tty: Drop tty_mutex before tty reopen
[firefly-linux-kernel-4.4.55.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156
157 /**
158  *      free_tty_struct         -       free a disused tty
159  *      @tty: tty struct to free
160  *
161  *      Free the write buffers, tty queue and tty memory itself.
162  *
163  *      Locking: none. Must be called after tty is definitely unused
164  */
165
166 void free_tty_struct(struct tty_struct *tty)
167 {
168         if (!tty)
169                 return;
170         if (tty->dev)
171                 put_device(tty->dev);
172         kfree(tty->write_buf);
173         tty->magic = 0xDEADDEAD;
174         kfree(tty);
175 }
176
177 static inline struct tty_struct *file_tty(struct file *file)
178 {
179         return ((struct tty_file_private *)file->private_data)->tty;
180 }
181
182 int tty_alloc_file(struct file *file)
183 {
184         struct tty_file_private *priv;
185
186         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
187         if (!priv)
188                 return -ENOMEM;
189
190         file->private_data = priv;
191
192         return 0;
193 }
194
195 /* Associate a new file with the tty structure */
196 void tty_add_file(struct tty_struct *tty, struct file *file)
197 {
198         struct tty_file_private *priv = file->private_data;
199
200         priv->tty = tty;
201         priv->file = file;
202
203         spin_lock(&tty_files_lock);
204         list_add(&priv->list, &tty->tty_files);
205         spin_unlock(&tty_files_lock);
206 }
207
208 /**
209  * tty_free_file - free file->private_data
210  *
211  * This shall be used only for fail path handling when tty_add_file was not
212  * called yet.
213  */
214 void tty_free_file(struct file *file)
215 {
216         struct tty_file_private *priv = file->private_data;
217
218         file->private_data = NULL;
219         kfree(priv);
220 }
221
222 /* Delete file from its tty */
223 static void tty_del_file(struct file *file)
224 {
225         struct tty_file_private *priv = file->private_data;
226
227         spin_lock(&tty_files_lock);
228         list_del(&priv->list);
229         spin_unlock(&tty_files_lock);
230         tty_free_file(file);
231 }
232
233
234 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
235
236 /**
237  *      tty_name        -       return tty naming
238  *      @tty: tty structure
239  *      @buf: buffer for output
240  *
241  *      Convert a tty structure into a name. The name reflects the kernel
242  *      naming policy and if udev is in use may not reflect user space
243  *
244  *      Locking: none
245  */
246
247 char *tty_name(struct tty_struct *tty, char *buf)
248 {
249         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
250                 strcpy(buf, "NULL tty");
251         else
252                 strcpy(buf, tty->name);
253         return buf;
254 }
255
256 EXPORT_SYMBOL(tty_name);
257
258 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
259                               const char *routine)
260 {
261 #ifdef TTY_PARANOIA_CHECK
262         if (!tty) {
263                 printk(KERN_WARNING
264                         "null TTY for (%d:%d) in %s\n",
265                         imajor(inode), iminor(inode), routine);
266                 return 1;
267         }
268         if (tty->magic != TTY_MAGIC) {
269                 printk(KERN_WARNING
270                         "bad magic number for tty struct (%d:%d) in %s\n",
271                         imajor(inode), iminor(inode), routine);
272                 return 1;
273         }
274 #endif
275         return 0;
276 }
277
278 static int check_tty_count(struct tty_struct *tty, const char *routine)
279 {
280 #ifdef CHECK_TTY_COUNT
281         struct list_head *p;
282         int count = 0;
283
284         spin_lock(&tty_files_lock);
285         list_for_each(p, &tty->tty_files) {
286                 count++;
287         }
288         spin_unlock(&tty_files_lock);
289         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
290             tty->driver->subtype == PTY_TYPE_SLAVE &&
291             tty->link && tty->link->count)
292                 count++;
293         if (tty->count != count) {
294                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
295                                     "!= #fd's(%d) in %s\n",
296                        tty->name, tty->count, count, routine);
297                 return count;
298         }
299 #endif
300         return 0;
301 }
302
303 /**
304  *      get_tty_driver          -       find device of a tty
305  *      @dev_t: device identifier
306  *      @index: returns the index of the tty
307  *
308  *      This routine returns a tty driver structure, given a device number
309  *      and also passes back the index number.
310  *
311  *      Locking: caller must hold tty_mutex
312  */
313
314 static struct tty_driver *get_tty_driver(dev_t device, int *index)
315 {
316         struct tty_driver *p;
317
318         list_for_each_entry(p, &tty_drivers, tty_drivers) {
319                 dev_t base = MKDEV(p->major, p->minor_start);
320                 if (device < base || device >= base + p->num)
321                         continue;
322                 *index = device - base;
323                 return tty_driver_kref_get(p);
324         }
325         return NULL;
326 }
327
328 #ifdef CONFIG_CONSOLE_POLL
329
330 /**
331  *      tty_find_polling_driver -       find device of a polled tty
332  *      @name: name string to match
333  *      @line: pointer to resulting tty line nr
334  *
335  *      This routine returns a tty driver structure, given a name
336  *      and the condition that the tty driver is capable of polled
337  *      operation.
338  */
339 struct tty_driver *tty_find_polling_driver(char *name, int *line)
340 {
341         struct tty_driver *p, *res = NULL;
342         int tty_line = 0;
343         int len;
344         char *str, *stp;
345
346         for (str = name; *str; str++)
347                 if ((*str >= '0' && *str <= '9') || *str == ',')
348                         break;
349         if (!*str)
350                 return NULL;
351
352         len = str - name;
353         tty_line = simple_strtoul(str, &str, 10);
354
355         mutex_lock(&tty_mutex);
356         /* Search through the tty devices to look for a match */
357         list_for_each_entry(p, &tty_drivers, tty_drivers) {
358                 if (strncmp(name, p->name, len) != 0)
359                         continue;
360                 stp = str;
361                 if (*stp == ',')
362                         stp++;
363                 if (*stp == '\0')
364                         stp = NULL;
365
366                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
367                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
368                         res = tty_driver_kref_get(p);
369                         *line = tty_line;
370                         break;
371                 }
372         }
373         mutex_unlock(&tty_mutex);
374
375         return res;
376 }
377 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
378 #endif
379
380 /**
381  *      tty_check_change        -       check for POSIX terminal changes
382  *      @tty: tty to check
383  *
384  *      If we try to write to, or set the state of, a terminal and we're
385  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
386  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
387  *
388  *      Locking: ctrl_lock
389  */
390
391 int tty_check_change(struct tty_struct *tty)
392 {
393         unsigned long flags;
394         int ret = 0;
395
396         if (current->signal->tty != tty)
397                 return 0;
398
399         spin_lock_irqsave(&tty->ctrl_lock, flags);
400
401         if (!tty->pgrp) {
402                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
403                 goto out_unlock;
404         }
405         if (task_pgrp(current) == tty->pgrp)
406                 goto out_unlock;
407         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
408         if (is_ignored(SIGTTOU))
409                 goto out;
410         if (is_current_pgrp_orphaned()) {
411                 ret = -EIO;
412                 goto out;
413         }
414         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
415         set_thread_flag(TIF_SIGPENDING);
416         ret = -ERESTARTSYS;
417 out:
418         return ret;
419 out_unlock:
420         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
421         return ret;
422 }
423
424 EXPORT_SYMBOL(tty_check_change);
425
426 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
427                                 size_t count, loff_t *ppos)
428 {
429         return 0;
430 }
431
432 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
433                                  size_t count, loff_t *ppos)
434 {
435         return -EIO;
436 }
437
438 /* No kernel lock held - none needed ;) */
439 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
440 {
441         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
442 }
443
444 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
445                 unsigned long arg)
446 {
447         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
448 }
449
450 static long hung_up_tty_compat_ioctl(struct file *file,
451                                      unsigned int cmd, unsigned long arg)
452 {
453         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
454 }
455
456 static const struct file_operations tty_fops = {
457         .llseek         = no_llseek,
458         .read           = tty_read,
459         .write          = tty_write,
460         .poll           = tty_poll,
461         .unlocked_ioctl = tty_ioctl,
462         .compat_ioctl   = tty_compat_ioctl,
463         .open           = tty_open,
464         .release        = tty_release,
465         .fasync         = tty_fasync,
466 };
467
468 static const struct file_operations console_fops = {
469         .llseek         = no_llseek,
470         .read           = tty_read,
471         .write          = redirected_tty_write,
472         .poll           = tty_poll,
473         .unlocked_ioctl = tty_ioctl,
474         .compat_ioctl   = tty_compat_ioctl,
475         .open           = tty_open,
476         .release        = tty_release,
477         .fasync         = tty_fasync,
478 };
479
480 static const struct file_operations hung_up_tty_fops = {
481         .llseek         = no_llseek,
482         .read           = hung_up_tty_read,
483         .write          = hung_up_tty_write,
484         .poll           = hung_up_tty_poll,
485         .unlocked_ioctl = hung_up_tty_ioctl,
486         .compat_ioctl   = hung_up_tty_compat_ioctl,
487         .release        = tty_release,
488 };
489
490 static DEFINE_SPINLOCK(redirect_lock);
491 static struct file *redirect;
492
493
494 void proc_clear_tty(struct task_struct *p)
495 {
496         unsigned long flags;
497         struct tty_struct *tty;
498         spin_lock_irqsave(&p->sighand->siglock, flags);
499         tty = p->signal->tty;
500         p->signal->tty = NULL;
501         spin_unlock_irqrestore(&p->sighand->siglock, flags);
502         tty_kref_put(tty);
503 }
504
505 /**
506  * proc_set_tty -  set the controlling terminal
507  *
508  * Only callable by the session leader and only if it does not already have
509  * a controlling terminal.
510  *
511  * Caller must hold:  tty_lock()
512  *                    a readlock on tasklist_lock
513  *                    sighand lock
514  */
515 static void __proc_set_tty(struct tty_struct *tty)
516 {
517         unsigned long flags;
518
519         spin_lock_irqsave(&tty->ctrl_lock, flags);
520         /*
521          * The session and fg pgrp references will be non-NULL if
522          * tiocsctty() is stealing the controlling tty
523          */
524         put_pid(tty->session);
525         put_pid(tty->pgrp);
526         tty->pgrp = get_pid(task_pgrp(current));
527         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
528         tty->session = get_pid(task_session(current));
529         if (current->signal->tty) {
530                 printk(KERN_DEBUG "tty not NULL!!\n");
531                 tty_kref_put(current->signal->tty);
532         }
533         put_pid(current->signal->tty_old_pgrp);
534         current->signal->tty = tty_kref_get(tty);
535         current->signal->tty_old_pgrp = NULL;
536 }
537
538 static void proc_set_tty(struct tty_struct *tty)
539 {
540         spin_lock_irq(&current->sighand->siglock);
541         __proc_set_tty(tty);
542         spin_unlock_irq(&current->sighand->siglock);
543 }
544
545 struct tty_struct *get_current_tty(void)
546 {
547         struct tty_struct *tty;
548         unsigned long flags;
549
550         spin_lock_irqsave(&current->sighand->siglock, flags);
551         tty = tty_kref_get(current->signal->tty);
552         spin_unlock_irqrestore(&current->sighand->siglock, flags);
553         return tty;
554 }
555 EXPORT_SYMBOL_GPL(get_current_tty);
556
557 static void session_clear_tty(struct pid *session)
558 {
559         struct task_struct *p;
560         do_each_pid_task(session, PIDTYPE_SID, p) {
561                 proc_clear_tty(p);
562         } while_each_pid_task(session, PIDTYPE_SID, p);
563 }
564
565 /**
566  *      tty_wakeup      -       request more data
567  *      @tty: terminal
568  *
569  *      Internal and external helper for wakeups of tty. This function
570  *      informs the line discipline if present that the driver is ready
571  *      to receive more output data.
572  */
573
574 void tty_wakeup(struct tty_struct *tty)
575 {
576         struct tty_ldisc *ld;
577
578         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
579                 ld = tty_ldisc_ref(tty);
580                 if (ld) {
581                         if (ld->ops->write_wakeup)
582                                 ld->ops->write_wakeup(tty);
583                         tty_ldisc_deref(ld);
584                 }
585         }
586         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
587 }
588
589 EXPORT_SYMBOL_GPL(tty_wakeup);
590
591 /**
592  *      tty_signal_session_leader       - sends SIGHUP to session leader
593  *      @tty            controlling tty
594  *      @exit_session   if non-zero, signal all foreground group processes
595  *
596  *      Send SIGHUP and SIGCONT to the session leader and its process group.
597  *      Optionally, signal all processes in the foreground process group.
598  *
599  *      Returns the number of processes in the session with this tty
600  *      as their controlling terminal. This value is used to drop
601  *      tty references for those processes.
