705885891b87dad2c8c6a1fd155ec59a1d801d6c
[firefly-linux-kernel-4.4.55.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156
157 /**
158  *      free_tty_struct         -       free a disused tty
159  *      @tty: tty struct to free
160  *
161  *      Free the write buffers, tty queue and tty memory itself.
162  *
163  *      Locking: none. Must be called after tty is definitely unused
164  */
165
166 void free_tty_struct(struct tty_struct *tty)
167 {
168         if (!tty)
169                 return;
170         if (tty->dev)
171                 put_device(tty->dev);
172         kfree(tty->write_buf);
173         tty->magic = 0xDEADDEAD;
174         kfree(tty);
175 }
176
177 static inline struct tty_struct *file_tty(struct file *file)
178 {
179         return ((struct tty_file_private *)file->private_data)->tty;
180 }
181
182 int tty_alloc_file(struct file *file)
183 {
184         struct tty_file_private *priv;
185
186         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
187         if (!priv)
188                 return -ENOMEM;
189
190         file->private_data = priv;
191
192         return 0;
193 }
194
195 /* Associate a new file with the tty structure */
196 void tty_add_file(struct tty_struct *tty, struct file *file)
197 {
198         struct tty_file_private *priv = file->private_data;
199
200         priv->tty = tty;
201         priv->file = file;
202
203         spin_lock(&tty_files_lock);
204         list_add(&priv->list, &tty->tty_files);
205         spin_unlock(&tty_files_lock);
206 }
207
208 /**
209  * tty_free_file - free file->private_data
210  *
211  * This shall be used only for fail path handling when tty_add_file was not
212  * called yet.
213  */
214 void tty_free_file(struct file *file)
215 {
216         struct tty_file_private *priv = file->private_data;
217
218         file->private_data = NULL;
219         kfree(priv);
220 }
221
222 /* Delete file from its tty */
223 static void tty_del_file(struct file *file)
224 {
225         struct tty_file_private *priv = file->private_data;
226
227         spin_lock(&tty_files_lock);
228         list_del(&priv->list);
229         spin_unlock(&tty_files_lock);
230         tty_free_file(file);
231 }
232
233
234 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
235
236 /**
237  *      tty_name        -       return tty naming
238  *      @tty: tty structure
239  *      @buf: buffer for output
240  *
241  *      Convert a tty structure into a name. The name reflects the kernel
242  *      naming policy and if udev is in use may not reflect user space
243  *
244  *      Locking: none
245  */
246
247 char *tty_name(struct tty_struct *tty, char *buf)
248 {
249         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
250                 strcpy(buf, "NULL tty");
251         else
252                 strcpy(buf, tty->name);
253         return buf;
254 }
255
256 EXPORT_SYMBOL(tty_name);
257
258 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
259                               const char *routine)
260 {
261 #ifdef TTY_PARANOIA_CHECK
262         if (!tty) {
263                 printk(KERN_WARNING
264                         "null TTY for (%d:%d) in %s\n",
265                         imajor(inode), iminor(inode), routine);
266                 return 1;
267         }
268         if (tty->magic != TTY_MAGIC) {
269                 printk(KERN_WARNING
270                         "bad magic number for tty struct (%d:%d) in %s\n",
271                         imajor(inode), iminor(inode), routine);
272                 return 1;
273         }
274 #endif
275         return 0;
276 }
277
278 /* Caller must hold tty_lock */
279 static int check_tty_count(struct tty_struct *tty, const char *routine)
280 {
281 #ifdef CHECK_TTY_COUNT
282         struct list_head *p;
283         int count = 0;
284
285         spin_lock(&tty_files_lock);
286         list_for_each(p, &tty->tty_files) {
287                 count++;
288         }
289         spin_unlock(&tty_files_lock);
290         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
291             tty->driver->subtype == PTY_TYPE_SLAVE &&
292             tty->link && tty->link->count)
293                 count++;
294         if (tty->count != count) {
295                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
296                                     "!= #fd's(%d) in %s\n",
297                        tty->name, tty->count, count, routine);
298                 return count;
299         }
300 #endif
301         return 0;
302 }
303
304 /**
305  *      get_tty_driver          -       find device of a tty
306  *      @dev_t: device identifier
307  *      @index: returns the index of the tty
308  *
309  *      This routine returns a tty driver structure, given a device number
310  *      and also passes back the index number.
311  *
312  *      Locking: caller must hold tty_mutex
313  */
314
315 static struct tty_driver *get_tty_driver(dev_t device, int *index)
316 {
317         struct tty_driver *p;
318
319         list_for_each_entry(p, &tty_drivers, tty_drivers) {
320                 dev_t base = MKDEV(p->major, p->minor_start);
321                 if (device < base || device >= base + p->num)
322                         continue;
323                 *index = device - base;
324                 return tty_driver_kref_get(p);
325         }
326         return NULL;
327 }
328
329 #ifdef CONFIG_CONSOLE_POLL
330
331 /**
332  *      tty_find_polling_driver -       find device of a polled tty
333  *      @name: name string to match
334  *      @line: pointer to resulting tty line nr
335  *
336  *      This routine returns a tty driver structure, given a name
337  *      and the condition that the tty driver is capable of polled
338  *      operation.
339  */
340 struct tty_driver *tty_find_polling_driver(char *name, int *line)
341 {
342         struct tty_driver *p, *res = NULL;
343         int tty_line = 0;
344         int len;
345         char *str, *stp;
346
347         for (str = name; *str; str++)
348                 if ((*str >= '0' && *str <= '9') || *str == ',')
349                         break;
350         if (!*str)
351                 return NULL;
352
353         len = str - name;
354         tty_line = simple_strtoul(str, &str, 10);
355
356         mutex_lock(&tty_mutex);
357         /* Search through the tty devices to look for a match */
358         list_for_each_entry(p, &tty_drivers, tty_drivers) {
359                 if (strncmp(name, p->name, len) != 0)
360                         continue;
361                 stp = str;
362                 if (*stp == ',')
363                         stp++;
364                 if (*stp == '\0')
365                         stp = NULL;
366
367                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
368                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
369                         res = tty_driver_kref_get(p);
370                         *line = tty_line;
371                         break;
372                 }
373         }
374         mutex_unlock(&tty_mutex);
375
376         return res;
377 }
378 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
379 #endif
380
381 /**
382  *      tty_check_change        -       check for POSIX terminal changes
383  *      @tty: tty to check
384  *
385  *      If we try to write to, or set the state of, a terminal and we're
386  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
387  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
388  *
389  *      Locking: ctrl_lock
390  */
391
392 int tty_check_change(struct tty_struct *tty)
393 {
394         unsigned long flags;
395         int ret = 0;
396
397         if (current->signal->tty != tty)
398                 return 0;
399
400         spin_lock_irqsave(&tty->ctrl_lock, flags);
401
402         if (!tty->pgrp) {
403                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
404                 goto out_unlock;
405         }
406         if (task_pgrp(current) == tty->pgrp)
407                 goto out_unlock;
408         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
409         if (is_ignored(SIGTTOU))
410                 goto out;
411         if (is_current_pgrp_orphaned()) {
412                 ret = -EIO;
413                 goto out;
414         }
415         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
416         set_thread_flag(TIF_SIGPENDING);
417         ret = -ERESTARTSYS;
418 out:
419         return ret;
420 out_unlock:
421         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
422         return ret;
423 }
424
425 EXPORT_SYMBOL(tty_check_change);
426
427 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
428                                 size_t count, loff_t *ppos)
429 {
430         return 0;
431 }
432
433 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
434                                  size_t count, loff_t *ppos)
435 {
436         return -EIO;
437 }
438
439 /* No kernel lock held - none needed ;) */
440 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
441 {
442         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
443 }
444
445 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
446                 unsigned long arg)
447 {
448         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
449 }
450
451 static long hung_up_tty_compat_ioctl(struct file *file,
452                                      unsigned int cmd, unsigned long arg)
453 {
454         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
455 }
456
457 static const struct file_operations tty_fops = {
458         .llseek         = no_llseek,
459         .read           = tty_read,
460         .write          = tty_write,
461         .poll           = tty_poll,
462         .unlocked_ioctl = tty_ioctl,
463         .compat_ioctl   = tty_compat_ioctl,
464         .open           = tty_open,
465         .release        = tty_release,
466         .fasync         = tty_fasync,
467 };
468
469 static const struct file_operations console_fops = {
470         .llseek         = no_llseek,
471         .read           = tty_read,
472         .write          = redirected_tty_write,
473         .poll           = tty_poll,
474         .unlocked_ioctl = tty_ioctl,
475         .compat_ioctl   = tty_compat_ioctl,
476         .open           = tty_open,
477         .release        = tty_release,
478         .fasync         = tty_fasync,
479 };
480
481 static const struct file_operations hung_up_tty_fops = {
482         .llseek         = no_llseek,
483         .read           = hung_up_tty_read,
484         .write          = hung_up_tty_write,
485         .poll           = hung_up_tty_poll,
486         .unlocked_ioctl = hung_up_tty_ioctl,
487         .compat_ioctl   = hung_up_tty_compat_ioctl,
488         .release        = tty_release,
489 };
490
491 static DEFINE_SPINLOCK(redirect_lock);
492 static struct file *redirect;
493
494
495 void proc_clear_tty(struct task_struct *p)
496 {
497         unsigned long flags;
498         struct tty_struct *tty;
499         spin_lock_irqsave(&p->sighand->siglock, flags);
500         tty = p->signal->tty;
501         p->signal->tty = NULL;
502         spin_unlock_irqrestore(&p->sighand->siglock, flags);
503         tty_kref_put(tty);
504 }
505
506 /**
507  * proc_set_tty -  set the controlling terminal
508  *
509  * Only callable by the session leader and only if it does not already have
510  * a controlling terminal.
511  *
512  * Caller must hold:  tty_lock()
513  *                    a readlock on tasklist_lock
514  *                    sighand lock
515  */
516 static void __proc_set_tty(struct tty_struct *tty)
517 {
518         unsigned long flags;
519
520         spin_lock_irqsave(&tty->ctrl_lock, flags);
521         /*
522          * The session and fg pgrp references will be non-NULL if
523          * tiocsctty() is stealing the controlling tty
524          */
525         put_pid(tty->session);
526         put_pid(tty->pgrp);
527         tty->pgrp = get_pid(task_pgrp(current));
528         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
529         tty->session = get_pid(task_session(current));
530         if (current->signal->tty) {
531                 printk(KERN_DEBUG "tty not NULL!!\n");
532                 tty_kref_put(current->signal->tty);
533         }
534         put_pid(current->signal->tty_old_pgrp);
535         current->signal->tty = tty_kref_get(tty);
536         current->signal->tty_old_pgrp = NULL;
537 }
538
539 static void proc_set_tty(struct tty_struct *tty)
540 {
541         spin_lock_irq(&current->sighand->siglock);
542         __proc_set_tty(tty);
543         spin_unlock_irq(&current->sighand->siglock);
544 }
545
546 struct tty_struct *get_current_tty(void)
547 {
548         struct tty_struct *tty;
549         unsigned long flags;
550
551         spin_lock_irqsave(&current->sighand->siglock, flags);
552         tty = tty_kref_get(current->signal->tty);
553         spin_unlock_irqrestore(&current->sighand->siglock, flags);
554         return tty;
555 }
556 EXPORT_SYMBOL_GPL(get_current_tty);
557
558 static void session_clear_tty(struct pid *session)
559 {
560         struct task_struct *p;
561         do_each_pid_task(session, PIDTYPE_SID, p) {
562                 proc_clear_tty(p);
563         } while_each_pid_task(session, PIDTYPE_SID, p);
564 }
565
566 /**
567  *      tty_wakeup      -       request more data
568  *      @tty: terminal
569  *
570  *      Internal and external helper for wakeups of tty. This function
571  *      informs the line discipline if present that the driver is ready
572  *      to receive more output data.
573  */
574
575 void tty_wakeup(struct tty_struct *tty)
576 {
577         struct tty_ldisc *ld;
578
579         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
580                 ld = tty_ldisc_ref(tty);
581                 if (ld) {
582                         if (ld->ops->write_wakeup)
583                                 ld->ops->write_wakeup(tty);
584                         tty_ldisc_deref(ld);
585                 }
586         }
587         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
588 }
589
590 EXPORT_SYMBOL_GPL(tty_wakeup);
591
592 /**
593  *      tty_signal_session_leader       - sends SIGHUP to session leader
594  *      @tty            controlling tty
595  *      @exit_session   if non-zero, signal all foreground group processes
596  *
597  *      Send SIGHUP and SIGCONT to the session leader and its process group.
598  *      Optionally, signal all processes in the foreground process group.
599  *
600  *      Returns the number of processes in the session with this tty
601  *      as their controlling terminal. This value is used to drop
602  *      tty references for those processes.
