tty: Fix multiple races when setting the controlling terminal
[firefly-linux-kernel-4.4.55.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156
157 /**
158  *      free_tty_struct         -       free a disused tty
159  *      @tty: tty struct to free
160  *
161  *      Free the write buffers, tty queue and tty memory itself.
162  *
163  *      Locking: none. Must be called after tty is definitely unused
164  */
165
166 void free_tty_struct(struct tty_struct *tty)
167 {
168         if (!tty)
169                 return;
170         if (tty->dev)
171                 put_device(tty->dev);
172         kfree(tty->write_buf);
173         tty->magic = 0xDEADDEAD;
174         kfree(tty);
175 }
176
177 static inline struct tty_struct *file_tty(struct file *file)
178 {
179         return ((struct tty_file_private *)file->private_data)->tty;
180 }
181
182 int tty_alloc_file(struct file *file)
183 {
184         struct tty_file_private *priv;
185
186         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
187         if (!priv)
188                 return -ENOMEM;
189
190         file->private_data = priv;
191
192         return 0;
193 }
194
195 /* Associate a new file with the tty structure */
196 void tty_add_file(struct tty_struct *tty, struct file *file)
197 {
198         struct tty_file_private *priv = file->private_data;
199
200         priv->tty = tty;
201         priv->file = file;
202
203         spin_lock(&tty_files_lock);
204         list_add(&priv->list, &tty->tty_files);
205         spin_unlock(&tty_files_lock);
206 }
207
208 /**
209  * tty_free_file - free file->private_data
210  *
211  * This shall be used only for fail path handling when tty_add_file was not
212  * called yet.
213  */
214 void tty_free_file(struct file *file)
215 {
216         struct tty_file_private *priv = file->private_data;
217
218         file->private_data = NULL;
219         kfree(priv);
220 }
221
222 /* Delete file from its tty */
223 static void tty_del_file(struct file *file)
224 {
225         struct tty_file_private *priv = file->private_data;
226
227         spin_lock(&tty_files_lock);
228         list_del(&priv->list);
229         spin_unlock(&tty_files_lock);
230         tty_free_file(file);
231 }
232
233
234 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
235
236 /**
237  *      tty_name        -       return tty naming
238  *      @tty: tty structure
239  *      @buf: buffer for output
240  *
241  *      Convert a tty structure into a name. The name reflects the kernel
242  *      naming policy and if udev is in use may not reflect user space
243  *
244  *      Locking: none
245  */
246
247 char *tty_name(struct tty_struct *tty, char *buf)
248 {
249         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
250                 strcpy(buf, "NULL tty");
251         else
252                 strcpy(buf, tty->name);
253         return buf;
254 }
255
256 EXPORT_SYMBOL(tty_name);
257
258 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
259                               const char *routine)
260 {
261 #ifdef TTY_PARANOIA_CHECK
262         if (!tty) {
263                 printk(KERN_WARNING
264                         "null TTY for (%d:%d) in %s\n",
265                         imajor(inode), iminor(inode), routine);
266                 return 1;
267         }
268         if (tty->magic != TTY_MAGIC) {
269                 printk(KERN_WARNING
270                         "bad magic number for tty struct (%d:%d) in %s\n",
271                         imajor(inode), iminor(inode), routine);
272                 return 1;
273         }
274 #endif
275         return 0;
276 }
277
278 static int check_tty_count(struct tty_struct *tty, const char *routine)
279 {
280 #ifdef CHECK_TTY_COUNT
281         struct list_head *p;
282         int count = 0;
283
284         spin_lock(&tty_files_lock);
285         list_for_each(p, &tty->tty_files) {
286                 count++;
287         }
288         spin_unlock(&tty_files_lock);
289         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
290             tty->driver->subtype == PTY_TYPE_SLAVE &&
291             tty->link && tty->link->count)
292                 count++;
293         if (tty->count != count) {
294                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
295                                     "!= #fd's(%d) in %s\n",
296                        tty->name, tty->count, count, routine);
297                 return count;
298         }
299 #endif
300         return 0;
301 }
302
303 /**
304  *      get_tty_driver          -       find device of a tty
305  *      @dev_t: device identifier
306  *      @index: returns the index of the tty
307  *
308  *      This routine returns a tty driver structure, given a device number
309  *      and also passes back the index number.
310  *
311  *      Locking: caller must hold tty_mutex
312  */
313
314 static struct tty_driver *get_tty_driver(dev_t device, int *index)
315 {
316         struct tty_driver *p;
317
318         list_for_each_entry(p, &tty_drivers, tty_drivers) {
319                 dev_t base = MKDEV(p->major, p->minor_start);
320                 if (device < base || device >= base + p->num)
321                         continue;
322                 *index = device - base;
323                 return tty_driver_kref_get(p);
324         }
325         return NULL;
326 }
327
328 #ifdef CONFIG_CONSOLE_POLL
329
330 /**
331  *      tty_find_polling_driver -       find device of a polled tty
332  *      @name: name string to match
333  *      @line: pointer to resulting tty line nr
334  *
335  *      This routine returns a tty driver structure, given a name
336  *      and the condition that the tty driver is capable of polled
337  *      operation.
338  */
339 struct tty_driver *tty_find_polling_driver(char *name, int *line)
340 {
341         struct tty_driver *p, *res = NULL;
342         int tty_line = 0;
343         int len;
344         char *str, *stp;
345
346         for (str = name; *str; str++)
347                 if ((*str >= '0' && *str <= '9') || *str == ',')
348                         break;
349         if (!*str)
350                 return NULL;
351
352         len = str - name;
353         tty_line = simple_strtoul(str, &str, 10);
354
355         mutex_lock(&tty_mutex);
356         /* Search through the tty devices to look for a match */
357         list_for_each_entry(p, &tty_drivers, tty_drivers) {
358                 if (strncmp(name, p->name, len) != 0)
359                         continue;
360                 stp = str;
361                 if (*stp == ',')
362                         stp++;
363                 if (*stp == '\0')
364                         stp = NULL;
365
366                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
367                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
368                         res = tty_driver_kref_get(p);
369                         *line = tty_line;
370                         break;
371                 }
372         }
373         mutex_unlock(&tty_mutex);
374
375         return res;
376 }
377 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
378 #endif
379
380 /**
381  *      tty_check_change        -       check for POSIX terminal changes
382  *      @tty: tty to check
383  *
384  *      If we try to write to, or set the state of, a terminal and we're
385  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
386  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
387  *
388  *      Locking: ctrl_lock
389  */
390
391 int tty_check_change(struct tty_struct *tty)
392 {
393         unsigned long flags;
394         int ret = 0;
395
396         if (current->signal->tty != tty)
397                 return 0;
398
399         spin_lock_irqsave(&tty->ctrl_lock, flags);
400
401         if (!tty->pgrp) {
402                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
403                 goto out_unlock;
404         }
405         if (task_pgrp(current) == tty->pgrp)
406                 goto out_unlock;
407         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
408         if (is_ignored(SIGTTOU))
409                 goto out;
410         if (is_current_pgrp_orphaned()) {
411                 ret = -EIO;
412                 goto out;
413         }
414         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
415         set_thread_flag(TIF_SIGPENDING);
416         ret = -ERESTARTSYS;
417 out:
418         return ret;
419 out_unlock:
420         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
421         return ret;
422 }
423
424 EXPORT_SYMBOL(tty_check_change);
425
426 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
427                                 size_t count, loff_t *ppos)
428 {
429         return 0;
430 }
431
432 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
433                                  size_t count, loff_t *ppos)
434 {
435         return -EIO;
436 }
437
438 /* No kernel lock held - none needed ;) */
439 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
440 {
441         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
442 }
443
444 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
445                 unsigned long arg)
446 {
447         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
448 }
449
450 static long hung_up_tty_compat_ioctl(struct file *file,
451                                      unsigned int cmd, unsigned long arg)
452 {
453         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
454 }
455
456 static const struct file_operations tty_fops = {
457         .llseek         = no_llseek,
458         .read           = tty_read,
459         .write          = tty_write,
460         .poll           = tty_poll,
461         .unlocked_ioctl = tty_ioctl,
462         .compat_ioctl   = tty_compat_ioctl,
463         .open           = tty_open,
464         .release        = tty_release,
465         .fasync         = tty_fasync,
466 };
467
468 static const struct file_operations console_fops = {
469         .llseek         = no_llseek,
470         .read           = tty_read,
471         .write          = redirected_tty_write,
472         .poll           = tty_poll,
473         .unlocked_ioctl = tty_ioctl,
474         .compat_ioctl   = tty_compat_ioctl,
475         .open           = tty_open,
476         .release        = tty_release,
477         .fasync         = tty_fasync,
478 };
479
480 static const struct file_operations hung_up_tty_fops = {
481         .llseek         = no_llseek,
482         .read           = hung_up_tty_read,
483         .write          = hung_up_tty_write,
484         .poll           = hung_up_tty_poll,
485         .unlocked_ioctl = hung_up_tty_ioctl,
486         .compat_ioctl   = hung_up_tty_compat_ioctl,
487         .release        = tty_release,
488 };
489
490 static DEFINE_SPINLOCK(redirect_lock);
491 static struct file *redirect;
492
493
494 void proc_clear_tty(struct task_struct *p)
495 {
496         unsigned long flags;
497         struct tty_struct *tty;
498         spin_lock_irqsave(&p->sighand->siglock, flags);
499         tty = p->signal->tty;
500         p->signal->tty = NULL;
501         spin_unlock_irqrestore(&p->sighand->siglock, flags);
502         tty_kref_put(tty);
503 }
504
505 /**
506  * proc_set_tty -  set the controlling terminal
507  *
508  * Only callable by the session leader and only if it does not already have
509  * a controlling terminal.