602  */
603 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
604 {
605         struct task_struct *p;
606         int refs = 0;
607         struct pid *tty_pgrp = NULL;
608
609         read_lock(&tasklist_lock);
610         if (tty->session) {
611                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
612                         spin_lock_irq(&p->sighand->siglock);
613                         if (p->signal->tty == tty) {
614                                 p->signal->tty = NULL;
615                                 /* We defer the dereferences outside fo
616                                    the tasklist lock */
617                                 refs++;
618                         }
619                         if (!p->signal->leader) {
620                                 spin_unlock_irq(&p->sighand->siglock);
621                                 continue;
622                         }
623                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
624                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
625                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
626                         spin_lock(&tty->ctrl_lock);
627                         tty_pgrp = get_pid(tty->pgrp);
628                         if (tty->pgrp)
629                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
630                         spin_unlock(&tty->ctrl_lock);
631                         spin_unlock_irq(&p->sighand->siglock);
632                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
633         }
634         read_unlock(&tasklist_lock);
635
636         if (tty_pgrp) {
637                 if (exit_session)
638                         kill_pgrp(tty_pgrp, SIGHUP, exit_session);
639                 put_pid(tty_pgrp);
640         }
641
642         return refs;
643 }
644
645 /**
646  *      __tty_hangup            -       actual handler for hangup events
647  *      @work: tty device
648  *
649  *      This can be called by a "kworker" kernel thread.  That is process
650  *      synchronous but doesn't hold any locks, so we need to make sure we
651  *      have the appropriate locks for what we're doing.
652  *
653  *      The hangup event clears any pending redirections onto the hung up
654  *      device. It ensures future writes will error and it does the needed
655  *      line discipline hangup and signal delivery. The tty object itself
656  *      remains intact.
657  *
658  *      Locking:
659  *              BTM
660  *                redirect lock for undoing redirection
661  *                file list lock for manipulating list of ttys
662  *                tty_ldiscs_lock from called functions
663  *                termios_rwsem resetting termios data
664  *                tasklist_lock to walk task list for hangup event
665  *                  ->siglock to protect ->signal/->sighand
666  */
667 static void __tty_hangup(struct tty_struct *tty, int exit_session)
668 {
669         struct file *cons_filp = NULL;
670         struct file *filp, *f = NULL;
671         struct tty_file_private *priv;
672         int    closecount = 0, n;
673         int refs;
674
675         if (!tty)
676                 return;
677
678
679         spin_lock(&redirect_lock);
680         if (redirect && file_tty(redirect) == tty) {
681                 f = redirect;
682                 redirect = NULL;
683         }
684         spin_unlock(&redirect_lock);
685
686         tty_lock(tty);
687
688         if (test_bit(TTY_HUPPED, &tty->flags)) {
689                 tty_unlock(tty);
690                 return;
691         }
692
693         /* inuse_filps is protected by the single tty lock,
694            this really needs to change if we want to flush the
695            workqueue with the lock held */
696         check_tty_count(tty, "tty_hangup");
697
698         spin_lock(&tty_files_lock);
699         /* This breaks for file handles being sent over AF_UNIX sockets ? */
700         list_for_each_entry(priv, &tty->tty_files, list) {
701                 filp = priv->file;
702                 if (filp->f_op->write == redirected_tty_write)
703                         cons_filp = filp;
704                 if (filp->f_op->write != tty_write)
705                         continue;
706                 closecount++;
707                 __tty_fasync(-1, filp, 0);      /* can't block */
708                 filp->f_op = &hung_up_tty_fops;
709         }
710         spin_unlock(&tty_files_lock);
711
712         refs = tty_signal_session_leader(tty, exit_session);
713         /* Account for the p->signal references we killed */
714         while (refs--)
715                 tty_kref_put(tty);
716
717         tty_ldisc_hangup(tty);
718
719         spin_lock_irq(&tty->ctrl_lock);
720         clear_bit(TTY_THROTTLED, &tty->flags);
721         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
722         put_pid(tty->session);
723         put_pid(tty->pgrp);
724         tty->session = NULL;
725         tty->pgrp = NULL;
726         tty->ctrl_status = 0;
727         spin_unlock_irq(&tty->ctrl_lock);
728
729         /*
730          * If one of the devices matches a console pointer, we
731          * cannot just call hangup() because that will cause
732          * tty->count and state->count to go out of sync.
733          * So we just call close() the right number of times.
734          */
735         if (cons_filp) {
736                 if (tty->ops->close)
737                         for (n = 0; n < closecount; n++)
738                                 tty->ops->close(tty, cons_filp);
739         } else if (tty->ops->hangup)
740                 tty->ops->hangup(tty);
741         /*
742          * We don't want to have driver/ldisc interactions beyond
743          * the ones we did here. The driver layer expects no
744          * calls after ->hangup() from the ldisc side. However we
745          * can't yet guarantee all that.
746          */
747         set_bit(TTY_HUPPED, &tty->flags);
748         tty_unlock(tty);
749
750         if (f)
751                 fput(f);
752 }
753
754 static void do_tty_hangup(struct work_struct *work)
755 {
756         struct tty_struct *tty =
757                 container_of(work, struct tty_struct, hangup_work);
758
759         __tty_hangup(tty, 0);
760 }
761
762 /**
763  *      tty_hangup              -       trigger a hangup event
764  *      @tty: tty to hangup
765  *
766  *      A carrier loss (virtual or otherwise) has occurred on this like
767  *      schedule a hangup sequence to run after this event.
768  */
769
770 void tty_hangup(struct tty_struct *tty)
771 {
772 #ifdef TTY_DEBUG_HANGUP
773         char    buf[64];
774         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
775 #endif
776         schedule_work(&tty->hangup_work);
777 }
778
779 EXPORT_SYMBOL(tty_hangup);
780
781 /**
782  *      tty_vhangup             -       process vhangup
783  *      @tty: tty to hangup
784  *
785  *      The user has asked via system call for the terminal to be hung up.
786  *      We do this synchronously so that when the syscall returns the process
787  *      is complete. That guarantee is necessary for security reasons.
788  */
789
790 void tty_vhangup(struct tty_struct *tty)
791 {
792 #ifdef TTY_DEBUG_HANGUP
793         char    buf[64];
794
795         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
796 #endif
797         __tty_hangup(tty, 0);
798 }
799
800 EXPORT_SYMBOL(tty_vhangup);
801
802
803 /**
804  *      tty_vhangup_self        -       process vhangup for own ctty
805  *
806  *      Perform a vhangup on the current controlling tty
807  */
808
809 void tty_vhangup_self(void)
810 {
811         struct tty_struct *tty;
812
813         tty = get_current_tty();
814         if (tty) {
815                 tty_vhangup(tty);
816                 tty_kref_put(tty);
817         }
818 }
819
820 /**
821  *      tty_vhangup_session             -       hangup session leader exit
822  *      @tty: tty to hangup
823  *
824  *      The session leader is exiting and hanging up its controlling terminal.
825  *      Every process in the foreground process group is signalled SIGHUP.
826  *
827  *      We do this synchronously so that when the syscall returns the process
828  *      is complete. That guarantee is necessary for security reasons.
829  */
830
831 static void tty_vhangup_session(struct tty_struct *tty)
832 {
833 #ifdef TTY_DEBUG_HANGUP
834         char    buf[64];
835
836         printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
837 #endif
838         __tty_hangup(tty, 1);
839 }
840
841 /**
842  *      tty_hung_up_p           -       was tty hung up
843  *      @filp: file pointer of tty
844  *
845  *      Return true if the tty has been subject to a vhangup or a carrier
846  *      loss
847  */
848
849 int tty_hung_up_p(struct file *filp)
850 {
851         return (filp->f_op == &hung_up_tty_fops);
852 }
853
854 EXPORT_SYMBOL(tty_hung_up_p);
855
856 /**
857  *      disassociate_ctty       -       disconnect controlling tty
858  *      @on_exit: true if exiting so need to "hang up" the session
859  *
860  *      This function is typically called only by the session leader, when
861  *      it wants to disassociate itself from its controlling tty.
862  *
863  *      It performs the following functions:
864  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
865  *      (2)  Clears the tty from being controlling the session
866  *      (3)  Clears the controlling tty for all processes in the
867  *              session group.
868  *
869  *      The argument on_exit is set to 1 if called when a process is
870  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
871  *
872  *      Locking:
873  *              BTM is taken for hysterical raisins, and held when
874  *                called from no_tty().
875  *                tty_mutex is taken to protect tty
876  *                ->siglock is taken to protect ->signal/->sighand
877  *                tasklist_lock is taken to walk process list for sessions
878  *                  ->siglock is taken to protect ->signal/->sighand
879  */
880
881 void disassociate_ctty(int on_exit)
882 {
883         struct tty_struct *tty;
884
885         if (!current->signal->leader)
886                 return;
887
888         tty = get_current_tty();
889         if (tty) {
890                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
891                         tty_vhangup_session(tty);
892                 } else {
893                         struct pid *tty_pgrp = tty_get_pgrp(tty);
894                         if (tty_pgrp) {
895                                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
896                                 if (!on_exit)
897                                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
898                                 put_pid(tty_pgrp);
899                         }
900                 }
901                 tty_kref_put(tty);
902
903         } else if (on_exit) {
904                 struct pid *old_pgrp;
905                 spin_lock_irq(&current->sighand->siglock);
906                 old_pgrp = current->signal->tty_old_pgrp;
907                 current->signal->tty_old_pgrp = NULL;
908                 spin_unlock_irq(&current->sighand->siglock);
909                 if (old_pgrp) {
910                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
911                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
912                         put_pid(old_pgrp);
913                 }
914                 return;
915         }
916
917         spin_lock_irq(&current->sighand->siglock);
918         put_pid(current->signal->tty_old_pgrp);
919         current->signal->tty_old_pgrp = NULL;
920
921         tty = tty_kref_get(current->signal->tty);
922         if (tty) {
923                 unsigned long flags;
924                 spin_lock_irqsave(&tty->ctrl_lock, flags);
925                 put_pid(tty->session);
926                 put_pid(tty->pgrp);
927                 tty->session = NULL;
928                 tty->pgrp = NULL;
929                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
930                 tty_kref_put(tty);
931         } else {
932 #ifdef TTY_DEBUG_HANGUP
933                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
934                        " = NULL", tty);
935 #endif
936         }
937
938         spin_unlock_irq(&current->sighand->siglock);
939         /* Now clear signal->tty under the lock */
940         read_lock(&tasklist_lock);
941         session_clear_tty(task_session(current));
942         read_unlock(&tasklist_lock);
943 }
944
945 /**
946  *
947  *      no_tty  - Ensure the current process does not have a controlling tty
948  */
949 void no_tty(void)
950 {
951         /* FIXME: Review locking here. The tty_lock never covered any race
952            between a new association and proc_clear_tty but possible we need
953            to protect against this anyway */
954         struct task_struct *tsk = current;
955         disassociate_ctty(0);
956         proc_clear_tty(tsk);
957 }
958
959
960 /**
961  *      stop_tty        -       propagate flow control
962  *      @tty: tty to stop
963  *
964  *      Perform flow control to the driver. May be called
965  *      on an already stopped device and will not re-call the driver
966  *      method.
967  *
968  *      This functionality is used by both the line disciplines for
969  *      halting incoming flow and by the driver. It may therefore be
970  *      called from any context, may be under the tty atomic_write_lock
971  *      but not always.
972  *
973  *      Locking:
974  *              flow_lock
975  */
976
977 void __stop_tty(struct tty_struct *tty)
978 {
979         if (tty->stopped)
980                 return;
981         tty->stopped = 1;
982         if (tty->ops->stop)
983                 (tty->ops->stop)(tty);
984 }
985
986 void stop_tty(struct tty_struct *tty)
987 {
988         unsigned long flags;
989
990         spin_lock_irqsave(&tty->flow_lock, flags);
991         __stop_tty(tty);
992         spin_unlock_irqrestore(&tty->flow_lock, flags);
993 }
994 EXPORT_SYMBOL(stop_tty);
995
996 /**
997  *      start_tty       -       propagate flow control
998  *      @tty: tty to start
999  *
1000  *      Start a tty that has been stopped if at all possible. If this
1001  *      tty was previous stopped and is now being started, the driver
1002  *      start method is invoked and the line discipline woken.
1003  *
1004  *      Locking:
1005  *              flow_lock
1006  */
1007
1008 void __start_tty(struct tty_struct *tty)
1009 {
1010         if (!tty->stopped || tty->flow_stopped)
1011                 return;
1012         tty->stopped = 0;
1013         if (tty->ops->start)
1014                 (tty->ops->start)(tty);
1015         tty_wakeup(tty);
1016 }
1017
1018 void start_tty(struct tty_struct *tty)
1019 {
1020         unsigned long flags;
1021
1022         spin_lock_irqsave(&tty->flow_lock, flags);
1023         __start_tty(tty);
1024         spin_unlock_irqrestore(&tty->flow_lock, flags);
1025 }
1026 EXPORT_SYMBOL(start_tty);
1027
1028 /* We limit tty time update visibility to every 8 seconds or so. */
1029 static void tty_update_time(struct timespec *time)
1030 {
1031         unsigned long sec = get_seconds() & ~7;
1032         if ((long)(sec - time->tv_sec) > 0)
1033                 time->tv_sec = sec;
1034 }
1035
1036 /**
1037  *      tty_read        -       read method for tty device files
1038  *      @file: pointer to tty file
1039  *      @buf: user buffer
1040  *      @count: size of user buffer
1041  *      @ppos: unused
1042  *
1043  *      Perform the read system call function on this terminal device. Checks
1044  *      for hung up devices before calling the line discipline method.
1045  *
1046  *      Locking:
1047  *              Locks the line discipline internally while needed. Multiple
1048  *      read calls may be outstanding in parallel.
