tty: Remove TTY_HUPPING
[firefly-linux-kernel-4.4.55.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156
157 /**
158  *      free_tty_struct         -       free a disused tty
159  *      @tty: tty struct to free
160  *
161  *      Free the write buffers, tty queue and tty memory itself.
162  *
163  *      Locking: none. Must be called after tty is definitely unused
164  */
165
166 void free_tty_struct(struct tty_struct *tty)
167 {
168         if (!tty)
169                 return;
170         if (tty->dev)
171                 put_device(tty->dev);
172         kfree(tty->write_buf);
173         tty->magic = 0xDEADDEAD;
174         kfree(tty);
175 }
176
177 static inline struct tty_struct *file_tty(struct file *file)
178 {
179         return ((struct tty_file_private *)file->private_data)->tty;
180 }
181
182 int tty_alloc_file(struct file *file)
183 {
184         struct tty_file_private *priv;
185
186         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
187         if (!priv)
188                 return -ENOMEM;
189
190         file->private_data = priv;
191
192         return 0;
193 }
194
195 /* Associate a new file with the tty structure */
196 void tty_add_file(struct tty_struct *tty, struct file *file)
197 {
198         struct tty_file_private *priv = file->private_data;
199
200         priv->tty = tty;
201         priv->file = file;
202
203         spin_lock(&tty_files_lock);
204         list_add(&priv->list, &tty->tty_files);
205         spin_unlock(&tty_files_lock);
206 }
207
208 /**
209  * tty_free_file - free file->private_data
210  *
211  * This shall be used only for fail path handling when tty_add_file was not
212  * called yet.
213  */
214 void tty_free_file(struct file *file)
215 {
216         struct tty_file_private *priv = file->private_data;
217
218         file->private_data = NULL;
219         kfree(priv);
220 }
221
222 /* Delete file from its tty */
223 static void tty_del_file(struct file *file)
224 {
225         struct tty_file_private *priv = file->private_data;
226
227         spin_lock(&tty_files_lock);
228         list_del(&priv->list);
229         spin_unlock(&tty_files_lock);
230         tty_free_file(file);
231 }
232
233
234 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
235
236 /**
237  *      tty_name        -       return tty naming
238  *      @tty: tty structure
239  *      @buf: buffer for output
240  *
241  *      Convert a tty structure into a name. The name reflects the kernel
242  *      naming policy and if udev is in use may not reflect user space
243  *
244  *      Locking: none
245  */
246
247 char *tty_name(struct tty_struct *tty, char *buf)
248 {
249         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
250                 strcpy(buf, "NULL tty");
251         else
252                 strcpy(buf, tty->name);
253         return buf;
254 }
255
256 EXPORT_SYMBOL(tty_name);
257
258 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
259                               const char *routine)
260 {
261 #ifdef TTY_PARANOIA_CHECK
262         if (!tty) {
263                 printk(KERN_WARNING
264                         "null TTY for (%d:%d) in %s\n",
265                         imajor(inode), iminor(inode), routine);
266                 return 1;
267         }
268         if (tty->magic != TTY_MAGIC) {
269                 printk(KERN_WARNING
270                         "bad magic number for tty struct (%d:%d) in %s\n",
271                         imajor(inode), iminor(inode), routine);
272                 return 1;
273         }
274 #endif
275         return 0;
276 }
277
278 static int check_tty_count(struct tty_struct *tty, const char *routine)
279 {
280 #ifdef CHECK_TTY_COUNT
281         struct list_head *p;
282         int count = 0;
283
284         spin_lock(&tty_files_lock);
285         list_for_each(p, &tty->tty_files) {
286                 count++;
287         }
288         spin_unlock(&tty_files_lock);
289         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
290             tty->driver->subtype == PTY_TYPE_SLAVE &&
291             tty->link && tty->link->count)
292                 count++;
293         if (tty->count != count) {
294                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
295                                     "!= #fd's(%d) in %s\n",
296                        tty->name, tty->count, count, routine);
297                 return count;
298         }
299 #endif
300         return 0;
301 }
302
303 /**
304  *      get_tty_driver          -       find device of a tty
305  *      @dev_t: device identifier
306  *      @index: returns the index of the tty
307  *
308  *      This routine returns a tty driver structure, given a device number
309  *      and also passes back the index number.
310  *
311  *      Locking: caller must hold tty_mutex
312  */
313
314 static struct tty_driver *get_tty_driver(dev_t device, int *index)
315 {
316         struct tty_driver *p;
317
318         list_for_each_entry(p, &tty_drivers, tty_drivers) {
319                 dev_t base = MKDEV(p->major, p->minor_start);
320                 if (device < base || device >= base + p->num)
321                         continue;
322                 *index = device - base;
323                 return tty_driver_kref_get(p);
324         }
325         return NULL;
326 }
327
328 #ifdef CONFIG_CONSOLE_POLL
329
330 /**
331  *      tty_find_polling_driver -       find device of a polled tty
332  *      @name: name string to match
333  *      @line: pointer to resulting tty line nr
334  *
335  *      This routine returns a tty driver structure, given a name
336  *      and the condition that the tty driver is capable of polled
337  *      operation.
338  */
339 struct tty_driver *tty_find_polling_driver(char *name, int *line)
340 {
341         struct tty_driver *p, *res = NULL;
342         int tty_line = 0;
343         int len;
344         char *str, *stp;
345
346         for (str = name; *str; str++)
347                 if ((*str >= '0' && *str <= '9') || *str == ',')
348                         break;
349         if (!*str)
350                 return NULL;
351
352         len = str - name;
353         tty_line = simple_strtoul(str, &str, 10);
354
355         mutex_lock(&tty_mutex);
356         /* Search through the tty devices to look for a match */
357         list_for_each_entry(p, &tty_drivers, tty_drivers) {
358                 if (strncmp(name, p->name, len) != 0)
359                         continue;
360                 stp = str;
361                 if (*stp == ',')
362                         stp++;
363                 if (*stp == '\0')
364                         stp = NULL;
365
366                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
367                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
368                         res = tty_driver_kref_get(p);
369                         *line = tty_line;
370                         break;
371                 }
372         }
373         mutex_unlock(&tty_mutex);
374
375         return res;
376 }
377 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
378 #endif
379
380 /**
381  *      tty_check_change        -       check for POSIX terminal changes
382  *      @tty: tty to check
383  *
384  *      If we try to write to, or set the state of, a terminal and we're
385  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
386  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
387  *
388  *      Locking: ctrl_lock
389  */
390
391 int tty_check_change(struct tty_struct *tty)
392 {
393         unsigned long flags;
394         int ret = 0;
395
396         if (current->signal->tty != tty)
397                 return 0;
398
399         spin_lock_irqsave(&tty->ctrl_lock, flags);
400
401         if (!tty->pgrp) {
402                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
403                 goto out_unlock;
404         }
405         if (task_pgrp(current) == tty->pgrp)
406                 goto out_unlock;
407         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
408         if (is_ignored(SIGTTOU))
409                 goto out;
410         if (is_current_pgrp_orphaned()) {
411                 ret = -EIO;
412                 goto out;
413         }
414         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
415         set_thread_flag(TIF_SIGPENDING);
416         ret = -ERESTARTSYS;
417 out:
418         return ret;
419 out_unlock:
420         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
421         return ret;
422 }
423
424 EXPORT_SYMBOL(tty_check_change);
425
426 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
427                                 size_t count, loff_t *ppos)
428 {
429         return 0;
430 }
431
432 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
433                                  size_t count, loff_t *ppos)
434 {
435         return -EIO;
436 }
437
438 /* No kernel lock held - none needed ;) */
439 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
440 {
441         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
442 }
443
444 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
445                 unsigned long arg)
446 {
447         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
448 }
449
450 static long hung_up_tty_compat_ioctl(struct file *file,
451                                      unsigned int cmd, unsigned long arg)
452 {
453         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
454 }
455
456 static const struct file_operations tty_fops = {
457         .llseek         = no_llseek,
458         .read           = tty_read,
459         .write          = tty_write,
460         .poll           = tty_poll,
461         .unlocked_ioctl = tty_ioctl,
462         .compat_ioctl   = tty_compat_ioctl,
463         .open           = tty_open,
464         .release        = tty_release,
465         .fasync         = tty_fasync,
466 };
467
468 static const struct file_operations console_fops = {
469         .llseek         = no_llseek,
470         .read           = tty_read,
471         .write          = redirected_tty_write,
472         .poll           = tty_poll,
473         .unlocked_ioctl = tty_ioctl,
474         .compat_ioctl   = tty_compat_ioctl,
475         .open           = tty_open,
476         .release        = tty_release,
477         .fasync         = tty_fasync,
478 };
479
480 static const struct file_operations hung_up_tty_fops = {
481         .llseek         = no_llseek,
482         .read           = hung_up_tty_read,
483         .write          = hung_up_tty_write,
484         .poll           = hung_up_tty_poll,
485         .unlocked_ioctl = hung_up_tty_ioctl,
486         .compat_ioctl   = hung_up_tty_compat_ioctl,
487         .release        = tty_release,
488 };
489
490 static DEFINE_SPINLOCK(redirect_lock);
491 static struct file *redirect;
492
493
494 void proc_clear_tty(struct task_struct *p)
495 {
496         unsigned long flags;
497         struct tty_struct *tty;
498         spin_lock_irqsave(&p->sighand->siglock, flags);
499         tty = p->signal->tty;
500         p->signal->tty = NULL;
501         spin_unlock_irqrestore(&p->sighand->siglock, flags);
502         tty_kref_put(tty);
503 }
504
505 /**
506  * proc_set_tty -  set the controlling terminal
507  *
508  * Only callable by the session leader and only if it does not already have
509  * a controlling terminal.
510  *
511  * Caller must hold:  tty_lock()
512  *                    a readlock on tasklist_lock
513  *                    sighand lock
514  */
515 static void __proc_set_tty(struct tty_struct *tty)
516 {
517         unsigned long flags;
518
519         spin_lock_irqsave(&tty->ctrl_lock, flags);
520         /*
521          * The session and fg pgrp references will be non-NULL if
522          * tiocsctty() is stealing the controlling tty
523          */
524         put_pid(tty->session);
525         put_pid(tty->pgrp);
526         tty->pgrp = get_pid(task_pgrp(current));
527         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
528         tty->session = get_pid(task_session(current));
529         if (current->signal->tty) {
530                 printk(KERN_DEBUG "tty not NULL!!\n");
531                 tty_kref_put(current->signal->tty);
532         }
533         put_pid(current->signal->tty_old_pgrp);
534         current->signal->tty = tty_kref_get(tty);
535         current->signal->tty_old_pgrp = NULL;
536 }
537
538 static void proc_set_tty(struct tty_struct *tty)
539 {
540         spin_lock_irq(&current->sighand->siglock);
541         __proc_set_tty(tty);
542         spin_unlock_irq(&current->sighand->siglock);
543 }
544
545 struct tty_struct *get_current_tty(void)
546 {
547         struct tty_struct *tty;
548         unsigned long flags;
549
550         spin_lock_irqsave(&current->sighand->siglock, flags);
551         tty = tty_kref_get(current->signal->tty);
552         spin_unlock_irqrestore(&current->sighand->siglock, flags);
553         return tty;
554 }
555 EXPORT_SYMBOL_GPL(get_current_tty);
556
557 static void session_clear_tty(struct pid *session)
558 {
559         struct task_struct *p;
560         do_each_pid_task(session, PIDTYPE_SID, p) {
561                 proc_clear_tty(p);
562         } while_each_pid_task(session, PIDTYPE_SID, p);
563 }
564
565 /**
566  *      tty_wakeup      -       request more data
567  *      @tty: terminal
568  *
569  *      Internal and external helper for wakeups of tty. This function
570  *      informs the line discipline if present that the driver is ready
571  *      to receive more output data.
572  */
573
574 void tty_wakeup(struct tty_struct *tty)
575 {
576         struct tty_ldisc *ld;
577
578         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
579                 ld = tty_ldisc_ref(tty);
580                 if (ld) {
581                         if (ld->ops->write_wakeup)
582                                 ld->ops->write_wakeup(tty);
583                         tty_ldisc_deref(ld);
584                 }
585         }
586         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
587 }
588
589 EXPORT_SYMBOL_GPL(tty_wakeup);
590
591 /**
592  *      tty_signal_session_leader       - sends SIGHUP to session leader
593  *      @tty            controlling tty
594  *      @exit_session   if non-zero, signal all foreground group processes
595  *
596  *      Send SIGHUP and SIGCONT to the session leader and its process group.
597  *      Optionally, signal all processes in the foreground process group.
598  *
599  *      Returns the number of processes in the session with this tty
600  *      as their controlling terminal. This value is used to drop
601  *      tty references for those processes.