510  *
511  * Caller must hold:  a readlock on tasklist_lock
512  *                    sighand lock
513  */
514 static void __proc_set_tty(struct tty_struct *tty)
515 {
516         unsigned long flags;
517
518         /* We should not have a session or pgrp to put here but.... */
519         spin_lock_irqsave(&tty->ctrl_lock, flags);
520         put_pid(tty->session);
521         put_pid(tty->pgrp);
522         tty->pgrp = get_pid(task_pgrp(current));
523         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
524         tty->session = get_pid(task_session(current));
525         if (current->signal->tty) {
526                 printk(KERN_DEBUG "tty not NULL!!\n");
527                 tty_kref_put(current->signal->tty);
528         }
529         put_pid(current->signal->tty_old_pgrp);
530         current->signal->tty = tty_kref_get(tty);
531         current->signal->tty_old_pgrp = NULL;
532 }
533
534 static void proc_set_tty(struct tty_struct *tty)
535 {
536         spin_lock_irq(&current->sighand->siglock);
537         __proc_set_tty(tty);
538         spin_unlock_irq(&current->sighand->siglock);
539 }
540
541 struct tty_struct *get_current_tty(void)
542 {
543         struct tty_struct *tty;
544         unsigned long flags;
545
546         spin_lock_irqsave(&current->sighand->siglock, flags);
547         tty = tty_kref_get(current->signal->tty);
548         spin_unlock_irqrestore(&current->sighand->siglock, flags);
549         return tty;
550 }
551 EXPORT_SYMBOL_GPL(get_current_tty);
552
553 static void session_clear_tty(struct pid *session)
554 {
555         struct task_struct *p;
556         do_each_pid_task(session, PIDTYPE_SID, p) {
557                 proc_clear_tty(p);
558         } while_each_pid_task(session, PIDTYPE_SID, p);
559 }
560
561 /**
562  *      tty_wakeup      -       request more data
563  *      @tty: terminal
564  *
565  *      Internal and external helper for wakeups of tty. This function
566  *      informs the line discipline if present that the driver is ready
567  *      to receive more output data.
568  */
569
570 void tty_wakeup(struct tty_struct *tty)
571 {
572         struct tty_ldisc *ld;
573
574         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
575                 ld = tty_ldisc_ref(tty);
576                 if (ld) {
577                         if (ld->ops->write_wakeup)
578                                 ld->ops->write_wakeup(tty);
579                         tty_ldisc_deref(ld);
580                 }
581         }
582         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
583 }
584
585 EXPORT_SYMBOL_GPL(tty_wakeup);
586
587 /**
588  *      tty_signal_session_leader       - sends SIGHUP to session leader
589  *      @tty            controlling tty
590  *      @exit_session   if non-zero, signal all foreground group processes
591  *
592  *      Send SIGHUP and SIGCONT to the session leader and its process group.
593  *      Optionally, signal all processes in the foreground process group.
594  *
595  *      Returns the number of processes in the session with this tty
596  *      as their controlling terminal. This value is used to drop
597  *      tty references for those processes.
598  */
599 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
600 {
601         struct task_struct *p;
602         int refs = 0;
603         struct pid *tty_pgrp = NULL;
604
605         read_lock(&tasklist_lock);
606         if (tty->session) {
607                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
608                         spin_lock_irq(&p->sighand->siglock);
609                         if (p->signal->tty == tty) {
610                                 p->signal->tty = NULL;
611                                 /* We defer the dereferences outside fo
612                                    the tasklist lock */
613                                 refs++;
614                         }
615                         if (!p->signal->leader) {
616                                 spin_unlock_irq(&p->sighand->siglock);
617                                 continue;
618                         }
619                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
620                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
621                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
622                         spin_lock(&tty->ctrl_lock);
623                         tty_pgrp = get_pid(tty->pgrp);
624                         if (tty->pgrp)
625                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
626                         spin_unlock(&tty->ctrl_lock);
627                         spin_unlock_irq(&p->sighand->siglock);
628                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
629         }
630         read_unlock(&tasklist_lock);
631
632         if (tty_pgrp) {
633                 if (exit_session)
634                         kill_pgrp(tty_pgrp, SIGHUP, exit_session);
635                 put_pid(tty_pgrp);
636         }
637
638         return refs;
639 }
640
641 /**
642  *      __tty_hangup            -       actual handler for hangup events
643  *      @work: tty device
644  *
645  *      This can be called by a "kworker" kernel thread.  That is process
646  *      synchronous but doesn't hold any locks, so we need to make sure we
647  *      have the appropriate locks for what we're doing.
648  *
649  *      The hangup event clears any pending redirections onto the hung up
650  *      device. It ensures future writes will error and it does the needed
651  *      line discipline hangup and signal delivery. The tty object itself
652  *      remains intact.
653  *
654  *      Locking:
655  *              BTM
656  *                redirect lock for undoing redirection
657  *                file list lock for manipulating list of ttys
658  *                tty_ldiscs_lock from called functions
659  *                termios_rwsem resetting termios data
660  *                tasklist_lock to walk task list for hangup event
661  *                  ->siglock to protect ->signal/->sighand
662  */
663 static void __tty_hangup(struct tty_struct *tty, int exit_session)
664 {
665         struct file *cons_filp = NULL;
666         struct file *filp, *f = NULL;
667         struct tty_file_private *priv;
668         int    closecount = 0, n;
669         int refs;
670
671         if (!tty)
672                 return;
673
674
675         spin_lock(&redirect_lock);
676         if (redirect && file_tty(redirect) == tty) {
677                 f = redirect;
678                 redirect = NULL;
679         }
680         spin_unlock(&redirect_lock);
681
682         tty_lock(tty);
683
684         if (test_bit(TTY_HUPPED, &tty->flags)) {
685                 tty_unlock(tty);
686                 return;
687         }
688
689         /* some functions below drop BTM, so we need this bit */
690         set_bit(TTY_HUPPING, &tty->flags);
691
692         /* inuse_filps is protected by the single tty lock,
693            this really needs to change if we want to flush the
694            workqueue with the lock held */
695         check_tty_count(tty, "tty_hangup");
696
697         spin_lock(&tty_files_lock);
698         /* This breaks for file handles being sent over AF_UNIX sockets ? */
699         list_for_each_entry(priv, &tty->tty_files, list) {
700                 filp = priv->file;
701                 if (filp->f_op->write == redirected_tty_write)
702                         cons_filp = filp;
703                 if (filp->f_op->write != tty_write)
704                         continue;
705                 closecount++;
706                 __tty_fasync(-1, filp, 0);      /* can't block */
707                 filp->f_op = &hung_up_tty_fops;
708         }
709         spin_unlock(&tty_files_lock);
710
711         refs = tty_signal_session_leader(tty, exit_session);
712         /* Account for the p->signal references we killed */
713         while (refs--)
714                 tty_kref_put(tty);
715
716         /*
717          * it drops BTM and thus races with reopen
718          * we protect the race by TTY_HUPPING
719          */
720         tty_ldisc_hangup(tty);
721
722         spin_lock_irq(&tty->ctrl_lock);
723         clear_bit(TTY_THROTTLED, &tty->flags);
724         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
725         put_pid(tty->session);
726         put_pid(tty->pgrp);
727         tty->session = NULL;
728         tty->pgrp = NULL;
729         tty->ctrl_status = 0;
730         spin_unlock_irq(&tty->ctrl_lock);
731
732         /*
733          * If one of the devices matches a console pointer, we
734          * cannot just call hangup() because that will cause
735          * tty->count and state->count to go out of sync.