1049  */
1050
1051 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1052                         loff_t *ppos)
1053 {
1054         int i;
1055         struct inode *inode = file_inode(file);
1056         struct tty_struct *tty = file_tty(file);
1057         struct tty_ldisc *ld;
1058
1059         if (tty_paranoia_check(tty, inode, "tty_read"))
1060                 return -EIO;
1061         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1062                 return -EIO;
1063
1064         /* We want to wait for the line discipline to sort out in this
1065            situation */
1066         ld = tty_ldisc_ref_wait(tty);
1067         if (ld->ops->read)
1068                 i = (ld->ops->read)(tty, file, buf, count);
1069         else
1070                 i = -EIO;
1071         tty_ldisc_deref(ld);
1072
1073         if (i > 0)
1074                 tty_update_time(&inode->i_atime);
1075
1076         return i;
1077 }
1078
1079 static void tty_write_unlock(struct tty_struct *tty)
1080 {
1081         mutex_unlock(&tty->atomic_write_lock);
1082         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1083 }
1084
1085 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1086 {
1087         if (!mutex_trylock(&tty->atomic_write_lock)) {
1088                 if (ndelay)
1089                         return -EAGAIN;
1090                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1091                         return -ERESTARTSYS;
1092         }
1093         return 0;
1094 }
1095
1096 /*
1097  * Split writes up in sane blocksizes to avoid
1098  * denial-of-service type attacks
1099  */
1100 static inline ssize_t do_tty_write(
1101         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1102         struct tty_struct *tty,
1103         struct file *file,
1104         const char __user *buf,
1105         size_t count)
1106 {
1107         ssize_t ret, written = 0;
1108         unsigned int chunk;
1109
1110         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1111         if (ret < 0)
1112                 return ret;
1113
1114         /*
1115          * We chunk up writes into a temporary buffer. This
1116          * simplifies low-level drivers immensely, since they
1117          * don't have locking issues and user mode accesses.
1118          *
1119          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1120          * big chunk-size..
1121          *
1122          * The default chunk-size is 2kB, because the NTTY
1123          * layer has problems with bigger chunks. It will
1124          * claim to be able to handle more characters than
1125          * it actually does.
1126          *
1127          * FIXME: This can probably go away now except that 64K chunks
1128          * are too likely to fail unless switched to vmalloc...
1129          */
1130         chunk = 2048;
1131         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1132                 chunk = 65536;
1133         if (count < chunk)
1134                 chunk = count;
1135
1136         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1137         if (tty->write_cnt < chunk) {
1138                 unsigned char *buf_chunk;
1139
1140                 if (chunk < 1024)
1141                         chunk = 1024;
1142
1143                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1144                 if (!buf_chunk) {
1145                         ret = -ENOMEM;
1146                         goto out;
1147                 }
1148                 kfree(tty->write_buf);
1149                 tty->write_cnt = chunk;
1150                 tty->write_buf = buf_chunk;
1151         }
1152
1153         /* Do the write .. */
1154         for (;;) {
1155                 size_t size = count;
1156                 if (size > chunk)
1157                         size = chunk;
1158                 ret = -EFAULT;
1159                 if (copy_from_user(tty->write_buf, buf, size))
1160                         break;
1161                 ret = write(tty, file, tty->write_buf, size);
1162                 if (ret <= 0)
1163                         break;
1164                 written += ret;
1165                 buf += ret;
1166                 count -= ret;
1167                 if (!count)
1168                         break;
1169                 ret = -ERESTARTSYS;
1170                 if (signal_pending(current))
1171                         break;
1172                 cond_resched();
1173         }
1174         if (written) {
1175                 tty_update_time(&file_inode(file)->i_mtime);
1176                 ret = written;
1177         }
1178 out:
1179         tty_write_unlock(tty);
1180         return ret;
1181 }
1182
1183 /**
1184  * tty_write_message - write a message to a certain tty, not just the console.
1185  * @tty: the destination tty_struct
1186  * @msg: the message to write
1187  *
1188  * This is used for messages that need to be redirected to a specific tty.
1189  * We don't put it into the syslog queue right now maybe in the future if
1190  * really needed.
1191  *
1192  * We must still hold the BTM and test the CLOSING flag for the moment.
1193  */
1194
1195 void tty_write_message(struct tty_struct *tty, char *msg)
1196 {
1197         if (tty) {
1198                 mutex_lock(&tty->atomic_write_lock);
1199                 tty_lock(tty);
1200                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1201                         tty_unlock(tty);
1202                         tty->ops->write(tty, msg, strlen(msg));
1203                 } else
1204                         tty_unlock(tty);
1205                 tty_write_unlock(tty);
1206         }
1207         return;
1208 }
1209
1210
1211 /**
1212  *      tty_write               -       write method for tty device file
1213  *      @file: tty file pointer
1214  *      @buf: user data to write
1215  *      @count: bytes to write
1216  *      @ppos: unused
1217  *
1218  *      Write data to a tty device via the line discipline.
1219  *
1220  *      Locking:
1221  *              Locks the line discipline as required
1222  *              Writes to the tty driver are serialized by the atomic_write_lock
1223  *      and are then processed in chunks to the device. The line discipline
1224  *      write method will not be invoked in parallel for each device.
1225  */
1226
1227 static ssize_t tty_write(struct file *file, const char __user *buf,
1228                                                 size_t count, loff_t *ppos)
1229 {
1230         struct tty_struct *tty = file_tty(file);
1231         struct tty_ldisc *ld;
1232         ssize_t ret;
1233
1234         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1235                 return -EIO;
1236         if (!tty || !tty->ops->write ||
1237                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1238                         return -EIO;
1239         /* Short term debug to catch buggy drivers */
1240         if (tty->ops->write_room == NULL)
1241                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1242                         tty->driver->name);
1243         ld = tty_ldisc_ref_wait(tty);
1244         if (!ld->ops->write)
1245                 ret = -EIO;
1246         else
1247                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1248         tty_ldisc_deref(ld);
1249         return ret;
1250 }
1251
1252 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1253                                                 size_t count, loff_t *ppos)
1254 {
1255         struct file *p = NULL;
1256
1257         spin_lock(&redirect_lock);
1258         if (redirect)
1259                 p = get_file(redirect);
1260         spin_unlock(&redirect_lock);
1261
1262         if (p) {
1263                 ssize_t res;
1264                 res = vfs_write(p, buf, count, &p->f_pos);
1265                 fput(p);
1266                 return res;
1267         }
1268         return tty_write(file, buf, count, ppos);
1269 }
1270
1271 /**
1272  *      tty_send_xchar  -       send priority character
1273  *
1274  *      Send a high priority character to the tty even if stopped
1275  *
1276  *      Locking: none for xchar method, write ordering for write method.
1277  */
1278
1279 int tty_send_xchar(struct tty_struct *tty, char ch)
1280 {
1281         int     was_stopped = tty->stopped;
1282
1283         if (tty->ops->send_xchar) {
1284                 tty->ops->send_xchar(tty, ch);
1285                 return 0;
1286         }
1287
1288         if (tty_write_lock(tty, 0) < 0)
1289                 return -ERESTARTSYS;
1290
1291         if (was_stopped)
1292                 start_tty(tty);
1293         tty->ops->write(tty, &ch, 1);
1294         if (was_stopped)
1295                 stop_tty(tty);
1296         tty_write_unlock(tty);
1297         return 0;
1298 }
1299
1300 static char ptychar[] = "pqrstuvwxyzabcde";
1301
1302 /**
1303  *      pty_line_name   -       generate name for a pty
1304  *      @driver: the tty driver in use
1305  *      @index: the minor number
1306  *      @p: output buffer of at least 6 bytes
1307  *
1308  *      Generate a name from a driver reference and write it to the output
1309  *      buffer.
1310  *
1311  *      Locking: None
1312  */
1313 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1314 {
1315         int i = index + driver->name_base;
1316         /* ->name is initialized to "ttyp", but "tty" is expected */
1317         sprintf(p, "%s%c%x",
1318                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1319                 ptychar[i >> 4 & 0xf], i & 0xf);
1320 }
1321
1322 /**
1323  *      tty_line_name   -       generate name for a tty
1324  *      @driver: the tty driver in use
1325  *      @index: the minor number
1326  *      @p: output buffer of at least 7 bytes
1327  *
1328  *      Generate a name from a driver reference and write it to the output
1329  *      buffer.
1330  *
1331  *      Locking: None
1332  */
1333 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1334 {
1335         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1336                 return sprintf(p, "%s", driver->name);
1337         else
1338                 return sprintf(p, "%s%d", driver->name,
1339                                index + driver->name_base);
1340 }
1341
1342 /**
1343  *      tty_driver_lookup_tty() - find an existing tty, if any
1344  *      @driver: the driver for the tty
1345  *      @idx:    the minor number
1346  *
1347  *      Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1348  *      driver lookup() method returns an error.
1349  *
1350  *      Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1351  */
1352 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1353                 struct inode *inode, int idx)
1354 {
1355         struct tty_struct *tty;
1356
1357         if (driver->ops->lookup)
1358                 tty = driver->ops->lookup(driver, inode, idx);
1359         else
1360                 tty = driver->ttys[idx];
1361
1362         if (!IS_ERR(tty))
1363                 tty_kref_get(tty);
1364         return tty;
1365 }
1366
1367 /**
1368  *      tty_init_termios        -  helper for termios setup
1369  *      @tty: the tty to set up
1370  *
1371  *      Initialise the termios structures for this tty. Thus runs under
1372  *      the tty_mutex currently so we can be relaxed about ordering.
1373  */
1374
1375 int tty_init_termios(struct tty_struct *tty)
1376 {
1377         struct ktermios *tp;
1378         int idx = tty->index;
1379
1380         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1381                 tty->termios = tty->driver->init_termios;
1382         else {
1383                 /* Check for lazy saved data */
1384                 tp = tty->driver->termios[idx];
1385                 if (tp != NULL)
1386                         tty->termios = *tp;
1387                 else
1388                         tty->termios = tty->driver->init_termios;
1389         }
1390         /* Compatibility until drivers always set this */
1391         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1392         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1393         return 0;
1394 }
1395 EXPORT_SYMBOL_GPL(tty_init_termios);
1396
1397 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1398 {
1399         int ret = tty_init_termios(tty);
1400         if (ret)
1401                 return ret;
1402
1403         tty_driver_kref_get(driver);
1404         tty->count++;
1405         driver->ttys[tty->index] = tty;
1406         return 0;
1407 }
1408 EXPORT_SYMBOL_GPL(tty_standard_install);
1409
1410 /**
1411  *      tty_driver_install_tty() - install a tty entry in the driver
1412  *      @driver: the driver for the tty
1413  *      @tty: the tty
1414  *
1415  *      Install a tty object into the driver tables. The tty->index field
1416  *      will be set by the time this is called. This method is responsible
1417  *      for ensuring any need additional structures are allocated and
1418  *      configured.
1419  *
1420  *      Locking: tty_mutex for now
1421  */
1422 static int tty_driver_install_tty(struct tty_driver *driver,
1423                                                 struct tty_struct *tty)
1424 {
1425         return driver->ops->install ? driver->ops->install(driver, tty) :
1426                 tty_standard_install(driver, tty);
1427 }
1428
1429 /**
1430  *      tty_driver_remove_tty() - remove a tty from the driver tables
1431  *      @driver: the driver for the tty
1432  *      @idx:    the minor number
1433  *
1434  *      Remvoe a tty object from the driver tables. The tty->index field
1435  *      will be set by the time this is called.
1436  *
1437  *      Locking: tty_mutex for now
1438  */
1439 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1440 {
1441         if (driver->ops->remove)
1442                 driver->ops->remove(driver, tty);
1443         else
1444                 driver->ttys[tty->index] = NULL;
1445 }
1446
1447 /*
1448  *      tty_reopen()    - fast re-open of an open tty
1449  *      @tty    - the tty to open
1450  *
1451  *      Return 0 on success, -errno on error.
1452  *      Re-opens on master ptys are not allowed and return -EIO.
1453  *
1454  *      Locking: Caller must hold tty_lock
1455  */
1456 static int tty_reopen(struct tty_struct *tty)
1457 {
1458         struct tty_driver *driver = tty->driver;
1459
1460         if (!tty->count)
1461                 return -EIO;
1462
1463         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1464             driver->subtype == PTY_TYPE_MASTER)
1465                 return -EIO;
1466
1467         tty->count++;
1468
1469         WARN_ON(!tty->ldisc);
1470
1471         return 0;
1472 }
1473
1474 /**
1475  *      tty_init_dev            -       initialise a tty device
1476  *      @driver: tty driver we are opening a device on
1477  *      @idx: device index
1478  *      @ret_tty: returned tty structure
1479  *
1480  *      Prepare a tty device. This may not be a "new" clean device but
1481  *      could also be an active device. The pty drivers require special
1482  *      handling because of this.
1483  *
1484  *      Locking:
1485  *              The function is called under the tty_mutex, which
1486  *      protects us from the tty struct or driver itself going away.
1487  *
1488  *      On exit the tty device has the line discipline attached and
1489  *      a reference count of 1. If a pair was created for pty/tty use
1490  *      and the other was a pty master then it too has a reference count of 1.
1491  *
1492  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1493  * failed open.  The new code protects the open with a mutex, so it's
1494  * really quite straightforward.  The mutex locking can probably be
1495  * relaxed for the (most common) case of reopening a tty.