602  */
603 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
604 {
605         struct task_struct *p;
606         int refs = 0;
607         struct pid *tty_pgrp = NULL;
608
609         read_lock(&tasklist_lock);
610         if (tty->session) {
611                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
612                         spin_lock_irq(&p->sighand->siglock);
613                         if (p->signal->tty == tty) {
614                                 p->signal->tty = NULL;
615                                 /* We defer the dereferences outside fo
616                                    the tasklist lock */
617                                 refs++;
618                         }
619                         if (!p->signal->leader) {
620                                 spin_unlock_irq(&p->sighand->siglock);
621                                 continue;
622                         }
623                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
624                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
625                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
626                         spin_lock(&tty->ctrl_lock);
627                         tty_pgrp = get_pid(tty->pgrp);
628                         if (tty->pgrp)
629                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
630                         spin_unlock(&tty->ctrl_lock);
631                         spin_unlock_irq(&p->sighand->siglock);
632                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
633         }
634         read_unlock(&tasklist_lock);
635
636         if (tty_pgrp) {
637                 if (exit_session)
638                         kill_pgrp(tty_pgrp, SIGHUP, exit_session);
639                 put_pid(tty_pgrp);
640         }
641
642         return refs;
643 }
644
645 /**
646  *      __tty_hangup            -       actual handler for hangup events
647  *      @work: tty device
648  *
649  *      This can be called by a "kworker" kernel thread.  That is process
650  *      synchronous but doesn't hold any locks, so we need to make sure we
651  *      have the appropriate locks for what we're doing.
652  *
653  *      The hangup event clears any pending redirections onto the hung up
654  *      device. It ensures future writes will error and it does the needed
655  *      line discipline hangup and signal delivery. The tty object itself
656  *      remains intact.
657  *
658  *      Locking:
659  *              BTM
660  *                redirect lock for undoing redirection
661  *                file list lock for manipulating list of ttys
662  *                tty_ldiscs_lock from called functions
663  *                termios_rwsem resetting termios data
664  *                tasklist_lock to walk task list for hangup event
665  *                  ->siglock to protect ->signal/->sighand
666  */
667 static void __tty_hangup(struct tty_struct *tty, int exit_session)
668 {
669         struct file *cons_filp = NULL;
670         struct file *filp, *f = NULL;
671         struct tty_file_private *priv;
672         int    closecount = 0, n;
673         int refs;
674
675         if (!tty)
676                 return;
677
678
679         spin_lock(&redirect_lock);
680         if (redirect && file_tty(redirect) == tty) {
681                 f = redirect;
682                 redirect = NULL;
683         }
684         spin_unlock(&redirect_lock);
685
686         tty_lock(tty);
687
688         if (test_bit(TTY_HUPPED, &tty->flags)) {
689                 tty_unlock(tty);
690                 return;
691         }
692
693         /* inuse_filps is protected by the single tty lock,
694            this really needs to change if we want to flush the
695            workqueue with the lock held */
696         check_tty_count(tty, "tty_hangup");
697
698         spin_lock(&tty_files_lock);
699         /* This breaks for file handles being sent over AF_UNIX sockets ? */
700         list_for_each_entry(priv, &tty->tty_files, list) {
701                 filp = priv->file;
702                 if (filp->f_op->write == redirected_tty_write)
703                         cons_filp = filp;
704                 if (filp->f_op->write != tty_write)
705                         continue;
706                 closecount++;
707                 __tty_fasync(-1, filp, 0);      /* can't block */
708                 filp->f_op = &hung_up_tty_fops;
709         }
710         spin_unlock(&tty_files_lock);
711
712         refs = tty_signal_session_leader(tty, exit_session);
713         /* Account for the p->signal references we killed */
714         while (refs--)
715                 tty_kref_put(tty);
716
717         tty_ldisc_hangup(tty);
718
719         spin_lock_irq(&tty->ctrl_lock);
720         clear_bit(TTY_THROTTLED, &tty->flags);
721         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
722         put_pid(tty->session);
723         put_pid(tty->pgrp);
724         tty->session = NULL;
725         tty->pgrp = NULL;
726         tty->ctrl_status = 0;
727         spin_unlock_irq(&tty->ctrl_lock);
728
729         /*
730          * If one of the devices matches a console pointer, we
731          * cannot just call hangup() because that will cause
732          * tty->count and state->count to go out of sync.
733          * So we just call close() the right number of times.
734          */
735         if (cons_filp) {
736                 if (tty->ops->close)
737                         for (n = 0; n < closecount; n++)
738                                 tty->ops->close(tty, cons_filp);
739         } else if (tty->ops->hangup)
740                 tty->ops->hangup(tty);
741         /*
742          * We don't want to have driver/ldisc interactions beyond
743          * the ones we did here. The driver layer expects no
744          * calls after ->hangup() from the ldisc side. However we
745          * can't yet guarantee all that.
746          */
747         set_bit(TTY_HUPPED, &tty->flags);
748         tty_unlock(tty);
749
750         if (f)
751                 fput(f);
752 }
753
754 static void do_tty_hangup(struct work_struct *work)
755 {
756         struct tty_struct *tty =
757                 container_of(work, struct tty_struct, hangup_work);
758
759         __tty_hangup(tty, 0);
760 }
761
762 /**
763  *      tty_hangup              -       trigger a hangup event
764  *      @tty: tty to hangup
765  *
766  *      A carrier loss (virtual or otherwise) has occurred on this like
767  *      schedule a hangup sequence to run after this event.
768  */
769
770 void tty_hangup(struct tty_struct *tty)
771 {
772 #ifdef TTY_DEBUG_HANGUP
773         char    buf[64];
774         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
775 #endif
776         schedule_work(&tty->hangup_work);
777 }
778
779 EXPORT_SYMBOL(tty_hangup);
780
781 /**
782  *      tty_vhangup             -       process vhangup
783  *      @tty: tty to hangup
784  *
785  *      The user has asked via system call for the terminal to be hung up.
786  *      We do this synchronously so that when the syscall returns the process
787  *      is complete. That guarantee is necessary for security reasons.
788  */
789
790 void tty_vhangup(struct tty_struct *tty)
791 {
792 #ifdef TTY_DEBUG_HANGUP
793         char    buf[64];
794
795         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
796 #endif
797         __tty_hangup(tty, 0);
798 }
799
800 EXPORT_SYMBOL(tty_vhangup);
801
802
803 /**
804  *      tty_vhangup_self        -       process vhangup for own ctty
805  *
806  *      Perform a vhangup on the current controlling tty
807  */
808
809 void tty_vhangup_self(void)
810 {
811         struct tty_struct *tty;
812
813         tty = get_current_tty();
814         if (tty) {
815                 tty_vhangup(tty);
816                 tty_kref_put(tty);
817         }
818 }
819
820 /**
821  *      tty_vhangup_session             -       hangup session leader exit
822  *      @tty: tty to hangup
823  *
824  *      The session leader is exiting and hanging up its controlling terminal.
825  *      Every process in the foreground process group is signalled SIGHUP.
826  *
827  *      We do this synchronously so that when the syscall returns the process
828  *      is complete. That guarantee is necessary for security reasons.
829  */
830
831 static void tty_vhangup_session(struct tty_struct *tty)
832 {
833 #ifdef TTY_DEBUG_HANGUP
834         char    buf[64];
835
836         printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
837 #endif
838         __tty_hangup(tty, 1);
839 }
840
841 /**
842  *      tty_hung_up_p           -       was tty hung up
843  *      @filp: file pointer of tty
844  *
845  *      Return true if the tty has been subject to a vhangup or a carrier
846  *      loss
847  */
848
849 int tty_hung_up_p(struct file *filp)
850 {
851         return (filp->f_op == &hung_up_tty_fops);
852 }
853
854 EXPORT_SYMBOL(tty_hung_up_p);
855
856 /**
857  *      disassociate_ctty       -       disconnect controlling tty
858  *      @on_exit: true if exiting so need to "hang up" the session
859  *
860  *      This function is typically called only by the session leader, when
861  *      it wants to disassociate itself from its controlling tty.
862  *
863  *      It performs the following functions:
864  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
865  *      (2)  Clears the tty from being controlling the session
866  *      (3)  Clears the controlling tty for all processes in the
867  *              session group.
868  *
869  *      The argument on_exit is set to 1 if called when a process is
870  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
871  *
872  *      Locking:
873  *              BTM is taken for hysterical raisins, and held when
874  *                called from no_tty().
875  *                tty_mutex is taken to protect tty
876  *                ->siglock is taken to protect ->signal/->sighand
877  *                tasklist_lock is taken to walk process list for sessions
878  *                  ->siglock is taken to protect ->signal/->sighand
879  */
880
881 void disassociate_ctty(int on_exit)
882 {
883         struct tty_struct *tty;
884
885         if (!current->signal->leader)
886                 return;
887
888         tty = get_current_tty();
889         if (tty) {
890                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
891                         tty_vhangup_session(tty);
892                 } else {
893                         struct pid *tty_pgrp = tty_get_pgrp(tty);
894                         if (tty_pgrp) {
895                                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
896                                 if (!on_exit)
897                                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
898                                 put_pid(tty_pgrp);
899                         }
900                 }
901                 tty_kref_put(tty);
902
903         } else if (on_exit) {
904                 struct pid *old_pgrp;
905                 spin_lock_irq(&current->sighand->siglock);
906                 old_pgrp = current->signal->tty_old_pgrp;
907                 current->signal->tty_old_pgrp = NULL;
908                 spin_unlock_irq(&current->sighand->siglock);
909                 if (old_pgrp) {
910                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
911                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
912                         put_pid(old_pgrp);
913                 }
914                 return;
915         }
916
917         spin_lock_irq(&current->sighand->siglock);
918         put_pid(current->signal->tty_old_pgrp);
919         current->signal->tty_old_pgrp = NULL;
920
921         tty = tty_kref_get(current->signal->tty);
922         if (tty) {
923                 unsigned long flags;
924                 spin_lock_irqsave(&tty->ctrl_lock, flags);
925                 put_pid(tty->session);
926                 put_pid(tty->pgrp);
927                 tty->session = NULL;
928                 tty->pgrp = NULL;
929                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
930                 tty_kref_put(tty);
931         } else {
932 #ifdef TTY_DEBUG_HANGUP
933                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
934                        " = NULL", tty);
935 #endif
936         }
937
938         spin_unlock_irq(&current->sighand->siglock);
939         /* Now clear signal->tty under the lock */
940         read_lock(&tasklist_lock);
941         session_clear_tty(task_session(current));
942         read_unlock(&tasklist_lock);
943 }
944
945 /**
946  *
947  *      no_tty  - Ensure the current process does not have a controlling tty
948  */
949 void no_tty(void)
950 {
951         /* FIXME: Review locking here. The tty_lock never covered any race
952            between a new association and proc_clear_tty but possible we need
953            to protect against this anyway */
954         struct task_struct *tsk = current;
955         disassociate_ctty(0);
956         proc_clear_tty(tsk);
957 }
958
959
960 /**
961  *      stop_tty        -       propagate flow control
962  *      @tty: tty to stop
963  *
964  *      Perform flow control to the driver. May be called
965  *      on an already stopped device and will not re-call the driver
966  *      method.
967  *
968  *      This functionality is used by both the line disciplines for
969  *      halting incoming flow and by the driver. It may therefore be
970  *      called from any context, may be under the tty atomic_write_lock
971  *      but not always.
972  *
973  *      Locking:
974  *              flow_lock
975  */
976
977 void __stop_tty(struct tty_struct *tty)
978 {
979         if (tty->stopped)
980                 return;
981         tty->stopped = 1;
982         if (tty->ops->stop)
983                 (tty->ops->stop)(tty);
984 }
985
986 void stop_tty(struct tty_struct *tty)
987 {
988         unsigned long flags;
989
990         spin_lock_irqsave(&tty->flow_lock, flags);
991         __stop_tty(tty);
992         spin_unlock_irqrestore(&tty->flow_lock, flags);
993 }
994 EXPORT_SYMBOL(stop_tty);
995
996 /**
997  *      start_tty       -       propagate flow control
998  *      @tty: tty to start
999  *
1000  *      Start a tty that has been stopped if at all possible. If this
1001  *      tty was previous stopped and is now being started, the driver
1002  *      start method is invoked and the line discipline woken.
1003  *
1004  *      Locking:
1005  *              flow_lock
1006  */
1007
1008 void __start_tty(struct tty_struct *tty)
1009 {
1010         if (!tty->stopped || tty->flow_stopped)
1011                 return;
1012         tty->stopped = 0;
1013         if (tty->ops->start)
1014                 (tty->ops->start)(tty);
1015         tty_wakeup(tty);
1016 }
1017
1018 void start_tty(struct tty_struct *tty)
1019 {
1020         unsigned long flags;
1021
1022         spin_lock_irqsave(&tty->flow_lock, flags);
1023         __start_tty(tty);
1024         spin_unlock_irqrestore(&tty->flow_lock, flags);
1025 }
1026 EXPORT_SYMBOL(start_tty);
1027
1028 /* We limit tty time update visibility to every 8 seconds or so. */
1029 static void tty_update_time(struct timespec *time)
1030 {
1031         unsigned long sec = get_seconds() & ~7;
1032         if ((long)(sec - time->tv_sec) > 0)
1033                 time->tv_sec = sec;
1034 }
1035
1036 /**
1037  *      tty_read        -       read method for tty device files
1038  *      @file: pointer to tty file
1039  *      @buf: user buffer
1040  *      @count: size of user buffer
1041  *      @ppos: unused
1042  *
1043  *      Perform the read system call function on this terminal device. Checks
1044  *      for hung up devices before calling the line discipline method.
1045  *
1046  *      Locking:
1047  *              Locks the line discipline internally while needed. Multiple
1048  *      read calls may be outstanding in parallel.