736          * So we just call close() the right number of times.
737          */
738         if (cons_filp) {
739                 if (tty->ops->close)
740                         for (n = 0; n < closecount; n++)
741                                 tty->ops->close(tty, cons_filp);
742         } else if (tty->ops->hangup)
743                 tty->ops->hangup(tty);
744         /*
745          * We don't want to have driver/ldisc interactions beyond
746          * the ones we did here. The driver layer expects no
747          * calls after ->hangup() from the ldisc side. However we
748          * can't yet guarantee all that.
749          */
750         set_bit(TTY_HUPPED, &tty->flags);
751         clear_bit(TTY_HUPPING, &tty->flags);
752
753         tty_unlock(tty);
754
755         if (f)
756                 fput(f);
757 }
758
759 static void do_tty_hangup(struct work_struct *work)
760 {
761         struct tty_struct *tty =
762                 container_of(work, struct tty_struct, hangup_work);
763
764         __tty_hangup(tty, 0);
765 }
766
767 /**
768  *      tty_hangup              -       trigger a hangup event
769  *      @tty: tty to hangup
770  *
771  *      A carrier loss (virtual or otherwise) has occurred on this like
772  *      schedule a hangup sequence to run after this event.
773  */
774
775 void tty_hangup(struct tty_struct *tty)
776 {
777 #ifdef TTY_DEBUG_HANGUP
778         char    buf[64];
779         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
780 #endif
781         schedule_work(&tty->hangup_work);
782 }
783
784 EXPORT_SYMBOL(tty_hangup);
785
786 /**
787  *      tty_vhangup             -       process vhangup
788  *      @tty: tty to hangup
789  *
790  *      The user has asked via system call for the terminal to be hung up.
791  *      We do this synchronously so that when the syscall returns the process
792  *      is complete. That guarantee is necessary for security reasons.
793  */
794
795 void tty_vhangup(struct tty_struct *tty)
796 {
797 #ifdef TTY_DEBUG_HANGUP
798         char    buf[64];
799
800         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
801 #endif
802         __tty_hangup(tty, 0);
803 }
804
805 EXPORT_SYMBOL(tty_vhangup);
806
807
808 /**
809  *      tty_vhangup_self        -       process vhangup for own ctty
810  *
811  *      Perform a vhangup on the current controlling tty
812  */
813
814 void tty_vhangup_self(void)
815 {
816         struct tty_struct *tty;
817
818         tty = get_current_tty();
819         if (tty) {
820                 tty_vhangup(tty);
821                 tty_kref_put(tty);
822         }
823 }
824
825 /**
826  *      tty_vhangup_session             -       hangup session leader exit
827  *      @tty: tty to hangup
828  *
829  *      The session leader is exiting and hanging up its controlling terminal.
830  *      Every process in the foreground process group is signalled SIGHUP.
831  *
832  *      We do this synchronously so that when the syscall returns the process
833  *      is complete. That guarantee is necessary for security reasons.
834  */
835
836 static void tty_vhangup_session(struct tty_struct *tty)
837 {
838 #ifdef TTY_DEBUG_HANGUP
839         char    buf[64];
840
841         printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
842 #endif
843         __tty_hangup(tty, 1);
844 }
845
846 /**
847  *      tty_hung_up_p           -       was tty hung up
848  *      @filp: file pointer of tty
849  *
850  *      Return true if the tty has been subject to a vhangup or a carrier
851  *      loss
852  */
853
854 int tty_hung_up_p(struct file *filp)
855 {
856         return (filp->f_op == &hung_up_tty_fops);
857 }
858
859 EXPORT_SYMBOL(tty_hung_up_p);
860
861 /**
862  *      disassociate_ctty       -       disconnect controlling tty
863  *      @on_exit: true if exiting so need to "hang up" the session
864  *
865  *      This function is typically called only by the session leader, when
866  *      it wants to disassociate itself from its controlling tty.
867  *
868  *      It performs the following functions:
869  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
870  *      (2)  Clears the tty from being controlling the session
871  *      (3)  Clears the controlling tty for all processes in the
872  *              session group.
873  *
874  *      The argument on_exit is set to 1 if called when a process is
875  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
876  *
877  *      Locking:
878  *              BTM is taken for hysterical raisins, and held when
879  *                called from no_tty().
880  *                tty_mutex is taken to protect tty
881  *                ->siglock is taken to protect ->signal/->sighand
882  *                tasklist_lock is taken to walk process list for sessions
883  *                  ->siglock is taken to protect ->signal/->sighand
884  */
885
886 void disassociate_ctty(int on_exit)
887 {
888         struct tty_struct *tty;
889
890         if (!current->signal->leader)
891                 return;
892
893         tty = get_current_tty();
894         if (tty) {
895                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
896                         tty_vhangup_session(tty);
897                 } else {
898                         struct pid *tty_pgrp = tty_get_pgrp(tty);
899                         if (tty_pgrp) {
900                                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
901                                 if (!on_exit)
902                                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
903                                 put_pid(tty_pgrp);
904                         }
905                 }
906                 tty_kref_put(tty);
907
908         } else if (on_exit) {
909                 struct pid *old_pgrp;
910                 spin_lock_irq(&current->sighand->siglock);
911                 old_pgrp = current->signal->tty_old_pgrp;
912                 current->signal->tty_old_pgrp = NULL;
913                 spin_unlock_irq(&current->sighand->siglock);
914                 if (old_pgrp) {
915                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
916                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
917                         put_pid(old_pgrp);
918                 }
919                 return;
920         }
921
922         spin_lock_irq(&current->sighand->siglock);
923         put_pid(current->signal->tty_old_pgrp);
924         current->signal->tty_old_pgrp = NULL;
925
926         tty = tty_kref_get(current->signal->tty);
927         if (tty) {
928                 unsigned long flags;
929                 spin_lock_irqsave(&tty->ctrl_lock, flags);
930                 put_pid(tty->session);
931                 put_pid(tty->pgrp);
932                 tty->session = NULL;
933                 tty->pgrp = NULL;
934                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
935                 tty_kref_put(tty);
936         } else {
937 #ifdef TTY_DEBUG_HANGUP
938                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
939                        " = NULL", tty);
940 #endif
941         }
942
943         spin_unlock_irq(&current->sighand->siglock);
944         /* Now clear signal->tty under the lock */
945         read_lock(&tasklist_lock);
946         session_clear_tty(task_session(current));
947         read_unlock(&tasklist_lock);
948 }
949
950 /**
951  *
952  *      no_tty  - Ensure the current process does not have a controlling tty
953  */
954 void no_tty(void)
955 {
956         /* FIXME: Review locking here. The tty_lock never covered any race
957            between a new association and proc_clear_tty but possible we need
958            to protect against this anyway */
959         struct task_struct *tsk = current;
960         disassociate_ctty(0);
961         proc_clear_tty(tsk);
962 }
963
964
965 /**
966  *      stop_tty        -       propagate flow control
967  *      @tty: tty to stop
968  *
969  *      Perform flow control to the driver. May be called
970  *      on an already stopped device and will not re-call the driver
971  *      method.
972  *
973  *      This functionality is used by both the line disciplines for
974  *      halting incoming flow and by the driver. It may therefore be
975  *      called from any context, may be under the tty atomic_write_lock
976  *      but not always.
977  *
978  *      Locking:
979  *              flow_lock
980  */
981
982 void __stop_tty(struct tty_struct *tty)
983 {
984         if (tty->stopped)
985                 return;
986         tty->stopped = 1;
987         if (tty->ops->stop)
988                 (tty->ops->stop)(tty);
989 }
990
991 void stop_tty(struct tty_struct *tty)
992 {
993         unsigned long flags;
994
995         spin_lock_irqsave(&tty->flow_lock, flags);
996         __stop_tty(tty);
997         spin_unlock_irqrestore(&tty->flow_lock, flags);
998 }
999 EXPORT_SYMBOL(stop_tty);
1000
1001 /**
1002  *      start_tty       -       propagate flow control
1003  *      @tty: tty to start
1004  *
1005  *      Start a tty that has been stopped if at all possible. If this
1006  *      tty was previous stopped and is now being started, the driver
1007  *      start method is invoked and the line discipline woken.