1496  */
1497
1498 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1499 {
1500         struct tty_struct *tty;
1501         int retval;
1502
1503         /*
1504          * First time open is complex, especially for PTY devices.
1505          * This code guarantees that either everything succeeds and the
1506          * TTY is ready for operation, or else the table slots are vacated
1507          * and the allocated memory released.  (Except that the termios
1508          * and locked termios may be retained.)
1509          */
1510
1511         if (!try_module_get(driver->owner))
1512                 return ERR_PTR(-ENODEV);
1513
1514         tty = alloc_tty_struct(driver, idx);
1515         if (!tty) {
1516                 retval = -ENOMEM;
1517                 goto err_module_put;
1518         }
1519
1520         tty_lock(tty);
1521         retval = tty_driver_install_tty(driver, tty);
1522         if (retval < 0)
1523                 goto err_deinit_tty;
1524
1525         if (!tty->port)
1526                 tty->port = driver->ports[idx];
1527
1528         WARN_RATELIMIT(!tty->port,
1529                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1530                         __func__, tty->driver->name);
1531
1532         tty->port->itty = tty;
1533
1534         /*
1535          * Structures all installed ... call the ldisc open routines.
1536          * If we fail here just call release_tty to clean up.  No need
1537          * to decrement the use counts, as release_tty doesn't care.
1538          */
1539         retval = tty_ldisc_setup(tty, tty->link);
1540         if (retval)
1541                 goto err_release_tty;
1542         /* Return the tty locked so that it cannot vanish under the caller */
1543         return tty;
1544
1545 err_deinit_tty:
1546         tty_unlock(tty);
1547         deinitialize_tty_struct(tty);
1548         free_tty_struct(tty);
1549 err_module_put:
1550         module_put(driver->owner);
1551         return ERR_PTR(retval);
1552
1553         /* call the tty release_tty routine to clean out this slot */
1554 err_release_tty:
1555         tty_unlock(tty);
1556         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1557                                  "clearing slot %d\n", idx);
1558         release_tty(tty, idx);
1559         return ERR_PTR(retval);
1560 }
1561
1562 void tty_free_termios(struct tty_struct *tty)
1563 {
1564         struct ktermios *tp;
1565         int idx = tty->index;
1566
1567         /* If the port is going to reset then it has no termios to save */
1568         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1569                 return;
1570
1571         /* Stash the termios data */
1572         tp = tty->driver->termios[idx];
1573         if (tp == NULL) {
1574                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1575                 if (tp == NULL) {
1576                         pr_warn("tty: no memory to save termios state.\n");
1577                         return;
1578                 }
1579                 tty->driver->termios[idx] = tp;
1580         }
1581         *tp = tty->termios;
1582 }
1583 EXPORT_SYMBOL(tty_free_termios);
1584
1585 /**
1586  *      tty_flush_works         -       flush all works of a tty
1587  *      @tty: tty device to flush works for
1588  *
1589  *      Sync flush all works belonging to @tty.
1590  */
1591 static void tty_flush_works(struct tty_struct *tty)
1592 {
1593         flush_work(&tty->SAK_work);
1594         flush_work(&tty->hangup_work);
1595 }
1596
1597 /**
1598  *      release_one_tty         -       release tty structure memory
1599  *      @kref: kref of tty we are obliterating
1600  *
1601  *      Releases memory associated with a tty structure, and clears out the
1602  *      driver table slots. This function is called when a device is no longer
1603  *      in use. It also gets called when setup of a device fails.
1604  *
1605  *      Locking:
1606  *              takes the file list lock internally when working on the list
1607  *      of ttys that the driver keeps.
1608  *
1609  *      This method gets called from a work queue so that the driver private
1610  *      cleanup ops can sleep (needed for USB at least)
1611  */
1612 static void release_one_tty(struct work_struct *work)
1613 {
1614         struct tty_struct *tty =
1615                 container_of(work, struct tty_struct, hangup_work);
1616         struct tty_driver *driver = tty->driver;
1617         struct module *owner = driver->owner;
1618
1619         if (tty->ops->cleanup)
1620                 tty->ops->cleanup(tty);
1621
1622         tty->magic = 0;
1623         tty_driver_kref_put(driver);
1624         module_put(owner);
1625
1626         spin_lock(&tty_files_lock);
1627         list_del_init(&tty->tty_files);
1628         spin_unlock(&tty_files_lock);
1629
1630         put_pid(tty->pgrp);
1631         put_pid(tty->session);
1632         free_tty_struct(tty);
1633 }
1634
1635 static void queue_release_one_tty(struct kref *kref)
1636 {
1637         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1638
1639         /* The hangup queue is now free so we can reuse it rather than
1640            waste a chunk of memory for each port */
1641         INIT_WORK(&tty->hangup_work, release_one_tty);
1642         schedule_work(&tty->hangup_work);
1643 }
1644
1645 /**
1646  *      tty_kref_put            -       release a tty kref
1647  *      @tty: tty device
1648  *
1649  *      Release a reference to a tty device and if need be let the kref
1650  *      layer destruct the object for us
1651  */
1652
1653 void tty_kref_put(struct tty_struct *tty)
1654 {
1655         if (tty)
1656                 kref_put(&tty->kref, queue_release_one_tty);
1657 }
1658 EXPORT_SYMBOL(tty_kref_put);
1659
1660 /**
1661  *      release_tty             -       release tty structure memory
1662  *
1663  *      Release both @tty and a possible linked partner (think pty pair),
1664  *      and decrement the refcount of the backing module.
1665  *
1666  *      Locking:
1667  *              tty_mutex
1668  *              takes the file list lock internally when working on the list
1669  *      of ttys that the driver keeps.
1670  *
1671  */
1672 static void release_tty(struct tty_struct *tty, int idx)
1673 {
1674         /* This should always be true but check for the moment */
1675         WARN_ON(tty->index != idx);
1676         WARN_ON(!mutex_is_locked(&tty_mutex));
1677         if (tty->ops->shutdown)
1678                 tty->ops->shutdown(tty);
1679         tty_free_termios(tty);
1680         tty_driver_remove_tty(tty->driver, tty);
1681         tty->port->itty = NULL;
1682         if (tty->link)
1683                 tty->link->port->itty = NULL;
1684         cancel_work_sync(&tty->port->buf.work);
1685
1686         if (tty->link)
1687                 tty_kref_put(tty->link);
1688         tty_kref_put(tty);
1689 }
1690
1691 /**
1692  *      tty_release_checks - check a tty before real release
1693  *      @tty: tty to check
1694  *      @o_tty: link of @tty (if any)
1695  *      @idx: index of the tty
1696  *
1697  *      Performs some paranoid checking before true release of the @tty.
1698  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1699  */
1700 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1701                 int idx)
1702 {
1703 #ifdef TTY_PARANOIA_CHECK
1704         if (idx < 0 || idx >= tty->driver->num) {
1705                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1706                                 __func__, tty->name);
1707                 return -1;
1708         }
1709
1710         /* not much to check for devpts */
1711         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1712                 return 0;
1713
1714         if (tty != tty->driver->ttys[idx]) {
1715                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1716                                 __func__, idx, tty->name);
1717                 return -1;
1718         }
1719         if (tty->driver->other) {
1720                 if (o_tty != tty->driver->other->ttys[idx]) {
1721                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1722                                         __func__, idx, tty->name);
1723                         return -1;
1724                 }
1725                 if (o_tty->link != tty) {
1726                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1727                         return -1;
1728                 }
1729         }
1730 #endif
1731         return 0;
1732 }
1733
1734 /**
1735  *      tty_release             -       vfs callback for close
1736  *      @inode: inode of tty
1737  *      @filp: file pointer for handle to tty
1738  *
1739  *      Called the last time each file handle is closed that references
1740  *      this tty. There may however be several such references.
1741  *
1742  *      Locking:
1743  *              Takes bkl. See tty_release_dev
1744  *
1745  * Even releasing the tty structures is a tricky business.. We have
1746  * to be very careful that the structures are all released at the
1747  * same time, as interrupts might otherwise get the wrong pointers.
1748  *
1749  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1750  * lead to double frees or releasing memory still in use.
1751  */
1752
1753 int tty_release(struct inode *inode, struct file *filp)
1754 {
1755         struct tty_struct *tty = file_tty(filp);
1756         struct tty_struct *o_tty;
1757         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1758         int     idx;
1759         char    buf[64];
1760
1761         if (tty_paranoia_check(tty, inode, __func__))
1762                 return 0;
1763
1764         tty_lock(tty);
1765         check_tty_count(tty, __func__);
1766
1767         __tty_fasync(-1, filp, 0);
1768
1769         idx = tty->index;
1770         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1771                       tty->driver->subtype == PTY_TYPE_MASTER);
1772         /* Review: parallel close */
1773         o_tty = tty->link;
1774
1775         if (tty_release_checks(tty, o_tty, idx)) {
1776                 tty_unlock(tty);
1777                 return 0;
1778         }
1779
1780 #ifdef TTY_DEBUG_HANGUP
1781         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1782                         tty_name(tty, buf), tty->count);
1783 #endif
1784
1785         if (tty->ops->close)
1786                 tty->ops->close(tty, filp);
1787
1788         tty_unlock(tty);
1789         /*
1790          * Sanity check: if tty->count is going to zero, there shouldn't be
1791          * any waiters on tty->read_wait or tty->write_wait.  We test the
1792          * wait queues and kick everyone out _before_ actually starting to
1793          * close.  This ensures that we won't block while releasing the tty
1794          * structure.
1795          *
1796          * The test for the o_tty closing is necessary, since the master and
1797          * slave sides may close in any order.  If the slave side closes out
1798          * first, its count will be one, since the master side holds an open.
1799          * Thus this test wouldn't be triggered at the time the slave closes,
1800          * so we do it now.
1801          *
1802          * Note that it's possible for the tty to be opened again while we're
1803          * flushing out waiters.  By recalculating the closing flags before
1804          * each iteration we avoid any problems.
1805          */
1806         while (1) {
1807                 /* Guard against races with tty->count changes elsewhere and
1808                    opens on /dev/tty */
1809
1810                 mutex_lock(&tty_mutex);
1811                 tty_lock_pair(tty, o_tty);
1812                 tty_closing = tty->count <= 1;
1813                 o_tty_closing = o_tty &&
1814                         (o_tty->count <= (pty_master ? 1 : 0));
1815                 do_sleep = 0;
1816
1817                 if (tty_closing) {
1818                         if (waitqueue_active(&tty->read_wait)) {
1819                                 wake_up_poll(&tty->read_wait, POLLIN);
1820                                 do_sleep++;
1821                         }
1822                         if (waitqueue_active(&tty->write_wait)) {
1823                                 wake_up_poll(&tty->write_wait, POLLOUT);
1824                                 do_sleep++;
1825                         }
1826                 }
1827                 if (o_tty_closing) {
1828                         if (waitqueue_active(&o_tty->read_wait)) {
1829                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1830                                 do_sleep++;
1831                         }
1832                         if (waitqueue_active(&o_tty->write_wait)) {
1833                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1834                                 do_sleep++;
1835                         }
1836                 }
1837                 if (!do_sleep)
1838                         break;
1839
1840                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1841                                 __func__, tty_name(tty, buf));
1842                 tty_unlock_pair(tty, o_tty);
1843                 mutex_unlock(&tty_mutex);
1844                 schedule();
1845         }
1846
1847         /*
1848          * The closing flags are now consistent with the open counts on
1849          * both sides, and we've completed the last operation that could
1850          * block, so it's safe to proceed with closing.
1851          *
1852          * We must *not* drop the tty_mutex until we ensure that a further
1853          * entry into tty_open can not pick up this tty.
1854          */
1855         if (pty_master) {
1856                 if (--o_tty->count < 0) {
1857                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1858                                 __func__, o_tty->count, tty_name(o_tty, buf));
1859                         o_tty->count = 0;
1860                 }
1861         }
1862         if (--tty->count < 0) {
1863                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1864                                 __func__, tty->count, tty_name(tty, buf));
1865                 tty->count = 0;
1866         }
1867
1868         /*
1869          * We've decremented tty->count, so we need to remove this file
1870          * descriptor off the tty->tty_files list; this serves two
1871          * purposes:
1872          *  - check_tty_count sees the correct number of file descriptors
1873          *    associated with this tty.
1874          *  - do_tty_hangup no longer sees this file descriptor as
1875          *    something that needs to be handled for hangups.
1876          */
1877         tty_del_file(filp);
1878
1879         /*
1880          * Perform some housekeeping before deciding whether to return.
1881          *
1882          * Set the TTY_CLOSING flag if this was the last open.  In the
1883          * case of a pty we may have to wait around for the other side
1884          * to close, and TTY_CLOSING makes sure we can't be reopened.
1885          */
1886         if (tty_closing)
1887                 set_bit(TTY_CLOSING, &tty->flags);
1888         if (o_tty_closing)
1889                 set_bit(TTY_CLOSING, &o_tty->flags);
1890
1891         /*
1892          * If _either_ side is closing, make sure there aren't any
1893          * processes that still think tty or o_tty is their controlling
1894          * tty.
