tty: Don't reenable already enabled ldisc
[firefly-linux-kernel-4.4.55.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (!tty)
185                 return;
186         if (tty->dev)
187                 put_device(tty->dev);
188         kfree(tty->write_buf);
189         tty->magic = 0xDEADDEAD;
190         kfree(tty);
191 }
192
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195         return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
198 int tty_alloc_file(struct file *file)
199 {
200         struct tty_file_private *priv;
201
202         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203         if (!priv)
204                 return -ENOMEM;
205
206         file->private_data = priv;
207
208         return 0;
209 }
210
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214         struct tty_file_private *priv = file->private_data;
215
216         priv->tty = tty;
217         priv->file = file;
218
219         spin_lock(&tty_files_lock);
220         list_add(&priv->list, &tty->tty_files);
221         spin_unlock(&tty_files_lock);
222 }
223
224 /**
225  * tty_free_file - free file->private_data
226  *
227  * This shall be used only for fail path handling when tty_add_file was not
228  * called yet.
229  */
230 void tty_free_file(struct file *file)
231 {
232         struct tty_file_private *priv = file->private_data;
233
234         file->private_data = NULL;
235         kfree(priv);
236 }
237
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241         struct tty_file_private *priv = file->private_data;
242
243         spin_lock(&tty_files_lock);
244         list_del(&priv->list);
245         spin_unlock(&tty_files_lock);
246         tty_free_file(file);
247 }
248
249
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252 /**
253  *      tty_name        -       return tty naming
254  *      @tty: tty structure
255  *      @buf: buffer for output
256  *
257  *      Convert a tty structure into a name. The name reflects the kernel
258  *      naming policy and if udev is in use may not reflect user space
259  *
260  *      Locking: none
261  */
262
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
266                 strcpy(buf, "NULL tty");
267         else
268                 strcpy(buf, tty->name);
269         return buf;
270 }
271
272 EXPORT_SYMBOL(tty_name);
273
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275                               const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278         if (!tty) {
279                 printk(KERN_WARNING
280                         "null TTY for (%d:%d) in %s\n",
281                         imajor(inode), iminor(inode), routine);
282                 return 1;
283         }
284         if (tty->magic != TTY_MAGIC) {
285                 printk(KERN_WARNING
286                         "bad magic number for tty struct (%d:%d) in %s\n",
287                         imajor(inode), iminor(inode), routine);
288                 return 1;
289         }
290 #endif
291         return 0;
292 }
293
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297         struct list_head *p;
298         int count = 0;
299
300         spin_lock(&tty_files_lock);
301         list_for_each(p, &tty->tty_files) {
302                 count++;
303         }
304         spin_unlock(&tty_files_lock);
305         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306             tty->driver->subtype == PTY_TYPE_SLAVE &&
307             tty->link && tty->link->count)
308                 count++;
309         if (tty->count != count) {
310                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311                                     "!= #fd's(%d) in %s\n",
312                        tty->name, tty->count, count, routine);
313                 return count;
314         }
315 #endif
316         return 0;
317 }
318
319 /**
320  *      get_tty_driver          -       find device of a tty
321  *      @dev_t: device identifier
322  *      @index: returns the index of the tty
323  *
324  *      This routine returns a tty driver structure, given a device number
325  *      and also passes back the index number.
326  *
327  *      Locking: caller must hold tty_mutex
328  */
329
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332         struct tty_driver *p;
333
334         list_for_each_entry(p, &tty_drivers, tty_drivers) {
335                 dev_t base = MKDEV(p->major, p->minor_start);
336                 if (device < base || device >= base + p->num)
337                         continue;
338                 *index = device - base;
339                 return tty_driver_kref_get(p);
340         }
341         return NULL;
342 }
343
344 #ifdef CONFIG_CONSOLE_POLL
345
346 /**
347  *      tty_find_polling_driver -       find device of a polled tty
348  *      @name: name string to match
349  *      @line: pointer to resulting tty line nr
350  *
351  *      This routine returns a tty driver structure, given a name
352  *      and the condition that the tty driver is capable of polled
353  *      operation.
354  */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357         struct tty_driver *p, *res = NULL;
358         int tty_line = 0;
359         int len;
360         char *str, *stp;
361
362         for (str = name; *str; str++)
363                 if ((*str >= '0' && *str <= '9') || *str == ',')
364                         break;
365         if (!*str)
366                 return NULL;
367
368         len = str - name;
369         tty_line = simple_strtoul(str, &str, 10);
370
371         mutex_lock(&tty_mutex);
372         /* Search through the tty devices to look for a match */
373         list_for_each_entry(p, &tty_drivers, tty_drivers) {
374                 if (strncmp(name, p->name, len) != 0)
375                         continue;
376                 stp = str;
377                 if (*stp == ',')
378                         stp++;
379                 if (*stp == '\0')
380                         stp = NULL;
381
382                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384                         res = tty_driver_kref_get(p);
385                         *line = tty_line;
386                         break;
387                 }
388         }
389         mutex_unlock(&tty_mutex);
390
391         return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395
396 /**
397  *      tty_check_change        -       check for POSIX terminal changes
398  *      @tty: tty to check
399  *
400  *      If we try to write to, or set the state of, a terminal and we're
401  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
402  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
403  *
404  *      Locking: ctrl_lock
405  */
406
407 int tty_check_change(struct tty_struct *tty)
408 {
409         unsigned long flags;
410         int ret = 0;
411
412         if (current->signal->tty != tty)
413                 return 0;
414
415         spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417         if (!tty->pgrp) {
418                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419                 goto out_unlock;
420         }
421         if (task_pgrp(current) == tty->pgrp)
422                 goto out_unlock;
423         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424         if (is_ignored(SIGTTOU))
425                 goto out;
426         if (is_current_pgrp_orphaned()) {
427                 ret = -EIO;
428                 goto out;
429         }
430         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431         set_thread_flag(TIF_SIGPENDING);
432         ret = -ERESTARTSYS;
433 out:
434         return ret;
435 out_unlock:
436         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437         return ret;
438 }
439
440 EXPORT_SYMBOL(tty_check_change);
441
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443                                 size_t count, loff_t *ppos)
444 {
445         return 0;
446 }
447
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449                                  size_t count, loff_t *ppos)
450 {
451         return -EIO;
452 }
453
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461                 unsigned long arg)
462 {
463         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465
466 static long hung_up_tty_compat_ioctl(struct file *file,
467                                      unsigned int cmd, unsigned long arg)
468 {
469         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471
472 static const struct file_operations tty_fops = {
473         .llseek         = no_llseek,
474         .read           = tty_read,
475         .write          = tty_write,
476         .poll           = tty_poll,
477         .unlocked_ioctl = tty_ioctl,
478         .compat_ioctl   = tty_compat_ioctl,
479         .open           = tty_open,
480         .release        = tty_release,
481         .fasync         = tty_fasync,
482 };
483
484 static const struct file_operations console_fops = {
485         .llseek         = no_llseek,
486         .read           = tty_read,
487         .write          = redirected_tty_write,
488         .poll           = tty_poll,
489         .unlocked_ioctl = tty_ioctl,
490         .compat_ioctl   = tty_compat_ioctl,
491         .open           = tty_open,
492         .release        = tty_release,
493         .fasync         = tty_fasync,
494 };
495
496 static const struct file_operations hung_up_tty_fops = {
497         .llseek         = no_llseek,
498         .read           = hung_up_tty_read,
499         .write          = hung_up_tty_write,
500         .poll           = hung_up_tty_poll,
501         .unlocked_ioctl = hung_up_tty_ioctl,
502         .compat_ioctl   = hung_up_tty_compat_ioctl,
503         .release        = tty_release,
504 };
505
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508
509 /**
510  *      tty_wakeup      -       request more data
511  *      @tty: terminal
512  *
513  *      Internal and external helper for wakeups of tty. This function
514  *      informs the line discipline if present that the driver is ready
515  *      to receive more output data.
516  */
517
518 void tty_wakeup(struct tty_struct *tty)
519 {
520         struct tty_ldisc *ld;
521
522         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523                 ld = tty_ldisc_ref(tty);
524                 if (ld) {
525                         if (ld->ops->write_wakeup)
526                                 ld->ops->write_wakeup(tty);
527                         tty_ldisc_deref(ld);
528                 }
529         }
530         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534
535 /**
536  *      tty_signal_session_leader       - sends SIGHUP to session leader
537  *      @tty            controlling tty
538  *      @exit_session   if non-zero, signal all foreground group processes
539  *
540  *      Send SIGHUP and SIGCONT to the session leader and its process group.
541  *      Optionally, signal all processes in the foreground process group.
542  *
543  *      Returns the number of processes in the session with this tty
544  *      as their controlling terminal. This value is used to drop
545  *      tty references for those processes.
546  */
547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
548 {
549         struct task_struct *p;
550         int refs = 0;
551         struct pid *tty_pgrp = NULL;
552
553         read_lock(&tasklist_lock);
554         if (tty->session) {
555                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556                         spin_lock_irq(&p->sighand->siglock);
557                         if (p->signal->tty == tty) {
558                                 p->signal->tty = NULL;
559                                 /* We defer the dereferences outside fo
560                                    the tasklist lock */
561                                 refs++;
562                         }
563                         if (!p->signal->leader) {
564                                 spin_unlock_irq(&p->sighand->siglock);
565                                 continue;
566                         }
567                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
570                         spin_lock(&tty->ctrl_lock);
571                         tty_pgrp = get_pid(tty->pgrp);
572                         if (tty->pgrp)
573                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574                         spin_unlock(&tty->ctrl_lock);
575                         spin_unlock_irq(&p->sighand->siglock);
576                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
577         }
578         read_unlock(&tasklist_lock);
579
580         if (tty_pgrp) {
581                 if (exit_session)
582                         kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583                 put_pid(tty_pgrp);
584         }
585
586         return refs;
587 }
588
589 /**
590  *      __tty_hangup            -       actual handler for hangup events
591  *      @work: tty device
592  *
593  *      This can be called by a "kworker" kernel thread.  That is process
594  *      synchronous but doesn't hold any locks, so we need to make sure we
595  *      have the appropriate locks for what we're doing.
596  *
597  *      The hangup event clears any pending redirections onto the hung up
598  *      device. It ensures future writes will error and it does the needed
599  *      line discipline hangup and signal delivery. The tty object itself
600  *      remains intact.
601  *
602  *      Locking:
603  *              BTM
604  *                redirect lock for undoing redirection
605  *                file list lock for manipulating list of ttys
606  *                tty_ldisc_lock from called functions
607  *                termios_mutex resetting termios data
608  *                tasklist_lock to walk task list for hangup event
609  *                  ->siglock to protect ->signal/->sighand
610  */
611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
612 {
613         struct file *cons_filp = NULL;
614         struct file *filp, *f = NULL;
615         struct tty_file_private *priv;
616         int    closecount = 0, n;
617         int refs;
618
619         if (!tty)
620                 return;
621
622
623         spin_lock(&redirect_lock);
624         if (redirect && file_tty(redirect) == tty) {
625                 f = redirect;
626                 redirect = NULL;
627         }
628         spin_unlock(&redirect_lock);
629
630         tty_lock(tty);
631
632         /* some functions below drop BTM, so we need this bit */
633         set_bit(TTY_HUPPING, &tty->flags);
634
635         /* inuse_filps is protected by the single tty lock,
636            this really needs to change if we want to flush the
637            workqueue with the lock held */
638         check_tty_count(tty, "tty_hangup");
639
640         spin_lock(&tty_files_lock);
641         /* This breaks for file handles being sent over AF_UNIX sockets ? */
642         list_for_each_entry(priv, &tty->tty_files, list) {
643                 filp = priv->file;
644                 if (filp->f_op->write == redirected_tty_write)
645                         cons_filp = filp;
646                 if (filp->f_op->write != tty_write)
647                         continue;
648                 closecount++;
649                 __tty_fasync(-1, filp, 0);      /* can't block */
650                 filp->f_op = &hung_up_tty_fops;
651         }
652         spin_unlock(&tty_files_lock);
653
654         refs = tty_signal_session_leader(tty, exit_session);
655         /* Account for the p->signal references we killed */
656         while (refs--)
657                 tty_kref_put(tty);
658
659         /*
660          * it drops BTM and thus races with reopen
661          * we protect the race by TTY_HUPPING
662          */
663         tty_ldisc_hangup(tty);
664
665         spin_lock_irq(&tty->ctrl_lock);
666         clear_bit(TTY_THROTTLED, &tty->flags);
667         clear_bit(TTY_PUSH, &tty->flags);
668         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
669         put_pid(tty->session);
670         put_pid(tty->pgrp);
671         tty->session = NULL;
672         tty->pgrp = NULL;
673         tty->ctrl_status = 0;
674         spin_unlock_irq(&tty->ctrl_lock);
675
676         /*
677          * If one of the devices matches a console pointer, we
678          * cannot just call hangup() because that will cause
679          * tty->count and state->count to go out of sync.