1008  *
1009  *      Locking:
1010  *              flow_lock
1011  */
1012
1013 void __start_tty(struct tty_struct *tty)
1014 {
1015         if (!tty->stopped || tty->flow_stopped)
1016                 return;
1017         tty->stopped = 0;
1018         if (tty->ops->start)
1019                 (tty->ops->start)(tty);
1020         tty_wakeup(tty);
1021 }
1022
1023 void start_tty(struct tty_struct *tty)
1024 {
1025         unsigned long flags;
1026
1027         spin_lock_irqsave(&tty->flow_lock, flags);
1028         __start_tty(tty);
1029         spin_unlock_irqrestore(&tty->flow_lock, flags);
1030 }
1031 EXPORT_SYMBOL(start_tty);
1032
1033 /* We limit tty time update visibility to every 8 seconds or so. */
1034 static void tty_update_time(struct timespec *time)
1035 {
1036         unsigned long sec = get_seconds() & ~7;
1037         if ((long)(sec - time->tv_sec) > 0)
1038                 time->tv_sec = sec;
1039 }
1040
1041 /**
1042  *      tty_read        -       read method for tty device files
1043  *      @file: pointer to tty file
1044  *      @buf: user buffer
1045  *      @count: size of user buffer
1046  *      @ppos: unused
1047  *
1048  *      Perform the read system call function on this terminal device. Checks
1049  *      for hung up devices before calling the line discipline method.
1050  *
1051  *      Locking:
1052  *              Locks the line discipline internally while needed. Multiple
1053  *      read calls may be outstanding in parallel.
1054  */
1055
1056 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1057                         loff_t *ppos)
1058 {
1059         int i;
1060         struct inode *inode = file_inode(file);
1061         struct tty_struct *tty = file_tty(file);
1062         struct tty_ldisc *ld;
1063
1064         if (tty_paranoia_check(tty, inode, "tty_read"))
1065                 return -EIO;
1066         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1067                 return -EIO;
1068
1069         /* We want to wait for the line discipline to sort out in this
1070            situation */
1071         ld = tty_ldisc_ref_wait(tty);
1072         if (ld->ops->read)
1073                 i = (ld->ops->read)(tty, file, buf, count);
1074         else
1075                 i = -EIO;
1076         tty_ldisc_deref(ld);
1077
1078         if (i > 0)
1079                 tty_update_time(&inode->i_atime);
1080
1081         return i;
1082 }
1083
1084 static void tty_write_unlock(struct tty_struct *tty)
1085 {
1086         mutex_unlock(&tty->atomic_write_lock);
1087         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1088 }
1089
1090 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1091 {
1092         if (!mutex_trylock(&tty->atomic_write_lock)) {
1093                 if (ndelay)
1094                         return -EAGAIN;
1095                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1096                         return -ERESTARTSYS;
1097         }
1098         return 0;
1099 }
1100
1101 /*
1102  * Split writes up in sane blocksizes to avoid
1103  * denial-of-service type attacks
1104  */
1105 static inline ssize_t do_tty_write(
1106         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1107         struct tty_struct *tty,
1108         struct file *file,
1109         const char __user *buf,
1110         size_t count)
1111 {
1112         ssize_t ret, written = 0;
1113         unsigned int chunk;
1114
1115         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1116         if (ret < 0)
1117                 return ret;
1118
1119         /*
1120          * We chunk up writes into a temporary buffer. This
1121          * simplifies low-level drivers immensely, since they
1122          * don't have locking issues and user mode accesses.
1123          *
1124          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1125          * big chunk-size..
1126          *
1127          * The default chunk-size is 2kB, because the NTTY
1128          * layer has problems with bigger chunks. It will
1129          * claim to be able to handle more characters than
1130          * it actually does.
1131          *
1132          * FIXME: This can probably go away now except that 64K chunks
1133          * are too likely to fail unless switched to vmalloc...
1134          */
1135         chunk = 2048;
1136         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1137                 chunk = 65536;
1138         if (count < chunk)
1139                 chunk = count;
1140
1141         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1142         if (tty->write_cnt < chunk) {
1143                 unsigned char *buf_chunk;
1144
1145                 if (chunk < 1024)
1146                         chunk = 1024;
1147
1148                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1149                 if (!buf_chunk) {
1150                         ret = -ENOMEM;
1151                         goto out;
1152                 }
1153                 kfree(tty->write_buf);
1154                 tty->write_cnt = chunk;
1155                 tty->write_buf = buf_chunk;
1156         }
1157
1158         /* Do the write .. */
1159         for (;;) {
1160                 size_t size = count;
1161                 if (size > chunk)
1162                         size = chunk;
1163                 ret = -EFAULT;
1164                 if (copy_from_user(tty->write_buf, buf, size))
1165                         break;
1166                 ret = write(tty, file, tty->write_buf, size);
1167                 if (ret <= 0)
1168                         break;
1169                 written += ret;
1170                 buf += ret;
1171                 count -= ret;
1172                 if (!count)
1173                         break;
1174                 ret = -ERESTARTSYS;
1175                 if (signal_pending(current))
1176                         break;
1177                 cond_resched();
1178         }
1179         if (written) {
1180                 tty_update_time(&file_inode(file)->i_mtime);
1181                 ret = written;
1182         }
1183 out:
1184         tty_write_unlock(tty);
1185         return ret;
1186 }
1187
1188 /**
1189  * tty_write_message - write a message to a certain tty, not just the console.
1190  * @tty: the destination tty_struct
1191  * @msg: the message to write
1192  *
1193  * This is used for messages that need to be redirected to a specific tty.
1194  * We don't put it into the syslog queue right now maybe in the future if
1195  * really needed.
1196  *
1197  * We must still hold the BTM and test the CLOSING flag for the moment.
1198  */
1199
1200 void tty_write_message(struct tty_struct *tty, char *msg)
1201 {
1202         if (tty) {
1203                 mutex_lock(&tty->atomic_write_lock);
1204                 tty_lock(tty);
1205                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1206                         tty_unlock(tty);
1207                         tty->ops->write(tty, msg, strlen(msg));
1208                 } else
1209                         tty_unlock(tty);
1210                 tty_write_unlock(tty);
1211         }
1212         return;
1213 }
1214
1215
1216 /**
1217  *      tty_write               -       write method for tty device file
1218  *      @file: tty file pointer
1219  *      @buf: user data to write
1220  *      @count: bytes to write
1221  *      @ppos: unused
1222  *
1223  *      Write data to a tty device via the line discipline.
1224  *
1225  *      Locking:
1226  *              Locks the line discipline as required
1227  *              Writes to the tty driver are serialized by the atomic_write_lock
1228  *      and are then processed in chunks to the device. The line discipline
1229  *      write method will not be invoked in parallel for each device.
1230  */
1231
1232 static ssize_t tty_write(struct file *file, const char __user *buf,
1233                                                 size_t count, loff_t *ppos)
1234 {
1235         struct tty_struct *tty = file_tty(file);
1236         struct tty_ldisc *ld;
1237         ssize_t ret;
1238
1239         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1240                 return -EIO;
1241         if (!tty || !tty->ops->write ||
1242                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1243                         return -EIO;
1244         /* Short term debug to catch buggy drivers */
1245         if (tty->ops->write_room == NULL)
1246                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1247                         tty->driver->name);
1248         ld = tty_ldisc_ref_wait(tty);
1249         if (!ld->ops->write)
1250                 ret = -EIO;
1251         else
1252                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1253         tty_ldisc_deref(ld);
1254         return ret;
1255 }
1256
1257 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1258                                                 size_t count, loff_t *ppos)
1259 {
1260         struct file *p = NULL;
1261
1262         spin_lock(&redirect_lock);
1263         if (redirect)
1264                 p = get_file(redirect);
1265         spin_unlock(&redirect_lock);
1266
1267         if (p) {
1268                 ssize_t res;
1269                 res = vfs_write(p, buf, count, &p->f_pos);
1270                 fput(p);
1271                 return res;
1272         }
1273         return tty_write(file, buf, count, ppos);
1274 }
1275
1276 /**
1277  *      tty_send_xchar  -       send priority character
1278  *
1279  *      Send a high priority character to the tty even if stopped
1280  *
1281  *      Locking: none for xchar method, write ordering for write method.
