b8ddfef6b5d8d0cb4e2a21e1632cfece69e6d2a5
[firefly-linux-kernel-4.4.55.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      free_tty_struct         -       free a disused tty
161  *      @tty: tty struct to free
162  *
163  *      Free the write buffers, tty queue and tty memory itself.
164  *
165  *      Locking: none. Must be called after tty is definitely unused
166  */
167
168 void free_tty_struct(struct tty_struct *tty)
169 {
170         if (!tty)
171                 return;
172         if (tty->dev)
173                 put_device(tty->dev);
174         kfree(tty->write_buf);
175         tty->magic = 0xDEADDEAD;
176         kfree(tty);
177 }
178
179 static inline struct tty_struct *file_tty(struct file *file)
180 {
181         return ((struct tty_file_private *)file->private_data)->tty;
182 }
183
184 int tty_alloc_file(struct file *file)
185 {
186         struct tty_file_private *priv;
187
188         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
189         if (!priv)
190                 return -ENOMEM;
191
192         file->private_data = priv;
193
194         return 0;
195 }
196
197 /* Associate a new file with the tty structure */
198 void tty_add_file(struct tty_struct *tty, struct file *file)
199 {
200         struct tty_file_private *priv = file->private_data;
201
202         priv->tty = tty;
203         priv->file = file;
204
205         spin_lock(&tty_files_lock);
206         list_add(&priv->list, &tty->tty_files);
207         spin_unlock(&tty_files_lock);
208 }
209
210 /**
211  * tty_free_file - free file->private_data
212  *
213  * This shall be used only for fail path handling when tty_add_file was not
214  * called yet.
215  */
216 void tty_free_file(struct file *file)
217 {
218         struct tty_file_private *priv = file->private_data;
219
220         file->private_data = NULL;
221         kfree(priv);
222 }
223
224 /* Delete file from its tty */
225 static void tty_del_file(struct file *file)
226 {
227         struct tty_file_private *priv = file->private_data;
228
229         spin_lock(&tty_files_lock);
230         list_del(&priv->list);
231         spin_unlock(&tty_files_lock);
232         tty_free_file(file);
233 }
234
235
236 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
237
238 /**
239  *      tty_name        -       return tty naming
240  *      @tty: tty structure
241  *      @buf: buffer for output
242  *
243  *      Convert a tty structure into a name. The name reflects the kernel
244  *      naming policy and if udev is in use may not reflect user space
245  *
246  *      Locking: none
247  */
248
249 char *tty_name(struct tty_struct *tty, char *buf)
250 {
251         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
252                 strcpy(buf, "NULL tty");
253         else
254                 strcpy(buf, tty->name);
255         return buf;
256 }
257
258 EXPORT_SYMBOL(tty_name);
259
260 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
261                               const char *routine)
262 {
263 #ifdef TTY_PARANOIA_CHECK
264         if (!tty) {
265                 printk(KERN_WARNING
266                         "null TTY for (%d:%d) in %s\n",
267                         imajor(inode), iminor(inode), routine);
268                 return 1;
269         }
270         if (tty->magic != TTY_MAGIC) {
271                 printk(KERN_WARNING
272                         "bad magic number for tty struct (%d:%d) in %s\n",
273                         imajor(inode), iminor(inode), routine);
274                 return 1;
275         }
276 #endif
277         return 0;
278 }
279
280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283         struct list_head *p;
284         int count = 0;
285
286         spin_lock(&tty_files_lock);
287         list_for_each(p, &tty->tty_files) {
288                 count++;
289         }
290         spin_unlock(&tty_files_lock);
291         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292             tty->driver->subtype == PTY_TYPE_SLAVE &&
293             tty->link && tty->link->count)
294                 count++;
295         if (tty->count != count) {
296                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
297                                     "!= #fd's(%d) in %s\n",
298                        tty->name, tty->count, count, routine);
299                 return count;
300         }
301 #endif
302         return 0;
303 }
304
305 /**
306  *      get_tty_driver          -       find device of a tty
307  *      @dev_t: device identifier
308  *      @index: returns the index of the tty
309  *
310  *      This routine returns a tty driver structure, given a device number
311  *      and also passes back the index number.
312  *
313  *      Locking: caller must hold tty_mutex
314  */
315
316 static struct tty_driver *get_tty_driver(dev_t device, int *index)
317 {
318         struct tty_driver *p;
319
320         list_for_each_entry(p, &tty_drivers, tty_drivers) {
321                 dev_t base = MKDEV(p->major, p->minor_start);
322                 if (device < base || device >= base + p->num)
323                         continue;
324                 *index = device - base;
325                 return tty_driver_kref_get(p);
326         }
327         return NULL;
328 }
329
330 #ifdef CONFIG_CONSOLE_POLL
331
332 /**
333  *      tty_find_polling_driver -       find device of a polled tty
334  *      @name: name string to match
335  *      @line: pointer to resulting tty line nr
336  *
337  *      This routine returns a tty driver structure, given a name
338  *      and the condition that the tty driver is capable of polled
339  *      operation.
340  */
341 struct tty_driver *tty_find_polling_driver(char *name, int *line)
342 {
343         struct tty_driver *p, *res = NULL;
344         int tty_line = 0;
345         int len;
346         char *str, *stp;
347
348         for (str = name; *str; str++)
349                 if ((*str >= '0' && *str <= '9') || *str == ',')
350                         break;
351         if (!*str)
352                 return NULL;
353
354         len = str - name;
355         tty_line = simple_strtoul(str, &str, 10);
356
357         mutex_lock(&tty_mutex);
358         /* Search through the tty devices to look for a match */
359         list_for_each_entry(p, &tty_drivers, tty_drivers) {
360                 if (strncmp(name, p->name, len) != 0)
361                         continue;
362                 stp = str;
363                 if (*stp == ',')
364                         stp++;
365                 if (*stp == '\0')
366                         stp = NULL;
367
368                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
369                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
370                         res = tty_driver_kref_get(p);
371                         *line = tty_line;
372                         break;
373                 }
374         }
375         mutex_unlock(&tty_mutex);
376
377         return res;
378 }
379 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
380 #endif
381
382 /**
383  *      tty_check_change        -       check for POSIX terminal changes
384  *      @tty: tty to check
385  *
386  *      If we try to write to, or set the state of, a terminal and we're
387  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
388  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
389  *
390  *      Locking: ctrl_lock
391  */
392
393 int tty_check_change(struct tty_struct *tty)
394 {
395         unsigned long flags;
396         int ret = 0;
397
398         if (current->signal->tty != tty)
399                 return 0;
400
401         spin_lock_irqsave(&tty->ctrl_lock, flags);
402
403         if (!tty->pgrp) {
404                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
405                 goto out_unlock;
406         }
407         if (task_pgrp(current) == tty->pgrp)
408                 goto out_unlock;
409         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
410         if (is_ignored(SIGTTOU))
411                 goto out;
412         if (is_current_pgrp_orphaned()) {
413                 ret = -EIO;
414                 goto out;
415         }
416         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
417         set_thread_flag(TIF_SIGPENDING);
418         ret = -ERESTARTSYS;
419 out:
420         return ret;
421 out_unlock:
422         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423         return ret;
424 }
425
426 EXPORT_SYMBOL(tty_check_change);
427
428 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
429                                 size_t count, loff_t *ppos)
430 {
431         return 0;
432 }
433
434 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
435                                  size_t count, loff_t *ppos)
436 {
437         return -EIO;
438 }
439
440 /* No kernel lock held - none needed ;) */
441 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
442 {
443         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
444 }
445
446 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
447                 unsigned long arg)
448 {
449         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
450 }
451
452 static long hung_up_tty_compat_ioctl(struct file *file,
453                                      unsigned int cmd, unsigned long arg)
454 {
455         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
456 }
457
458 static const struct file_operations tty_fops = {
459         .llseek         = no_llseek,
460         .read           = tty_read,
461         .write          = tty_write,
462         .poll           = tty_poll,
463         .unlocked_ioctl = tty_ioctl,
464         .compat_ioctl   = tty_compat_ioctl,
465         .open           = tty_open,
466         .release        = tty_release,
467         .fasync         = tty_fasync,
468 };
469
470 static const struct file_operations console_fops = {
471         .llseek         = no_llseek,
472         .read           = tty_read,
473         .write          = redirected_tty_write,
474         .poll           = tty_poll,
475         .unlocked_ioctl = tty_ioctl,
476         .compat_ioctl   = tty_compat_ioctl,
477         .open           = tty_open,
478         .release        = tty_release,
479         .fasync         = tty_fasync,
480 };
481
482 static const struct file_operations hung_up_tty_fops = {
483         .llseek         = no_llseek,
484         .read           = hung_up_tty_read,
485         .write          = hung_up_tty_write,
486         .poll           = hung_up_tty_poll,
487         .unlocked_ioctl = hung_up_tty_ioctl,
488         .compat_ioctl   = hung_up_tty_compat_ioctl,
489         .release        = tty_release,
490 };
491
492 static DEFINE_SPINLOCK(redirect_lock);
493 static struct file *redirect;
494
495 /**
496  *      tty_wakeup      -       request more data
497  *      @tty: terminal
498  *
499  *      Internal and external helper for wakeups of tty. This function
500  *      informs the line discipline if present that the driver is ready
501  *      to receive more output data.
502  */
503
504 void tty_wakeup(struct tty_struct *tty)
505 {
506         struct tty_ldisc *ld;
507
508         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
509                 ld = tty_ldisc_ref(tty);
510                 if (ld) {
511                         if (ld->ops->write_wakeup)
512                                 ld->ops->write_wakeup(tty);
513                         tty_ldisc_deref(ld);
514                 }
515         }
516         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
517 }
518
519 EXPORT_SYMBOL_GPL(tty_wakeup);
520
521 /**
522  *      tty_signal_session_leader       - sends SIGHUP to session leader
523  *      @tty            controlling tty
524  *      @exit_session   if non-zero, signal all foreground group processes
525  *
526  *      Send SIGHUP and SIGCONT to the session leader and its process group.
527  *      Optionally, signal all processes in the foreground process group.
528  *
529  *      Returns the number of processes in the session with this tty
530  *      as their controlling terminal. This value is used to drop
531  *      tty references for those processes.
532  */
533 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
534 {
535         struct task_struct *p;
536         int refs = 0;
537         struct pid *tty_pgrp = NULL;
538
539         read_lock(&tasklist_lock);
540         if (tty->session) {
541                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
542                         spin_lock_irq(&p->sighand->siglock);
543                         if (p->signal->tty == tty) {
544                                 p->signal->tty = NULL;
545                                 /* We defer the dereferences outside fo
546                                    the tasklist lock */
547                                 refs++;
548                         }
549                         if (!p->signal->leader) {
550                                 spin_unlock_irq(&p->sighand->siglock);
551                                 continue;
552                         }
553                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
554                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
555                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
556                         spin_lock(&tty->ctrl_lock);
557                         tty_pgrp = get_pid(tty->pgrp);
558                         if (tty->pgrp)
559                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
560                         spin_unlock(&tty->ctrl_lock);
561                         spin_unlock_irq(&p->sighand->siglock);
562                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
563         }
564         read_unlock(&tasklist_lock);
565
566         if (tty_pgrp) {
567                 if (exit_session)
568                         kill_pgrp(tty_pgrp, SIGHUP, exit_session);
569                 put_pid(tty_pgrp);
570         }
571
572         return refs;
573 }
574
575 /**
576  *      __tty_hangup            -       actual handler for hangup events
577  *      @work: tty device
578  *
579  *      This can be called by a "kworker" kernel thread.  That is process
580  *      synchronous but doesn't hold any locks, so we need to make sure we
581  *      have the appropriate locks for what we're doing.
582  *
583  *      The hangup event clears any pending redirections onto the hung up
584  *      device. It ensures future writes will error and it does the needed
585  *      line discipline hangup and signal delivery. The tty object itself
586  *      remains intact.
587  *
588  *      Locking:
589  *              BTM
590  *                redirect lock for undoing redirection
591  *                file list lock for manipulating list of ttys
592  *                tty_ldiscs_lock from called functions
593  *                termios_rwsem resetting termios data
594  *                tasklist_lock to walk task list for hangup event
595  *                  ->siglock to protect ->signal/->sighand
596  */
597 static void __tty_hangup(struct tty_struct *tty, int exit_session)
598 {
599         struct file *cons_filp = NULL;
600         struct file *filp, *f = NULL;
601         struct tty_file_private *priv;
602         int    closecount = 0, n;
603         int refs;
604
605         if (!tty)
606                 return;
607
608
609         spin_lock(&redirect_lock);
610         if (redirect && file_tty(redirect) == tty) {
611                 f = redirect;
612                 redirect = NULL;
613         }
614         spin_unlock(&redirect_lock);
615
616         tty_lock(tty);
617
618         if (test_bit(TTY_HUPPED, &tty->flags)) {
619                 tty_unlock(tty);
620                 return;
621         }
622
623         /* some functions below drop BTM, so we need this bit */
624         set_bit(TTY_HUPPING, &tty->flags);
625
626         /* inuse_filps is protected by the single tty lock,
627            this really needs to change if we want to flush the
628            workqueue with the lock held */
629         check_tty_count(tty, "tty_hangup");
630
631         spin_lock(&tty_files_lock);
632         /* This breaks for file handles being sent over AF_UNIX sockets ? */
633         list_for_each_entry(priv, &tty->tty_files, list) {
634                 filp = priv->file;
635                 if (filp->f_op->write == redirected_tty_write)
636                         cons_filp = filp;
637                 if (filp->f_op->write != tty_write)
638                         continue;
639                 closecount++;
640                 __tty_fasync(-1, filp, 0);      /* can't block */
641                 filp->f_op = &hung_up_tty_fops;
642         }
643         spin_unlock(&tty_files_lock);
644
645         refs = tty_signal_session_leader(tty, exit_session);
646         /* Account for the p->signal references we killed */
647         while (refs--)
648                 tty_kref_put(tty);
649
650         /*
651          * it drops BTM and thus races with reopen
652          * we protect the race by TTY_HUPPING
653          */
654         tty_ldisc_hangup(tty);
655
656         spin_lock_irq(&tty->ctrl_lock);
657         clear_bit(TTY_THROTTLED, &tty->flags);
658         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
659         put_pid(tty->session);
660         put_pid(tty->pgrp);
661         tty->session = NULL;
662         tty->pgrp = NULL;
663         tty->ctrl_status = 0;
664         spin_unlock_irq(&tty->ctrl_lock);
665
666         /*
667          * If one of the devices matches a console pointer, we
668          * cannot just call hangup() because that will cause
669          * tty->count and state->count to go out of sync.
