tty: Remove TTY_CLOSING
[firefly-linux-kernel-4.4.55.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156
157 /**
158  *      free_tty_struct         -       free a disused tty
159  *      @tty: tty struct to free
160  *
161  *      Free the write buffers, tty queue and tty memory itself.
162  *
163  *      Locking: none. Must be called after tty is definitely unused
164  */
165
166 void free_tty_struct(struct tty_struct *tty)
167 {
168         if (!tty)
169                 return;
170         if (tty->dev)
171                 put_device(tty->dev);
172         kfree(tty->write_buf);
173         tty->magic = 0xDEADDEAD;
174         kfree(tty);
175 }
176
177 static inline struct tty_struct *file_tty(struct file *file)
178 {
179         return ((struct tty_file_private *)file->private_data)->tty;
180 }
181
182 int tty_alloc_file(struct file *file)
183 {
184         struct tty_file_private *priv;
185
186         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
187         if (!priv)
188                 return -ENOMEM;
189
190         file->private_data = priv;
191
192         return 0;
193 }
194
195 /* Associate a new file with the tty structure */
196 void tty_add_file(struct tty_struct *tty, struct file *file)
197 {
198         struct tty_file_private *priv = file->private_data;
199
200         priv->tty = tty;
201         priv->file = file;
202
203         spin_lock(&tty_files_lock);
204         list_add(&priv->list, &tty->tty_files);
205         spin_unlock(&tty_files_lock);
206 }
207
208 /**
209  * tty_free_file - free file->private_data
210  *
211  * This shall be used only for fail path handling when tty_add_file was not
212  * called yet.
213  */
214 void tty_free_file(struct file *file)
215 {
216         struct tty_file_private *priv = file->private_data;
217
218         file->private_data = NULL;
219         kfree(priv);
220 }
221
222 /* Delete file from its tty */
223 static void tty_del_file(struct file *file)
224 {
225         struct tty_file_private *priv = file->private_data;
226
227         spin_lock(&tty_files_lock);
228         list_del(&priv->list);
229         spin_unlock(&tty_files_lock);
230         tty_free_file(file);
231 }
232
233
234 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
235
236 /**
237  *      tty_name        -       return tty naming
238  *      @tty: tty structure
239  *      @buf: buffer for output
240  *
241  *      Convert a tty structure into a name. The name reflects the kernel
242  *      naming policy and if udev is in use may not reflect user space
243  *
244  *      Locking: none
245  */
246
247 char *tty_name(struct tty_struct *tty, char *buf)
248 {
249         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
250                 strcpy(buf, "NULL tty");
251         else
252                 strcpy(buf, tty->name);
253         return buf;
254 }
255
256 EXPORT_SYMBOL(tty_name);
257
258 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
259                               const char *routine)
260 {
261 #ifdef TTY_PARANOIA_CHECK
262         if (!tty) {
263                 printk(KERN_WARNING
264                         "null TTY for (%d:%d) in %s\n",
265                         imajor(inode), iminor(inode), routine);
266                 return 1;
267         }
268         if (tty->magic != TTY_MAGIC) {
269                 printk(KERN_WARNING
270                         "bad magic number for tty struct (%d:%d) in %s\n",
271                         imajor(inode), iminor(inode), routine);
272                 return 1;
273         }
274 #endif
275         return 0;
276 }
277
278 static int check_tty_count(struct tty_struct *tty, const char *routine)
279 {
280 #ifdef CHECK_TTY_COUNT
281         struct list_head *p;
282         int count = 0;
283
284         spin_lock(&tty_files_lock);
285         list_for_each(p, &tty->tty_files) {
286                 count++;
287         }
288         spin_unlock(&tty_files_lock);
289         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
290             tty->driver->subtype == PTY_TYPE_SLAVE &&
291             tty->link && tty->link->count)
292                 count++;
293         if (tty->count != count) {
294                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
295                                     "!= #fd's(%d) in %s\n",
296                        tty->name, tty->count, count, routine);
297                 return count;
298         }
299 #endif
300         return 0;
301 }
302
303 /**
304  *      get_tty_driver          -       find device of a tty
305  *      @dev_t: device identifier
306  *      @index: returns the index of the tty
307  *
308  *      This routine returns a tty driver structure, given a device number
309  *      and also passes back the index number.
310  *
311  *      Locking: caller must hold tty_mutex
312  */
313
314 static struct tty_driver *get_tty_driver(dev_t device, int *index)
315 {
316         struct tty_driver *p;
317
318         list_for_each_entry(p, &tty_drivers, tty_drivers) {
319                 dev_t base = MKDEV(p->major, p->minor_start);
320                 if (device < base || device >= base + p->num)
321                         continue;
322                 *index = device - base;
323                 return tty_driver_kref_get(p);
324         }
325         return NULL;
326 }
327
328 #ifdef CONFIG_CONSOLE_POLL
329
330 /**
331  *      tty_find_polling_driver -       find device of a polled tty
332  *      @name: name string to match
333  *      @line: pointer to resulting tty line nr
334  *
335  *      This routine returns a tty driver structure, given a name
336  *      and the condition that the tty driver is capable of polled
337  *      operation.
338  */
339 struct tty_driver *tty_find_polling_driver(char *name, int *line)
340 {
341         struct tty_driver *p, *res = NULL;
342         int tty_line = 0;
343         int len;
344         char *str, *stp;
345
346         for (str = name; *str; str++)
347                 if ((*str >= '0' && *str <= '9') || *str == ',')
348                         break;
349         if (!*str)
350                 return NULL;
351
352         len = str - name;
353         tty_line = simple_strtoul(str, &str, 10);
354
355         mutex_lock(&tty_mutex);
356         /* Search through the tty devices to look for a match */
357         list_for_each_entry(p, &tty_drivers, tty_drivers) {
358                 if (strncmp(name, p->name, len) != 0)
359                         continue;
360                 stp = str;
361                 if (*stp == ',')
362                         stp++;
363                 if (*stp == '\0')
364                         stp = NULL;
365
366                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
367                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
368                         res = tty_driver_kref_get(p);
369                         *line = tty_line;
370                         break;
371                 }
372         }
373         mutex_unlock(&tty_mutex);
374
375         return res;
376 }
377 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
378 #endif
379
380 /**
381  *      tty_check_change        -       check for POSIX terminal changes
382  *      @tty: tty to check
383  *
384  *      If we try to write to, or set the state of, a terminal and we're
385  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
386  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
387  *
388  *      Locking: ctrl_lock
389  */
390
391 int tty_check_change(struct tty_struct *tty)
392 {
393         unsigned long flags;
394         int ret = 0;
395
396         if (current->signal->tty != tty)
397                 return 0;
398
399         spin_lock_irqsave(&tty->ctrl_lock, flags);
400
401         if (!tty->pgrp) {
402                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
403                 goto out_unlock;
404         }
405         if (task_pgrp(current) == tty->pgrp)
406                 goto out_unlock;
407         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
408         if (is_ignored(SIGTTOU))
409                 goto out;
410         if (is_current_pgrp_orphaned()) {
411                 ret = -EIO;
412                 goto out;
413         }
414         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
415         set_thread_flag(TIF_SIGPENDING);
416         ret = -ERESTARTSYS;
417 out:
418         return ret;
419 out_unlock:
420         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
421         return ret;
422 }
423
424 EXPORT_SYMBOL(tty_check_change);
425
426 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
427                                 size_t count, loff_t *ppos)
428 {
429         return 0;
430 }
431
432 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
433                                  size_t count, loff_t *ppos)
434 {
435         return -EIO;
436 }
437
438 /* No kernel lock held - none needed ;) */
439 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
440 {
441         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
442 }
443
444 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
445                 unsigned long arg)
446 {
447         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
448 }
449
450 static long hung_up_tty_compat_ioctl(struct file *file,
451                                      unsigned int cmd, unsigned long arg)
452 {
453         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
454 }
455
456 static const struct file_operations tty_fops = {
457         .llseek         = no_llseek,
458         .read           = tty_read,
459         .write          = tty_write,
460         .poll           = tty_poll,
461         .unlocked_ioctl = tty_ioctl,
462         .compat_ioctl   = tty_compat_ioctl,
463         .open           = tty_open,
464         .release        = tty_release,
465         .fasync         = tty_fasync,
466 };
467
468 static const struct file_operations console_fops = {
469         .llseek         = no_llseek,
470         .read           = tty_read,
471         .write          = redirected_tty_write,
472         .poll           = tty_poll,
473         .unlocked_ioctl = tty_ioctl,
474         .compat_ioctl   = tty_compat_ioctl,
475         .open           = tty_open,
476         .release        = tty_release,
477         .fasync         = tty_fasync,
478 };
479
480 static const struct file_operations hung_up_tty_fops = {
481         .llseek         = no_llseek,
482         .read           = hung_up_tty_read,
483         .write          = hung_up_tty_write,
484         .poll           = hung_up_tty_poll,
485         .unlocked_ioctl = hung_up_tty_ioctl,
486         .compat_ioctl   = hung_up_tty_compat_ioctl,
487         .release        = tty_release,
488 };
489
490 static DEFINE_SPINLOCK(redirect_lock);
491 static struct file *redirect;
492
493
494 void proc_clear_tty(struct task_struct *p)
495 {
496         unsigned long flags;
497         struct tty_struct *tty;
498         spin_lock_irqsave(&p->sighand->siglock, flags);
499         tty = p->signal->tty;
500         p->signal->tty = NULL;
501         spin_unlock_irqrestore(&p->sighand->siglock, flags);
502         tty_kref_put(tty);
503 }
504
505 /**
506  * proc_set_tty -  set the controlling terminal
507  *
508  * Only callable by the session leader and only if it does not already have
509  * a controlling terminal.
510  *
511  * Caller must hold:  tty_lock()
512  *                    a readlock on tasklist_lock
513  *                    sighand lock
514  */
515 static void __proc_set_tty(struct tty_struct *tty)
516 {
517         unsigned long flags;
518
519         spin_lock_irqsave(&tty->ctrl_lock, flags);
520         /*
521          * The session and fg pgrp references will be non-NULL if
522          * tiocsctty() is stealing the controlling tty
523          */
524         put_pid(tty->session);
525         put_pid(tty->pgrp);
526         tty->pgrp = get_pid(task_pgrp(current));
527         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
528         tty->session = get_pid(task_session(current));
529         if (current->signal->tty) {
530                 printk(KERN_DEBUG "tty not NULL!!\n");
531                 tty_kref_put(current->signal->tty);
532         }
533         put_pid(current->signal->tty_old_pgrp);
534         current->signal->tty = tty_kref_get(tty);
535         current->signal->tty_old_pgrp = NULL;
536 }
537
538 static void proc_set_tty(struct tty_struct *tty)
539 {
540         spin_lock_irq(&current->sighand->siglock);
541         __proc_set_tty(tty);
542         spin_unlock_irq(&current->sighand->siglock);
543 }
544
545 struct tty_struct *get_current_tty(void)
546 {
547         struct tty_struct *tty;
548         unsigned long flags;
549
550         spin_lock_irqsave(&current->sighand->siglock, flags);
551         tty = tty_kref_get(current->signal->tty);
552         spin_unlock_irqrestore(&current->sighand->siglock, flags);
553         return tty;
554 }
555 EXPORT_SYMBOL_GPL(get_current_tty);
556
557 static void session_clear_tty(struct pid *session)
558 {
559         struct task_struct *p;
560         do_each_pid_task(session, PIDTYPE_SID, p) {
561                 proc_clear_tty(p);
562         } while_each_pid_task(session, PIDTYPE_SID, p);
563 }
564
565 /**
566  *      tty_wakeup      -       request more data
567  *      @tty: terminal
568  *
569  *      Internal and external helper for wakeups of tty. This function
570  *      informs the line discipline if present that the driver is ready
571  *      to receive more output data.
572  */
573
574 void tty_wakeup(struct tty_struct *tty)
575 {
576         struct tty_ldisc *ld;
577
578         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
579                 ld = tty_ldisc_ref(tty);
580                 if (ld) {
581                         if (ld->ops->write_wakeup)
582                                 ld->ops->write_wakeup(tty);
583                         tty_ldisc_deref(ld);
584                 }
585         }
586         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
587 }
588
589 EXPORT_SYMBOL_GPL(tty_wakeup);
590
591 /**
592  *      tty_signal_session_leader       - sends SIGHUP to session leader
593  *      @tty            controlling tty
594  *      @exit_session   if non-zero, signal all foreground group processes
595  *
596  *      Send SIGHUP and SIGCONT to the session leader and its process group.
597  *      Optionally, signal all processes in the foreground process group.
598  *
599  *      Returns the number of processes in the session with this tty
600  *      as their controlling terminal. This value is used to drop
601  *      tty references for those processes.