680          * So we just call close() the right number of times.
681          */
682         if (cons_filp) {
683                 if (tty->ops->close)
684                         for (n = 0; n < closecount; n++)
685                                 tty->ops->close(tty, cons_filp);
686         } else if (tty->ops->hangup)
687                 (tty->ops->hangup)(tty);
688         /*
689          * We don't want to have driver/ldisc interactions beyond
690          * the ones we did here. The driver layer expects no
691          * calls after ->hangup() from the ldisc side. However we
692          * can't yet guarantee all that.
693          */
694         set_bit(TTY_HUPPED, &tty->flags);
695         clear_bit(TTY_HUPPING, &tty->flags);
696
697         tty_unlock(tty);
698
699         if (f)
700                 fput(f);
701 }
702
703 static void do_tty_hangup(struct work_struct *work)
704 {
705         struct tty_struct *tty =
706                 container_of(work, struct tty_struct, hangup_work);
707
708         __tty_hangup(tty, 0);
709 }
710
711 /**
712  *      tty_hangup              -       trigger a hangup event
713  *      @tty: tty to hangup
714  *
715  *      A carrier loss (virtual or otherwise) has occurred on this like
716  *      schedule a hangup sequence to run after this event.
717  */
718
719 void tty_hangup(struct tty_struct *tty)
720 {
721 #ifdef TTY_DEBUG_HANGUP
722         char    buf[64];
723         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
724 #endif
725         schedule_work(&tty->hangup_work);
726 }
727
728 EXPORT_SYMBOL(tty_hangup);
729
730 /**
731  *      tty_vhangup             -       process vhangup
732  *      @tty: tty to hangup
733  *
734  *      The user has asked via system call for the terminal to be hung up.
735  *      We do this synchronously so that when the syscall returns the process
736  *      is complete. That guarantee is necessary for security reasons.
737  */
738
739 void tty_vhangup(struct tty_struct *tty)
740 {
741 #ifdef TTY_DEBUG_HANGUP
742         char    buf[64];
743
744         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
745 #endif
746         __tty_hangup(tty, 0);
747 }
748
749 EXPORT_SYMBOL(tty_vhangup);
750
751
752 /**
753  *      tty_vhangup_self        -       process vhangup for own ctty
754  *
755  *      Perform a vhangup on the current controlling tty
756  */
757
758 void tty_vhangup_self(void)
759 {
760         struct tty_struct *tty;
761
762         tty = get_current_tty();
763         if (tty) {
764                 tty_vhangup(tty);
765                 tty_kref_put(tty);
766         }
767 }
768
769 /**
770  *      tty_vhangup_session             -       hangup session leader exit
771  *      @tty: tty to hangup
772  *
773  *      The session leader is exiting and hanging up its controlling terminal.
774  *      Every process in the foreground process group is signalled SIGHUP.
775  *
776  *      We do this synchronously so that when the syscall returns the process
777  *      is complete. That guarantee is necessary for security reasons.
778  */
779
780 void tty_vhangup_session(struct tty_struct *tty)
781 {
782 #ifdef TTY_DEBUG_HANGUP
783         char    buf[64];
784
785         printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
786 #endif
787         __tty_hangup(tty, 1);
788 }
789
790 /**
791  *      tty_hung_up_p           -       was tty hung up
792  *      @filp: file pointer of tty
793  *
794  *      Return true if the tty has been subject to a vhangup or a carrier
795  *      loss
796  */
797
798 int tty_hung_up_p(struct file *filp)
799 {
800         return (filp->f_op == &hung_up_tty_fops);
801 }
802
803 EXPORT_SYMBOL(tty_hung_up_p);
804
805 static void session_clear_tty(struct pid *session)
806 {
807         struct task_struct *p;
808         do_each_pid_task(session, PIDTYPE_SID, p) {
809                 proc_clear_tty(p);
810         } while_each_pid_task(session, PIDTYPE_SID, p);
811 }
812
813 /**
814  *      disassociate_ctty       -       disconnect controlling tty
815  *      @on_exit: true if exiting so need to "hang up" the session
816  *
817  *      This function is typically called only by the session leader, when
818  *      it wants to disassociate itself from its controlling tty.
819  *
820  *      It performs the following functions:
821  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
822  *      (2)  Clears the tty from being controlling the session
823  *      (3)  Clears the controlling tty for all processes in the
824  *              session group.
825  *
826  *      The argument on_exit is set to 1 if called when a process is
827  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
828  *
829  *      Locking:
830  *              BTM is taken for hysterical raisins, and held when
831  *                called from no_tty().
832  *                tty_mutex is taken to protect tty
833  *                ->siglock is taken to protect ->signal/->sighand
834  *                tasklist_lock is taken to walk process list for sessions
835  *                  ->siglock is taken to protect ->signal/->sighand
836  */
837
838 void disassociate_ctty(int on_exit)
839 {
840         struct tty_struct *tty;
841
842         if (!current->signal->leader)
843                 return;
844
845         tty = get_current_tty();
846         if (tty) {
847                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
848                         tty_vhangup_session(tty);
849                 } else {
850                         struct pid *tty_pgrp = tty_get_pgrp(tty);
851                         if (tty_pgrp) {
852                                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
853                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
854                                 put_pid(tty_pgrp);
855                         }
856                 }
857                 tty_kref_put(tty);
858
859         } else if (on_exit) {
860                 struct pid *old_pgrp;
861                 spin_lock_irq(&current->sighand->siglock);
862                 old_pgrp = current->signal->tty_old_pgrp;
863                 current->signal->tty_old_pgrp = NULL;
864                 spin_unlock_irq(&current->sighand->siglock);
865                 if (old_pgrp) {
866                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
867                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
868                         put_pid(old_pgrp);
869                 }
870                 return;
871         }
872
873         spin_lock_irq(&current->sighand->siglock);
874         put_pid(current->signal->tty_old_pgrp);
875         current->signal->tty_old_pgrp = NULL;
876         spin_unlock_irq(&current->sighand->siglock);
877
878         tty = get_current_tty();
879         if (tty) {
880                 unsigned long flags;
881                 spin_lock_irqsave(&tty->ctrl_lock, flags);
882                 put_pid(tty->session);
883                 put_pid(tty->pgrp);
884                 tty->session = NULL;
885                 tty->pgrp = NULL;
886                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
887                 tty_kref_put(tty);
888         } else {
889 #ifdef TTY_DEBUG_HANGUP
890                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
891                        " = NULL", tty);
892 #endif
893         }
894
895         /* Now clear signal->tty under the lock */
896         read_lock(&tasklist_lock);
897         session_clear_tty(task_session(current));
898         read_unlock(&tasklist_lock);
899 }
900
901 /**
902  *
903  *      no_tty  - Ensure the current process does not have a controlling tty
904  */
905 void no_tty(void)
906 {
907         /* FIXME: Review locking here. The tty_lock never covered any race
908            between a new association and proc_clear_tty but possible we need
909            to protect against this anyway */
910         struct task_struct *tsk = current;
911         disassociate_ctty(0);
912         proc_clear_tty(tsk);
913 }
914
915
916 /**
917  *      stop_tty        -       propagate flow control
918  *      @tty: tty to stop
919  *
920  *      Perform flow control to the driver. For PTY/TTY pairs we
921  *      must also propagate the TIOCKPKT status. May be called
922  *      on an already stopped device and will not re-call the driver
923  *      method.
924  *
925  *      This functionality is used by both the line disciplines for
926  *      halting incoming flow and by the driver. It may therefore be
927  *      called from any context, may be under the tty atomic_write_lock
928  *      but not always.
929  *
930  *      Locking:
931  *              Uses the tty control lock internally
932  */
933
934 void stop_tty(struct tty_struct *tty)
935 {
936         unsigned long flags;
937         spin_lock_irqsave(&tty->ctrl_lock, flags);
938         if (tty->stopped) {
939                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
940                 return;
941         }
942         tty->stopped = 1;
943         if (tty->link && tty->link->packet) {
944                 tty->ctrl_status &= ~TIOCPKT_START;
945                 tty->ctrl_status |= TIOCPKT_STOP;
946                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
947         }
948         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
949         if (tty->ops->stop)
950                 (tty->ops->stop)(tty);
951 }
952
953 EXPORT_SYMBOL(stop_tty);
954
955 /**
956  *      start_tty       -       propagate flow control
957  *      @tty: tty to start
958  *
959  *      Start a tty that has been stopped if at all possible. Perform
960  *      any necessary wakeups and propagate the TIOCPKT status. If this
961  *      is the tty was previous stopped and is being started then the
962  *      driver start method is invoked and the line discipline woken.
963  *
964  *      Locking:
965  *              ctrl_lock
966  */
967
968 void start_tty(struct tty_struct *tty)
969 {
970         unsigned long flags;
971         spin_lock_irqsave(&tty->ctrl_lock, flags);
972         if (!tty->stopped || tty->flow_stopped) {
973                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
974                 return;
975         }
976         tty->stopped = 0;
977         if (tty->link && tty->link->packet) {
978                 tty->ctrl_status &= ~TIOCPKT_STOP;
979                 tty->ctrl_status |= TIOCPKT_START;
980                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
981         }
982         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
983         if (tty->ops->start)
984                 (tty->ops->start)(tty);
985         /* If we have a running line discipline it may need kicking */
986         tty_wakeup(tty);
987 }
988
989 EXPORT_SYMBOL(start_tty);
990
991 /**
992  *      tty_read        -       read method for tty device files
993  *      @file: pointer to tty file
994  *      @buf: user buffer
995  *      @count: size of user buffer
996  *      @ppos: unused
997  *
998  *      Perform the read system call function on this terminal device. Checks
999  *      for hung up devices before calling the line discipline method.
1000  *
1001  *      Locking:
1002  *              Locks the line discipline internally while needed. Multiple
1003  *      read calls may be outstanding in parallel.
1004  */
1005
1006 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1007                         loff_t *ppos)
1008 {
1009         int i;
1010         struct tty_struct *tty = file_tty(file);
1011         struct tty_ldisc *ld;
1012
1013         if (tty_paranoia_check(tty, file_inode(file), "tty_read"))
1014                 return -EIO;
1015         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1016                 return -EIO;
1017
1018         /* We want to wait for the line discipline to sort out in this
1019            situation */
1020         ld = tty_ldisc_ref_wait(tty);
1021         if (ld->ops->read)
1022                 i = (ld->ops->read)(tty, file, buf, count);
1023         else
1024                 i = -EIO;
1025         tty_ldisc_deref(ld);
1026
1027         return i;
1028 }
1029
1030 void tty_write_unlock(struct tty_struct *tty)
1031         __releases(&tty->atomic_write_lock)
1032 {
1033         mutex_unlock(&tty->atomic_write_lock);
1034         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1035 }
1036
1037 int tty_write_lock(struct tty_struct *tty, int ndelay)
1038         __acquires(&tty->atomic_write_lock)
1039 {
1040         if (!mutex_trylock(&tty->atomic_write_lock)) {
1041                 if (ndelay)
1042                         return -EAGAIN;
1043                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1044                         return -ERESTARTSYS;
1045         }
1046         return 0;
1047 }
1048
1049 /*
1050  * Split writes up in sane blocksizes to avoid
1051  * denial-of-service type attacks
1052  */
1053 static inline ssize_t do_tty_write(
1054         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1055         struct tty_struct *tty,
1056         struct file *file,
1057         const char __user *buf,
1058         size_t count)
1059 {
1060         ssize_t ret, written = 0;
1061         unsigned int chunk;
1062
1063         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1064         if (ret < 0)
1065                 return ret;
1066
1067         /*
1068          * We chunk up writes into a temporary buffer. This
1069          * simplifies low-level drivers immensely, since they
1070          * don't have locking issues and user mode accesses.
1071          *
1072          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1073          * big chunk-size..
1074          *
1075          * The default chunk-size is 2kB, because the NTTY
1076          * layer has problems with bigger chunks. It will
1077          * claim to be able to handle more characters than
1078          * it actually does.
1079          *
1080          * FIXME: This can probably go away now except that 64K chunks
1081          * are too likely to fail unless switched to vmalloc...
