV;
974         }
975
976         /* initialize structure to hold our device variables */
977         ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
978         if (!ifx_dev) {
979                 dev_err(&spi->dev, "spi device allocation failed");
980                 return -ENOMEM;
981         }
982         saved_ifx_dev = ifx_dev;
983         ifx_dev->spi_dev = spi;
984         clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
985         spin_lock_init(&ifx_dev->write_lock);
986         spin_lock_init(&ifx_dev->power_lock);
987         ifx_dev->power_status = 0;
988         init_timer(&ifx_dev->spi_timer);
989         ifx_dev->spi_timer.function = ifx_spi_timeout;
990         ifx_dev->spi_timer.data = (unsigned long)ifx_dev;
991         ifx_dev->modem = pl_data->modem_type;
992         ifx_dev->use_dma = pl_data->use_dma;
993         ifx_dev->max_hz = pl_data->max_hz;
994         /* initialize spi mode, etc */
995         spi->max_speed_hz = ifx_dev->max_hz;
996         spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
997         spi->bits_per_word = spi_bpw;
998         ret = spi_setup(spi);
999         if (ret) {
1000                 dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
1001                 return -ENODEV;
1002         }
1003
1004         /* ensure SPI protocol flags are initialized to enable transfer */
1005         ifx_dev->spi_more = 0;
1006         ifx_dev->spi_slave_cts = 0;
1007
1008         /*initialize transfer and dma buffers */
1009         ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1010                                 IFX_SPI_TRANSFER_SIZE,
1011                                 &ifx_dev->tx_bus,
1012                                 GFP_KERNEL);
1013         if (!ifx_dev->tx_buffer) {
1014                 dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1015                 ret = -ENOMEM;
1016                 goto error_ret;
1017         }
1018         ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1019                                 IFX_SPI_TRANSFER_SIZE,
1020                                 &ifx_dev->rx_bus,
1021                                 GFP_KERNEL);
1022         if (!ifx_dev->rx_buffer) {
1023                 dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1024                 ret = -ENOMEM;
1025                 goto error_ret;
1026         }
1027
1028         /* initialize waitq for modem reset */
1029         init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1030
1031         spi_set_drvdata(spi, ifx_dev);
1032         tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1033                                                 (unsigned long)ifx_dev);
1034
1035         set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1036
1037         /* create our tty port */
1038         ret = ifx_spi_create_port(ifx_dev);
1039         if (ret != 0) {
1040                 dev_err(&spi->dev, "create default tty port failed");
1041                 goto error_ret;
1042         }
1043
1044         ifx_dev->gpio.reset = pl_data->rst_pmu;
1045         ifx_dev->gpio.po = pl_data->pwr_on;
1046         ifx_dev->gpio.mrdy = pl_data->mrdy;
1047         ifx_dev->gpio.srdy = pl_data->srdy;
1048         ifx_dev->gpio.reset_out = pl_data->rst_out;
1049
1050         dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1051                  ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1052                  ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1053
1054         /* Configure gpios */
1055         ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1056         if (ret < 0) {
1057                 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1058                         ifx_dev->gpio.reset);
1059                 goto error_ret;
1060         }
1061         ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1062         ret += gpio_export(ifx_dev->gpio.reset, 1);
1063         if (ret) {
1064                 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1065                         ifx_dev->gpio.reset);
1066                 ret = -EBUSY;
1067                 goto error_ret2;
1068         }
1069
1070         ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1071         ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1072         ret += gpio_export(ifx_dev->gpio.po, 1);
1073         if (ret) {
1074                 dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1075                         ifx_dev->gpio.po);
1076                 ret = -EBUSY;
1077                 goto error_ret3;
1078         }
1079
1080         ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1081         if (ret < 0) {
1082                 dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1083                         ifx_dev->gpio.mrdy);
1084                 goto error_ret3;
1085         }
1086         ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1087         ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1088         if (ret) {
1089                 dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1090                         ifx_dev->gpio.mrdy);
1091                 ret = -EBUSY;
1092                 goto error_ret4;
1093         }
1094
1095         ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1096         if (ret < 0) {
1097                 dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1098                         ifx_dev->gpio.srdy);
1099                 ret = -EBUSY;
1100                 goto error_ret4;
1101         }
1102         ret += gpio_export(ifx_dev->gpio.srdy, 1);
1103         ret += gpio_direction_input(ifx_dev->gpio.srdy);
1104         if (ret) {