602  */
603 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
604 {
605         struct task_struct *p;
606         int refs = 0;
607         struct pid *tty_pgrp = NULL;
608
609         read_lock(&tasklist_lock);
610         if (tty->session) {
611                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
612                         spin_lock_irq(&p->sighand->siglock);
613                         if (p->signal->tty == tty) {
614                                 p->signal->tty = NULL;
615                                 /* We defer the dereferences outside fo
616                                    the tasklist lock */
617                                 refs++;
618                         }
619                         if (!p->signal->leader) {
620                                 spin_unlock_irq(&p->sighand->siglock);
621                                 continue;
622                         }
623                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
624                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
625                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
626                         spin_lock(&tty->ctrl_lock);
627                         tty_pgrp = get_pid(tty->pgrp);
628                         if (tty->pgrp)
629                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
630                         spin_unlock(&tty->ctrl_lock);
631                         spin_unlock_irq(&p->sighand->siglock);
632                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
633         }
634         read_unlock(&tasklist_lock);
635
636         if (tty_pgrp) {
637                 if (exit_session)
638                         kill_pgrp(tty_pgrp, SIGHUP, exit_session);
639                 put_pid(tty_pgrp);
640         }
641
642         return refs;
643 }
644
645 /**
646  *      __tty_hangup            -       actual handler for hangup events
647  *      @work: tty device
648  *
649  *      This can be called by a "kworker" kernel thread.  That is process
650  *      synchronous but doesn't hold any locks, so we need to make sure we
651  *      have the appropriate locks for what we're doing.
652  *
653  *      The hangup event clears any pending redirections onto the hung up
654  *      device. It ensures future writes will error and it does the needed
655  *      line discipline hangup and signal delivery. The tty object itself
656  *      remains intact.
657  *
658  *      Locking:
659  *              BTM
660  *                redirect lock for undoing redirection
661  *                file list lock for manipulating list of ttys
662  *                tty_ldiscs_lock from called functions
663  *                termios_rwsem resetting termios data
664  *                tasklist_lock to walk task list for hangup event
665  *                  ->siglock to protect ->signal/->sighand
666  */
667 static void __tty_hangup(struct tty_struct *tty, int exit_session)
668 {
669         struct file *cons_filp = NULL;
670         struct file *filp, *f = NULL;
671         struct tty_file_private *priv;
672         int    closecount = 0, n;
673         int refs;
674
675         if (!tty)
676                 return;
677
678
679         spin_lock(&redirect_lock);
680         if (redirect && file_tty(redirect) == tty) {
681                 f = redirect;
682                 redirect = NULL;
683         }
684         spin_unlock(&redirect_lock);
685
686         tty_lock(tty);
687
688         if (test_bit(TTY_HUPPED, &tty->flags)) {
689                 tty_unlock(tty);
690                 return;
691         }
692
693         /* inuse_filps is protected by the single tty lock,
694            this really needs to change if we want to flush the
695            workqueue with the lock held */
696         check_tty_count(tty, "tty_hangup");
697
698         spin_lock(&tty_files_lock);
699         /* This breaks for file handles being sent over AF_UNIX sockets ? */
700         list_for_each_entry(priv, &tty->tty_files, list) {
701                 filp = priv->file;
702                 if (filp->f_op->write == redirected_tty_write)
703                         cons_filp = filp;
704                 if (filp->f_op->write != tty_write)
705                         continue;
706                 closecount++;
707                 __tty_fasync(-1, filp, 0);      /* can't block */
708                 filp->f_op = &hung_up_tty_fops;
709         }
710         spin_unlock(&tty_files_lock);
711
712         refs = tty_signal_session_leader(tty, exit_session);
713         /* Account for the p->signal references we killed */
714         while (refs--)
715                 tty_kref_put(tty);
716
717         tty_ldisc_hangup(tty);
718
719         spin_lock_irq(&tty->ctrl_lock);
720         clear_bit(TTY_THROTTLED, &tty->flags);
721         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
722         put_pid(tty->session);
723         put_pid(tty->pgrp);
724         tty->session = NULL;
725         tty->pgrp = NULL;
726         tty->ctrl_status = 0;
727         spin_unlock_irq(&tty->ctrl_lock);
728
729         /*
730          * If one of the devices matches a console pointer, we
731          * cannot just call hangup() because that will cause
732          * tty->count and state->count to go out of sync.
733          * So we just call close() the right number of times.
734          */
735         if (cons_filp) {
736                 if (tty->ops->close)
737                         for (n = 0; n < closecount; n++)
738                                 tty->ops->close(tty, cons_filp);
739         } else if (tty->ops->hangup)
740                 tty->ops->hangup(tty);
741         /*
742          * We don't want to have driver/ldisc interactions beyond
743          * the ones we did here. The driver layer expects no
744          * calls after ->hangup() from the ldisc side. However we
745          * can't yet guarantee all that.
746          */
747         set_bit(TTY_HUPPED, &tty->flags);
748         tty_unlock(tty);
749
750         if (f)
751                 fput(f);
752 }
753
754 static void do_tty_hangup(struct work_struct *work)
755 {
756         struct tty_struct *tty =
757                 container_of(work, struct tty_struct, hangup_work);
758
759         __tty_hangup(tty, 0);
760 }
761
762 /**
763  *      tty_hangup              -       trigger a hangup event
764  *      @tty: tty to hangup
765  *
766  *      A carrier loss (virtual or otherwise) has occurred on this like
767  *      schedule a hangup sequence to run after this event.
768  */
769
770 void tty_hangup(struct tty_struct *tty)
771 {
772 #ifdef TTY_DEBUG_HANGUP
773         char    buf[64];
774         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
775 #endif
776         schedule_work(&tty->hangup_work);
777 }
778
779 EXPORT_SYMBOL(tty_hangup);
780
781 /**
782  *      tty_vhangup             -       process vhangup
783  *      @tty: tty to hangup
784  *
785  *      The user has asked via system call for the terminal to be hung up.
786  *      We do this synchronously so that when the syscall returns the process
787  *      is complete. That guarantee is necessary for security reasons.
788  */
789
790 void tty_vhangup(struct tty_struct *tty)
791 {
792 #ifdef TTY_DEBUG_HANGUP
793         char    buf[64];
794
795         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
796 #endif
797         __tty_hangup(tty, 0);
798 }
799
800 EXPORT_SYMBOL(tty_vhangup);
801
802
803 /**
804  *      tty_vhangup_self        -       process vhangup for own ctty
805  *
806  *      Perform a vhangup on the current controlling tty
807  */
808
809 void tty_vhangup_self(void)
810 {
811         struct tty_struct *tty;
812
813         tty = get_current_tty();
814         if (tty) {
815                 tty_vhangup(tty);
816                 tty_kref_put(tty);
817         }
818 }
819
820 /**
821  *      tty_vhangup_session             -       hangup session leader exit
822  *      @tty: tty to hangup
823  *
824  *      The session leader is exiting and hanging up its controlling terminal.
825  *      Every process in the foreground process group is signalled SIGHUP.
826  *
827  *      We do this synchronously so that when the syscall returns the process
828  *      is complete. That guarantee is necessary for security reasons.
829  */
830
831 static void tty_vhangup_session(struct tty_struct *tty)
832 {
833 #ifdef TTY_DEBUG_HANGUP
834         char    buf[64];
835
836         printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
837 #endif
838         __tty_hangup(tty, 1);
839 }
840
841 /**
842  *      tty_hung_up_p           -       was tty hung up
843  *      @filp: file pointer of tty
844  *
845  *      Return true if the tty has been subject to a vhangup or a carrier
846  *      loss
847  */
848
849 int tty_hung_up_p(struct file *filp)
850 {
851         return (filp->f_op == &hung_up_tty_fops);
852 }
853
854 EXPORT_SYMBOL(tty_hung_up_p);
855
856 /**
857  *      disassociate_ctty       -       disconnect controlling tty
858  *      @on_exit: true if exiting so need to "hang up" the session
859  *
860  *      This function is typically called only by the session leader, when
861  *      it wants to disassociate itself from its controlling tty.
862  *
863  *      It performs the following functions:
864  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
865  *      (2)  Clears the tty from being controlling the session
866  *      (3)  Clears the controlling tty for all processes in the
867  *              session group.
868  *
869  *      The argument on_exit is set to 1 if called when a process is
870  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
871  *
872  *      Locking:
873  *              BTM is taken for hysterical raisins, and held when
874  *                called from no_tty().
875  *                tty_mutex is taken to protect tty
876  *                ->siglock is taken to protect ->signal/->sighand
877  *                tasklist_lock is taken to walk process list for sessions
878  *                  ->siglock is taken to protect ->signal/->sighand
879  */
880
881 void disassociate_ctty(int on_exit)
882 {
883         struct tty_struct *tty;
884
885         if (!current->signal->leader)
886                 return;
887
888         tty = get_current_tty();
889         if (tty) {
890                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
891                         tty_vhangup_session(tty);
892                 } else {
893                         struct pid *tty_pgrp = tty_get_pgrp(tty);
894                         if (tty_pgrp) {
895                                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
896                                 if (!on_exit)
897                                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
898                                 put_pid(tty_pgrp);
899                         }
900                 }
901                 tty_kref_put(tty);
902
903         } else if (on_exit) {
904                 struct pid *old_pgrp;
905                 spin_lock_irq(&current->sighand->siglock);
906                 old_pgrp = current->signal->tty_old_pgrp;
907                 current->signal->tty_old_pgrp = NULL;
908                 spin_unlock_irq(&current->sighand->siglock);
909                 if (old_pgrp) {
910                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
911                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
912                         put_pid(old_pgrp);
913                 }
914                 return;
915         }
916
917         spin_lock_irq(&current->sighand->siglock);
918         put_pid(current->signal->tty_old_pgrp);
919         current->signal->tty_old_pgrp = NULL;
920
921         tty = tty_kref_get(current->signal->tty);
922         if (tty) {
923                 unsigned long flags;
924                 spin_lock_irqsave(&tty->ctrl_lock, flags);
925                 put_pid(tty->session);
926                 put_pid(tty->pgrp);
927                 tty->session = NULL;
928                 tty->pgrp = NULL;
929                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
930                 tty_kref_put(tty);
931         } else {
932 #ifdef TTY_DEBUG_HANGUP
933                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
934                        " = NULL", tty);
935 #endif
936         }
937
938         spin_unlock_irq(&current->sighand->siglock);
939         /* Now clear signal->tty under the lock */
940         read_lock(&tasklist_lock);
941         session_clear_tty(task_session(current));
942         read_unlock(&tasklist_lock);
943 }
944
945 /**
946  *
947  *      no_tty  - Ensure the current process does not have a controlling tty
948  */
949 void no_tty(void)
950 {
951         /* FIXME: Review locking here. The tty_lock never covered any race
952            between a new association and proc_clear_tty but possible we need
953            to protect against this anyway */
954         struct task_struct *tsk = current;
955         disassociate_ctty(0);
956         proc_clear_tty(tsk);
957 }
958
959
960 /**
961  *      stop_tty        -       propagate flow control
962  *      @tty: tty to stop
963  *
964  *      Perform flow control to the driver. May be called
965  *      on an already stopped device and will not re-call the driver
966  *      method.
967  *
968  *      This functionality is used by both the line disciplines for
969  *      halting incoming flow and by the driver. It may therefore be
970  *      called from any context, may be under the tty atomic_write_lock
971  *      but not always.
972  *
973  *      Locking:
974  *              flow_lock
975  */
976
977 void __stop_tty(struct tty_struct *tty)
978 {
979         if (tty->stopped)
980                 return;
981         tty->stopped = 1;
982         if (tty->ops->stop)
983                 (tty->ops->stop)(tty);
984 }
985
986 void stop_tty(struct tty_struct *tty)
987 {
988         unsigned long flags;
989
990         spin_lock_irqsave(&tty->flow_lock, flags);
991         __stop_tty(tty);
992         spin_unlock_irqrestore(&tty->flow_lock, flags);
993 }
994 EXPORT_SYMBOL(stop_tty);
995
996 /**
997  *      start_tty       -       propagate flow control
998  *      @tty: tty to start
999  *
1000  *      Start a tty that has been stopped if at all possible. If this
1001  *      tty was previous stopped and is now being started, the driver
1002  *      start method is invoked and the line discipline woken.
1003  *
1004  *      Locking:
1005  *              flow_lock
1006  */
1007
1008 void __start_tty(struct tty_struct *tty)
1009 {
1010         if (!tty->stopped || tty->flow_stopped)
1011                 return;
1012         tty->stopped = 0;
1013         if (tty->ops->start)
1014                 (tty->ops->start)(tty);
1015         tty_wakeup(tty);
1016 }
1017
1018 void start_tty(struct tty_struct *tty)
1019 {
1020         unsigned long flags;
1021
1022         spin_lock_irqsave(&tty->flow_lock, flags);
1023         __start_tty(tty);
1024         spin_unlock_irqrestore(&tty->flow_lock, flags);
1025 }
1026 EXPORT_SYMBOL(start_tty);
1027
1028 /* We limit tty time update visibility to every 8 seconds or so. */
1029 static void tty_update_time(struct timespec *time)
1030 {
1031         unsigned long sec = get_seconds() & ~7;
1032         if ((long)(sec - time->tv_sec) > 0)
1033                 time->tv_sec = sec;
1034 }
1035
1036 /**
1037  *      tty_read        -       read method for tty device files
1038  *      @file: pointer to tty file
1039  *      @buf: user buffer
1040  *      @count: size of user buffer
1041  *      @ppos: unused
1042  *
1043  *      Perform the read system call function on this terminal device. Checks
1044  *      for hung up devices before calling the line discipline method.
1045  *
1046  *      Locking:
1047  *              Locks the line discipline internally while needed. Multiple
1048  *      read calls may be outstanding in parallel.