670          * So we just call close() the right number of times.
671          */
672         if (cons_filp) {
673                 if (tty->ops->close)
674                         for (n = 0; n < closecount; n++)
675                                 tty->ops->close(tty, cons_filp);
676         } else if (tty->ops->hangup)
677                 tty->ops->hangup(tty);
678         /*
679          * We don't want to have driver/ldisc interactions beyond
680          * the ones we did here. The driver layer expects no
681          * calls after ->hangup() from the ldisc side. However we
682          * can't yet guarantee all that.
683          */
684         set_bit(TTY_HUPPED, &tty->flags);
685         clear_bit(TTY_HUPPING, &tty->flags);
686
687         tty_unlock(tty);
688
689         if (f)
690                 fput(f);
691 }
692
693 static void do_tty_hangup(struct work_struct *work)
694 {
695         struct tty_struct *tty =
696                 container_of(work, struct tty_struct, hangup_work);
697
698         __tty_hangup(tty, 0);
699 }
700
701 /**
702  *      tty_hangup              -       trigger a hangup event
703  *      @tty: tty to hangup
704  *
705  *      A carrier loss (virtual or otherwise) has occurred on this like
706  *      schedule a hangup sequence to run after this event.
707  */
708
709 void tty_hangup(struct tty_struct *tty)
710 {
711 #ifdef TTY_DEBUG_HANGUP
712         char    buf[64];
713         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
714 #endif
715         schedule_work(&tty->hangup_work);
716 }
717
718 EXPORT_SYMBOL(tty_hangup);
719
720 /**
721  *      tty_vhangup             -       process vhangup
722  *      @tty: tty to hangup
723  *
724  *      The user has asked via system call for the terminal to be hung up.
725  *      We do this synchronously so that when the syscall returns the process
726  *      is complete. That guarantee is necessary for security reasons.
727  */
728
729 void tty_vhangup(struct tty_struct *tty)
730 {
731 #ifdef TTY_DEBUG_HANGUP
732         char    buf[64];
733
734         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
735 #endif
736         __tty_hangup(tty, 0);
737 }
738
739 EXPORT_SYMBOL(tty_vhangup);
740
741
742 /**
743  *      tty_vhangup_self        -       process vhangup for own ctty
744  *
745  *      Perform a vhangup on the current controlling tty
746  */
747
748 void tty_vhangup_self(void)
749 {
750         struct tty_struct *tty;
751
752         tty = get_current_tty();
753         if (tty) {
754                 tty_vhangup(tty);
755                 tty_kref_put(tty);
756         }
757 }
758
759 /**
760  *      tty_vhangup_session             -       hangup session leader exit
761  *      @tty: tty to hangup
762  *
763  *      The session leader is exiting and hanging up its controlling terminal.
764  *      Every process in the foreground process group is signalled SIGHUP.
765  *
766  *      We do this synchronously so that when the syscall returns the process
767  *      is complete. That guarantee is necessary for security reasons.
768  */
769
770 static void tty_vhangup_session(struct tty_struct *tty)
771 {
772 #ifdef TTY_DEBUG_HANGUP
773         char    buf[64];
774
775         printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
776 #endif
777         __tty_hangup(tty, 1);
778 }
779
780 /**
781  *      tty_hung_up_p           -       was tty hung up
782  *      @filp: file pointer of tty
783  *
784  *      Return true if the tty has been subject to a vhangup or a carrier
785  *      loss
786  */
787
788 int tty_hung_up_p(struct file *filp)
789 {
790         return (filp->f_op == &hung_up_tty_fops);
791 }
792
793 EXPORT_SYMBOL(tty_hung_up_p);
794
795 static void session_clear_tty(struct pid *session)
796 {
797         struct task_struct *p;
798         do_each_pid_task(session, PIDTYPE_SID, p) {
799                 proc_clear_tty(p);
800         } while_each_pid_task(session, PIDTYPE_SID, p);
801 }
802
803 /**
804  *      disassociate_ctty       -       disconnect controlling tty
805  *      @on_exit: true if exiting so need to "hang up" the session
806  *
807  *      This function is typically called only by the session leader, when
808  *      it wants to disassociate itself from its controlling tty.
809  *
810  *      It performs the following functions:
811  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
812  *      (2)  Clears the tty from being controlling the session
813  *      (3)  Clears the controlling tty for all processes in the
814  *              session group.
815  *
816  *      The argument on_exit is set to 1 if called when a process is
817  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
818  *
819  *      Locking:
820  *              BTM is taken for hysterical raisins, and held when
821  *                called from no_tty().
822  *                tty_mutex is taken to protect tty
823  *                ->siglock is taken to protect ->signal/->sighand
824  *                tasklist_lock is taken to walk process list for sessions
825  *                  ->siglock is taken to protect ->signal/->sighand
826  */
827
828 void disassociate_ctty(int on_exit)
829 {
830         struct tty_struct *tty;
831
832         if (!current->signal->leader)
833                 return;
834
835         tty = get_current_tty();
836         if (tty) {
837                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
838                         tty_vhangup_session(tty);
839                 } else {
840                         struct pid *tty_pgrp = tty_get_pgrp(tty);
841                         if (tty_pgrp) {
842                                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
843                                 if (!on_exit)
844                                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
845                                 put_pid(tty_pgrp);
846                         }
847                 }
848                 tty_kref_put(tty);
849
850         } else if (on_exit) {
851                 struct pid *old_pgrp;
852                 spin_lock_irq(&current->sighand->siglock);
853                 old_pgrp = current->signal->tty_old_pgrp;
854                 current->signal->tty_old_pgrp = NULL;
855                 spin_unlock_irq(&current->sighand->siglock);
856                 if (old_pgrp) {
857                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
858                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
859                         put_pid(old_pgrp);
860                 }
861                 return;
862         }
863
864         spin_lock_irq(&current->sighand->siglock);
865         put_pid(current->signal->tty_old_pgrp);
866         current->signal->tty_old_pgrp = NULL;
867
868         tty = tty_kref_get(current->signal->tty);
869         if (tty) {
870                 unsigned long flags;
871                 spin_lock_irqsave(&tty->ctrl_lock, flags);
872                 put_pid(tty->session);
873                 put_pid(tty->pgrp);
874                 tty->session = NULL;
875                 tty->pgrp = NULL;
876                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
877                 tty_kref_put(tty);
878         } else {
879 #ifdef TTY_DEBUG_HANGUP
880                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
881                        " = NULL", tty);
882 #endif
883         }
884
885         spin_unlock_irq(&current->sighand->siglock);
886         /* Now clear signal->tty under the lock */
887         read_lock(&tasklist_lock);
888         session_clear_tty(task_session(current));
889         read_unlock(&tasklist_lock);
890 }
891
892 /**
893  *
894  *      no_tty  - Ensure the current process does not have a controlling tty
895  */
896 void no_tty(void)
897 {
898         /* FIXME: Review locking here. The tty_lock never covered any race
899            between a new association and proc_clear_tty but possible we need
900            to protect against this anyway */
901         struct task_struct *tsk = current;
902         disassociate_ctty(0);
903         proc_clear_tty(tsk);
904 }
905
906
907 /**
908  *      stop_tty        -       propagate flow control
909  *      @tty: tty to stop
910  *
911  *      Perform flow control to the driver. For PTY/TTY pairs we
912  *      must also propagate the TIOCKPKT status. May be called
913  *      on an already stopped device and will not re-call the driver
914  *      method.
915  *
916  *      This functionality is used by both the line disciplines for
917  *      halting incoming flow and by the driver. It may therefore be
918  *      called from any context, may be under the tty atomic_write_lock
919  *      but not always.
920  *
921  *      Locking:
922  *              ctrl_lock
923  *              flow_lock
924  */
925
926 void __stop_tty(struct tty_struct *tty)
927 {
928         unsigned long flags;
929
930         if (tty->stopped)
931                 return;
932         tty->stopped = 1;
933         spin_lock_irqsave(&tty->ctrl_lock, flags);
934         if (tty->link && tty->link->packet) {
935                 tty->ctrl_status &= ~TIOCPKT_START;
936                 tty->ctrl_status |= TIOCPKT_STOP;
937                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
938         }
939         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
940         if (tty->ops->stop)
941                 (tty->ops->stop)(tty);
942 }
943
944 void stop_tty(struct tty_struct *tty)
945 {
946         unsigned long flags;
947
948         spin_lock_irqsave(&tty->flow_lock, flags);
949         __stop_tty(tty);
950         spin_unlock_irqrestore(&tty->flow_lock, flags);
951 }
952 EXPORT_SYMBOL(stop_tty);
953
954 /**
955  *      start_tty       -       propagate flow control
956  *      @tty: tty to start
957  *
958  *      Start a tty that has been stopped if at all possible. Perform
959  *      any necessary wakeups and propagate the TIOCPKT status. If this
960  *      is the tty was previous stopped and is being started then the
961  *      driver start method is invoked and the line discipline woken.
962  *
963  *      Locking:
964  *              ctrl_lock
965  *              flow_lock
966  */
967
968 void __start_tty(struct tty_struct *tty)
969 {
970         unsigned long flags;
971
972         if (!tty->stopped || tty->flow_stopped)
973                 return;
974         tty->stopped = 0;
975         spin_lock_irqsave(&tty->ctrl_lock, flags);
976         if (tty->link && tty->link->packet) {
977                 tty->ctrl_status &= ~TIOCPKT_STOP;
978                 tty->ctrl_status |= TIOCPKT_START;
979                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
980         }
981         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
982         if (tty->ops->start)
983                 (tty->ops->start)(tty);
984         /* If we have a running line discipline it may need kicking */
985         tty_wakeup(tty);
986 }
987
988 void start_tty(struct tty_struct *tty)
989 {
990         unsigned long flags;
991
992         spin_lock_irqsave(&tty->flow_lock, flags);
993         __start_tty(tty);
994         spin_unlock_irqrestore(&tty->flow_lock, flags);
995 }
996 EXPORT_SYMBOL(start_tty);
997
998 /* We limit tty time update visibility to every 8 seconds or so. */
999 static void tty_update_time(struct timespec *time)
1000 {
1001         unsigned long sec = get_seconds() & ~7;
1002         if ((long)(sec - time->tv_sec) > 0)
1003                 time->tv_sec = sec;
1004 }
1005
1006 /**
1007  *      tty_read        -       read method for tty device files
1008  *      @file: pointer to tty file
1009  *      @buf: user buffer
1010  *      @count: size of user buffer
1011  *      @ppos: unused
1012  *
1013  *      Perform the read system call function on this terminal device. Checks
1014  *      for hung up devices before calling the line discipline method.
1015  *
1016  *      Locking:
1017  *              Locks the line discipline internally while needed. Multiple
1018  *      read calls may be outstanding in parallel.
1019  */
1020
1021 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1022                         loff_t *ppos)
1023 {
1024         int i;
1025         struct inode *inode = file_inode(file);
1026         struct tty_struct *tty = file_tty(file);
1027         struct tty_ldisc *ld;
1028
1029         if (tty_paranoia_check(tty, inode, "tty_read"))
1030                 return -EIO;
1031         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1032                 return -EIO;
1033
1034         /* We want to wait for the line discipline to sort out in this
1035            situation */
1036         ld = tty_ldisc_ref_wait(tty);
1037         if (ld->ops->read)
1038                 i = (ld->ops->read)(tty, file, buf, count);
1039         else
1040                 i = -EIO;
1041         tty_ldisc_deref(ld);
1042
1043         if (i > 0)
1044                 tty_update_time(&inode->i_atime);
1045
1046         return i;
1047 }
1048
1049 void tty_write_unlock(struct tty_struct *tty)
1050         __releases(&tty->atomic_write_lock)
1051 {
1052         mutex_unlock(&tty->atomic_write_lock);
1053         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1054 }
1055
1056 int tty_write_lock(struct tty_struct *tty, int ndelay)
1057         __acquires(&tty->atomic_write_lock)
1058 {
1059         if (!mutex_trylock(&tty->atomic_write_lock)) {
1060                 if (ndelay)
1061                         return -EAGAIN;
1062                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1063                         return -ERESTARTSYS;
1064         }
1065         return 0;
1066 }
1067
1068 /*
1069  * Split writes up in sane blocksizes to avoid
1070  * denial-of-service type attacks
1071  */
1072 static inline ssize_t do_tty_write(
1073         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1074         struct tty_struct *tty,
1075         struct file *file,
1076         const char __user *buf,
1077         size_t count)
1078 {
1079         ssize_t ret, written = 0;
1080         unsigned int chunk;
1081
1082         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1083         if (ret < 0)
1084                 return ret;
1085
1086         /*
1087          * We chunk up writes into a temporary buffer. This
1088          * simplifies low-level drivers immensely, since they
1089          * don't have locking issues and user mode accesses.