1282  */
1283
1284 int tty_send_xchar(struct tty_struct *tty, char ch)
1285 {
1286         int     was_stopped = tty->stopped;
1287
1288         if (tty->ops->send_xchar) {
1289                 tty->ops->send_xchar(tty, ch);
1290                 return 0;
1291         }
1292
1293         if (tty_write_lock(tty, 0) < 0)
1294                 return -ERESTARTSYS;
1295
1296         if (was_stopped)
1297                 start_tty(tty);
1298         tty->ops->write(tty, &ch, 1);
1299         if (was_stopped)
1300                 stop_tty(tty);
1301         tty_write_unlock(tty);
1302         return 0;
1303 }
1304
1305 static char ptychar[] = "pqrstuvwxyzabcde";
1306
1307 /**
1308  *      pty_line_name   -       generate name for a pty
1309  *      @driver: the tty driver in use
1310  *      @index: the minor number
1311  *      @p: output buffer of at least 6 bytes
1312  *
1313  *      Generate a name from a driver reference and write it to the output
1314  *      buffer.
1315  *
1316  *      Locking: None
1317  */
1318 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1319 {
1320         int i = index + driver->name_base;
1321         /* ->name is initialized to "ttyp", but "tty" is expected */
1322         sprintf(p, "%s%c%x",
1323                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1324                 ptychar[i >> 4 & 0xf], i & 0xf);
1325 }
1326
1327 /**
1328  *      tty_line_name   -       generate name for a tty
1329  *      @driver: the tty driver in use
1330  *      @index: the minor number
1331  *      @p: output buffer of at least 7 bytes
1332  *
1333  *      Generate a name from a driver reference and write it to the output
1334  *      buffer.
1335  *
1336  *      Locking: None
1337  */
1338 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1339 {
1340         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1341                 return sprintf(p, "%s", driver->name);
1342         else
1343                 return sprintf(p, "%s%d", driver->name,
1344                                index + driver->name_base);
1345 }
1346
1347 /**
1348  *      tty_driver_lookup_tty() - find an existing tty, if any
1349  *      @driver: the driver for the tty
1350  *      @idx:    the minor number
1351  *
1352  *      Return the tty, if found or ERR_PTR() otherwise.
1353  *
1354  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1355  *      be held until the 'fast-open' is also done. Will change once we
1356  *      have refcounting in the driver and per driver locking
1357  */
1358 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1359                 struct inode *inode, int idx)
1360 {
1361         if (driver->ops->lookup)
1362                 return driver->ops->lookup(driver, inode, idx);
1363
1364         return driver->ttys[idx];
1365 }
1366
1367 /**
1368  *      tty_init_termios        -  helper for termios setup
1369  *      @tty: the tty to set up
1370  *
1371  *      Initialise the termios structures for this tty. Thus runs under
1372  *      the tty_mutex currently so we can be relaxed about ordering.
1373  */
1374
1375 int tty_init_termios(struct tty_struct *tty)
1376 {
1377         struct ktermios *tp;
1378         int idx = tty->index;
1379
1380         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1381                 tty->termios = tty->driver->init_termios;
1382         else {
1383                 /* Check for lazy saved data */
1384                 tp = tty->driver->termios[idx];
1385                 if (tp != NULL)
1386                         tty->termios = *tp;
1387                 else
1388                         tty->termios = tty->driver->init_termios;
1389         }
1390         /* Compatibility until drivers always set this */
1391         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1392         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1393         return 0;
1394 }
1395 EXPORT_SYMBOL_GPL(tty_init_termios);
1396
1397 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1398 {
1399         int ret = tty_init_termios(tty);
1400         if (ret)
1401                 return ret;
1402
1403         tty_driver_kref_get(driver);
1404         tty->count++;
1405         driver->ttys[tty->index] = tty;
1406         return 0;
1407 }
1408 EXPORT_SYMBOL_GPL(tty_standard_install);
1409
1410 /**
1411  *      tty_driver_install_tty() - install a tty entry in the driver
1412  *      @driver: the driver for the tty
1413  *      @tty: the tty
1414  *
1415  *      Install a tty object into the driver tables. The tty->index field
1416  *      will be set by the time this is called. This method is responsible
1417  *      for ensuring any need additional structures are allocated and
1418  *      configured.
1419  *
1420  *      Locking: tty_mutex for now
1421  */
1422 static int tty_driver_install_tty(struct tty_driver *driver,
1423                                                 struct tty_struct *tty)
1424 {
1425         return driver->ops->install ? driver->ops->install(driver, tty) :
1426                 tty_standard_install(driver, tty);
1427 }
1428
1429 /**
1430  *      tty_driver_remove_tty() - remove a tty from the driver tables
1431  *      @driver: the driver for the tty
1432  *      @idx:    the minor number
1433  *
1434  *      Remvoe a tty object from the driver tables. The tty->index field
1435  *      will be set by the time this is called.
1436  *
1437  *      Locking: tty_mutex for now
1438  */
1439 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1440 {
1441         if (driver->ops->remove)
1442                 driver->ops->remove(driver, tty);
1443         else
1444                 driver->ttys[tty->index] = NULL;
1445 }
1446
1447 /*
1448  *      tty_reopen()    - fast re-open of an open tty
1449  *      @tty    - the tty to open
1450  *
1451  *      Return 0 on success, -errno on error.
1452  *
1453  *      Locking: tty_mutex must be held from the time the tty was found
1454  *               till this open completes.
1455  */
1456 static int tty_reopen(struct tty_struct *tty)
1457 {
1458         struct tty_driver *driver = tty->driver;
1459
1460         if (test_bit(TTY_CLOSING, &tty->flags) ||
1461                         test_bit(TTY_HUPPING, &tty->flags))
1462                 return -EIO;
1463
1464         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1465             driver->subtype == PTY_TYPE_MASTER) {
1466                 /*
1467                  * special case for PTY masters: only one open permitted,
1468                  * and the slave side open count is incremented as well.
1469                  */
1470                 if (tty->count)
1471                         return -EIO;
1472
1473                 tty->link->count++;
1474         }
1475         tty->count++;
1476
1477         WARN_ON(!tty->ldisc);
1478
1479         return 0;
1480 }
1481
1482 /**
1483  *      tty_init_dev            -       initialise a tty device
1484  *      @driver: tty driver we are opening a device on
1485  *      @idx: device index
1486  *      @ret_tty: returned tty structure
1487  *
1488  *      Prepare a tty device. This may not be a "new" clean device but
1489  *      could also be an active device. The pty drivers require special
1490  *      handling because of this.
1491  *
1492  *      Locking:
1493  *              The function is called under the tty_mutex, which
1494  *      protects us from the tty struct or driver itself going away.
1495  *
1496  *      On exit the tty device has the line discipline attached and
1497  *      a reference count of 1. If a pair was created for pty/tty use
1498  *      and the other was a pty master then it too has a reference count of 1.
1499  *
1500  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1501  * failed open.  The new code protects the open with a mutex, so it's
1502  * really quite straightforward.  The mutex locking can probably be
1503  * relaxed for the (most common) case of reopening a tty.
1504  */
1505
1506 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1507 {
1508         struct tty_struct *tty;
1509         int retval;
1510
1511         /*
1512          * First time open is complex, especially for PTY devices.
1513          * This code guarantees that either everything succeeds and the
1514          * TTY is ready for operation, or else the table slots are vacated
1515          * and the allocated memory released.  (Except that the termios
1516          * and locked termios may be retained.)
1517          */
1518
1519         if (!try_module_get(driver->owner))
1520                 return ERR_PTR(-ENODEV);
1521
1522         tty = alloc_tty_struct(driver, idx);
1523         if (!tty) {
1524                 retval = -ENOMEM;
1525                 goto err_module_put;
1526         }
1527
1528         tty_lock(tty);
1529         retval = tty_driver_install_tty(driver, tty);
1530         if (retval < 0)
1531                 goto err_deinit_tty;
1532
1533         if (!tty->port)
1534                 tty->port = driver->ports[idx];
1535
1536         WARN_RATELIMIT(!tty->port,
1537                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1538                         __func__, tty->driver->name);
1539
1540         tty->port->itty = tty;
1541
1542         /*
1543          * Structures all installed ... call the ldisc open routines.
1544          * If we fail here just call release_tty to clean up.  No need
1545          * to decrement the use counts, as release_tty doesn't care.