603  */
604 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
605 {
606         struct task_struct *p;
607         int refs = 0;
608         struct pid *tty_pgrp = NULL;
609
610         read_lock(&tasklist_lock);
611         if (tty->session) {
612                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
613                         spin_lock_irq(&p->sighand->siglock);
614                         if (p->signal->tty == tty) {
615                                 p->signal->tty = NULL;
616                                 /* We defer the dereferences outside fo
617                                    the tasklist lock */
618                                 refs++;
619                         }
620                         if (!p->signal->leader) {
621                                 spin_unlock_irq(&p->sighand->siglock);
622                                 continue;
623                         }
624                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
625                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
626                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
627                         spin_lock(&tty->ctrl_lock);
628                         tty_pgrp = get_pid(tty->pgrp);
629                         if (tty->pgrp)
630                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
631                         spin_unlock(&tty->ctrl_lock);
632                         spin_unlock_irq(&p->sighand->siglock);
633                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
634         }
635         read_unlock(&tasklist_lock);
636
637         if (tty_pgrp) {
638                 if (exit_session)
639                         kill_pgrp(tty_pgrp, SIGHUP, exit_session);
640                 put_pid(tty_pgrp);
641         }
642
643         return refs;
644 }
645
646 /**
647  *      __tty_hangup            -       actual handler for hangup events
648  *      @work: tty device
649  *
650  *      This can be called by a "kworker" kernel thread.  That is process
651  *      synchronous but doesn't hold any locks, so we need to make sure we
652  *      have the appropriate locks for what we're doing.
653  *
654  *      The hangup event clears any pending redirections onto the hung up
655  *      device. It ensures future writes will error and it does the needed
656  *      line discipline hangup and signal delivery. The tty object itself
657  *      remains intact.
658  *
659  *      Locking:
660  *              BTM
661  *                redirect lock for undoing redirection
662  *                file list lock for manipulating list of ttys
663  *                tty_ldiscs_lock from called functions
664  *                termios_rwsem resetting termios data
665  *                tasklist_lock to walk task list for hangup event
666  *                  ->siglock to protect ->signal/->sighand
667  */
668 static void __tty_hangup(struct tty_struct *tty, int exit_session)
669 {
670         struct file *cons_filp = NULL;
671         struct file *filp, *f = NULL;
672         struct tty_file_private *priv;
673         int    closecount = 0, n;
674         int refs;
675
676         if (!tty)
677                 return;
678
679
680         spin_lock(&redirect_lock);
681         if (redirect && file_tty(redirect) == tty) {
682                 f = redirect;
683                 redirect = NULL;
684         }
685         spin_unlock(&redirect_lock);
686
687         tty_lock(tty);
688
689         if (test_bit(TTY_HUPPED, &tty->flags)) {
690                 tty_unlock(tty);
691                 return;
692         }
693
694         /* inuse_filps is protected by the single tty lock,
695            this really needs to change if we want to flush the
696            workqueue with the lock held */
697         check_tty_count(tty, "tty_hangup");
698
699         spin_lock(&tty_files_lock);
700         /* This breaks for file handles being sent over AF_UNIX sockets ? */
701         list_for_each_entry(priv, &tty->tty_files, list) {
702                 filp = priv->file;
703                 if (filp->f_op->write == redirected_tty_write)
704                         cons_filp = filp;
705                 if (filp->f_op->write != tty_write)
706                         continue;
707                 closecount++;
708                 __tty_fasync(-1, filp, 0);      /* can't block */
709                 filp->f_op = &hung_up_tty_fops;
710         }
711         spin_unlock(&tty_files_lock);
712
713         refs = tty_signal_session_leader(tty, exit_session);
714         /* Account for the p->signal references we killed */
715         while (refs--)
716                 tty_kref_put(tty);
717
718         tty_ldisc_hangup(tty);
719
720         spin_lock_irq(&tty->ctrl_lock);
721         clear_bit(TTY_THROTTLED, &tty->flags);
722         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
723         put_pid(tty->session);
724         put_pid(tty->pgrp);
725         tty->session = NULL;
726         tty->pgrp = NULL;
727         tty->ctrl_status = 0;
728         spin_unlock_irq(&tty->ctrl_lock);
729
730         /*
731          * If one of the devices matches a console pointer, we
732          * cannot just call hangup() because that will cause
733          * tty->count and state->count to go out of sync.
734          * So we just call close() the right number of times.
735          */
736         if (cons_filp) {
737                 if (tty->ops->close)
738                         for (n = 0; n < closecount; n++)
739                                 tty->ops->close(tty, cons_filp);
740         } else if (tty->ops->hangup)
741                 tty->ops->hangup(tty);
742         /*
743          * We don't want to have driver/ldisc interactions beyond
744          * the ones we did here. The driver layer expects no
745          * calls after ->hangup() from the ldisc side. However we
746          * can't yet guarantee all that.
747          */
748         set_bit(TTY_HUPPED, &tty->flags);
749         tty_unlock(tty);
750
751         if (f)
752                 fput(f);
753 }
754
755 static void do_tty_hangup(struct work_struct *work)
756 {
757         struct tty_struct *tty =
758                 container_of(work, struct tty_struct, hangup_work);
759
760         __tty_hangup(tty, 0);
761 }
762
763 /**
764  *      tty_hangup              -       trigger a hangup event
765  *      @tty: tty to hangup
766  *
767  *      A carrier loss (virtual or otherwise) has occurred on this like
768  *      schedule a hangup sequence to run after this event.
769  */
770
771 void tty_hangup(struct tty_struct *tty)
772 {
773 #ifdef TTY_DEBUG_HANGUP
774         char    buf[64];
775         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
776 #endif
777         schedule_work(&tty->hangup_work);
778 }
779
780 EXPORT_SYMBOL(tty_hangup);
781
782 /**
783  *      tty_vhangup             -       process vhangup
784  *      @tty: tty to hangup
785  *
786  *      The user has asked via system call for the terminal to be hung up.
787  *      We do this synchronously so that when the syscall returns the process
788  *      is complete. That guarantee is necessary for security reasons.
789  */
790
791 void tty_vhangup(struct tty_struct *tty)
792 {
793 #ifdef TTY_DEBUG_HANGUP
794         char    buf[64];
795
796         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
797 #endif
798         __tty_hangup(tty, 0);
799 }
800
801 EXPORT_SYMBOL(tty_vhangup);
802
803
804 /**
805  *      tty_vhangup_self        -       process vhangup for own ctty
806  *
807  *      Perform a vhangup on the current controlling tty
808  */
809
810 void tty_vhangup_self(void)
811 {
812         struct tty_struct *tty;
813
814         tty = get_current_tty();
815         if (tty) {
816                 tty_vhangup(tty);
817                 tty_kref_put(tty);
818         }
819 }
820
821 /**
822  *      tty_vhangup_session             -       hangup session leader exit
823  *      @tty: tty to hangup
824  *
825  *      The session leader is exiting and hanging up its controlling terminal.
826  *      Every process in the foreground process group is signalled SIGHUP.
827  *
828  *      We do this synchronously so that when the syscall returns the process
829  *      is complete. That guarantee is necessary for security reasons.
830  */
831
832 static void tty_vhangup_session(struct tty_struct *tty)
833 {
834 #ifdef TTY_DEBUG_HANGUP
835         char    buf[64];
836
837         printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
838 #endif
839         __tty_hangup(tty, 1);
840 }
841
842 /**
843  *      tty_hung_up_p           -       was tty hung up
844  *      @filp: file pointer of tty
845  *
846  *      Return true if the tty has been subject to a vhangup or a carrier
847  *      loss
848  */
849
850 int tty_hung_up_p(struct file *filp)
851 {
852         return (filp->f_op == &hung_up_tty_fops);
853 }
854
855 EXPORT_SYMBOL(tty_hung_up_p);
856
857 /**
858  *      disassociate_ctty       -       disconnect controlling tty
859  *      @on_exit: true if exiting so need to "hang up" the session
860  *
861  *      This function is typically called only by the session leader, when
862  *      it wants to disassociate itself from its controlling tty.
863  *
864  *      It performs the following functions:
865  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
866  *      (2)  Clears the tty from being controlling the session
867  *      (3)  Clears the controlling tty for all processes in the
868  *              session group.
869  *
870  *      The argument on_exit is set to 1 if called when a process is
871  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
872  *
873  *      Locking:
874  *              BTM is taken for hysterical raisins, and held when
875  *                called from no_tty().
876  *                tty_mutex is taken to protect tty
877  *                ->siglock is taken to protect ->signal/->sighand
878  *                tasklist_lock is taken to walk process list for sessions
879  *                  ->siglock is taken to protect ->signal/->sighand
880  */
881
882 void disassociate_ctty(int on_exit)
883 {
884         struct tty_struct *tty;
885
886         if (!current->signal->leader)
887                 return;
888
889         tty = get_current_tty();
890         if (tty) {
891                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
892                         tty_vhangup_session(tty);
893                 } else {
894                         struct pid *tty_pgrp = tty_get_pgrp(tty);
895                         if (tty_pgrp) {
896                                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
897                                 if (!on_exit)
898                                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
899                                 put_pid(tty_pgrp);
900                         }
901                 }
902                 tty_kref_put(tty);
903
904         } else if (on_exit) {
905                 struct pid *old_pgrp;
906                 spin_lock_irq(&current->sighand->siglock);
907                 old_pgrp = current->signal->tty_old_pgrp;
908                 current->signal->tty_old_pgrp = NULL;
909                 spin_unlock_irq(&current->sighand->siglock);
910                 if (old_pgrp) {
911                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
912                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
913                         put_pid(old_pgrp);
914                 }
915                 return;
916         }
917
918         spin_lock_irq(&current->sighand->siglock);
919         put_pid(current->signal->tty_old_pgrp);
920         current->signal->tty_old_pgrp = NULL;
921
922         tty = tty_kref_get(current->signal->tty);
923         if (tty) {
924                 unsigned long flags;
925                 spin_lock_irqsave(&tty->ctrl_lock, flags);
926                 put_pid(tty->session);
927                 put_pid(tty->pgrp);
928                 tty->session = NULL;
929                 tty->pgrp = NULL;
930                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
931                 tty_kref_put(tty);
932         } else {
933 #ifdef TTY_DEBUG_HANGUP
934                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
935                        " = NULL", tty);
936 #endif
937         }
938
939         spin_unlock_irq(&current->sighand->siglock);
940         /* Now clear signal->tty under the lock */
941         read_lock(&tasklist_lock);
942         session_clear_tty(task_session(current));
943         read_unlock(&tasklist_lock);
944 }
945
946 /**
947  *
948  *      no_tty  - Ensure the current process does not have a controlling tty
949  */
950 void no_tty(void)
951 {
952         /* FIXME: Review locking here. The tty_lock never covered any race
953            between a new association and proc_clear_tty but possible we need
954            to protect against this anyway */
955         struct task_struct *tsk = current;
956         disassociate_ctty(0);
957         proc_clear_tty(tsk);
958 }
959
960
961 /**
962  *      stop_tty        -       propagate flow control
963  *      @tty: tty to stop
964  *
965  *      Perform flow control to the driver. May be called
966  *      on an already stopped device and will not re-call the driver
967  *      method.
968  *
969  *      This functionality is used by both the line disciplines for
970  *      halting incoming flow and by the driver. It may therefore be
971  *      called from any context, may be under the tty atomic_write_lock
972  *      but not always.
973  *
974  *      Locking:
975  *              flow_lock
976  */
977
978 void __stop_tty(struct tty_struct *tty)
979 {
980         if (tty->stopped)
981                 return;
982         tty->stopped = 1;
983         if (tty->ops->stop)
984                 tty->ops->stop(tty);
985 }
986
987 void stop_tty(struct tty_struct *tty)
988 {
989         unsigned long flags;
990
991         spin_lock_irqsave(&tty->flow_lock, flags);
992         __stop_tty(tty);
993         spin_unlock_irqrestore(&tty->flow_lock, flags);
994 }
995 EXPORT_SYMBOL(stop_tty);
996
997 /**
998  *      start_tty       -       propagate flow control
999  *      @tty: tty to start
1000  *
1001  *      Start a tty that has been stopped if at all possible. If this
1002  *      tty was previous stopped and is now being started, the driver
1003  *      start method is invoked and the line discipline woken.
1004  *
1005  *      Locking:
1006  *              flow_lock
1007  */
1008
1009 void __start_tty(struct tty_struct *tty)
1010 {
1011         if (!tty->stopped || tty->flow_stopped)
1012                 return;
1013         tty->stopped = 0;
1014         if (tty->ops->start)
1015                 tty->ops->start(tty);
1016         tty_wakeup(tty);
1017 }
1018
1019 void start_tty(struct tty_struct *tty)
1020 {
1021         unsigned long flags;
1022
1023         spin_lock_irqsave(&tty->flow_lock, flags);
1024         __start_tty(tty);
1025         spin_unlock_irqrestore(&tty->flow_lock, flags);
1026 }
1027 EXPORT_SYMBOL(start_tty);
1028
1029 /* We limit tty time update visibility to every 8 seconds or so. */
1030 static void tty_update_time(struct timespec *time)
1031 {
1032         unsigned long sec = get_seconds() & ~7;
1033         if ((long)(sec - time->tv_sec) > 0)
1034                 time->tv_sec = sec;
1035 }
1036
1037 /**
1038  *      tty_read        -       read method for tty device files
1039  *      @file: pointer to tty file
1040  *      @buf: user buffer
1041  *      @count: size of user buffer
1042  *      @ppos: unused
1043  *
1044  *      Perform the read system call function on this terminal device. Checks
1045  *      for hung up devices before calling the line discipline method.
1046  *
1047  *      Locking:
1048  *              Locks the line discipline internally while needed. Multiple
1049  *      read calls may be outstanding in parallel.