1895          */
1896         if (tty_closing || o_tty_closing) {
1897                 read_lock(&tasklist_lock);
1898                 session_clear_tty(tty->session);
1899                 if (o_tty)
1900                         session_clear_tty(o_tty->session);
1901                 read_unlock(&tasklist_lock);
1902         }
1903
1904         mutex_unlock(&tty_mutex);
1905         tty_unlock_pair(tty, o_tty);
1906         /* At this point the TTY_CLOSING flag should ensure a dead tty
1907            cannot be re-opened by a racing opener */
1908
1909         /* check whether both sides are closing ... */
1910         if (!tty_closing || (o_tty && !o_tty_closing))
1911                 return 0;
1912
1913 #ifdef TTY_DEBUG_HANGUP
1914         printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1915 #endif
1916         /*
1917          * Ask the line discipline code to release its structures
1918          */
1919         tty_ldisc_release(tty, o_tty);
1920
1921         /* Wait for pending work before tty destruction commmences */
1922         tty_flush_works(tty);
1923         if (o_tty)
1924                 tty_flush_works(o_tty);
1925
1926 #ifdef TTY_DEBUG_HANGUP
1927         printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1928 #endif
1929         /*
1930          * The release_tty function takes care of the details of clearing
1931          * the slots and preserving the termios structure. The tty_unlock_pair
1932          * should be safe as we keep a kref while the tty is locked (so the
1933          * unlock never unlocks a freed tty).
1934          */
1935         mutex_lock(&tty_mutex);
1936         release_tty(tty, idx);
1937         mutex_unlock(&tty_mutex);
1938
1939         return 0;
1940 }
1941
1942 /**
1943  *      tty_open_current_tty - get locked tty of current task
1944  *      @device: device number
1945  *      @filp: file pointer to tty
1946  *      @return: locked tty of the current task iff @device is /dev/tty
1947  *
1948  *      Performs a re-open of the current task's controlling tty.
1949  *
1950  *      We cannot return driver and index like for the other nodes because
1951  *      devpts will not work then. It expects inodes to be from devpts FS.
1952  */
1953 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1954 {
1955         struct tty_struct *tty;
1956         int retval;
1957
1958         if (device != MKDEV(TTYAUX_MAJOR, 0))
1959                 return NULL;
1960
1961         tty = get_current_tty();
1962         if (!tty)
1963                 return ERR_PTR(-ENXIO);
1964
1965         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1966         /* noctty = 1; */
1967         tty_lock(tty);
1968         tty_kref_put(tty);      /* safe to drop the kref now */
1969
1970         retval = tty_reopen(tty);
1971         if (retval < 0) {
1972                 tty_unlock(tty);
1973                 tty = ERR_PTR(retval);
1974         }
1975         return tty;
1976 }
1977
1978 /**
1979  *      tty_lookup_driver - lookup a tty driver for a given device file
1980  *      @device: device number
1981  *      @filp: file pointer to tty
1982  *      @noctty: set if the device should not become a controlling tty
1983  *      @index: index for the device in the @return driver
1984  *      @return: driver for this inode (with increased refcount)
1985  *
1986  *      If @return is not erroneous, the caller is responsible to decrement the
1987  *      refcount by tty_driver_kref_put.
1988  *
1989  *      Locking: tty_mutex protects get_tty_driver
1990  */
1991 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1992                 int *noctty, int *index)
1993 {
1994         struct tty_driver *driver;
1995
1996         switch (device) {
1997 #ifdef CONFIG_VT
1998         case MKDEV(TTY_MAJOR, 0): {
1999                 extern struct tty_driver *console_driver;
2000                 driver = tty_driver_kref_get(console_driver);
2001                 *index = fg_console;
2002                 *noctty = 1;
2003                 break;
2004         }
2005 #endif
2006         case MKDEV(TTYAUX_MAJOR, 1): {
2007                 struct tty_driver *console_driver = console_device(index);
2008                 if (console_driver) {
2009                         driver = tty_driver_kref_get(console_driver);
2010                         if (driver) {
2011                                 /* Don't let /dev/console block */
2012                                 filp->f_flags |= O_NONBLOCK;
2013                                 *noctty = 1;
2014                                 break;
2015                         }
2016                 }
2017                 return ERR_PTR(-ENODEV);
2018         }
2019         default:
2020                 driver = get_tty_driver(device, index);
2021                 if (!driver)
2022                         return ERR_PTR(-ENODEV);
2023                 break;
2024         }
2025         return driver;
2026 }
2027
2028 /**
2029  *      tty_open                -       open a tty device
2030  *      @inode: inode of device file
2031  *      @filp: file pointer to tty
2032  *
2033  *      tty_open and tty_release keep up the tty count that contains the
2034  *      number of opens done on a tty. We cannot use the inode-count, as
2035  *      different inodes might point to the same tty.
2036  *
2037  *      Open-counting is needed for pty masters, as well as for keeping
2038  *      track of serial lines: DTR is dropped when the last close happens.
2039  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
2040  *
2041  *      The termios state of a pty is reset on first open so that
2042  *      settings don't persist across reuse.
2043  *
2044  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2045  *               tty->count should protect the rest.
2046  *               ->siglock protects ->signal/->sighand
2047  *
2048  *      Note: the tty_unlock/lock cases without a ref are only safe due to
2049  *      tty_mutex
2050  */
2051
2052 static int tty_open(struct inode *inode, struct file *filp)
2053 {
2054         struct tty_struct *tty;
2055         int noctty, retval;
2056         struct tty_driver *driver = NULL;
2057         int index;
2058         dev_t device = inode->i_rdev;
2059         unsigned saved_flags = filp->f_flags;
2060
2061         nonseekable_open(inode, filp);
2062
2063 retry_open:
2064         retval = tty_alloc_file(filp);
2065         if (retval)
2066                 return -ENOMEM;
2067
2068         noctty = filp->f_flags & O_NOCTTY;
2069         index  = -1;
2070         retval = 0;
2071
2072         tty = tty_open_current_tty(device, filp);
2073         if (!tty) {
2074                 mutex_lock(&tty_mutex);
2075                 driver = tty_lookup_driver(device, filp, &noctty, &index);
2076                 if (IS_ERR(driver)) {
2077                         retval = PTR_ERR(driver);
2078                         goto err_unlock;
2079                 }
2080
2081                 /* check whether we're reopening an existing tty */
2082                 tty = tty_driver_lookup_tty(driver, inode, index);
2083                 if (IS_ERR(tty)) {
2084                         retval = PTR_ERR(tty);
2085                         goto err_unlock;
2086                 }
2087
2088                 if (tty) {
2089                         mutex_unlock(&tty_mutex);
2090                         tty_lock(tty);
2091                         /* safe to drop the kref from tty_driver_lookup_tty() */
2092                         tty_kref_put(tty);
2093                         retval = tty_reopen(tty);
2094                         if (retval < 0) {
2095                                 tty_unlock(tty);
2096                                 tty = ERR_PTR(retval);
2097                         }
2098                 } else { /* Returns with the tty_lock held for now */
2099                         tty = tty_init_dev(driver, index);
2100                         mutex_unlock(&tty_mutex);
2101                 }
2102
2103                 tty_driver_kref_put(driver);
2104         }
2105
2106         if (IS_ERR(tty)) {
2107                 retval = PTR_ERR(tty);
2108                 goto err_file;
2109         }
2110
2111         tty_add_file(tty, filp);
2112
2113         check_tty_count(tty, __func__);
2114         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2115             tty->driver->subtype == PTY_TYPE_MASTER)
2116                 noctty = 1;
2117 #ifdef TTY_DEBUG_HANGUP
2118         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2119 #endif
2120         if (tty->ops->open)
2121                 retval = tty->ops->open(tty, filp);
2122         else
2123                 retval = -ENODEV;
2124         filp->f_flags = saved_flags;
2125
2126         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2127                                                 !capable(CAP_SYS_ADMIN))
2128                 retval = -EBUSY;
2129
2130         if (retval) {
2131 #ifdef TTY_DEBUG_HANGUP
2132                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2133                                 retval, tty->name);
2134 #endif
2135                 tty_unlock(tty); /* need to call tty_release without BTM */
2136                 tty_release(inode, filp);
2137                 if (retval != -ERESTARTSYS)
2138                         return retval;
2139
2140                 if (signal_pending(current))
2141                         return retval;
2142
2143                 schedule();
2144                 /*
2145                  * Need to reset f_op in case a hangup happened.
2146                  */
2147                 if (filp->f_op == &hung_up_tty_fops)
2148                         filp->f_op = &tty_fops;
2149                 goto retry_open;
2150         }
2151         clear_bit(TTY_HUPPED, &tty->flags);
2152
2153
2154         read_lock(&tasklist_lock);
2155         spin_lock_irq(&current->sighand->siglock);
2156         if (!noctty &&
2157             current->signal->leader &&
2158             !current->signal->tty &&
2159             tty->session == NULL)
2160                 __proc_set_tty(tty);
2161         spin_unlock_irq(&current->sighand->siglock);
2162         read_unlock(&tasklist_lock);
2163         tty_unlock(tty);
2164         return 0;
2165 err_unlock:
2166         mutex_unlock(&tty_mutex);
2167         /* after locks to avoid deadlock */
2168         if (!IS_ERR_OR_NULL(driver))
2169                 tty_driver_kref_put(driver);
2170 err_file:
2171         tty_free_file(filp);
2172         return retval;
2173 }
2174
2175
2176
2177 /**
2178  *      tty_poll        -       check tty status
2179  *      @filp: file being polled
2180  *      @wait: poll wait structures to update
2181  *
2182  *      Call the line discipline polling method to obtain the poll
2183  *      status of the device.
2184  *
2185  *      Locking: locks called line discipline but ldisc poll method
2186  *      may be re-entered freely by other callers.
2187  */
2188
2189 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2190 {
2191         struct tty_struct *tty = file_tty(filp);
2192         struct tty_ldisc *ld;
2193         int ret = 0;
2194
2195         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2196                 return 0;
2197
2198         ld = tty_ldisc_ref_wait(tty);
2199         if (ld->ops->poll)
2200                 ret = (ld->ops->poll)(tty, filp, wait);
2201         tty_ldisc_deref(ld);
2202         return ret;
2203 }
2204
2205 static int __tty_fasync(int fd, struct file *filp, int on)
2206 {
2207         struct tty_struct *tty = file_tty(filp);
2208         struct tty_ldisc *ldisc;
2209         unsigned long flags;
2210         int retval = 0;
2211
2212         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2213                 goto out;
2214
2215         retval = fasync_helper(fd, filp, on, &tty->fasync);
2216         if (retval <= 0)
2217                 goto out;
2218
2219         ldisc = tty_ldisc_ref(tty);
2220         if (ldisc) {
2221                 if (ldisc->ops->fasync)
2222                         ldisc->ops->fasync(tty, on);
2223                 tty_ldisc_deref(ldisc);
2224         }
2225
2226         if (on) {
2227                 enum pid_type type;
2228                 struct pid *pid;
2229
2230                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2231                 if (tty->pgrp) {
2232                         pid = tty->pgrp;
2233                         type = PIDTYPE_PGID;
2234                 } else {
2235                         pid = task_pid(current);
2236                         type = PIDTYPE_PID;
2237                 }
2238                 get_pid(pid);
2239                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2240                 __f_setown(filp, pid, type, 0);
2241                 put_pid(pid);
2242                 retval = 0;
2243         }
2244 out:
2245         return retval;
2246 }
2247
2248 static int tty_fasync(int fd, struct file *filp, int on)
2249 {
2250         struct tty_struct *tty = file_tty(filp);
2251         int retval;
2252
2253         tty_lock(tty);
2254         retval = __tty_fasync(fd, filp, on);
2255         tty_unlock(tty);
2256
2257         return retval;
2258 }
2259
2260 /**
2261  *      tiocsti                 -       fake input character
2262  *      @tty: tty to fake input into
2263  *      @p: pointer to character
2264  *
2265  *      Fake input to a tty device. Does the necessary locking and
2266  *      input management.
2267  *
2268  *      FIXME: does not honour flow control ??
2269  *
2270  *      Locking:
2271  *              Called functions take tty_ldiscs_lock
2272  *              current->signal->tty check is safe without locks
2273  *
2274  *      FIXME: may race normal receive processing
2275  */
2276
2277 static int tiocsti(struct tty_struct *tty, char __user *p)
2278 {
2279         char ch, mbz = 0;
2280         struct tty_ldisc *ld;
2281
2282         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2283                 return -EPERM;
2284         if (get_user(ch, p))
2285                 return -EFAULT;
2286         tty_audit_tiocsti(tty, ch);
2287         ld = tty_ldisc_ref_wait(tty);
2288         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2289         tty_ldisc_deref(ld);
2290         return 0;
2291 }
2292
2293 /**
2294  *      tiocgwinsz              -       implement window query ioctl
2295  *      @tty; tty
2296  *      @arg: user buffer for result
2297  *
2298  *      Copies the kernel idea of the window size into the user buffer.
2299  *
2300  *      Locking: tty->winsize_mutex is taken to ensure the winsize data
2301  *              is consistent.