1546          */
1547         retval = tty_ldisc_setup(tty, tty->link);
1548         if (retval)
1549                 goto err_release_tty;
1550         /* Return the tty locked so that it cannot vanish under the caller */
1551         return tty;
1552
1553 err_deinit_tty:
1554         tty_unlock(tty);
1555         deinitialize_tty_struct(tty);
1556         free_tty_struct(tty);
1557 err_module_put:
1558         module_put(driver->owner);
1559         return ERR_PTR(retval);
1560
1561         /* call the tty release_tty routine to clean out this slot */
1562 err_release_tty:
1563         tty_unlock(tty);
1564         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1565                                  "clearing slot %d\n", idx);
1566         release_tty(tty, idx);
1567         return ERR_PTR(retval);
1568 }
1569
1570 void tty_free_termios(struct tty_struct *tty)
1571 {
1572         struct ktermios *tp;
1573         int idx = tty->index;
1574
1575         /* If the port is going to reset then it has no termios to save */
1576         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1577                 return;
1578
1579         /* Stash the termios data */
1580         tp = tty->driver->termios[idx];
1581         if (tp == NULL) {
1582                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1583                 if (tp == NULL) {
1584                         pr_warn("tty: no memory to save termios state.\n");
1585                         return;
1586                 }
1587                 tty->driver->termios[idx] = tp;
1588         }
1589         *tp = tty->termios;
1590 }
1591 EXPORT_SYMBOL(tty_free_termios);
1592
1593 /**
1594  *      tty_flush_works         -       flush all works of a tty
1595  *      @tty: tty device to flush works for
1596  *
1597  *      Sync flush all works belonging to @tty.
1598  */
1599 static void tty_flush_works(struct tty_struct *tty)
1600 {
1601         flush_work(&tty->SAK_work);
1602         flush_work(&tty->hangup_work);
1603 }
1604
1605 /**
1606  *      release_one_tty         -       release tty structure memory
1607  *      @kref: kref of tty we are obliterating
1608  *
1609  *      Releases memory associated with a tty structure, and clears out the
1610  *      driver table slots. This function is called when a device is no longer
1611  *      in use. It also gets called when setup of a device fails.
1612  *
1613  *      Locking:
1614  *              takes the file list lock internally when working on the list
1615  *      of ttys that the driver keeps.
1616  *
1617  *      This method gets called from a work queue so that the driver private
1618  *      cleanup ops can sleep (needed for USB at least)
1619  */
1620 static void release_one_tty(struct work_struct *work)
1621 {
1622         struct tty_struct *tty =
1623                 container_of(work, struct tty_struct, hangup_work);
1624         struct tty_driver *driver = tty->driver;
1625         struct module *owner = driver->owner;
1626
1627         if (tty->ops->cleanup)
1628                 tty->ops->cleanup(tty);
1629
1630         tty->magic = 0;
1631         tty_driver_kref_put(driver);
1632         module_put(owner);
1633
1634         spin_lock(&tty_files_lock);
1635         list_del_init(&tty->tty_files);
1636         spin_unlock(&tty_files_lock);
1637
1638         put_pid(tty->pgrp);
1639         put_pid(tty->session);
1640         free_tty_struct(tty);
1641 }
1642
1643 static void queue_release_one_tty(struct kref *kref)
1644 {
1645         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1646
1647         /* The hangup queue is now free so we can reuse it rather than
1648            waste a chunk of memory for each port */
1649         INIT_WORK(&tty->hangup_work, release_one_tty);
1650         schedule_work(&tty->hangup_work);
1651 }
1652
1653 /**
1654  *      tty_kref_put            -       release a tty kref
1655  *      @tty: tty device
1656  *
1657  *      Release a reference to a tty device and if need be let the kref
1658  *      layer destruct the object for us
1659  */
1660
1661 void tty_kref_put(struct tty_struct *tty)
1662 {
1663         if (tty)
1664                 kref_put(&tty->kref, queue_release_one_tty);
1665 }
1666 EXPORT_SYMBOL(tty_kref_put);
1667
1668 /**
1669  *      release_tty             -       release tty structure memory
1670  *
1671  *      Release both @tty and a possible linked partner (think pty pair),
1672  *      and decrement the refcount of the backing module.
1673  *
1674  *      Locking:
1675  *              tty_mutex
1676  *              takes the file list lock internally when working on the list
1677  *      of ttys that the driver keeps.
1678  *
1679  */
1680 static void release_tty(struct tty_struct *tty, int idx)
1681 {
1682         /* This should always be true but check for the moment */
1683         WARN_ON(tty->index != idx);
1684         WARN_ON(!mutex_is_locked(&tty_mutex));
1685         if (tty->ops->shutdown)
1686                 tty->ops->shutdown(tty);
1687         tty_free_termios(tty);
1688         tty_driver_remove_tty(tty->driver, tty);
1689         tty->port->itty = NULL;
1690         if (tty->link)
1691                 tty->link->port->itty = NULL;
1692         cancel_work_sync(&tty->port->buf.work);
1693
1694         if (tty->link)
1695                 tty_kref_put(tty->link);
1696         tty_kref_put(tty);
1697 }
1698
1699 /**
1700  *      tty_release_checks - check a tty before real release
1701  *      @tty: tty to check
1702  *      @o_tty: link of @tty (if any)
1703  *      @idx: index of the tty
1704  *
1705  *      Performs some paranoid checking before true release of the @tty.
1706  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1707  */
1708 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1709                 int idx)
1710 {
1711 #ifdef TTY_PARANOIA_CHECK
1712         if (idx < 0 || idx >= tty->driver->num) {
1713                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1714                                 __func__, tty->name);
1715                 return -1;
1716         }
1717
1718         /* not much to check for devpts */
1719         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1720                 return 0;
1721
1722         if (tty != tty->driver->ttys[idx]) {
1723                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1724                                 __func__, idx, tty->name);
1725                 return -1;
1726         }
1727         if (tty->driver->other) {
1728                 if (o_tty != tty->driver->other->ttys[idx]) {
1729                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1730                                         __func__, idx, tty->name);
1731                         return -1;
1732                 }
1733                 if (o_tty->link != tty) {
1734                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1735                         return -1;
1736                 }
1737         }
1738 #endif
1739         return 0;
1740 }
1741
1742 /**
1743  *      tty_release             -       vfs callback for close
1744  *      @inode: inode of tty
1745  *      @filp: file pointer for handle to tty
1746  *
1747  *      Called the last time each file handle is closed that references
1748  *      this tty. There may however be several such references.
1749  *
1750  *      Locking:
1751  *              Takes bkl. See tty_release_dev
1752  *
1753  * Even releasing the tty structures is a tricky business.. We have
1754  * to be very careful that the structures are all released at the
1755  * same time, as interrupts might otherwise get the wrong pointers.
1756  *
1757  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1758  * lead to double frees or releasing memory still in use.
1759  */
1760
1761 int tty_release(struct inode *inode, struct file *filp)
1762 {
1763         struct tty_struct *tty = file_tty(filp);
1764         struct tty_struct *o_tty;
1765         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1766         int     idx;
1767         char    buf[64];
1768
1769         if (tty_paranoia_check(tty, inode, __func__))
1770                 return 0;
1771
1772         tty_lock(tty);
1773         check_tty_count(tty, __func__);
1774
1775         __tty_fasync(-1, filp, 0);
1776
1777         idx = tty->index;
1778         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1779                       tty->driver->subtype == PTY_TYPE_MASTER);
1780         /* Review: parallel close */
1781         o_tty = tty->link;
1782
1783         if (tty_release_checks(tty, o_tty, idx)) {
1784                 tty_unlock(tty);
1785                 return 0;
1786         }
1787
1788 #ifdef TTY_DEBUG_HANGUP
1789         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1790                         tty_name(tty, buf), tty->count);
1791 #endif
1792
1793         if (tty->ops->close)
1794                 tty->ops->close(tty, filp);
1795
1796         tty_unlock(tty);
1797         /*
1798          * Sanity check: if tty->count is going to zero, there shouldn't be
1799          * any waiters on tty->read_wait or tty->write_wait.  We test the
1800          * wait queues and kick everyone out _before_ actually starting to
1801          * close.  This ensures that we won't block while releasing the tty
1802          * structure.
1803          *
1804          * The test for the o_tty closing is necessary, since the master and
1805          * slave sides may close in any order.  If the slave side closes out
1806          * first, its count will be one, since the master side holds an open.
1807          * Thus this test wouldn't be triggered at the time the slave closes,
1808          * so we do it now.
1809          *
1810          * Note that it's possible for the tty to be opened again while we're
1811          * flushing out waiters.  By recalculating the closing flags before
1812          * each iteration we avoid any problems.