1049  */
1050
1051 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1052                         loff_t *ppos)
1053 {
1054         int i;
1055         struct inode *inode = file_inode(file);
1056         struct tty_struct *tty = file_tty(file);
1057         struct tty_ldisc *ld;
1058
1059         if (tty_paranoia_check(tty, inode, "tty_read"))
1060                 return -EIO;
1061         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1062                 return -EIO;
1063
1064         /* We want to wait for the line discipline to sort out in this
1065            situation */
1066         ld = tty_ldisc_ref_wait(tty);
1067         if (ld->ops->read)
1068                 i = (ld->ops->read)(tty, file, buf, count);
1069         else
1070                 i = -EIO;
1071         tty_ldisc_deref(ld);
1072
1073         if (i > 0)
1074                 tty_update_time(&inode->i_atime);
1075
1076         return i;
1077 }
1078
1079 static void tty_write_unlock(struct tty_struct *tty)
1080 {
1081         mutex_unlock(&tty->atomic_write_lock);
1082         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1083 }
1084
1085 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1086 {
1087         if (!mutex_trylock(&tty->atomic_write_lock)) {
1088                 if (ndelay)
1089                         return -EAGAIN;
1090                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1091                         return -ERESTARTSYS;
1092         }
1093         return 0;
1094 }
1095
1096 /*
1097  * Split writes up in sane blocksizes to avoid
1098  * denial-of-service type attacks
1099  */
1100 static inline ssize_t do_tty_write(
1101         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1102         struct tty_struct *tty,
1103         struct file *file,
1104         const char __user *buf,
1105         size_t count)
1106 {
1107         ssize_t ret, written = 0;
1108         unsigned int chunk;
1109
1110         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1111         if (ret < 0)
1112                 return ret;
1113
1114         /*
1115          * We chunk up writes into a temporary buffer. This
1116          * simplifies low-level drivers immensely, since they
1117          * don't have locking issues and user mode accesses.
1118          *
1119          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1120          * big chunk-size..
1121          *
1122          * The default chunk-size is 2kB, because the NTTY
1123          * layer has problems with bigger chunks. It will
1124          * claim to be able to handle more characters than
1125          * it actually does.
1126          *
1127          * FIXME: This can probably go away now except that 64K chunks
1128          * are too likely to fail unless switched to vmalloc...
1129          */
1130         chunk = 2048;
1131         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1132                 chunk = 65536;
1133         if (count < chunk)
1134                 chunk = count;
1135
1136         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1137         if (tty->write_cnt < chunk) {
1138                 unsigned char *buf_chunk;
1139
1140                 if (chunk < 1024)
1141                         chunk = 1024;
1142
1143                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1144                 if (!buf_chunk) {
1145                         ret = -ENOMEM;
1146                         goto out;
1147                 }
1148                 kfree(tty->write_buf);
1149                 tty->write_cnt = chunk;
1150                 tty->write_buf = buf_chunk;
1151         }
1152
1153         /* Do the write .. */
1154         for (;;) {
1155                 size_t size = count;
1156                 if (size > chunk)
1157                         size = chunk;
1158                 ret = -EFAULT;
1159                 if (copy_from_user(tty->write_buf, buf, size))
1160                         break;
1161                 ret = write(tty, file, tty->write_buf, size);
1162                 if (ret <= 0)
1163                         break;
1164                 written += ret;
1165                 buf += ret;
1166                 count -= ret;
1167                 if (!count)
1168                         break;
1169                 ret = -ERESTARTSYS;
1170                 if (signal_pending(current))
1171                         break;
1172                 cond_resched();
1173         }
1174         if (written) {
1175                 tty_update_time(&file_inode(file)->i_mtime);
1176                 ret = written;
1177         }
1178 out:
1179         tty_write_unlock(tty);
1180         return ret;
1181 }
1182
1183 /**
1184  * tty_write_message - write a message to a certain tty, not just the console.
1185  * @tty: the destination tty_struct
1186  * @msg: the message to write
1187  *
1188  * This is used for messages that need to be redirected to a specific tty.
1189  * We don't put it into the syslog queue right now maybe in the future if
1190  * really needed.
1191  *
1192  * We must still hold the BTM and test the CLOSING flag for the moment.
1193  */
1194
1195 void tty_write_message(struct tty_struct *tty, char *msg)
1196 {
1197         if (tty) {
1198                 mutex_lock(&tty->atomic_write_lock);
1199                 tty_lock(tty);
1200                 if (tty->ops->write && tty->count > 0) {
1201                         tty_unlock(tty);
1202                         tty->ops->write(tty, msg, strlen(msg));
1203                 } else
1204                         tty_unlock(tty);
1205                 tty_write_unlock(tty);
1206         }
1207         return;
1208 }
1209
1210
1211 /**
1212  *      tty_write               -       write method for tty device file
1213  *      @file: tty file pointer
1214  *      @buf: user data to write
1215  *      @count: bytes to write
1216  *      @ppos: unused
1217  *
1218  *      Write data to a tty device via the line discipline.
1219  *
1220  *      Locking:
1221  *              Locks the line discipline as required
1222  *              Writes to the tty driver are serialized by the atomic_write_lock
1223  *      and are then processed in chunks to the device. The line discipline
1224  *      write method will not be invoked in parallel for each device.
1225  */
1226
1227 static ssize_t tty_write(struct file *file, const char __user *buf,
1228                                                 size_t count, loff_t *ppos)
1229 {
1230         struct tty_struct *tty = file_tty(file);
1231         struct tty_ldisc *ld;
1232         ssize_t ret;
1233
1234         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1235                 return -EIO;
1236         if (!tty || !tty->ops->write ||
1237                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1238                         return -EIO;
1239         /* Short term debug to catch buggy drivers */
1240         if (tty->ops->write_room == NULL)
1241                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1242                         tty->driver->name);
1243         ld = tty_ldisc_ref_wait(tty);
1244         if (!ld->ops->write)
1245                 ret = -EIO;
1246         else
1247                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1248         tty_ldisc_deref(ld);
1249         return ret;
1250 }
1251
1252 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1253                                                 size_t count, loff_t *ppos)
1254 {
1255         struct file *p = NULL;
1256
1257         spin_lock(&redirect_lock);
1258         if (redirect)
1259                 p = get_file(redirect);
1260         spin_unlock(&redirect_lock);
1261
1262         if (p) {
1263                 ssize_t res;
1264                 res = vfs_write(p, buf, count, &p->f_pos);
1265                 fput(p);
1266                 return res;
1267         }
1268         return tty_write(file, buf, count, ppos);
1269 }
1270
1271 /**
1272  *      tty_send_xchar  -       send priority character
1273  *
1274  *      Send a high priority character to the tty even if stopped
1275  *
1276  *      Locking: none for xchar method, write ordering for write method.
1277  */
1278
1279 int tty_send_xchar(struct tty_struct *tty, char ch)
1280 {
1281         int     was_stopped = tty->stopped;
1282
1283         if (tty->ops->send_xchar) {
1284                 tty->ops->send_xchar(tty, ch);
1285                 return 0;
1286         }
1287
1288         if (tty_write_lock(tty, 0) < 0)
1289                 return -ERESTARTSYS;
1290
1291         if (was_stopped)
1292                 start_tty(tty);
1293         tty->ops->write(tty, &ch, 1);
1294         if (was_stopped)
1295                 stop_tty(tty);
1296         tty_write_unlock(tty);
1297         return 0;
1298 }
1299
1300 static char ptychar[] = "pqrstuvwxyzabcde";
1301
1302 /**
1303  *      pty_line_name   -       generate name for a pty
1304  *      @driver: the tty driver in use
1305  *      @index: the minor number
1306  *      @p: output buffer of at least 6 bytes
1307  *
1308  *      Generate a name from a driver reference and write it to the output
1309  *      buffer.
1310  *
1311  *      Locking: None
1312  */
1313 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1314 {
1315         int i = index + driver->name_base;
1316         /* ->name is initialized to "ttyp", but "tty" is expected */
1317         sprintf(p, "%s%c%x",
1318                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1319                 ptychar[i >> 4 & 0xf], i & 0xf);
1320 }
1321
1322 /**
1323  *      tty_line_name   -       generate name for a tty
1324  *      @driver: the tty driver in use
1325  *      @index: the minor number
1326  *      @p: output buffer of at least 7 bytes
1327  *
1328  *      Generate a name from a driver reference and write it to the output
1329  *      buffer.
1330  *
1331  *      Locking: None
1332  */
1333 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1334 {
1335         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1336                 return sprintf(p, "%s", driver->name);
1337         else
1338                 return sprintf(p, "%s%d", driver->name,
1339                                index + driver->name_base);
1340 }
1341
1342 /**
1343  *      tty_driver_lookup_tty() - find an existing tty, if any
1344  *      @driver: the driver for the tty
1345  *      @idx:    the minor number
1346  *
1347  *      Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1348  *      driver lookup() method returns an error.
1349  *
1350  *      Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1351  */
1352 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1353                 struct inode *inode, int idx)
1354 {
1355         struct tty_struct *tty;
1356
1357         if (driver->ops->lookup)
1358                 tty = driver->ops->lookup(driver, inode, idx);
1359         else
1360                 tty = driver->ttys[idx];
1361
1362         if (!IS_ERR(tty))
1363                 tty_kref_get(tty);
1364         return tty;
1365 }
1366
1367 /**
1368  *      tty_init_termios        -  helper for termios setup
1369  *      @tty: the tty to set up
1370  *
1371  *      Initialise the termios structures for this tty. Thus runs under
1372  *      the tty_mutex currently so we can be relaxed about ordering.
1373  */
1374
1375 int tty_init_termios(struct tty_struct *tty)
1376 {
1377         struct ktermios *tp;
1378         int idx = tty->index;
1379
1380         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1381                 tty->termios = tty->driver->init_termios;
1382         else {
1383                 /* Check for lazy saved data */
1384                 tp = tty->driver->termios[idx];
1385                 if (tp != NULL)
1386                         tty->termios = *tp;
1387                 else
1388                         tty->termios = tty->driver->init_termios;
1389         }
1390         /* Compatibility until drivers always set this */
1391         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1392         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1393         return 0;
1394 }
1395 EXPORT_SYMBOL_GPL(tty_init_termios);
1396
1397 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1398 {
1399         int ret = tty_init_termios(tty);
1400         if (ret)
1401                 return ret;
1402
1403         tty_driver_kref_get(driver);
1404         tty->count++;
1405         driver->ttys[tty->index] = tty;
1406         return 0;
1407 }
1408 EXPORT_SYMBOL_GPL(tty_standard_install);
1409
1410 /**
1411  *      tty_driver_install_tty() - install a tty entry in the driver
1412  *      @driver: the driver for the tty
1413  *      @tty: the tty
1414  *
1415  *      Install a tty object into the driver tables. The tty->index field
1416  *      will be set by the time this is called. This method is responsible
1417  *      for ensuring any need additional structures are allocated and
1418  *      configured.
1419  *
1420  *      Locking: tty_mutex for now
1421  */
1422 static int tty_driver_install_tty(struct tty_driver *driver,
1423                                                 struct tty_struct *tty)
1424 {
1425         return driver->ops->install ? driver->ops->install(driver, tty) :
1426                 tty_standard_install(driver, tty);
1427 }
1428
1429 /**
1430  *      tty_driver_remove_tty() - remove a tty from the driver tables
1431  *      @driver: the driver for the tty
1432  *      @idx:    the minor number
1433  *
1434  *      Remvoe a tty object from the driver tables. The tty->index field
1435  *      will be set by the time this is called.
1436  *
1437  *      Locking: tty_mutex for now
1438  */
1439 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1440 {
1441         if (driver->ops->remove)
1442                 driver->ops->remove(driver, tty);
1443         else
1444                 driver->ttys[tty->index] = NULL;
1445 }
1446
1447 /*
1448  *      tty_reopen()    - fast re-open of an open tty
1449  *      @tty    - the tty to open
1450  *
1451  *      Return 0 on success, -errno on error.
1452  *      Re-opens on master ptys are not allowed and return -EIO.
1453  *
1454  *      Locking: Caller must hold tty_lock
1455  */
1456 static int tty_reopen(struct tty_struct *tty)
1457 {
1458         struct tty_driver *driver = tty->driver;
1459
1460         if (!tty->count)
1461                 return -EIO;
1462
1463         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1464             driver->subtype == PTY_TYPE_MASTER)
1465                 return -EIO;
1466
1467         tty->count++;
1468
1469         WARN_ON(!tty->ldisc);
1470
1471         return 0;
1472 }
1473
1474 /**
1475  *      tty_init_dev            -       initialise a tty device
1476  *      @driver: tty driver we are opening a device on
1477  *      @idx: device index
1478  *      @ret_tty: returned tty structure
1479  *
1480  *      Prepare a tty device. This may not be a "new" clean device but
1481  *      could also be an active device. The pty drivers require special
1482  *      handling because of this.
1483  *
1484  *      Locking:
1485  *              The function is called under the tty_mutex, which
1486  *      protects us from the tty struct or driver itself going away.
1487  *
1488  *      On exit the tty device has the line discipline attached and
1489  *      a reference count of 1. If a pair was created for pty/tty use
1490  *      and the other was a pty master then it too has a reference count of 1.