1049  */
1050
1051 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1052                         loff_t *ppos)
1053 {
1054         int i;
1055         struct inode *inode = file_inode(file);
1056         struct tty_struct *tty = file_tty(file);
1057         struct tty_ldisc *ld;
1058
1059         if (tty_paranoia_check(tty, inode, "tty_read"))
1060                 return -EIO;
1061         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1062                 return -EIO;
1063
1064         /* We want to wait for the line discipline to sort out in this
1065            situation */
1066         ld = tty_ldisc_ref_wait(tty);
1067         if (ld->ops->read)
1068                 i = (ld->ops->read)(tty, file, buf, count);
1069         else
1070                 i = -EIO;
1071         tty_ldisc_deref(ld);
1072
1073         if (i > 0)
1074                 tty_update_time(&inode->i_atime);
1075
1076         return i;
1077 }
1078
1079 static void tty_write_unlock(struct tty_struct *tty)
1080 {
1081         mutex_unlock(&tty->atomic_write_lock);
1082         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1083 }
1084
1085 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1086 {
1087         if (!mutex_trylock(&tty->atomic_write_lock)) {
1088                 if (ndelay)
1089                         return -EAGAIN;
1090                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1091                         return -ERESTARTSYS;
1092         }
1093         return 0;
1094 }
1095
1096 /*
1097  * Split writes up in sane blocksizes to avoid
1098  * denial-of-service type attacks
1099  */
1100 static inline ssize_t do_tty_write(
1101         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1102         struct tty_struct *tty,
1103         struct file *file,
1104         const char __user *buf,
1105         size_t count)
1106 {
1107         ssize_t ret, written = 0;
1108         unsigned int chunk;
1109
1110         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1111         if (ret < 0)
1112                 return ret;
1113
1114         /*
1115          * We chunk up writes into a temporary buffer. This
1116          * simplifies low-level drivers immensely, since they
1117          * don't have locking issues and user mode accesses.
1118          *
1119          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1120          * big chunk-size..
1121          *
1122          * The default chunk-size is 2kB, because the NTTY
1123          * layer has problems with bigger chunks. It will
1124          * claim to be able to handle more characters than
1125          * it actually does.
1126          *
1127          * FIXME: This can probably go away now except that 64K chunks
1128          * are too likely to fail unless switched to vmalloc...
1129          */
1130         chunk = 2048;
1131         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1132                 chunk = 65536;
1133         if (count < chunk)
1134                 chunk = count;
1135
1136         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1137         if (tty->write_cnt < chunk) {
1138                 unsigned char *buf_chunk;
1139
1140                 if (chunk < 1024)
1141                         chunk = 1024;
1142
1143                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1144                 if (!buf_chunk) {
1145                         ret = -ENOMEM;
1146                         goto out;
1147                 }
1148                 kfree(tty->write_buf);
1149                 tty->write_cnt = chunk;
1150                 tty->write_buf = buf_chunk;
1151         }
1152
1153         /* Do the write .. */
1154         for (;;) {
1155                 size_t size = count;
1156                 if (size > chunk)
1157                         size = chunk;
1158                 ret = -EFAULT;
1159                 if (copy_from_user(tty->write_buf, buf, size))
1160                         break;
1161                 ret = write(tty, file, tty->write_buf, size);
1162                 if (ret <= 0)
1163                         break;
1164                 written += ret;
1165                 buf += ret;
1166                 count -= ret;
1167                 if (!count)
1168                         break;
1169                 ret = -ERESTARTSYS;
1170                 if (signal_pending(current))
1171                         break;
1172                 cond_resched();
1173         }
1174         if (written) {
1175                 tty_update_time(&file_inode(file)->i_mtime);
1176                 ret = written;
1177         }
1178 out:
1179         tty_write_unlock(tty);
1180         return ret;
1181 }
1182
1183 /**
1184  * tty_write_message - write a message to a certain tty, not just the console.
1185  * @tty: the destination tty_struct
1186  * @msg: the message to write
1187  *
1188  * This is used for messages that need to be redirected to a specific tty.
1189  * We don't put it into the syslog queue right now maybe in the future if
1190  * really needed.
1191  *
1192  * We must still hold the BTM and test the CLOSING flag for the moment.
1193  */
1194
1195 void tty_write_message(struct tty_struct *tty, char *msg)
1196 {
1197         if (tty) {
1198                 mutex_lock(&tty->atomic_write_lock);
1199                 tty_lock(tty);
1200                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1201                         tty_unlock(tty);
1202                         tty->ops->write(tty, msg, strlen(msg));
1203                 } else
1204                         tty_unlock(tty);
1205                 tty_write_unlock(tty);
1206         }
1207         return;
1208 }
1209
1210
1211 /**
1212  *      tty_write               -       write method for tty device file
1213  *      @file: tty file pointer
1214  *      @buf: user data to write
1215  *      @count: bytes to write
1216  *      @ppos: unused
1217  *
1218  *      Write data to a tty device via the line discipline.
1219  *
1220  *      Locking:
1221  *              Locks the line discipline as required
1222  *              Writes to the tty driver are serialized by the atomic_write_lock
1223  *      and are then processed in chunks to the device. The line discipline
1224  *      write method will not be invoked in parallel for each device.
1225  */
1226
1227 static ssize_t tty_write(struct file *file, const char __user *buf,
1228                                                 size_t count, loff_t *ppos)
1229 {
1230         struct tty_struct *tty = file_tty(file);
1231         struct tty_ldisc *ld;
1232         ssize_t ret;
1233
1234         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1235                 return -EIO;
1236         if (!tty || !tty->ops->write ||
1237                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1238                         return -EIO;
1239         /* Short term debug to catch buggy drivers */
1240         if (tty->ops->write_room == NULL)
1241                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1242                         tty->driver->name);
1243         ld = tty_ldisc_ref_wait(tty);
1244         if (!ld->ops->write)
1245                 ret = -EIO;
1246         else
1247                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1248         tty_ldisc_deref(ld);
1249         return ret;
1250 }
1251
1252 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1253                                                 size_t count, loff_t *ppos)
1254 {
1255         struct file *p = NULL;
1256
1257         spin_lock(&redirect_lock);
1258         if (redirect)
1259                 p = get_file(redirect);
1260         spin_unlock(&redirect_lock);
1261
1262         if (p) {
1263                 ssize_t res;
1264                 res = vfs_write(p, buf, count, &p->f_pos);
1265                 fput(p);
1266                 return res;
1267         }
1268         return tty_write(file, buf, count, ppos);
1269 }
1270
1271 /**
1272  *      tty_send_xchar  -       send priority character
1273  *
1274  *      Send a high priority character to the tty even if stopped
1275  *
1276  *      Locking: none for xchar method, write ordering for write method.
1277  */
1278
1279 int tty_send_xchar(struct tty_struct *tty, char ch)
1280 {
1281         int     was_stopped = tty->stopped;
1282
1283         if (tty->ops->send_xchar) {
1284                 tty->ops->send_xchar(tty, ch);
1285                 return 0;
1286         }
1287
1288         if (tty_write_lock(tty, 0) < 0)
1289                 return -ERESTARTSYS;
1290
1291         if (was_stopped)
1292                 start_tty(tty);
1293         tty->ops->write(tty, &ch, 1);
1294         if (was_stopped)
1295                 stop_tty(tty);
1296         tty_write_unlock(tty);
1297         return 0;
1298 }
1299
1300 static char ptychar[] = "pqrstuvwxyzabcde";
1301
1302 /**
1303  *      pty_line_name   -       generate name for a pty
1304  *      @driver: the tty driver in use
1305  *      @index: the minor number
1306  *      @p: output buffer of at least 6 bytes
1307  *
1308  *      Generate a name from a driver reference and write it to the output
1309  *      buffer.
1310  *
1311  *      Locking: None
1312  */
1313 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1314 {
1315         int i = index + driver->name_base;
1316         /* ->name is initialized to "ttyp", but "tty" is expected */
1317         sprintf(p, "%s%c%x",
1318                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1319                 ptychar[i >> 4 & 0xf], i & 0xf);
1320 }
1321
1322 /**
1323  *      tty_line_name   -       generate name for a tty
1324  *      @driver: the tty driver in use
1325  *      @index: the minor number
1326  *      @p: output buffer of at least 7 bytes
1327  *
1328  *      Generate a name from a driver reference and write it to the output
1329  *      buffer.
1330  *
1331  *      Locking: None
1332  */
1333 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1334 {
1335         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1336                 return sprintf(p, "%s", driver->name);
1337         else
1338                 return sprintf(p, "%s%d", driver->name,
1339                                index + driver->name_base);
1340 }
1341
1342 /**
1343  *      tty_driver_lookup_tty() - find an existing tty, if any
1344  *      @driver: the driver for the tty
1345  *      @idx:    the minor number
1346  *
1347  *      Return the tty, if found or ERR_PTR() otherwise.
1348  *
1349  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1350  *      be held until the 'fast-open' is also done. Will change once we
1351  *      have refcounting in the driver and per driver locking
1352  */
1353 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1354                 struct inode *inode, int idx)
1355 {
1356         if (driver->ops->lookup)
1357                 return driver->ops->lookup(driver, inode, idx);
1358
1359         return driver->ttys[idx];
1360 }
1361
1362 /**
1363  *      tty_init_termios        -  helper for termios setup
1364  *      @tty: the tty to set up
1365  *
1366  *      Initialise the termios structures for this tty. Thus runs under
1367  *      the tty_mutex currently so we can be relaxed about ordering.
1368  */
1369
1370 int tty_init_termios(struct tty_struct *tty)
1371 {
1372         struct ktermios *tp;
1373         int idx = tty->index;
1374
1375         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1376                 tty->termios = tty->driver->init_termios;
1377         else {
1378                 /* Check for lazy saved data */
1379                 tp = tty->driver->termios[idx];
1380                 if (tp != NULL)
1381                         tty->termios = *tp;
1382                 else
1383                         tty->termios = tty->driver->init_termios;
1384         }
1385         /* Compatibility until drivers always set this */
1386         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1387         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1388         return 0;
1389 }
1390 EXPORT_SYMBOL_GPL(tty_init_termios);
1391
1392 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1393 {
1394         int ret = tty_init_termios(tty);
1395         if (ret)
1396                 return ret;
1397
1398         tty_driver_kref_get(driver);
1399         tty->count++;
1400         driver->ttys[tty->index] = tty;
1401         return 0;
1402 }
1403 EXPORT_SYMBOL_GPL(tty_standard_install);
1404
1405 /**
1406  *      tty_driver_install_tty() - install a tty entry in the driver
1407  *      @driver: the driver for the tty
1408  *      @tty: the tty
1409  *
1410  *      Install a tty object into the driver tables. The tty->index field
1411  *      will be set by the time this is called. This method is responsible
1412  *      for ensuring any need additional structures are allocated and
1413  *      configured.
1414  *
1415  *      Locking: tty_mutex for now
1416  */
1417 static int tty_driver_install_tty(struct tty_driver *driver,
1418                                                 struct tty_struct *tty)
1419 {
1420         return driver->ops->install ? driver->ops->install(driver, tty) :
1421                 tty_standard_install(driver, tty);
1422 }
1423
1424 /**
1425  *      tty_driver_remove_tty() - remove a tty from the driver tables
1426  *      @driver: the driver for the tty
1427  *      @idx:    the minor number
1428  *
1429  *      Remvoe a tty object from the driver tables. The tty->index field
1430  *      will be set by the time this is called.
1431  *
1432  *      Locking: tty_mutex for now
1433  */
1434 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1435 {
1436         if (driver->ops->remove)
1437                 driver->ops->remove(driver, tty);
1438         else
1439                 driver->ttys[tty->index] = NULL;
1440 }
1441
1442 /*
1443  *      tty_reopen()    - fast re-open of an open tty
1444  *      @tty    - the tty to open
1445  *
1446  *      Return 0 on success, -errno on error.
1447  *
1448  *      Locking: tty_mutex must be held from the time the tty was found
1449  *               till this open completes.
1450  */
1451 static int tty_reopen(struct tty_struct *tty)
1452 {
1453         struct tty_driver *driver = tty->driver;
1454
1455         if (test_bit(TTY_CLOSING, &tty->flags))
1456                 return -EIO;
1457
1458         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1459             driver->subtype == PTY_TYPE_MASTER) {
1460                 /*
1461                  * special case for PTY masters: only one open permitted,
1462                  * and the slave side open count is incremented as well.
1463                  */
1464                 if (tty->count)
1465                         return -EIO;
1466
1467                 tty->link->count++;
1468         }
1469         tty->count++;
1470
1471         WARN_ON(!tty->ldisc);
1472
1473         return 0;
1474 }
1475
1476 /**
1477  *      tty_init_dev            -       initialise a tty device
1478  *      @driver: tty driver we are opening a device on
1479  *      @idx: device index
1480  *      @ret_tty: returned tty structure
1481  *
1482  *      Prepare a tty device. This may not be a "new" clean device but
1483  *      could also be an active device. The pty drivers require special
1484  *      handling because of this.
1485  *
1486  *      Locking:
1487  *              The function is called under the tty_mutex, which
1488  *      protects us from the tty struct or driver itself going away.
1489  *
1490  *      On exit the tty device has the line discipline attached and
1491  *      a reference count of 1. If a pair was created for pty/tty use
1492  *      and the other was a pty master then it too has a reference count of 1.