1090          *
1091          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1092          * big chunk-size..
1093          *
1094          * The default chunk-size is 2kB, because the NTTY
1095          * layer has problems with bigger chunks. It will
1096          * claim to be able to handle more characters than
1097          * it actually does.
1098          *
1099          * FIXME: This can probably go away now except that 64K chunks
1100          * are too likely to fail unless switched to vmalloc...
1101          */
1102         chunk = 2048;
1103         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1104                 chunk = 65536;
1105         if (count < chunk)
1106                 chunk = count;
1107
1108         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1109         if (tty->write_cnt < chunk) {
1110                 unsigned char *buf_chunk;
1111
1112                 if (chunk < 1024)
1113                         chunk = 1024;
1114
1115                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1116                 if (!buf_chunk) {
1117                         ret = -ENOMEM;
1118                         goto out;
1119                 }
1120                 kfree(tty->write_buf);
1121                 tty->write_cnt = chunk;
1122                 tty->write_buf = buf_chunk;
1123         }
1124
1125         /* Do the write .. */
1126         for (;;) {
1127                 size_t size = count;
1128                 if (size > chunk)
1129                         size = chunk;
1130                 ret = -EFAULT;
1131                 if (copy_from_user(tty->write_buf, buf, size))
1132                         break;
1133                 ret = write(tty, file, tty->write_buf, size);
1134                 if (ret <= 0)
1135                         break;
1136                 written += ret;
1137                 buf += ret;
1138                 count -= ret;
1139                 if (!count)
1140                         break;
1141                 ret = -ERESTARTSYS;
1142                 if (signal_pending(current))
1143                         break;
1144                 cond_resched();
1145         }
1146         if (written) {
1147                 tty_update_time(&file_inode(file)->i_mtime);
1148                 ret = written;
1149         }
1150 out:
1151         tty_write_unlock(tty);
1152         return ret;
1153 }
1154
1155 /**
1156  * tty_write_message - write a message to a certain tty, not just the console.
1157  * @tty: the destination tty_struct
1158  * @msg: the message to write
1159  *
1160  * This is used for messages that need to be redirected to a specific tty.
1161  * We don't put it into the syslog queue right now maybe in the future if
1162  * really needed.
1163  *
1164  * We must still hold the BTM and test the CLOSING flag for the moment.
1165  */
1166
1167 void tty_write_message(struct tty_struct *tty, char *msg)
1168 {
1169         if (tty) {
1170                 mutex_lock(&tty->atomic_write_lock);
1171                 tty_lock(tty);
1172                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1173                         tty_unlock(tty);
1174                         tty->ops->write(tty, msg, strlen(msg));
1175                 } else
1176                         tty_unlock(tty);
1177                 tty_write_unlock(tty);
1178         }
1179         return;
1180 }
1181
1182
1183 /**
1184  *      tty_write               -       write method for tty device file
1185  *      @file: tty file pointer
1186  *      @buf: user data to write
1187  *      @count: bytes to write
1188  *      @ppos: unused
1189  *
1190  *      Write data to a tty device via the line discipline.
1191  *
1192  *      Locking:
1193  *              Locks the line discipline as required
1194  *              Writes to the tty driver are serialized by the atomic_write_lock
1195  *      and are then processed in chunks to the device. The line discipline
1196  *      write method will not be invoked in parallel for each device.
1197  */
1198
1199 static ssize_t tty_write(struct file *file, const char __user *buf,
1200                                                 size_t count, loff_t *ppos)
1201 {
1202         struct tty_struct *tty = file_tty(file);
1203         struct tty_ldisc *ld;
1204         ssize_t ret;
1205
1206         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1207                 return -EIO;
1208         if (!tty || !tty->ops->write ||
1209                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1210                         return -EIO;
1211         /* Short term debug to catch buggy drivers */
1212         if (tty->ops->write_room == NULL)
1213                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1214                         tty->driver->name);
1215         ld = tty_ldisc_ref_wait(tty);
1216         if (!ld->ops->write)
1217                 ret = -EIO;
1218         else
1219                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1220         tty_ldisc_deref(ld);
1221         return ret;
1222 }
1223
1224 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1225                                                 size_t count, loff_t *ppos)
1226 {
1227         struct file *p = NULL;
1228
1229         spin_lock(&redirect_lock);
1230         if (redirect)
1231                 p = get_file(redirect);
1232         spin_unlock(&redirect_lock);
1233
1234         if (p) {
1235                 ssize_t res;
1236                 res = vfs_write(p, buf, count, &p->f_pos);
1237                 fput(p);
1238                 return res;
1239         }
1240         return tty_write(file, buf, count, ppos);
1241 }
1242
1243 static char ptychar[] = "pqrstuvwxyzabcde";
1244
1245 /**
1246  *      pty_line_name   -       generate name for a pty
1247  *      @driver: the tty driver in use
1248  *      @index: the minor number
1249  *      @p: output buffer of at least 6 bytes
1250  *
1251  *      Generate a name from a driver reference and write it to the output
1252  *      buffer.
1253  *
1254  *      Locking: None
1255  */
1256 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1257 {
1258         int i = index + driver->name_base;
1259         /* ->name is initialized to "ttyp", but "tty" is expected */
1260         sprintf(p, "%s%c%x",
1261                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1262                 ptychar[i >> 4 & 0xf], i & 0xf);
1263 }
1264
1265 /**
1266  *      tty_line_name   -       generate name for a tty
1267  *      @driver: the tty driver in use
1268  *      @index: the minor number
1269  *      @p: output buffer of at least 7 bytes
1270  *
1271  *      Generate a name from a driver reference and write it to the output
1272  *      buffer.
1273  *
1274  *      Locking: None
1275  */
1276 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1277 {
1278         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1279                 return sprintf(p, "%s", driver->name);
1280         else
1281                 return sprintf(p, "%s%d", driver->name,
1282                                index + driver->name_base);
1283 }
1284
1285 /**
1286  *      tty_driver_lookup_tty() - find an existing tty, if any
1287  *      @driver: the driver for the tty
1288  *      @idx:    the minor number
1289  *
1290  *      Return the tty, if found or ERR_PTR() otherwise.
1291  *
1292  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1293  *      be held until the 'fast-open' is also done. Will change once we
1294  *      have refcounting in the driver and per driver locking
1295  */
1296 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1297                 struct inode *inode, int idx)
1298 {
1299         if (driver->ops->lookup)
1300                 return driver->ops->lookup(driver, inode, idx);
1301
1302         return driver->ttys[idx];
1303 }
1304
1305 /**
1306  *      tty_init_termios        -  helper for termios setup
1307  *      @tty: the tty to set up
1308  *
1309  *      Initialise the termios structures for this tty. Thus runs under
1310  *      the tty_mutex currently so we can be relaxed about ordering.
1311  */
1312
1313 int tty_init_termios(struct tty_struct *tty)
1314 {
1315         struct ktermios *tp;
1316         int idx = tty->index;
1317
1318         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1319                 tty->termios = tty->driver->init_termios;
1320         else {
1321                 /* Check for lazy saved data */
1322                 tp = tty->driver->termios[idx];
1323                 if (tp != NULL)
1324                         tty->termios = *tp;
1325                 else
1326                         tty->termios = tty->driver->init_termios;
1327         }
1328         /* Compatibility until drivers always set this */
1329         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1330         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1331         return 0;
1332 }
1333 EXPORT_SYMBOL_GPL(tty_init_termios);
1334
1335 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1336 {
1337         int ret = tty_init_termios(tty);
1338         if (ret)
1339                 return ret;
1340
1341         tty_driver_kref_get(driver);
1342         tty->count++;
1343         driver->ttys[tty->index] = tty;
1344         return 0;
1345 }
1346 EXPORT_SYMBOL_GPL(tty_standard_install);
1347
1348 /**
1349  *      tty_driver_install_tty() - install a tty entry in the driver
1350  *      @driver: the driver for the tty
1351  *      @tty: the tty
1352  *
1353  *      Install a tty object into the driver tables. The tty->index field
1354  *      will be set by the time this is called. This method is responsible
1355  *      for ensuring any need additional structures are allocated and
1356  *      configured.
1357  *
1358  *      Locking: tty_mutex for now
1359  */
1360 static int tty_driver_install_tty(struct tty_driver *driver,
1361                                                 struct tty_struct *tty)
1362 {
1363         return driver->ops->install ? driver->ops->install(driver, tty) :
1364                 tty_standard_install(driver, tty);
1365 }
1366
1367 /**
1368  *      tty_driver_remove_tty() - remove a tty from the driver tables
1369  *      @driver: the driver for the tty
1370  *      @idx:    the minor number
1371  *
1372  *      Remvoe a tty object from the driver tables. The tty->index field
1373  *      will be set by the time this is called.
1374  *
1375  *      Locking: tty_mutex for now
1376  */
1377 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1378 {
1379         if (driver->ops->remove)
1380                 driver->ops->remove(driver, tty);
1381         else
1382                 driver->ttys[tty->index] = NULL;
1383 }
1384
1385 /*
1386  *      tty_reopen()    - fast re-open of an open tty
1387  *      @tty    - the tty to open
1388  *
1389  *      Return 0 on success, -errno on error.
1390  *
1391  *      Locking: tty_mutex must be held from the time the tty was found
1392  *               till this open completes.
1393  */
1394 static int tty_reopen(struct tty_struct *tty)
1395 {
1396         struct tty_driver *driver = tty->driver;
1397
1398         if (test_bit(TTY_CLOSING, &tty->flags) ||
1399                         test_bit(TTY_HUPPING, &tty->flags))
1400                 return -EIO;
1401
1402         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1403             driver->subtype == PTY_TYPE_MASTER) {
1404                 /*
1405                  * special case for PTY masters: only one open permitted,
1406                  * and the slave side open count is incremented as well.
1407                  */
1408                 if (tty->count)
1409                         return -EIO;
1410
1411                 tty->link->count++;
1412         }
1413         tty->count++;
1414
1415         WARN_ON(!tty->ldisc);
1416
1417         return 0;
1418 }
1419
1420 /**
1421  *      tty_init_dev            -       initialise a tty device
1422  *      @driver: tty driver we are opening a device on
1423  *      @idx: device index
1424  *      @ret_tty: returned tty structure
1425  *
1426  *      Prepare a tty device. This may not be a "new" clean device but
1427  *      could also be an active device. The pty drivers require special
1428  *      handling because of this.
1429  *
1430  *      Locking:
1431  *              The function is called under the tty_mutex, which
1432  *      protects us from the tty struct or driver itself going away.
1433  *
1434  *      On exit the tty device has the line discipline attached and
1435  *      a reference count of 1. If a pair was created for pty/tty use
1436  *      and the other was a pty master then it too has a reference count of 1.
1437  *
1438  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1439  * failed open.  The new code protects the open with a mutex, so it's
1440  * really quite straightforward.  The mutex locking can probably be
1441  * relaxed for the (most common) case of reopening a tty.
1442  */
1443
1444 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1445 {
1446         struct tty_struct *tty;
1447         int retval;
1448
1449         /*
1450          * First time open is complex, especially for PTY devices.
1451          * This code guarantees that either everything succeeds and the
1452          * TTY is ready for operation, or else the table slots are vacated
1453          * and the allocated memory released.  (Except that the termios
1454          * and locked termios may be retained.)
1455          */
1456
1457         if (!try_module_get(driver->owner))
1458                 return ERR_PTR(-ENODEV);
1459
1460         tty = alloc_tty_struct(driver, idx);
1461         if (!tty) {
1462                 retval = -ENOMEM;
1463                 goto err_module_put;
1464         }
1465
1466         tty_lock(tty);
1467         retval = tty_driver_install_tty(driver, tty);
1468         if (retval < 0)
1469                 goto err_deinit_tty;
1470
1471         if (!tty->port)
1472                 tty->port = driver->ports[idx];
1473
1474         WARN_RATELIMIT(!tty->port,
1475                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1476                         __func__, tty->driver->name);
1477
1478         tty->port->itty = tty;
1479
1480         /*
1481          * Structures all installed ... call the ldisc open routines.
1482          * If we fail here just call release_tty to clean up.  No need
1483          * to decrement the use counts, as release_tty doesn't care.