1082          */
1083         chunk = 2048;
1084         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1085                 chunk = 65536;
1086         if (count < chunk)
1087                 chunk = count;
1088
1089         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1090         if (tty->write_cnt < chunk) {
1091                 unsigned char *buf_chunk;
1092
1093                 if (chunk < 1024)
1094                         chunk = 1024;
1095
1096                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1097                 if (!buf_chunk) {
1098                         ret = -ENOMEM;
1099                         goto out;
1100                 }
1101                 kfree(tty->write_buf);
1102                 tty->write_cnt = chunk;
1103                 tty->write_buf = buf_chunk;
1104         }
1105
1106         /* Do the write .. */
1107         for (;;) {
1108                 size_t size = count;
1109                 if (size > chunk)
1110                         size = chunk;
1111                 ret = -EFAULT;
1112                 if (copy_from_user(tty->write_buf, buf, size))
1113                         break;
1114                 ret = write(tty, file, tty->write_buf, size);
1115                 if (ret <= 0)
1116                         break;
1117                 written += ret;
1118                 buf += ret;
1119                 count -= ret;
1120                 if (!count)
1121                         break;
1122                 ret = -ERESTARTSYS;
1123                 if (signal_pending(current))
1124                         break;
1125                 cond_resched();
1126         }
1127         if (written)
1128                 ret = written;
1129 out:
1130         tty_write_unlock(tty);
1131         return ret;
1132 }
1133
1134 /**
1135  * tty_write_message - write a message to a certain tty, not just the console.
1136  * @tty: the destination tty_struct
1137  * @msg: the message to write
1138  *
1139  * This is used for messages that need to be redirected to a specific tty.
1140  * We don't put it into the syslog queue right now maybe in the future if
1141  * really needed.
1142  *
1143  * We must still hold the BTM and test the CLOSING flag for the moment.
1144  */
1145
1146 void tty_write_message(struct tty_struct *tty, char *msg)
1147 {
1148         if (tty) {
1149                 mutex_lock(&tty->atomic_write_lock);
1150                 tty_lock(tty);
1151                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1152                         tty_unlock(tty);
1153                         tty->ops->write(tty, msg, strlen(msg));
1154                 } else
1155                         tty_unlock(tty);
1156                 tty_write_unlock(tty);
1157         }
1158         return;
1159 }
1160
1161
1162 /**
1163  *      tty_write               -       write method for tty device file
1164  *      @file: tty file pointer
1165  *      @buf: user data to write
1166  *      @count: bytes to write
1167  *      @ppos: unused
1168  *
1169  *      Write data to a tty device via the line discipline.
1170  *
1171  *      Locking:
1172  *              Locks the line discipline as required
1173  *              Writes to the tty driver are serialized by the atomic_write_lock
1174  *      and are then processed in chunks to the device. The line discipline
1175  *      write method will not be invoked in parallel for each device.
1176  */
1177
1178 static ssize_t tty_write(struct file *file, const char __user *buf,
1179                                                 size_t count, loff_t *ppos)
1180 {
1181         struct tty_struct *tty = file_tty(file);
1182         struct tty_ldisc *ld;
1183         ssize_t ret;
1184
1185         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1186                 return -EIO;
1187         if (!tty || !tty->ops->write ||
1188                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1189                         return -EIO;
1190         /* Short term debug to catch buggy drivers */
1191         if (tty->ops->write_room == NULL)
1192                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1193                         tty->driver->name);
1194         ld = tty_ldisc_ref_wait(tty);
1195         if (!ld->ops->write)
1196                 ret = -EIO;
1197         else
1198                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1199         tty_ldisc_deref(ld);
1200         return ret;
1201 }
1202
1203 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1204                                                 size_t count, loff_t *ppos)
1205 {
1206         struct file *p = NULL;
1207
1208         spin_lock(&redirect_lock);
1209         if (redirect)
1210                 p = get_file(redirect);
1211         spin_unlock(&redirect_lock);
1212
1213         if (p) {
1214                 ssize_t res;
1215                 res = vfs_write(p, buf, count, &p->f_pos);
1216                 fput(p);
1217                 return res;
1218         }
1219         return tty_write(file, buf, count, ppos);
1220 }
1221
1222 static char ptychar[] = "pqrstuvwxyzabcde";
1223
1224 /**
1225  *      pty_line_name   -       generate name for a pty
1226  *      @driver: the tty driver in use
1227  *      @index: the minor number
1228  *      @p: output buffer of at least 6 bytes
1229  *
1230  *      Generate a name from a driver reference and write it to the output
1231  *      buffer.
1232  *
1233  *      Locking: None
1234  */
1235 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1236 {
1237         int i = index + driver->name_base;
1238         /* ->name is initialized to "ttyp", but "tty" is expected */
1239         sprintf(p, "%s%c%x",
1240                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1241                 ptychar[i >> 4 & 0xf], i & 0xf);
1242 }
1243
1244 /**
1245  *      tty_line_name   -       generate name for a tty
1246  *      @driver: the tty driver in use
1247  *      @index: the minor number
1248  *      @p: output buffer of at least 7 bytes
1249  *
1250  *      Generate a name from a driver reference and write it to the output
1251  *      buffer.
1252  *
1253  *      Locking: None
1254  */
1255 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1256 {
1257         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1258                 strcpy(p, driver->name);
1259         else
1260                 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1261 }
1262
1263 /**
1264  *      tty_driver_lookup_tty() - find an existing tty, if any
1265  *      @driver: the driver for the tty
1266  *      @idx:    the minor number
1267  *
1268  *      Return the tty, if found or ERR_PTR() otherwise.
1269  *
1270  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1271  *      be held until the 'fast-open' is also done. Will change once we
1272  *      have refcounting in the driver and per driver locking
1273  */
1274 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1275                 struct inode *inode, int idx)
1276 {
1277         if (driver->ops->lookup)
1278                 return driver->ops->lookup(driver, inode, idx);
1279
1280         return driver->ttys[idx];
1281 }
1282
1283 /**
1284  *      tty_init_termios        -  helper for termios setup
1285  *      @tty: the tty to set up
1286  *
1287  *      Initialise the termios structures for this tty. Thus runs under
1288  *      the tty_mutex currently so we can be relaxed about ordering.
1289  */
1290
1291 int tty_init_termios(struct tty_struct *tty)
1292 {
1293         struct ktermios *tp;
1294         int idx = tty->index;
1295
1296         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1297                 tty->termios = tty->driver->init_termios;
1298         else {
1299                 /* Check for lazy saved data */
1300                 tp = tty->driver->termios[idx];
1301                 if (tp != NULL)
1302                         tty->termios = *tp;
1303                 else
1304                         tty->termios = tty->driver->init_termios;
1305         }
1306         /* Compatibility until drivers always set this */
1307         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1308         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1309         return 0;
1310 }
1311 EXPORT_SYMBOL_GPL(tty_init_termios);
1312
1313 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1314 {
1315         int ret = tty_init_termios(tty);
1316         if (ret)
1317                 return ret;
1318
1319         tty_driver_kref_get(driver);
1320         tty->count++;
1321         driver->ttys[tty->index] = tty;
1322         return 0;
1323 }
1324 EXPORT_SYMBOL_GPL(tty_standard_install);
1325
1326 /**
1327  *      tty_driver_install_tty() - install a tty entry in the driver
1328  *      @driver: the driver for the tty
1329  *      @tty: the tty
1330  *
1331  *      Install a tty object into the driver tables. The tty->index field
1332  *      will be set by the time this is called. This method is responsible
1333  *      for ensuring any need additional structures are allocated and
1334  *      configured.
1335  *
1336  *      Locking: tty_mutex for now
1337  */
1338 static int tty_driver_install_tty(struct tty_driver *driver,
1339                                                 struct tty_struct *tty)
1340 {
1341         return driver->ops->install ? driver->ops->install(driver, tty) :
1342                 tty_standard_install(driver, tty);
1343 }
1344
1345 /**
1346  *      tty_driver_remove_tty() - remove a tty from the driver tables
1347  *      @driver: the driver for the tty
1348  *      @idx:    the minor number
1349  *
1350  *      Remvoe a tty object from the driver tables. The tty->index field
1351  *      will be set by the time this is called.
1352  *
1353  *      Locking: tty_mutex for now
1354  */
1355 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1356 {
1357         if (driver->ops->remove)
1358                 driver->ops->remove(driver, tty);
1359         else
1360                 driver->ttys[tty->index] = NULL;
1361 }
1362
1363 /*
1364  *      tty_reopen()    - fast re-open of an open tty
1365  *      @tty    - the tty to open
1366  *
1367  *      Return 0 on success, -errno on error.
1368  *
1369  *      Locking: tty_mutex must be held from the time the tty was found
1370  *               till this open completes.
1371  */
1372 static int tty_reopen(struct tty_struct *tty)
1373 {
1374         struct tty_driver *driver = tty->driver;
1375
1376         if (test_bit(TTY_CLOSING, &tty->flags) ||
1377                         test_bit(TTY_HUPPING, &tty->flags) ||
1378                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1379                 return -EIO;
1380
1381         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1382             driver->subtype == PTY_TYPE_MASTER) {
1383                 /*
1384                  * special case for PTY masters: only one open permitted,
1385                  * and the slave side open count is incremented as well.
1386                  */
1387                 if (tty->count)
1388                         return -EIO;
1389
1390                 tty->link->count++;
1391         }
1392         tty->count++;
1393
1394         mutex_lock(&tty->ldisc_mutex);
1395         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1396         mutex_unlock(&tty->ldisc_mutex);
1397
1398         return 0;
1399 }
1400
1401 /**
1402  *      tty_init_dev            -       initialise a tty device
1403  *      @driver: tty driver we are opening a device on
1404  *      @idx: device index
1405  *      @ret_tty: returned tty structure
1406  *
1407  *      Prepare a tty device. This may not be a "new" clean device but
1408  *      could also be an active device. The pty drivers require special
1409  *      handling because of this.
1410  *
1411  *      Locking:
1412  *              The function is called under the tty_mutex, which
1413  *      protects us from the tty struct or driver itself going away.
1414  *
1415  *      On exit the tty device has the line discipline attached and
1416  *      a reference count of 1. If a pair was created for pty/tty use
1417  *      and the other was a pty master then it too has a reference count of 1.
1418  *
1419  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1420  * failed open.  The new code protects the open with a mutex, so it's
1421  * really quite straightforward.  The mutex locking can probably be
1422  * relaxed for the (most common) case of reopening a tty.
1423  */
1424
1425 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1426 {
1427         struct tty_struct *tty;
1428         int retval;
1429
1430         /*
1431          * First time open is complex, especially for PTY devices.
1432          * This code guarantees that either everything succeeds and the
1433          * TTY is ready for operation, or else the table slots are vacated
1434          * and the allocated memory released.  (Except that the termios
1435          * and locked termios may be retained.)
1436          */
1437
1438         if (!try_module_get(driver->owner))
1439                 return ERR_PTR(-ENODEV);
1440
1441         tty = alloc_tty_struct();
1442         if (!tty) {
1443                 retval = -ENOMEM;
1444                 goto err_module_put;
1445         }
1446         initialize_tty_struct(tty, driver, idx);
1447
1448         tty_lock(tty);
1449         retval = tty_driver_install_tty(driver, tty);
1450         if (retval < 0)
1451                 goto err_deinit_tty;
1452
1453         if (!tty->port)
1454                 tty->port = driver->ports[idx];
1455
1456         WARN_RATELIMIT(!tty->port,
1457                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1458                         __func__, tty->driver->name);
1459
1460         tty->port->itty = tty;
1461
1462         /*
1463          * Structures all installed ... call the ldisc open routines.
1464          * If we fail here just call release_tty to clean up.  No need
1465          * to decrement the use counts, as release_tty doesn't care.
1466          */
1467         retval = tty_ldisc_setup(tty, tty->link);
1468         if (retval)
1469                 goto err_release_tty;
1470         /* Return the tty locked so that it cannot vanish under the caller */
1471         return tty;
1472
1473 err_deinit_tty:
1474         tty_unlock(tty);
1475         deinitialize_tty_struct(tty);
1476         free_tty_struct(tty);
1477 err_module_put:
1478         module_put(driver->owner);
1479         return ERR_PTR(retval);
1480
1481         /* call the tty release_tty routine to clean out this slot */
1482 err_release_tty:
1483         tty_unlock(tty);
1484         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1485                                  "clearing slot %d\n", idx);
1486         release_tty(tty, idx);
1487         return ERR_PTR(retval);
1488 }
1489
1490 void tty_free_termios(struct tty_struct *tty)
1491 {
1492         struct ktermios *tp;
1493         int idx = tty->index;
1494
1495         /* If the port is going to reset then it has no termios to save */
1496         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1497                 return;
1498
1499         /* Stash the termios data */
1500         tp = tty->driver->termios[idx];
1501         if (tp == NULL) {
1502                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1503                 if (tp == NULL) {
1504                         pr_warn("tty: no memory to save termios state.\n");
1505                         return;
1506                 }
1507                 tty->driver->termios[idx] = tp;
1508         }
1509         *tp = tty->termios;
1510 }
1511 EXPORT_SYMBOL(tty_free_termios);
1512
1513
1514 /**
1515  *      release_one_tty         -       release tty structure memory
1516  *      @kref: kref of tty we are obliterating
1517  *
1518  *      Releases memory associated with a tty structure, and clears out the
1519  *      driver table slots. This function is called when a device is no longer
1520  *      in use. It also gets called when setup of a device fails.