1493  *
1494  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1495  * failed open.  The new code protects the open with a mutex, so it's
1496  * really quite straightforward.  The mutex locking can probably be
1497  * relaxed for the (most common) case of reopening a tty.
1498  */
1499
1500 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1501 {
1502         struct tty_struct *tty;
1503         int retval;
1504
1505         /*
1506          * First time open is complex, especially for PTY devices.
1507          * This code guarantees that either everything succeeds and the
1508          * TTY is ready for operation, or else the table slots are vacated
1509          * and the allocated memory released.  (Except that the termios
1510          * and locked termios may be retained.)
1511          */
1512
1513         if (!try_module_get(driver->owner))
1514                 return ERR_PTR(-ENODEV);
1515
1516         tty = alloc_tty_struct(driver, idx);
1517         if (!tty) {
1518                 retval = -ENOMEM;
1519                 goto err_module_put;
1520         }
1521
1522         tty_lock(tty);
1523         retval = tty_driver_install_tty(driver, tty);
1524         if (retval < 0)
1525                 goto err_deinit_tty;
1526
1527         if (!tty->port)
1528                 tty->port = driver->ports[idx];
1529
1530         WARN_RATELIMIT(!tty->port,
1531                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1532                         __func__, tty->driver->name);
1533
1534         tty->port->itty = tty;
1535
1536         /*
1537          * Structures all installed ... call the ldisc open routines.
1538          * If we fail here just call release_tty to clean up.  No need
1539          * to decrement the use counts, as release_tty doesn't care.
1540          */
1541         retval = tty_ldisc_setup(tty, tty->link);
1542         if (retval)
1543                 goto err_release_tty;
1544         /* Return the tty locked so that it cannot vanish under the caller */
1545         return tty;
1546
1547 err_deinit_tty:
1548         tty_unlock(tty);
1549         deinitialize_tty_struct(tty);
1550         free_tty_struct(tty);
1551 err_module_put:
1552         module_put(driver->owner);
1553         return ERR_PTR(retval);
1554
1555         /* call the tty release_tty routine to clean out this slot */
1556 err_release_tty:
1557         tty_unlock(tty);
1558         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1559                                  "clearing slot %d\n", idx);
1560         release_tty(tty, idx);
1561         return ERR_PTR(retval);
1562 }
1563
1564 void tty_free_termios(struct tty_struct *tty)
1565 {
1566         struct ktermios *tp;
1567         int idx = tty->index;
1568
1569         /* If the port is going to reset then it has no termios to save */
1570         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1571                 return;
1572
1573         /* Stash the termios data */
1574         tp = tty->driver->termios[idx];
1575         if (tp == NULL) {
1576                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1577                 if (tp == NULL) {
1578                         pr_warn("tty: no memory to save termios state.\n");
1579                         return;
1580                 }
1581                 tty->driver->termios[idx] = tp;
1582         }
1583         *tp = tty->termios;
1584 }
1585 EXPORT_SYMBOL(tty_free_termios);
1586
1587 /**
1588  *      tty_flush_works         -       flush all works of a tty
1589  *      @tty: tty device to flush works for
1590  *
1591  *      Sync flush all works belonging to @tty.
1592  */
1593 static void tty_flush_works(struct tty_struct *tty)
1594 {
1595         flush_work(&tty->SAK_work);
1596         flush_work(&tty->hangup_work);
1597 }
1598
1599 /**
1600  *      release_one_tty         -       release tty structure memory
1601  *      @kref: kref of tty we are obliterating
1602  *
1603  *      Releases memory associated with a tty structure, and clears out the
1604  *      driver table slots. This function is called when a device is no longer
1605  *      in use. It also gets called when setup of a device fails.
1606  *
1607  *      Locking:
1608  *              takes the file list lock internally when working on the list
1609  *      of ttys that the driver keeps.
1610  *
1611  *      This method gets called from a work queue so that the driver private
1612  *      cleanup ops can sleep (needed for USB at least)
1613  */
1614 static void release_one_tty(struct work_struct *work)
1615 {
1616         struct tty_struct *tty =
1617                 container_of(work, struct tty_struct, hangup_work);
1618         struct tty_driver *driver = tty->driver;
1619         struct module *owner = driver->owner;
1620
1621         if (tty->ops->cleanup)
1622                 tty->ops->cleanup(tty);
1623
1624         tty->magic = 0;
1625         tty_driver_kref_put(driver);
1626         module_put(owner);
1627
1628         spin_lock(&tty_files_lock);
1629         list_del_init(&tty->tty_files);
1630         spin_unlock(&tty_files_lock);
1631
1632         put_pid(tty->pgrp);
1633         put_pid(tty->session);
1634         free_tty_struct(tty);
1635 }
1636
1637 static void queue_release_one_tty(struct kref *kref)
1638 {
1639         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1640
1641         /* The hangup queue is now free so we can reuse it rather than
1642            waste a chunk of memory for each port */
1643         INIT_WORK(&tty->hangup_work, release_one_tty);
1644         schedule_work(&tty->hangup_work);
1645 }
1646
1647 /**
1648  *      tty_kref_put            -       release a tty kref
1649  *      @tty: tty device
1650  *
1651  *      Release a reference to a tty device and if need be let the kref
1652  *      layer destruct the object for us
1653  */
1654
1655 void tty_kref_put(struct tty_struct *tty)
1656 {
1657         if (tty)
1658                 kref_put(&tty->kref, queue_release_one_tty);
1659 }
1660 EXPORT_SYMBOL(tty_kref_put);
1661
1662 /**
1663  *      release_tty             -       release tty structure memory
1664  *
1665  *      Release both @tty and a possible linked partner (think pty pair),
1666  *      and decrement the refcount of the backing module.
1667  *
1668  *      Locking:
1669  *              tty_mutex
1670  *              takes the file list lock internally when working on the list
1671  *      of ttys that the driver keeps.
1672  *
1673  */
1674 static void release_tty(struct tty_struct *tty, int idx)
1675 {
1676         /* This should always be true but check for the moment */
1677         WARN_ON(tty->index != idx);
1678         WARN_ON(!mutex_is_locked(&tty_mutex));
1679         if (tty->ops->shutdown)
1680                 tty->ops->shutdown(tty);
1681         tty_free_termios(tty);
1682         tty_driver_remove_tty(tty->driver, tty);
1683         tty->port->itty = NULL;
1684         if (tty->link)
1685                 tty->link->port->itty = NULL;
1686         cancel_work_sync(&tty->port->buf.work);
1687
1688         if (tty->link)
1689                 tty_kref_put(tty->link);
1690         tty_kref_put(tty);
1691 }
1692
1693 /**
1694  *      tty_release_checks - check a tty before real release
1695  *      @tty: tty to check
1696  *      @o_tty: link of @tty (if any)
1697  *      @idx: index of the tty
1698  *
1699  *      Performs some paranoid checking before true release of the @tty.
1700  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1701  */
1702 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1703                 int idx)
1704 {
1705 #ifdef TTY_PARANOIA_CHECK
1706         if (idx < 0 || idx >= tty->driver->num) {
1707                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1708                                 __func__, tty->name);
1709                 return -1;
1710         }
1711
1712         /* not much to check for devpts */
1713         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1714                 return 0;
1715
1716         if (tty != tty->driver->ttys[idx]) {
1717                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1718                                 __func__, idx, tty->name);
1719                 return -1;
1720         }
1721         if (tty->driver->other) {
1722                 if (o_tty != tty->driver->other->ttys[idx]) {
1723                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1724                                         __func__, idx, tty->name);
1725                         return -1;
1726                 }
1727                 if (o_tty->link != tty) {
1728                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1729                         return -1;
1730                 }
1731         }
1732 #endif
1733         return 0;
1734 }
1735
1736 /**
1737  *      tty_release             -       vfs callback for close
1738  *      @inode: inode of tty
1739  *      @filp: file pointer for handle to tty
1740  *
1741  *      Called the last time each file handle is closed that references
1742  *      this tty. There may however be several such references.
1743  *
1744  *      Locking:
1745  *              Takes bkl. See tty_release_dev
1746  *
1747  * Even releasing the tty structures is a tricky business.. We have
1748  * to be very careful that the structures are all released at the
1749  * same time, as interrupts might otherwise get the wrong pointers.
1750  *
1751  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1752  * lead to double frees or releasing memory still in use.
1753  */
1754
1755 int tty_release(struct inode *inode, struct file *filp)
1756 {
1757         struct tty_struct *tty = file_tty(filp);
1758         struct tty_struct *o_tty;
1759         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1760         int     idx;
1761         char    buf[64];
1762
1763         if (tty_paranoia_check(tty, inode, __func__))
1764                 return 0;
1765
1766         tty_lock(tty);
1767         check_tty_count(tty, __func__);
1768
1769         __tty_fasync(-1, filp, 0);
1770
1771         idx = tty->index;
1772         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1773                       tty->driver->subtype == PTY_TYPE_MASTER);
1774         /* Review: parallel close */
1775         o_tty = tty->link;
1776
1777         if (tty_release_checks(tty, o_tty, idx)) {
1778                 tty_unlock(tty);
1779                 return 0;
1780         }
1781
1782 #ifdef TTY_DEBUG_HANGUP
1783         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1784                         tty_name(tty, buf), tty->count);
1785 #endif
1786
1787         if (tty->ops->close)
1788                 tty->ops->close(tty, filp);
1789
1790         tty_unlock(tty);
1791         /*
1792          * Sanity check: if tty->count is going to zero, there shouldn't be
1793          * any waiters on tty->read_wait or tty->write_wait.  We test the
1794          * wait queues and kick everyone out _before_ actually starting to
1795          * close.  This ensures that we won't block while releasing the tty
1796          * structure.
1797          *
1798          * The test for the o_tty closing is necessary, since the master and
1799          * slave sides may close in any order.  If the slave side closes out
1800          * first, its count will be one, since the master side holds an open.
1801          * Thus this test wouldn't be triggered at the time the slave closes,
1802          * so we do it now.
1803          *
1804          * Note that it's possible for the tty to be opened again while we're
1805          * flushing out waiters.  By recalculating the closing flags before
1806          * each iteration we avoid any problems.
1807          */
1808         while (1) {
1809                 /* Guard against races with tty->count changes elsewhere and
1810                    opens on /dev/tty */
1811
1812                 mutex_lock(&tty_mutex);
1813                 tty_lock_pair(tty, o_tty);
1814                 tty_closing = tty->count <= 1;
1815                 o_tty_closing = o_tty &&
1816                         (o_tty->count <= (pty_master ? 1 : 0));
1817                 do_sleep = 0;
1818
1819                 if (tty_closing) {
1820                         if (waitqueue_active(&tty->read_wait)) {
1821                                 wake_up_poll(&tty->read_wait, POLLIN);
1822                                 do_sleep++;
1823                         }
1824                         if (waitqueue_active(&tty->write_wait)) {
1825                                 wake_up_poll(&tty->write_wait, POLLOUT);
1826                                 do_sleep++;
1827                         }
1828                 }
1829                 if (o_tty_closing) {
1830                         if (waitqueue_active(&o_tty->read_wait)) {
1831                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1832                                 do_sleep++;
1833                         }
1834                         if (waitqueue_active(&o_tty->write_wait)) {
1835                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1836                                 do_sleep++;
1837                         }
1838                 }
1839                 if (!do_sleep)
1840                         break;
1841
1842                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1843                                 __func__, tty_name(tty, buf));
1844                 tty_unlock_pair(tty, o_tty);
1845                 mutex_unlock(&tty_mutex);
1846                 schedule();
1847         }
1848
1849         /*
1850          * The closing flags are now consistent with the open counts on
1851          * both sides, and we've completed the last operation that could
1852          * block, so it's safe to proceed with closing.
1853          *
1854          * We must *not* drop the tty_mutex until we ensure that a further
1855          * entry into tty_open can not pick up this tty.
1856          */
1857         if (pty_master) {
1858                 if (--o_tty->count < 0) {
1859                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1860                                 __func__, o_tty->count, tty_name(o_tty, buf));
1861                         o_tty->count = 0;
1862                 }
1863         }
1864         if (--tty->count < 0) {
1865                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1866                                 __func__, tty->count, tty_name(tty, buf));
1867                 tty->count = 0;
1868         }
1869
1870         /*
1871          * We've decremented tty->count, so we need to remove this file
1872          * descriptor off the tty->tty_files list; this serves two
1873          * purposes:
1874          *  - check_tty_count sees the correct number of file descriptors
1875          *    associated with this tty.
1876          *  - do_tty_hangup no longer sees this file descriptor as
1877          *    something that needs to be handled for hangups.
1878          */
1879         tty_del_file(filp);
1880
1881         /*
1882          * Perform some housekeeping before deciding whether to return.
1883          *
1884          * Set the TTY_CLOSING flag if this was the last open.  In the
1885          * case of a pty we may have to wait around for the other side
1886          * to close, and TTY_CLOSING makes sure we can't be reopened.
1887          */
1888         if (tty_closing)
1889                 set_bit(TTY_CLOSING, &tty->flags);
1890         if (o_tty_closing)
1891                 set_bit(TTY_CLOSING, &o_tty->flags);
1892
1893         /*
1894          * If _either_ side is closing, make sure there aren't any
1895          * processes that still think tty or o_tty is their controlling
1896          * tty.