1491  *
1492  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1493  * failed open.  The new code protects the open with a mutex, so it's
1494  * really quite straightforward.  The mutex locking can probably be
1495  * relaxed for the (most common) case of reopening a tty.
1496  */
1497
1498 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1499 {
1500         struct tty_struct *tty;
1501         int retval;
1502
1503         /*
1504          * First time open is complex, especially for PTY devices.
1505          * This code guarantees that either everything succeeds and the
1506          * TTY is ready for operation, or else the table slots are vacated
1507          * and the allocated memory released.  (Except that the termios
1508          * and locked termios may be retained.)
1509          */
1510
1511         if (!try_module_get(driver->owner))
1512                 return ERR_PTR(-ENODEV);
1513
1514         tty = alloc_tty_struct(driver, idx);
1515         if (!tty) {
1516                 retval = -ENOMEM;
1517                 goto err_module_put;
1518         }
1519
1520         tty_lock(tty);
1521         retval = tty_driver_install_tty(driver, tty);
1522         if (retval < 0)
1523                 goto err_deinit_tty;
1524
1525         if (!tty->port)
1526                 tty->port = driver->ports[idx];
1527
1528         WARN_RATELIMIT(!tty->port,
1529                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1530                         __func__, tty->driver->name);
1531
1532         tty->port->itty = tty;
1533
1534         /*
1535          * Structures all installed ... call the ldisc open routines.
1536          * If we fail here just call release_tty to clean up.  No need
1537          * to decrement the use counts, as release_tty doesn't care.
1538          */
1539         retval = tty_ldisc_setup(tty, tty->link);
1540         if (retval)
1541                 goto err_release_tty;
1542         /* Return the tty locked so that it cannot vanish under the caller */
1543         return tty;
1544
1545 err_deinit_tty:
1546         tty_unlock(tty);
1547         deinitialize_tty_struct(tty);
1548         free_tty_struct(tty);
1549 err_module_put:
1550         module_put(driver->owner);
1551         return ERR_PTR(retval);
1552
1553         /* call the tty release_tty routine to clean out this slot */
1554 err_release_tty:
1555         tty_unlock(tty);
1556         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1557                                  "clearing slot %d\n", idx);
1558         release_tty(tty, idx);
1559         return ERR_PTR(retval);
1560 }
1561
1562 void tty_free_termios(struct tty_struct *tty)
1563 {
1564         struct ktermios *tp;
1565         int idx = tty->index;
1566
1567         /* If the port is going to reset then it has no termios to save */
1568         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1569                 return;
1570
1571         /* Stash the termios data */
1572         tp = tty->driver->termios[idx];
1573         if (tp == NULL) {
1574                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1575                 if (tp == NULL) {
1576                         pr_warn("tty: no memory to save termios state.\n");
1577                         return;
1578                 }
1579                 tty->driver->termios[idx] = tp;
1580         }
1581         *tp = tty->termios;
1582 }
1583 EXPORT_SYMBOL(tty_free_termios);
1584
1585 /**
1586  *      tty_flush_works         -       flush all works of a tty
1587  *      @tty: tty device to flush works for
1588  *
1589  *      Sync flush all works belonging to @tty.
1590  */
1591 static void tty_flush_works(struct tty_struct *tty)
1592 {
1593         flush_work(&tty->SAK_work);
1594         flush_work(&tty->hangup_work);
1595 }
1596
1597 /**
1598  *      release_one_tty         -       release tty structure memory
1599  *      @kref: kref of tty we are obliterating
1600  *
1601  *      Releases memory associated with a tty structure, and clears out the
1602  *      driver table slots. This function is called when a device is no longer
1603  *      in use. It also gets called when setup of a device fails.
1604  *
1605  *      Locking:
1606  *              takes the file list lock internally when working on the list
1607  *      of ttys that the driver keeps.
1608  *
1609  *      This method gets called from a work queue so that the driver private
1610  *      cleanup ops can sleep (needed for USB at least)
1611  */
1612 static void release_one_tty(struct work_struct *work)
1613 {
1614         struct tty_struct *tty =
1615                 container_of(work, struct tty_struct, hangup_work);
1616         struct tty_driver *driver = tty->driver;
1617         struct module *owner = driver->owner;
1618
1619         if (tty->ops->cleanup)
1620                 tty->ops->cleanup(tty);
1621
1622         tty->magic = 0;
1623         tty_driver_kref_put(driver);
1624         module_put(owner);
1625
1626         spin_lock(&tty_files_lock);
1627         list_del_init(&tty->tty_files);
1628         spin_unlock(&tty_files_lock);
1629
1630         put_pid(tty->pgrp);
1631         put_pid(tty->session);
1632         free_tty_struct(tty);
1633 }
1634
1635 static void queue_release_one_tty(struct kref *kref)
1636 {
1637         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1638
1639         /* The hangup queue is now free so we can reuse it rather than
1640            waste a chunk of memory for each port */
1641         INIT_WORK(&tty->hangup_work, release_one_tty);
1642         schedule_work(&tty->hangup_work);
1643 }
1644
1645 /**
1646  *      tty_kref_put            -       release a tty kref
1647  *      @tty: tty device
1648  *
1649  *      Release a reference to a tty device and if need be let the kref
1650  *      layer destruct the object for us
1651  */
1652
1653 void tty_kref_put(struct tty_struct *tty)
1654 {
1655         if (tty)
1656                 kref_put(&tty->kref, queue_release_one_tty);
1657 }
1658 EXPORT_SYMBOL(tty_kref_put);
1659
1660 /**
1661  *      release_tty             -       release tty structure memory
1662  *
1663  *      Release both @tty and a possible linked partner (think pty pair),
1664  *      and decrement the refcount of the backing module.
1665  *
1666  *      Locking:
1667  *              tty_mutex
1668  *              takes the file list lock internally when working on the list
1669  *      of ttys that the driver keeps.
1670  *
1671  */
1672 static void release_tty(struct tty_struct *tty, int idx)
1673 {
1674         /* This should always be true but check for the moment */
1675         WARN_ON(tty->index != idx);
1676         WARN_ON(!mutex_is_locked(&tty_mutex));
1677         if (tty->ops->shutdown)
1678                 tty->ops->shutdown(tty);
1679         tty_free_termios(tty);
1680         tty_driver_remove_tty(tty->driver, tty);
1681         tty->port->itty = NULL;
1682         if (tty->link)
1683                 tty->link->port->itty = NULL;
1684         cancel_work_sync(&tty->port->buf.work);
1685
1686         if (tty->link)
1687                 tty_kref_put(tty->link);
1688         tty_kref_put(tty);
1689 }
1690
1691 /**
1692  *      tty_release_checks - check a tty before real release
1693  *      @tty: tty to check
1694  *      @o_tty: link of @tty (if any)
1695  *      @idx: index of the tty
1696  *
1697  *      Performs some paranoid checking before true release of the @tty.
1698  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1699  */
1700 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1701                 int idx)
1702 {
1703 #ifdef TTY_PARANOIA_CHECK
1704         if (idx < 0 || idx >= tty->driver->num) {
1705                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1706                                 __func__, tty->name);
1707                 return -1;
1708         }
1709
1710         /* not much to check for devpts */
1711         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1712                 return 0;
1713
1714         if (tty != tty->driver->ttys[idx]) {
1715                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1716                                 __func__, idx, tty->name);
1717                 return -1;
1718         }
1719         if (tty->driver->other) {
1720                 if (o_tty != tty->driver->other->ttys[idx]) {
1721                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1722                                         __func__, idx, tty->name);
1723                         return -1;
1724                 }
1725                 if (o_tty->link != tty) {
1726                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1727                         return -1;
1728                 }
1729         }
1730 #endif
1731         return 0;
1732 }
1733
1734 /**
1735  *      tty_release             -       vfs callback for close
1736  *      @inode: inode of tty
1737  *      @filp: file pointer for handle to tty
1738  *
1739  *      Called the last time each file handle is closed that references
1740  *      this tty. There may however be several such references.
1741  *
1742  *      Locking:
1743  *              Takes bkl. See tty_release_dev
1744  *
1745  * Even releasing the tty structures is a tricky business.. We have
1746  * to be very careful that the structures are all released at the
1747  * same time, as interrupts might otherwise get the wrong pointers.
1748  *
1749  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1750  * lead to double frees or releasing memory still in use.
1751  */
1752
1753 int tty_release(struct inode *inode, struct file *filp)
1754 {
1755         struct tty_struct *tty = file_tty(filp);
1756         struct tty_struct *o_tty;
1757         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1758         int     idx;
1759         char    buf[64];
1760
1761         if (tty_paranoia_check(tty, inode, __func__))
1762                 return 0;
1763
1764         tty_lock(tty);
1765         check_tty_count(tty, __func__);
1766
1767         __tty_fasync(-1, filp, 0);
1768
1769         idx = tty->index;
1770         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1771                       tty->driver->subtype == PTY_TYPE_MASTER);
1772         /* Review: parallel close */
1773         o_tty = tty->link;
1774
1775         if (tty_release_checks(tty, o_tty, idx)) {
1776                 tty_unlock(tty);
1777                 return 0;
1778         }
1779
1780 #ifdef TTY_DEBUG_HANGUP
1781         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1782                         tty_name(tty, buf), tty->count);
1783 #endif
1784
1785         if (tty->ops->close)
1786                 tty->ops->close(tty, filp);
1787
1788         tty_unlock(tty);
1789         /*
1790          * Sanity check: if tty->count is going to zero, there shouldn't be
1791          * any waiters on tty->read_wait or tty->write_wait.  We test the
1792          * wait queues and kick everyone out _before_ actually starting to
1793          * close.  This ensures that we won't block while releasing the tty
1794          * structure.
1795          *
1796          * The test for the o_tty closing is necessary, since the master and
1797          * slave sides may close in any order.  If the slave side closes out
1798          * first, its count will be one, since the master side holds an open.
1799          * Thus this test wouldn't be triggered at the time the slave closes,
1800          * so we do it now.
1801          *
1802          * Note that it's possible for the tty to be opened again while we're
1803          * flushing out waiters.  By recalculating the closing flags before
1804          * each iteration we avoid any problems.
1805          */
1806         while (1) {
1807                 /* Guard against races with tty->count changes elsewhere and
1808                    opens on /dev/tty */
1809
1810                 mutex_lock(&tty_mutex);
1811                 tty_lock_pair(tty, o_tty);
1812                 tty_closing = tty->count <= 1;
1813                 o_tty_closing = o_tty &&
1814                         (o_tty->count <= (pty_master ? 1 : 0));
1815                 do_sleep = 0;
1816
1817                 if (tty_closing) {
1818                         if (waitqueue_active(&tty->read_wait)) {
1819                                 wake_up_poll(&tty->read_wait, POLLIN);
1820                                 do_sleep++;
1821                         }
1822                         if (waitqueue_active(&tty->write_wait)) {
1823                                 wake_up_poll(&tty->write_wait, POLLOUT);
1824                                 do_sleep++;
1825                         }
1826                 }
1827                 if (o_tty_closing) {
1828                         if (waitqueue_active(&o_tty->read_wait)) {
1829                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1830                                 do_sleep++;
1831                         }
1832                         if (waitqueue_active(&o_tty->write_wait)) {
1833                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1834                                 do_sleep++;
1835                         }
1836                 }
1837                 if (!do_sleep)
1838                         break;
1839
1840                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1841                                 __func__, tty_name(tty, buf));
1842                 tty_unlock_pair(tty, o_tty);
1843                 mutex_unlock(&tty_mutex);
1844                 schedule();
1845         }
1846
1847         /*
1848          * The closing flags are now consistent with the open counts on
1849          * both sides, and we've completed the last operation that could
1850          * block, so it's safe to proceed with closing.
1851          *
1852          * We must *not* drop the tty_mutex until we ensure that a further
1853          * entry into tty_open can not pick up this tty.
1854          */
1855         if (pty_master) {
1856                 if (--o_tty->count < 0) {
1857                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1858                                 __func__, o_tty->count, tty_name(o_tty, buf));
1859                         o_tty->count = 0;
1860                 }
1861         }
1862         if (--tty->count < 0) {
1863                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1864                                 __func__, tty->count, tty_name(tty, buf));
1865                 tty->count = 0;
1866         }
1867
1868         /*
1869          * We've decremented tty->count, so we need to remove this file
1870          * descriptor off the tty->tty_files list; this serves two
1871          * purposes:
1872          *  - check_tty_count sees the correct number of file descriptors
1873          *    associated with this tty.
1874          *  - do_tty_hangup no longer sees this file descriptor as
1875          *    something that needs to be handled for hangups.
1876          */
1877         tty_del_file(filp);
1878
1879         /*
1880          * Perform some housekeeping before deciding whether to return.
1881          *
1882          * If _either_ side is closing, make sure there aren't any
1883          * processes that still think tty or o_tty is their controlling
1884          * tty.