2302  */
2303
2304 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2305 {
2306         int err;
2307
2308         mutex_lock(&tty->winsize_mutex);
2309         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2310         mutex_unlock(&tty->winsize_mutex);
2311
2312         return err ? -EFAULT: 0;
2313 }
2314
2315 /**
2316  *      tty_do_resize           -       resize event
2317  *      @tty: tty being resized
2318  *      @rows: rows (character)
2319  *      @cols: cols (character)
2320  *
2321  *      Update the termios variables and send the necessary signals to
2322  *      peform a terminal resize correctly
2323  */
2324
2325 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2326 {
2327         struct pid *pgrp;
2328
2329         /* Lock the tty */
2330         mutex_lock(&tty->winsize_mutex);
2331         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2332                 goto done;
2333
2334         /* Signal the foreground process group */
2335         pgrp = tty_get_pgrp(tty);
2336         if (pgrp)
2337                 kill_pgrp(pgrp, SIGWINCH, 1);
2338         put_pid(pgrp);
2339
2340         tty->winsize = *ws;
2341 done:
2342         mutex_unlock(&tty->winsize_mutex);
2343         return 0;
2344 }
2345 EXPORT_SYMBOL(tty_do_resize);
2346
2347 /**
2348  *      tiocswinsz              -       implement window size set ioctl
2349  *      @tty; tty side of tty
2350  *      @arg: user buffer for result
2351  *
2352  *      Copies the user idea of the window size to the kernel. Traditionally
2353  *      this is just advisory information but for the Linux console it
2354  *      actually has driver level meaning and triggers a VC resize.
2355  *
2356  *      Locking:
2357  *              Driver dependent. The default do_resize method takes the
2358  *      tty termios mutex and ctrl_lock. The console takes its own lock
2359  *      then calls into the default method.
2360  */
2361
2362 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2363 {
2364         struct winsize tmp_ws;
2365         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2366                 return -EFAULT;
2367
2368         if (tty->ops->resize)
2369                 return tty->ops->resize(tty, &tmp_ws);
2370         else
2371                 return tty_do_resize(tty, &tmp_ws);
2372 }
2373
2374 /**
2375  *      tioccons        -       allow admin to move logical console
2376  *      @file: the file to become console
2377  *
2378  *      Allow the administrator to move the redirected console device
2379  *
2380  *      Locking: uses redirect_lock to guard the redirect information
2381  */
2382
2383 static int tioccons(struct file *file)
2384 {
2385         if (!capable(CAP_SYS_ADMIN))
2386                 return -EPERM;
2387         if (file->f_op->write == redirected_tty_write) {
2388                 struct file *f;
2389                 spin_lock(&redirect_lock);
2390                 f = redirect;
2391                 redirect = NULL;
2392                 spin_unlock(&redirect_lock);
2393                 if (f)
2394                         fput(f);
2395                 return 0;
2396         }
2397         spin_lock(&redirect_lock);
2398         if (redirect) {
2399                 spin_unlock(&redirect_lock);
2400                 return -EBUSY;
2401         }
2402         redirect = get_file(file);
2403         spin_unlock(&redirect_lock);
2404         return 0;
2405 }
2406
2407 /**
2408  *      fionbio         -       non blocking ioctl
2409  *      @file: file to set blocking value
2410  *      @p: user parameter
2411  *
2412  *      Historical tty interfaces had a blocking control ioctl before
2413  *      the generic functionality existed. This piece of history is preserved
2414  *      in the expected tty API of posix OS's.
2415  *
2416  *      Locking: none, the open file handle ensures it won't go away.
2417  */
2418
2419 static int fionbio(struct file *file, int __user *p)
2420 {
2421         int nonblock;
2422
2423         if (get_user(nonblock, p))
2424                 return -EFAULT;
2425
2426         spin_lock(&file->f_lock);
2427         if (nonblock)
2428                 file->f_flags |= O_NONBLOCK;
2429         else
2430                 file->f_flags &= ~O_NONBLOCK;
2431         spin_unlock(&file->f_lock);
2432         return 0;
2433 }
2434
2435 /**
2436  *      tiocsctty       -       set controlling tty
2437  *      @tty: tty structure
2438  *      @arg: user argument
2439  *
2440  *      This ioctl is used to manage job control. It permits a session
2441  *      leader to set this tty as the controlling tty for the session.
2442  *
2443  *      Locking:
2444  *              Takes tty_lock() to serialize proc_set_tty() for this tty
2445  *              Takes tasklist_lock internally to walk sessions
2446  *              Takes ->siglock() when updating signal->tty
2447  */
2448
2449 static int tiocsctty(struct tty_struct *tty, int arg)
2450 {
2451         int ret = 0;
2452
2453         tty_lock(tty);
2454         read_lock(&tasklist_lock);
2455
2456         if (current->signal->leader && (task_session(current) == tty->session))
2457                 goto unlock;
2458
2459         /*
2460          * The process must be a session leader and
2461          * not have a controlling tty already.
2462          */
2463         if (!current->signal->leader || current->signal->tty) {
2464                 ret = -EPERM;
2465                 goto unlock;
2466         }
2467
2468         if (tty->session) {
2469                 /*
2470                  * This tty is already the controlling
2471                  * tty for another session group!
2472                  */
2473                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2474                         /*
2475                          * Steal it away
2476                          */
2477                         session_clear_tty(tty->session);
2478                 } else {
2479                         ret = -EPERM;
2480                         goto unlock;
2481                 }
2482         }
2483         proc_set_tty(tty);
2484 unlock:
2485         read_unlock(&tasklist_lock);
2486         tty_unlock(tty);
2487         return ret;
2488 }
2489
2490 /**
2491  *      tty_get_pgrp    -       return a ref counted pgrp pid
2492  *      @tty: tty to read
2493  *
2494  *      Returns a refcounted instance of the pid struct for the process
2495  *      group controlling the tty.
2496  */
2497
2498 struct pid *tty_get_pgrp(struct tty_struct *tty)
2499 {
2500         unsigned long flags;
2501         struct pid *pgrp;
2502
2503         spin_lock_irqsave(&tty->ctrl_lock, flags);
2504         pgrp = get_pid(tty->pgrp);
2505         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2506
2507         return pgrp;
2508 }
2509 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2510
2511 /*
2512  * This checks not only the pgrp, but falls back on the pid if no
2513  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2514  * without this...
2515  *
2516  * The caller must hold rcu lock or the tasklist lock.
2517  */
2518 static struct pid *session_of_pgrp(struct pid *pgrp)
2519 {
2520         struct task_struct *p;
2521         struct pid *sid = NULL;
2522
2523         p = pid_task(pgrp, PIDTYPE_PGID);
2524         if (p == NULL)
2525                 p = pid_task(pgrp, PIDTYPE_PID);
2526         if (p != NULL)
2527                 sid = task_session(p);
2528
2529         return sid;
2530 }
2531
2532 /**
2533  *      tiocgpgrp               -       get process group
2534  *      @tty: tty passed by user
2535  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2536  *      @p: returned pid
2537  *
2538  *      Obtain the process group of the tty. If there is no process group
2539  *      return an error.
2540  *
2541  *      Locking: none. Reference to current->signal->tty is safe.
2542  */
2543
2544 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2545 {
2546         struct pid *pid;
2547         int ret;
2548         /*
2549          * (tty == real_tty) is a cheap way of
2550          * testing if the tty is NOT a master pty.
2551          */
2552         if (tty == real_tty && current->signal->tty != real_tty)
2553                 return -ENOTTY;
2554         pid = tty_get_pgrp(real_tty);
2555         ret =  put_user(pid_vnr(pid), p);
2556         put_pid(pid);
2557         return ret;
2558 }
2559
2560 /**
2561  *      tiocspgrp               -       attempt to set process group
2562  *      @tty: tty passed by user
2563  *      @real_tty: tty side device matching tty passed by user
2564  *      @p: pid pointer
2565  *
2566  *      Set the process group of the tty to the session passed. Only
2567  *      permitted where the tty session is our session.
2568  *
2569  *      Locking: RCU, ctrl lock
2570  */
2571
2572 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2573 {
2574         struct pid *pgrp;
2575         pid_t pgrp_nr;
2576         int retval = tty_check_change(real_tty);
2577         unsigned long flags;
2578
2579         if (retval == -EIO)
2580                 return -ENOTTY;
2581         if (retval)
2582                 return retval;
2583         if (!current->signal->tty ||
2584             (current->signal->tty != real_tty) ||
2585             (real_tty->session != task_session(current)))
2586                 return -ENOTTY;
2587         if (get_user(pgrp_nr, p))
2588                 return -EFAULT;
2589         if (pgrp_nr < 0)
2590                 return -EINVAL;
2591         rcu_read_lock();
2592         pgrp = find_vpid(pgrp_nr);
2593         retval = -ESRCH;
2594         if (!pgrp)
2595                 goto out_unlock;
2596         retval = -EPERM;
2597         if (session_of_pgrp(pgrp) != task_session(current))
2598                 goto out_unlock;
2599         retval = 0;
2600         spin_lock_irqsave(&tty->ctrl_lock, flags);
2601         put_pid(real_tty->pgrp);
2602         real_tty->pgrp = get_pid(pgrp);
2603         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2604 out_unlock:
2605         rcu_read_unlock();
2606         return retval;
2607 }
2608
2609 /**
2610  *      tiocgsid                -       get session id
2611  *      @tty: tty passed by user
2612  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2613  *      @p: pointer to returned session id
2614  *
2615  *      Obtain the session id of the tty. If there is no session
2616  *      return an error.
2617  *
2618  *      Locking: none. Reference to current->signal->tty is safe.
2619  */
2620
2621 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2622 {
2623         /*
2624          * (tty == real_tty) is a cheap way of
2625          * testing if the tty is NOT a master pty.
2626         */
2627         if (tty == real_tty && current->signal->tty != real_tty)
2628                 return -ENOTTY;
2629         if (!real_tty->session)
2630                 return -ENOTTY;
2631         return put_user(pid_vnr(real_tty->session), p);
2632 }
2633
2634 /**
2635  *      tiocsetd        -       set line discipline
2636  *      @tty: tty device
2637  *      @p: pointer to user data
2638  *
2639  *      Set the line discipline according to user request.
2640  *
2641  *      Locking: see tty_set_ldisc, this function is just a helper
2642  */
2643
2644 static int tiocsetd(struct tty_struct *tty, int __user *p)
2645 {
2646         int ldisc;
2647         int ret;
2648
2649         if (get_user(ldisc, p))
2650                 return -EFAULT;
2651
2652         ret = tty_set_ldisc(tty, ldisc);
2653
2654         return ret;
2655 }
2656
2657 /**
2658  *      send_break      -       performed time break
2659  *      @tty: device to break on
2660  *      @duration: timeout in mS
2661  *
2662  *      Perform a timed break on hardware that lacks its own driver level
2663  *      timed break functionality.
2664  *
2665  *      Locking:
2666  *              atomic_write_lock serializes
2667  *
2668  */
2669
2670 static int send_break(struct tty_struct *tty, unsigned int duration)
2671 {
2672         int retval;
2673
2674         if (tty->ops->break_ctl == NULL)
2675                 return 0;
2676
2677         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2678                 retval = tty->ops->break_ctl(tty, duration);
2679         else {
2680                 /* Do the work ourselves */
2681                 if (tty_write_lock(tty, 0) < 0)
2682                         return -EINTR;
2683                 retval = tty->ops->break_ctl(tty, -1);
2684                 if (retval)
2685                         goto out;
2686                 if (!signal_pending(current))
2687                         msleep_interruptible(duration);
2688                 retval = tty->ops->break_ctl(tty, 0);
2689 out:
2690                 tty_write_unlock(tty);
2691                 if (signal_pending(current))
2692                         retval = -EINTR;
2693         }
2694         return retval;
2695 }
2696
2697 /**
2698  *      tty_tiocmget            -       get modem status
2699  *      @tty: tty device
2700  *      @file: user file pointer
2701  *      @p: pointer to result
2702  *
2703  *      Obtain the modem status bits from the tty driver if the feature
2704  *      is supported. Return -EINVAL if it is not available.
2705  *
2706  *      Locking: none (up to the driver)
2707  */
2708
2709 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2710 {
2711         int retval = -EINVAL;
2712
2713         if (tty->ops->tiocmget) {
2714                 retval = tty->ops->tiocmget(tty);
2715
2716                 if (retval >= 0)
2717                         retval = put_user(retval, p);
2718         }
2719         return retval;
2720 }
2721
2722 /**
2723  *      tty_tiocmset            -       set modem status
2724  *      @tty: tty device
2725  *      @cmd: command - clear bits, set bits or set all
2726  *      @p: pointer to desired bits
2727  *
2728  *      Set the modem status bits from the tty driver if the feature
2729  *      is supported. Return -EINVAL if it is not available.
2730  *
2731  *      Locking: none (up to the driver)
2732  */
2733
2734 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2735              unsigned __user *p)
2736 {
2737         int retval;
2738         unsigned int set, clear, val;
2739
2740         if (tty->ops->tiocmset == NULL)
2741                 return -EINVAL;
2742
2743         retval = get_user(val, p);
2744         if (retval)
2745                 return retval;
2746         set = clear = 0;
2747         switch (cmd) {
2748         case TIOCMBIS:
2749                 set = val;
2750                 break;
2751         case TIOCMBIC:
2752                 clear = val;
2753                 break;
2754         case TIOCMSET:
2755                 set = val;
2756                 clear = ~val;
2757                 break;
2758         }
2759         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2760         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2761         return tty->ops->tiocmset(tty, set, clear);
2762 }
2763
2764 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2765 {
2766         int retval = -EINVAL;
2767         struct serial_icounter_struct icount;
2768         memset(&icount, 0, sizeof(icount));
2769         if (tty->ops->get_icount)
2770                 retval = tty->ops->get_icount(tty, &icount);
2771         if (retval != 0)
2772                 return retval;
2773         if (copy_to_user(arg, &icount, sizeof(icount)))
2774                 return -EFAULT;
2775         return 0;
2776 }
2777
2778 /*
2779  * if pty, return the slave side (real_tty)
2780  * otherwise, return self
2781  */
2782 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2783 {
2784         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2785             tty->driver->subtype == PTY_TYPE_MASTER)
2786                 tty = tty->link;
2787         return tty;
2788 }
2789
2790 /*
2791  * Split this up, as gcc can choke on it otherwise..