1050  */
1051
1052 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1053                         loff_t *ppos)
1054 {
1055         int i;
1056         struct inode *inode = file_inode(file);
1057         struct tty_struct *tty = file_tty(file);
1058         struct tty_ldisc *ld;
1059
1060         if (tty_paranoia_check(tty, inode, "tty_read"))
1061                 return -EIO;
1062         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1063                 return -EIO;
1064
1065         /* We want to wait for the line discipline to sort out in this
1066            situation */
1067         ld = tty_ldisc_ref_wait(tty);
1068         if (ld->ops->read)
1069                 i = ld->ops->read(tty, file, buf, count);
1070         else
1071                 i = -EIO;
1072         tty_ldisc_deref(ld);
1073
1074         if (i > 0)
1075                 tty_update_time(&inode->i_atime);
1076
1077         return i;
1078 }
1079
1080 static void tty_write_unlock(struct tty_struct *tty)
1081 {
1082         mutex_unlock(&tty->atomic_write_lock);
1083         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1084 }
1085
1086 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1087 {
1088         if (!mutex_trylock(&tty->atomic_write_lock)) {
1089                 if (ndelay)
1090                         return -EAGAIN;
1091                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1092                         return -ERESTARTSYS;
1093         }
1094         return 0;
1095 }
1096
1097 /*
1098  * Split writes up in sane blocksizes to avoid
1099  * denial-of-service type attacks
1100  */
1101 static inline ssize_t do_tty_write(
1102         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1103         struct tty_struct *tty,
1104         struct file *file,
1105         const char __user *buf,
1106         size_t count)
1107 {
1108         ssize_t ret, written = 0;
1109         unsigned int chunk;
1110
1111         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1112         if (ret < 0)
1113                 return ret;
1114
1115         /*
1116          * We chunk up writes into a temporary buffer. This
1117          * simplifies low-level drivers immensely, since they
1118          * don't have locking issues and user mode accesses.
1119          *
1120          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1121          * big chunk-size..
1122          *
1123          * The default chunk-size is 2kB, because the NTTY
1124          * layer has problems with bigger chunks. It will
1125          * claim to be able to handle more characters than
1126          * it actually does.
1127          *
1128          * FIXME: This can probably go away now except that 64K chunks
1129          * are too likely to fail unless switched to vmalloc...
1130          */
1131         chunk = 2048;
1132         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1133                 chunk = 65536;
1134         if (count < chunk)
1135                 chunk = count;
1136
1137         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1138         if (tty->write_cnt < chunk) {
1139                 unsigned char *buf_chunk;
1140
1141                 if (chunk < 1024)
1142                         chunk = 1024;
1143
1144                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1145                 if (!buf_chunk) {
1146                         ret = -ENOMEM;
1147                         goto out;
1148                 }
1149                 kfree(tty->write_buf);
1150                 tty->write_cnt = chunk;
1151                 tty->write_buf = buf_chunk;
1152         }
1153
1154         /* Do the write .. */
1155         for (;;) {
1156                 size_t size = count;
1157                 if (size > chunk)
1158                         size = chunk;
1159                 ret = -EFAULT;
1160                 if (copy_from_user(tty->write_buf, buf, size))
1161                         break;
1162                 ret = write(tty, file, tty->write_buf, size);
1163                 if (ret <= 0)
1164                         break;
1165                 written += ret;
1166                 buf += ret;
1167                 count -= ret;
1168                 if (!count)
1169                         break;
1170                 ret = -ERESTARTSYS;
1171                 if (signal_pending(current))
1172                         break;
1173                 cond_resched();
1174         }
1175         if (written) {
1176                 tty_update_time(&file_inode(file)->i_mtime);
1177                 ret = written;
1178         }
1179 out:
1180         tty_write_unlock(tty);
1181         return ret;
1182 }
1183
1184 /**
1185  * tty_write_message - write a message to a certain tty, not just the console.
1186  * @tty: the destination tty_struct
1187  * @msg: the message to write
1188  *
1189  * This is used for messages that need to be redirected to a specific tty.
1190  * We don't put it into the syslog queue right now maybe in the future if
1191  * really needed.
1192  *
1193  * We must still hold the BTM and test the CLOSING flag for the moment.
1194  */
1195
1196 void tty_write_message(struct tty_struct *tty, char *msg)
1197 {
1198         if (tty) {
1199                 mutex_lock(&tty->atomic_write_lock);
1200                 tty_lock(tty);
1201                 if (tty->ops->write && tty->count > 0) {
1202                         tty_unlock(tty);
1203                         tty->ops->write(tty, msg, strlen(msg));
1204                 } else
1205                         tty_unlock(tty);
1206                 tty_write_unlock(tty);
1207         }
1208         return;
1209 }
1210
1211
1212 /**
1213  *      tty_write               -       write method for tty device file
1214  *      @file: tty file pointer
1215  *      @buf: user data to write
1216  *      @count: bytes to write
1217  *      @ppos: unused
1218  *
1219  *      Write data to a tty device via the line discipline.
1220  *
1221  *      Locking:
1222  *              Locks the line discipline as required
1223  *              Writes to the tty driver are serialized by the atomic_write_lock
1224  *      and are then processed in chunks to the device. The line discipline
1225  *      write method will not be invoked in parallel for each device.
1226  */
1227
1228 static ssize_t tty_write(struct file *file, const char __user *buf,
1229                                                 size_t count, loff_t *ppos)
1230 {
1231         struct tty_struct *tty = file_tty(file);
1232         struct tty_ldisc *ld;
1233         ssize_t ret;
1234
1235         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1236                 return -EIO;
1237         if (!tty || !tty->ops->write ||
1238                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1239                         return -EIO;
1240         /* Short term debug to catch buggy drivers */
1241         if (tty->ops->write_room == NULL)
1242                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1243                         tty->driver->name);
1244         ld = tty_ldisc_ref_wait(tty);
1245         if (!ld->ops->write)
1246                 ret = -EIO;
1247         else
1248                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1249         tty_ldisc_deref(ld);
1250         return ret;
1251 }
1252
1253 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1254                                                 size_t count, loff_t *ppos)
1255 {
1256         struct file *p = NULL;
1257
1258         spin_lock(&redirect_lock);
1259         if (redirect)
1260                 p = get_file(redirect);
1261         spin_unlock(&redirect_lock);
1262
1263         if (p) {
1264                 ssize_t res;
1265                 res = vfs_write(p, buf, count, &p->f_pos);
1266                 fput(p);
1267                 return res;
1268         }
1269         return tty_write(file, buf, count, ppos);
1270 }
1271
1272 /**
1273  *      tty_send_xchar  -       send priority character
1274  *
1275  *      Send a high priority character to the tty even if stopped
1276  *
1277  *      Locking: none for xchar method, write ordering for write method.
1278  */
1279
1280 int tty_send_xchar(struct tty_struct *tty, char ch)
1281 {
1282         int     was_stopped = tty->stopped;
1283
1284         if (tty->ops->send_xchar) {
1285                 tty->ops->send_xchar(tty, ch);
1286                 return 0;
1287         }
1288
1289         if (tty_write_lock(tty, 0) < 0)
1290                 return -ERESTARTSYS;
1291
1292         if (was_stopped)
1293                 start_tty(tty);
1294         tty->ops->write(tty, &ch, 1);
1295         if (was_stopped)
1296                 stop_tty(tty);
1297         tty_write_unlock(tty);
1298         return 0;
1299 }
1300
1301 static char ptychar[] = "pqrstuvwxyzabcde";
1302
1303 /**
1304  *      pty_line_name   -       generate name for a pty
1305  *      @driver: the tty driver in use
1306  *      @index: the minor number
1307  *      @p: output buffer of at least 6 bytes
1308  *
1309  *      Generate a name from a driver reference and write it to the output
1310  *      buffer.
1311  *
1312  *      Locking: None
1313  */
1314 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1315 {
1316         int i = index + driver->name_base;
1317         /* ->name is initialized to "ttyp", but "tty" is expected */
1318         sprintf(p, "%s%c%x",
1319                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1320                 ptychar[i >> 4 & 0xf], i & 0xf);
1321 }
1322
1323 /**
1324  *      tty_line_name   -       generate name for a tty
1325  *      @driver: the tty driver in use
1326  *      @index: the minor number
1327  *      @p: output buffer of at least 7 bytes
1328  *
1329  *      Generate a name from a driver reference and write it to the output
1330  *      buffer.
1331  *
1332  *      Locking: None
1333  */
1334 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1335 {
1336         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1337                 return sprintf(p, "%s", driver->name);
1338         else
1339                 return sprintf(p, "%s%d", driver->name,
1340                                index + driver->name_base);
1341 }
1342
1343 /**
1344  *      tty_driver_lookup_tty() - find an existing tty, if any
1345  *      @driver: the driver for the tty
1346  *      @idx:    the minor number
1347  *
1348  *      Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1349  *      driver lookup() method returns an error.
1350  *
1351  *      Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1352  */
1353 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1354                 struct inode *inode, int idx)
1355 {
1356         struct tty_struct *tty;
1357
1358         if (driver->ops->lookup)
1359                 tty = driver->ops->lookup(driver, inode, idx);
1360         else
1361                 tty = driver->ttys[idx];
1362
1363         if (!IS_ERR(tty))
1364                 tty_kref_get(tty);
1365         return tty;
1366 }
1367
1368 /**
1369  *      tty_init_termios        -  helper for termios setup
1370  *      @tty: the tty to set up
1371  *
1372  *      Initialise the termios structures for this tty. Thus runs under
1373  *      the tty_mutex currently so we can be relaxed about ordering.
1374  */
1375
1376 int tty_init_termios(struct tty_struct *tty)
1377 {
1378         struct ktermios *tp;
1379         int idx = tty->index;
1380
1381         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1382                 tty->termios = tty->driver->init_termios;
1383         else {
1384                 /* Check for lazy saved data */
1385                 tp = tty->driver->termios[idx];
1386                 if (tp != NULL)
1387                         tty->termios = *tp;
1388                 else
1389                         tty->termios = tty->driver->init_termios;
1390         }
1391         /* Compatibility until drivers always set this */
1392         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1393         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1394         return 0;
1395 }
1396 EXPORT_SYMBOL_GPL(tty_init_termios);
1397
1398 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1399 {
1400         int ret = tty_init_termios(tty);
1401         if (ret)
1402                 return ret;
1403
1404         tty_driver_kref_get(driver);
1405         tty->count++;
1406         driver->ttys[tty->index] = tty;
1407         return 0;
1408 }
1409 EXPORT_SYMBOL_GPL(tty_standard_install);
1410
1411 /**
1412  *      tty_driver_install_tty() - install a tty entry in the driver
1413  *      @driver: the driver for the tty
1414  *      @tty: the tty
1415  *
1416  *      Install a tty object into the driver tables. The tty->index field
1417  *      will be set by the time this is called. This method is responsible
1418  *      for ensuring any need additional structures are allocated and
1419  *      configured.
1420  *
1421  *      Locking: tty_mutex for now
1422  */
1423 static int tty_driver_install_tty(struct tty_driver *driver,
1424                                                 struct tty_struct *tty)
1425 {
1426         return driver->ops->install ? driver->ops->install(driver, tty) :
1427                 tty_standard_install(driver, tty);
1428 }
1429
1430 /**
1431  *      tty_driver_remove_tty() - remove a tty from the driver tables
1432  *      @driver: the driver for the tty
1433  *      @idx:    the minor number
1434  *
1435  *      Remvoe a tty object from the driver tables. The tty->index field
1436  *      will be set by the time this is called.
1437  *
1438  *      Locking: tty_mutex for now
1439  */
1440 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1441 {
1442         if (driver->ops->remove)
1443                 driver->ops->remove(driver, tty);
1444         else
1445                 driver->ttys[tty->index] = NULL;
1446 }
1447
1448 /*
1449  *      tty_reopen()    - fast re-open of an open tty
1450  *      @tty    - the tty to open
1451  *
1452  *      Return 0 on success, -errno on error.
1453  *      Re-opens on master ptys are not allowed and return -EIO.
1454  *
1455  *      Locking: Caller must hold tty_lock
1456  */
1457 static int tty_reopen(struct tty_struct *tty)
1458 {
1459         struct tty_driver *driver = tty->driver;
1460
1461         if (!tty->count)
1462                 return -EIO;
1463
1464         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1465             driver->subtype == PTY_TYPE_MASTER)
1466                 return -EIO;
1467
1468         tty->count++;
1469
1470         WARN_ON(!tty->ldisc);
1471
1472         return 0;
1473 }
1474
1475 /**
1476  *      tty_init_dev            -       initialise a tty device
1477  *      @driver: tty driver we are opening a device on
1478  *      @idx: device index
1479  *      @ret_tty: returned tty structure
1480  *
1481  *      Prepare a tty device. This may not be a "new" clean device but
1482  *      could also be an active device. The pty drivers require special
1483  *      handling because of this.
1484  *
1485  *      Locking:
1486  *              The function is called under the tty_mutex, which
1487  *      protects us from the tty struct or driver itself going away.
1488  *
1489  *      On exit the tty device has the line discipline attached and
1490  *      a reference count of 1. If a pair was created for pty/tty use
1491  *      and the other was a pty master then it too has a reference count of 1.
1492  *
1493  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1494  * failed open.  The new code protects the open with a mutex, so it's
1495  * really quite straightforward.  The mutex locking can probably be
1496  * relaxed for the (most common) case of reopening a tty.