1885          */
1886         if (tty_closing || o_tty_closing) {
1887                 read_lock(&tasklist_lock);
1888                 session_clear_tty(tty->session);
1889                 if (o_tty)
1890                         session_clear_tty(o_tty->session);
1891                 read_unlock(&tasklist_lock);
1892         }
1893
1894         mutex_unlock(&tty_mutex);
1895         tty_unlock_pair(tty, o_tty);
1896         /* At this point, the tty->count == 0 should ensure a dead tty
1897            cannot be re-opened by a racing opener */
1898
1899         /* check whether both sides are closing ... */
1900         if (!tty_closing || (o_tty && !o_tty_closing))
1901                 return 0;
1902
1903 #ifdef TTY_DEBUG_HANGUP
1904         printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1905 #endif
1906         /*
1907          * Ask the line discipline code to release its structures
1908          */
1909         tty_ldisc_release(tty, o_tty);
1910
1911         /* Wait for pending work before tty destruction commmences */
1912         tty_flush_works(tty);
1913         if (o_tty)
1914                 tty_flush_works(o_tty);
1915
1916 #ifdef TTY_DEBUG_HANGUP
1917         printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1918 #endif
1919         /*
1920          * The release_tty function takes care of the details of clearing
1921          * the slots and preserving the termios structure. The tty_unlock_pair
1922          * should be safe as we keep a kref while the tty is locked (so the
1923          * unlock never unlocks a freed tty).
1924          */
1925         mutex_lock(&tty_mutex);
1926         release_tty(tty, idx);
1927         mutex_unlock(&tty_mutex);
1928
1929         return 0;
1930 }
1931
1932 /**
1933  *      tty_open_current_tty - get locked tty of current task
1934  *      @device: device number
1935  *      @filp: file pointer to tty
1936  *      @return: locked tty of the current task iff @device is /dev/tty
1937  *
1938  *      Performs a re-open of the current task's controlling tty.
1939  *
1940  *      We cannot return driver and index like for the other nodes because
1941  *      devpts will not work then. It expects inodes to be from devpts FS.
1942  */
1943 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1944 {
1945         struct tty_struct *tty;
1946         int retval;
1947
1948         if (device != MKDEV(TTYAUX_MAJOR, 0))
1949                 return NULL;
1950
1951         tty = get_current_tty();
1952         if (!tty)
1953                 return ERR_PTR(-ENXIO);
1954
1955         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1956         /* noctty = 1; */
1957         tty_lock(tty);
1958         tty_kref_put(tty);      /* safe to drop the kref now */
1959
1960         retval = tty_reopen(tty);
1961         if (retval < 0) {
1962                 tty_unlock(tty);
1963                 tty = ERR_PTR(retval);
1964         }
1965         return tty;
1966 }
1967
1968 /**
1969  *      tty_lookup_driver - lookup a tty driver for a given device file
1970  *      @device: device number
1971  *      @filp: file pointer to tty
1972  *      @noctty: set if the device should not become a controlling tty
1973  *      @index: index for the device in the @return driver
1974  *      @return: driver for this inode (with increased refcount)
1975  *
1976  *      If @return is not erroneous, the caller is responsible to decrement the
1977  *      refcount by tty_driver_kref_put.
1978  *
1979  *      Locking: tty_mutex protects get_tty_driver
1980  */
1981 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1982                 int *noctty, int *index)
1983 {
1984         struct tty_driver *driver;
1985
1986         switch (device) {
1987 #ifdef CONFIG_VT
1988         case MKDEV(TTY_MAJOR, 0): {
1989                 extern struct tty_driver *console_driver;
1990                 driver = tty_driver_kref_get(console_driver);
1991                 *index = fg_console;
1992                 *noctty = 1;
1993                 break;
1994         }
1995 #endif
1996         case MKDEV(TTYAUX_MAJOR, 1): {
1997                 struct tty_driver *console_driver = console_device(index);
1998                 if (console_driver) {
1999                         driver = tty_driver_kref_get(console_driver);
2000                         if (driver) {
2001                                 /* Don't let /dev/console block */
2002                                 filp->f_flags |= O_NONBLOCK;
2003                                 *noctty = 1;
2004                                 break;
2005                         }
2006                 }
2007                 return ERR_PTR(-ENODEV);
2008         }
2009         default:
2010                 driver = get_tty_driver(device, index);
2011                 if (!driver)
2012                         return ERR_PTR(-ENODEV);
2013                 break;
2014         }
2015         return driver;
2016 }
2017
2018 /**
2019  *      tty_open                -       open a tty device
2020  *      @inode: inode of device file
2021  *      @filp: file pointer to tty
2022  *
2023  *      tty_open and tty_release keep up the tty count that contains the
2024  *      number of opens done on a tty. We cannot use the inode-count, as
2025  *      different inodes might point to the same tty.
2026  *
2027  *      Open-counting is needed for pty masters, as well as for keeping
2028  *      track of serial lines: DTR is dropped when the last close happens.
2029  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
2030  *
2031  *      The termios state of a pty is reset on first open so that
2032  *      settings don't persist across reuse.
2033  *
2034  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2035  *               tty->count should protect the rest.
2036  *               ->siglock protects ->signal/->sighand
2037  *
2038  *      Note: the tty_unlock/lock cases without a ref are only safe due to
2039  *      tty_mutex
2040  */
2041
2042 static int tty_open(struct inode *inode, struct file *filp)
2043 {
2044         struct tty_struct *tty;
2045         int noctty, retval;
2046         struct tty_driver *driver = NULL;
2047         int index;
2048         dev_t device = inode->i_rdev;
2049         unsigned saved_flags = filp->f_flags;
2050
2051         nonseekable_open(inode, filp);
2052
2053 retry_open:
2054         retval = tty_alloc_file(filp);
2055         if (retval)
2056                 return -ENOMEM;
2057
2058         noctty = filp->f_flags & O_NOCTTY;
2059         index  = -1;
2060         retval = 0;
2061
2062         tty = tty_open_current_tty(device, filp);
2063         if (!tty) {
2064                 mutex_lock(&tty_mutex);
2065                 driver = tty_lookup_driver(device, filp, &noctty, &index);
2066                 if (IS_ERR(driver)) {
2067                         retval = PTR_ERR(driver);
2068                         goto err_unlock;
2069                 }
2070
2071                 /* check whether we're reopening an existing tty */
2072                 tty = tty_driver_lookup_tty(driver, inode, index);
2073                 if (IS_ERR(tty)) {
2074                         retval = PTR_ERR(tty);
2075                         goto err_unlock;
2076                 }
2077
2078                 if (tty) {
2079                         mutex_unlock(&tty_mutex);
2080                         tty_lock(tty);
2081                         /* safe to drop the kref from tty_driver_lookup_tty() */
2082                         tty_kref_put(tty);
2083                         retval = tty_reopen(tty);
2084                         if (retval < 0) {
2085                                 tty_unlock(tty);
2086                                 tty = ERR_PTR(retval);
2087                         }
2088                 } else { /* Returns with the tty_lock held for now */
2089                         tty = tty_init_dev(driver, index);
2090                         mutex_unlock(&tty_mutex);
2091                 }
2092
2093                 tty_driver_kref_put(driver);
2094         }
2095
2096         if (IS_ERR(tty)) {
2097                 retval = PTR_ERR(tty);
2098                 goto err_file;
2099         }
2100
2101         tty_add_file(tty, filp);
2102
2103         check_tty_count(tty, __func__);
2104         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2105             tty->driver->subtype == PTY_TYPE_MASTER)
2106                 noctty = 1;
2107 #ifdef TTY_DEBUG_HANGUP
2108         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2109 #endif
2110         if (tty->ops->open)
2111                 retval = tty->ops->open(tty, filp);
2112         else
2113                 retval = -ENODEV;
2114         filp->f_flags = saved_flags;
2115
2116         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2117                                                 !capable(CAP_SYS_ADMIN))
2118                 retval = -EBUSY;
2119
2120         if (retval) {
2121 #ifdef TTY_DEBUG_HANGUP
2122                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2123                                 retval, tty->name);
2124 #endif
2125                 tty_unlock(tty); /* need to call tty_release without BTM */
2126                 tty_release(inode, filp);
2127                 if (retval != -ERESTARTSYS)
2128                         return retval;
2129
2130                 if (signal_pending(current))
2131                         return retval;
2132
2133                 schedule();
2134                 /*
2135                  * Need to reset f_op in case a hangup happened.
2136                  */
2137                 if (filp->f_op == &hung_up_tty_fops)
2138                         filp->f_op = &tty_fops;
2139                 goto retry_open;
2140         }
2141         clear_bit(TTY_HUPPED, &tty->flags);
2142
2143
2144         read_lock(&tasklist_lock);
2145         spin_lock_irq(&current->sighand->siglock);
2146         if (!noctty &&
2147             current->signal->leader &&
2148             !current->signal->tty &&
2149             tty->session == NULL)
2150                 __proc_set_tty(tty);
2151         spin_unlock_irq(&current->sighand->siglock);
2152         read_unlock(&tasklist_lock);
2153         tty_unlock(tty);
2154         return 0;
2155 err_unlock:
2156         mutex_unlock(&tty_mutex);
2157         /* after locks to avoid deadlock */
2158         if (!IS_ERR_OR_NULL(driver))
2159                 tty_driver_kref_put(driver);
2160 err_file:
2161         tty_free_file(filp);
2162         return retval;
2163 }
2164
2165
2166
2167 /**
2168  *      tty_poll        -       check tty status
2169  *      @filp: file being polled
2170  *      @wait: poll wait structures to update
2171  *
2172  *      Call the line discipline polling method to obtain the poll
2173  *      status of the device.
2174  *
2175  *      Locking: locks called line discipline but ldisc poll method
2176  *      may be re-entered freely by other callers.
2177  */
2178
2179 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2180 {
2181         struct tty_struct *tty = file_tty(filp);
2182         struct tty_ldisc *ld;
2183         int ret = 0;
2184
2185         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2186                 return 0;
2187
2188         ld = tty_ldisc_ref_wait(tty);
2189         if (ld->ops->poll)
2190                 ret = (ld->ops->poll)(tty, filp, wait);
2191         tty_ldisc_deref(ld);
2192         return ret;
2193 }
2194
2195 static int __tty_fasync(int fd, struct file *filp, int on)
2196 {
2197         struct tty_struct *tty = file_tty(filp);
2198         struct tty_ldisc *ldisc;
2199         unsigned long flags;
2200         int retval = 0;
2201
2202         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2203                 goto out;
2204
2205         retval = fasync_helper(fd, filp, on, &tty->fasync);
2206         if (retval <= 0)
2207                 goto out;
2208
2209         ldisc = tty_ldisc_ref(tty);
2210         if (ldisc) {
2211                 if (ldisc->ops->fasync)
2212                         ldisc->ops->fasync(tty, on);
2213                 tty_ldisc_deref(ldisc);
2214         }
2215
2216         if (on) {
2217                 enum pid_type type;
2218                 struct pid *pid;
2219
2220                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2221                 if (tty->pgrp) {
2222                         pid = tty->pgrp;
2223                         type = PIDTYPE_PGID;
2224                 } else {
2225                         pid = task_pid(current);
2226                         type = PIDTYPE_PID;
2227                 }
2228                 get_pid(pid);
2229                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2230                 __f_setown(filp, pid, type, 0);
2231                 put_pid(pid);
2232                 retval = 0;
2233         }
2234 out:
2235         return retval;
2236 }
2237
2238 static int tty_fasync(int fd, struct file *filp, int on)
2239 {
2240         struct tty_struct *tty = file_tty(filp);
2241         int retval;
2242
2243         tty_lock(tty);
2244         retval = __tty_fasync(fd, filp, on);
2245         tty_unlock(tty);
2246
2247         return retval;
2248 }
2249
2250 /**
2251  *      tiocsti                 -       fake input character
2252  *      @tty: tty to fake input into
2253  *      @p: pointer to character
2254  *
2255  *      Fake input to a tty device. Does the necessary locking and
2256  *      input management.
2257  *
2258  *      FIXME: does not honour flow control ??
2259  *
2260  *      Locking:
2261  *              Called functions take tty_ldiscs_lock
2262  *              current->signal->tty check is safe without locks
2263  *
2264  *      FIXME: may race normal receive processing
2265  */
2266
2267 static int tiocsti(struct tty_struct *tty, char __user *p)
2268 {
2269         char ch, mbz = 0;
2270         struct tty_ldisc *ld;
2271
2272         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2273                 return -EPERM;
2274         if (get_user(ch, p))
2275                 return -EFAULT;
2276         tty_audit_tiocsti(tty, ch);
2277         ld = tty_ldisc_ref_wait(tty);
2278         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2279         tty_ldisc_deref(ld);
2280         return 0;
2281 }
2282
2283 /**
2284  *      tiocgwinsz              -       implement window query ioctl
2285  *      @tty; tty
2286  *      @arg: user buffer for result
2287  *
2288  *      Copies the kernel idea of the window size into the user buffer.
2289  *
2290  *      Locking: tty->winsize_mutex is taken to ensure the winsize data
2291  *              is consistent.