1521  *
1522  *      Locking:
1523  *              takes the file list lock internally when working on the list
1524  *      of ttys that the driver keeps.
1525  *
1526  *      This method gets called from a work queue so that the driver private
1527  *      cleanup ops can sleep (needed for USB at least)
1528  */
1529 static void release_one_tty(struct work_struct *work)
1530 {
1531         struct tty_struct *tty =
1532                 container_of(work, struct tty_struct, hangup_work);
1533         struct tty_driver *driver = tty->driver;
1534
1535         if (tty->ops->cleanup)
1536                 tty->ops->cleanup(tty);
1537
1538         tty->magic = 0;
1539         tty_driver_kref_put(driver);
1540         module_put(driver->owner);
1541
1542         spin_lock(&tty_files_lock);
1543         list_del_init(&tty->tty_files);
1544         spin_unlock(&tty_files_lock);
1545
1546         put_pid(tty->pgrp);
1547         put_pid(tty->session);
1548         free_tty_struct(tty);
1549 }
1550
1551 static void queue_release_one_tty(struct kref *kref)
1552 {
1553         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1554
1555         /* The hangup queue is now free so we can reuse it rather than
1556            waste a chunk of memory for each port */
1557         INIT_WORK(&tty->hangup_work, release_one_tty);
1558         schedule_work(&tty->hangup_work);
1559 }
1560
1561 /**
1562  *      tty_kref_put            -       release a tty kref
1563  *      @tty: tty device
1564  *
1565  *      Release a reference to a tty device and if need be let the kref
1566  *      layer destruct the object for us
1567  */
1568
1569 void tty_kref_put(struct tty_struct *tty)
1570 {
1571         if (tty)
1572                 kref_put(&tty->kref, queue_release_one_tty);
1573 }
1574 EXPORT_SYMBOL(tty_kref_put);
1575
1576 /**
1577  *      release_tty             -       release tty structure memory
1578  *
1579  *      Release both @tty and a possible linked partner (think pty pair),
1580  *      and decrement the refcount of the backing module.
1581  *
1582  *      Locking:
1583  *              tty_mutex
1584  *              takes the file list lock internally when working on the list
1585  *      of ttys that the driver keeps.
1586  *
1587  */
1588 static void release_tty(struct tty_struct *tty, int idx)
1589 {
1590         /* This should always be true but check for the moment */
1591         WARN_ON(tty->index != idx);
1592         WARN_ON(!mutex_is_locked(&tty_mutex));
1593         if (tty->ops->shutdown)
1594                 tty->ops->shutdown(tty);
1595         tty_free_termios(tty);
1596         tty_driver_remove_tty(tty->driver, tty);
1597         tty->port->itty = NULL;
1598
1599         if (tty->link)
1600                 tty_kref_put(tty->link);
1601         tty_kref_put(tty);
1602 }
1603
1604 /**
1605  *      tty_release_checks - check a tty before real release
1606  *      @tty: tty to check
1607  *      @o_tty: link of @tty (if any)
1608  *      @idx: index of the tty
1609  *
1610  *      Performs some paranoid checking before true release of the @tty.
1611  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1612  */
1613 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1614                 int idx)
1615 {
1616 #ifdef TTY_PARANOIA_CHECK
1617         if (idx < 0 || idx >= tty->driver->num) {
1618                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1619                                 __func__, tty->name);
1620                 return -1;
1621         }
1622
1623         /* not much to check for devpts */
1624         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1625                 return 0;
1626
1627         if (tty != tty->driver->ttys[idx]) {
1628                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1629                                 __func__, idx, tty->name);
1630                 return -1;
1631         }
1632         if (tty->driver->other) {
1633                 if (o_tty != tty->driver->other->ttys[idx]) {
1634                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1635                                         __func__, idx, tty->name);
1636                         return -1;
1637                 }
1638                 if (o_tty->link != tty) {
1639                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1640                         return -1;
1641                 }
1642         }
1643 #endif
1644         return 0;
1645 }
1646
1647 /**
1648  *      tty_release             -       vfs callback for close
1649  *      @inode: inode of tty
1650  *      @filp: file pointer for handle to tty
1651  *
1652  *      Called the last time each file handle is closed that references
1653  *      this tty. There may however be several such references.
1654  *
1655  *      Locking:
1656  *              Takes bkl. See tty_release_dev
1657  *
1658  * Even releasing the tty structures is a tricky business.. We have
1659  * to be very careful that the structures are all released at the
1660  * same time, as interrupts might otherwise get the wrong pointers.
1661  *
1662  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1663  * lead to double frees or releasing memory still in use.
1664  */
1665
1666 int tty_release(struct inode *inode, struct file *filp)
1667 {
1668         struct tty_struct *tty = file_tty(filp);
1669         struct tty_struct *o_tty;
1670         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1671         int     idx;
1672         char    buf[64];
1673
1674         if (tty_paranoia_check(tty, inode, __func__))
1675                 return 0;
1676
1677         tty_lock(tty);
1678         check_tty_count(tty, __func__);
1679
1680         __tty_fasync(-1, filp, 0);
1681
1682         idx = tty->index;
1683         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1684                       tty->driver->subtype == PTY_TYPE_MASTER);
1685         /* Review: parallel close */
1686         o_tty = tty->link;
1687
1688         if (tty_release_checks(tty, o_tty, idx)) {
1689                 tty_unlock(tty);
1690                 return 0;
1691         }
1692
1693 #ifdef TTY_DEBUG_HANGUP
1694         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1695                         tty_name(tty, buf), tty->count);
1696 #endif
1697
1698         if (tty->ops->close)
1699                 tty->ops->close(tty, filp);
1700
1701         tty_unlock(tty);
1702         /*
1703          * Sanity check: if tty->count is going to zero, there shouldn't be
1704          * any waiters on tty->read_wait or tty->write_wait.  We test the
1705          * wait queues and kick everyone out _before_ actually starting to
1706          * close.  This ensures that we won't block while releasing the tty
1707          * structure.
1708          *
1709          * The test for the o_tty closing is necessary, since the master and
1710          * slave sides may close in any order.  If the slave side closes out
1711          * first, its count will be one, since the master side holds an open.
1712          * Thus this test wouldn't be triggered at the time the slave closes,
1713          * so we do it now.
1714          *
1715          * Note that it's possible for the tty to be opened again while we're
1716          * flushing out waiters.  By recalculating the closing flags before
1717          * each iteration we avoid any problems.
1718          */
1719         while (1) {
1720                 /* Guard against races with tty->count changes elsewhere and
1721                    opens on /dev/tty */
1722
1723                 mutex_lock(&tty_mutex);
1724                 tty_lock_pair(tty, o_tty);
1725                 tty_closing = tty->count <= 1;
1726                 o_tty_closing = o_tty &&
1727                         (o_tty->count <= (pty_master ? 1 : 0));
1728                 do_sleep = 0;
1729
1730                 if (tty_closing) {
1731                         if (waitqueue_active(&tty->read_wait)) {
1732                                 wake_up_poll(&tty->read_wait, POLLIN);
1733                                 do_sleep++;
1734                         }
1735                         if (waitqueue_active(&tty->write_wait)) {
1736                                 wake_up_poll(&tty->write_wait, POLLOUT);
1737                                 do_sleep++;
1738                         }
1739                 }
1740                 if (o_tty_closing) {
1741                         if (waitqueue_active(&o_tty->read_wait)) {
1742                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1743                                 do_sleep++;
1744                         }
1745                         if (waitqueue_active(&o_tty->write_wait)) {
1746                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1747                                 do_sleep++;
1748                         }
1749                 }
1750                 if (!do_sleep)
1751                         break;
1752
1753                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1754                                 __func__, tty_name(tty, buf));
1755                 tty_unlock_pair(tty, o_tty);
1756                 mutex_unlock(&tty_mutex);
1757                 schedule();
1758         }
1759
1760         /*
1761          * The closing flags are now consistent with the open counts on
1762          * both sides, and we've completed the last operation that could
1763          * block, so it's safe to proceed with closing.
1764          *
1765          * We must *not* drop the tty_mutex until we ensure that a further
1766          * entry into tty_open can not pick up this tty.
1767          */
1768         if (pty_master) {
1769                 if (--o_tty->count < 0) {
1770                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1771                                 __func__, o_tty->count, tty_name(o_tty, buf));
1772                         o_tty->count = 0;
1773                 }
1774         }
1775         if (--tty->count < 0) {
1776                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1777                                 __func__, tty->count, tty_name(tty, buf));
1778                 tty->count = 0;
1779         }
1780
1781         /*
1782          * We've decremented tty->count, so we need to remove this file
1783          * descriptor off the tty->tty_files list; this serves two
1784          * purposes:
1785          *  - check_tty_count sees the correct number of file descriptors
1786          *    associated with this tty.
1787          *  - do_tty_hangup no longer sees this file descriptor as
1788          *    something that needs to be handled for hangups.
1789          */
1790         tty_del_file(filp);
1791
1792         /*
1793          * Perform some housekeeping before deciding whether to return.
1794          *
1795          * Set the TTY_CLOSING flag if this was the last open.  In the
1796          * case of a pty we may have to wait around for the other side
1797          * to close, and TTY_CLOSING makes sure we can't be reopened.
1798          */
1799         if (tty_closing)
1800                 set_bit(TTY_CLOSING, &tty->flags);
1801         if (o_tty_closing)
1802                 set_bit(TTY_CLOSING, &o_tty->flags);
1803
1804         /*
1805          * If _either_ side is closing, make sure there aren't any
1806          * processes that still think tty or o_tty is their controlling
1807          * tty.
1808          */
1809         if (tty_closing || o_tty_closing) {
1810                 read_lock(&tasklist_lock);
1811                 session_clear_tty(tty->session);
1812                 if (o_tty)
1813                         session_clear_tty(o_tty->session);
1814                 read_unlock(&tasklist_lock);
1815         }
1816
1817         mutex_unlock(&tty_mutex);
1818         tty_unlock_pair(tty, o_tty);
1819         /* At this point the TTY_CLOSING flag should ensure a dead tty
1820            cannot be re-opened by a racing opener */
1821
1822         /* check whether both sides are closing ... */
1823         if (!tty_closing || (o_tty && !o_tty_closing))
1824                 return 0;
1825
1826 #ifdef TTY_DEBUG_HANGUP
1827         printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1828 #endif
1829         /*
1830          * Ask the line discipline code to release its structures
1831          */
1832         tty_ldisc_release(tty, o_tty);
1833         /*
1834          * The release_tty function takes care of the details of clearing
1835          * the slots and preserving the termios structure. The tty_unlock_pair
1836          * should be safe as we keep a kref while the tty is locked (so the
1837          * unlock never unlocks a freed tty).
1838          */
1839         mutex_lock(&tty_mutex);
1840         release_tty(tty, idx);
1841         mutex_unlock(&tty_mutex);
1842
1843         return 0;
1844 }
1845
1846 /**
1847  *      tty_open_current_tty - get tty of current task for open
1848  *      @device: device number
1849  *      @filp: file pointer to tty
1850  *      @return: tty of the current task iff @device is /dev/tty
1851  *
1852  *      We cannot return driver and index like for the other nodes because
1853  *      devpts will not work then. It expects inodes to be from devpts FS.
1854  *
1855  *      We need to move to returning a refcounted object from all the lookup
1856  *      paths including this one.
1857  */
1858 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1859 {
1860         struct tty_struct *tty;
1861
1862         if (device != MKDEV(TTYAUX_MAJOR, 0))
1863                 return NULL;
1864
1865         tty = get_current_tty();
1866         if (!tty)
1867                 return ERR_PTR(-ENXIO);
1868
1869         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1870         /* noctty = 1; */
1871         tty_kref_put(tty);
1872         /* FIXME: we put a reference and return a TTY! */
1873         /* This is only safe because the caller holds tty_mutex */
1874         return tty;
1875 }
1876
1877 /**
1878  *      tty_lookup_driver - lookup a tty driver for a given device file
1879  *      @device: device number
1880  *      @filp: file pointer to tty
1881  *      @noctty: set if the device should not become a controlling tty
1882  *      @index: index for the device in the @return driver
1883  *      @return: driver for this inode (with increased refcount)
1884  *
1885  *      If @return is not erroneous, the caller is responsible to decrement the
1886  *      refcount by tty_driver_kref_put.