1105                 dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1106                         ifx_dev->gpio.srdy);
1107                 ret = -EBUSY;
1108                 goto error_ret5;
1109         }
1110
1111         ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1112         if (ret < 0) {
1113                 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1114                         ifx_dev->gpio.reset_out);
1115                 goto error_ret5;
1116         }
1117         ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1118         ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1119         if (ret) {
1120                 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1121                         ifx_dev->gpio.reset_out);
1122                 ret = -EBUSY;
1123                 goto error_ret6;
1124         }
1125
1126         ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1127                           ifx_spi_reset_interrupt,
1128                           IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1129                 (void *)ifx_dev);
1130         if (ret) {
1131                 dev_err(&spi->dev, "Unable to get irq %x\n",
1132                         gpio_to_irq(ifx_dev->gpio.reset_out));
1133                 goto error_ret6;
1134         }
1135
1136         ret = ifx_spi_reset(ifx_dev);
1137
1138         ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1139                           ifx_spi_srdy_interrupt,
1140                           IRQF_TRIGGER_RISING, DRVNAME,
1141                           (void *)ifx_dev);
1142         if (ret) {
1143                 dev_err(&spi->dev, "Unable to get irq %x",
1144                         gpio_to_irq(ifx_dev->gpio.srdy));
1145                 goto error_ret7;
1146         }
1147
1148         /* set pm runtime power state and register with power system */
1149         pm_runtime_set_active(&spi->dev);
1150         pm_runtime_enable(&spi->dev);
1151
1152         /* handle case that modem is already signaling SRDY */
1153         /* no outgoing tty open at this point, this just satisfies the
1154          * modem's read and should reset communication properly
1155          */
1156         srdy = gpio_get_value(ifx_dev->gpio.srdy);
1157
1158         if (srdy) {
1159                 mrdy_assert(ifx_dev);
1160                 ifx_spi_handle_srdy(ifx_dev);
1161         } else
1162                 mrdy_set_low(ifx_dev);
1163         return 0;
1164
1165 error_ret7:
1166         free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1167 error_ret6:
1168         gpio_free(ifx_dev->gpio.srdy);
1169 error_ret5:
1170         gpio_free(ifx_dev->gpio.mrdy);
1171 error_ret4:
1172         gpio_free(ifx_dev->gpio.reset);
1173 error_ret3:
1174         gpio_free(ifx_dev->gpio.po);
1175 error_ret2:
1176         gpio_free(ifx_dev->gpio.reset_out);
1177 error_ret:
1178         ifx_spi_free_device(ifx_dev);
1179         saved_ifx_dev = NULL;
1180         return ret;
1181 }
1182
1183 /**
1184  *      ifx_spi_spi_remove      -       SPI device was removed
1185  *      @spi: SPI device
1186  *
1187  *      FIXME: We should be shutting the device down here not in
1188  *      the module unload path.
1189  */
1190
1191 static int ifx_spi_spi_remove(struct spi_device *spi)
1192 {
1193         struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1194         /* stop activity */
1195         tasklet_kill(&ifx_dev->io_work_tasklet);
1196         /* free irq */
1197         free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1198         free_irq(gpio_to_irq(ifx_dev->gpio.srdy), (void *)ifx_dev);
1199
1200         gpio_free(ifx_dev->gpio.srdy);
1201         gpio_free(ifx_dev->gpio.mrdy);
1202         gpio_free(ifx_dev->gpio.reset);
1203         gpio_free(ifx_dev->gpio.po);
1204         gpio_free(ifx_dev->gpio.reset_out);
1205
1206         /* free allocations */
1207         ifx_spi_free_device(ifx_dev);
1208
1209         saved_ifx_dev = NULL;
1210         return 0;
1211 }
1212
1213 /**
1214  *      ifx_spi_spi_shutdown    -       called on SPI shutdown
1215  *      @spi: SPI device
1216  *
1217  *      No action needs to be taken here
1218  */
1219
1220 static void ifx_spi_spi_shutdown(struct spi_device *spi)
1221 {
1222 }
1223
1224 /*
1225  * various suspends and resumes have nothing to do
1226  * no hardware to save state for
1227  */
1228
1229 /**
1230  *      ifx_spi_spi_suspend     -       suspend SPI on system suspend
1231  *      @dev: device being suspended
1232  *
1233  *      Suspend the SPI side. No action needed on Intel MID platforms, may
1234  *      need extending for other systems.
1235  */
1236 static int ifx_spi_spi_suspend(struct spi_device *spi, pm_message_t msg)
1237 {
1238         return 0;
1239 }
1240
1241 /**
1242  *      ifx_spi_spi_resume      -       resume SPI side on system resume
1243  *      @dev: device being suspended
1244  *
1245  *      Suspend the SPI side. No action needed on Intel MID platforms, may
1246  *      need extending for other systems.
1247  */
1248 static int ifx_spi_spi_resume(struct spi_device *spi)
1249 {
1250         return 0;
1251 }
1252
1253 /**
1254  *      ifx_spi_pm_suspend      -       suspend modem on system suspend
1255  *      @dev: device being suspended
1256  *
1257  *      Suspend the modem. No action needed on Intel MID platforms, may
1258  *      need extending for other systems.
1259  */
1260 static int ifx_spi_pm_suspend(struct device *dev)
1261 {
1262         return 0;
1263 }
1264
1265 /**
1266  *      ifx_spi_pm_resume       -       resume modem on system resume
1267  *      @dev: device being suspended
1268  *
1269  *      Allow the modem to resume. No action needed.
1270  *
1271  *      FIXME: do we need to reset anything here ?