1484          */
1485         retval = tty_ldisc_setup(tty, tty->link);
1486         if (retval)
1487                 goto err_release_tty;
1488         /* Return the tty locked so that it cannot vanish under the caller */
1489         return tty;
1490
1491 err_deinit_tty:
1492         tty_unlock(tty);
1493         deinitialize_tty_struct(tty);
1494         free_tty_struct(tty);
1495 err_module_put:
1496         module_put(driver->owner);
1497         return ERR_PTR(retval);
1498
1499         /* call the tty release_tty routine to clean out this slot */
1500 err_release_tty:
1501         tty_unlock(tty);
1502         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1503                                  "clearing slot %d\n", idx);
1504         release_tty(tty, idx);
1505         return ERR_PTR(retval);
1506 }
1507
1508 void tty_free_termios(struct tty_struct *tty)
1509 {
1510         struct ktermios *tp;
1511         int idx = tty->index;
1512
1513         /* If the port is going to reset then it has no termios to save */
1514         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1515                 return;
1516
1517         /* Stash the termios data */
1518         tp = tty->driver->termios[idx];
1519         if (tp == NULL) {
1520                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1521                 if (tp == NULL) {
1522                         pr_warn("tty: no memory to save termios state.\n");
1523                         return;
1524                 }
1525                 tty->driver->termios[idx] = tp;
1526         }
1527         *tp = tty->termios;
1528 }
1529 EXPORT_SYMBOL(tty_free_termios);
1530
1531 /**
1532  *      tty_flush_works         -       flush all works of a tty
1533  *      @tty: tty device to flush works for
1534  *
1535  *      Sync flush all works belonging to @tty.
1536  */
1537 static void tty_flush_works(struct tty_struct *tty)
1538 {
1539         flush_work(&tty->SAK_work);
1540         flush_work(&tty->hangup_work);
1541 }
1542
1543 /**
1544  *      release_one_tty         -       release tty structure memory
1545  *      @kref: kref of tty we are obliterating
1546  *
1547  *      Releases memory associated with a tty structure, and clears out the
1548  *      driver table slots. This function is called when a device is no longer
1549  *      in use. It also gets called when setup of a device fails.
1550  *
1551  *      Locking:
1552  *              takes the file list lock internally when working on the list
1553  *      of ttys that the driver keeps.
1554  *
1555  *      This method gets called from a work queue so that the driver private
1556  *      cleanup ops can sleep (needed for USB at least)
1557  */
1558 static void release_one_tty(struct work_struct *work)
1559 {
1560         struct tty_struct *tty =
1561                 container_of(work, struct tty_struct, hangup_work);
1562         struct tty_driver *driver = tty->driver;
1563         struct module *owner = driver->owner;
1564
1565         if (tty->ops->cleanup)
1566                 tty->ops->cleanup(tty);
1567
1568         tty->magic = 0;
1569         tty_driver_kref_put(driver);
1570         module_put(owner);
1571
1572         spin_lock(&tty_files_lock);
1573         list_del_init(&tty->tty_files);
1574         spin_unlock(&tty_files_lock);
1575
1576         put_pid(tty->pgrp);
1577         put_pid(tty->session);
1578         free_tty_struct(tty);
1579 }
1580
1581 static void queue_release_one_tty(struct kref *kref)
1582 {
1583         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1584
1585         /* The hangup queue is now free so we can reuse it rather than
1586            waste a chunk of memory for each port */
1587         INIT_WORK(&tty->hangup_work, release_one_tty);
1588         schedule_work(&tty->hangup_work);
1589 }
1590
1591 /**
1592  *      tty_kref_put            -       release a tty kref
1593  *      @tty: tty device
1594  *
1595  *      Release a reference to a tty device and if need be let the kref
1596  *      layer destruct the object for us
1597  */
1598
1599 void tty_kref_put(struct tty_struct *tty)
1600 {
1601         if (tty)
1602                 kref_put(&tty->kref, queue_release_one_tty);
1603 }
1604 EXPORT_SYMBOL(tty_kref_put);
1605
1606 /**
1607  *      release_tty             -       release tty structure memory
1608  *
1609  *      Release both @tty and a possible linked partner (think pty pair),
1610  *      and decrement the refcount of the backing module.
1611  *
1612  *      Locking:
1613  *              tty_mutex
1614  *              takes the file list lock internally when working on the list
1615  *      of ttys that the driver keeps.
1616  *
1617  */
1618 static void release_tty(struct tty_struct *tty, int idx)
1619 {
1620         /* This should always be true but check for the moment */
1621         WARN_ON(tty->index != idx);
1622         WARN_ON(!mutex_is_locked(&tty_mutex));
1623         if (tty->ops->shutdown)
1624                 tty->ops->shutdown(tty);
1625         tty_free_termios(tty);
1626         tty_driver_remove_tty(tty->driver, tty);
1627         tty->port->itty = NULL;
1628         if (tty->link)
1629                 tty->link->port->itty = NULL;
1630         cancel_work_sync(&tty->port->buf.work);
1631
1632         if (tty->link)
1633                 tty_kref_put(tty->link);
1634         tty_kref_put(tty);
1635 }
1636
1637 /**
1638  *      tty_release_checks - check a tty before real release
1639  *      @tty: tty to check
1640  *      @o_tty: link of @tty (if any)
1641  *      @idx: index of the tty
1642  *
1643  *      Performs some paranoid checking before true release of the @tty.
1644  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1645  */
1646 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1647                 int idx)
1648 {
1649 #ifdef TTY_PARANOIA_CHECK
1650         if (idx < 0 || idx >= tty->driver->num) {
1651                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1652                                 __func__, tty->name);
1653                 return -1;
1654         }
1655
1656         /* not much to check for devpts */
1657         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1658                 return 0;
1659
1660         if (tty != tty->driver->ttys[idx]) {
1661                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1662                                 __func__, idx, tty->name);
1663                 return -1;
1664         }
1665         if (tty->driver->other) {
1666                 if (o_tty != tty->driver->other->ttys[idx]) {
1667                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1668                                         __func__, idx, tty->name);
1669                         return -1;
1670                 }
1671                 if (o_tty->link != tty) {
1672                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1673                         return -1;
1674                 }
1675         }
1676 #endif
1677         return 0;
1678 }
1679
1680 /**
1681  *      tty_release             -       vfs callback for close
1682  *      @inode: inode of tty
1683  *      @filp: file pointer for handle to tty
1684  *
1685  *      Called the last time each file handle is closed that references
1686  *      this tty. There may however be several such references.
1687  *
1688  *      Locking:
1689  *              Takes bkl. See tty_release_dev
1690  *
1691  * Even releasing the tty structures is a tricky business.. We have
1692  * to be very careful that the structures are all released at the
1693  * same time, as interrupts might otherwise get the wrong pointers.
1694  *
1695  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1696  * lead to double frees or releasing memory still in use.
1697  */
1698
1699 int tty_release(struct inode *inode, struct file *filp)
1700 {
1701         struct tty_struct *tty = file_tty(filp);
1702         struct tty_struct *o_tty;
1703         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1704         int     idx;
1705         char    buf[64];
1706
1707         if (tty_paranoia_check(tty, inode, __func__))
1708                 return 0;
1709
1710         tty_lock(tty);
1711         check_tty_count(tty, __func__);
1712
1713         __tty_fasync(-1, filp, 0);
1714
1715         idx = tty->index;
1716         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1717                       tty->driver->subtype == PTY_TYPE_MASTER);
1718         /* Review: parallel close */
1719         o_tty = tty->link;
1720
1721         if (tty_release_checks(tty, o_tty, idx)) {
1722                 tty_unlock(tty);
1723                 return 0;
1724         }
1725
1726 #ifdef TTY_DEBUG_HANGUP
1727         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1728                         tty_name(tty, buf), tty->count);
1729 #endif
1730
1731         if (tty->ops->close)
1732                 tty->ops->close(tty, filp);
1733
1734         tty_unlock(tty);
1735         /*
1736          * Sanity check: if tty->count is going to zero, there shouldn't be
1737          * any waiters on tty->read_wait or tty->write_wait.  We test the
1738          * wait queues and kick everyone out _before_ actually starting to
1739          * close.  This ensures that we won't block while releasing the tty
1740          * structure.
1741          *
1742          * The test for the o_tty closing is necessary, since the master and
1743          * slave sides may close in any order.  If the slave side closes out
1744          * first, its count will be one, since the master side holds an open.
1745          * Thus this test wouldn't be triggered at the time the slave closes,
1746          * so we do it now.
1747          *
1748          * Note that it's possible for the tty to be opened again while we're
1749          * flushing out waiters.  By recalculating the closing flags before
1750          * each iteration we avoid any problems.
1751          */
1752         while (1) {
1753                 /* Guard against races with tty->count changes elsewhere and
1754                    opens on /dev/tty */
1755
1756                 mutex_lock(&tty_mutex);
1757                 tty_lock_pair(tty, o_tty);
1758                 tty_closing = tty->count <= 1;
1759                 o_tty_closing = o_tty &&
1760                         (o_tty->count <= (pty_master ? 1 : 0));
1761                 do_sleep = 0;
1762
1763                 if (tty_closing) {
1764                         if (waitqueue_active(&tty->read_wait)) {
1765                                 wake_up_poll(&tty->read_wait, POLLIN);
1766                                 do_sleep++;
1767                         }
1768                         if (waitqueue_active(&tty->write_wait)) {
1769                                 wake_up_poll(&tty->write_wait, POLLOUT);
1770                                 do_sleep++;
1771                         }
1772                 }
1773                 if (o_tty_closing) {
1774                         if (waitqueue_active(&o_tty->read_wait)) {
1775                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1776                                 do_sleep++;
1777                         }
1778                         if (waitqueue_active(&o_tty->write_wait)) {
1779                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1780                                 do_sleep++;
1781                         }
1782                 }
1783                 if (!do_sleep)
1784                         break;
1785
1786                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1787                                 __func__, tty_name(tty, buf));
1788                 tty_unlock_pair(tty, o_tty);
1789                 mutex_unlock(&tty_mutex);
1790                 schedule();
1791         }
1792
1793         /*
1794          * The closing flags are now consistent with the open counts on
1795          * both sides, and we've completed the last operation that could
1796          * block, so it's safe to proceed with closing.
1797          *
1798          * We must *not* drop the tty_mutex until we ensure that a further
1799          * entry into tty_open can not pick up this tty.
1800          */
1801         if (pty_master) {
1802                 if (--o_tty->count < 0) {
1803                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1804                                 __func__, o_tty->count, tty_name(o_tty, buf));
1805                         o_tty->count = 0;
1806                 }
1807         }
1808         if (--tty->count < 0) {
1809                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1810                                 __func__, tty->count, tty_name(tty, buf));
1811                 tty->count = 0;
1812         }
1813
1814         /*
1815          * We've decremented tty->count, so we need to remove this file
1816          * descriptor off the tty->tty_files list; this serves two
1817          * purposes:
1818          *  - check_tty_count sees the correct number of file descriptors
1819          *    associated with this tty.
1820          *  - do_tty_hangup no longer sees this file descriptor as
1821          *    something that needs to be handled for hangups.
1822          */
1823         tty_del_file(filp);
1824
1825         /*
1826          * Perform some housekeeping before deciding whether to return.
1827          *
1828          * Set the TTY_CLOSING flag if this was the last open.  In the
1829          * case of a pty we may have to wait around for the other side
1830          * to close, and TTY_CLOSING makes sure we can't be reopened.
1831          */
1832         if (tty_closing)
1833                 set_bit(TTY_CLOSING, &tty->flags);
1834         if (o_tty_closing)
1835                 set_bit(TTY_CLOSING, &o_tty->flags);
1836
1837         /*
1838          * If _either_ side is closing, make sure there aren't any
1839          * processes that still think tty or o_tty is their controlling
1840          * tty.
1841          */
1842         if (tty_closing || o_tty_closing) {
1843                 read_lock(&tasklist_lock);
1844                 session_clear_tty(tty->session);
1845                 if (o_tty)
1846                         session_clear_tty(o_tty->session);
1847                 read_unlock(&tasklist_lock);
1848         }
1849
1850         mutex_unlock(&tty_mutex);
1851         tty_unlock_pair(tty, o_tty);
1852         /* At this point the TTY_CLOSING flag should ensure a dead tty
1853            cannot be re-opened by a racing opener */
1854
1855         /* check whether both sides are closing ... */
1856         if (!tty_closing || (o_tty && !o_tty_closing))
1857                 return 0;
1858
1859 #ifdef TTY_DEBUG_HANGUP
1860         printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1861 #endif
1862         /*
1863          * Ask the line discipline code to release its structures
1864          */
1865         tty_ldisc_release(tty, o_tty);
1866
1867         /* Wait for pending work before tty destruction commmences */
1868         tty_flush_works(tty);
1869         if (o_tty)
1870                 tty_flush_works(o_tty);
1871
1872 #ifdef TTY_DEBUG_HANGUP
1873         printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1874 #endif
1875         /*
1876          * The release_tty function takes care of the details of clearing
1877          * the slots and preserving the termios structure. The tty_unlock_pair
1878          * should be safe as we keep a kref while the tty is locked (so the
1879          * unlock never unlocks a freed tty).
1880          */
1881         mutex_lock(&tty_mutex);
1882         release_tty(tty, idx);
1883         mutex_unlock(&tty_mutex);
1884
1885         return 0;
1886 }
1887
1888 /**
1889  *      tty_open_current_tty - get tty of current task for open
1890  *      @device: device number
1891  *      @filp: file pointer to tty
1892  *      @return: tty of the current task iff @device is /dev/tty
1893  *
1894  *      We cannot return driver and index like for the other nodes because
1895  *      devpts will not work then. It expects inodes to be from devpts FS.