1887  *
1888  *      Locking: tty_mutex protects get_tty_driver
1889  */
1890 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1891                 int *noctty, int *index)
1892 {
1893         struct tty_driver *driver;
1894
1895         switch (device) {
1896 #ifdef CONFIG_VT
1897         case MKDEV(TTY_MAJOR, 0): {
1898                 extern struct tty_driver *console_driver;
1899                 driver = tty_driver_kref_get(console_driver);
1900                 *index = fg_console;
1901                 *noctty = 1;
1902                 break;
1903         }
1904 #endif
1905         case MKDEV(TTYAUX_MAJOR, 1): {
1906                 struct tty_driver *console_driver = console_device(index);
1907                 if (console_driver) {
1908                         driver = tty_driver_kref_get(console_driver);
1909                         if (driver) {
1910                                 /* Don't let /dev/console block */
1911                                 filp->f_flags |= O_NONBLOCK;
1912                                 *noctty = 1;
1913                                 break;
1914                         }
1915                 }
1916                 return ERR_PTR(-ENODEV);
1917         }
1918         default:
1919                 driver = get_tty_driver(device, index);
1920                 if (!driver)
1921                         return ERR_PTR(-ENODEV);
1922                 break;
1923         }
1924         return driver;
1925 }
1926
1927 /**
1928  *      tty_open                -       open a tty device
1929  *      @inode: inode of device file
1930  *      @filp: file pointer to tty
1931  *
1932  *      tty_open and tty_release keep up the tty count that contains the
1933  *      number of opens done on a tty. We cannot use the inode-count, as
1934  *      different inodes might point to the same tty.
1935  *
1936  *      Open-counting is needed for pty masters, as well as for keeping
1937  *      track of serial lines: DTR is dropped when the last close happens.
1938  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1939  *
1940  *      The termios state of a pty is reset on first open so that
1941  *      settings don't persist across reuse.
1942  *
1943  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1944  *               tty->count should protect the rest.
1945  *               ->siglock protects ->signal/->sighand
1946  *
1947  *      Note: the tty_unlock/lock cases without a ref are only safe due to
1948  *      tty_mutex
1949  */
1950
1951 static int tty_open(struct inode *inode, struct file *filp)
1952 {
1953         struct tty_struct *tty;
1954         int noctty, retval;
1955         struct tty_driver *driver = NULL;
1956         int index;
1957         dev_t device = inode->i_rdev;
1958         unsigned saved_flags = filp->f_flags;
1959
1960         nonseekable_open(inode, filp);
1961
1962 retry_open:
1963         retval = tty_alloc_file(filp);
1964         if (retval)
1965                 return -ENOMEM;
1966
1967         noctty = filp->f_flags & O_NOCTTY;
1968         index  = -1;
1969         retval = 0;
1970
1971         mutex_lock(&tty_mutex);
1972         /* This is protected by the tty_mutex */
1973         tty = tty_open_current_tty(device, filp);
1974         if (IS_ERR(tty)) {
1975                 retval = PTR_ERR(tty);
1976                 goto err_unlock;
1977         } else if (!tty) {
1978                 driver = tty_lookup_driver(device, filp, &noctty, &index);
1979                 if (IS_ERR(driver)) {
1980                         retval = PTR_ERR(driver);
1981                         goto err_unlock;
1982                 }
1983
1984                 /* check whether we're reopening an existing tty */
1985                 tty = tty_driver_lookup_tty(driver, inode, index);
1986                 if (IS_ERR(tty)) {
1987                         retval = PTR_ERR(tty);
1988                         goto err_unlock;
1989                 }
1990         }
1991
1992         if (tty) {
1993                 tty_lock(tty);
1994                 retval = tty_reopen(tty);
1995                 if (retval < 0) {
1996                         tty_unlock(tty);
1997                         tty = ERR_PTR(retval);
1998                 }
1999         } else  /* Returns with the tty_lock held for now */
2000                 tty = tty_init_dev(driver, index);
2001
2002         mutex_unlock(&tty_mutex);
2003         if (driver)
2004                 tty_driver_kref_put(driver);
2005         if (IS_ERR(tty)) {
2006                 retval = PTR_ERR(tty);
2007                 goto err_file;
2008         }
2009
2010         tty_add_file(tty, filp);
2011
2012         check_tty_count(tty, __func__);
2013         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2014             tty->driver->subtype == PTY_TYPE_MASTER)
2015                 noctty = 1;
2016 #ifdef TTY_DEBUG_HANGUP
2017         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2018 #endif
2019         if (tty->ops->open)
2020                 retval = tty->ops->open(tty, filp);
2021         else
2022                 retval = -ENODEV;
2023         filp->f_flags = saved_flags;
2024
2025         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2026                                                 !capable(CAP_SYS_ADMIN))
2027                 retval = -EBUSY;
2028
2029         if (retval) {
2030 #ifdef TTY_DEBUG_HANGUP
2031                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2032                                 retval, tty->name);
2033 #endif
2034                 tty_unlock(tty); /* need to call tty_release without BTM */
2035                 tty_release(inode, filp);
2036                 if (retval != -ERESTARTSYS)
2037                         return retval;
2038
2039                 if (signal_pending(current))
2040                         return retval;
2041
2042                 schedule();
2043                 /*
2044                  * Need to reset f_op in case a hangup happened.
2045                  */
2046                 if (filp->f_op == &hung_up_tty_fops)
2047                         filp->f_op = &tty_fops;
2048                 goto retry_open;
2049         }
2050         tty_unlock(tty);
2051
2052
2053         mutex_lock(&tty_mutex);
2054         tty_lock(tty);
2055         spin_lock_irq(&current->sighand->siglock);
2056         if (!noctty &&
2057             current->signal->leader &&
2058             !current->signal->tty &&
2059             tty->session == NULL)
2060                 __proc_set_tty(current, tty);
2061         spin_unlock_irq(&current->sighand->siglock);
2062         tty_unlock(tty);
2063         mutex_unlock(&tty_mutex);
2064         return 0;
2065 err_unlock:
2066         mutex_unlock(&tty_mutex);
2067         /* after locks to avoid deadlock */
2068         if (!IS_ERR_OR_NULL(driver))
2069                 tty_driver_kref_put(driver);
2070 err_file:
2071         tty_free_file(filp);
2072         return retval;
2073 }
2074
2075
2076
2077 /**
2078  *      tty_poll        -       check tty status
2079  *      @filp: file being polled
2080  *      @wait: poll wait structures to update
2081  *
2082  *      Call the line discipline polling method to obtain the poll
2083  *      status of the device.
2084  *
2085  *      Locking: locks called line discipline but ldisc poll method
2086  *      may be re-entered freely by other callers.
2087  */
2088
2089 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2090 {
2091         struct tty_struct *tty = file_tty(filp);
2092         struct tty_ldisc *ld;
2093         int ret = 0;
2094
2095         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2096                 return 0;
2097
2098         ld = tty_ldisc_ref_wait(tty);
2099         if (ld->ops->poll)
2100                 ret = (ld->ops->poll)(tty, filp, wait);
2101         tty_ldisc_deref(ld);
2102         return ret;
2103 }
2104
2105 static int __tty_fasync(int fd, struct file *filp, int on)
2106 {
2107         struct tty_struct *tty = file_tty(filp);
2108         unsigned long flags;
2109         int retval = 0;
2110
2111         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2112                 goto out;
2113
2114         retval = fasync_helper(fd, filp, on, &tty->fasync);
2115         if (retval <= 0)
2116                 goto out;
2117
2118         if (on) {
2119                 enum pid_type type;
2120                 struct pid *pid;
2121                 if (!waitqueue_active(&tty->read_wait))
2122                         tty->minimum_to_wake = 1;
2123                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2124                 if (tty->pgrp) {
2125                         pid = tty->pgrp;
2126                         type = PIDTYPE_PGID;
2127                 } else {
2128                         pid = task_pid(current);
2129                         type = PIDTYPE_PID;
2130                 }
2131                 get_pid(pid);
2132                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2133                 retval = __f_setown(filp, pid, type, 0);
2134                 put_pid(pid);
2135                 if (retval)
2136                         goto out;
2137         } else {
2138                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2139                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2140         }
2141         retval = 0;
2142 out:
2143         return retval;
2144 }
2145
2146 static int tty_fasync(int fd, struct file *filp, int on)
2147 {
2148         struct tty_struct *tty = file_tty(filp);
2149         int retval;
2150
2151         tty_lock(tty);
2152         retval = __tty_fasync(fd, filp, on);
2153         tty_unlock(tty);
2154
2155         return retval;
2156 }
2157
2158 /**
2159  *      tiocsti                 -       fake input character
2160  *      @tty: tty to fake input into
2161  *      @p: pointer to character
2162  *
2163  *      Fake input to a tty device. Does the necessary locking and
2164  *      input management.
2165  *
2166  *      FIXME: does not honour flow control ??
2167  *
2168  *      Locking:
2169  *              Called functions take tty_ldisc_lock
2170  *              current->signal->tty check is safe without locks
2171  *
2172  *      FIXME: may race normal receive processing
2173  */
2174
2175 static int tiocsti(struct tty_struct *tty, char __user *p)
2176 {
2177         char ch, mbz = 0;
2178         struct tty_ldisc *ld;
2179
2180         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2181                 return -EPERM;
2182         if (get_user(ch, p))
2183                 return -EFAULT;
2184         tty_audit_tiocsti(tty, ch);
2185         ld = tty_ldisc_ref_wait(tty);
2186         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2187         tty_ldisc_deref(ld);
2188         return 0;
2189 }
2190
2191 /**
2192  *      tiocgwinsz              -       implement window query ioctl
2193  *      @tty; tty
2194  *      @arg: user buffer for result
2195  *
2196  *      Copies the kernel idea of the window size into the user buffer.
2197  *
2198  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2199  *              is consistent.
2200  */
2201
2202 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2203 {
2204         int err;
2205
2206         mutex_lock(&tty->termios_mutex);
2207         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2208         mutex_unlock(&tty->termios_mutex);
2209
2210         return err ? -EFAULT: 0;
2211 }
2212
2213 /**
2214  *      tty_do_resize           -       resize event
2215  *      @tty: tty being resized
2216  *      @rows: rows (character)
2217  *      @cols: cols (character)
2218  *
2219  *      Update the termios variables and send the necessary signals to
2220  *      peform a terminal resize correctly
2221  */
2222
2223 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2224 {
2225         struct pid *pgrp;
2226         unsigned long flags;
2227
2228         /* Lock the tty */
2229         mutex_lock(&tty->termios_mutex);
2230         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2231                 goto done;
2232         /* Get the PID values and reference them so we can
2233            avoid holding the tty ctrl lock while sending signals */
2234         spin_lock_irqsave(&tty->ctrl_lock, flags);
2235         pgrp = get_pid(tty->pgrp);
2236         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2237
2238         if (pgrp)
2239                 kill_pgrp(pgrp, SIGWINCH, 1);
2240         put_pid(pgrp);
2241
2242         tty->winsize = *ws;
2243 done:
2244         mutex_unlock(&tty->termios_mutex);
2245         return 0;
2246 }
2247 EXPORT_SYMBOL(tty_do_resize);
2248
2249 /**
2250  *      tiocswinsz              -       implement window size set ioctl
2251  *      @tty; tty side of tty
2252  *      @arg: user buffer for result
2253  *
2254  *      Copies the user idea of the window size to the kernel. Traditionally
2255  *      this is just advisory information but for the Linux console it
2256  *      actually has driver level meaning and triggers a VC resize.
2257  *
2258  *      Locking:
2259  *              Driver dependent. The default do_resize method takes the
2260  *      tty termios mutex and ctrl_lock. The console takes its own lock
2261  *      then calls into the default method.
2262  */
2263
2264 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2265 {
2266         struct winsize tmp_ws;
2267         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2268                 return -EFAULT;
2269
2270         if (tty->ops->resize)
2271                 return tty->ops->resize(tty, &tmp_ws);
2272         else
2273                 return tty_do_resize(tty, &tmp_ws);
2274 }
2275
2276 /**
2277  *      tioccons        -       allow admin to move logical console
2278  *      @file: the file to become console
2279  *
2280  *      Allow the administrator to move the redirected console device
2281  *
2282  *      Locking: uses redirect_lock to guard the redirect information
2283  */
2284
2285 static int tioccons(struct file *file)
2286 {
2287         if (!capable(CAP_SYS_ADMIN))
2288                 return -EPERM;
2289         if (file->f_op->write == redirected_tty_write) {
2290                 struct file *f;
2291                 spin_lock(&redirect_lock);
2292                 f = redirect;
2293                 redirect = NULL;
2294                 spin_unlock(&redirect_lock);
2295                 if (f)
2296                         fput(f);
2297                 return 0;
2298         }
2299         spin_lock(&redirect_lock);
2300         if (redirect) {
2301                 spin_unlock(&redirect_lock);
2302                 return -EBUSY;
2303         }
2304         redirect = get_file(file);
2305         spin_unlock(&redirect_lock);
2306         return 0;
2307 }
2308
2309 /**
2310  *      fionbio         -       non blocking ioctl
2311  *      @file: file to set blocking value
2312  *      @p: user parameter
2313  *
2314  *      Historical tty interfaces had a blocking control ioctl before
2315  *      the generic functionality existed. This piece of history is preserved
2316  *      in the expected tty API of posix OS's.