1897          */
1898         if (tty_closing || o_tty_closing) {
1899                 read_lock(&tasklist_lock);
1900                 session_clear_tty(tty->session);
1901                 if (o_tty)
1902                         session_clear_tty(o_tty->session);
1903                 read_unlock(&tasklist_lock);
1904         }
1905
1906         mutex_unlock(&tty_mutex);
1907         tty_unlock_pair(tty, o_tty);
1908         /* At this point the TTY_CLOSING flag should ensure a dead tty
1909            cannot be re-opened by a racing opener */
1910
1911         /* check whether both sides are closing ... */
1912         if (!tty_closing || (o_tty && !o_tty_closing))
1913                 return 0;
1914
1915 #ifdef TTY_DEBUG_HANGUP
1916         printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1917 #endif
1918         /*
1919          * Ask the line discipline code to release its structures
1920          */
1921         tty_ldisc_release(tty, o_tty);
1922
1923         /* Wait for pending work before tty destruction commmences */
1924         tty_flush_works(tty);
1925         if (o_tty)
1926                 tty_flush_works(o_tty);
1927
1928 #ifdef TTY_DEBUG_HANGUP
1929         printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1930 #endif
1931         /*
1932          * The release_tty function takes care of the details of clearing
1933          * the slots and preserving the termios structure. The tty_unlock_pair
1934          * should be safe as we keep a kref while the tty is locked (so the
1935          * unlock never unlocks a freed tty).
1936          */
1937         mutex_lock(&tty_mutex);
1938         release_tty(tty, idx);
1939         mutex_unlock(&tty_mutex);
1940
1941         return 0;
1942 }
1943
1944 /**
1945  *      tty_open_current_tty - get tty of current task for open
1946  *      @device: device number
1947  *      @filp: file pointer to tty
1948  *      @return: tty of the current task iff @device is /dev/tty
1949  *
1950  *      We cannot return driver and index like for the other nodes because
1951  *      devpts will not work then. It expects inodes to be from devpts FS.
1952  *
1953  *      We need to move to returning a refcounted object from all the lookup
1954  *      paths including this one.
1955  */
1956 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1957 {
1958         struct tty_struct *tty;
1959
1960         if (device != MKDEV(TTYAUX_MAJOR, 0))
1961                 return NULL;
1962
1963         tty = get_current_tty();
1964         if (!tty)
1965                 return ERR_PTR(-ENXIO);
1966
1967         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1968         /* noctty = 1; */
1969         tty_kref_put(tty);
1970         /* FIXME: we put a reference and return a TTY! */
1971         /* This is only safe because the caller holds tty_mutex */
1972         return tty;
1973 }
1974
1975 /**
1976  *      tty_lookup_driver - lookup a tty driver for a given device file
1977  *      @device: device number
1978  *      @filp: file pointer to tty
1979  *      @noctty: set if the device should not become a controlling tty
1980  *      @index: index for the device in the @return driver
1981  *      @return: driver for this inode (with increased refcount)
1982  *
1983  *      If @return is not erroneous, the caller is responsible to decrement the
1984  *      refcount by tty_driver_kref_put.
1985  *
1986  *      Locking: tty_mutex protects get_tty_driver
1987  */
1988 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1989                 int *noctty, int *index)
1990 {
1991         struct tty_driver *driver;
1992
1993         switch (device) {
1994 #ifdef CONFIG_VT
1995         case MKDEV(TTY_MAJOR, 0): {
1996                 extern struct tty_driver *console_driver;
1997                 driver = tty_driver_kref_get(console_driver);
1998                 *index = fg_console;
1999                 *noctty = 1;
2000                 break;
2001         }
2002 #endif
2003         case MKDEV(TTYAUX_MAJOR, 1): {
2004                 struct tty_driver *console_driver = console_device(index);
2005                 if (console_driver) {
2006                         driver = tty_driver_kref_get(console_driver);
2007                         if (driver) {
2008                                 /* Don't let /dev/console block */
2009                                 filp->f_flags |= O_NONBLOCK;
2010                                 *noctty = 1;
2011                                 break;
2012                         }
2013                 }
2014                 return ERR_PTR(-ENODEV);
2015         }
2016         default:
2017                 driver = get_tty_driver(device, index);
2018                 if (!driver)
2019                         return ERR_PTR(-ENODEV);
2020                 break;
2021         }
2022         return driver;
2023 }
2024
2025 /**
2026  *      tty_open                -       open a tty device
2027  *      @inode: inode of device file
2028  *      @filp: file pointer to tty
2029  *
2030  *      tty_open and tty_release keep up the tty count that contains the
2031  *      number of opens done on a tty. We cannot use the inode-count, as
2032  *      different inodes might point to the same tty.
2033  *
2034  *      Open-counting is needed for pty masters, as well as for keeping
2035  *      track of serial lines: DTR is dropped when the last close happens.
2036  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
2037  *
2038  *      The termios state of a pty is reset on first open so that
2039  *      settings don't persist across reuse.
2040  *
2041  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2042  *               tty->count should protect the rest.
2043  *               ->siglock protects ->signal/->sighand
2044  *
2045  *      Note: the tty_unlock/lock cases without a ref are only safe due to
2046  *      tty_mutex
2047  */
2048
2049 static int tty_open(struct inode *inode, struct file *filp)
2050 {
2051         struct tty_struct *tty;
2052         int noctty, retval;
2053         struct tty_driver *driver = NULL;
2054         int index;
2055         dev_t device = inode->i_rdev;
2056         unsigned saved_flags = filp->f_flags;
2057
2058         nonseekable_open(inode, filp);
2059
2060 retry_open:
2061         retval = tty_alloc_file(filp);
2062         if (retval)
2063                 return -ENOMEM;
2064
2065         noctty = filp->f_flags & O_NOCTTY;
2066         index  = -1;
2067         retval = 0;
2068
2069         mutex_lock(&tty_mutex);
2070         /* This is protected by the tty_mutex */
2071         tty = tty_open_current_tty(device, filp);
2072         if (IS_ERR(tty)) {
2073                 retval = PTR_ERR(tty);
2074                 goto err_unlock;
2075         } else if (!tty) {
2076                 driver = tty_lookup_driver(device, filp, &noctty, &index);
2077                 if (IS_ERR(driver)) {
2078                         retval = PTR_ERR(driver);
2079                         goto err_unlock;
2080                 }
2081
2082                 /* check whether we're reopening an existing tty */
2083                 tty = tty_driver_lookup_tty(driver, inode, index);
2084                 if (IS_ERR(tty)) {
2085                         retval = PTR_ERR(tty);
2086                         goto err_unlock;
2087                 }
2088         }
2089
2090         if (tty) {
2091                 tty_lock(tty);
2092                 retval = tty_reopen(tty);
2093                 if (retval < 0) {
2094                         tty_unlock(tty);
2095                         tty = ERR_PTR(retval);
2096                 }
2097         } else  /* Returns with the tty_lock held for now */
2098                 tty = tty_init_dev(driver, index);
2099
2100         mutex_unlock(&tty_mutex);
2101         if (driver)
2102                 tty_driver_kref_put(driver);
2103         if (IS_ERR(tty)) {
2104                 retval = PTR_ERR(tty);
2105                 goto err_file;
2106         }
2107
2108         tty_add_file(tty, filp);
2109
2110         check_tty_count(tty, __func__);
2111         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2112             tty->driver->subtype == PTY_TYPE_MASTER)
2113                 noctty = 1;
2114 #ifdef TTY_DEBUG_HANGUP
2115         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2116 #endif
2117         if (tty->ops->open)
2118                 retval = tty->ops->open(tty, filp);
2119         else
2120                 retval = -ENODEV;
2121         filp->f_flags = saved_flags;
2122
2123         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2124                                                 !capable(CAP_SYS_ADMIN))
2125                 retval = -EBUSY;
2126
2127         if (retval) {
2128 #ifdef TTY_DEBUG_HANGUP
2129                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2130                                 retval, tty->name);
2131 #endif
2132                 tty_unlock(tty); /* need to call tty_release without BTM */
2133                 tty_release(inode, filp);
2134                 if (retval != -ERESTARTSYS)
2135                         return retval;
2136
2137                 if (signal_pending(current))
2138                         return retval;
2139
2140                 schedule();
2141                 /*
2142                  * Need to reset f_op in case a hangup happened.
2143                  */
2144                 if (filp->f_op == &hung_up_tty_fops)
2145                         filp->f_op = &tty_fops;
2146                 goto retry_open;
2147         }
2148         clear_bit(TTY_HUPPED, &tty->flags);
2149
2150
2151         read_lock(&tasklist_lock);
2152         spin_lock_irq(&current->sighand->siglock);
2153         if (!noctty &&
2154             current->signal->leader &&
2155             !current->signal->tty &&
2156             tty->session == NULL)
2157                 __proc_set_tty(tty);
2158         spin_unlock_irq(&current->sighand->siglock);
2159         read_unlock(&tasklist_lock);
2160         tty_unlock(tty);
2161         return 0;
2162 err_unlock:
2163         mutex_unlock(&tty_mutex);
2164         /* after locks to avoid deadlock */
2165         if (!IS_ERR_OR_NULL(driver))
2166                 tty_driver_kref_put(driver);
2167 err_file:
2168         tty_free_file(filp);
2169         return retval;
2170 }
2171
2172
2173
2174 /**
2175  *      tty_poll        -       check tty status
2176  *      @filp: file being polled
2177  *      @wait: poll wait structures to update
2178  *
2179  *      Call the line discipline polling method to obtain the poll
2180  *      status of the device.
2181  *
2182  *      Locking: locks called line discipline but ldisc poll method
2183  *      may be re-entered freely by other callers.
2184  */
2185
2186 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2187 {
2188         struct tty_struct *tty = file_tty(filp);
2189         struct tty_ldisc *ld;
2190         int ret = 0;
2191
2192         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2193                 return 0;
2194
2195         ld = tty_ldisc_ref_wait(tty);
2196         if (ld->ops->poll)
2197                 ret = (ld->ops->poll)(tty, filp, wait);
2198         tty_ldisc_deref(ld);
2199         return ret;
2200 }
2201
2202 static int __tty_fasync(int fd, struct file *filp, int on)
2203 {
2204         struct tty_struct *tty = file_tty(filp);
2205         struct tty_ldisc *ldisc;
2206         unsigned long flags;
2207         int retval = 0;
2208
2209         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2210                 goto out;
2211
2212         retval = fasync_helper(fd, filp, on, &tty->fasync);
2213         if (retval <= 0)
2214                 goto out;
2215
2216         ldisc = tty_ldisc_ref(tty);
2217         if (ldisc) {
2218                 if (ldisc->ops->fasync)
2219                         ldisc->ops->fasync(tty, on);
2220                 tty_ldisc_deref(ldisc);
2221         }
2222
2223         if (on) {
2224                 enum pid_type type;
2225                 struct pid *pid;
2226
2227                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2228                 if (tty->pgrp) {
2229                         pid = tty->pgrp;
2230                         type = PIDTYPE_PGID;
2231                 } else {
2232                         pid = task_pid(current);
2233                         type = PIDTYPE_PID;
2234                 }
2235                 get_pid(pid);
2236                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2237                 __f_setown(filp, pid, type, 0);
2238                 put_pid(pid);
2239                 retval = 0;
2240         }
2241 out:
2242         return retval;
2243 }
2244
2245 static int tty_fasync(int fd, struct file *filp, int on)
2246 {
2247         struct tty_struct *tty = file_tty(filp);
2248         int retval;
2249
2250         tty_lock(tty);
2251         retval = __tty_fasync(fd, filp, on);
2252         tty_unlock(tty);
2253
2254         return retval;
2255 }
2256
2257 /**
2258  *      tiocsti                 -       fake input character
2259  *      @tty: tty to fake input into
2260  *      @p: pointer to character
2261  *
2262  *      Fake input to a tty device. Does the necessary locking and
2263  *      input management.
2264  *
2265  *      FIXME: does not honour flow control ??
2266  *
2267  *      Locking:
2268  *              Called functions take tty_ldiscs_lock
2269  *              current->signal->tty check is safe without locks
2270  *
2271  *      FIXME: may race normal receive processing
2272  */
2273
2274 static int tiocsti(struct tty_struct *tty, char __user *p)
2275 {
2276         char ch, mbz = 0;
2277         struct tty_ldisc *ld;
2278
2279         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2280                 return -EPERM;
2281         if (get_user(ch, p))
2282                 return -EFAULT;
2283         tty_audit_tiocsti(tty, ch);
2284         ld = tty_ldisc_ref_wait(tty);
2285         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2286         tty_ldisc_deref(ld);
2287         return 0;
2288 }
2289
2290 /**
2291  *      tiocgwinsz              -       implement window query ioctl
2292  *      @tty; tty
2293  *      @arg: user buffer for result
2294  *
2295  *      Copies the kernel idea of the window size into the user buffer.
2296  *
2297  *      Locking: tty->winsize_mutex is taken to ensure the winsize data
2298  *              is consistent.