1497  */
1498
1499 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1500 {
1501         struct tty_struct *tty;
1502         int retval;
1503
1504         /*
1505          * First time open is complex, especially for PTY devices.
1506          * This code guarantees that either everything succeeds and the
1507          * TTY is ready for operation, or else the table slots are vacated
1508          * and the allocated memory released.  (Except that the termios
1509          * and locked termios may be retained.)
1510          */
1511
1512         if (!try_module_get(driver->owner))
1513                 return ERR_PTR(-ENODEV);
1514
1515         tty = alloc_tty_struct(driver, idx);
1516         if (!tty) {
1517                 retval = -ENOMEM;
1518                 goto err_module_put;
1519         }
1520
1521         tty_lock(tty);
1522         retval = tty_driver_install_tty(driver, tty);
1523         if (retval < 0)
1524                 goto err_deinit_tty;
1525
1526         if (!tty->port)
1527                 tty->port = driver->ports[idx];
1528
1529         WARN_RATELIMIT(!tty->port,
1530                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1531                         __func__, tty->driver->name);
1532
1533         tty->port->itty = tty;
1534
1535         /*
1536          * Structures all installed ... call the ldisc open routines.
1537          * If we fail here just call release_tty to clean up.  No need
1538          * to decrement the use counts, as release_tty doesn't care.
1539          */
1540         retval = tty_ldisc_setup(tty, tty->link);
1541         if (retval)
1542                 goto err_release_tty;
1543         /* Return the tty locked so that it cannot vanish under the caller */
1544         return tty;
1545
1546 err_deinit_tty:
1547         tty_unlock(tty);
1548         deinitialize_tty_struct(tty);
1549         free_tty_struct(tty);
1550 err_module_put:
1551         module_put(driver->owner);
1552         return ERR_PTR(retval);
1553
1554         /* call the tty release_tty routine to clean out this slot */
1555 err_release_tty:
1556         tty_unlock(tty);
1557         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1558                                  "clearing slot %d\n", idx);
1559         release_tty(tty, idx);
1560         return ERR_PTR(retval);
1561 }
1562
1563 void tty_free_termios(struct tty_struct *tty)
1564 {
1565         struct ktermios *tp;
1566         int idx = tty->index;
1567
1568         /* If the port is going to reset then it has no termios to save */
1569         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1570                 return;
1571
1572         /* Stash the termios data */
1573         tp = tty->driver->termios[idx];
1574         if (tp == NULL) {
1575                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1576                 if (tp == NULL) {
1577                         pr_warn("tty: no memory to save termios state.\n");
1578                         return;
1579                 }
1580                 tty->driver->termios[idx] = tp;
1581         }
1582         *tp = tty->termios;
1583 }
1584 EXPORT_SYMBOL(tty_free_termios);
1585
1586 /**
1587  *      tty_flush_works         -       flush all works of a tty/pty pair
1588  *      @tty: tty device to flush works for (or either end of a pty pair)
1589  *
1590  *      Sync flush all works belonging to @tty (and the 'other' tty).
1591  */
1592 static void tty_flush_works(struct tty_struct *tty)
1593 {
1594         flush_work(&tty->SAK_work);
1595         flush_work(&tty->hangup_work);
1596         if (tty->link) {
1597                 flush_work(&tty->link->SAK_work);
1598                 flush_work(&tty->link->hangup_work);
1599         }
1600 }
1601
1602 /**
1603  *      release_one_tty         -       release tty structure memory
1604  *      @kref: kref of tty we are obliterating
1605  *
1606  *      Releases memory associated with a tty structure, and clears out the
1607  *      driver table slots. This function is called when a device is no longer
1608  *      in use. It also gets called when setup of a device fails.
1609  *
1610  *      Locking:
1611  *              takes the file list lock internally when working on the list
1612  *      of ttys that the driver keeps.
1613  *
1614  *      This method gets called from a work queue so that the driver private
1615  *      cleanup ops can sleep (needed for USB at least)
1616  */
1617 static void release_one_tty(struct work_struct *work)
1618 {
1619         struct tty_struct *tty =
1620                 container_of(work, struct tty_struct, hangup_work);
1621         struct tty_driver *driver = tty->driver;
1622         struct module *owner = driver->owner;
1623
1624         if (tty->ops->cleanup)
1625                 tty->ops->cleanup(tty);
1626
1627         tty->magic = 0;
1628         tty_driver_kref_put(driver);
1629         module_put(owner);
1630
1631         spin_lock(&tty_files_lock);
1632         list_del_init(&tty->tty_files);
1633         spin_unlock(&tty_files_lock);
1634
1635         put_pid(tty->pgrp);
1636         put_pid(tty->session);
1637         free_tty_struct(tty);
1638 }
1639
1640 static void queue_release_one_tty(struct kref *kref)
1641 {
1642         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1643
1644         /* The hangup queue is now free so we can reuse it rather than
1645            waste a chunk of memory for each port */
1646         INIT_WORK(&tty->hangup_work, release_one_tty);
1647         schedule_work(&tty->hangup_work);
1648 }
1649
1650 /**
1651  *      tty_kref_put            -       release a tty kref
1652  *      @tty: tty device
1653  *
1654  *      Release a reference to a tty device and if need be let the kref
1655  *      layer destruct the object for us
1656  */
1657
1658 void tty_kref_put(struct tty_struct *tty)
1659 {
1660         if (tty)
1661                 kref_put(&tty->kref, queue_release_one_tty);
1662 }
1663 EXPORT_SYMBOL(tty_kref_put);
1664
1665 /**
1666  *      release_tty             -       release tty structure memory
1667  *
1668  *      Release both @tty and a possible linked partner (think pty pair),
1669  *      and decrement the refcount of the backing module.
1670  *
1671  *      Locking:
1672  *              tty_mutex
1673  *              takes the file list lock internally when working on the list
1674  *      of ttys that the driver keeps.
1675  *
1676  */
1677 static void release_tty(struct tty_struct *tty, int idx)
1678 {
1679         /* This should always be true but check for the moment */
1680         WARN_ON(tty->index != idx);
1681         WARN_ON(!mutex_is_locked(&tty_mutex));
1682         if (tty->ops->shutdown)
1683                 tty->ops->shutdown(tty);
1684         tty_free_termios(tty);
1685         tty_driver_remove_tty(tty->driver, tty);
1686         tty->port->itty = NULL;
1687         if (tty->link)
1688                 tty->link->port->itty = NULL;
1689         cancel_work_sync(&tty->port->buf.work);
1690
1691         if (tty->link)
1692                 tty_kref_put(tty->link);
1693         tty_kref_put(tty);
1694 }
1695
1696 /**
1697  *      tty_release_checks - check a tty before real release
1698  *      @tty: tty to check
1699  *      @o_tty: link of @tty (if any)
1700  *      @idx: index of the tty
1701  *
1702  *      Performs some paranoid checking before true release of the @tty.
1703  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1704  */
1705 static int tty_release_checks(struct tty_struct *tty, int idx)
1706 {
1707 #ifdef TTY_PARANOIA_CHECK
1708         if (idx < 0 || idx >= tty->driver->num) {
1709                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1710                                 __func__, tty->name);
1711                 return -1;
1712         }
1713
1714         /* not much to check for devpts */
1715         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1716                 return 0;
1717
1718         if (tty != tty->driver->ttys[idx]) {
1719                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1720                                 __func__, idx, tty->name);
1721                 return -1;
1722         }
1723         if (tty->driver->other) {
1724                 struct tty_struct *o_tty = tty->link;
1725
1726                 if (o_tty != tty->driver->other->ttys[idx]) {
1727                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1728                                         __func__, idx, tty->name);
1729                         return -1;
1730                 }
1731                 if (o_tty->link != tty) {
1732                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1733                         return -1;
1734                 }
1735         }
1736 #endif
1737         return 0;
1738 }
1739
1740 /**
1741  *      tty_release             -       vfs callback for close
1742  *      @inode: inode of tty
1743  *      @filp: file pointer for handle to tty
1744  *
1745  *      Called the last time each file handle is closed that references
1746  *      this tty. There may however be several such references.
1747  *
1748  *      Locking:
1749  *              Takes bkl. See tty_release_dev
1750  *
1751  * Even releasing the tty structures is a tricky business.. We have
1752  * to be very careful that the structures are all released at the
1753  * same time, as interrupts might otherwise get the wrong pointers.
1754  *
1755  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1756  * lead to double frees or releasing memory still in use.
1757  */
1758
1759 int tty_release(struct inode *inode, struct file *filp)
1760 {
1761         struct tty_struct *tty = file_tty(filp);
1762         struct tty_struct *o_tty = NULL;
1763         int     do_sleep, final;
1764         int     idx;
1765         char    buf[64];
1766         long    timeout = 0;
1767         int     once = 1;
1768
1769         if (tty_paranoia_check(tty, inode, __func__))
1770                 return 0;
1771
1772         tty_lock(tty);
1773         check_tty_count(tty, __func__);
1774
1775         __tty_fasync(-1, filp, 0);
1776
1777         idx = tty->index;
1778         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1779             tty->driver->subtype == PTY_TYPE_MASTER)
1780                 o_tty = tty->link;
1781
1782         if (tty_release_checks(tty, idx)) {
1783                 tty_unlock(tty);
1784                 return 0;
1785         }
1786
1787 #ifdef TTY_DEBUG_HANGUP
1788         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1789                         tty_name(tty, buf), tty->count);
1790 #endif
1791
1792         if (tty->ops->close)
1793                 tty->ops->close(tty, filp);
1794
1795         /* If tty is pty master, lock the slave pty (stable lock order) */
1796         tty_lock_slave(o_tty);
1797
1798         /*
1799          * Sanity check: if tty->count is going to zero, there shouldn't be
1800          * any waiters on tty->read_wait or tty->write_wait.  We test the
1801          * wait queues and kick everyone out _before_ actually starting to
1802          * close.  This ensures that we won't block while releasing the tty
1803          * structure.
1804          *
1805          * The test for the o_tty closing is necessary, since the master and
1806          * slave sides may close in any order.  If the slave side closes out
1807          * first, its count will be one, since the master side holds an open.
1808          * Thus this test wouldn't be triggered at the time the slave closed,
1809          * so we do it now.
1810          */
1811         while (1) {
1812                 do_sleep = 0;
1813
1814                 if (tty->count <= 1) {
1815                         if (waitqueue_active(&tty->read_wait)) {
1816                                 wake_up_poll(&tty->read_wait, POLLIN);
1817                                 do_sleep++;
1818                         }
1819                         if (waitqueue_active(&tty->write_wait)) {
1820                                 wake_up_poll(&tty->write_wait, POLLOUT);
1821                                 do_sleep++;
1822                         }
1823                 }
1824                 if (o_tty && o_tty->count <= 1) {
1825                         if (waitqueue_active(&o_tty->read_wait)) {
1826                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1827                                 do_sleep++;
1828                         }
1829                         if (waitqueue_active(&o_tty->write_wait)) {
1830                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1831                                 do_sleep++;
1832                         }
1833                 }
1834                 if (!do_sleep)
1835                         break;
1836
1837                 if (once) {
1838                         once = 0;
1839                         printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1840                                __func__, tty_name(tty, buf));
1841                 }
1842                 schedule_timeout_killable(timeout);
1843                 if (timeout < 120 * HZ)
1844                         timeout = 2 * timeout + 1;
1845                 else
1846                         timeout = MAX_SCHEDULE_TIMEOUT;
1847         }
1848
1849         if (o_tty) {
1850                 if (--o_tty->count < 0) {
1851                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1852                                 __func__, o_tty->count, tty_name(o_tty, buf));
1853                         o_tty->count = 0;
1854                 }
1855         }
1856         if (--tty->count < 0) {
1857                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1858                                 __func__, tty->count, tty_name(tty, buf));
1859                 tty->count = 0;
1860         }
1861
1862         /*
1863          * We've decremented tty->count, so we need to remove this file
1864          * descriptor off the tty->tty_files list; this serves two
1865          * purposes:
1866          *  - check_tty_count sees the correct number of file descriptors
1867          *    associated with this tty.
1868          *  - do_tty_hangup no longer sees this file descriptor as
1869          *    something that needs to be handled for hangups.
1870          */
1871         tty_del_file(filp);
1872
1873         /*
1874          * Perform some housekeeping before deciding whether to return.
1875          *
1876          * If _either_ side is closing, make sure there aren't any
1877          * processes that still think tty or o_tty is their controlling
1878          * tty.
1879          */
1880         if (!tty->count) {
1881                 read_lock(&tasklist_lock);
1882                 session_clear_tty(tty->session);
1883                 if (o_tty)
1884                         session_clear_tty(o_tty->session);
1885                 read_unlock(&tasklist_lock);
1886         }
1887
1888         /* check whether both sides are closing ... */
1889         final = !tty->count && !(o_tty && o_tty->count);
1890
1891         tty_unlock_slave(o_tty);
1892         tty_unlock(tty);
1893
1894         /* At this point, the tty->count == 0 should ensure a dead tty
1895            cannot be re-opened by a racing opener */
1896
1897         if (!final)
1898                 return 0;
1899
1900 #ifdef TTY_DEBUG_HANGUP
1901         printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1902 #endif
1903         /*
1904          * Ask the line discipline code to release its structures
1905          */
1906         tty_ldisc_release(tty);
1907
1908         /* Wait for pending work before tty destruction commmences */
1909         tty_flush_works(tty);
1910
1911 #ifdef TTY_DEBUG_HANGUP
1912         printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1913 #endif
1914         /*
1915          * The release_tty function takes care of the details of clearing
1916          * the slots and preserving the termios structure. The tty_unlock_pair
1917          * should be safe as we keep a kref while the tty is locked (so the
1918          * unlock never unlocks a freed tty).