2317  *
2318  *      Locking: none, the open file handle ensures it won't go away.
2319  */
2320
2321 static int fionbio(struct file *file, int __user *p)
2322 {
2323         int nonblock;
2324
2325         if (get_user(nonblock, p))
2326                 return -EFAULT;
2327
2328         spin_lock(&file->f_lock);
2329         if (nonblock)
2330                 file->f_flags |= O_NONBLOCK;
2331         else
2332                 file->f_flags &= ~O_NONBLOCK;
2333         spin_unlock(&file->f_lock);
2334         return 0;
2335 }
2336
2337 /**
2338  *      tiocsctty       -       set controlling tty
2339  *      @tty: tty structure
2340  *      @arg: user argument
2341  *
2342  *      This ioctl is used to manage job control. It permits a session
2343  *      leader to set this tty as the controlling tty for the session.
2344  *
2345  *      Locking:
2346  *              Takes tty_mutex() to protect tty instance
2347  *              Takes tasklist_lock internally to walk sessions
2348  *              Takes ->siglock() when updating signal->tty
2349  */
2350
2351 static int tiocsctty(struct tty_struct *tty, int arg)
2352 {
2353         int ret = 0;
2354         if (current->signal->leader && (task_session(current) == tty->session))
2355                 return ret;
2356
2357         mutex_lock(&tty_mutex);
2358         /*
2359          * The process must be a session leader and
2360          * not have a controlling tty already.
2361          */
2362         if (!current->signal->leader || current->signal->tty) {
2363                 ret = -EPERM;
2364                 goto unlock;
2365         }
2366
2367         if (tty->session) {
2368                 /*
2369                  * This tty is already the controlling
2370                  * tty for another session group!
2371                  */
2372                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2373                         /*
2374                          * Steal it away
2375                          */
2376                         read_lock(&tasklist_lock);
2377                         session_clear_tty(tty->session);
2378                         read_unlock(&tasklist_lock);
2379                 } else {
2380                         ret = -EPERM;
2381                         goto unlock;
2382                 }
2383         }
2384         proc_set_tty(current, tty);
2385 unlock:
2386         mutex_unlock(&tty_mutex);
2387         return ret;
2388 }
2389
2390 /**
2391  *      tty_get_pgrp    -       return a ref counted pgrp pid
2392  *      @tty: tty to read
2393  *
2394  *      Returns a refcounted instance of the pid struct for the process
2395  *      group controlling the tty.
2396  */
2397
2398 struct pid *tty_get_pgrp(struct tty_struct *tty)
2399 {
2400         unsigned long flags;
2401         struct pid *pgrp;
2402
2403         spin_lock_irqsave(&tty->ctrl_lock, flags);
2404         pgrp = get_pid(tty->pgrp);
2405         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2406
2407         return pgrp;
2408 }
2409 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2410
2411 /**
2412  *      tiocgpgrp               -       get process group
2413  *      @tty: tty passed by user
2414  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2415  *      @p: returned pid
2416  *
2417  *      Obtain the process group of the tty. If there is no process group
2418  *      return an error.
2419  *
2420  *      Locking: none. Reference to current->signal->tty is safe.
2421  */
2422
2423 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2424 {
2425         struct pid *pid;
2426         int ret;
2427         /*
2428          * (tty == real_tty) is a cheap way of
2429          * testing if the tty is NOT a master pty.
2430          */
2431         if (tty == real_tty && current->signal->tty != real_tty)
2432                 return -ENOTTY;
2433         pid = tty_get_pgrp(real_tty);
2434         ret =  put_user(pid_vnr(pid), p);
2435         put_pid(pid);
2436         return ret;
2437 }
2438
2439 /**
2440  *      tiocspgrp               -       attempt to set process group
2441  *      @tty: tty passed by user
2442  *      @real_tty: tty side device matching tty passed by user
2443  *      @p: pid pointer
2444  *
2445  *      Set the process group of the tty to the session passed. Only
2446  *      permitted where the tty session is our session.
2447  *
2448  *      Locking: RCU, ctrl lock
2449  */
2450
2451 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2452 {
2453         struct pid *pgrp;
2454         pid_t pgrp_nr;
2455         int retval = tty_check_change(real_tty);
2456         unsigned long flags;
2457
2458         if (retval == -EIO)
2459                 return -ENOTTY;
2460         if (retval)
2461                 return retval;
2462         if (!current->signal->tty ||
2463             (current->signal->tty != real_tty) ||
2464             (real_tty->session != task_session(current)))
2465                 return -ENOTTY;
2466         if (get_user(pgrp_nr, p))
2467                 return -EFAULT;
2468         if (pgrp_nr < 0)
2469                 return -EINVAL;
2470         rcu_read_lock();
2471         pgrp = find_vpid(pgrp_nr);
2472         retval = -ESRCH;
2473         if (!pgrp)
2474                 goto out_unlock;
2475         retval = -EPERM;
2476         if (session_of_pgrp(pgrp) != task_session(current))
2477                 goto out_unlock;
2478         retval = 0;
2479         spin_lock_irqsave(&tty->ctrl_lock, flags);
2480         put_pid(real_tty->pgrp);
2481         real_tty->pgrp = get_pid(pgrp);
2482         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2483 out_unlock:
2484         rcu_read_unlock();
2485         return retval;
2486 }
2487
2488 /**
2489  *      tiocgsid                -       get session id
2490  *      @tty: tty passed by user
2491  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2492  *      @p: pointer to returned session id
2493  *
2494  *      Obtain the session id of the tty. If there is no session
2495  *      return an error.
2496  *
2497  *      Locking: none. Reference to current->signal->tty is safe.
2498  */
2499
2500 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2501 {
2502         /*
2503          * (tty == real_tty) is a cheap way of
2504          * testing if the tty is NOT a master pty.
2505         */
2506         if (tty == real_tty && current->signal->tty != real_tty)
2507                 return -ENOTTY;
2508         if (!real_tty->session)
2509                 return -ENOTTY;
2510         return put_user(pid_vnr(real_tty->session), p);
2511 }
2512
2513 /**
2514  *      tiocsetd        -       set line discipline
2515  *      @tty: tty device
2516  *      @p: pointer to user data
2517  *
2518  *      Set the line discipline according to user request.
2519  *
2520  *      Locking: see tty_set_ldisc, this function is just a helper
2521  */
2522
2523 static int tiocsetd(struct tty_struct *tty, int __user *p)
2524 {
2525         int ldisc;
2526         int ret;
2527
2528         if (get_user(ldisc, p))
2529                 return -EFAULT;
2530
2531         ret = tty_set_ldisc(tty, ldisc);
2532
2533         return ret;
2534 }
2535
2536 /**
2537  *      send_break      -       performed time break
2538  *      @tty: device to break on
2539  *      @duration: timeout in mS
2540  *
2541  *      Perform a timed break on hardware that lacks its own driver level
2542  *      timed break functionality.
2543  *
2544  *      Locking:
2545  *              atomic_write_lock serializes
2546  *
2547  */
2548
2549 static int send_break(struct tty_struct *tty, unsigned int duration)
2550 {
2551         int retval;
2552
2553         if (tty->ops->break_ctl == NULL)
2554                 return 0;
2555
2556         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2557                 retval = tty->ops->break_ctl(tty, duration);
2558         else {
2559                 /* Do the work ourselves */
2560                 if (tty_write_lock(tty, 0) < 0)
2561                         return -EINTR;
2562                 retval = tty->ops->break_ctl(tty, -1);
2563                 if (retval)
2564                         goto out;
2565                 if (!signal_pending(current))
2566                         msleep_interruptible(duration);
2567                 retval = tty->ops->break_ctl(tty, 0);
2568 out:
2569                 tty_write_unlock(tty);
2570                 if (signal_pending(current))
2571                         retval = -EINTR;
2572         }
2573         return retval;
2574 }
2575
2576 /**
2577  *      tty_tiocmget            -       get modem status
2578  *      @tty: tty device
2579  *      @file: user file pointer
2580  *      @p: pointer to result
2581  *
2582  *      Obtain the modem status bits from the tty driver if the feature
2583  *      is supported. Return -EINVAL if it is not available.
2584  *
2585  *      Locking: none (up to the driver)
2586  */
2587
2588 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2589 {
2590         int retval = -EINVAL;
2591
2592         if (tty->ops->tiocmget) {
2593                 retval = tty->ops->tiocmget(tty);
2594
2595                 if (retval >= 0)
2596                         retval = put_user(retval, p);
2597         }
2598         return retval;
2599 }
2600
2601 /**
2602  *      tty_tiocmset            -       set modem status
2603  *      @tty: tty device
2604  *      @cmd: command - clear bits, set bits or set all
2605  *      @p: pointer to desired bits
2606  *
2607  *      Set the modem status bits from the tty driver if the feature
2608  *      is supported. Return -EINVAL if it is not available.
2609  *
2610  *      Locking: none (up to the driver)
2611  */
2612
2613 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2614              unsigned __user *p)
2615 {
2616         int retval;
2617         unsigned int set, clear, val;
2618
2619         if (tty->ops->tiocmset == NULL)
2620                 return -EINVAL;
2621
2622         retval = get_user(val, p);
2623         if (retval)
2624                 return retval;
2625         set = clear = 0;
2626         switch (cmd) {
2627         case TIOCMBIS:
2628                 set = val;
2629                 break;
2630         case TIOCMBIC:
2631                 clear = val;
2632                 break;
2633         case TIOCMSET:
2634                 set = val;
2635                 clear = ~val;
2636                 break;
2637         }
2638         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2639         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2640         return tty->ops->tiocmset(tty, set, clear);
2641 }
2642
2643 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2644 {
2645         int retval = -EINVAL;
2646         struct serial_icounter_struct icount;
2647         memset(&icount, 0, sizeof(icount));
2648         if (tty->ops->get_icount)
2649                 retval = tty->ops->get_icount(tty, &icount);
2650         if (retval != 0)
2651                 return retval;
2652         if (copy_to_user(arg, &icount, sizeof(icount)))
2653                 return -EFAULT;
2654         return 0;
2655 }
2656
2657 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2658 {
2659         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2660             tty->driver->subtype == PTY_TYPE_MASTER)
2661                 tty = tty->link;
2662         return tty;
2663 }
2664 EXPORT_SYMBOL(tty_pair_get_tty);
2665
2666 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2667 {
2668         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2669             tty->driver->subtype == PTY_TYPE_MASTER)
2670             return tty;
2671         return tty->link;
2672 }
2673 EXPORT_SYMBOL(tty_pair_get_pty);
2674
2675 /*
2676  * Split this up, as gcc can choke on it otherwise..
2677  */
2678 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2679 {
2680         struct tty_struct *tty = file_tty(file);
2681         struct tty_struct *real_tty;
2682         void __user *p = (void __user *)arg;
2683         int retval;
2684         struct tty_ldisc *ld;
2685
2686         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2687                 return -EINVAL;
2688
2689         real_tty = tty_pair_get_tty(tty);
2690
2691         /*
2692          * Factor out some common prep work
2693          */
2694         switch (cmd) {
2695         case TIOCSETD:
2696         case TIOCSBRK:
2697         case TIOCCBRK:
2698         case TCSBRK:
2699         case TCSBRKP:
2700                 retval = tty_check_change(tty);
2701                 if (retval)
2702                         return retval;
2703                 if (cmd != TIOCCBRK) {
2704                         tty_wait_until_sent(tty, 0);
2705                         if (signal_pending(current))
2706                                 return -EINTR;
2707                 }
2708                 break;
2709         }
2710
2711         /*
2712          *      Now do the stuff.