1896  *
1897  *      We need to move to returning a refcounted object from all the lookup
1898  *      paths including this one.
1899  */
1900 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1901 {
1902         struct tty_struct *tty;
1903
1904         if (device != MKDEV(TTYAUX_MAJOR, 0))
1905                 return NULL;
1906
1907         tty = get_current_tty();
1908         if (!tty)
1909                 return ERR_PTR(-ENXIO);
1910
1911         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1912         /* noctty = 1; */
1913         tty_kref_put(tty);
1914         /* FIXME: we put a reference and return a TTY! */
1915         /* This is only safe because the caller holds tty_mutex */
1916         return tty;
1917 }
1918
1919 /**
1920  *      tty_lookup_driver - lookup a tty driver for a given device file
1921  *      @device: device number
1922  *      @filp: file pointer to tty
1923  *      @noctty: set if the device should not become a controlling tty
1924  *      @index: index for the device in the @return driver
1925  *      @return: driver for this inode (with increased refcount)
1926  *
1927  *      If @return is not erroneous, the caller is responsible to decrement the
1928  *      refcount by tty_driver_kref_put.
1929  *
1930  *      Locking: tty_mutex protects get_tty_driver
1931  */
1932 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1933                 int *noctty, int *index)
1934 {
1935         struct tty_driver *driver;
1936
1937         switch (device) {
1938 #ifdef CONFIG_VT
1939         case MKDEV(TTY_MAJOR, 0): {
1940                 extern struct tty_driver *console_driver;
1941                 driver = tty_driver_kref_get(console_driver);
1942                 *index = fg_console;
1943                 *noctty = 1;
1944                 break;
1945         }
1946 #endif
1947         case MKDEV(TTYAUX_MAJOR, 1): {
1948                 struct tty_driver *console_driver = console_device(index);
1949                 if (console_driver) {
1950                         driver = tty_driver_kref_get(console_driver);
1951                         if (driver) {
1952                                 /* Don't let /dev/console block */
1953                                 filp->f_flags |= O_NONBLOCK;
1954                                 *noctty = 1;
1955                                 break;
1956                         }
1957                 }
1958                 return ERR_PTR(-ENODEV);
1959         }
1960         default:
1961                 driver = get_tty_driver(device, index);
1962                 if (!driver)
1963                         return ERR_PTR(-ENODEV);
1964                 break;
1965         }
1966         return driver;
1967 }
1968
1969 /**
1970  *      tty_open                -       open a tty device
1971  *      @inode: inode of device file
1972  *      @filp: file pointer to tty
1973  *
1974  *      tty_open and tty_release keep up the tty count that contains the
1975  *      number of opens done on a tty. We cannot use the inode-count, as
1976  *      different inodes might point to the same tty.
1977  *
1978  *      Open-counting is needed for pty masters, as well as for keeping
1979  *      track of serial lines: DTR is dropped when the last close happens.
1980  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1981  *
1982  *      The termios state of a pty is reset on first open so that
1983  *      settings don't persist across reuse.
1984  *
1985  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1986  *               tty->count should protect the rest.
1987  *               ->siglock protects ->signal/->sighand
1988  *
1989  *      Note: the tty_unlock/lock cases without a ref are only safe due to
1990  *      tty_mutex
1991  */
1992
1993 static int tty_open(struct inode *inode, struct file *filp)
1994 {
1995         struct tty_struct *tty;
1996         int noctty, retval;
1997         struct tty_driver *driver = NULL;
1998         int index;
1999         dev_t device = inode->i_rdev;
2000         unsigned saved_flags = filp->f_flags;
2001
2002         nonseekable_open(inode, filp);
2003
2004 retry_open:
2005         retval = tty_alloc_file(filp);
2006         if (retval)
2007                 return -ENOMEM;
2008
2009         noctty = filp->f_flags & O_NOCTTY;
2010         index  = -1;
2011         retval = 0;
2012
2013         mutex_lock(&tty_mutex);
2014         /* This is protected by the tty_mutex */
2015         tty = tty_open_current_tty(device, filp);
2016         if (IS_ERR(tty)) {
2017                 retval = PTR_ERR(tty);
2018                 goto err_unlock;
2019         } else if (!tty) {
2020                 driver = tty_lookup_driver(device, filp, &noctty, &index);
2021                 if (IS_ERR(driver)) {
2022                         retval = PTR_ERR(driver);
2023                         goto err_unlock;
2024                 }
2025
2026                 /* check whether we're reopening an existing tty */
2027                 tty = tty_driver_lookup_tty(driver, inode, index);
2028                 if (IS_ERR(tty)) {
2029                         retval = PTR_ERR(tty);
2030                         goto err_unlock;
2031                 }
2032         }
2033
2034         if (tty) {
2035                 tty_lock(tty);
2036                 retval = tty_reopen(tty);
2037                 if (retval < 0) {
2038                         tty_unlock(tty);
2039                         tty = ERR_PTR(retval);
2040                 }
2041         } else  /* Returns with the tty_lock held for now */
2042                 tty = tty_init_dev(driver, index);
2043
2044         mutex_unlock(&tty_mutex);
2045         if (driver)
2046                 tty_driver_kref_put(driver);
2047         if (IS_ERR(tty)) {
2048                 retval = PTR_ERR(tty);
2049                 goto err_file;
2050         }
2051
2052         tty_add_file(tty, filp);
2053
2054         check_tty_count(tty, __func__);
2055         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2056             tty->driver->subtype == PTY_TYPE_MASTER)
2057                 noctty = 1;
2058 #ifdef TTY_DEBUG_HANGUP
2059         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2060 #endif
2061         if (tty->ops->open)
2062                 retval = tty->ops->open(tty, filp);
2063         else
2064                 retval = -ENODEV;
2065         filp->f_flags = saved_flags;
2066
2067         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2068                                                 !capable(CAP_SYS_ADMIN))
2069                 retval = -EBUSY;
2070
2071         if (retval) {
2072 #ifdef TTY_DEBUG_HANGUP
2073                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2074                                 retval, tty->name);
2075 #endif
2076                 tty_unlock(tty); /* need to call tty_release without BTM */
2077                 tty_release(inode, filp);
2078                 if (retval != -ERESTARTSYS)
2079                         return retval;
2080
2081                 if (signal_pending(current))
2082                         return retval;
2083
2084                 schedule();
2085                 /*
2086                  * Need to reset f_op in case a hangup happened.
2087                  */
2088                 if (filp->f_op == &hung_up_tty_fops)
2089                         filp->f_op = &tty_fops;
2090                 goto retry_open;
2091         }
2092         clear_bit(TTY_HUPPED, &tty->flags);
2093         tty_unlock(tty);
2094
2095
2096         mutex_lock(&tty_mutex);
2097         tty_lock(tty);
2098         spin_lock_irq(&current->sighand->siglock);
2099         if (!noctty &&
2100             current->signal->leader &&
2101             !current->signal->tty &&
2102             tty->session == NULL)
2103                 __proc_set_tty(current, tty);
2104         spin_unlock_irq(&current->sighand->siglock);
2105         tty_unlock(tty);
2106         mutex_unlock(&tty_mutex);
2107         return 0;
2108 err_unlock:
2109         mutex_unlock(&tty_mutex);
2110         /* after locks to avoid deadlock */
2111         if (!IS_ERR_OR_NULL(driver))
2112                 tty_driver_kref_put(driver);
2113 err_file:
2114         tty_free_file(filp);
2115         return retval;
2116 }
2117
2118
2119
2120 /**
2121  *      tty_poll        -       check tty status
2122  *      @filp: file being polled
2123  *      @wait: poll wait structures to update
2124  *
2125  *      Call the line discipline polling method to obtain the poll
2126  *      status of the device.
2127  *
2128  *      Locking: locks called line discipline but ldisc poll method
2129  *      may be re-entered freely by other callers.
2130  */
2131
2132 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2133 {
2134         struct tty_struct *tty = file_tty(filp);
2135         struct tty_ldisc *ld;
2136         int ret = 0;
2137
2138         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2139                 return 0;
2140
2141         ld = tty_ldisc_ref_wait(tty);
2142         if (ld->ops->poll)
2143                 ret = (ld->ops->poll)(tty, filp, wait);
2144         tty_ldisc_deref(ld);
2145         return ret;
2146 }
2147
2148 static int __tty_fasync(int fd, struct file *filp, int on)
2149 {
2150         struct tty_struct *tty = file_tty(filp);
2151         struct tty_ldisc *ldisc;
2152         unsigned long flags;
2153         int retval = 0;
2154
2155         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2156                 goto out;
2157
2158         retval = fasync_helper(fd, filp, on, &tty->fasync);
2159         if (retval <= 0)
2160                 goto out;
2161
2162         ldisc = tty_ldisc_ref(tty);
2163         if (ldisc) {
2164                 if (ldisc->ops->fasync)
2165                         ldisc->ops->fasync(tty, on);
2166                 tty_ldisc_deref(ldisc);
2167         }
2168
2169         if (on) {
2170                 enum pid_type type;
2171                 struct pid *pid;
2172
2173                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2174                 if (tty->pgrp) {
2175                         pid = tty->pgrp;
2176                         type = PIDTYPE_PGID;
2177                 } else {
2178                         pid = task_pid(current);
2179                         type = PIDTYPE_PID;
2180                 }
2181                 get_pid(pid);
2182                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2183                 retval = __f_setown(filp, pid, type, 0);
2184                 put_pid(pid);
2185         }
2186 out:
2187         return retval;
2188 }
2189
2190 static int tty_fasync(int fd, struct file *filp, int on)
2191 {
2192         struct tty_struct *tty = file_tty(filp);
2193         int retval;
2194
2195         tty_lock(tty);
2196         retval = __tty_fasync(fd, filp, on);
2197         tty_unlock(tty);
2198
2199         return retval;
2200 }
2201
2202 /**
2203  *      tiocsti                 -       fake input character
2204  *      @tty: tty to fake input into
2205  *      @p: pointer to character
2206  *
2207  *      Fake input to a tty device. Does the necessary locking and
2208  *      input management.
2209  *
2210  *      FIXME: does not honour flow control ??
2211  *
2212  *      Locking:
2213  *              Called functions take tty_ldiscs_lock
2214  *              current->signal->tty check is safe without locks
2215  *
2216  *      FIXME: may race normal receive processing
2217  */
2218
2219 static int tiocsti(struct tty_struct *tty, char __user *p)
2220 {
2221         char ch, mbz = 0;
2222         struct tty_ldisc *ld;
2223
2224         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2225                 return -EPERM;
2226         if (get_user(ch, p))
2227                 return -EFAULT;
2228         tty_audit_tiocsti(tty, ch);
2229         ld = tty_ldisc_ref_wait(tty);
2230         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2231         tty_ldisc_deref(ld);
2232         return 0;
2233 }
2234
2235 /**
2236  *      tiocgwinsz              -       implement window query ioctl
2237  *      @tty; tty
2238  *      @arg: user buffer for result
2239  *
2240  *      Copies the kernel idea of the window size into the user buffer.
2241  *
2242  *      Locking: tty->winsize_mutex is taken to ensure the winsize data
2243  *              is consistent.
2244  */
2245
2246 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2247 {
2248         int err;
2249
2250         mutex_lock(&tty->winsize_mutex);
2251         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2252         mutex_unlock(&tty->winsize_mutex);
2253
2254         return err ? -EFAULT: 0;
2255 }
2256
2257 /**
2258  *      tty_do_resize           -       resize event
2259  *      @tty: tty being resized
2260  *      @rows: rows (character)
2261  *      @cols: cols (character)
2262  *
2263  *      Update the termios variables and send the necessary signals to
2264  *      peform a terminal resize correctly
2265  */
2266
2267 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2268 {
2269         struct pid *pgrp;
2270         unsigned long flags;
2271
2272         /* Lock the tty */
2273         mutex_lock(&tty->winsize_mutex);
2274         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2275                 goto done;
2276         /* Get the PID values and reference them so we can
2277            avoid holding the tty ctrl lock while sending signals */
2278         spin_lock_irqsave(&tty->ctrl_lock, flags);
2279         pgrp = get_pid(tty->pgrp);
2280         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2281
2282         if (pgrp)
2283                 kill_pgrp(pgrp, SIGWINCH, 1);
2284         put_pid(pgrp);
2285
2286         tty->winsize = *ws;
2287 done:
2288         mutex_unlock(&tty->winsize_mutex);
2289         return 0;
2290 }
2291 EXPORT_SYMBOL(tty_do_resize);
2292
2293 /**
2294  *      tiocswinsz              -       implement window size set ioctl
2295  *      @tty; tty side of tty
2296  *      @arg: user buffer for result
2297  *
2298  *      Copies the user idea of the window size to the kernel. Traditionally
2299  *      this is just advisory information but for the Linux console it
2300  *      actually has driver level meaning and triggers a VC resize.
2301  *
2302  *      Locking:
2303  *              Driver dependent. The default do_resize method takes the
2304  *      tty termios mutex and ctrl_lock. The console takes its own lock
2305  *      then calls into the default method.