1919          */
1920         mutex_lock(&tty_mutex);
1921         release_tty(tty, idx);
1922         mutex_unlock(&tty_mutex);
1923
1924         return 0;
1925 }
1926
1927 /**
1928  *      tty_open_current_tty - get locked tty of current task
1929  *      @device: device number
1930  *      @filp: file pointer to tty
1931  *      @return: locked tty of the current task iff @device is /dev/tty
1932  *
1933  *      Performs a re-open of the current task's controlling tty.
1934  *
1935  *      We cannot return driver and index like for the other nodes because
1936  *      devpts will not work then. It expects inodes to be from devpts FS.
1937  */
1938 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1939 {
1940         struct tty_struct *tty;
1941         int retval;
1942
1943         if (device != MKDEV(TTYAUX_MAJOR, 0))
1944                 return NULL;
1945
1946         tty = get_current_tty();
1947         if (!tty)
1948                 return ERR_PTR(-ENXIO);
1949
1950         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1951         /* noctty = 1; */
1952         tty_lock(tty);
1953         tty_kref_put(tty);      /* safe to drop the kref now */
1954
1955         retval = tty_reopen(tty);
1956         if (retval < 0) {
1957                 tty_unlock(tty);
1958                 tty = ERR_PTR(retval);
1959         }
1960         return tty;
1961 }
1962
1963 /**
1964  *      tty_lookup_driver - lookup a tty driver for a given device file
1965  *      @device: device number
1966  *      @filp: file pointer to tty
1967  *      @noctty: set if the device should not become a controlling tty
1968  *      @index: index for the device in the @return driver
1969  *      @return: driver for this inode (with increased refcount)
1970  *
1971  *      If @return is not erroneous, the caller is responsible to decrement the
1972  *      refcount by tty_driver_kref_put.
1973  *
1974  *      Locking: tty_mutex protects get_tty_driver
1975  */
1976 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1977                 int *noctty, int *index)
1978 {
1979         struct tty_driver *driver;
1980
1981         switch (device) {
1982 #ifdef CONFIG_VT
1983         case MKDEV(TTY_MAJOR, 0): {
1984                 extern struct tty_driver *console_driver;
1985                 driver = tty_driver_kref_get(console_driver);
1986                 *index = fg_console;
1987                 *noctty = 1;
1988                 break;
1989         }
1990 #endif
1991         case MKDEV(TTYAUX_MAJOR, 1): {
1992                 struct tty_driver *console_driver = console_device(index);
1993                 if (console_driver) {
1994                         driver = tty_driver_kref_get(console_driver);
1995                         if (driver) {
1996                                 /* Don't let /dev/console block */
1997                                 filp->f_flags |= O_NONBLOCK;
1998                                 *noctty = 1;
1999                                 break;
2000                         }
2001                 }
2002                 return ERR_PTR(-ENODEV);
2003         }
2004         default:
2005                 driver = get_tty_driver(device, index);
2006                 if (!driver)
2007                         return ERR_PTR(-ENODEV);
2008                 break;
2009         }
2010         return driver;
2011 }
2012
2013 /**
2014  *      tty_open                -       open a tty device
2015  *      @inode: inode of device file
2016  *      @filp: file pointer to tty
2017  *
2018  *      tty_open and tty_release keep up the tty count that contains the
2019  *      number of opens done on a tty. We cannot use the inode-count, as
2020  *      different inodes might point to the same tty.
2021  *
2022  *      Open-counting is needed for pty masters, as well as for keeping
2023  *      track of serial lines: DTR is dropped when the last close happens.
2024  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
2025  *
2026  *      The termios state of a pty is reset on first open so that
2027  *      settings don't persist across reuse.
2028  *
2029  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2030  *               tty->count should protect the rest.
2031  *               ->siglock protects ->signal/->sighand
2032  *
2033  *      Note: the tty_unlock/lock cases without a ref are only safe due to
2034  *      tty_mutex
2035  */
2036
2037 static int tty_open(struct inode *inode, struct file *filp)
2038 {
2039         struct tty_struct *tty;
2040         int noctty, retval;
2041         struct tty_driver *driver = NULL;
2042         int index;
2043         dev_t device = inode->i_rdev;
2044         unsigned saved_flags = filp->f_flags;
2045
2046         nonseekable_open(inode, filp);
2047
2048 retry_open:
2049         retval = tty_alloc_file(filp);
2050         if (retval)
2051                 return -ENOMEM;
2052
2053         noctty = filp->f_flags & O_NOCTTY;
2054         index  = -1;
2055         retval = 0;
2056
2057         tty = tty_open_current_tty(device, filp);
2058         if (!tty) {
2059                 mutex_lock(&tty_mutex);
2060                 driver = tty_lookup_driver(device, filp, &noctty, &index);
2061                 if (IS_ERR(driver)) {
2062                         retval = PTR_ERR(driver);
2063                         goto err_unlock;
2064                 }
2065
2066                 /* check whether we're reopening an existing tty */
2067                 tty = tty_driver_lookup_tty(driver, inode, index);
2068                 if (IS_ERR(tty)) {
2069                         retval = PTR_ERR(tty);
2070                         goto err_unlock;
2071                 }
2072
2073                 if (tty) {
2074                         mutex_unlock(&tty_mutex);
2075                         tty_lock(tty);
2076                         /* safe to drop the kref from tty_driver_lookup_tty() */
2077                         tty_kref_put(tty);
2078                         retval = tty_reopen(tty);
2079                         if (retval < 0) {
2080                                 tty_unlock(tty);
2081                                 tty = ERR_PTR(retval);
2082                         }
2083                 } else { /* Returns with the tty_lock held for now */
2084                         tty = tty_init_dev(driver, index);
2085                         mutex_unlock(&tty_mutex);
2086                 }
2087
2088                 tty_driver_kref_put(driver);
2089         }
2090
2091         if (IS_ERR(tty)) {
2092                 retval = PTR_ERR(tty);
2093                 goto err_file;
2094         }
2095
2096         tty_add_file(tty, filp);
2097
2098         check_tty_count(tty, __func__);
2099         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2100             tty->driver->subtype == PTY_TYPE_MASTER)
2101                 noctty = 1;
2102 #ifdef TTY_DEBUG_HANGUP
2103         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2104 #endif
2105         if (tty->ops->open)
2106                 retval = tty->ops->open(tty, filp);
2107         else
2108                 retval = -ENODEV;
2109         filp->f_flags = saved_flags;
2110
2111         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2112                                                 !capable(CAP_SYS_ADMIN))
2113                 retval = -EBUSY;
2114
2115         if (retval) {
2116 #ifdef TTY_DEBUG_HANGUP
2117                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2118                                 retval, tty->name);
2119 #endif
2120                 tty_unlock(tty); /* need to call tty_release without BTM */
2121                 tty_release(inode, filp);
2122                 if (retval != -ERESTARTSYS)
2123                         return retval;
2124
2125                 if (signal_pending(current))
2126                         return retval;
2127
2128                 schedule();
2129                 /*
2130                  * Need to reset f_op in case a hangup happened.
2131                  */
2132                 if (tty_hung_up_p(filp))
2133                         filp->f_op = &tty_fops;
2134                 goto retry_open;
2135         }
2136         clear_bit(TTY_HUPPED, &tty->flags);
2137
2138
2139         read_lock(&tasklist_lock);
2140         spin_lock_irq(&current->sighand->siglock);
2141         if (!noctty &&
2142             current->signal->leader &&
2143             !current->signal->tty &&
2144             tty->session == NULL)
2145                 __proc_set_tty(tty);
2146         spin_unlock_irq(&current->sighand->siglock);
2147         read_unlock(&tasklist_lock);
2148         tty_unlock(tty);
2149         return 0;
2150 err_unlock:
2151         mutex_unlock(&tty_mutex);
2152         /* after locks to avoid deadlock */
2153         if (!IS_ERR_OR_NULL(driver))
2154                 tty_driver_kref_put(driver);
2155 err_file:
2156         tty_free_file(filp);
2157         return retval;
2158 }
2159
2160
2161
2162 /**
2163  *      tty_poll        -       check tty status
2164  *      @filp: file being polled
2165  *      @wait: poll wait structures to update
2166  *
2167  *      Call the line discipline polling method to obtain the poll
2168  *      status of the device.
2169  *
2170  *      Locking: locks called line discipline but ldisc poll method
2171  *      may be re-entered freely by other callers.
2172  */
2173
2174 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2175 {
2176         struct tty_struct *tty = file_tty(filp);
2177         struct tty_ldisc *ld;
2178         int ret = 0;
2179
2180         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2181                 return 0;
2182
2183         ld = tty_ldisc_ref_wait(tty);
2184         if (ld->ops->poll)
2185                 ret = ld->ops->poll(tty, filp, wait);
2186         tty_ldisc_deref(ld);
2187         return ret;
2188 }
2189
2190 static int __tty_fasync(int fd, struct file *filp, int on)
2191 {
2192         struct tty_struct *tty = file_tty(filp);
2193         struct tty_ldisc *ldisc;
2194         unsigned long flags;
2195         int retval = 0;
2196
2197         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2198                 goto out;
2199
2200         retval = fasync_helper(fd, filp, on, &tty->fasync);
2201         if (retval <= 0)
2202                 goto out;
2203
2204         ldisc = tty_ldisc_ref(tty);
2205         if (ldisc) {
2206                 if (ldisc->ops->fasync)
2207                         ldisc->ops->fasync(tty, on);
2208                 tty_ldisc_deref(ldisc);
2209         }
2210
2211         if (on) {
2212                 enum pid_type type;
2213                 struct pid *pid;
2214
2215                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2216                 if (tty->pgrp) {
2217                         pid = tty->pgrp;
2218                         type = PIDTYPE_PGID;
2219                 } else {
2220                         pid = task_pid(current);
2221                         type = PIDTYPE_PID;
2222                 }
2223                 get_pid(pid);
2224                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2225                 __f_setown(filp, pid, type, 0);
2226                 put_pid(pid);
2227                 retval = 0;
2228         }
2229 out:
2230         return retval;
2231 }
2232
2233 static int tty_fasync(int fd, struct file *filp, int on)
2234 {
2235         struct tty_struct *tty = file_tty(filp);
2236         int retval;
2237
2238         tty_lock(tty);
2239         retval = __tty_fasync(fd, filp, on);
2240         tty_unlock(tty);
2241
2242         return retval;
2243 }
2244
2245 /**
2246  *      tiocsti                 -       fake input character
2247  *      @tty: tty to fake input into
2248  *      @p: pointer to character
2249  *
2250  *      Fake input to a tty device. Does the necessary locking and
2251  *      input management.
2252  *
2253  *      FIXME: does not honour flow control ??
2254  *
2255  *      Locking:
2256  *              Called functions take tty_ldiscs_lock
2257  *              current->signal->tty check is safe without locks
2258  *
2259  *      FIXME: may race normal receive processing
2260  */
2261
2262 static int tiocsti(struct tty_struct *tty, char __user *p)
2263 {
2264         char ch, mbz = 0;
2265         struct tty_ldisc *ld;
2266
2267         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2268                 return -EPERM;
2269         if (get_user(ch, p))
2270                 return -EFAULT;
2271         tty_audit_tiocsti(tty, ch);
2272         ld = tty_ldisc_ref_wait(tty);
2273         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2274         tty_ldisc_deref(ld);
2275         return 0;
2276 }
2277
2278 /**
2279  *      tiocgwinsz              -       implement window query ioctl
2280  *      @tty; tty
2281  *      @arg: user buffer for result
2282  *
2283  *      Copies the kernel idea of the window size into the user buffer.
2284  *
2285  *      Locking: tty->winsize_mutex is taken to ensure the winsize data
2286  *              is consistent.
2287  */
2288
2289 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2290 {
2291         int err;
2292
2293         mutex_lock(&tty->winsize_mutex);
2294         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2295         mutex_unlock(&tty->winsize_mutex);
2296
2297         return err ? -EFAULT: 0;
2298 }
2299
2300 /**
2301  *      tty_do_resize           -       resize event
2302  *      @tty: tty being resized
2303  *      @rows: rows (character)
2304  *      @cols: cols (character)
2305  *
2306  *      Update the termios variables and send the necessary signals to
2307  *      peform a terminal resize correctly
2308  */
2309
2310 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2311 {
2312         struct pid *pgrp;
2313
2314         /* Lock the tty */
2315         mutex_lock(&tty->winsize_mutex);
2316         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2317                 goto done;
2318
2319         /* Signal the foreground process group */
2320         pgrp = tty_get_pgrp(tty);
2321         if (pgrp)
2322                 kill_pgrp(pgrp, SIGWINCH, 1);
2323         put_pid(pgrp);
2324
2325         tty->winsize = *ws;
2326 done:
2327         mutex_unlock(&tty->winsize_mutex);
2328         return 0;
2329 }
2330 EXPORT_SYMBOL(tty_do_resize);
2331
2332 /**
2333  *      tiocswinsz              -       implement window size set ioctl
2334  *      @tty; tty side of tty
2335  *      @arg: user buffer for result
2336  *
2337  *      Copies the user idea of the window size to the kernel. Traditionally
2338  *      this is just advisory information but for the Linux console it
2339  *      actually has driver level meaning and triggers a VC resize.