2713          */
2714         switch (cmd) {
2715         case TIOCSTI:
2716                 return tiocsti(tty, p);
2717         case TIOCGWINSZ:
2718                 return tiocgwinsz(real_tty, p);
2719         case TIOCSWINSZ:
2720                 return tiocswinsz(real_tty, p);
2721         case TIOCCONS:
2722                 return real_tty != tty ? -EINVAL : tioccons(file);
2723         case FIONBIO:
2724                 return fionbio(file, p);
2725         case TIOCEXCL:
2726                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2727                 return 0;
2728         case TIOCNXCL:
2729                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2730                 return 0;
2731         case TIOCGEXCL:
2732         {
2733                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2734                 return put_user(excl, (int __user *)p);
2735         }
2736         case TIOCNOTTY:
2737                 if (current->signal->tty != tty)
2738                         return -ENOTTY;
2739                 no_tty();
2740                 return 0;
2741         case TIOCSCTTY:
2742                 return tiocsctty(tty, arg);
2743         case TIOCGPGRP:
2744                 return tiocgpgrp(tty, real_tty, p);
2745         case TIOCSPGRP:
2746                 return tiocspgrp(tty, real_tty, p);
2747         case TIOCGSID:
2748                 return tiocgsid(tty, real_tty, p);
2749         case TIOCGETD:
2750                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2751         case TIOCSETD:
2752                 return tiocsetd(tty, p);
2753         case TIOCVHANGUP:
2754                 if (!capable(CAP_SYS_ADMIN))
2755                         return -EPERM;
2756                 tty_vhangup(tty);
2757                 return 0;
2758         case TIOCGDEV:
2759         {
2760                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2761                 return put_user(ret, (unsigned int __user *)p);
2762         }
2763         /*
2764          * Break handling
2765          */
2766         case TIOCSBRK:  /* Turn break on, unconditionally */
2767                 if (tty->ops->break_ctl)
2768                         return tty->ops->break_ctl(tty, -1);
2769                 return 0;
2770         case TIOCCBRK:  /* Turn break off, unconditionally */
2771                 if (tty->ops->break_ctl)
2772                         return tty->ops->break_ctl(tty, 0);
2773                 return 0;
2774         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2775                 /* non-zero arg means wait for all output data
2776                  * to be sent (performed above) but don't send break.
2777                  * This is used by the tcdrain() termios function.
2778                  */
2779                 if (!arg)
2780                         return send_break(tty, 250);
2781                 return 0;
2782         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2783                 return send_break(tty, arg ? arg*100 : 250);
2784
2785         case TIOCMGET:
2786                 return tty_tiocmget(tty, p);
2787         case TIOCMSET:
2788         case TIOCMBIC:
2789         case TIOCMBIS:
2790                 return tty_tiocmset(tty, cmd, p);
2791         case TIOCGICOUNT:
2792                 retval = tty_tiocgicount(tty, p);
2793                 /* For the moment allow fall through to the old method */
2794                 if (retval != -EINVAL)
2795                         return retval;
2796                 break;
2797         case TCFLSH:
2798                 switch (arg) {
2799                 case TCIFLUSH:
2800                 case TCIOFLUSH:
2801                 /* flush tty buffer and allow ldisc to process ioctl */
2802                         tty_buffer_flush(tty);
2803                         break;
2804                 }
2805                 break;
2806         }
2807         if (tty->ops->ioctl) {
2808                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2809                 if (retval != -ENOIOCTLCMD)
2810                         return retval;
2811         }
2812         ld = tty_ldisc_ref_wait(tty);
2813         retval = -EINVAL;
2814         if (ld->ops->ioctl) {
2815                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2816                 if (retval == -ENOIOCTLCMD)
2817                         retval = -ENOTTY;
2818         }
2819         tty_ldisc_deref(ld);
2820         return retval;
2821 }
2822
2823 #ifdef CONFIG_COMPAT
2824 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2825                                 unsigned long arg)
2826 {
2827         struct tty_struct *tty = file_tty(file);
2828         struct tty_ldisc *ld;
2829         int retval = -ENOIOCTLCMD;
2830
2831         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2832                 return -EINVAL;
2833
2834         if (tty->ops->compat_ioctl) {
2835                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2836                 if (retval != -ENOIOCTLCMD)
2837                         return retval;
2838         }
2839
2840         ld = tty_ldisc_ref_wait(tty);
2841         if (ld->ops->compat_ioctl)
2842                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2843         else
2844                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2845         tty_ldisc_deref(ld);
2846
2847         return retval;
2848 }
2849 #endif
2850
2851 static int this_tty(const void *t, struct file *file, unsigned fd)
2852 {
2853         if (likely(file->f_op->read != tty_read))
2854                 return 0;
2855         return file_tty(file) != t ? 0 : fd + 1;
2856 }
2857         
2858 /*
2859  * This implements the "Secure Attention Key" ---  the idea is to
2860  * prevent trojan horses by killing all processes associated with this
2861  * tty when the user hits the "Secure Attention Key".  Required for
2862  * super-paranoid applications --- see the Orange Book for more details.
2863  *
2864  * This code could be nicer; ideally it should send a HUP, wait a few
2865  * seconds, then send a INT, and then a KILL signal.  But you then
2866  * have to coordinate with the init process, since all processes associated
2867  * with the current tty must be dead before the new getty is allowed
2868  * to spawn.
2869  *
2870  * Now, if it would be correct ;-/ The current code has a nasty hole -
2871  * it doesn't catch files in flight. We may send the descriptor to ourselves
2872  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2873  *
2874  * Nasty bug: do_SAK is being called in interrupt context.  This can
2875  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2876  */
2877 void __do_SAK(struct tty_struct *tty)
2878 {
2879 #ifdef TTY_SOFT_SAK
2880         tty_hangup(tty);
2881 #else
2882         struct task_struct *g, *p;
2883         struct pid *session;
2884         int             i;
2885
2886         if (!tty)
2887                 return;
2888         session = tty->session;
2889
2890         tty_ldisc_flush(tty);
2891
2892         tty_driver_flush_buffer(tty);
2893
2894         read_lock(&tasklist_lock);
2895         /* Kill the entire session */
2896         do_each_pid_task(session, PIDTYPE_SID, p) {
2897                 printk(KERN_NOTICE "SAK: killed process %d"
2898                         " (%s): task_session(p)==tty->session\n",
2899                         task_pid_nr(p), p->comm);
2900                 send_sig(SIGKILL, p, 1);
2901         } while_each_pid_task(session, PIDTYPE_SID, p);
2902         /* Now kill any processes that happen to have the
2903          * tty open.
2904          */
2905         do_each_thread(g, p) {
2906                 if (p->signal->tty == tty) {
2907                         printk(KERN_NOTICE "SAK: killed process %d"
2908                             " (%s): task_session(p)==tty->session\n",
2909                             task_pid_nr(p), p->comm);
2910                         send_sig(SIGKILL, p, 1);
2911                         continue;
2912                 }
2913                 task_lock(p);
2914                 i = iterate_fd(p->files, 0, this_tty, tty);
2915                 if (i != 0) {
2916                         printk(KERN_NOTICE "SAK: killed process %d"
2917                             " (%s): fd#%d opened to the tty\n",
2918                                     task_pid_nr(p), p->comm, i - 1);
2919                         force_sig(SIGKILL, p);
2920                 }
2921                 task_unlock(p);
2922         } while_each_thread(g, p);
2923         read_unlock(&tasklist_lock);
2924 #endif
2925 }
2926
2927 static void do_SAK_work(struct work_struct *work)
2928 {
2929         struct tty_struct *tty =
2930                 container_of(work, struct tty_struct, SAK_work);
2931         __do_SAK(tty);
2932 }
2933
2934 /*
2935  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2936  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2937  * the values which we write to it will be identical to the values which it
2938  * already has. --akpm
2939  */
2940 void do_SAK(struct tty_struct *tty)
2941 {
2942         if (!tty)
2943                 return;
2944         schedule_work(&tty->SAK_work);
2945 }
2946
2947 EXPORT_SYMBOL(do_SAK);
2948
2949 static int dev_match_devt(struct device *dev, const void *data)
2950 {
2951         const dev_t *devt = data;
2952         return dev->devt == *devt;
2953 }
2954
2955 /* Must put_device() after it's unused! */
2956 static struct device *tty_get_device(struct tty_struct *tty)
2957 {
2958         dev_t devt = tty_devnum(tty);
2959         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2960 }
2961
2962
2963 /**
2964  *      initialize_tty_struct
2965  *      @tty: tty to initialize
2966  *
2967  *      This subroutine initializes a tty structure that has been newly
2968  *      allocated.
2969  *
2970  *      Locking: none - tty in question must not be exposed at this point
2971  */
2972
2973 void initialize_tty_struct(struct tty_struct *tty,
2974                 struct tty_driver *driver, int idx)
2975 {
2976         memset(tty, 0, sizeof(struct tty_struct));
2977         kref_init(&tty->kref);
2978         tty->magic = TTY_MAGIC;
2979         tty_ldisc_init(tty);
2980         tty->session = NULL;
2981         tty->pgrp = NULL;
2982         mutex_init(&tty->legacy_mutex);
2983         mutex_init(&tty->termios_mutex);
2984         mutex_init(&tty->ldisc_mutex);
2985         init_waitqueue_head(&tty->write_wait);
2986         init_waitqueue_head(&tty->read_wait);
2987         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2988         mutex_init(&tty->atomic_write_lock);
2989         spin_lock_init(&tty->ctrl_lock);
2990         INIT_LIST_HEAD(&tty->tty_files);
2991         INIT_WORK(&tty->SAK_work, do_SAK_work);
2992
2993         tty->driver = driver;
2994         tty->ops = driver->ops;
2995         tty->index = idx;
2996         tty_line_name(driver, idx, tty->name);
2997         tty->dev = tty_get_device(tty);
2998 }
2999
3000 /**
3001  *      deinitialize_tty_struct
3002  *      @tty: tty to deinitialize
3003  *
3004  *      This subroutine deinitializes a tty structure that has been newly
3005  *      allocated but tty_release cannot be called on that yet.
3006  *
3007  *      Locking: none - tty in question must not be exposed at this point
3008  */
3009 void deinitialize_tty_struct(struct tty_struct *tty)
3010 {
3011         tty_ldisc_deinit(tty);
3012 }
3013
3014 /**
3015  *      tty_put_char    -       write one character to a tty
3016  *      @tty: tty
3017  *      @ch: character
3018  *
3019  *      Write one byte to the tty using the provided put_char method
3020  *      if present. Returns the number of characters successfully output.
3021  *
3022  *      Note: the specific put_char operation in the driver layer may go
3023  *      away soon. Don't call it directly, use this method
3024  */
3025
3026 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3027 {
3028         if (tty->ops->put_char)
3029                 return tty->ops->put_char(tty, ch);
3030         return tty->ops->write(tty, &ch, 1);
3031 }
3032 EXPORT_SYMBOL_GPL(tty_put_char);
3033
3034 struct class *tty_class;
3035
3036 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3037                 unsigned int index, unsigned int count)
3038 {
3039         /* init here, since reused cdevs cause crashes */
3040         cdev_init(&driver->cdevs[index], &tty_fops);
3041         driver->cdevs[index].owner = driver->owner;
3042         return cdev_add(&driver->cdevs[index], dev, count);
3043 }
3044
3045 /**
3046  *      tty_register_device - register a tty device
3047  *      @driver: the tty driver that describes the tty device
3048  *      @index: the index in the tty driver for this tty device
3049  *      @device: a struct device that is associated with this tty device.
3050  *              This field is optional, if there is no known struct device
3051  *              for this tty device it can be set to NULL safely.
3052  *
3053  *      Returns a pointer to the struct device for this tty device
3054  *      (or ERR_PTR(-EFOO) on error).
3055  *
3056  *      This call is required to be made to register an individual tty device
3057  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3058  *      that bit is not set, this function should not be called by a tty
3059  *      driver.
3060  *
3061  *      Locking: ??
3062  */
3063
3064 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3065                                    struct device *device)
3066 {
3067         return tty_register_device_attr(driver, index, device, NULL, NULL);
3068 }
3069 EXPORT_SYMBOL(tty_register_device);
3070
3071 static void tty_device_create_release(struct device *dev)
3072 {
3073         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3074         kfree(dev);
3075 }
3076
3077 /**
3078  *      tty_register_device_attr - register a tty device
3079  *      @driver: the tty driver that describes the tty device
3080  *      @index: the index in the tty driver for this tty device
3081  *      @device: a struct device that is associated with this tty device.
3082  *              This field is optional, if there is no known struct device
3083  *              for this tty device it can be set to NULL safely.
3084  *      @drvdata: Driver data to be set to device.
3085  *      @attr_grp: Attribute group to be set on device.
3086  *
3087  *      Returns a pointer to the struct device for this tty device
3088  *      (or ERR_PTR(-EFOO) on error).
3089  *
3090  *      This call is required to be made to register an individual tty device
3091  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3092  *      that bit is not set, this function should not be called by a tty
3093  *      driver.
3094  *
3095  *      Locking: ??