1813          */
1814         while (1) {
1815                 /* Guard against races with tty->count changes elsewhere and
1816                    opens on /dev/tty */
1817
1818                 mutex_lock(&tty_mutex);
1819                 tty_lock_pair(tty, o_tty);
1820                 tty_closing = tty->count <= 1;
1821                 o_tty_closing = o_tty &&
1822                         (o_tty->count <= (pty_master ? 1 : 0));
1823                 do_sleep = 0;
1824
1825                 if (tty_closing) {
1826                         if (waitqueue_active(&tty->read_wait)) {
1827                                 wake_up_poll(&tty->read_wait, POLLIN);
1828                                 do_sleep++;
1829                         }
1830                         if (waitqueue_active(&tty->write_wait)) {
1831                                 wake_up_poll(&tty->write_wait, POLLOUT);
1832                                 do_sleep++;
1833                         }
1834                 }
1835                 if (o_tty_closing) {
1836                         if (waitqueue_active(&o_tty->read_wait)) {
1837                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1838                                 do_sleep++;
1839                         }
1840                         if (waitqueue_active(&o_tty->write_wait)) {
1841                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1842                                 do_sleep++;
1843                         }
1844                 }
1845                 if (!do_sleep)
1846                         break;
1847
1848                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1849                                 __func__, tty_name(tty, buf));
1850                 tty_unlock_pair(tty, o_tty);
1851                 mutex_unlock(&tty_mutex);
1852                 schedule();
1853         }
1854
1855         /*
1856          * The closing flags are now consistent with the open counts on
1857          * both sides, and we've completed the last operation that could
1858          * block, so it's safe to proceed with closing.
1859          *
1860          * We must *not* drop the tty_mutex until we ensure that a further
1861          * entry into tty_open can not pick up this tty.
1862          */
1863         if (pty_master) {
1864                 if (--o_tty->count < 0) {
1865                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1866                                 __func__, o_tty->count, tty_name(o_tty, buf));
1867                         o_tty->count = 0;
1868                 }
1869         }
1870         if (--tty->count < 0) {
1871                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1872                                 __func__, tty->count, tty_name(tty, buf));
1873                 tty->count = 0;
1874         }
1875
1876         /*
1877          * We've decremented tty->count, so we need to remove this file
1878          * descriptor off the tty->tty_files list; this serves two
1879          * purposes:
1880          *  - check_tty_count sees the correct number of file descriptors
1881          *    associated with this tty.
1882          *  - do_tty_hangup no longer sees this file descriptor as
1883          *    something that needs to be handled for hangups.
1884          */
1885         tty_del_file(filp);
1886
1887         /*
1888          * Perform some housekeeping before deciding whether to return.
1889          *
1890          * Set the TTY_CLOSING flag if this was the last open.  In the
1891          * case of a pty we may have to wait around for the other side
1892          * to close, and TTY_CLOSING makes sure we can't be reopened.
1893          */
1894         if (tty_closing)
1895                 set_bit(TTY_CLOSING, &tty->flags);
1896         if (o_tty_closing)
1897                 set_bit(TTY_CLOSING, &o_tty->flags);
1898
1899         /*
1900          * If _either_ side is closing, make sure there aren't any
1901          * processes that still think tty or o_tty is their controlling
1902          * tty.
1903          */
1904         if (tty_closing || o_tty_closing) {
1905                 read_lock(&tasklist_lock);
1906                 session_clear_tty(tty->session);
1907                 if (o_tty)
1908                         session_clear_tty(o_tty->session);
1909                 read_unlock(&tasklist_lock);
1910         }
1911
1912         mutex_unlock(&tty_mutex);
1913         tty_unlock_pair(tty, o_tty);
1914         /* At this point the TTY_CLOSING flag should ensure a dead tty
1915            cannot be re-opened by a racing opener */
1916
1917         /* check whether both sides are closing ... */
1918         if (!tty_closing || (o_tty && !o_tty_closing))
1919                 return 0;
1920
1921 #ifdef TTY_DEBUG_HANGUP
1922         printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1923 #endif
1924         /*
1925          * Ask the line discipline code to release its structures
1926          */
1927         tty_ldisc_release(tty, o_tty);
1928
1929         /* Wait for pending work before tty destruction commmences */
1930         tty_flush_works(tty);
1931         if (o_tty)
1932                 tty_flush_works(o_tty);
1933
1934 #ifdef TTY_DEBUG_HANGUP
1935         printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1936 #endif
1937         /*
1938          * The release_tty function takes care of the details of clearing
1939          * the slots and preserving the termios structure. The tty_unlock_pair
1940          * should be safe as we keep a kref while the tty is locked (so the
1941          * unlock never unlocks a freed tty).
1942          */
1943         mutex_lock(&tty_mutex);
1944         release_tty(tty, idx);
1945         mutex_unlock(&tty_mutex);
1946
1947         return 0;
1948 }
1949
1950 /**
1951  *      tty_open_current_tty - get tty of current task for open
1952  *      @device: device number
1953  *      @filp: file pointer to tty
1954  *      @return: tty of the current task iff @device is /dev/tty
1955  *
1956  *      We cannot return driver and index like for the other nodes because
1957  *      devpts will not work then. It expects inodes to be from devpts FS.
1958  *
1959  *      We need to move to returning a refcounted object from all the lookup
1960  *      paths including this one.
1961  */
1962 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1963 {
1964         struct tty_struct *tty;
1965
1966         if (device != MKDEV(TTYAUX_MAJOR, 0))
1967                 return NULL;
1968
1969         tty = get_current_tty();
1970         if (!tty)
1971                 return ERR_PTR(-ENXIO);
1972
1973         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1974         /* noctty = 1; */
1975         tty_kref_put(tty);
1976         /* FIXME: we put a reference and return a TTY! */
1977         /* This is only safe because the caller holds tty_mutex */
1978         return tty;
1979 }
1980
1981 /**
1982  *      tty_lookup_driver - lookup a tty driver for a given device file
1983  *      @device: device number
1984  *      @filp: file pointer to tty
1985  *      @noctty: set if the device should not become a controlling tty
1986  *      @index: index for the device in the @return driver
1987  *      @return: driver for this inode (with increased refcount)
1988  *
1989  *      If @return is not erroneous, the caller is responsible to decrement the
1990  *      refcount by tty_driver_kref_put.
1991  *
1992  *      Locking: tty_mutex protects get_tty_driver
1993  */
1994 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1995                 int *noctty, int *index)
1996 {
1997         struct tty_driver *driver;
1998
1999         switch (device) {
2000 #ifdef CONFIG_VT
2001         case MKDEV(TTY_MAJOR, 0): {
2002                 extern struct tty_driver *console_driver;
2003                 driver = tty_driver_kref_get(console_driver);
2004                 *index = fg_console;
2005                 *noctty = 1;
2006                 break;
2007         }
2008 #endif
2009         case MKDEV(TTYAUX_MAJOR, 1): {
2010                 struct tty_driver *console_driver = console_device(index);
2011                 if (console_driver) {
2012                         driver = tty_driver_kref_get(console_driver);
2013                         if (driver) {
2014                                 /* Don't let /dev/console block */
2015                                 filp->f_flags |= O_NONBLOCK;
2016                                 *noctty = 1;
2017                                 break;
2018                         }
2019                 }
2020                 return ERR_PTR(-ENODEV);
2021         }
2022         default:
2023                 driver = get_tty_driver(device, index);
2024                 if (!driver)
2025                         return ERR_PTR(-ENODEV);
2026                 break;
2027         }
2028         return driver;
2029 }
2030
2031 /**
2032  *      tty_open                -       open a tty device
2033  *      @inode: inode of device file
2034  *      @filp: file pointer to tty
2035  *
2036  *      tty_open and tty_release keep up the tty count that contains the
2037  *      number of opens done on a tty. We cannot use the inode-count, as
2038  *      different inodes might point to the same tty.
2039  *
2040  *      Open-counting is needed for pty masters, as well as for keeping
2041  *      track of serial lines: DTR is dropped when the last close happens.
2042  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
2043  *
2044  *      The termios state of a pty is reset on first open so that
2045  *      settings don't persist across reuse.
2046  *
2047  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2048  *               tty->count should protect the rest.