2340  *
2341  *      Locking:
2342  *              Driver dependent. The default do_resize method takes the
2343  *      tty termios mutex and ctrl_lock. The console takes its own lock
2344  *      then calls into the default method.
2345  */
2346
2347 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2348 {
2349         struct winsize tmp_ws;
2350         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2351                 return -EFAULT;
2352
2353         if (tty->ops->resize)
2354                 return tty->ops->resize(tty, &tmp_ws);
2355         else
2356                 return tty_do_resize(tty, &tmp_ws);
2357 }
2358
2359 /**
2360  *      tioccons        -       allow admin to move logical console
2361  *      @file: the file to become console
2362  *
2363  *      Allow the administrator to move the redirected console device
2364  *
2365  *      Locking: uses redirect_lock to guard the redirect information
2366  */
2367
2368 static int tioccons(struct file *file)
2369 {
2370         if (!capable(CAP_SYS_ADMIN))
2371                 return -EPERM;
2372         if (file->f_op->write == redirected_tty_write) {
2373                 struct file *f;
2374                 spin_lock(&redirect_lock);
2375                 f = redirect;
2376                 redirect = NULL;
2377                 spin_unlock(&redirect_lock);
2378                 if (f)
2379                         fput(f);
2380                 return 0;
2381         }
2382         spin_lock(&redirect_lock);
2383         if (redirect) {
2384                 spin_unlock(&redirect_lock);
2385                 return -EBUSY;
2386         }
2387         redirect = get_file(file);
2388         spin_unlock(&redirect_lock);
2389         return 0;
2390 }
2391
2392 /**
2393  *      fionbio         -       non blocking ioctl
2394  *      @file: file to set blocking value
2395  *      @p: user parameter
2396  *
2397  *      Historical tty interfaces had a blocking control ioctl before
2398  *      the generic functionality existed. This piece of history is preserved
2399  *      in the expected tty API of posix OS's.
2400  *
2401  *      Locking: none, the open file handle ensures it won't go away.
2402  */
2403
2404 static int fionbio(struct file *file, int __user *p)
2405 {
2406         int nonblock;
2407
2408         if (get_user(nonblock, p))
2409                 return -EFAULT;
2410
2411         spin_lock(&file->f_lock);
2412         if (nonblock)
2413                 file->f_flags |= O_NONBLOCK;
2414         else
2415                 file->f_flags &= ~O_NONBLOCK;
2416         spin_unlock(&file->f_lock);
2417         return 0;
2418 }
2419
2420 /**
2421  *      tiocsctty       -       set controlling tty
2422  *      @tty: tty structure
2423  *      @arg: user argument
2424  *
2425  *      This ioctl is used to manage job control. It permits a session
2426  *      leader to set this tty as the controlling tty for the session.
2427  *
2428  *      Locking:
2429  *              Takes tty_lock() to serialize proc_set_tty() for this tty
2430  *              Takes tasklist_lock internally to walk sessions
2431  *              Takes ->siglock() when updating signal->tty
2432  */
2433
2434 static int tiocsctty(struct tty_struct *tty, int arg)
2435 {
2436         int ret = 0;
2437
2438         tty_lock(tty);
2439         read_lock(&tasklist_lock);
2440
2441         if (current->signal->leader && (task_session(current) == tty->session))
2442                 goto unlock;
2443
2444         /*
2445          * The process must be a session leader and
2446          * not have a controlling tty already.
2447          */
2448         if (!current->signal->leader || current->signal->tty) {
2449                 ret = -EPERM;
2450                 goto unlock;
2451         }
2452
2453         if (tty->session) {
2454                 /*
2455                  * This tty is already the controlling
2456                  * tty for another session group!
2457                  */
2458                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2459                         /*
2460                          * Steal it away
2461                          */
2462                         session_clear_tty(tty->session);
2463                 } else {
2464                         ret = -EPERM;
2465                         goto unlock;
2466                 }
2467         }
2468         proc_set_tty(tty);
2469 unlock:
2470         read_unlock(&tasklist_lock);
2471         tty_unlock(tty);
2472         return ret;
2473 }
2474
2475 /**
2476  *      tty_get_pgrp    -       return a ref counted pgrp pid
2477  *      @tty: tty to read
2478  *
2479  *      Returns a refcounted instance of the pid struct for the process
2480  *      group controlling the tty.
2481  */
2482
2483 struct pid *tty_get_pgrp(struct tty_struct *tty)
2484 {
2485         unsigned long flags;
2486         struct pid *pgrp;
2487
2488         spin_lock_irqsave(&tty->ctrl_lock, flags);
2489         pgrp = get_pid(tty->pgrp);
2490         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2491
2492         return pgrp;
2493 }
2494 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2495
2496 /*
2497  * This checks not only the pgrp, but falls back on the pid if no
2498  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2499  * without this...
2500  *
2501  * The caller must hold rcu lock or the tasklist lock.
2502  */
2503 static struct pid *session_of_pgrp(struct pid *pgrp)
2504 {
2505         struct task_struct *p;
2506         struct pid *sid = NULL;
2507
2508         p = pid_task(pgrp, PIDTYPE_PGID);
2509         if (p == NULL)
2510                 p = pid_task(pgrp, PIDTYPE_PID);
2511         if (p != NULL)
2512                 sid = task_session(p);
2513
2514         return sid;
2515 }
2516
2517 /**
2518  *      tiocgpgrp               -       get process group
2519  *      @tty: tty passed by user
2520  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2521  *      @p: returned pid
2522  *
2523  *      Obtain the process group of the tty. If there is no process group
2524  *      return an error.
2525  *
2526  *      Locking: none. Reference to current->signal->tty is safe.
2527  */
2528
2529 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2530 {
2531         struct pid *pid;
2532         int ret;
2533         /*
2534          * (tty == real_tty) is a cheap way of
2535          * testing if the tty is NOT a master pty.
2536          */
2537         if (tty == real_tty && current->signal->tty != real_tty)
2538                 return -ENOTTY;
2539         pid = tty_get_pgrp(real_tty);
2540         ret =  put_user(pid_vnr(pid), p);
2541         put_pid(pid);
2542         return ret;
2543 }
2544
2545 /**
2546  *      tiocspgrp               -       attempt to set process group
2547  *      @tty: tty passed by user
2548  *      @real_tty: tty side device matching tty passed by user
2549  *      @p: pid pointer
2550  *
2551  *      Set the process group of the tty to the session passed. Only
2552  *      permitted where the tty session is our session.
2553  *
2554  *      Locking: RCU, ctrl lock
2555  */
2556
2557 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2558 {
2559         struct pid *pgrp;
2560         pid_t pgrp_nr;
2561         int retval = tty_check_change(real_tty);
2562         unsigned long flags;
2563
2564         if (retval == -EIO)
2565                 return -ENOTTY;
2566         if (retval)
2567                 return retval;
2568         if (!current->signal->tty ||
2569             (current->signal->tty != real_tty) ||
2570             (real_tty->session != task_session(current)))
2571                 return -ENOTTY;
2572         if (get_user(pgrp_nr, p))
2573                 return -EFAULT;
2574         if (pgrp_nr < 0)
2575                 return -EINVAL;
2576         rcu_read_lock();
2577         pgrp = find_vpid(pgrp_nr);
2578         retval = -ESRCH;
2579         if (!pgrp)
2580                 goto out_unlock;
2581         retval = -EPERM;
2582         if (session_of_pgrp(pgrp) != task_session(current))
2583                 goto out_unlock;
2584         retval = 0;
2585         spin_lock_irqsave(&tty->ctrl_lock, flags);
2586         put_pid(real_tty->pgrp);
2587         real_tty->pgrp = get_pid(pgrp);
2588         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2589 out_unlock:
2590         rcu_read_unlock();
2591         return retval;
2592 }
2593
2594 /**
2595  *      tiocgsid                -       get session id
2596  *      @tty: tty passed by user
2597  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2598  *      @p: pointer to returned session id
2599  *
2600  *      Obtain the session id of the tty. If there is no session
2601  *      return an error.
2602  *
2603  *      Locking: none. Reference to current->signal->tty is safe.
2604  */
2605
2606 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2607 {
2608         /*
2609          * (tty == real_tty) is a cheap way of
2610          * testing if the tty is NOT a master pty.
2611         */
2612         if (tty == real_tty && current->signal->tty != real_tty)
2613                 return -ENOTTY;
2614         if (!real_tty->session)
2615                 return -ENOTTY;
2616         return put_user(pid_vnr(real_tty->session), p);
2617 }
2618
2619 /**
2620  *      tiocsetd        -       set line discipline
2621  *      @tty: tty device
2622  *      @p: pointer to user data
2623  *
2624  *      Set the line discipline according to user request.
2625  *
2626  *      Locking: see tty_set_ldisc, this function is just a helper
2627  */
2628
2629 static int tiocsetd(struct tty_struct *tty, int __user *p)
2630 {
2631         int ldisc;
2632         int ret;
2633
2634         if (get_user(ldisc, p))
2635                 return -EFAULT;
2636
2637         ret = tty_set_ldisc(tty, ldisc);
2638
2639         return ret;
2640 }
2641
2642 /**
2643  *      send_break      -       performed time break
2644  *      @tty: device to break on
2645  *      @duration: timeout in mS
2646  *
2647  *      Perform a timed break on hardware that lacks its own driver level
2648  *      timed break functionality.
2649  *
2650  *      Locking:
2651  *              atomic_write_lock serializes
2652  *
2653  */
2654
2655 static int send_break(struct tty_struct *tty, unsigned int duration)
2656 {
2657         int retval;
2658
2659         if (tty->ops->break_ctl == NULL)
2660                 return 0;
2661
2662         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2663                 retval = tty->ops->break_ctl(tty, duration);
2664         else {
2665                 /* Do the work ourselves */
2666                 if (tty_write_lock(tty, 0) < 0)
2667                         return -EINTR;
2668                 retval = tty->ops->break_ctl(tty, -1);
2669                 if (retval)
2670                         goto out;
2671                 if (!signal_pending(current))
2672                         msleep_interruptible(duration);
2673                 retval = tty->ops->break_ctl(tty, 0);
2674 out:
2675                 tty_write_unlock(tty);
2676                 if (signal_pending(current))
2677                         retval = -EINTR;
2678         }
2679         return retval;
2680 }
2681
2682 /**
2683  *      tty_tiocmget            -       get modem status
2684  *      @tty: tty device
2685  *      @file: user file pointer
2686  *      @p: pointer to result
2687  *
2688  *      Obtain the modem status bits from the tty driver if the feature
2689  *      is supported. Return -EINVAL if it is not available.
2690  *
2691  *      Locking: none (up to the driver)
2692  */
2693
2694 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2695 {
2696         int retval = -EINVAL;
2697
2698         if (tty->ops->tiocmget) {
2699                 retval = tty->ops->tiocmget(tty);
2700
2701                 if (retval >= 0)
2702                         retval = put_user(retval, p);
2703         }
2704         return retval;
2705 }
2706
2707 /**
2708  *      tty_tiocmset            -       set modem status
2709  *      @tty: tty device
2710  *      @cmd: command - clear bits, set bits or set all
2711  *      @p: pointer to desired bits
2712  *
2713  *      Set the modem status bits from the tty driver if the feature
2714  *      is supported. Return -EINVAL if it is not available.
2715  *
2716  *      Locking: none (up to the driver)
2717  */
2718
2719 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2720              unsigned __user *p)
2721 {
2722         int retval;
2723         unsigned int set, clear, val;
2724
2725         if (tty->ops->tiocmset == NULL)
2726                 return -EINVAL;
2727
2728         retval = get_user(val, p);
2729         if (retval)
2730                 return retval;
2731         set = clear = 0;
2732         switch (cmd) {
2733         case TIOCMBIS:
2734                 set = val;
2735                 break;
2736         case TIOCMBIC:
2737                 clear = val;
2738                 break;
2739         case TIOCMSET:
2740                 set = val;
2741                 clear = ~val;
2742                 break;
2743         }
2744         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2745         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2746         return tty->ops->tiocmset(tty, set, clear);
2747 }
2748
2749 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2750 {
2751         int retval = -EINVAL;
2752         struct serial_icounter_struct icount;
2753         memset(&icount, 0, sizeof(icount));
2754         if (tty->ops->get_icount)
2755                 retval = tty->ops->get_icount(tty, &icount);
2756         if (retval != 0)
2757                 return retval;
2758         if (copy_to_user(arg, &icount, sizeof(icount)))
2759                 return -EFAULT;
2760         return 0;
2761 }
2762
2763 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2764 {
2765         static DEFINE_RATELIMIT_STATE(depr_flags,
2766                         DEFAULT_RATELIMIT_INTERVAL,
2767                         DEFAULT_RATELIMIT_BURST);
2768         char comm[TASK_COMM_LEN];
2769         int flags;
2770
2771         if (get_user(flags, &ss->flags))
2772                 return;
2773
2774         flags &= ASYNC_DEPRECATED;
2775
2776         if (flags && __ratelimit(&depr_flags))
2777                 pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2778                                 __func__, get_task_comm(comm, current), flags);
2779 }
2780
2781 /*
2782  * if pty, return the slave side (real_tty)
2783  * otherwise, return self
2784  */
2785 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2786 {
2787         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2788             tty->driver->subtype == PTY_TYPE_MASTER)
2789                 tty = tty->link;
2790         return tty;
2791 }
2792
2793 /*
2794  * Split this up, as gcc can choke on it otherwise..