3096  */
3097 struct device *tty_register_device_attr(struct tty_driver *driver,
3098                                    unsigned index, struct device *device,
3099                                    void *drvdata,
3100                                    const struct attribute_group **attr_grp)
3101 {
3102         char name[64];
3103         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3104         struct device *dev = NULL;
3105         int retval = -ENODEV;
3106         bool cdev = false;
3107
3108         if (index >= driver->num) {
3109                 printk(KERN_ERR "Attempt to register invalid tty line number "
3110                        " (%d).\n", index);
3111                 return ERR_PTR(-EINVAL);
3112         }
3113
3114         if (driver->type == TTY_DRIVER_TYPE_PTY)
3115                 pty_line_name(driver, index, name);
3116         else
3117                 tty_line_name(driver, index, name);
3118
3119         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3120                 retval = tty_cdev_add(driver, devt, index, 1);
3121                 if (retval)
3122                         goto error;
3123                 cdev = true;
3124         }
3125
3126         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3127         if (!dev) {
3128                 retval = -ENOMEM;
3129                 goto error;
3130         }
3131
3132         dev->devt = devt;
3133         dev->class = tty_class;
3134         dev->parent = device;
3135         dev->release = tty_device_create_release;
3136         dev_set_name(dev, "%s", name);
3137         dev->groups = attr_grp;
3138         dev_set_drvdata(dev, drvdata);
3139
3140         retval = device_register(dev);
3141         if (retval)
3142                 goto error;
3143
3144         return dev;
3145
3146 error:
3147         put_device(dev);
3148         if (cdev)
3149                 cdev_del(&driver->cdevs[index]);
3150         return ERR_PTR(retval);
3151 }
3152 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3153
3154 /**
3155  *      tty_unregister_device - unregister a tty device
3156  *      @driver: the tty driver that describes the tty device
3157  *      @index: the index in the tty driver for this tty device
3158  *
3159  *      If a tty device is registered with a call to tty_register_device() then
3160  *      this function must be called when the tty device is gone.
3161  *
3162  *      Locking: ??
3163  */
3164
3165 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3166 {
3167         device_destroy(tty_class,
3168                 MKDEV(driver->major, driver->minor_start) + index);
3169         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3170                 cdev_del(&driver->cdevs[index]);
3171 }
3172 EXPORT_SYMBOL(tty_unregister_device);
3173
3174 /**
3175  * __tty_alloc_driver -- allocate tty driver
3176  * @lines: count of lines this driver can handle at most
3177  * @owner: module which is repsonsible for this driver
3178  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3179  *
3180  * This should not be called directly, some of the provided macros should be
3181  * used instead. Use IS_ERR and friends on @retval.
3182  */
3183 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3184                 unsigned long flags)
3185 {
3186         struct tty_driver *driver;
3187         unsigned int cdevs = 1;
3188         int err;
3189
3190         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3191                 return ERR_PTR(-EINVAL);
3192
3193         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3194         if (!driver)
3195                 return ERR_PTR(-ENOMEM);
3196
3197         kref_init(&driver->kref);
3198         driver->magic = TTY_DRIVER_MAGIC;
3199         driver->num = lines;
3200         driver->owner = owner;
3201         driver->flags = flags;
3202
3203         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3204                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3205                                 GFP_KERNEL);
3206                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3207                                 GFP_KERNEL);
3208                 if (!driver->ttys || !driver->termios) {
3209                         err = -ENOMEM;
3210                         goto err_free_all;
3211                 }
3212         }
3213
3214         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3215                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3216                                 GFP_KERNEL);
3217                 if (!driver->ports) {
3218                         err = -ENOMEM;
3219                         goto err_free_all;
3220                 }
3221                 cdevs = lines;
3222         }
3223
3224         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3225         if (!driver->cdevs) {
3226                 err = -ENOMEM;
3227                 goto err_free_all;
3228         }
3229
3230         return driver;
3231 err_free_all:
3232         kfree(driver->ports);
3233         kfree(driver->ttys);
3234         kfree(driver->termios);
3235         kfree(driver);
3236         return ERR_PTR(err);
3237 }
3238 EXPORT_SYMBOL(__tty_alloc_driver);
3239
3240 static void destruct_tty_driver(struct kref *kref)
3241 {
3242         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3243         int i;
3244         struct ktermios *tp;
3245
3246         if (driver->flags & TTY_DRIVER_INSTALLED) {
3247                 /*
3248                  * Free the termios and termios_locked structures because
3249                  * we don't want to get memory leaks when modular tty
3250                  * drivers are removed from the kernel.
3251                  */
3252                 for (i = 0; i < driver->num; i++) {
3253                         tp = driver->termios[i];
3254                         if (tp) {
3255                                 driver->termios[i] = NULL;
3256                                 kfree(tp);
3257                         }
3258                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3259                                 tty_unregister_device(driver, i);
3260                 }
3261                 proc_tty_unregister_driver(driver);
3262                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3263                         cdev_del(&driver->cdevs[0]);
3264         }
3265         kfree(driver->cdevs);
3266         kfree(driver->ports);
3267         kfree(driver->termios);
3268         kfree(driver->ttys);
3269         kfree(driver);
3270 }
3271
3272 void tty_driver_kref_put(struct tty_driver *driver)
3273 {
3274         kref_put(&driver->kref, destruct_tty_driver);
3275 }
3276 EXPORT_SYMBOL(tty_driver_kref_put);
3277
3278 void tty_set_operations(struct tty_driver *driver,
3279                         const struct tty_operations *op)
3280 {
3281         driver->ops = op;
3282 };
3283 EXPORT_SYMBOL(tty_set_operations);
3284
3285 void put_tty_driver(struct tty_driver *d)
3286 {
3287         tty_driver_kref_put(d);
3288 }
3289 EXPORT_SYMBOL(put_tty_driver);
3290
3291 /*
3292  * Called by a tty driver to register itself.
3293  */
3294 int tty_register_driver(struct tty_driver *driver)
3295 {
3296         int error;
3297         int i;
3298         dev_t dev;
3299         struct device *d;
3300
3301         if (!driver->major) {
3302                 error = alloc_chrdev_region(&dev, driver->minor_start,
3303                                                 driver->num, driver->name);
3304                 if (!error) {
3305                         driver->major = MAJOR(dev);
3306                         driver->minor_start = MINOR(dev);
3307                 }
3308         } else {
3309                 dev = MKDEV(driver->major, driver->minor_start);
3310                 error = register_chrdev_region(dev, driver->num, driver->name);
3311         }
3312         if (error < 0)
3313                 goto err;
3314
3315         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3316                 error = tty_cdev_add(driver, dev, 0, driver->num);
3317                 if (error)
3318                         goto err_unreg_char;
3319         }
3320
3321         mutex_lock(&tty_mutex);
3322         list_add(&driver->tty_drivers, &tty_drivers);
3323         mutex_unlock(&tty_mutex);
3324
3325         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3326                 for (i = 0; i < driver->num; i++) {
3327                         d = tty_register_device(driver, i, NULL);
3328                         if (IS_ERR(d)) {
3329                                 error = PTR_ERR(d);
3330                                 goto err_unreg_devs;
3331                         }
3332                 }
3333         }
3334         proc_tty_register_driver(driver);
3335         driver->flags |= TTY_DRIVER_INSTALLED;
3336         return 0;
3337
3338 err_unreg_devs:
3339         for (i--; i >= 0; i--)
3340                 tty_unregister_device(driver, i);
3341
3342         mutex_lock(&tty_mutex);
3343         list_del(&driver->tty_drivers);
3344         mutex_unlock(&tty_mutex);
3345
3346 err_unreg_char:
3347         unregister_chrdev_region(dev, driver->num);
3348 err:
3349         return error;
3350 }
3351 EXPORT_SYMBOL(tty_register_driver);
3352
3353 /*
3354  * Called by a tty driver to unregister itself.
3355  */
3356 int tty_unregister_driver(struct tty_driver *driver)
3357 {
3358 #if 0
3359         /* FIXME */
3360         if (driver->refcount)
3361                 return -EBUSY;
3362 #endif
3363         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3364                                 driver->num);
3365         mutex_lock(&tty_mutex);
3366         list_del(&driver->tty_drivers);
3367         mutex_unlock(&tty_mutex);
3368         return 0;
3369 }
3370
3371 EXPORT_SYMBOL(tty_unregister_driver);
3372
3373 dev_t tty_devnum(struct tty_struct *tty)
3374 {
3375         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3376 }
3377 EXPORT_SYMBOL(tty_devnum);
3378
3379 void proc_clear_tty(struct task_struct *p)
3380 {
3381         unsigned long flags;
3382         struct tty_struct *tty;
3383         spin_lock_irqsave(&p->sighand->siglock, flags);
3384         tty = p->signal->tty;
3385         p->signal->tty = NULL;
3386         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3387         tty_kref_put(tty);
3388 }
3389
3390 /* Called under the sighand lock */
3391
3392 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3393 {
3394         if (tty) {
3395                 unsigned long flags;
3396                 /* We should not have a session or pgrp to put here but.... */
3397                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3398                 put_pid(tty->session);
3399                 put_pid(tty->pgrp);
3400                 tty->pgrp = get_pid(task_pgrp(tsk));
3401                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3402                 tty->session = get_pid(task_session(tsk));
3403                 if (tsk->signal->tty) {
3404                         printk(KERN_DEBUG "tty not NULL!!\n");
3405                         tty_kref_put(tsk->signal->tty);
3406                 }
3407         }
3408         put_pid(tsk->signal->tty_old_pgrp);
3409         tsk->signal->tty = tty_kref_get(tty);
3410         tsk->signal->tty_old_pgrp = NULL;
3411 }
3412
3413 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3414 {
3415         spin_lock_irq(&tsk->sighand->siglock);
3416         __proc_set_tty(tsk, tty);
3417         spin_unlock_irq(&tsk->sighand->siglock);
3418 }
3419
3420 struct tty_struct *get_current_tty(void)
3421 {
3422         struct tty_struct *tty;
3423         unsigned long flags;
3424
3425         spin_lock_irqsave(&current->sighand->siglock, flags);
3426         tty = tty_kref_get(current->signal->tty);
3427         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3428         return tty;
3429 }
3430 EXPORT_SYMBOL_GPL(get_current_tty);
3431
3432 void tty_default_fops(struct file_operations *fops)
3433 {
3434         *fops = tty_fops;
3435 }
3436
3437 /*
3438  * Initialize the console device. This is called *early*, so
3439  * we can't necessarily depend on lots of kernel help here.
3440  * Just do some early initializations, and do the complex setup
3441  * later.
3442  */
3443 void __init console_init(void)
3444 {
3445         initcall_t *call;
3446
3447         /* Setup the default TTY line discipline. */
3448         tty_ldisc_begin();
3449
3450         /*
3451          * set up the console device so that later boot sequences can
3452          * inform about problems etc..
3453          */
3454         call = __con_initcall_start;
3455         while (call < __con_initcall_end) {
3456                 (*call)();
3457                 call++;
3458         }
3459 }
3460
3461 static char *tty_devnode(struct device *dev, umode_t *mode)
3462 {
3463         if (!mode)
3464                 return NULL;
3465         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3466             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3467                 *mode = 0666;
3468         return NULL;
3469 }
3470
3471 static int __init tty_class_init(void)
3472 {
3473         tty_class = class_create(THIS_MODULE, "tty");
3474         if (IS_ERR(tty_class))
3475                 return PTR_ERR(tty_class);
3476         tty_class->devnode = tty_devnode;
3477         return 0;
3478 }
3479
3480 postcore_initcall(tty_class_init);
3481
3482 /* 3/2004 jmc: why do these devices exist? */
3483 static struct cdev tty_cdev, console_cdev;
3484
3485 static ssize_t show_cons_active(struct device *dev,
3486                                 struct device_attribute *attr, char *buf)
3487 {
3488         struct console *cs[16];
3489         int i = 0;
3490         struct console *c;
3491         ssize_t count = 0;
3492
3493         console_lock();
3494         for_each_console(c) {
3495                 if (!c->device)
3496                         continue;
3497                 if (!c->write)
3498                         continue;
3499                 if ((c->flags & CON_ENABLED) == 0)
3500                         continue;
3501                 cs[i++] = c;
3502                 if (i >= ARRAY_SIZE(cs))
3503                         break;
3504         }
3505         while (i--)
3506                 count += sprintf(buf + count, "%s%d%c",
3507                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3508         console_unlock();
3509
3510         return count;
3511 }
3512 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3513
3514 static struct device *consdev;
3515
3516 void console_sysfs_notify(void)
3517 {
3518         if (consdev)
3519                 sysfs_notify(&consdev->kobj, NULL, "active");
3520 }
3521
3522 /*
3523  * Ok, now we can initialize the rest of the tty devices and can count
3524  * on memory allocations, interrupts etc..
3525  */
3526 int __init tty_init(void)
3527 {
3528         cdev_init(&tty_cdev, &tty_fops);
3529         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3530             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3531                 panic("Couldn't register /dev/tty driver\n");
3532         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3533
3534         cdev_init(&console_cdev, &console_fops);
3535         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3536             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3537                 panic("Couldn't register /dev/console driver\n");
3538         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3539                               "console");
3540         if (IS_ERR(consdev))
3541                 consdev = NULL;
3542         else
3543                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3544
3545 #ifdef CONFIG_VT
3546         vty_init(&console_fops);
3547 #endif
3548         return 0;
3549 }
3550