2306  */
2307
2308 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2309 {
2310         struct winsize tmp_ws;
2311         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2312                 return -EFAULT;
2313
2314         if (tty->ops->resize)
2315                 return tty->ops->resize(tty, &tmp_ws);
2316         else
2317                 return tty_do_resize(tty, &tmp_ws);
2318 }
2319
2320 /**
2321  *      tioccons        -       allow admin to move logical console
2322  *      @file: the file to become console
2323  *
2324  *      Allow the administrator to move the redirected console device
2325  *
2326  *      Locking: uses redirect_lock to guard the redirect information
2327  */
2328
2329 static int tioccons(struct file *file)
2330 {
2331         if (!capable(CAP_SYS_ADMIN))
2332                 return -EPERM;
2333         if (file->f_op->write == redirected_tty_write) {
2334                 struct file *f;
2335                 spin_lock(&redirect_lock);
2336                 f = redirect;
2337                 redirect = NULL;
2338                 spin_unlock(&redirect_lock);
2339                 if (f)
2340                         fput(f);
2341                 return 0;
2342         }
2343         spin_lock(&redirect_lock);
2344         if (redirect) {
2345                 spin_unlock(&redirect_lock);
2346                 return -EBUSY;
2347         }
2348         redirect = get_file(file);
2349         spin_unlock(&redirect_lock);
2350         return 0;
2351 }
2352
2353 /**
2354  *      fionbio         -       non blocking ioctl
2355  *      @file: file to set blocking value
2356  *      @p: user parameter
2357  *
2358  *      Historical tty interfaces had a blocking control ioctl before
2359  *      the generic functionality existed. This piece of history is preserved
2360  *      in the expected tty API of posix OS's.
2361  *
2362  *      Locking: none, the open file handle ensures it won't go away.
2363  */
2364
2365 static int fionbio(struct file *file, int __user *p)
2366 {
2367         int nonblock;
2368
2369         if (get_user(nonblock, p))
2370                 return -EFAULT;
2371
2372         spin_lock(&file->f_lock);
2373         if (nonblock)
2374                 file->f_flags |= O_NONBLOCK;
2375         else
2376                 file->f_flags &= ~O_NONBLOCK;
2377         spin_unlock(&file->f_lock);
2378         return 0;
2379 }
2380
2381 /**
2382  *      tiocsctty       -       set controlling tty
2383  *      @tty: tty structure
2384  *      @arg: user argument
2385  *
2386  *      This ioctl is used to manage job control. It permits a session
2387  *      leader to set this tty as the controlling tty for the session.
2388  *
2389  *      Locking:
2390  *              Takes tty_mutex() to protect tty instance
2391  *              Takes tasklist_lock internally to walk sessions
2392  *              Takes ->siglock() when updating signal->tty
2393  */
2394
2395 static int tiocsctty(struct tty_struct *tty, int arg)
2396 {
2397         int ret = 0;
2398         if (current->signal->leader && (task_session(current) == tty->session))
2399                 return ret;
2400
2401         mutex_lock(&tty_mutex);
2402         /*
2403          * The process must be a session leader and
2404          * not have a controlling tty already.
2405          */
2406         if (!current->signal->leader || current->signal->tty) {
2407                 ret = -EPERM;
2408                 goto unlock;
2409         }
2410
2411         if (tty->session) {
2412                 /*
2413                  * This tty is already the controlling
2414                  * tty for another session group!
2415                  */
2416                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2417                         /*
2418                          * Steal it away
2419                          */
2420                         read_lock(&tasklist_lock);
2421                         session_clear_tty(tty->session);
2422                         read_unlock(&tasklist_lock);
2423                 } else {
2424                         ret = -EPERM;
2425                         goto unlock;
2426                 }
2427         }
2428         proc_set_tty(current, tty);
2429 unlock:
2430         mutex_unlock(&tty_mutex);
2431         return ret;
2432 }
2433
2434 /**
2435  *      tty_get_pgrp    -       return a ref counted pgrp pid
2436  *      @tty: tty to read
2437  *
2438  *      Returns a refcounted instance of the pid struct for the process
2439  *      group controlling the tty.
2440  */
2441
2442 struct pid *tty_get_pgrp(struct tty_struct *tty)
2443 {
2444         unsigned long flags;
2445         struct pid *pgrp;
2446
2447         spin_lock_irqsave(&tty->ctrl_lock, flags);
2448         pgrp = get_pid(tty->pgrp);
2449         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2450
2451         return pgrp;
2452 }
2453 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2454
2455 /**
2456  *      tiocgpgrp               -       get process group
2457  *      @tty: tty passed by user
2458  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2459  *      @p: returned pid
2460  *
2461  *      Obtain the process group of the tty. If there is no process group
2462  *      return an error.
2463  *
2464  *      Locking: none. Reference to current->signal->tty is safe.
2465  */
2466
2467 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2468 {
2469         struct pid *pid;
2470         int ret;
2471         /*
2472          * (tty == real_tty) is a cheap way of
2473          * testing if the tty is NOT a master pty.
2474          */
2475         if (tty == real_tty && current->signal->tty != real_tty)
2476                 return -ENOTTY;
2477         pid = tty_get_pgrp(real_tty);
2478         ret =  put_user(pid_vnr(pid), p);
2479         put_pid(pid);
2480         return ret;
2481 }
2482
2483 /**
2484  *      tiocspgrp               -       attempt to set process group
2485  *      @tty: tty passed by user
2486  *      @real_tty: tty side device matching tty passed by user
2487  *      @p: pid pointer
2488  *
2489  *      Set the process group of the tty to the session passed. Only
2490  *      permitted where the tty session is our session.
2491  *
2492  *      Locking: RCU, ctrl lock
2493  */
2494
2495 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2496 {
2497         struct pid *pgrp;
2498         pid_t pgrp_nr;
2499         int retval = tty_check_change(real_tty);
2500         unsigned long flags;
2501
2502         if (retval == -EIO)
2503                 return -ENOTTY;
2504         if (retval)
2505                 return retval;
2506         if (!current->signal->tty ||
2507             (current->signal->tty != real_tty) ||
2508             (real_tty->session != task_session(current)))
2509                 return -ENOTTY;
2510         if (get_user(pgrp_nr, p))
2511                 return -EFAULT;
2512         if (pgrp_nr < 0)
2513                 return -EINVAL;
2514         rcu_read_lock();
2515         pgrp = find_vpid(pgrp_nr);
2516         retval = -ESRCH;
2517         if (!pgrp)
2518                 goto out_unlock;
2519         retval = -EPERM;
2520         if (session_of_pgrp(pgrp) != task_session(current))
2521                 goto out_unlock;
2522         retval = 0;
2523         spin_lock_irqsave(&tty->ctrl_lock, flags);
2524         put_pid(real_tty->pgrp);
2525         real_tty->pgrp = get_pid(pgrp);
2526         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2527 out_unlock:
2528         rcu_read_unlock();
2529         return retval;
2530 }
2531
2532 /**
2533  *      tiocgsid                -       get session id
2534  *      @tty: tty passed by user
2535  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2536  *      @p: pointer to returned session id
2537  *
2538  *      Obtain the session id of the tty. If there is no session
2539  *      return an error.
2540  *
2541  *      Locking: none. Reference to current->signal->tty is safe.
2542  */
2543
2544 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2545 {
2546         /*
2547          * (tty == real_tty) is a cheap way of
2548          * testing if the tty is NOT a master pty.
2549         */
2550         if (tty == real_tty && current->signal->tty != real_tty)
2551                 return -ENOTTY;
2552         if (!real_tty->session)
2553                 return -ENOTTY;
2554         return put_user(pid_vnr(real_tty->session), p);
2555 }
2556
2557 /**
2558  *      tiocsetd        -       set line discipline
2559  *      @tty: tty device
2560  *      @p: pointer to user data
2561  *
2562  *      Set the line discipline according to user request.
2563  *
2564  *      Locking: see tty_set_ldisc, this function is just a helper
2565  */
2566
2567 static int tiocsetd(struct tty_struct *tty, int __user *p)
2568 {
2569         int ldisc;
2570         int ret;
2571
2572         if (get_user(ldisc, p))
2573                 return -EFAULT;
2574
2575         ret = tty_set_ldisc(tty, ldisc);
2576
2577         return ret;
2578 }
2579
2580 /**
2581  *      send_break      -       performed time break
2582  *      @tty: device to break on
2583  *      @duration: timeout in mS
2584  *
2585  *      Perform a timed break on hardware that lacks its own driver level
2586  *      timed break functionality.
2587  *
2588  *      Locking:
2589  *              atomic_write_lock serializes
2590  *
2591  */
2592
2593 static int send_break(struct tty_struct *tty, unsigned int duration)
2594 {
2595         int retval;
2596
2597         if (tty->ops->break_ctl == NULL)
2598                 return 0;
2599
2600         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2601                 retval = tty->ops->break_ctl(tty, duration);
2602         else {
2603                 /* Do the work ourselves */
2604                 if (tty_write_lock(tty, 0) < 0)
2605                         return -EINTR;
2606                 retval = tty->ops->break_ctl(tty, -1);
2607                 if (retval)
2608                         goto out;
2609                 if (!signal_pending(current))
2610                         msleep_interruptible(duration);
2611                 retval = tty->ops->break_ctl(tty, 0);
2612 out:
2613                 tty_write_unlock(tty);
2614                 if (signal_pending(current))
2615                         retval = -EINTR;
2616         }
2617         return retval;
2618 }
2619
2620 /**
2621  *      tty_tiocmget            -       get modem status
2622  *      @tty: tty device
2623  *      @file: user file pointer
2624  *      @p: pointer to result
2625  *
2626  *      Obtain the modem status bits from the tty driver if the feature
2627  *      is supported. Return -EINVAL if it is not available.
2628  *
2629  *      Locking: none (up to the driver)
2630  */
2631
2632 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2633 {
2634         int retval = -EINVAL;
2635
2636         if (tty->ops->tiocmget) {
2637                 retval = tty->ops->tiocmget(tty);
2638
2639                 if (retval >= 0)
2640                         retval = put_user(retval, p);
2641         }
2642         return retval;
2643 }
2644
2645 /**
2646  *      tty_tiocmset            -       set modem status
2647  *      @tty: tty device
2648  *      @cmd: command - clear bits, set bits or set all
2649  *      @p: pointer to desired bits
2650  *
2651  *      Set the modem status bits from the tty driver if the feature
2652  *      is supported. Return -EINVAL if it is not available.
2653  *
2654  *      Locking: none (up to the driver)
2655  */
2656
2657 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2658              unsigned __user *p)
2659 {
2660         int retval;
2661         unsigned int set, clear, val;
2662
2663         if (tty->ops->tiocmset == NULL)
2664                 return -EINVAL;
2665
2666         retval = get_user(val, p);
2667         if (retval)
2668                 return retval;
2669         set = clear = 0;
2670         switch (cmd) {
2671         case TIOCMBIS:
2672                 set = val;
2673                 break;
2674         case TIOCMBIC:
2675                 clear = val;
2676                 break;
2677         case TIOCMSET:
2678                 set = val;
2679                 clear = ~val;
2680                 break;
2681         }
2682         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2683         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2684         return tty->ops->tiocmset(tty, set, clear);
2685 }
2686
2687 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2688 {
2689         int retval = -EINVAL;
2690         struct serial_icounter_struct icount;
2691         memset(&icount, 0, sizeof(icount));
2692         if (tty->ops->get_icount)
2693                 retval = tty->ops->get_icount(tty, &icount);
2694         if (retval != 0)
2695                 return retval;
2696         if (copy_to_user(arg, &icount, sizeof(icount)))
2697                 return -EFAULT;
2698         return 0;
2699 }
2700
2701 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2702 {
2703         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2704             tty->driver->subtype == PTY_TYPE_MASTER)
2705                 tty = tty->link;
2706         return tty;
2707 }
2708 EXPORT_SYMBOL(tty_pair_get_tty);
2709
2710 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2711 {
2712         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2713             tty->driver->subtype == PTY_TYPE_MASTER)
2714             return tty;
2715         return tty->link;
2716 }
2717 EXPORT_SYMBOL(tty_pair_get_pty);
2718
2719 /*
2720  * Split this up, as gcc can choke on it otherwise..
2721  */
2722 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2723 {
2724         struct tty_struct *tty = file_tty(file);
2725         struct tty_struct *real_tty;
2726         void __user *p = (void __user *)arg;
2727         int retval;
2728         struct tty_ldisc *ld;
2729
2730         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2731                 return -EINVAL;
2732
2733         real_tty = tty_pair_get_tty(tty);
2734
2735         /*
2736          * Factor out some common prep work
2737          */
2738         switch (cmd) {
2739         case TIOCSETD:
2740         case TIOCSBRK:
2741         case TIOCCBRK:
2742         case TCSBRK:
2743         case TCSBRKP:
2744                 retval = tty_check_change(tty);
2745                 if (retval)
2746                         return retval;
2747                 if (cmd != TIOCCBRK) {
2748                         tty_wait_until_sent(tty, 0);
2749                         if (signal_pending(current))
2750                                 return -EINTR;
2751                 }
2752                 break;
2753         }
2754
2755         /*
2756          *      Now do the stuff.