2299  */
2300
2301 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2302 {
2303         int err;
2304
2305         mutex_lock(&tty->winsize_mutex);
2306         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2307         mutex_unlock(&tty->winsize_mutex);
2308
2309         return err ? -EFAULT: 0;
2310 }
2311
2312 /**
2313  *      tty_do_resize           -       resize event
2314  *      @tty: tty being resized
2315  *      @rows: rows (character)
2316  *      @cols: cols (character)
2317  *
2318  *      Update the termios variables and send the necessary signals to
2319  *      peform a terminal resize correctly
2320  */
2321
2322 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2323 {
2324         struct pid *pgrp;
2325
2326         /* Lock the tty */
2327         mutex_lock(&tty->winsize_mutex);
2328         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2329                 goto done;
2330
2331         /* Signal the foreground process group */
2332         pgrp = tty_get_pgrp(tty);
2333         if (pgrp)
2334                 kill_pgrp(pgrp, SIGWINCH, 1);
2335         put_pid(pgrp);
2336
2337         tty->winsize = *ws;
2338 done:
2339         mutex_unlock(&tty->winsize_mutex);
2340         return 0;
2341 }
2342 EXPORT_SYMBOL(tty_do_resize);
2343
2344 /**
2345  *      tiocswinsz              -       implement window size set ioctl
2346  *      @tty; tty side of tty
2347  *      @arg: user buffer for result
2348  *
2349  *      Copies the user idea of the window size to the kernel. Traditionally
2350  *      this is just advisory information but for the Linux console it
2351  *      actually has driver level meaning and triggers a VC resize.
2352  *
2353  *      Locking:
2354  *              Driver dependent. The default do_resize method takes the
2355  *      tty termios mutex and ctrl_lock. The console takes its own lock
2356  *      then calls into the default method.
2357  */
2358
2359 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2360 {
2361         struct winsize tmp_ws;
2362         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2363                 return -EFAULT;
2364
2365         if (tty->ops->resize)
2366                 return tty->ops->resize(tty, &tmp_ws);
2367         else
2368                 return tty_do_resize(tty, &tmp_ws);
2369 }
2370
2371 /**
2372  *      tioccons        -       allow admin to move logical console
2373  *      @file: the file to become console
2374  *
2375  *      Allow the administrator to move the redirected console device
2376  *
2377  *      Locking: uses redirect_lock to guard the redirect information
2378  */
2379
2380 static int tioccons(struct file *file)
2381 {
2382         if (!capable(CAP_SYS_ADMIN))
2383                 return -EPERM;
2384         if (file->f_op->write == redirected_tty_write) {
2385                 struct file *f;
2386                 spin_lock(&redirect_lock);
2387                 f = redirect;
2388                 redirect = NULL;
2389                 spin_unlock(&redirect_lock);
2390                 if (f)
2391                         fput(f);
2392                 return 0;
2393         }
2394         spin_lock(&redirect_lock);
2395         if (redirect) {
2396                 spin_unlock(&redirect_lock);
2397                 return -EBUSY;
2398         }
2399         redirect = get_file(file);
2400         spin_unlock(&redirect_lock);
2401         return 0;
2402 }
2403
2404 /**
2405  *      fionbio         -       non blocking ioctl
2406  *      @file: file to set blocking value
2407  *      @p: user parameter
2408  *
2409  *      Historical tty interfaces had a blocking control ioctl before
2410  *      the generic functionality existed. This piece of history is preserved
2411  *      in the expected tty API of posix OS's.
2412  *
2413  *      Locking: none, the open file handle ensures it won't go away.
2414  */
2415
2416 static int fionbio(struct file *file, int __user *p)
2417 {
2418         int nonblock;
2419
2420         if (get_user(nonblock, p))
2421                 return -EFAULT;
2422
2423         spin_lock(&file->f_lock);
2424         if (nonblock)
2425                 file->f_flags |= O_NONBLOCK;
2426         else
2427                 file->f_flags &= ~O_NONBLOCK;
2428         spin_unlock(&file->f_lock);
2429         return 0;
2430 }
2431
2432 /**
2433  *      tiocsctty       -       set controlling tty
2434  *      @tty: tty structure
2435  *      @arg: user argument
2436  *
2437  *      This ioctl is used to manage job control. It permits a session
2438  *      leader to set this tty as the controlling tty for the session.
2439  *
2440  *      Locking:
2441  *              Takes tty_lock() to serialize proc_set_tty() for this tty
2442  *              Takes tasklist_lock internally to walk sessions
2443  *              Takes ->siglock() when updating signal->tty
2444  */
2445
2446 static int tiocsctty(struct tty_struct *tty, int arg)
2447 {
2448         int ret = 0;
2449
2450         tty_lock(tty);
2451         read_lock(&tasklist_lock);
2452
2453         if (current->signal->leader && (task_session(current) == tty->session))
2454                 goto unlock;
2455
2456         /*
2457          * The process must be a session leader and
2458          * not have a controlling tty already.
2459          */
2460         if (!current->signal->leader || current->signal->tty) {
2461                 ret = -EPERM;
2462                 goto unlock;
2463         }
2464
2465         if (tty->session) {
2466                 /*
2467                  * This tty is already the controlling
2468                  * tty for another session group!
2469                  */
2470                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2471                         /*
2472                          * Steal it away
2473                          */
2474                         session_clear_tty(tty->session);
2475                 } else {
2476                         ret = -EPERM;
2477                         goto unlock;
2478                 }
2479         }
2480         proc_set_tty(tty);
2481 unlock:
2482         read_unlock(&tasklist_lock);
2483         tty_unlock(tty);
2484         return ret;
2485 }
2486
2487 /**
2488  *      tty_get_pgrp    -       return a ref counted pgrp pid
2489  *      @tty: tty to read
2490  *
2491  *      Returns a refcounted instance of the pid struct for the process
2492  *      group controlling the tty.
2493  */
2494
2495 struct pid *tty_get_pgrp(struct tty_struct *tty)
2496 {
2497         unsigned long flags;
2498         struct pid *pgrp;
2499
2500         spin_lock_irqsave(&tty->ctrl_lock, flags);
2501         pgrp = get_pid(tty->pgrp);
2502         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2503
2504         return pgrp;
2505 }
2506 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2507
2508 /*
2509  * This checks not only the pgrp, but falls back on the pid if no
2510  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2511  * without this...
2512  *
2513  * The caller must hold rcu lock or the tasklist lock.
2514  */
2515 static struct pid *session_of_pgrp(struct pid *pgrp)
2516 {
2517         struct task_struct *p;
2518         struct pid *sid = NULL;
2519
2520         p = pid_task(pgrp, PIDTYPE_PGID);
2521         if (p == NULL)
2522                 p = pid_task(pgrp, PIDTYPE_PID);
2523         if (p != NULL)
2524                 sid = task_session(p);
2525
2526         return sid;
2527 }
2528
2529 /**
2530  *      tiocgpgrp               -       get process group
2531  *      @tty: tty passed by user
2532  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2533  *      @p: returned pid
2534  *
2535  *      Obtain the process group of the tty. If there is no process group
2536  *      return an error.
2537  *
2538  *      Locking: none. Reference to current->signal->tty is safe.
2539  */
2540
2541 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2542 {
2543         struct pid *pid;
2544         int ret;
2545         /*
2546          * (tty == real_tty) is a cheap way of
2547          * testing if the tty is NOT a master pty.
2548          */
2549         if (tty == real_tty && current->signal->tty != real_tty)
2550                 return -ENOTTY;
2551         pid = tty_get_pgrp(real_tty);
2552         ret =  put_user(pid_vnr(pid), p);
2553         put_pid(pid);
2554         return ret;
2555 }
2556
2557 /**
2558  *      tiocspgrp               -       attempt to set process group
2559  *      @tty: tty passed by user
2560  *      @real_tty: tty side device matching tty passed by user
2561  *      @p: pid pointer
2562  *
2563  *      Set the process group of the tty to the session passed. Only
2564  *      permitted where the tty session is our session.
2565  *
2566  *      Locking: RCU, ctrl lock
2567  */
2568
2569 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2570 {
2571         struct pid *pgrp;
2572         pid_t pgrp_nr;
2573         int retval = tty_check_change(real_tty);
2574         unsigned long flags;
2575
2576         if (retval == -EIO)
2577                 return -ENOTTY;
2578         if (retval)
2579                 return retval;
2580         if (!current->signal->tty ||
2581             (current->signal->tty != real_tty) ||
2582             (real_tty->session != task_session(current)))
2583                 return -ENOTTY;
2584         if (get_user(pgrp_nr, p))
2585                 return -EFAULT;
2586         if (pgrp_nr < 0)
2587                 return -EINVAL;
2588         rcu_read_lock();
2589         pgrp = find_vpid(pgrp_nr);
2590         retval = -ESRCH;
2591         if (!pgrp)
2592                 goto out_unlock;
2593         retval = -EPERM;
2594         if (session_of_pgrp(pgrp) != task_session(current))
2595                 goto out_unlock;
2596         retval = 0;
2597         spin_lock_irqsave(&tty->ctrl_lock, flags);
2598         put_pid(real_tty->pgrp);
2599         real_tty->pgrp = get_pid(pgrp);
2600         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2601 out_unlock:
2602         rcu_read_unlock();
2603         return retval;
2604 }
2605
2606 /**
2607  *      tiocgsid                -       get session id
2608  *      @tty: tty passed by user
2609  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2610  *      @p: pointer to returned session id
2611  *
2612  *      Obtain the session id of the tty. If there is no session
2613  *      return an error.
2614  *
2615  *      Locking: none. Reference to current->signal->tty is safe.
2616  */
2617
2618 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2619 {
2620         /*
2621          * (tty == real_tty) is a cheap way of
2622          * testing if the tty is NOT a master pty.
2623         */
2624         if (tty == real_tty && current->signal->tty != real_tty)
2625                 return -ENOTTY;
2626         if (!real_tty->session)
2627                 return -ENOTTY;
2628         return put_user(pid_vnr(real_tty->session), p);
2629 }
2630
2631 /**
2632  *      tiocsetd        -       set line discipline
2633  *      @tty: tty device
2634  *      @p: pointer to user data
2635  *
2636  *      Set the line discipline according to user request.
2637  *
2638  *      Locking: see tty_set_ldisc, this function is just a helper
2639  */
2640
2641 static int tiocsetd(struct tty_struct *tty, int __user *p)
2642 {
2643         int ldisc;
2644         int ret;
2645
2646         if (get_user(ldisc, p))
2647                 return -EFAULT;
2648
2649         ret = tty_set_ldisc(tty, ldisc);
2650
2651         return ret;
2652 }
2653
2654 /**
2655  *      send_break      -       performed time break
2656  *      @tty: device to break on
2657  *      @duration: timeout in mS
2658  *
2659  *      Perform a timed break on hardware that lacks its own driver level
2660  *      timed break functionality.
2661  *
2662  *      Locking:
2663  *              atomic_write_lock serializes
2664  *
2665  */
2666
2667 static int send_break(struct tty_struct *tty, unsigned int duration)
2668 {
2669         int retval;
2670
2671         if (tty->ops->break_ctl == NULL)
2672                 return 0;
2673
2674         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2675                 retval = tty->ops->break_ctl(tty, duration);
2676         else {
2677                 /* Do the work ourselves */
2678                 if (tty_write_lock(tty, 0) < 0)
2679                         return -EINTR;
2680                 retval = tty->ops->break_ctl(tty, -1);
2681                 if (retval)
2682                         goto out;
2683                 if (!signal_pending(current))
2684                         msleep_interruptible(duration);
2685                 retval = tty->ops->break_ctl(tty, 0);
2686 out:
2687                 tty_write_unlock(tty);
2688                 if (signal_pending(current))
2689                         retval = -EINTR;
2690         }
2691         return retval;
2692 }
2693
2694 /**
2695  *      tty_tiocmget            -       get modem status
2696  *      @tty: tty device
2697  *      @file: user file pointer
2698  *      @p: pointer to result
2699  *
2700  *      Obtain the modem status bits from the tty driver if the feature
2701  *      is supported. Return -EINVAL if it is not available.
2702  *
2703  *      Locking: none (up to the driver)
2704  */
2705
2706 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2707 {
2708         int retval = -EINVAL;
2709
2710         if (tty->ops->tiocmget) {
2711                 retval = tty->ops->tiocmget(tty);
2712
2713                 if (retval >= 0)
2714                         retval = put_user(retval, p);
2715         }
2716         return retval;
2717 }
2718
2719 /**
2720  *      tty_tiocmset            -       set modem status
2721  *      @tty: tty device
2722  *      @cmd: command - clear bits, set bits or set all
2723  *      @p: pointer to desired bits
2724  *
2725  *      Set the modem status bits from the tty driver if the feature
2726  *      is supported. Return -EINVAL if it is not available.
2727  *
2728  *      Locking: none (up to the driver)
2729  */
2730
2731 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2732              unsigned __user *p)
2733 {
2734         int retval;
2735         unsigned int set, clear, val;
2736
2737         if (tty->ops->tiocmset == NULL)
2738                 return -EINVAL;
2739
2740         retval = get_user(val, p);
2741         if (retval)
2742                 return retval;
2743         set = clear = 0;
2744         switch (cmd) {
2745         case TIOCMBIS:
2746                 set = val;
2747                 break;
2748         case TIOCMBIC:
2749                 clear = val;
2750                 break;
2751         case TIOCMSET:
2752                 set = val;
2753                 clear = ~val;
2754                 break;
2755         }
2756         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2757         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2758         return tty->ops->tiocmset(tty, set, clear);
2759 }
2760
2761 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2762 {
2763         int retval = -EINVAL;
2764         struct serial_icounter_struct icount;
2765         memset(&icount, 0, sizeof(icount));
2766         if (tty->ops->get_icount)
2767                 retval = tty->ops->get_icount(tty, &icount);
2768         if (retval != 0)
2769                 return retval;
2770         if (copy_to_user(arg, &icount, sizeof(icount)))
2771                 return -EFAULT;
2772         return 0;
2773 }
2774
2775 /*
2776  * if pty, return the slave side (real_tty)
2777  * otherwise, return self
2778  */
2779 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2780 {
2781         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2782             tty->driver->subtype == PTY_TYPE_MASTER)
2783                 tty = tty->link;
2784         return tty;
2785 }
2786
2787 /*
2788  * Split this up, as gcc can choke on it otherwise..