2292  */
2293
2294 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2295 {
2296         int err;
2297
2298         mutex_lock(&tty->winsize_mutex);
2299         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2300         mutex_unlock(&tty->winsize_mutex);
2301
2302         return err ? -EFAULT: 0;
2303 }
2304
2305 /**
2306  *      tty_do_resize           -       resize event
2307  *      @tty: tty being resized
2308  *      @rows: rows (character)
2309  *      @cols: cols (character)
2310  *
2311  *      Update the termios variables and send the necessary signals to
2312  *      peform a terminal resize correctly
2313  */
2314
2315 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2316 {
2317         struct pid *pgrp;
2318
2319         /* Lock the tty */
2320         mutex_lock(&tty->winsize_mutex);
2321         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2322                 goto done;
2323
2324         /* Signal the foreground process group */
2325         pgrp = tty_get_pgrp(tty);
2326         if (pgrp)
2327                 kill_pgrp(pgrp, SIGWINCH, 1);
2328         put_pid(pgrp);
2329
2330         tty->winsize = *ws;
2331 done:
2332         mutex_unlock(&tty->winsize_mutex);
2333         return 0;
2334 }
2335 EXPORT_SYMBOL(tty_do_resize);
2336
2337 /**
2338  *      tiocswinsz              -       implement window size set ioctl
2339  *      @tty; tty side of tty
2340  *      @arg: user buffer for result
2341  *
2342  *      Copies the user idea of the window size to the kernel. Traditionally
2343  *      this is just advisory information but for the Linux console it
2344  *      actually has driver level meaning and triggers a VC resize.
2345  *
2346  *      Locking:
2347  *              Driver dependent. The default do_resize method takes the
2348  *      tty termios mutex and ctrl_lock. The console takes its own lock
2349  *      then calls into the default method.
2350  */
2351
2352 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2353 {
2354         struct winsize tmp_ws;
2355         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2356                 return -EFAULT;
2357
2358         if (tty->ops->resize)
2359                 return tty->ops->resize(tty, &tmp_ws);
2360         else
2361                 return tty_do_resize(tty, &tmp_ws);
2362 }
2363
2364 /**
2365  *      tioccons        -       allow admin to move logical console
2366  *      @file: the file to become console
2367  *
2368  *      Allow the administrator to move the redirected console device
2369  *
2370  *      Locking: uses redirect_lock to guard the redirect information
2371  */
2372
2373 static int tioccons(struct file *file)
2374 {
2375         if (!capable(CAP_SYS_ADMIN))
2376                 return -EPERM;
2377         if (file->f_op->write == redirected_tty_write) {
2378                 struct file *f;
2379                 spin_lock(&redirect_lock);
2380                 f = redirect;
2381                 redirect = NULL;
2382                 spin_unlock(&redirect_lock);
2383                 if (f)
2384                         fput(f);
2385                 return 0;
2386         }
2387         spin_lock(&redirect_lock);
2388         if (redirect) {
2389                 spin_unlock(&redirect_lock);
2390                 return -EBUSY;
2391         }
2392         redirect = get_file(file);
2393         spin_unlock(&redirect_lock);
2394         return 0;
2395 }
2396
2397 /**
2398  *      fionbio         -       non blocking ioctl
2399  *      @file: file to set blocking value
2400  *      @p: user parameter
2401  *
2402  *      Historical tty interfaces had a blocking control ioctl before
2403  *      the generic functionality existed. This piece of history is preserved
2404  *      in the expected tty API of posix OS's.
2405  *
2406  *      Locking: none, the open file handle ensures it won't go away.
2407  */
2408
2409 static int fionbio(struct file *file, int __user *p)
2410 {
2411         int nonblock;
2412
2413         if (get_user(nonblock, p))
2414                 return -EFAULT;
2415
2416         spin_lock(&file->f_lock);
2417         if (nonblock)
2418                 file->f_flags |= O_NONBLOCK;
2419         else
2420                 file->f_flags &= ~O_NONBLOCK;
2421         spin_unlock(&file->f_lock);
2422         return 0;
2423 }
2424
2425 /**
2426  *      tiocsctty       -       set controlling tty
2427  *      @tty: tty structure
2428  *      @arg: user argument
2429  *
2430  *      This ioctl is used to manage job control. It permits a session
2431  *      leader to set this tty as the controlling tty for the session.
2432  *
2433  *      Locking:
2434  *              Takes tty_lock() to serialize proc_set_tty() for this tty
2435  *              Takes tasklist_lock internally to walk sessions
2436  *              Takes ->siglock() when updating signal->tty
2437  */
2438
2439 static int tiocsctty(struct tty_struct *tty, int arg)
2440 {
2441         int ret = 0;
2442
2443         tty_lock(tty);
2444         read_lock(&tasklist_lock);
2445
2446         if (current->signal->leader && (task_session(current) == tty->session))
2447                 goto unlock;
2448
2449         /*
2450          * The process must be a session leader and
2451          * not have a controlling tty already.
2452          */
2453         if (!current->signal->leader || current->signal->tty) {
2454                 ret = -EPERM;
2455                 goto unlock;
2456         }
2457
2458         if (tty->session) {
2459                 /*
2460                  * This tty is already the controlling
2461                  * tty for another session group!
2462                  */
2463                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2464                         /*
2465                          * Steal it away
2466                          */
2467                         session_clear_tty(tty->session);
2468                 } else {
2469                         ret = -EPERM;
2470                         goto unlock;
2471                 }
2472         }
2473         proc_set_tty(tty);
2474 unlock:
2475         read_unlock(&tasklist_lock);
2476         tty_unlock(tty);
2477         return ret;
2478 }
2479
2480 /**
2481  *      tty_get_pgrp    -       return a ref counted pgrp pid
2482  *      @tty: tty to read
2483  *
2484  *      Returns a refcounted instance of the pid struct for the process
2485  *      group controlling the tty.
2486  */
2487
2488 struct pid *tty_get_pgrp(struct tty_struct *tty)
2489 {
2490         unsigned long flags;
2491         struct pid *pgrp;
2492
2493         spin_lock_irqsave(&tty->ctrl_lock, flags);
2494         pgrp = get_pid(tty->pgrp);
2495         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2496
2497         return pgrp;
2498 }
2499 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2500
2501 /*
2502  * This checks not only the pgrp, but falls back on the pid if no
2503  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2504  * without this...
2505  *
2506  * The caller must hold rcu lock or the tasklist lock.
2507  */
2508 static struct pid *session_of_pgrp(struct pid *pgrp)
2509 {
2510         struct task_struct *p;
2511         struct pid *sid = NULL;
2512
2513         p = pid_task(pgrp, PIDTYPE_PGID);
2514         if (p == NULL)
2515                 p = pid_task(pgrp, PIDTYPE_PID);
2516         if (p != NULL)
2517                 sid = task_session(p);
2518
2519         return sid;
2520 }
2521
2522 /**
2523  *      tiocgpgrp               -       get process group
2524  *      @tty: tty passed by user
2525  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2526  *      @p: returned pid
2527  *
2528  *      Obtain the process group of the tty. If there is no process group
2529  *      return an error.
2530  *
2531  *      Locking: none. Reference to current->signal->tty is safe.
2532  */
2533
2534 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2535 {
2536         struct pid *pid;
2537         int ret;
2538         /*
2539          * (tty == real_tty) is a cheap way of
2540          * testing if the tty is NOT a master pty.
2541          */
2542         if (tty == real_tty && current->signal->tty != real_tty)
2543                 return -ENOTTY;
2544         pid = tty_get_pgrp(real_tty);
2545         ret =  put_user(pid_vnr(pid), p);
2546         put_pid(pid);
2547         return ret;
2548 }
2549
2550 /**
2551  *      tiocspgrp               -       attempt to set process group
2552  *      @tty: tty passed by user
2553  *      @real_tty: tty side device matching tty passed by user
2554  *      @p: pid pointer
2555  *
2556  *      Set the process group of the tty to the session passed. Only
2557  *      permitted where the tty session is our session.
2558  *
2559  *      Locking: RCU, ctrl lock
2560  */
2561
2562 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2563 {
2564         struct pid *pgrp;
2565         pid_t pgrp_nr;
2566         int retval = tty_check_change(real_tty);
2567         unsigned long flags;
2568
2569         if (retval == -EIO)
2570                 return -ENOTTY;
2571         if (retval)
2572                 return retval;
2573         if (!current->signal->tty ||
2574             (current->signal->tty != real_tty) ||
2575             (real_tty->session != task_session(current)))
2576                 return -ENOTTY;
2577         if (get_user(pgrp_nr, p))
2578                 return -EFAULT;
2579         if (pgrp_nr < 0)
2580                 return -EINVAL;
2581         rcu_read_lock();
2582         pgrp = find_vpid(pgrp_nr);
2583         retval = -ESRCH;
2584         if (!pgrp)
2585                 goto out_unlock;
2586         retval = -EPERM;
2587         if (session_of_pgrp(pgrp) != task_session(current))
2588                 goto out_unlock;
2589         retval = 0;
2590         spin_lock_irqsave(&tty->ctrl_lock, flags);
2591         put_pid(real_tty->pgrp);
2592         real_tty->pgrp = get_pid(pgrp);
2593         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2594 out_unlock:
2595         rcu_read_unlock();
2596         return retval;
2597 }
2598
2599 /**
2600  *      tiocgsid                -       get session id
2601  *      @tty: tty passed by user
2602  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2603  *      @p: pointer to returned session id
2604  *
2605  *      Obtain the session id of the tty. If there is no session
2606  *      return an error.
2607  *
2608  *      Locking: none. Reference to current->signal->tty is safe.
2609  */
2610
2611 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2612 {
2613         /*
2614          * (tty == real_tty) is a cheap way of
2615          * testing if the tty is NOT a master pty.
2616         */
2617         if (tty == real_tty && current->signal->tty != real_tty)
2618                 return -ENOTTY;
2619         if (!real_tty->session)
2620                 return -ENOTTY;
2621         return put_user(pid_vnr(real_tty->session), p);
2622 }
2623
2624 /**
2625  *      tiocsetd        -       set line discipline
2626  *      @tty: tty device
2627  *      @p: pointer to user data
2628  *
2629  *      Set the line discipline according to user request.
2630  *
2631  *      Locking: see tty_set_ldisc, this function is just a helper
2632  */
2633
2634 static int tiocsetd(struct tty_struct *tty, int __user *p)
2635 {
2636         int ldisc;
2637         int ret;
2638
2639         if (get_user(ldisc, p))
2640                 return -EFAULT;
2641
2642         ret = tty_set_ldisc(tty, ldisc);
2643
2644         return ret;
2645 }
2646
2647 /**
2648  *      send_break      -       performed time break
2649  *      @tty: device to break on
2650  *      @duration: timeout in mS
2651  *
2652  *      Perform a timed break on hardware that lacks its own driver level
2653  *      timed break functionality.
2654  *
2655  *      Locking:
2656  *              atomic_write_lock serializes
2657  *
2658  */
2659
2660 static int send_break(struct tty_struct *tty, unsigned int duration)
2661 {
2662         int retval;
2663
2664         if (tty->ops->break_ctl == NULL)
2665                 return 0;
2666
2667         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2668                 retval = tty->ops->break_ctl(tty, duration);
2669         else {
2670                 /* Do the work ourselves */
2671                 if (tty_write_lock(tty, 0) < 0)
2672                         return -EINTR;
2673                 retval = tty->ops->break_ctl(tty, -1);
2674                 if (retval)
2675                         goto out;
2676                 if (!signal_pending(current))
2677                         msleep_interruptible(duration);
2678                 retval = tty->ops->break_ctl(tty, 0);
2679 out:
2680                 tty_write_unlock(tty);
2681                 if (signal_pending(current))
2682                         retval = -EINTR;
2683         }
2684         return retval;
2685 }
2686
2687 /**
2688  *      tty_tiocmget            -       get modem status
2689  *      @tty: tty device
2690  *      @file: user file pointer
2691  *      @p: pointer to result
2692  *
2693  *      Obtain the modem status bits from the tty driver if the feature
2694  *      is supported. Return -EINVAL if it is not available.
2695  *
2696  *      Locking: none (up to the driver)
2697  */
2698
2699 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2700 {
2701         int retval = -EINVAL;
2702
2703         if (tty->ops->tiocmget) {
2704                 retval = tty->ops->tiocmget(tty);
2705
2706                 if (retval >= 0)
2707                         retval = put_user(retval, p);
2708         }
2709         return retval;
2710 }
2711
2712 /**
2713  *      tty_tiocmset            -       set modem status
2714  *      @tty: tty device
2715  *      @cmd: command - clear bits, set bits or set all
2716  *      @p: pointer to desired bits
2717  *
2718  *      Set the modem status bits from the tty driver if the feature
2719  *      is supported. Return -EINVAL if it is not available.
2720  *
2721  *      Locking: none (up to the driver)
2722  */
2723
2724 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2725              unsigned __user *p)
2726 {
2727         int retval;
2728         unsigned int set, clear, val;
2729
2730         if (tty->ops->tiocmset == NULL)
2731                 return -EINVAL;
2732
2733         retval = get_user(val, p);
2734         if (retval)
2735                 return retval;
2736         set = clear = 0;
2737         switch (cmd) {
2738         case TIOCMBIS:
2739                 set = val;
2740                 break;
2741         case TIOCMBIC:
2742                 clear = val;
2743                 break;
2744         case TIOCMSET:
2745                 set = val;
2746                 clear = ~val;
2747                 break;
2748         }
2749         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2750         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2751         return tty->ops->tiocmset(tty, set, clear);
2752 }
2753
2754 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2755 {
2756         int retval = -EINVAL;
2757         struct serial_icounter_struct icount;
2758         memset(&icount, 0, sizeof(icount));
2759         if (tty->ops->get_icount)
2760                 retval = tty->ops->get_icount(tty, &icount);
2761         if (retval != 0)
2762                 return retval;
2763         if (copy_to_user(arg, &icount, sizeof(icount)))
2764                 return -EFAULT;
2765         return 0;
2766 }
2767
2768 /*
2769  * if pty, return the slave side (real_tty)
2770  * otherwise, return self
2771  */
2772 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2773 {
2774         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2775             tty->driver->subtype == PTY_TYPE_MASTER)
2776                 tty = tty->link;
2777         return tty;
2778 }
2779
2780 /*
2781  * Split this up, as gcc can choke on it otherwise..