2792  */
2793 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2794 {
2795         struct tty_struct *tty = file_tty(file);
2796         struct tty_struct *real_tty;
2797         void __user *p = (void __user *)arg;
2798         int retval;
2799         struct tty_ldisc *ld;
2800
2801         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2802                 return -EINVAL;
2803
2804         real_tty = tty_pair_get_tty(tty);
2805
2806         /*
2807          * Factor out some common prep work
2808          */
2809         switch (cmd) {
2810         case TIOCSETD:
2811         case TIOCSBRK:
2812         case TIOCCBRK:
2813         case TCSBRK:
2814         case TCSBRKP:
2815                 retval = tty_check_change(tty);
2816                 if (retval)
2817                         return retval;
2818                 if (cmd != TIOCCBRK) {
2819                         tty_wait_until_sent(tty, 0);
2820                         if (signal_pending(current))
2821                                 return -EINTR;
2822                 }
2823                 break;
2824         }
2825
2826         /*
2827          *      Now do the stuff.
2828          */
2829         switch (cmd) {
2830         case TIOCSTI:
2831                 return tiocsti(tty, p);
2832         case TIOCGWINSZ:
2833                 return tiocgwinsz(real_tty, p);
2834         case TIOCSWINSZ:
2835                 return tiocswinsz(real_tty, p);
2836         case TIOCCONS:
2837                 return real_tty != tty ? -EINVAL : tioccons(file);
2838         case FIONBIO:
2839                 return fionbio(file, p);
2840         case TIOCEXCL:
2841                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2842                 return 0;
2843         case TIOCNXCL:
2844                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2845                 return 0;
2846         case TIOCGEXCL:
2847         {
2848                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2849                 return put_user(excl, (int __user *)p);
2850         }
2851         case TIOCNOTTY:
2852                 if (current->signal->tty != tty)
2853                         return -ENOTTY;
2854                 no_tty();
2855                 return 0;
2856         case TIOCSCTTY:
2857                 return tiocsctty(tty, arg);
2858         case TIOCGPGRP:
2859                 return tiocgpgrp(tty, real_tty, p);
2860         case TIOCSPGRP:
2861                 return tiocspgrp(tty, real_tty, p);
2862         case TIOCGSID:
2863                 return tiocgsid(tty, real_tty, p);
2864         case TIOCGETD:
2865                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2866         case TIOCSETD:
2867                 return tiocsetd(tty, p);
2868         case TIOCVHANGUP:
2869                 if (!capable(CAP_SYS_ADMIN))
2870                         return -EPERM;
2871                 tty_vhangup(tty);
2872                 return 0;
2873         case TIOCGDEV:
2874         {
2875                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2876                 return put_user(ret, (unsigned int __user *)p);
2877         }
2878         /*
2879          * Break handling
2880          */
2881         case TIOCSBRK:  /* Turn break on, unconditionally */
2882                 if (tty->ops->break_ctl)
2883                         return tty->ops->break_ctl(tty, -1);
2884                 return 0;
2885         case TIOCCBRK:  /* Turn break off, unconditionally */
2886                 if (tty->ops->break_ctl)
2887                         return tty->ops->break_ctl(tty, 0);
2888                 return 0;
2889         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2890                 /* non-zero arg means wait for all output data
2891                  * to be sent (performed above) but don't send break.
2892                  * This is used by the tcdrain() termios function.
2893                  */
2894                 if (!arg)
2895                         return send_break(tty, 250);
2896                 return 0;
2897         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2898                 return send_break(tty, arg ? arg*100 : 250);
2899
2900         case TIOCMGET:
2901                 return tty_tiocmget(tty, p);
2902         case TIOCMSET:
2903         case TIOCMBIC:
2904         case TIOCMBIS:
2905                 return tty_tiocmset(tty, cmd, p);
2906         case TIOCGICOUNT:
2907                 retval = tty_tiocgicount(tty, p);
2908                 /* For the moment allow fall through to the old method */
2909                 if (retval != -EINVAL)
2910                         return retval;
2911                 break;
2912         case TCFLSH:
2913                 switch (arg) {
2914                 case TCIFLUSH:
2915                 case TCIOFLUSH:
2916                 /* flush tty buffer and allow ldisc to process ioctl */
2917                         tty_buffer_flush(tty);
2918                         break;
2919                 }
2920                 break;
2921         }
2922         if (tty->ops->ioctl) {
2923                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2924                 if (retval != -ENOIOCTLCMD)
2925                         return retval;
2926         }
2927         ld = tty_ldisc_ref_wait(tty);
2928         retval = -EINVAL;
2929         if (ld->ops->ioctl) {
2930                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2931                 if (retval == -ENOIOCTLCMD)
2932                         retval = -ENOTTY;
2933         }
2934         tty_ldisc_deref(ld);
2935         return retval;
2936 }
2937
2938 #ifdef CONFIG_COMPAT
2939 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2940                                 unsigned long arg)
2941 {
2942         struct tty_struct *tty = file_tty(file);
2943         struct tty_ldisc *ld;
2944         int retval = -ENOIOCTLCMD;
2945
2946         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2947                 return -EINVAL;
2948
2949         if (tty->ops->compat_ioctl) {
2950                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2951                 if (retval != -ENOIOCTLCMD)
2952                         return retval;
2953         }
2954
2955         ld = tty_ldisc_ref_wait(tty);
2956         if (ld->ops->compat_ioctl)
2957                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2958         else
2959                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2960         tty_ldisc_deref(ld);
2961
2962         return retval;
2963 }
2964 #endif
2965
2966 static int this_tty(const void *t, struct file *file, unsigned fd)
2967 {
2968         if (likely(file->f_op->read != tty_read))
2969                 return 0;
2970         return file_tty(file) != t ? 0 : fd + 1;
2971 }
2972         
2973 /*
2974  * This implements the "Secure Attention Key" ---  the idea is to
2975  * prevent trojan horses by killing all processes associated with this
2976  * tty when the user hits the "Secure Attention Key".  Required for
2977  * super-paranoid applications --- see the Orange Book for more details.
2978  *
2979  * This code could be nicer; ideally it should send a HUP, wait a few
2980  * seconds, then send a INT, and then a KILL signal.  But you then
2981  * have to coordinate with the init process, since all processes associated
2982  * with the current tty must be dead before the new getty is allowed
2983  * to spawn.
2984  *
2985  * Now, if it would be correct ;-/ The current code has a nasty hole -
2986  * it doesn't catch files in flight. We may send the descriptor to ourselves
2987  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2988  *
2989  * Nasty bug: do_SAK is being called in interrupt context.  This can
2990  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2991  */
2992 void __do_SAK(struct tty_struct *tty)
2993 {
2994 #ifdef TTY_SOFT_SAK
2995         tty_hangup(tty);
2996 #else
2997         struct task_struct *g, *p;
2998         struct pid *session;
2999         int             i;
3000
3001         if (!tty)
3002                 return;
3003         session = tty->session;
3004
3005         tty_ldisc_flush(tty);
3006
3007         tty_driver_flush_buffer(tty);
3008
3009         read_lock(&tasklist_lock);
3010         /* Kill the entire session */
3011         do_each_pid_task(session, PIDTYPE_SID, p) {
3012                 printk(KERN_NOTICE "SAK: killed process %d"
3013                         " (%s): task_session(p)==tty->session\n",
3014                         task_pid_nr(p), p->comm);
3015                 send_sig(SIGKILL, p, 1);
3016         } while_each_pid_task(session, PIDTYPE_SID, p);
3017         /* Now kill any processes that happen to have the
3018          * tty open.
3019          */
3020         do_each_thread(g, p) {
3021                 if (p->signal->tty == tty) {
3022                         printk(KERN_NOTICE "SAK: killed process %d"
3023                             " (%s): task_session(p)==tty->session\n",
3024                             task_pid_nr(p), p->comm);
3025                         send_sig(SIGKILL, p, 1);
3026                         continue;
3027                 }
3028                 task_lock(p);
3029                 i = iterate_fd(p->files, 0, this_tty, tty);
3030                 if (i != 0) {
3031                         printk(KERN_NOTICE "SAK: killed process %d"
3032                             " (%s): fd#%d opened to the tty\n",
3033                                     task_pid_nr(p), p->comm, i - 1);
3034                         force_sig(SIGKILL, p);
3035                 }
3036                 task_unlock(p);
3037         } while_each_thread(g, p);
3038         read_unlock(&tasklist_lock);
3039 #endif
3040 }
3041
3042 static void do_SAK_work(struct work_struct *work)
3043 {
3044         struct tty_struct *tty =
3045                 container_of(work, struct tty_struct, SAK_work);
3046         __do_SAK(tty);
3047 }
3048
3049 /*
3050  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3051  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3052  * the values which we write to it will be identical to the values which it
3053  * already has. --akpm
3054  */
3055 void do_SAK(struct tty_struct *tty)
3056 {
3057         if (!tty)
3058                 return;
3059         schedule_work(&tty->SAK_work);
3060 }
3061
3062 EXPORT_SYMBOL(do_SAK);
3063
3064 static int dev_match_devt(struct device *dev, const void *data)
3065 {
3066         const dev_t *devt = data;
3067         return dev->devt == *devt;
3068 }
3069
3070 /* Must put_device() after it's unused! */
3071 static struct device *tty_get_device(struct tty_struct *tty)
3072 {
3073         dev_t devt = tty_devnum(tty);
3074         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3075 }
3076
3077
3078 /**
3079  *      alloc_tty_struct
3080  *
3081  *      This subroutine allocates and initializes a tty structure.
3082  *
3083  *      Locking: none - tty in question is not exposed at this point
3084  */
3085
3086 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3087 {
3088         struct tty_struct *tty;
3089
3090         tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3091         if (!tty)
3092                 return NULL;
3093
3094         kref_init(&tty->kref);
3095         tty->magic = TTY_MAGIC;
3096         tty_ldisc_init(tty);
3097         tty->session = NULL;
3098         tty->pgrp = NULL;
3099         mutex_init(&tty->legacy_mutex);
3100         mutex_init(&tty->throttle_mutex);
3101         init_rwsem(&tty->termios_rwsem);
3102         mutex_init(&tty->winsize_mutex);
3103         init_ldsem(&tty->ldisc_sem);
3104         init_waitqueue_head(&tty->write_wait);
3105         init_waitqueue_head(&tty->read_wait);
3106         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3107         mutex_init(&tty->atomic_write_lock);
3108         spin_lock_init(&tty->ctrl_lock);
3109         spin_lock_init(&tty->flow_lock);
3110         INIT_LIST_HEAD(&tty->tty_files);
3111         INIT_WORK(&tty->SAK_work, do_SAK_work);
3112
3113         tty->driver = driver;
3114         tty->ops = driver->ops;
3115         tty->index = idx;
3116         tty_line_name(driver, idx, tty->name);
3117         tty->dev = tty_get_device(tty);
3118
3119         return tty;
3120 }
3121
3122 /**
3123  *      deinitialize_tty_struct
3124  *      @tty: tty to deinitialize
3125  *
3126  *      This subroutine deinitializes a tty structure that has been newly
3127  *      allocated but tty_release cannot be called on that yet.
3128  *
3129  *      Locking: none - tty in question must not be exposed at this point
3130  */
3131 void deinitialize_tty_struct(struct tty_struct *tty)
3132 {
3133         tty_ldisc_deinit(tty);
3134 }
3135
3136 /**
3137  *      tty_put_char    -       write one character to a tty
3138  *      @tty: tty
3139  *      @ch: character
3140  *
3141  *      Write one byte to the tty using the provided put_char method
3142  *      if present. Returns the number of characters successfully output.
3143  *
3144  *      Note: the specific put_char operation in the driver layer may go
3145  *      away soon. Don't call it directly, use this method
3146  */
3147
3148 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3149 {
3150         if (tty->ops->put_char)
3151                 return tty->ops->put_char(tty, ch);
3152         return tty->ops->write(tty, &ch, 1);
3153 }
3154 EXPORT_SYMBOL_GPL(tty_put_char);
3155
3156 struct class *tty_class;
3157
3158 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3159                 unsigned int index, unsigned int count)
3160 {
3161         /* init here, since reused cdevs cause crashes */
3162         cdev_init(&driver->cdevs[index], &tty_fops);
3163         driver->cdevs[index].owner = driver->owner;
3164         return cdev_add(&driver->cdevs[index], dev, count);
3165 }
3166
3167 /**
3168  *      tty_register_device - register a tty device
3169  *      @driver: the tty driver that describes the tty device
3170  *      @index: the index in the tty driver for this tty device
3171  *      @device: a struct device that is associated with this tty device.
3172  *              This field is optional, if there is no known struct device
3173  *              for this tty device it can be set to NULL safely.