2795  */
2796 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2797 {
2798         struct tty_struct *tty = file_tty(file);
2799         struct tty_struct *real_tty;
2800         void __user *p = (void __user *)arg;
2801         int retval;
2802         struct tty_ldisc *ld;
2803
2804         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2805                 return -EINVAL;
2806
2807         real_tty = tty_pair_get_tty(tty);
2808
2809         /*
2810          * Factor out some common prep work
2811          */
2812         switch (cmd) {
2813         case TIOCSETD:
2814         case TIOCSBRK:
2815         case TIOCCBRK:
2816         case TCSBRK:
2817         case TCSBRKP:
2818                 retval = tty_check_change(tty);
2819                 if (retval)
2820                         return retval;
2821                 if (cmd != TIOCCBRK) {
2822                         tty_wait_until_sent(tty, 0);
2823                         if (signal_pending(current))
2824                                 return -EINTR;
2825                 }
2826                 break;
2827         }
2828
2829         /*
2830          *      Now do the stuff.
2831          */
2832         switch (cmd) {
2833         case TIOCSTI:
2834                 return tiocsti(tty, p);
2835         case TIOCGWINSZ:
2836                 return tiocgwinsz(real_tty, p);
2837         case TIOCSWINSZ:
2838                 return tiocswinsz(real_tty, p);
2839         case TIOCCONS:
2840                 return real_tty != tty ? -EINVAL : tioccons(file);
2841         case FIONBIO:
2842                 return fionbio(file, p);
2843         case TIOCEXCL:
2844                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2845                 return 0;
2846         case TIOCNXCL:
2847                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2848                 return 0;
2849         case TIOCGEXCL:
2850         {
2851                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2852                 return put_user(excl, (int __user *)p);
2853         }
2854         case TIOCNOTTY:
2855                 if (current->signal->tty != tty)
2856                         return -ENOTTY;
2857                 no_tty();
2858                 return 0;
2859         case TIOCSCTTY:
2860                 return tiocsctty(tty, arg);
2861         case TIOCGPGRP:
2862                 return tiocgpgrp(tty, real_tty, p);
2863         case TIOCSPGRP:
2864                 return tiocspgrp(tty, real_tty, p);
2865         case TIOCGSID:
2866                 return tiocgsid(tty, real_tty, p);
2867         case TIOCGETD:
2868                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2869         case TIOCSETD:
2870                 return tiocsetd(tty, p);
2871         case TIOCVHANGUP:
2872                 if (!capable(CAP_SYS_ADMIN))
2873                         return -EPERM;
2874                 tty_vhangup(tty);
2875                 return 0;
2876         case TIOCGDEV:
2877         {
2878                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2879                 return put_user(ret, (unsigned int __user *)p);
2880         }
2881         /*
2882          * Break handling
2883          */
2884         case TIOCSBRK:  /* Turn break on, unconditionally */
2885                 if (tty->ops->break_ctl)
2886                         return tty->ops->break_ctl(tty, -1);
2887                 return 0;
2888         case TIOCCBRK:  /* Turn break off, unconditionally */
2889                 if (tty->ops->break_ctl)
2890                         return tty->ops->break_ctl(tty, 0);
2891                 return 0;
2892         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2893                 /* non-zero arg means wait for all output data
2894                  * to be sent (performed above) but don't send break.
2895                  * This is used by the tcdrain() termios function.
2896                  */
2897                 if (!arg)
2898                         return send_break(tty, 250);
2899                 return 0;
2900         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2901                 return send_break(tty, arg ? arg*100 : 250);
2902
2903         case TIOCMGET:
2904                 return tty_tiocmget(tty, p);
2905         case TIOCMSET:
2906         case TIOCMBIC:
2907         case TIOCMBIS:
2908                 return tty_tiocmset(tty, cmd, p);
2909         case TIOCGICOUNT:
2910                 retval = tty_tiocgicount(tty, p);
2911                 /* For the moment allow fall through to the old method */
2912                 if (retval != -EINVAL)
2913                         return retval;
2914                 break;
2915         case TCFLSH:
2916                 switch (arg) {
2917                 case TCIFLUSH:
2918                 case TCIOFLUSH:
2919                 /* flush tty buffer and allow ldisc to process ioctl */
2920                         tty_buffer_flush(tty, NULL);
2921                         break;
2922                 }
2923                 break;
2924         case TIOCSSERIAL:
2925                 tty_warn_deprecated_flags(p);
2926                 break;
2927         }
2928         if (tty->ops->ioctl) {
2929                 retval = tty->ops->ioctl(tty, cmd, arg);
2930                 if (retval != -ENOIOCTLCMD)
2931                         return retval;
2932         }
2933         ld = tty_ldisc_ref_wait(tty);
2934         retval = -EINVAL;
2935         if (ld->ops->ioctl) {
2936                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2937                 if (retval == -ENOIOCTLCMD)
2938                         retval = -ENOTTY;
2939         }
2940         tty_ldisc_deref(ld);
2941         return retval;
2942 }
2943
2944 #ifdef CONFIG_COMPAT
2945 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2946                                 unsigned long arg)
2947 {
2948         struct tty_struct *tty = file_tty(file);
2949         struct tty_ldisc *ld;
2950         int retval = -ENOIOCTLCMD;
2951
2952         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2953                 return -EINVAL;
2954
2955         if (tty->ops->compat_ioctl) {
2956                 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2957                 if (retval != -ENOIOCTLCMD)
2958                         return retval;
2959         }
2960
2961         ld = tty_ldisc_ref_wait(tty);
2962         if (ld->ops->compat_ioctl)
2963                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2964         else
2965                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2966         tty_ldisc_deref(ld);
2967
2968         return retval;
2969 }
2970 #endif
2971
2972 static int this_tty(const void *t, struct file *file, unsigned fd)
2973 {
2974         if (likely(file->f_op->read != tty_read))
2975                 return 0;
2976         return file_tty(file) != t ? 0 : fd + 1;
2977 }
2978         
2979 /*
2980  * This implements the "Secure Attention Key" ---  the idea is to
2981  * prevent trojan horses by killing all processes associated with this
2982  * tty when the user hits the "Secure Attention Key".  Required for
2983  * super-paranoid applications --- see the Orange Book for more details.
2984  *
2985  * This code could be nicer; ideally it should send a HUP, wait a few
2986  * seconds, then send a INT, and then a KILL signal.  But you then
2987  * have to coordinate with the init process, since all processes associated
2988  * with the current tty must be dead before the new getty is allowed
2989  * to spawn.
2990  *
2991  * Now, if it would be correct ;-/ The current code has a nasty hole -
2992  * it doesn't catch files in flight. We may send the descriptor to ourselves
2993  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2994  *
2995  * Nasty bug: do_SAK is being called in interrupt context.  This can
2996  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2997  */
2998 void __do_SAK(struct tty_struct *tty)
2999 {
3000 #ifdef TTY_SOFT_SAK
3001         tty_hangup(tty);
3002 #else
3003         struct task_struct *g, *p;
3004         struct pid *session;
3005         int             i;
3006
3007         if (!tty)
3008                 return;
3009         session = tty->session;
3010
3011         tty_ldisc_flush(tty);
3012
3013         tty_driver_flush_buffer(tty);
3014
3015         read_lock(&tasklist_lock);
3016         /* Kill the entire session */
3017         do_each_pid_task(session, PIDTYPE_SID, p) {
3018                 printk(KERN_NOTICE "SAK: killed process %d"
3019                         " (%s): task_session(p)==tty->session\n",
3020                         task_pid_nr(p), p->comm);
3021                 send_sig(SIGKILL, p, 1);
3022         } while_each_pid_task(session, PIDTYPE_SID, p);
3023         /* Now kill any processes that happen to have the
3024          * tty open.
3025          */
3026         do_each_thread(g, p) {
3027                 if (p->signal->tty == tty) {
3028                         printk(KERN_NOTICE "SAK: killed process %d"
3029                             " (%s): task_session(p)==tty->session\n",
3030                             task_pid_nr(p), p->comm);
3031                         send_sig(SIGKILL, p, 1);
3032                         continue;
3033                 }
3034                 task_lock(p);
3035                 i = iterate_fd(p->files, 0, this_tty, tty);
3036                 if (i != 0) {
3037                         printk(KERN_NOTICE "SAK: killed process %d"
3038                             " (%s): fd#%d opened to the tty\n",
3039                                     task_pid_nr(p), p->comm, i - 1);
3040                         force_sig(SIGKILL, p);
3041                 }
3042                 task_unlock(p);
3043         } while_each_thread(g, p);
3044         read_unlock(&tasklist_lock);
3045 #endif
3046 }
3047
3048 static void do_SAK_work(struct work_struct *work)
3049 {
3050         struct tty_struct *tty =
3051                 container_of(work, struct tty_struct, SAK_work);
3052         __do_SAK(tty);
3053 }
3054
3055 /*
3056  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3057  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3058  * the values which we write to it will be identical to the values which it
3059  * already has. --akpm
3060  */
3061 void do_SAK(struct tty_struct *tty)
3062 {
3063         if (!tty)
3064                 return;
3065         schedule_work(&tty->SAK_work);
3066 }
3067
3068 EXPORT_SYMBOL(do_SAK);
3069
3070 static int dev_match_devt(struct device *dev, const void *data)
3071 {
3072         const dev_t *devt = data;
3073         return dev->devt == *devt;
3074 }
3075
3076 /* Must put_device() after it's unused! */
3077 static struct device *tty_get_device(struct tty_struct *tty)
3078 {
3079         dev_t devt = tty_devnum(tty);
3080         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3081 }
3082
3083
3084 /**
3085  *      alloc_tty_struct
3086  *
3087  *      This subroutine allocates and initializes a tty structure.
3088  *
3089  *      Locking: none - tty in question is not exposed at this point
3090  */
3091
3092 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3093 {
3094         struct tty_struct *tty;
3095
3096         tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3097         if (!tty)
3098                 return NULL;
3099
3100         kref_init(&tty->kref);
3101         tty->magic = TTY_MAGIC;
3102         tty_ldisc_init(tty);
3103         tty->session = NULL;
3104         tty->pgrp = NULL;
3105         mutex_init(&tty->legacy_mutex);
3106         mutex_init(&tty->throttle_mutex);
3107         init_rwsem(&tty->termios_rwsem);
3108         mutex_init(&tty->winsize_mutex);
3109         init_ldsem(&tty->ldisc_sem);
3110         init_waitqueue_head(&tty->write_wait);
3111         init_waitqueue_head(&tty->read_wait);
3112         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3113         mutex_init(&tty->atomic_write_lock);
3114         spin_lock_init(&tty->ctrl_lock);
3115         spin_lock_init(&tty->flow_lock);
3116         INIT_LIST_HEAD(&tty->tty_files);
3117         INIT_WORK(&tty->SAK_work, do_SAK_work);
3118
3119         tty->driver = driver;
3120         tty->ops = driver->ops;
3121         tty->index = idx;
3122         tty_line_name(driver, idx, tty->name);
3123         tty->dev = tty_get_device(tty);
3124
3125         return tty;
3126 }
3127
3128 /**
3129  *      deinitialize_tty_struct
3130  *      @tty: tty to deinitialize
3131  *
3132  *      This subroutine deinitializes a tty structure that has been newly
3133  *      allocated but tty_release cannot be called on that yet.
3134  *
3135  *      Locking: none - tty in question must not be exposed at this point
3136  */
3137 void deinitialize_tty_struct(struct tty_struct *tty)
3138 {
3139         tty_ldisc_deinit(tty);
3140 }
3141
3142 /**
3143  *      tty_put_char    -       write one character to a tty
3144  *      @tty: tty
3145  *      @ch: character
3146  *
3147  *      Write one byte to the tty using the provided put_char method
3148  *      if present. Returns the number of characters successfully output.
3149  *
3150  *      Note: the specific put_char operation in the driver layer may go
3151  *      away soon. Don't call it directly, use this method
3152  */
3153
3154 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3155 {
3156         if (tty->ops->put_char)
3157                 return tty->ops->put_char(tty, ch);
3158         return tty->ops->write(tty, &ch, 1);
3159 }
3160 EXPORT_SYMBOL_GPL(tty_put_char);
3161
3162 struct class *tty_class;
3163
3164 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3165                 unsigned int index, unsigned int count)
3166 {
3167         /* init here, since reused cdevs cause crashes */
3168         cdev_init(&driver->cdevs[index], &tty_fops);
3169         driver->cdevs[index].owner = driver->owner;
3170         return cdev_add(&driver->cdevs[index], dev, count);
3171 }
3172
3173 /**
3174  *      tty_register_device - register a tty device
3175  *      @driver: the tty driver that describes the tty device
3176  *      @index: the index in the tty driver for this tty device
3177  *      @device: a struct device that is associated with this tty device.
3178  *              This field is optional, if there is no known struct device
3179  *              for this tty device it can be set to NULL safely.