2782  */
2783 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2784 {
2785         struct tty_struct *tty = file_tty(file);
2786         struct tty_struct *real_tty;
2787         void __user *p = (void __user *)arg;
2788         int retval;
2789         struct tty_ldisc *ld;
2790
2791         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2792                 return -EINVAL;
2793
2794         real_tty = tty_pair_get_tty(tty);
2795
2796         /*
2797          * Factor out some common prep work
2798          */
2799         switch (cmd) {
2800         case TIOCSETD:
2801         case TIOCSBRK:
2802         case TIOCCBRK:
2803         case TCSBRK:
2804         case TCSBRKP:
2805                 retval = tty_check_change(tty);
2806                 if (retval)
2807                         return retval;
2808                 if (cmd != TIOCCBRK) {
2809                         tty_wait_until_sent(tty, 0);
2810                         if (signal_pending(current))
2811                                 return -EINTR;
2812                 }
2813                 break;
2814         }
2815
2816         /*
2817          *      Now do the stuff.
2818          */
2819         switch (cmd) {
2820         case TIOCSTI:
2821                 return tiocsti(tty, p);
2822         case TIOCGWINSZ:
2823                 return tiocgwinsz(real_tty, p);
2824         case TIOCSWINSZ:
2825                 return tiocswinsz(real_tty, p);
2826         case TIOCCONS:
2827                 return real_tty != tty ? -EINVAL : tioccons(file);
2828         case FIONBIO:
2829                 return fionbio(file, p);
2830         case TIOCEXCL:
2831                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2832                 return 0;
2833         case TIOCNXCL:
2834                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2835                 return 0;
2836         case TIOCGEXCL:
2837         {
2838                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2839                 return put_user(excl, (int __user *)p);
2840         }
2841         case TIOCNOTTY:
2842                 if (current->signal->tty != tty)
2843                         return -ENOTTY;
2844                 no_tty();
2845                 return 0;
2846         case TIOCSCTTY:
2847                 return tiocsctty(tty, arg);
2848         case TIOCGPGRP:
2849                 return tiocgpgrp(tty, real_tty, p);
2850         case TIOCSPGRP:
2851                 return tiocspgrp(tty, real_tty, p);
2852         case TIOCGSID:
2853                 return tiocgsid(tty, real_tty, p);
2854         case TIOCGETD:
2855                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2856         case TIOCSETD:
2857                 return tiocsetd(tty, p);
2858         case TIOCVHANGUP:
2859                 if (!capable(CAP_SYS_ADMIN))
2860                         return -EPERM;
2861                 tty_vhangup(tty);
2862                 return 0;
2863         case TIOCGDEV:
2864         {
2865                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2866                 return put_user(ret, (unsigned int __user *)p);
2867         }
2868         /*
2869          * Break handling
2870          */
2871         case TIOCSBRK:  /* Turn break on, unconditionally */
2872                 if (tty->ops->break_ctl)
2873                         return tty->ops->break_ctl(tty, -1);
2874                 return 0;
2875         case TIOCCBRK:  /* Turn break off, unconditionally */
2876                 if (tty->ops->break_ctl)
2877                         return tty->ops->break_ctl(tty, 0);
2878                 return 0;
2879         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2880                 /* non-zero arg means wait for all output data
2881                  * to be sent (performed above) but don't send break.
2882                  * This is used by the tcdrain() termios function.
2883                  */
2884                 if (!arg)
2885                         return send_break(tty, 250);
2886                 return 0;
2887         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2888                 return send_break(tty, arg ? arg*100 : 250);
2889
2890         case TIOCMGET:
2891                 return tty_tiocmget(tty, p);
2892         case TIOCMSET:
2893         case TIOCMBIC:
2894         case TIOCMBIS:
2895                 return tty_tiocmset(tty, cmd, p);
2896         case TIOCGICOUNT:
2897                 retval = tty_tiocgicount(tty, p);
2898                 /* For the moment allow fall through to the old method */
2899                 if (retval != -EINVAL)
2900                         return retval;
2901                 break;
2902         case TCFLSH:
2903                 switch (arg) {
2904                 case TCIFLUSH:
2905                 case TCIOFLUSH:
2906                 /* flush tty buffer and allow ldisc to process ioctl */
2907                         tty_buffer_flush(tty);
2908                         break;
2909                 }
2910                 break;
2911         }
2912         if (tty->ops->ioctl) {
2913                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2914                 if (retval != -ENOIOCTLCMD)
2915                         return retval;
2916         }
2917         ld = tty_ldisc_ref_wait(tty);
2918         retval = -EINVAL;
2919         if (ld->ops->ioctl) {
2920                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2921                 if (retval == -ENOIOCTLCMD)
2922                         retval = -ENOTTY;
2923         }
2924         tty_ldisc_deref(ld);
2925         return retval;
2926 }
2927
2928 #ifdef CONFIG_COMPAT
2929 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2930                                 unsigned long arg)
2931 {
2932         struct tty_struct *tty = file_tty(file);
2933         struct tty_ldisc *ld;
2934         int retval = -ENOIOCTLCMD;
2935
2936         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2937                 return -EINVAL;
2938
2939         if (tty->ops->compat_ioctl) {
2940                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2941                 if (retval != -ENOIOCTLCMD)
2942                         return retval;
2943         }
2944
2945         ld = tty_ldisc_ref_wait(tty);
2946         if (ld->ops->compat_ioctl)
2947                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2948         else
2949                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2950         tty_ldisc_deref(ld);
2951
2952         return retval;
2953 }
2954 #endif
2955
2956 static int this_tty(const void *t, struct file *file, unsigned fd)
2957 {
2958         if (likely(file->f_op->read != tty_read))
2959                 return 0;
2960         return file_tty(file) != t ? 0 : fd + 1;
2961 }
2962         
2963 /*
2964  * This implements the "Secure Attention Key" ---  the idea is to
2965  * prevent trojan horses by killing all processes associated with this
2966  * tty when the user hits the "Secure Attention Key".  Required for
2967  * super-paranoid applications --- see the Orange Book for more details.
2968  *
2969  * This code could be nicer; ideally it should send a HUP, wait a few
2970  * seconds, then send a INT, and then a KILL signal.  But you then
2971  * have to coordinate with the init process, since all processes associated
2972  * with the current tty must be dead before the new getty is allowed
2973  * to spawn.
2974  *
2975  * Now, if it would be correct ;-/ The current code has a nasty hole -
2976  * it doesn't catch files in flight. We may send the descriptor to ourselves
2977  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2978  *
2979  * Nasty bug: do_SAK is being called in interrupt context.  This can
2980  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2981  */
2982 void __do_SAK(struct tty_struct *tty)
2983 {
2984 #ifdef TTY_SOFT_SAK
2985         tty_hangup(tty);
2986 #else
2987         struct task_struct *g, *p;
2988         struct pid *session;
2989         int             i;
2990
2991         if (!tty)
2992                 return;
2993         session = tty->session;
2994
2995         tty_ldisc_flush(tty);
2996
2997         tty_driver_flush_buffer(tty);
2998
2999         read_lock(&tasklist_lock);
3000         /* Kill the entire session */
3001         do_each_pid_task(session, PIDTYPE_SID, p) {
3002                 printk(KERN_NOTICE "SAK: killed process %d"
3003                         " (%s): task_session(p)==tty->session\n",
3004                         task_pid_nr(p), p->comm);
3005                 send_sig(SIGKILL, p, 1);
3006         } while_each_pid_task(session, PIDTYPE_SID, p);
3007         /* Now kill any processes that happen to have the
3008          * tty open.
3009          */
3010         do_each_thread(g, p) {
3011                 if (p->signal->tty == tty) {
3012                         printk(KERN_NOTICE "SAK: killed process %d"
3013                             " (%s): task_session(p)==tty->session\n",
3014                             task_pid_nr(p), p->comm);
3015                         send_sig(SIGKILL, p, 1);
3016                         continue;
3017                 }
3018                 task_lock(p);
3019                 i = iterate_fd(p->files, 0, this_tty, tty);
3020                 if (i != 0) {
3021                         printk(KERN_NOTICE "SAK: killed process %d"
3022                             " (%s): fd#%d opened to the tty\n",
3023                                     task_pid_nr(p), p->comm, i - 1);
3024                         force_sig(SIGKILL, p);
3025                 }
3026                 task_unlock(p);
3027         } while_each_thread(g, p);
3028         read_unlock(&tasklist_lock);
3029 #endif
3030 }
3031
3032 static void do_SAK_work(struct work_struct *work)
3033 {
3034         struct tty_struct *tty =
3035                 container_of(work, struct tty_struct, SAK_work);
3036         __do_SAK(tty);
3037 }
3038
3039 /*
3040  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3041  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3042  * the values which we write to it will be identical to the values which it
3043  * already has. --akpm
3044  */
3045 void do_SAK(struct tty_struct *tty)
3046 {
3047         if (!tty)
3048                 return;
3049         schedule_work(&tty->SAK_work);
3050 }
3051
3052 EXPORT_SYMBOL(do_SAK);
3053
3054 static int dev_match_devt(struct device *dev, const void *data)
3055 {
3056         const dev_t *devt = data;
3057         return dev->devt == *devt;
3058 }
3059
3060 /* Must put_device() after it's unused! */
3061 static struct device *tty_get_device(struct tty_struct *tty)
3062 {
3063         dev_t devt = tty_devnum(tty);
3064         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3065 }
3066
3067
3068 /**
3069  *      alloc_tty_struct
3070  *
3071  *      This subroutine allocates and initializes a tty structure.
3072  *
3073  *      Locking: none - tty in question is not exposed at this point
3074  */
3075
3076 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3077 {
3078         struct tty_struct *tty;
3079
3080         tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3081         if (!tty)
3082                 return NULL;
3083
3084         kref_init(&tty->kref);
3085         tty->magic = TTY_MAGIC;
3086         tty_ldisc_init(tty);
3087         tty->session = NULL;
3088         tty->pgrp = NULL;
3089         mutex_init(&tty->legacy_mutex);
3090         mutex_init(&tty->throttle_mutex);
3091         init_rwsem(&tty->termios_rwsem);
3092         mutex_init(&tty->winsize_mutex);
3093         init_ldsem(&tty->ldisc_sem);
3094         init_waitqueue_head(&tty->write_wait);
3095         init_waitqueue_head(&tty->read_wait);
3096         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3097         mutex_init(&tty->atomic_write_lock);
3098         spin_lock_init(&tty->ctrl_lock);
3099         spin_lock_init(&tty->flow_lock);
3100         INIT_LIST_HEAD(&tty->tty_files);
3101         INIT_WORK(&tty->SAK_work, do_SAK_work);
3102
3103         tty->driver = driver;
3104         tty->ops = driver->ops;
3105         tty->index = idx;
3106         tty_line_name(driver, idx, tty->name);
3107         tty->dev = tty_get_device(tty);
3108
3109         return tty;
3110 }
3111
3112 /**
3113  *      deinitialize_tty_struct
3114  *      @tty: tty to deinitialize
3115  *
3116  *      This subroutine deinitializes a tty structure that has been newly
3117  *      allocated but tty_release cannot be called on that yet.
3118  *
3119  *      Locking: none - tty in question must not be exposed at this point
3120  */
3121 void deinitialize_tty_struct(struct tty_struct *tty)
3122 {
3123         tty_ldisc_deinit(tty);
3124 }
3125
3126 /**
3127  *      tty_put_char    -       write one character to a tty
3128  *      @tty: tty
3129  *      @ch: character
3130  *
3131  *      Write one byte to the tty using the provided put_char method
3132  *      if present. Returns the number of characters successfully output.
3133  *
3134  *      Note: the specific put_char operation in the driver layer may go
3135  *      away soon. Don't call it directly, use this method
3136  */
3137
3138 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3139 {
3140         if (tty->ops->put_char)
3141                 return tty->ops->put_char(tty, ch);
3142         return tty->ops->write(tty, &ch, 1);
3143 }
3144 EXPORT_SYMBOL_GPL(tty_put_char);
3145
3146 struct class *tty_class;
3147
3148 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3149                 unsigned int index, unsigned int count)
3150 {
3151         /* init here, since reused cdevs cause crashes */
3152         cdev_init(&driver->cdevs[index], &tty_fops);
3153         driver->cdevs[index].owner = driver->owner;
3154         return cdev_add(&driver->cdevs[index], dev, count);
3155 }
3156
3157 /**
3158  *      tty_register_device - register a tty device
3159  *      @driver: the tty driver that describes the tty device
3160  *      @index: the index in the tty driver for this tty device
3161  *      @device: a struct device that is associated with this tty device.
3162  *              This field is optional, if there is no known struct device
3163  *              for this tty device it can be set to NULL safely.
3164  *
3165  *      Returns a pointer to the struct device for this tty device
3166  *      (or ERR_PTR(-EFOO) on error).