2789  */
2790 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2791 {
2792         struct tty_struct *tty = file_tty(file);
2793         struct tty_struct *real_tty;
2794         void __user *p = (void __user *)arg;
2795         int retval;
2796         struct tty_ldisc *ld;
2797
2798         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2799                 return -EINVAL;
2800
2801         real_tty = tty_pair_get_tty(tty);
2802
2803         /*
2804          * Factor out some common prep work
2805          */
2806         switch (cmd) {
2807         case TIOCSETD:
2808         case TIOCSBRK:
2809         case TIOCCBRK:
2810         case TCSBRK:
2811         case TCSBRKP:
2812                 retval = tty_check_change(tty);
2813                 if (retval)
2814                         return retval;
2815                 if (cmd != TIOCCBRK) {
2816                         tty_wait_until_sent(tty, 0);
2817                         if (signal_pending(current))
2818                                 return -EINTR;
2819                 }
2820                 break;
2821         }
2822
2823         /*
2824          *      Now do the stuff.
2825          */
2826         switch (cmd) {
2827         case TIOCSTI:
2828                 return tiocsti(tty, p);
2829         case TIOCGWINSZ:
2830                 return tiocgwinsz(real_tty, p);
2831         case TIOCSWINSZ:
2832                 return tiocswinsz(real_tty, p);
2833         case TIOCCONS:
2834                 return real_tty != tty ? -EINVAL : tioccons(file);
2835         case FIONBIO:
2836                 return fionbio(file, p);
2837         case TIOCEXCL:
2838                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2839                 return 0;
2840         case TIOCNXCL:
2841                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2842                 return 0;
2843         case TIOCGEXCL:
2844         {
2845                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2846                 return put_user(excl, (int __user *)p);
2847         }
2848         case TIOCNOTTY:
2849                 if (current->signal->tty != tty)
2850                         return -ENOTTY;
2851                 no_tty();
2852                 return 0;
2853         case TIOCSCTTY:
2854                 return tiocsctty(tty, arg);
2855         case TIOCGPGRP:
2856                 return tiocgpgrp(tty, real_tty, p);
2857         case TIOCSPGRP:
2858                 return tiocspgrp(tty, real_tty, p);
2859         case TIOCGSID:
2860                 return tiocgsid(tty, real_tty, p);
2861         case TIOCGETD:
2862                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2863         case TIOCSETD:
2864                 return tiocsetd(tty, p);
2865         case TIOCVHANGUP:
2866                 if (!capable(CAP_SYS_ADMIN))
2867                         return -EPERM;
2868                 tty_vhangup(tty);
2869                 return 0;
2870         case TIOCGDEV:
2871         {
2872                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2873                 return put_user(ret, (unsigned int __user *)p);
2874         }
2875         /*
2876          * Break handling
2877          */
2878         case TIOCSBRK:  /* Turn break on, unconditionally */
2879                 if (tty->ops->break_ctl)
2880                         return tty->ops->break_ctl(tty, -1);
2881                 return 0;
2882         case TIOCCBRK:  /* Turn break off, unconditionally */
2883                 if (tty->ops->break_ctl)
2884                         return tty->ops->break_ctl(tty, 0);
2885                 return 0;
2886         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2887                 /* non-zero arg means wait for all output data
2888                  * to be sent (performed above) but don't send break.
2889                  * This is used by the tcdrain() termios function.
2890                  */
2891                 if (!arg)
2892                         return send_break(tty, 250);
2893                 return 0;
2894         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2895                 return send_break(tty, arg ? arg*100 : 250);
2896
2897         case TIOCMGET:
2898                 return tty_tiocmget(tty, p);
2899         case TIOCMSET:
2900         case TIOCMBIC:
2901         case TIOCMBIS:
2902                 return tty_tiocmset(tty, cmd, p);
2903         case TIOCGICOUNT:
2904                 retval = tty_tiocgicount(tty, p);
2905                 /* For the moment allow fall through to the old method */
2906                 if (retval != -EINVAL)
2907                         return retval;
2908                 break;
2909         case TCFLSH:
2910                 switch (arg) {
2911                 case TCIFLUSH:
2912                 case TCIOFLUSH:
2913                 /* flush tty buffer and allow ldisc to process ioctl */
2914                         tty_buffer_flush(tty);
2915                         break;
2916                 }
2917                 break;
2918         }
2919         if (tty->ops->ioctl) {
2920                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2921                 if (retval != -ENOIOCTLCMD)
2922                         return retval;
2923         }
2924         ld = tty_ldisc_ref_wait(tty);
2925         retval = -EINVAL;
2926         if (ld->ops->ioctl) {
2927                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2928                 if (retval == -ENOIOCTLCMD)
2929                         retval = -ENOTTY;
2930         }
2931         tty_ldisc_deref(ld);
2932         return retval;
2933 }
2934
2935 #ifdef CONFIG_COMPAT
2936 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2937                                 unsigned long arg)
2938 {
2939         struct tty_struct *tty = file_tty(file);
2940         struct tty_ldisc *ld;
2941         int retval = -ENOIOCTLCMD;
2942
2943         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2944                 return -EINVAL;
2945
2946         if (tty->ops->compat_ioctl) {
2947                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2948                 if (retval != -ENOIOCTLCMD)
2949                         return retval;
2950         }
2951
2952         ld = tty_ldisc_ref_wait(tty);
2953         if (ld->ops->compat_ioctl)
2954                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2955         else
2956                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2957         tty_ldisc_deref(ld);
2958
2959         return retval;
2960 }
2961 #endif
2962
2963 static int this_tty(const void *t, struct file *file, unsigned fd)
2964 {
2965         if (likely(file->f_op->read != tty_read))
2966                 return 0;
2967         return file_tty(file) != t ? 0 : fd + 1;
2968 }
2969         
2970 /*
2971  * This implements the "Secure Attention Key" ---  the idea is to
2972  * prevent trojan horses by killing all processes associated with this
2973  * tty when the user hits the "Secure Attention Key".  Required for
2974  * super-paranoid applications --- see the Orange Book for more details.
2975  *
2976  * This code could be nicer; ideally it should send a HUP, wait a few
2977  * seconds, then send a INT, and then a KILL signal.  But you then
2978  * have to coordinate with the init process, since all processes associated
2979  * with the current tty must be dead before the new getty is allowed
2980  * to spawn.
2981  *
2982  * Now, if it would be correct ;-/ The current code has a nasty hole -
2983  * it doesn't catch files in flight. We may send the descriptor to ourselves
2984  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2985  *
2986  * Nasty bug: do_SAK is being called in interrupt context.  This can
2987  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2988  */
2989 void __do_SAK(struct tty_struct *tty)
2990 {
2991 #ifdef TTY_SOFT_SAK
2992         tty_hangup(tty);
2993 #else
2994         struct task_struct *g, *p;
2995         struct pid *session;
2996         int             i;
2997
2998         if (!tty)
2999                 return;
3000         session = tty->session;
3001
3002         tty_ldisc_flush(tty);
3003
3004         tty_driver_flush_buffer(tty);
3005
3006         read_lock(&tasklist_lock);
3007         /* Kill the entire session */
3008         do_each_pid_task(session, PIDTYPE_SID, p) {
3009                 printk(KERN_NOTICE "SAK: killed process %d"
3010                         " (%s): task_session(p)==tty->session\n",
3011                         task_pid_nr(p), p->comm);
3012                 send_sig(SIGKILL, p, 1);
3013         } while_each_pid_task(session, PIDTYPE_SID, p);
3014         /* Now kill any processes that happen to have the
3015          * tty open.
3016          */
3017         do_each_thread(g, p) {
3018                 if (p->signal->tty == tty) {
3019                         printk(KERN_NOTICE "SAK: killed process %d"
3020                             " (%s): task_session(p)==tty->session\n",
3021                             task_pid_nr(p), p->comm);
3022                         send_sig(SIGKILL, p, 1);
3023                         continue;
3024                 }
3025                 task_lock(p);
3026                 i = iterate_fd(p->files, 0, this_tty, tty);
3027                 if (i != 0) {
3028                         printk(KERN_NOTICE "SAK: killed process %d"
3029                             " (%s): fd#%d opened to the tty\n",
3030                                     task_pid_nr(p), p->comm, i - 1);
3031                         force_sig(SIGKILL, p);
3032                 }
3033                 task_unlock(p);
3034         } while_each_thread(g, p);
3035         read_unlock(&tasklist_lock);
3036 #endif
3037 }
3038
3039 static void do_SAK_work(struct work_struct *work)
3040 {
3041         struct tty_struct *tty =
3042                 container_of(work, struct tty_struct, SAK_work);
3043         __do_SAK(tty);
3044 }
3045
3046 /*
3047  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3048  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3049  * the values which we write to it will be identical to the values which it
3050  * already has. --akpm
3051  */
3052 void do_SAK(struct tty_struct *tty)
3053 {
3054         if (!tty)
3055                 return;
3056         schedule_work(&tty->SAK_work);
3057 }
3058
3059 EXPORT_SYMBOL(do_SAK);
3060
3061 static int dev_match_devt(struct device *dev, const void *data)
3062 {
3063         const dev_t *devt = data;
3064         return dev->devt == *devt;
3065 }
3066
3067 /* Must put_device() after it's unused! */
3068 static struct device *tty_get_device(struct tty_struct *tty)
3069 {
3070         dev_t devt = tty_devnum(tty);
3071         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3072 }
3073
3074
3075 /**
3076  *      alloc_tty_struct
3077  *
3078  *      This subroutine allocates and initializes a tty structure.
3079  *
3080  *      Locking: none - tty in question is not exposed at this point
3081  */
3082
3083 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3084 {
3085         struct tty_struct *tty;
3086
3087         tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3088         if (!tty)
3089                 return NULL;
3090
3091         kref_init(&tty->kref);
3092         tty->magic = TTY_MAGIC;
3093         tty_ldisc_init(tty);
3094         tty->session = NULL;
3095         tty->pgrp = NULL;
3096         mutex_init(&tty->legacy_mutex);
3097         mutex_init(&tty->throttle_mutex);
3098         init_rwsem(&tty->termios_rwsem);
3099         mutex_init(&tty->winsize_mutex);
3100         init_ldsem(&tty->ldisc_sem);
3101         init_waitqueue_head(&tty->write_wait);
3102         init_waitqueue_head(&tty->read_wait);
3103         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3104         mutex_init(&tty->atomic_write_lock);
3105         spin_lock_init(&tty->ctrl_lock);
3106         spin_lock_init(&tty->flow_lock);
3107         INIT_LIST_HEAD(&tty->tty_files);
3108         INIT_WORK(&tty->SAK_work, do_SAK_work);
3109
3110         tty->driver = driver;
3111         tty->ops = driver->ops;
3112         tty->index = idx;
3113         tty_line_name(driver, idx, tty->name);
3114         tty->dev = tty_get_device(tty);
3115
3116         return tty;
3117 }
3118
3119 /**
3120  *      deinitialize_tty_struct
3121  *      @tty: tty to deinitialize
3122  *
3123  *      This subroutine deinitializes a tty structure that has been newly
3124  *      allocated but tty_release cannot be called on that yet.
3125  *
3126  *      Locking: none - tty in question must not be exposed at this point
3127  */
3128 void deinitialize_tty_struct(struct tty_struct *tty)
3129 {
3130         tty_ldisc_deinit(tty);
3131 }
3132
3133 /**
3134  *      tty_put_char    -       write one character to a tty
3135  *      @tty: tty
3136  *      @ch: character
3137  *
3138  *      Write one byte to the tty using the provided put_char method
3139  *      if present. Returns the number of characters successfully output.
3140  *
3141  *      Note: the specific put_char operation in the driver layer may go
3142  *      away soon. Don't call it directly, use this method
3143  */
3144
3145 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3146 {
3147         if (tty->ops->put_char)
3148                 return tty->ops->put_char(tty, ch);
3149         return tty->ops->write(tty, &ch, 1);
3150 }
3151 EXPORT_SYMBOL_GPL(tty_put_char);
3152
3153 struct class *tty_class;
3154
3155 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3156                 unsigned int index, unsigned int count)
3157 {
3158         /* init here, since reused cdevs cause crashes */
3159         cdev_init(&driver->cdevs[index], &tty_fops);
3160         driver->cdevs[index].owner = driver->owner;
3161         return cdev_add(&driver->cdevs[index], dev, count);
3162 }
3163
3164 /**
3165  *      tty_register_device - register a tty device
3166  *      @driver: the tty driver that describes the tty device
3167  *      @index: the index in the tty driver for this tty device
3168  *      @device: a struct device that is associated with this tty device.
3169  *              This field is optional, if there is no known struct device
3170  *              for this tty device it can be set to NULL safely.