3174  *
3175  *      Returns a pointer to the struct device for this tty device
3176  *      (or ERR_PTR(-EFOO) on error).
3177  *
3178  *      This call is required to be made to register an individual tty device
3179  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3180  *      that bit is not set, this function should not be called by a tty
3181  *      driver.
3182  *
3183  *      Locking: ??
3184  */
3185
3186 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3187                                    struct device *device)
3188 {
3189         return tty_register_device_attr(driver, index, device, NULL, NULL);
3190 }
3191 EXPORT_SYMBOL(tty_register_device);
3192
3193 static void tty_device_create_release(struct device *dev)
3194 {
3195         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3196         kfree(dev);
3197 }
3198
3199 /**
3200  *      tty_register_device_attr - register a tty device
3201  *      @driver: the tty driver that describes the tty device
3202  *      @index: the index in the tty driver for this tty device
3203  *      @device: a struct device that is associated with this tty device.
3204  *              This field is optional, if there is no known struct device
3205  *              for this tty device it can be set to NULL safely.
3206  *      @drvdata: Driver data to be set to device.
3207  *      @attr_grp: Attribute group to be set on device.
3208  *
3209  *      Returns a pointer to the struct device for this tty device
3210  *      (or ERR_PTR(-EFOO) on error).
3211  *
3212  *      This call is required to be made to register an individual tty device
3213  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3214  *      that bit is not set, this function should not be called by a tty
3215  *      driver.
3216  *
3217  *      Locking: ??
3218  */
3219 struct device *tty_register_device_attr(struct tty_driver *driver,
3220                                    unsigned index, struct device *device,
3221                                    void *drvdata,
3222                                    const struct attribute_group **attr_grp)
3223 {
3224         char name[64];
3225         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3226         struct device *dev = NULL;
3227         int retval = -ENODEV;
3228         bool cdev = false;
3229
3230         if (index >= driver->num) {
3231                 printk(KERN_ERR "Attempt to register invalid tty line number "
3232                        " (%d).\n", index);
3233                 return ERR_PTR(-EINVAL);
3234         }
3235
3236         if (driver->type == TTY_DRIVER_TYPE_PTY)
3237                 pty_line_name(driver, index, name);
3238         else
3239                 tty_line_name(driver, index, name);
3240
3241         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3242                 retval = tty_cdev_add(driver, devt, index, 1);
3243                 if (retval)
3244                         goto error;
3245                 cdev = true;
3246         }
3247
3248         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3249         if (!dev) {
3250                 retval = -ENOMEM;
3251                 goto error;
3252         }
3253
3254         dev->devt = devt;
3255         dev->class = tty_class;
3256         dev->parent = device;
3257         dev->release = tty_device_create_release;
3258         dev_set_name(dev, "%s", name);
3259         dev->groups = attr_grp;
3260         dev_set_drvdata(dev, drvdata);
3261
3262         retval = device_register(dev);
3263         if (retval)
3264                 goto error;
3265
3266         return dev;
3267
3268 error:
3269         put_device(dev);
3270         if (cdev)
3271                 cdev_del(&driver->cdevs[index]);
3272         return ERR_PTR(retval);
3273 }
3274 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3275
3276 /**
3277  *      tty_unregister_device - unregister a tty device
3278  *      @driver: the tty driver that describes the tty device
3279  *      @index: the index in the tty driver for this tty device
3280  *
3281  *      If a tty device is registered with a call to tty_register_device() then
3282  *      this function must be called when the tty device is gone.
3283  *
3284  *      Locking: ??
3285  */
3286
3287 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3288 {
3289         device_destroy(tty_class,
3290                 MKDEV(driver->major, driver->minor_start) + index);
3291         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3292                 cdev_del(&driver->cdevs[index]);
3293 }
3294 EXPORT_SYMBOL(tty_unregister_device);
3295
3296 /**
3297  * __tty_alloc_driver -- allocate tty driver
3298  * @lines: count of lines this driver can handle at most
3299  * @owner: module which is repsonsible for this driver
3300  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3301  *
3302  * This should not be called directly, some of the provided macros should be
3303  * used instead. Use IS_ERR and friends on @retval.
3304  */
3305 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3306                 unsigned long flags)
3307 {
3308         struct tty_driver *driver;
3309         unsigned int cdevs = 1;
3310         int err;
3311
3312         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3313                 return ERR_PTR(-EINVAL);
3314
3315         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3316         if (!driver)
3317                 return ERR_PTR(-ENOMEM);
3318
3319         kref_init(&driver->kref);
3320         driver->magic = TTY_DRIVER_MAGIC;
3321         driver->num = lines;
3322         driver->owner = owner;
3323         driver->flags = flags;
3324
3325         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3326                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3327                                 GFP_KERNEL);
3328                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3329                                 GFP_KERNEL);
3330                 if (!driver->ttys || !driver->termios) {
3331                         err = -ENOMEM;
3332                         goto err_free_all;
3333                 }
3334         }
3335
3336         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3337                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3338                                 GFP_KERNEL);
3339                 if (!driver->ports) {
3340                         err = -ENOMEM;
3341                         goto err_free_all;
3342                 }
3343                 cdevs = lines;
3344         }
3345
3346         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3347         if (!driver->cdevs) {
3348                 err = -ENOMEM;
3349                 goto err_free_all;
3350         }
3351
3352         return driver;
3353 err_free_all:
3354         kfree(driver->ports);
3355         kfree(driver->ttys);
3356         kfree(driver->termios);
3357         kfree(driver);
3358         return ERR_PTR(err);
3359 }
3360 EXPORT_SYMBOL(__tty_alloc_driver);
3361
3362 static void destruct_tty_driver(struct kref *kref)
3363 {
3364         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3365         int i;
3366         struct ktermios *tp;
3367
3368         if (driver->flags & TTY_DRIVER_INSTALLED) {
3369                 /*
3370                  * Free the termios and termios_locked structures because
3371                  * we don't want to get memory leaks when modular tty
3372                  * drivers are removed from the kernel.
3373                  */
3374                 for (i = 0; i < driver->num; i++) {
3375                         tp = driver->termios[i];
3376                         if (tp) {
3377                                 driver->termios[i] = NULL;
3378                                 kfree(tp);
3379                         }
3380                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3381                                 tty_unregister_device(driver, i);
3382                 }
3383                 proc_tty_unregister_driver(driver);
3384                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3385                         cdev_del(&driver->cdevs[0]);
3386         }
3387         kfree(driver->cdevs);
3388         kfree(driver->ports);
3389         kfree(driver->termios);
3390         kfree(driver->ttys);
3391         kfree(driver);
3392 }
3393
3394 void tty_driver_kref_put(struct tty_driver *driver)
3395 {
3396         kref_put(&driver->kref, destruct_tty_driver);
3397 }
3398 EXPORT_SYMBOL(tty_driver_kref_put);
3399
3400 void tty_set_operations(struct tty_driver *driver,
3401                         const struct tty_operations *op)
3402 {
3403         driver->ops = op;
3404 };
3405 EXPORT_SYMBOL(tty_set_operations);
3406
3407 void put_tty_driver(struct tty_driver *d)
3408 {
3409         tty_driver_kref_put(d);
3410 }
3411 EXPORT_SYMBOL(put_tty_driver);
3412
3413 /*
3414  * Called by a tty driver to register itself.
3415  */
3416 int tty_register_driver(struct tty_driver *driver)
3417 {
3418         int error;
3419         int i;
3420         dev_t dev;
3421         struct device *d;
3422
3423         if (!driver->major) {
3424                 error = alloc_chrdev_region(&dev, driver->minor_start,
3425                                                 driver->num, driver->name);
3426                 if (!error) {
3427                         driver->major = MAJOR(dev);
3428                         driver->minor_start = MINOR(dev);
3429                 }
3430         } else {
3431                 dev = MKDEV(driver->major, driver->minor_start);
3432                 error = register_chrdev_region(dev, driver->num, driver->name);
3433         }
3434         if (error < 0)
3435                 goto err;
3436
3437         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3438                 error = tty_cdev_add(driver, dev, 0, driver->num);
3439                 if (error)
3440                         goto err_unreg_char;
3441         }
3442
3443         mutex_lock(&tty_mutex);
3444         list_add(&driver->tty_drivers, &tty_drivers);
3445         mutex_unlock(&tty_mutex);
3446
3447         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3448                 for (i = 0; i < driver->num; i++) {
3449                         d = tty_register_device(driver, i, NULL);
3450                         if (IS_ERR(d)) {
3451                                 error = PTR_ERR(d);
3452                                 goto err_unreg_devs;
3453                         }
3454                 }
3455         }
3456         proc_tty_register_driver(driver);
3457         driver->flags |= TTY_DRIVER_INSTALLED;
3458         return 0;
3459
3460 err_unreg_devs:
3461         for (i--; i >= 0; i--)
3462                 tty_unregister_device(driver, i);
3463
3464         mutex_lock(&tty_mutex);
3465         list_del(&driver->tty_drivers);
3466         mutex_unlock(&tty_mutex);
3467
3468 err_unreg_char:
3469         unregister_chrdev_region(dev, driver->num);
3470 err:
3471         return error;
3472 }
3473 EXPORT_SYMBOL(tty_register_driver);
3474
3475 /*
3476  * Called by a tty driver to unregister itself.
3477  */
3478 int tty_unregister_driver(struct tty_driver *driver)
3479 {
3480 #if 0
3481         /* FIXME */
3482         if (driver->refcount)
3483                 return -EBUSY;
3484 #endif
3485         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3486                                 driver->num);
3487         mutex_lock(&tty_mutex);
3488         list_del(&driver->tty_drivers);
3489         mutex_unlock(&tty_mutex);
3490         return 0;
3491 }
3492
3493 EXPORT_SYMBOL(tty_unregister_driver);
3494
3495 dev_t tty_devnum(struct tty_struct *tty)
3496 {
3497         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3498 }
3499 EXPORT_SYMBOL(tty_devnum);
3500
3501 void tty_default_fops(struct file_operations *fops)
3502 {
3503         *fops = tty_fops;
3504 }
3505
3506 /*
3507  * Initialize the console device. This is called *early*, so
3508  * we can't necessarily depend on lots of kernel help here.
3509  * Just do some early initializations, and do the complex setup
3510  * later.
3511  */
3512 void __init console_init(void)
3513 {
3514         initcall_t *call;
3515
3516         /* Setup the default TTY line discipline. */
3517         tty_ldisc_begin();
3518
3519         /*
3520          * set up the console device so that later boot sequences can
3521          * inform about problems etc..
3522          */
3523         call = __con_initcall_start;
3524         while (call < __con_initcall_end) {
3525                 (*call)();
3526                 call++;
3527         }
3528 }
3529
3530 static char *tty_devnode(struct device *dev, umode_t *mode)
3531 {
3532         if (!mode)
3533                 return NULL;
3534         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3535             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3536                 *mode = 0666;
3537         return NULL;
3538 }
3539
3540 static int __init tty_class_init(void)
3541 {
3542         tty_class = class_create(THIS_MODULE, "tty");
3543         if (IS_ERR(tty_class))
3544                 return PTR_ERR(tty_class);
3545         tty_class->devnode = tty_devnode;
3546         return 0;
3547 }
3548
3549 postcore_initcall(tty_class_init);
3550
3551 /* 3/2004 jmc: why do these devices exist? */
3552 static struct cdev tty_cdev, console_cdev;
3553
3554 static ssize_t show_cons_active(struct device *dev,
3555                                 struct device_attribute *attr, char *buf)
3556 {
3557         struct console *cs[16];
3558         int i = 0;
3559         struct console *c;
3560         ssize_t count = 0;
3561
3562         console_lock();
3563         for_each_console(c) {
3564                 if (!c->device)
3565                         continue;
3566                 if (!c->write)
3567                         continue;
3568                 if ((c->flags & CON_ENABLED) == 0)
3569                         continue;
3570                 cs[i++] = c;
3571                 if (i >= ARRAY_SIZE(cs))
3572                         break;
3573         }
3574         while (i--) {
3575                 int index = cs[i]->index;
3576                 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3577
3578                 /* don't resolve tty0 as some programs depend on it */
3579                 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3580                         count += tty_line_name(drv, index, buf + count);
3581                 else
3582                         count += sprintf(buf + count, "%s%d",
3583                                          cs[i]->name, cs[i]->index);
3584
3585                 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3586         }
3587         console_unlock();
3588
3589         return count;
3590 }
3591 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3592
3593 static struct device *consdev;
3594
3595 void console_sysfs_notify(void)
3596 {
3597         if (consdev)
3598                 sysfs_notify(&consdev->kobj, NULL, "active");
3599 }
3600
3601 /*
3602  * Ok, now we can initialize the rest of the tty devices and can count
3603  * on memory allocations, interrupts etc..
3604  */
3605 int __init tty_init(void)
3606 {
3607         cdev_init(&tty_cdev, &tty_fops);
3608         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3609             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3610                 panic("Couldn't register /dev/tty driver\n");
3611         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3612
3613         cdev_init(&console_cdev, &console_fops);
3614         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3615             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3616                 panic("Couldn't register /dev/console driver\n");
3617         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3618                               "console");
3619         if (IS_ERR(consdev))
3620                 consdev = NULL;
3621         else
3622                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3623
3624 #ifdef CONFIG_VT
3625         vty_init(&console_fops);
3626 #endif
3627         return 0;
3628 }
3629