2757          */
2758         switch (cmd) {
2759         case TIOCSTI:
2760                 return tiocsti(tty, p);
2761         case TIOCGWINSZ:
2762                 return tiocgwinsz(real_tty, p);
2763         case TIOCSWINSZ:
2764                 return tiocswinsz(real_tty, p);
2765         case TIOCCONS:
2766                 return real_tty != tty ? -EINVAL : tioccons(file);
2767         case FIONBIO:
2768                 return fionbio(file, p);
2769         case TIOCEXCL:
2770                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2771                 return 0;
2772         case TIOCNXCL:
2773                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2774                 return 0;
2775         case TIOCGEXCL:
2776         {
2777                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2778                 return put_user(excl, (int __user *)p);
2779         }
2780         case TIOCNOTTY:
2781                 if (current->signal->tty != tty)
2782                         return -ENOTTY;
2783                 no_tty();
2784                 return 0;
2785         case TIOCSCTTY:
2786                 return tiocsctty(tty, arg);
2787         case TIOCGPGRP:
2788                 return tiocgpgrp(tty, real_tty, p);
2789         case TIOCSPGRP:
2790                 return tiocspgrp(tty, real_tty, p);
2791         case TIOCGSID:
2792                 return tiocgsid(tty, real_tty, p);
2793         case TIOCGETD:
2794                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2795         case TIOCSETD:
2796                 return tiocsetd(tty, p);
2797         case TIOCVHANGUP:
2798                 if (!capable(CAP_SYS_ADMIN))
2799                         return -EPERM;
2800                 tty_vhangup(tty);
2801                 return 0;
2802         case TIOCGDEV:
2803         {
2804                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2805                 return put_user(ret, (unsigned int __user *)p);
2806         }
2807         /*
2808          * Break handling
2809          */
2810         case TIOCSBRK:  /* Turn break on, unconditionally */
2811                 if (tty->ops->break_ctl)
2812                         return tty->ops->break_ctl(tty, -1);
2813                 return 0;
2814         case TIOCCBRK:  /* Turn break off, unconditionally */
2815                 if (tty->ops->break_ctl)
2816                         return tty->ops->break_ctl(tty, 0);
2817                 return 0;
2818         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2819                 /* non-zero arg means wait for all output data
2820                  * to be sent (performed above) but don't send break.
2821                  * This is used by the tcdrain() termios function.
2822                  */
2823                 if (!arg)
2824                         return send_break(tty, 250);
2825                 return 0;
2826         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2827                 return send_break(tty, arg ? arg*100 : 250);
2828
2829         case TIOCMGET:
2830                 return tty_tiocmget(tty, p);
2831         case TIOCMSET:
2832         case TIOCMBIC:
2833         case TIOCMBIS:
2834                 return tty_tiocmset(tty, cmd, p);
2835         case TIOCGICOUNT:
2836                 retval = tty_tiocgicount(tty, p);
2837                 /* For the moment allow fall through to the old method */
2838                 if (retval != -EINVAL)
2839                         return retval;
2840                 break;
2841         case TCFLSH:
2842                 switch (arg) {
2843                 case TCIFLUSH:
2844                 case TCIOFLUSH:
2845                 /* flush tty buffer and allow ldisc to process ioctl */
2846                         tty_buffer_flush(tty);
2847                         break;
2848                 }
2849                 break;
2850         }
2851         if (tty->ops->ioctl) {
2852                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2853                 if (retval != -ENOIOCTLCMD)
2854                         return retval;
2855         }
2856         ld = tty_ldisc_ref_wait(tty);
2857         retval = -EINVAL;
2858         if (ld->ops->ioctl) {
2859                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2860                 if (retval == -ENOIOCTLCMD)
2861                         retval = -ENOTTY;
2862         }
2863         tty_ldisc_deref(ld);
2864         return retval;
2865 }
2866
2867 #ifdef CONFIG_COMPAT
2868 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2869                                 unsigned long arg)
2870 {
2871         struct tty_struct *tty = file_tty(file);
2872         struct tty_ldisc *ld;
2873         int retval = -ENOIOCTLCMD;
2874
2875         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2876                 return -EINVAL;
2877
2878         if (tty->ops->compat_ioctl) {
2879                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2880                 if (retval != -ENOIOCTLCMD)
2881                         return retval;
2882         }
2883
2884         ld = tty_ldisc_ref_wait(tty);
2885         if (ld->ops->compat_ioctl)
2886                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2887         else
2888                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2889         tty_ldisc_deref(ld);
2890
2891         return retval;
2892 }
2893 #endif
2894
2895 static int this_tty(const void *t, struct file *file, unsigned fd)
2896 {
2897         if (likely(file->f_op->read != tty_read))
2898                 return 0;
2899         return file_tty(file) != t ? 0 : fd + 1;
2900 }
2901         
2902 /*
2903  * This implements the "Secure Attention Key" ---  the idea is to
2904  * prevent trojan horses by killing all processes associated with this
2905  * tty when the user hits the "Secure Attention Key".  Required for
2906  * super-paranoid applications --- see the Orange Book for more details.
2907  *
2908  * This code could be nicer; ideally it should send a HUP, wait a few
2909  * seconds, then send a INT, and then a KILL signal.  But you then
2910  * have to coordinate with the init process, since all processes associated
2911  * with the current tty must be dead before the new getty is allowed
2912  * to spawn.
2913  *
2914  * Now, if it would be correct ;-/ The current code has a nasty hole -
2915  * it doesn't catch files in flight. We may send the descriptor to ourselves
2916  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2917  *
2918  * Nasty bug: do_SAK is being called in interrupt context.  This can
2919  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2920  */
2921 void __do_SAK(struct tty_struct *tty)
2922 {
2923 #ifdef TTY_SOFT_SAK
2924         tty_hangup(tty);
2925 #else
2926         struct task_struct *g, *p;
2927         struct pid *session;
2928         int             i;
2929
2930         if (!tty)
2931                 return;
2932         session = tty->session;
2933
2934         tty_ldisc_flush(tty);
2935
2936         tty_driver_flush_buffer(tty);
2937
2938         read_lock(&tasklist_lock);
2939         /* Kill the entire session */
2940         do_each_pid_task(session, PIDTYPE_SID, p) {
2941                 printk(KERN_NOTICE "SAK: killed process %d"
2942                         " (%s): task_session(p)==tty->session\n",
2943                         task_pid_nr(p), p->comm);
2944                 send_sig(SIGKILL, p, 1);
2945         } while_each_pid_task(session, PIDTYPE_SID, p);
2946         /* Now kill any processes that happen to have the
2947          * tty open.
2948          */
2949         do_each_thread(g, p) {
2950                 if (p->signal->tty == tty) {
2951                         printk(KERN_NOTICE "SAK: killed process %d"
2952                             " (%s): task_session(p)==tty->session\n",
2953                             task_pid_nr(p), p->comm);
2954                         send_sig(SIGKILL, p, 1);
2955                         continue;
2956                 }
2957                 task_lock(p);
2958                 i = iterate_fd(p->files, 0, this_tty, tty);
2959                 if (i != 0) {
2960                         printk(KERN_NOTICE "SAK: killed process %d"
2961                             " (%s): fd#%d opened to the tty\n",
2962                                     task_pid_nr(p), p->comm, i - 1);
2963                         force_sig(SIGKILL, p);
2964                 }
2965                 task_unlock(p);
2966         } while_each_thread(g, p);
2967         read_unlock(&tasklist_lock);
2968 #endif
2969 }
2970
2971 static void do_SAK_work(struct work_struct *work)
2972 {
2973         struct tty_struct *tty =
2974                 container_of(work, struct tty_struct, SAK_work);
2975         __do_SAK(tty);
2976 }
2977
2978 /*
2979  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2980  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2981  * the values which we write to it will be identical to the values which it
2982  * already has. --akpm
2983  */
2984 void do_SAK(struct tty_struct *tty)
2985 {
2986         if (!tty)
2987                 return;
2988         schedule_work(&tty->SAK_work);
2989 }
2990
2991 EXPORT_SYMBOL(do_SAK);
2992
2993 static int dev_match_devt(struct device *dev, const void *data)
2994 {
2995         const dev_t *devt = data;
2996         return dev->devt == *devt;
2997 }
2998
2999 /* Must put_device() after it's unused! */
3000 static struct device *tty_get_device(struct tty_struct *tty)
3001 {
3002         dev_t devt = tty_devnum(tty);
3003         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3004 }
3005
3006
3007 /**
3008  *      alloc_tty_struct
3009  *
3010  *      This subroutine allocates and initializes a tty structure.
3011  *
3012  *      Locking: none - tty in question is not exposed at this point
3013  */
3014
3015 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3016 {
3017         struct tty_struct *tty;
3018
3019         tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3020         if (!tty)
3021                 return NULL;
3022
3023         kref_init(&tty->kref);
3024         tty->magic = TTY_MAGIC;
3025         tty_ldisc_init(tty);
3026         tty->session = NULL;
3027         tty->pgrp = NULL;
3028         mutex_init(&tty->legacy_mutex);
3029         mutex_init(&tty->throttle_mutex);
3030         init_rwsem(&tty->termios_rwsem);
3031         mutex_init(&tty->winsize_mutex);
3032         init_ldsem(&tty->ldisc_sem);
3033         init_waitqueue_head(&tty->write_wait);
3034         init_waitqueue_head(&tty->read_wait);
3035         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3036         mutex_init(&tty->atomic_write_lock);
3037         spin_lock_init(&tty->ctrl_lock);
3038         spin_lock_init(&tty->flow_lock);
3039         INIT_LIST_HEAD(&tty->tty_files);
3040         INIT_WORK(&tty->SAK_work, do_SAK_work);
3041
3042         tty->driver = driver;
3043         tty->ops = driver->ops;
3044         tty->index = idx;
3045         tty_line_name(driver, idx, tty->name);
3046         tty->dev = tty_get_device(tty);
3047
3048         return tty;
3049 }
3050
3051 /**
3052  *      deinitialize_tty_struct
3053  *      @tty: tty to deinitialize
3054  *
3055  *      This subroutine deinitializes a tty structure that has been newly
3056  *      allocated but tty_release cannot be called on that yet.
3057  *
3058  *      Locking: none - tty in question must not be exposed at this point
3059  */
3060 void deinitialize_tty_struct(struct tty_struct *tty)
3061 {
3062         tty_ldisc_deinit(tty);
3063 }
3064
3065 /**
3066  *      tty_put_char    -       write one character to a tty
3067  *      @tty: tty
3068  *      @ch: character
3069  *
3070  *      Write one byte to the tty using the provided put_char method
3071  *      if present. Returns the number of characters successfully output.
3072  *
3073  *      Note: the specific put_char operation in the driver layer may go
3074  *      away soon. Don't call it directly, use this method
3075  */
3076
3077 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3078 {
3079         if (tty->ops->put_char)
3080                 return tty->ops->put_char(tty, ch);
3081         return tty->ops->write(tty, &ch, 1);
3082 }
3083 EXPORT_SYMBOL_GPL(tty_put_char);
3084
3085 struct class *tty_class;
3086
3087 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3088                 unsigned int index, unsigned int count)
3089 {
3090         /* init here, since reused cdevs cause crashes */
3091         cdev_init(&driver->cdevs[index], &tty_fops);
3092         driver->cdevs[index].owner = driver->owner;
3093         return cdev_add(&driver->cdevs[index], dev, count);
3094 }
3095
3096 /**
3097  *      tty_register_device - register a tty device
3098  *      @driver: the tty driver that describes the tty device
3099  *      @index: the index in the tty driver for this tty device
3100  *      @device: a struct device that is associated with this tty device.
3101  *              This field is optional, if there is no known struct device
3102  *              for this tty device it can be set to NULL safely.
3103  *
3104  *      Returns a pointer to the struct device for this tty device
3105  *      (or ERR_PTR(-EFOO) on error).
3106  *
3107  *      This call is required to be made to register an individual tty device
3108  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3109  *      that bit is not set, this function should not be called by a tty
3110  *      driver.
3111  *
3112  *      Locking: ??
3113  */
3114
3115 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3116                                    struct device *device)
3117 {
3118         return tty_register_device_attr(driver, index, device, NULL, NULL);
3119 }
3120 EXPORT_SYMBOL(tty_register_device);
3121
3122 static void tty_device_create_release(struct device *dev)
3123 {
3124         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3125         kfree(dev);
3126 }
3127
3128 /**
3129  *      tty_register_device_attr - register a tty device
3130  *      @driver: the tty driver that describes the tty device
3131  *      @index: the index in the tty driver for this tty device
3132  *      @device: a struct device that is associated with this tty device.
3133  *              This field is optional, if there is no known struct device
3134  *              for this tty device it can be set to NULL safely.
3135  *      @drvdata: Driver data to be set to device.
3136  *      @attr_grp: Attribute group to be set on device.
3137  *
3138  *      Returns a pointer to the struct device for this tty device
3139  *      (or ERR_PTR(-EFOO) on error).
3140  *
3141  *      This call is required to be made to register an individual tty device
3142  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3143  *      that bit is not set, this function should not be called by a tty
3144  *      driver.
3145  *
3146  *      Locking: ??