3171  *
3172  *      Returns a pointer to the struct device for this tty device
3173  *      (or ERR_PTR(-EFOO) on error).
3174  *
3175  *      This call is required to be made to register an individual tty device
3176  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3177  *      that bit is not set, this function should not be called by a tty
3178  *      driver.
3179  *
3180  *      Locking: ??
3181  */
3182
3183 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3184                                    struct device *device)
3185 {
3186         return tty_register_device_attr(driver, index, device, NULL, NULL);
3187 }
3188 EXPORT_SYMBOL(tty_register_device);
3189
3190 static void tty_device_create_release(struct device *dev)
3191 {
3192         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3193         kfree(dev);
3194 }
3195
3196 /**
3197  *      tty_register_device_attr - register a tty device
3198  *      @driver: the tty driver that describes the tty device
3199  *      @index: the index in the tty driver for this tty device
3200  *      @device: a struct device that is associated with this tty device.
3201  *              This field is optional, if there is no known struct device
3202  *              for this tty device it can be set to NULL safely.
3203  *      @drvdata: Driver data to be set to device.
3204  *      @attr_grp: Attribute group to be set on device.
3205  *
3206  *      Returns a pointer to the struct device for this tty device
3207  *      (or ERR_PTR(-EFOO) on error).
3208  *
3209  *      This call is required to be made to register an individual tty device
3210  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3211  *      that bit is not set, this function should not be called by a tty
3212  *      driver.
3213  *
3214  *      Locking: ??
3215  */
3216 struct device *tty_register_device_attr(struct tty_driver *driver,
3217                                    unsigned index, struct device *device,
3218                                    void *drvdata,
3219                                    const struct attribute_group **attr_grp)
3220 {
3221         char name[64];
3222         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3223         struct device *dev = NULL;
3224         int retval = -ENODEV;
3225         bool cdev = false;
3226
3227         if (index >= driver->num) {
3228                 printk(KERN_ERR "Attempt to register invalid tty line number "
3229                        " (%d).\n", index);
3230                 return ERR_PTR(-EINVAL);
3231         }
3232
3233         if (driver->type == TTY_DRIVER_TYPE_PTY)
3234                 pty_line_name(driver, index, name);
3235         else
3236                 tty_line_name(driver, index, name);
3237
3238         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3239                 retval = tty_cdev_add(driver, devt, index, 1);
3240                 if (retval)
3241                         goto error;
3242                 cdev = true;
3243         }
3244
3245         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3246         if (!dev) {
3247                 retval = -ENOMEM;
3248                 goto error;
3249         }
3250
3251         dev->devt = devt;
3252         dev->class = tty_class;
3253         dev->parent = device;
3254         dev->release = tty_device_create_release;
3255         dev_set_name(dev, "%s", name);
3256         dev->groups = attr_grp;
3257         dev_set_drvdata(dev, drvdata);
3258
3259         retval = device_register(dev);
3260         if (retval)
3261                 goto error;
3262
3263         return dev;
3264
3265 error:
3266         put_device(dev);
3267         if (cdev)
3268                 cdev_del(&driver->cdevs[index]);
3269         return ERR_PTR(retval);
3270 }
3271 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3272
3273 /**
3274  *      tty_unregister_device - unregister a tty device
3275  *      @driver: the tty driver that describes the tty device
3276  *      @index: the index in the tty driver for this tty device
3277  *
3278  *      If a tty device is registered with a call to tty_register_device() then
3279  *      this function must be called when the tty device is gone.
3280  *
3281  *      Locking: ??
3282  */
3283
3284 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3285 {
3286         device_destroy(tty_class,
3287                 MKDEV(driver->major, driver->minor_start) + index);
3288         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3289                 cdev_del(&driver->cdevs[index]);
3290 }
3291 EXPORT_SYMBOL(tty_unregister_device);
3292
3293 /**
3294  * __tty_alloc_driver -- allocate tty driver
3295  * @lines: count of lines this driver can handle at most
3296  * @owner: module which is repsonsible for this driver
3297  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3298  *
3299  * This should not be called directly, some of the provided macros should be
3300  * used instead. Use IS_ERR and friends on @retval.
3301  */
3302 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3303                 unsigned long flags)
3304 {
3305         struct tty_driver *driver;
3306         unsigned int cdevs = 1;
3307         int err;
3308
3309         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3310                 return ERR_PTR(-EINVAL);
3311
3312         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3313         if (!driver)
3314                 return ERR_PTR(-ENOMEM);
3315
3316         kref_init(&driver->kref);
3317         driver->magic = TTY_DRIVER_MAGIC;
3318         driver->num = lines;
3319         driver->owner = owner;
3320         driver->flags = flags;
3321
3322         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3323                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3324                                 GFP_KERNEL);
3325                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3326                                 GFP_KERNEL);
3327                 if (!driver->ttys || !driver->termios) {
3328                         err = -ENOMEM;
3329                         goto err_free_all;
3330                 }
3331         }
3332
3333         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3334                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3335                                 GFP_KERNEL);
3336                 if (!driver->ports) {
3337                         err = -ENOMEM;
3338                         goto err_free_all;
3339                 }
3340                 cdevs = lines;
3341         }
3342
3343         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3344         if (!driver->cdevs) {
3345                 err = -ENOMEM;
3346                 goto err_free_all;
3347         }
3348
3349         return driver;
3350 err_free_all:
3351         kfree(driver->ports);
3352         kfree(driver->ttys);
3353         kfree(driver->termios);
3354         kfree(driver);
3355         return ERR_PTR(err);
3356 }
3357 EXPORT_SYMBOL(__tty_alloc_driver);
3358
3359 static void destruct_tty_driver(struct kref *kref)
3360 {
3361         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3362         int i;
3363         struct ktermios *tp;
3364
3365         if (driver->flags & TTY_DRIVER_INSTALLED) {
3366                 /*
3367                  * Free the termios and termios_locked structures because
3368                  * we don't want to get memory leaks when modular tty
3369                  * drivers are removed from the kernel.
3370                  */
3371                 for (i = 0; i < driver->num; i++) {
3372                         tp = driver->termios[i];
3373                         if (tp) {
3374                                 driver->termios[i] = NULL;
3375                                 kfree(tp);
3376                         }
3377                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3378                                 tty_unregister_device(driver, i);
3379                 }
3380                 proc_tty_unregister_driver(driver);
3381                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3382                         cdev_del(&driver->cdevs[0]);
3383         }
3384         kfree(driver->cdevs);
3385         kfree(driver->ports);
3386         kfree(driver->termios);
3387         kfree(driver->ttys);
3388         kfree(driver);
3389 }
3390
3391 void tty_driver_kref_put(struct tty_driver *driver)
3392 {
3393         kref_put(&driver->kref, destruct_tty_driver);
3394 }
3395 EXPORT_SYMBOL(tty_driver_kref_put);
3396
3397 void tty_set_operations(struct tty_driver *driver,
3398                         const struct tty_operations *op)
3399 {
3400         driver->ops = op;
3401 };
3402 EXPORT_SYMBOL(tty_set_operations);
3403
3404 void put_tty_driver(struct tty_driver *d)
3405 {
3406         tty_driver_kref_put(d);
3407 }
3408 EXPORT_SYMBOL(put_tty_driver);
3409
3410 /*
3411  * Called by a tty driver to register itself.
3412  */
3413 int tty_register_driver(struct tty_driver *driver)
3414 {
3415         int error;
3416         int i;
3417         dev_t dev;
3418         struct device *d;
3419
3420         if (!driver->major) {
3421                 error = alloc_chrdev_region(&dev, driver->minor_start,
3422                                                 driver->num, driver->name);
3423                 if (!error) {
3424                         driver->major = MAJOR(dev);
3425                         driver->minor_start = MINOR(dev);
3426                 }
3427         } else {
3428                 dev = MKDEV(driver->major, driver->minor_start);
3429                 error = register_chrdev_region(dev, driver->num, driver->name);
3430         }
3431         if (error < 0)
3432                 goto err;
3433
3434         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3435                 error = tty_cdev_add(driver, dev, 0, driver->num);
3436                 if (error)
3437                         goto err_unreg_char;
3438         }
3439
3440         mutex_lock(&tty_mutex);
3441         list_add(&driver->tty_drivers, &tty_drivers);
3442         mutex_unlock(&tty_mutex);
3443
3444         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3445                 for (i = 0; i < driver->num; i++) {
3446                         d = tty_register_device(driver, i, NULL);
3447                         if (IS_ERR(d)) {
3448                                 error = PTR_ERR(d);
3449                                 goto err_unreg_devs;
3450                         }
3451                 }
3452         }
3453         proc_tty_register_driver(driver);
3454         driver->flags |= TTY_DRIVER_INSTALLED;
3455         return 0;
3456
3457 err_unreg_devs:
3458         for (i--; i >= 0; i--)
3459                 tty_unregister_device(driver, i);
3460
3461         mutex_lock(&tty_mutex);
3462         list_del(&driver->tty_drivers);
3463         mutex_unlock(&tty_mutex);
3464
3465 err_unreg_char:
3466         unregister_chrdev_region(dev, driver->num);
3467 err:
3468         return error;
3469 }
3470 EXPORT_SYMBOL(tty_register_driver);
3471
3472 /*
3473  * Called by a tty driver to unregister itself.
3474  */
3475 int tty_unregister_driver(struct tty_driver *driver)
3476 {
3477 #if 0
3478         /* FIXME */
3479         if (driver->refcount)
3480                 return -EBUSY;
3481 #endif
3482         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3483                                 driver->num);
3484         mutex_lock(&tty_mutex);
3485         list_del(&driver->tty_drivers);
3486         mutex_unlock(&tty_mutex);
3487         return 0;
3488 }
3489
3490 EXPORT_SYMBOL(tty_unregister_driver);
3491
3492 dev_t tty_devnum(struct tty_struct *tty)
3493 {
3494         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3495 }
3496 EXPORT_SYMBOL(tty_devnum);
3497
3498 void tty_default_fops(struct file_operations *fops)
3499 {
3500         *fops = tty_fops;
3501 }
3502
3503 /*
3504  * Initialize the console device. This is called *early*, so
3505  * we can't necessarily depend on lots of kernel help here.
3506  * Just do some early initializations, and do the complex setup
3507  * later.
3508  */
3509 void __init console_init(void)
3510 {
3511         initcall_t *call;
3512
3513         /* Setup the default TTY line discipline. */
3514         tty_ldisc_begin();
3515
3516         /*
3517          * set up the console device so that later boot sequences can
3518          * inform about problems etc..
3519          */
3520         call = __con_initcall_start;
3521         while (call < __con_initcall_end) {
3522                 (*call)();
3523                 call++;
3524         }
3525 }
3526
3527 static char *tty_devnode(struct device *dev, umode_t *mode)
3528 {
3529         if (!mode)
3530                 return NULL;
3531         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3532             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3533                 *mode = 0666;
3534         return NULL;
3535 }
3536
3537 static int __init tty_class_init(void)
3538 {
3539         tty_class = class_create(THIS_MODULE, "tty");
3540         if (IS_ERR(tty_class))
3541                 return PTR_ERR(tty_class);
3542         tty_class->devnode = tty_devnode;
3543         return 0;
3544 }
3545
3546 postcore_initcall(tty_class_init);
3547
3548 /* 3/2004 jmc: why do these devices exist? */
3549 static struct cdev tty_cdev, console_cdev;
3550
3551 static ssize_t show_cons_active(struct device *dev,
3552                                 struct device_attribute *attr, char *buf)
3553 {
3554         struct console *cs[16];
3555         int i = 0;
3556         struct console *c;
3557         ssize_t count = 0;
3558
3559         console_lock();
3560         for_each_console(c) {
3561                 if (!c->device)
3562                         continue;
3563                 if (!c->write)
3564                         continue;
3565                 if ((c->flags & CON_ENABLED) == 0)
3566                         continue;
3567                 cs[i++] = c;
3568                 if (i >= ARRAY_SIZE(cs))
3569                         break;
3570         }
3571         while (i--) {
3572                 int index = cs[i]->index;
3573                 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3574
3575                 /* don't resolve tty0 as some programs depend on it */
3576                 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3577                         count += tty_line_name(drv, index, buf + count);
3578                 else
3579                         count += sprintf(buf + count, "%s%d",
3580                                          cs[i]->name, cs[i]->index);
3581
3582                 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3583         }
3584         console_unlock();
3585
3586         return count;
3587 }
3588 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3589
3590 static struct device *consdev;
3591
3592 void console_sysfs_notify(void)
3593 {
3594         if (consdev)
3595                 sysfs_notify(&consdev->kobj, NULL, "active");
3596 }
3597
3598 /*
3599  * Ok, now we can initialize the rest of the tty devices and can count
3600  * on memory allocations, interrupts etc..
3601  */
3602 int __init tty_init(void)
3603 {
3604         cdev_init(&tty_cdev, &tty_fops);
3605         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3606             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3607                 panic("Couldn't register /dev/tty driver\n");
3608         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3609
3610         cdev_init(&console_cdev, &console_fops);
3611         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3612             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3613                 panic("Couldn't register /dev/console driver\n");
3614         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3615                               "console");
3616         if (IS_ERR(consdev))
3617                 consdev = NULL;
3618         else
3619                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3620
3621 #ifdef CONFIG_VT
3622         vty_init(&console_fops);
3623 #endif
3624         return 0;
3625 }
3626