1272  */
1273 static int ifx_spi_pm_resume(struct device *dev)
1274 {
1275         return 0;
1276 }
1277
1278 /**
1279  *      ifx_spi_pm_runtime_resume       -       suspend modem
1280  *      @dev: device being suspended
1281  *
1282  *      Allow the modem to resume. No action needed.
1283  */
1284 static int ifx_spi_pm_runtime_resume(struct device *dev)
1285 {
1286         return 0;
1287 }
1288
1289 /**
1290  *      ifx_spi_pm_runtime_suspend      -       suspend modem
1291  *      @dev: device being suspended
1292  *
1293  *      Allow the modem to suspend and thus suspend to continue up the
1294  *      device tree.
1295  */
1296 static int ifx_spi_pm_runtime_suspend(struct device *dev)
1297 {
1298         return 0;
1299 }
1300
1301 /**
1302  *      ifx_spi_pm_runtime_idle         -       check if modem idle
1303  *      @dev: our device
1304  *
1305  *      Check conditions and queue runtime suspend if idle.
1306  */
1307 static int ifx_spi_pm_runtime_idle(struct device *dev)
1308 {
1309         struct spi_device *spi = to_spi_device(dev);
1310         struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1311
1312         if (!ifx_dev->power_status)
1313                 pm_runtime_suspend(dev);
1314
1315         return 0;
1316 }
1317
1318 static const struct dev_pm_ops ifx_spi_pm = {
1319         .resume = ifx_spi_pm_resume,
1320         .suspend = ifx_spi_pm_suspend,
1321         .runtime_resume = ifx_spi_pm_runtime_resume,
1322         .runtime_suspend = ifx_spi_pm_runtime_suspend,
1323         .runtime_idle = ifx_spi_pm_runtime_idle
1324 };
1325
1326 static const struct spi_device_id ifx_id_table[] = {
1327         {"ifx6160", 0},
1328         {"ifx6260", 0},
1329         { }
1330 };
1331 MODULE_DEVICE_TABLE(spi, ifx_id_table);
1332
1333 /* spi operations */
1334 static const struct spi_driver ifx_spi_driver = {
1335         .driver = {
1336                 .name = DRVNAME,
1337                 .bus = &spi_bus_type,
1338                 .pm = &ifx_spi_pm,
1339                 .owner = THIS_MODULE},
1340         .probe = ifx_spi_spi_probe,
1341         .shutdown = ifx_spi_spi_shutdown,
1342         .remove = __devexit_p(ifx_spi_spi_remove),
1343         .suspend = ifx_spi_spi_suspend,
1344         .resume = ifx_spi_spi_resume,
1345         .id_table = ifx_id_table
1346 };
1347
1348 /**
1349  *      ifx_spi_exit    -       module exit
1350  *
1351  *      Unload the module.
1352  */
1353
1354 static void __exit ifx_spi_exit(void)
1355 {
1356         /* unregister */
1357         tty_unregister_driver(tty_drv);
1358         spi_unregister_driver((void *)&ifx_spi_driver);
1359 }
1360
1361 /**
1362  *      ifx_spi_init            -       module entry point
1363  *
1364  *      Initialise the SPI and tty interfaces for the IFX SPI driver
1365  *      We need to initialize upper-edge spi driver after the tty
1366  *      driver because otherwise the spi probe will race
1367  */
1368
1369 static int __init ifx_spi_init(void)
1370 {
1371         int result;
1372
1373         tty_drv = alloc_tty_driver(1);
1374         if (!tty_drv) {
1375                 pr_err("%s: alloc_tty_driver failed", DRVNAME);
1376                 return -ENOMEM;
1377         }
1378
1379         tty_drv->magic = TTY_DRIVER_MAGIC;
1380         tty_drv->owner = THIS_MODULE;
1381         tty_drv->driver_name = DRVNAME;
1382         tty_drv->name = TTYNAME;
1383         tty_drv->minor_start = IFX_SPI_TTY_ID;
1384         tty_drv->num = 1;
1385         tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1386         tty_drv->subtype = SERIAL_TYPE_NORMAL;
1387         tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1388         tty_drv->init_termios = tty_std_termios;
1389
1390         tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1391
1392         result = tty_register_driver(tty_drv);
1393         if (result) {
1394                 pr_err("%s: tty_register_driver failed(%d)",
1395                         DRVNAME, result);
1396                 put_tty_driver(tty_drv);
1397                 return result;
1398         }
1399
1400         result = spi_register_driver((void *)&ifx_spi_driver);
1401         if (result) {
1402                 pr_err("%s: spi_register_driver failed(%d)",
1403                         DRVNAME, result);
1404                 tty_unregister_driver(tty_drv);
1405         }
1406         return result;
1407 }
1408
1409 module_init(ifx_spi_init);
1410 module_exit(ifx_spi_exit);
1411
1412 MODULE_AUTHOR("Intel");
1413 MODULE_DESCRIPTION("IFX6x60 spi driver");
1414 MODULE_LICENSE("GPL");
1415 MODULE_INFO(Version, "0.1-IFX6x60");