3180  *
3181  *      Returns a pointer to the struct device for this tty device
3182  *      (or ERR_PTR(-EFOO) on error).
3183  *
3184  *      This call is required to be made to register an individual tty device
3185  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3186  *      that bit is not set, this function should not be called by a tty
3187  *      driver.
3188  *
3189  *      Locking: ??
3190  */
3191
3192 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3193                                    struct device *device)
3194 {
3195         return tty_register_device_attr(driver, index, device, NULL, NULL);
3196 }
3197 EXPORT_SYMBOL(tty_register_device);
3198
3199 static void tty_device_create_release(struct device *dev)
3200 {
3201         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3202         kfree(dev);
3203 }
3204
3205 /**
3206  *      tty_register_device_attr - register a tty device
3207  *      @driver: the tty driver that describes the tty device
3208  *      @index: the index in the tty driver for this tty device
3209  *      @device: a struct device that is associated with this tty device.
3210  *              This field is optional, if there is no known struct device
3211  *              for this tty device it can be set to NULL safely.
3212  *      @drvdata: Driver data to be set to device.
3213  *      @attr_grp: Attribute group to be set on device.
3214  *
3215  *      Returns a pointer to the struct device for this tty device
3216  *      (or ERR_PTR(-EFOO) on error).
3217  *
3218  *      This call is required to be made to register an individual tty device
3219  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3220  *      that bit is not set, this function should not be called by a tty
3221  *      driver.
3222  *
3223  *      Locking: ??
3224  */
3225 struct device *tty_register_device_attr(struct tty_driver *driver,
3226                                    unsigned index, struct device *device,
3227                                    void *drvdata,
3228                                    const struct attribute_group **attr_grp)
3229 {
3230         char name[64];
3231         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3232         struct device *dev = NULL;
3233         int retval = -ENODEV;
3234         bool cdev = false;
3235
3236         if (index >= driver->num) {
3237                 printk(KERN_ERR "Attempt to register invalid tty line number "
3238                        " (%d).\n", index);
3239                 return ERR_PTR(-EINVAL);
3240         }
3241
3242         if (driver->type == TTY_DRIVER_TYPE_PTY)
3243                 pty_line_name(driver, index, name);
3244         else
3245                 tty_line_name(driver, index, name);
3246
3247         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3248                 retval = tty_cdev_add(driver, devt, index, 1);
3249                 if (retval)
3250                         goto error;
3251                 cdev = true;
3252         }
3253
3254         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3255         if (!dev) {
3256                 retval = -ENOMEM;
3257                 goto error;
3258         }
3259
3260         dev->devt = devt;
3261         dev->class = tty_class;
3262         dev->parent = device;
3263         dev->release = tty_device_create_release;
3264         dev_set_name(dev, "%s", name);
3265         dev->groups = attr_grp;
3266         dev_set_drvdata(dev, drvdata);
3267
3268         retval = device_register(dev);
3269         if (retval)
3270                 goto error;
3271
3272         return dev;
3273
3274 error:
3275         put_device(dev);
3276         if (cdev)
3277                 cdev_del(&driver->cdevs[index]);
3278         return ERR_PTR(retval);
3279 }
3280 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3281
3282 /**
3283  *      tty_unregister_device - unregister a tty device
3284  *      @driver: the tty driver that describes the tty device
3285  *      @index: the index in the tty driver for this tty device
3286  *
3287  *      If a tty device is registered with a call to tty_register_device() then
3288  *      this function must be called when the tty device is gone.
3289  *
3290  *      Locking: ??
3291  */
3292
3293 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3294 {
3295         device_destroy(tty_class,
3296                 MKDEV(driver->major, driver->minor_start) + index);
3297         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3298                 cdev_del(&driver->cdevs[index]);
3299 }
3300 EXPORT_SYMBOL(tty_unregister_device);
3301
3302 /**
3303  * __tty_alloc_driver -- allocate tty driver
3304  * @lines: count of lines this driver can handle at most
3305  * @owner: module which is repsonsible for this driver
3306  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3307  *
3308  * This should not be called directly, some of the provided macros should be
3309  * used instead. Use IS_ERR and friends on @retval.
3310  */
3311 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3312                 unsigned long flags)
3313 {
3314         struct tty_driver *driver;
3315         unsigned int cdevs = 1;
3316         int err;
3317
3318         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3319                 return ERR_PTR(-EINVAL);
3320
3321         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3322         if (!driver)
3323                 return ERR_PTR(-ENOMEM);
3324
3325         kref_init(&driver->kref);
3326         driver->magic = TTY_DRIVER_MAGIC;
3327         driver->num = lines;
3328         driver->owner = owner;
3329         driver->flags = flags;
3330
3331         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3332                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3333                                 GFP_KERNEL);
3334                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3335                                 GFP_KERNEL);
3336                 if (!driver->ttys || !driver->termios) {
3337                         err = -ENOMEM;
3338                         goto err_free_all;
3339                 }
3340         }
3341
3342         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3343                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3344                                 GFP_KERNEL);
3345                 if (!driver->ports) {
3346                         err = -ENOMEM;
3347                         goto err_free_all;
3348                 }
3349                 cdevs = lines;
3350         }
3351
3352         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3353         if (!driver->cdevs) {
3354                 err = -ENOMEM;
3355                 goto err_free_all;
3356         }
3357
3358         return driver;
3359 err_free_all:
3360         kfree(driver->ports);
3361         kfree(driver->ttys);
3362         kfree(driver->termios);
3363         kfree(driver);
3364         return ERR_PTR(err);
3365 }
3366 EXPORT_SYMBOL(__tty_alloc_driver);
3367
3368 static void destruct_tty_driver(struct kref *kref)
3369 {
3370         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3371         int i;
3372         struct ktermios *tp;
3373
3374         if (driver->flags & TTY_DRIVER_INSTALLED) {
3375                 /*
3376                  * Free the termios and termios_locked structures because
3377                  * we don't want to get memory leaks when modular tty
3378                  * drivers are removed from the kernel.
3379                  */
3380                 for (i = 0; i < driver->num; i++) {
3381                         tp = driver->termios[i];
3382                         if (tp) {
3383                                 driver->termios[i] = NULL;
3384                                 kfree(tp);
3385                         }
3386                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3387                                 tty_unregister_device(driver, i);
3388                 }
3389                 proc_tty_unregister_driver(driver);
3390                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3391                         cdev_del(&driver->cdevs[0]);
3392         }
3393         kfree(driver->cdevs);
3394         kfree(driver->ports);
3395         kfree(driver->termios);
3396         kfree(driver->ttys);
3397         kfree(driver);
3398 }
3399
3400 void tty_driver_kref_put(struct tty_driver *driver)
3401 {
3402         kref_put(&driver->kref, destruct_tty_driver);
3403 }
3404 EXPORT_SYMBOL(tty_driver_kref_put);
3405
3406 void tty_set_operations(struct tty_driver *driver,
3407                         const struct tty_operations *op)
3408 {
3409         driver->ops = op;
3410 };
3411 EXPORT_SYMBOL(tty_set_operations);
3412
3413 void put_tty_driver(struct tty_driver *d)
3414 {
3415         tty_driver_kref_put(d);
3416 }
3417 EXPORT_SYMBOL(put_tty_driver);
3418
3419 /*
3420  * Called by a tty driver to register itself.
3421  */
3422 int tty_register_driver(struct tty_driver *driver)
3423 {
3424         int error;
3425         int i;
3426         dev_t dev;
3427         struct device *d;
3428
3429         if (!driver->major) {
3430                 error = alloc_chrdev_region(&dev, driver->minor_start,
3431                                                 driver->num, driver->name);
3432                 if (!error) {
3433                         driver->major = MAJOR(dev);
3434                         driver->minor_start = MINOR(dev);
3435                 }
3436         } else {
3437                 dev = MKDEV(driver->major, driver->minor_start);
3438                 error = register_chrdev_region(dev, driver->num, driver->name);
3439         }
3440         if (error < 0)
3441                 goto err;
3442
3443         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3444                 error = tty_cdev_add(driver, dev, 0, driver->num);
3445                 if (error)
3446                         goto err_unreg_char;
3447         }
3448
3449         mutex_lock(&tty_mutex);
3450         list_add(&driver->tty_drivers, &tty_drivers);
3451         mutex_unlock(&tty_mutex);
3452
3453         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3454                 for (i = 0; i < driver->num; i++) {
3455                         d = tty_register_device(driver, i, NULL);
3456                         if (IS_ERR(d)) {
3457                                 error = PTR_ERR(d);
3458                                 goto err_unreg_devs;
3459                         }
3460                 }
3461         }
3462         proc_tty_register_driver(driver);
3463         driver->flags |= TTY_DRIVER_INSTALLED;
3464         return 0;
3465
3466 err_unreg_devs:
3467         for (i--; i >= 0; i--)
3468                 tty_unregister_device(driver, i);
3469
3470         mutex_lock(&tty_mutex);
3471         list_del(&driver->tty_drivers);
3472         mutex_unlock(&tty_mutex);
3473
3474 err_unreg_char:
3475         unregister_chrdev_region(dev, driver->num);
3476 err:
3477         return error;
3478 }
3479 EXPORT_SYMBOL(tty_register_driver);
3480
3481 /*
3482  * Called by a tty driver to unregister itself.
3483  */
3484 int tty_unregister_driver(struct tty_driver *driver)
3485 {
3486 #if 0
3487         /* FIXME */
3488         if (driver->refcount)
3489                 return -EBUSY;
3490 #endif
3491         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3492                                 driver->num);
3493         mutex_lock(&tty_mutex);
3494         list_del(&driver->tty_drivers);
3495         mutex_unlock(&tty_mutex);
3496         return 0;
3497 }
3498
3499 EXPORT_SYMBOL(tty_unregister_driver);
3500
3501 dev_t tty_devnum(struct tty_struct *tty)
3502 {
3503         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3504 }
3505 EXPORT_SYMBOL(tty_devnum);
3506
3507 void tty_default_fops(struct file_operations *fops)
3508 {
3509         *fops = tty_fops;
3510 }
3511
3512 /*
3513  * Initialize the console device. This is called *early*, so
3514  * we can't necessarily depend on lots of kernel help here.
3515  * Just do some early initializations, and do the complex setup
3516  * later.
3517  */
3518 void __init console_init(void)
3519 {
3520         initcall_t *call;
3521
3522         /* Setup the default TTY line discipline. */
3523         tty_ldisc_begin();
3524
3525         /*
3526          * set up the console device so that later boot sequences can
3527          * inform about problems etc..
3528          */
3529         call = __con_initcall_start;
3530         while (call < __con_initcall_end) {
3531                 (*call)();
3532                 call++;
3533         }
3534 }
3535
3536 static char *tty_devnode(struct device *dev, umode_t *mode)
3537 {
3538         if (!mode)
3539                 return NULL;
3540         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3541             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3542                 *mode = 0666;
3543         return NULL;
3544 }
3545
3546 static int __init tty_class_init(void)
3547 {
3548         tty_class = class_create(THIS_MODULE, "tty");
3549         if (IS_ERR(tty_class))
3550                 return PTR_ERR(tty_class);
3551         tty_class->devnode = tty_devnode;
3552         return 0;
3553 }
3554
3555 postcore_initcall(tty_class_init);
3556
3557 /* 3/2004 jmc: why do these devices exist? */
3558 static struct cdev tty_cdev, console_cdev;
3559
3560 static ssize_t show_cons_active(struct device *dev,
3561                                 struct device_attribute *attr, char *buf)
3562 {
3563         struct console *cs[16];
3564         int i = 0;
3565         struct console *c;
3566         ssize_t count = 0;
3567
3568         console_lock();
3569         for_each_console(c) {
3570                 if (!c->device)
3571                         continue;
3572                 if (!c->write)
3573                         continue;
3574                 if ((c->flags & CON_ENABLED) == 0)
3575                         continue;
3576                 cs[i++] = c;
3577                 if (i >= ARRAY_SIZE(cs))
3578                         break;
3579         }
3580         while (i--) {
3581                 int index = cs[i]->index;
3582                 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3583
3584                 /* don't resolve tty0 as some programs depend on it */
3585                 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3586                         count += tty_line_name(drv, index, buf + count);
3587                 else
3588                         count += sprintf(buf + count, "%s%d",
3589                                          cs[i]->name, cs[i]->index);
3590
3591                 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3592         }
3593         console_unlock();
3594
3595         return count;
3596 }
3597 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3598
3599 static struct device *consdev;
3600
3601 void console_sysfs_notify(void)
3602 {
3603         if (consdev)
3604                 sysfs_notify(&consdev->kobj, NULL, "active");
3605 }
3606
3607 /*
3608  * Ok, now we can initialize the rest of the tty devices and can count
3609  * on memory allocations, interrupts etc..
3610  */
3611 int __init tty_init(void)
3612 {
3613         cdev_init(&tty_cdev, &tty_fops);
3614         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3615             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3616                 panic("Couldn't register /dev/tty driver\n");
3617         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3618
3619         cdev_init(&console_cdev, &console_fops);
3620         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3621             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3622                 panic("Couldn't register /dev/console driver\n");
3623         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3624                               "console");
3625         if (IS_ERR(consdev))
3626                 consdev = NULL;
3627         else
3628                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3629
3630 #ifdef CONFIG_VT
3631         vty_init(&console_fops);
3632 #endif
3633         return 0;
3634 }
3635