3167  *
3168  *      This call is required to be made to register an individual tty device
3169  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3170  *      that bit is not set, this function should not be called by a tty
3171  *      driver.
3172  *
3173  *      Locking: ??
3174  */
3175
3176 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3177                                    struct device *device)
3178 {
3179         return tty_register_device_attr(driver, index, device, NULL, NULL);
3180 }
3181 EXPORT_SYMBOL(tty_register_device);
3182
3183 static void tty_device_create_release(struct device *dev)
3184 {
3185         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3186         kfree(dev);
3187 }
3188
3189 /**
3190  *      tty_register_device_attr - register a tty device
3191  *      @driver: the tty driver that describes the tty device
3192  *      @index: the index in the tty driver for this tty device
3193  *      @device: a struct device that is associated with this tty device.
3194  *              This field is optional, if there is no known struct device
3195  *              for this tty device it can be set to NULL safely.
3196  *      @drvdata: Driver data to be set to device.
3197  *      @attr_grp: Attribute group to be set on device.
3198  *
3199  *      Returns a pointer to the struct device for this tty device
3200  *      (or ERR_PTR(-EFOO) on error).
3201  *
3202  *      This call is required to be made to register an individual tty device
3203  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3204  *      that bit is not set, this function should not be called by a tty
3205  *      driver.
3206  *
3207  *      Locking: ??
3208  */
3209 struct device *tty_register_device_attr(struct tty_driver *driver,
3210                                    unsigned index, struct device *device,
3211                                    void *drvdata,
3212                                    const struct attribute_group **attr_grp)
3213 {
3214         char name[64];
3215         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3216         struct device *dev = NULL;
3217         int retval = -ENODEV;
3218         bool cdev = false;
3219
3220         if (index >= driver->num) {
3221                 printk(KERN_ERR "Attempt to register invalid tty line number "
3222                        " (%d).\n", index);
3223                 return ERR_PTR(-EINVAL);
3224         }
3225
3226         if (driver->type == TTY_DRIVER_TYPE_PTY)
3227                 pty_line_name(driver, index, name);
3228         else
3229                 tty_line_name(driver, index, name);
3230
3231         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3232                 retval = tty_cdev_add(driver, devt, index, 1);
3233                 if (retval)
3234                         goto error;
3235                 cdev = true;
3236         }
3237
3238         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3239         if (!dev) {
3240                 retval = -ENOMEM;
3241                 goto error;
3242         }
3243
3244         dev->devt = devt;
3245         dev->class = tty_class;
3246         dev->parent = device;
3247         dev->release = tty_device_create_release;
3248         dev_set_name(dev, "%s", name);
3249         dev->groups = attr_grp;
3250         dev_set_drvdata(dev, drvdata);
3251
3252         retval = device_register(dev);
3253         if (retval)
3254                 goto error;
3255
3256         return dev;
3257
3258 error:
3259         put_device(dev);
3260         if (cdev)
3261                 cdev_del(&driver->cdevs[index]);
3262         return ERR_PTR(retval);
3263 }
3264 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3265
3266 /**
3267  *      tty_unregister_device - unregister a tty device
3268  *      @driver: the tty driver that describes the tty device
3269  *      @index: the index in the tty driver for this tty device
3270  *
3271  *      If a tty device is registered with a call to tty_register_device() then
3272  *      this function must be called when the tty device is gone.
3273  *
3274  *      Locking: ??
3275  */
3276
3277 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3278 {
3279         device_destroy(tty_class,
3280                 MKDEV(driver->major, driver->minor_start) + index);
3281         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3282                 cdev_del(&driver->cdevs[index]);
3283 }
3284 EXPORT_SYMBOL(tty_unregister_device);
3285
3286 /**
3287  * __tty_alloc_driver -- allocate tty driver
3288  * @lines: count of lines this driver can handle at most
3289  * @owner: module which is repsonsible for this driver
3290  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3291  *
3292  * This should not be called directly, some of the provided macros should be
3293  * used instead. Use IS_ERR and friends on @retval.
3294  */
3295 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3296                 unsigned long flags)
3297 {
3298         struct tty_driver *driver;
3299         unsigned int cdevs = 1;
3300         int err;
3301
3302         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3303                 return ERR_PTR(-EINVAL);
3304
3305         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3306         if (!driver)
3307                 return ERR_PTR(-ENOMEM);
3308
3309         kref_init(&driver->kref);
3310         driver->magic = TTY_DRIVER_MAGIC;
3311         driver->num = lines;
3312         driver->owner = owner;
3313         driver->flags = flags;
3314
3315         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3316                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3317                                 GFP_KERNEL);
3318                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3319                                 GFP_KERNEL);
3320                 if (!driver->ttys || !driver->termios) {
3321                         err = -ENOMEM;
3322                         goto err_free_all;
3323                 }
3324         }
3325
3326         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3327                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3328                                 GFP_KERNEL);
3329                 if (!driver->ports) {
3330                         err = -ENOMEM;
3331                         goto err_free_all;
3332                 }
3333                 cdevs = lines;
3334         }
3335
3336         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3337         if (!driver->cdevs) {
3338                 err = -ENOMEM;
3339                 goto err_free_all;
3340         }
3341
3342         return driver;
3343 err_free_all:
3344         kfree(driver->ports);
3345         kfree(driver->ttys);
3346         kfree(driver->termios);
3347         kfree(driver);
3348         return ERR_PTR(err);
3349 }
3350 EXPORT_SYMBOL(__tty_alloc_driver);
3351
3352 static void destruct_tty_driver(struct kref *kref)
3353 {
3354         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3355         int i;
3356         struct ktermios *tp;
3357
3358         if (driver->flags & TTY_DRIVER_INSTALLED) {
3359                 /*
3360                  * Free the termios and termios_locked structures because
3361                  * we don't want to get memory leaks when modular tty
3362                  * drivers are removed from the kernel.
3363                  */
3364                 for (i = 0; i < driver->num; i++) {
3365                         tp = driver->termios[i];
3366                         if (tp) {
3367                                 driver->termios[i] = NULL;
3368                                 kfree(tp);
3369                         }
3370                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3371                                 tty_unregister_device(driver, i);
3372                 }
3373                 proc_tty_unregister_driver(driver);
3374                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3375                         cdev_del(&driver->cdevs[0]);
3376         }
3377         kfree(driver->cdevs);
3378         kfree(driver->ports);
3379         kfree(driver->termios);
3380         kfree(driver->ttys);
3381         kfree(driver);
3382 }
3383
3384 void tty_driver_kref_put(struct tty_driver *driver)
3385 {
3386         kref_put(&driver->kref, destruct_tty_driver);
3387 }
3388 EXPORT_SYMBOL(tty_driver_kref_put);
3389
3390 void tty_set_operations(struct tty_driver *driver,
3391                         const struct tty_operations *op)
3392 {
3393         driver->ops = op;
3394 };
3395 EXPORT_SYMBOL(tty_set_operations);
3396
3397 void put_tty_driver(struct tty_driver *d)
3398 {
3399         tty_driver_kref_put(d);
3400 }
3401 EXPORT_SYMBOL(put_tty_driver);
3402
3403 /*
3404  * Called by a tty driver to register itself.
3405  */
3406 int tty_register_driver(struct tty_driver *driver)
3407 {
3408         int error;
3409         int i;
3410         dev_t dev;
3411         struct device *d;
3412
3413         if (!driver->major) {
3414                 error = alloc_chrdev_region(&dev, driver->minor_start,
3415                                                 driver->num, driver->name);
3416                 if (!error) {
3417                         driver->major = MAJOR(dev);
3418                         driver->minor_start = MINOR(dev);
3419                 }
3420         } else {
3421                 dev = MKDEV(driver->major, driver->minor_start);
3422                 error = register_chrdev_region(dev, driver->num, driver->name);
3423         }
3424         if (error < 0)
3425                 goto err;
3426
3427         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3428                 error = tty_cdev_add(driver, dev, 0, driver->num);
3429                 if (error)
3430                         goto err_unreg_char;
3431         }
3432
3433         mutex_lock(&tty_mutex);
3434         list_add(&driver->tty_drivers, &tty_drivers);
3435         mutex_unlock(&tty_mutex);
3436
3437         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3438                 for (i = 0; i < driver->num; i++) {
3439                         d = tty_register_device(driver, i, NULL);
3440                         if (IS_ERR(d)) {
3441                                 error = PTR_ERR(d);
3442                                 goto err_unreg_devs;
3443                         }
3444                 }
3445         }
3446         proc_tty_register_driver(driver);
3447         driver->flags |= TTY_DRIVER_INSTALLED;
3448         return 0;
3449
3450 err_unreg_devs:
3451         for (i--; i >= 0; i--)
3452                 tty_unregister_device(driver, i);
3453
3454         mutex_lock(&tty_mutex);
3455         list_del(&driver->tty_drivers);
3456         mutex_unlock(&tty_mutex);
3457
3458 err_unreg_char:
3459         unregister_chrdev_region(dev, driver->num);
3460 err:
3461         return error;
3462 }
3463 EXPORT_SYMBOL(tty_register_driver);
3464
3465 /*
3466  * Called by a tty driver to unregister itself.
3467  */
3468 int tty_unregister_driver(struct tty_driver *driver)
3469 {
3470 #if 0
3471         /* FIXME */
3472         if (driver->refcount)
3473                 return -EBUSY;
3474 #endif
3475         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3476                                 driver->num);
3477         mutex_lock(&tty_mutex);
3478         list_del(&driver->tty_drivers);
3479         mutex_unlock(&tty_mutex);
3480         return 0;
3481 }
3482
3483 EXPORT_SYMBOL(tty_unregister_driver);
3484
3485 dev_t tty_devnum(struct tty_struct *tty)
3486 {
3487         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3488 }
3489 EXPORT_SYMBOL(tty_devnum);
3490
3491 void tty_default_fops(struct file_operations *fops)
3492 {
3493         *fops = tty_fops;
3494 }
3495
3496 /*
3497  * Initialize the console device. This is called *early*, so
3498  * we can't necessarily depend on lots of kernel help here.
3499  * Just do some early initializations, and do the complex setup
3500  * later.
3501  */
3502 void __init console_init(void)
3503 {
3504         initcall_t *call;
3505
3506         /* Setup the default TTY line discipline. */
3507         tty_ldisc_begin();
3508
3509         /*
3510          * set up the console device so that later boot sequences can
3511          * inform about problems etc..
3512          */
3513         call = __con_initcall_start;
3514         while (call < __con_initcall_end) {
3515                 (*call)();
3516                 call++;
3517         }
3518 }
3519
3520 static char *tty_devnode(struct device *dev, umode_t *mode)
3521 {
3522         if (!mode)
3523                 return NULL;
3524         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3525             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3526                 *mode = 0666;
3527         return NULL;
3528 }
3529
3530 static int __init tty_class_init(void)
3531 {
3532         tty_class = class_create(THIS_MODULE, "tty");
3533         if (IS_ERR(tty_class))
3534                 return PTR_ERR(tty_class);
3535         tty_class->devnode = tty_devnode;
3536         return 0;
3537 }
3538
3539 postcore_initcall(tty_class_init);
3540
3541 /* 3/2004 jmc: why do these devices exist? */
3542 static struct cdev tty_cdev, console_cdev;
3543
3544 static ssize_t show_cons_active(struct device *dev,
3545                                 struct device_attribute *attr, char *buf)
3546 {
3547         struct console *cs[16];
3548         int i = 0;
3549         struct console *c;
3550         ssize_t count = 0;
3551
3552         console_lock();
3553         for_each_console(c) {
3554                 if (!c->device)
3555                         continue;
3556                 if (!c->write)
3557                         continue;
3558                 if ((c->flags & CON_ENABLED) == 0)
3559                         continue;
3560                 cs[i++] = c;
3561                 if (i >= ARRAY_SIZE(cs))
3562                         break;
3563         }
3564         while (i--) {
3565                 int index = cs[i]->index;
3566                 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3567
3568                 /* don't resolve tty0 as some programs depend on it */
3569                 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3570                         count += tty_line_name(drv, index, buf + count);
3571                 else
3572                         count += sprintf(buf + count, "%s%d",
3573                                          cs[i]->name, cs[i]->index);
3574
3575                 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3576         }
3577         console_unlock();
3578
3579         return count;
3580 }
3581 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3582
3583 static struct device *consdev;
3584
3585 void console_sysfs_notify(void)
3586 {
3587         if (consdev)
3588                 sysfs_notify(&consdev->kobj, NULL, "active");
3589 }
3590
3591 /*
3592  * Ok, now we can initialize the rest of the tty devices and can count
3593  * on memory allocations, interrupts etc..
3594  */
3595 int __init tty_init(void)
3596 {
3597         cdev_init(&tty_cdev, &tty_fops);
3598         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3599             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3600                 panic("Couldn't register /dev/tty driver\n");
3601         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3602
3603         cdev_init(&console_cdev, &console_fops);
3604         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3605             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3606                 panic("Couldn't register /dev/console driver\n");
3607         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3608                               "console");
3609         if (IS_ERR(consdev))
3610                 consdev = NULL;
3611         else
3612                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3613
3614 #ifdef CONFIG_VT
3615         vty_init(&console_fops);
3616 #endif
3617         return 0;
3618 }
3619