3147  */
3148 struct device *tty_register_device_attr(struct tty_driver *driver,
3149                                    unsigned index, struct device *device,
3150                                    void *drvdata,
3151                                    const struct attribute_group **attr_grp)
3152 {
3153         char name[64];
3154         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3155         struct device *dev = NULL;
3156         int retval = -ENODEV;
3157         bool cdev = false;
3158
3159         if (index >= driver->num) {
3160                 printk(KERN_ERR "Attempt to register invalid tty line number "
3161                        " (%d).\n", index);
3162                 return ERR_PTR(-EINVAL);
3163         }
3164
3165         if (driver->type == TTY_DRIVER_TYPE_PTY)
3166                 pty_line_name(driver, index, name);
3167         else
3168                 tty_line_name(driver, index, name);
3169
3170         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3171                 retval = tty_cdev_add(driver, devt, index, 1);
3172                 if (retval)
3173                         goto error;
3174                 cdev = true;
3175         }
3176
3177         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3178         if (!dev) {
3179                 retval = -ENOMEM;
3180                 goto error;
3181         }
3182
3183         dev->devt = devt;
3184         dev->class = tty_class;
3185         dev->parent = device;
3186         dev->release = tty_device_create_release;
3187         dev_set_name(dev, "%s", name);
3188         dev->groups = attr_grp;
3189         dev_set_drvdata(dev, drvdata);
3190
3191         retval = device_register(dev);
3192         if (retval)
3193                 goto error;
3194
3195         return dev;
3196
3197 error:
3198         put_device(dev);
3199         if (cdev)
3200                 cdev_del(&driver->cdevs[index]);
3201         return ERR_PTR(retval);
3202 }
3203 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3204
3205 /**
3206  *      tty_unregister_device - unregister a tty device
3207  *      @driver: the tty driver that describes the tty device
3208  *      @index: the index in the tty driver for this tty device
3209  *
3210  *      If a tty device is registered with a call to tty_register_device() then
3211  *      this function must be called when the tty device is gone.
3212  *
3213  *      Locking: ??
3214  */
3215
3216 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3217 {
3218         device_destroy(tty_class,
3219                 MKDEV(driver->major, driver->minor_start) + index);
3220         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3221                 cdev_del(&driver->cdevs[index]);
3222 }
3223 EXPORT_SYMBOL(tty_unregister_device);
3224
3225 /**
3226  * __tty_alloc_driver -- allocate tty driver
3227  * @lines: count of lines this driver can handle at most
3228  * @owner: module which is repsonsible for this driver
3229  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3230  *
3231  * This should not be called directly, some of the provided macros should be
3232  * used instead. Use IS_ERR and friends on @retval.
3233  */
3234 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3235                 unsigned long flags)
3236 {
3237         struct tty_driver *driver;
3238         unsigned int cdevs = 1;
3239         int err;
3240
3241         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3242                 return ERR_PTR(-EINVAL);
3243
3244         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3245         if (!driver)
3246                 return ERR_PTR(-ENOMEM);
3247
3248         kref_init(&driver->kref);
3249         driver->magic = TTY_DRIVER_MAGIC;
3250         driver->num = lines;
3251         driver->owner = owner;
3252         driver->flags = flags;
3253
3254         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3255                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3256                                 GFP_KERNEL);
3257                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3258                                 GFP_KERNEL);
3259                 if (!driver->ttys || !driver->termios) {
3260                         err = -ENOMEM;
3261                         goto err_free_all;
3262                 }
3263         }
3264
3265         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3266                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3267                                 GFP_KERNEL);
3268                 if (!driver->ports) {
3269                         err = -ENOMEM;
3270                         goto err_free_all;
3271                 }
3272                 cdevs = lines;
3273         }
3274
3275         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3276         if (!driver->cdevs) {
3277                 err = -ENOMEM;
3278                 goto err_free_all;
3279         }
3280
3281         return driver;
3282 err_free_all:
3283         kfree(driver->ports);
3284         kfree(driver->ttys);
3285         kfree(driver->termios);
3286         kfree(driver);
3287         return ERR_PTR(err);
3288 }
3289 EXPORT_SYMBOL(__tty_alloc_driver);
3290
3291 static void destruct_tty_driver(struct kref *kref)
3292 {
3293         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3294         int i;
3295         struct ktermios *tp;
3296
3297         if (driver->flags & TTY_DRIVER_INSTALLED) {
3298                 /*
3299                  * Free the termios and termios_locked structures because
3300                  * we don't want to get memory leaks when modular tty
3301                  * drivers are removed from the kernel.
3302                  */
3303                 for (i = 0; i < driver->num; i++) {
3304                         tp = driver->termios[i];
3305                         if (tp) {
3306                                 driver->termios[i] = NULL;
3307                                 kfree(tp);
3308                         }
3309                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3310                                 tty_unregister_device(driver, i);
3311                 }
3312                 proc_tty_unregister_driver(driver);
3313                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3314                         cdev_del(&driver->cdevs[0]);
3315         }
3316         kfree(driver->cdevs);
3317         kfree(driver->ports);
3318         kfree(driver->termios);
3319         kfree(driver->ttys);
3320         kfree(driver);
3321 }
3322
3323 void tty_driver_kref_put(struct tty_driver *driver)
3324 {
3325         kref_put(&driver->kref, destruct_tty_driver);
3326 }
3327 EXPORT_SYMBOL(tty_driver_kref_put);
3328
3329 void tty_set_operations(struct tty_driver *driver,
3330                         const struct tty_operations *op)
3331 {
3332         driver->ops = op;
3333 };
3334 EXPORT_SYMBOL(tty_set_operations);
3335
3336 void put_tty_driver(struct tty_driver *d)
3337 {
3338         tty_driver_kref_put(d);
3339 }
3340 EXPORT_SYMBOL(put_tty_driver);
3341
3342 /*
3343  * Called by a tty driver to register itself.
3344  */
3345 int tty_register_driver(struct tty_driver *driver)
3346 {
3347         int error;
3348         int i;
3349         dev_t dev;
3350         struct device *d;
3351
3352         if (!driver->major) {
3353                 error = alloc_chrdev_region(&dev, driver->minor_start,
3354                                                 driver->num, driver->name);
3355                 if (!error) {
3356                         driver->major = MAJOR(dev);
3357                         driver->minor_start = MINOR(dev);
3358                 }
3359         } else {
3360                 dev = MKDEV(driver->major, driver->minor_start);
3361                 error = register_chrdev_region(dev, driver->num, driver->name);
3362         }
3363         if (error < 0)
3364                 goto err;
3365
3366         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3367                 error = tty_cdev_add(driver, dev, 0, driver->num);
3368                 if (error)
3369                         goto err_unreg_char;
3370         }
3371
3372         mutex_lock(&tty_mutex);
3373         list_add(&driver->tty_drivers, &tty_drivers);
3374         mutex_unlock(&tty_mutex);
3375
3376         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3377                 for (i = 0; i < driver->num; i++) {
3378                         d = tty_register_device(driver, i, NULL);
3379                         if (IS_ERR(d)) {
3380                                 error = PTR_ERR(d);
3381                                 goto err_unreg_devs;
3382                         }
3383                 }
3384         }
3385         proc_tty_register_driver(driver);
3386         driver->flags |= TTY_DRIVER_INSTALLED;
3387         return 0;
3388
3389 err_unreg_devs:
3390         for (i--; i >= 0; i--)
3391                 tty_unregister_device(driver, i);
3392
3393         mutex_lock(&tty_mutex);
3394         list_del(&driver->tty_drivers);
3395         mutex_unlock(&tty_mutex);
3396
3397 err_unreg_char:
3398         unregister_chrdev_region(dev, driver->num);
3399 err:
3400         return error;
3401 }
3402 EXPORT_SYMBOL(tty_register_driver);
3403
3404 /*
3405  * Called by a tty driver to unregister itself.
3406  */
3407 int tty_unregister_driver(struct tty_driver *driver)
3408 {
3409 #if 0
3410         /* FIXME */
3411         if (driver->refcount)
3412                 return -EBUSY;
3413 #endif
3414         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3415                                 driver->num);
3416         mutex_lock(&tty_mutex);
3417         list_del(&driver->tty_drivers);
3418         mutex_unlock(&tty_mutex);
3419         return 0;
3420 }
3421
3422 EXPORT_SYMBOL(tty_unregister_driver);
3423
3424 dev_t tty_devnum(struct tty_struct *tty)
3425 {
3426         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3427 }
3428 EXPORT_SYMBOL(tty_devnum);
3429
3430 void proc_clear_tty(struct task_struct *p)
3431 {
3432         unsigned long flags;
3433         struct tty_struct *tty;
3434         spin_lock_irqsave(&p->sighand->siglock, flags);
3435         tty = p->signal->tty;
3436         p->signal->tty = NULL;
3437         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3438         tty_kref_put(tty);
3439 }
3440
3441 /* Called under the sighand lock */
3442
3443 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3444 {
3445         if (tty) {
3446                 unsigned long flags;
3447                 /* We should not have a session or pgrp to put here but.... */
3448                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3449                 put_pid(tty->session);
3450                 put_pid(tty->pgrp);
3451                 tty->pgrp = get_pid(task_pgrp(tsk));
3452                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3453                 tty->session = get_pid(task_session(tsk));
3454                 if (tsk->signal->tty) {
3455                         printk(KERN_DEBUG "tty not NULL!!\n");
3456                         tty_kref_put(tsk->signal->tty);
3457                 }
3458         }
3459         put_pid(tsk->signal->tty_old_pgrp);
3460         tsk->signal->tty = tty_kref_get(tty);
3461         tsk->signal->tty_old_pgrp = NULL;
3462 }
3463
3464 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3465 {
3466         spin_lock_irq(&tsk->sighand->siglock);
3467         __proc_set_tty(tsk, tty);
3468         spin_unlock_irq(&tsk->sighand->siglock);
3469 }
3470
3471 struct tty_struct *get_current_tty(void)
3472 {
3473         struct tty_struct *tty;
3474         unsigned long flags;
3475
3476         spin_lock_irqsave(&current->sighand->siglock, flags);
3477         tty = tty_kref_get(current->signal->tty);
3478         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3479         return tty;
3480 }
3481 EXPORT_SYMBOL_GPL(get_current_tty);
3482
3483 void tty_default_fops(struct file_operations *fops)
3484 {
3485         *fops = tty_fops;
3486 }
3487
3488 /*
3489  * Initialize the console device. This is called *early*, so
3490  * we can't necessarily depend on lots of kernel help here.
3491  * Just do some early initializations, and do the complex setup
3492  * later.
3493  */
3494 void __init console_init(void)
3495 {
3496         initcall_t *call;
3497
3498         /* Setup the default TTY line discipline. */
3499         tty_ldisc_begin();
3500
3501         /*
3502          * set up the console device so that later boot sequences can
3503          * inform about problems etc..
3504          */
3505         call = __con_initcall_start;
3506         while (call < __con_initcall_end) {
3507                 (*call)();
3508                 call++;
3509         }
3510 }
3511
3512 static char *tty_devnode(struct device *dev, umode_t *mode)
3513 {
3514         if (!mode)
3515                 return NULL;
3516         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3517             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3518                 *mode = 0666;
3519         return NULL;
3520 }
3521
3522 static int __init tty_class_init(void)
3523 {
3524         tty_class = class_create(THIS_MODULE, "tty");
3525         if (IS_ERR(tty_class))
3526                 return PTR_ERR(tty_class);
3527         tty_class->devnode = tty_devnode;
3528         return 0;
3529 }
3530
3531 postcore_initcall(tty_class_init);
3532
3533 /* 3/2004 jmc: why do these devices exist? */
3534 static struct cdev tty_cdev, console_cdev;
3535
3536 static ssize_t show_cons_active(struct device *dev,
3537                                 struct device_attribute *attr, char *buf)
3538 {
3539         struct console *cs[16];
3540         int i = 0;
3541         struct console *c;
3542         ssize_t count = 0;
3543
3544         console_lock();
3545         for_each_console(c) {
3546                 if (!c->device)
3547                         continue;
3548                 if (!c->write)
3549                         continue;
3550                 if ((c->flags & CON_ENABLED) == 0)
3551                         continue;
3552                 cs[i++] = c;
3553                 if (i >= ARRAY_SIZE(cs))
3554                         break;
3555         }
3556         while (i--) {
3557                 int index = cs[i]->index;
3558                 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3559
3560                 /* don't resolve tty0 as some programs depend on it */
3561                 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3562                         count += tty_line_name(drv, index, buf + count);
3563                 else
3564                         count += sprintf(buf + count, "%s%d",
3565                                          cs[i]->name, cs[i]->index);
3566
3567                 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3568         }
3569         console_unlock();
3570
3571         return count;
3572 }
3573 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3574
3575 static struct device *consdev;
3576
3577 void console_sysfs_notify(void)
3578 {
3579         if (consdev)
3580                 sysfs_notify(&consdev->kobj, NULL, "active");
3581 }
3582
3583 /*
3584  * Ok, now we can initialize the rest of the tty devices and can count
3585  * on memory allocations, interrupts etc..
3586  */
3587 int __init tty_init(void)
3588 {
3589         cdev_init(&tty_cdev, &tty_fops);
3590         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3591             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3592                 panic("Couldn't register /dev/tty driver\n");
3593         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3594
3595         cdev_init(&console_cdev, &console_fops);
3596         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3597             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3598                 panic("Couldn't register /dev/console driver\n");
3599         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3600                               "console");
3601         if (IS_ERR(consdev))
3602                 consdev = NULL;
3603         else
3604                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3605
3606 #ifdef CONFIG_VT
3607         vty_init(&console_fops);
3608 #endif
3609         return 0;
3610 }
3611