2049  *               ->siglock protects ->signal/->sighand
2050  *
2051  *      Note: the tty_unlock/lock cases without a ref are only safe due to
2052  *      tty_mutex
2053  */
2054
2055 static int tty_open(struct inode *inode, struct file *filp)
2056 {
2057         struct tty_struct *tty;
2058         int noctty, retval;
2059         struct tty_driver *driver = NULL;
2060         int index;
2061         dev_t device = inode->i_rdev;
2062         unsigned saved_flags = filp->f_flags;
2063
2064         nonseekable_open(inode, filp);
2065
2066 retry_open:
2067         retval = tty_alloc_file(filp);
2068         if (retval)
2069                 return -ENOMEM;
2070
2071         noctty = filp->f_flags & O_NOCTTY;
2072         index  = -1;
2073         retval = 0;
2074
2075         mutex_lock(&tty_mutex);
2076         /* This is protected by the tty_mutex */
2077         tty = tty_open_current_tty(device, filp);
2078         if (IS_ERR(tty)) {
2079                 retval = PTR_ERR(tty);
2080                 goto err_unlock;
2081         } else if (!tty) {
2082                 driver = tty_lookup_driver(device, filp, &noctty, &index);
2083                 if (IS_ERR(driver)) {
2084                         retval = PTR_ERR(driver);
2085                         goto err_unlock;
2086                 }
2087
2088                 /* check whether we're reopening an existing tty */
2089                 tty = tty_driver_lookup_tty(driver, inode, index);
2090                 if (IS_ERR(tty)) {
2091                         retval = PTR_ERR(tty);
2092                         goto err_unlock;
2093                 }
2094         }
2095
2096         if (tty) {
2097                 tty_lock(tty);
2098                 retval = tty_reopen(tty);
2099                 if (retval < 0) {
2100                         tty_unlock(tty);
2101                         tty = ERR_PTR(retval);
2102                 }
2103         } else  /* Returns with the tty_lock held for now */
2104                 tty = tty_init_dev(driver, index);
2105
2106         mutex_unlock(&tty_mutex);
2107         if (driver)
2108                 tty_driver_kref_put(driver);
2109         if (IS_ERR(tty)) {
2110                 retval = PTR_ERR(tty);
2111                 goto err_file;
2112         }
2113
2114         tty_add_file(tty, filp);
2115
2116         check_tty_count(tty, __func__);
2117         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2118             tty->driver->subtype == PTY_TYPE_MASTER)
2119                 noctty = 1;
2120 #ifdef TTY_DEBUG_HANGUP
2121         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2122 #endif
2123         if (tty->ops->open)
2124                 retval = tty->ops->open(tty, filp);
2125         else
2126                 retval = -ENODEV;
2127         filp->f_flags = saved_flags;
2128
2129         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2130                                                 !capable(CAP_SYS_ADMIN))
2131                 retval = -EBUSY;
2132
2133         if (retval) {
2134 #ifdef TTY_DEBUG_HANGUP
2135                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2136                                 retval, tty->name);
2137 #endif
2138                 tty_unlock(tty); /* need to call tty_release without BTM */
2139                 tty_release(inode, filp);
2140                 if (retval != -ERESTARTSYS)
2141                         return retval;
2142
2143                 if (signal_pending(current))
2144                         return retval;
2145
2146                 schedule();
2147                 /*
2148                  * Need to reset f_op in case a hangup happened.
2149                  */
2150                 if (filp->f_op == &hung_up_tty_fops)
2151                         filp->f_op = &tty_fops;
2152                 goto retry_open;
2153         }
2154         clear_bit(TTY_HUPPED, &tty->flags);
2155         tty_unlock(tty);
2156
2157
2158         mutex_lock(&tty_mutex);
2159         tty_lock(tty);
2160         read_lock(&tasklist_lock);
2161         spin_lock_irq(&current->sighand->siglock);
2162         if (!noctty &&
2163             current->signal->leader &&
2164             !current->signal->tty &&
2165             tty->session == NULL)
2166                 __proc_set_tty(tty);
2167         spin_unlock_irq(&current->sighand->siglock);
2168         read_unlock(&tasklist_lock);
2169         tty_unlock(tty);
2170         mutex_unlock(&tty_mutex);
2171         return 0;
2172 err_unlock:
2173         mutex_unlock(&tty_mutex);
2174         /* after locks to avoid deadlock */
2175         if (!IS_ERR_OR_NULL(driver))
2176                 tty_driver_kref_put(driver);
2177 err_file:
2178         tty_free_file(filp);
2179         return retval;
2180 }
2181
2182
2183
2184 /**
2185  *      tty_poll        -       check tty status
2186  *      @filp: file being polled
2187  *      @wait: poll wait structures to update
2188  *
2189  *      Call the line discipline polling method to obtain the poll
2190  *      status of the device.
2191  *
2192  *      Locking: locks called line discipline but ldisc poll method
2193  *      may be re-entered freely by other callers.
2194  */
2195
2196 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2197 {
2198         struct tty_struct *tty = file_tty(filp);
2199         struct tty_ldisc *ld;
2200         int ret = 0;
2201
2202         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2203                 return 0;
2204
2205         ld = tty_ldisc_ref_wait(tty);
2206         if (ld->ops->poll)
2207                 ret = (ld->ops->poll)(tty, filp, wait);
2208         tty_ldisc_deref(ld);
2209         return ret;
2210 }
2211
2212 static int __tty_fasync(int fd, struct file *filp, int on)
2213 {
2214         struct tty_struct *tty = file_tty(filp);
2215         struct tty_ldisc *ldisc;
2216         unsigned long flags;
2217         int retval = 0;
2218
2219         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2220                 goto out;
2221
2222         retval = fasync_helper(fd, filp, on, &tty->fasync);
2223         if (retval <= 0)
2224                 goto out;
2225
2226         ldisc = tty_ldisc_ref(tty);
2227         if (ldisc) {
2228                 if (ldisc->ops->fasync)
2229                         ldisc->ops->fasync(tty, on);
2230                 tty_ldisc_deref(ldisc);
2231         }
2232
2233         if (on) {
2234                 enum pid_type type;
2235                 struct pid *pid;
2236
2237                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2238                 if (tty->pgrp) {
2239                         pid = tty->pgrp;
2240                         type = PIDTYPE_PGID;
2241                 } else {
2242                         pid = task_pid(current);
2243                         type = PIDTYPE_PID;
2244                 }
2245                 get_pid(pid);
2246                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2247                 __f_setown(filp, pid, type, 0);
2248                 put_pid(pid);
2249                 retval = 0;
2250         }
2251 out:
2252         return retval;
2253 }
2254
2255 static int tty_fasync(int fd, struct file *filp, int on)
2256 {
2257         struct tty_struct *tty = file_tty(filp);
2258         int retval;
2259
2260         tty_lock(tty);
2261         retval = __tty_fasync(fd, filp, on);
2262         tty_unlock(tty);
2263
2264         return retval;
2265 }
2266
2267 /**
2268  *      tiocsti                 -       fake input character
2269  *      @tty: tty to fake input into
2270  *      @p: pointer to character
2271  *
2272  *      Fake input to a tty device. Does the necessary locking and
2273  *      input management.
2274  *
2275  *      FIXME: does not honour flow control ??
2276  *
2277  *      Locking:
2278  *              Called functions take tty_ldiscs_lock
2279  *              current->signal->tty check is safe without locks
2280  *
2281  *      FIXME: may race normal receive processing
2282  */
2283
2284 static int tiocsti(struct tty_struct *tty, char __user *p)
2285 {
2286         char ch, mbz = 0;
2287         struct tty_ldisc *ld;
2288
2289         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2290                 return -EPERM;
2291         if (get_user(ch, p))
2292                 return -EFAULT;
2293         tty_audit_tiocsti(tty, ch);
2294         ld = tty_ldisc_ref_wait(tty);
2295         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2296         tty_ldisc_deref(ld);
2297         return 0;
2298 }
2299
2300 /**
2301  *      tiocgwinsz              -       implement window query ioctl
2302  *      @tty; tty
2303  *      @arg: user buffer for result
2304  *
2305  *      Copies the kernel idea of the window size into the user buffer.
2306  *
2307  *      Locking: tty->winsize_mutex is taken to ensure the winsize data
2308  *              is consistent.
2309  */
2310
2311 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2312 {
2313         int err;
2314
2315         mutex_lock(&tty->winsize_mutex);
2316         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2317         mutex_unlock(&tty->winsize_mutex);
2318
2319         return err ? -EFAULT: 0;
2320 }
2321
2322 /**
2323  *      tty_do_resize           -       resize event
2324  *      @tty: tty being resized
2325  *      @rows: rows (character)
2326  *      @cols: cols (character)
2327  *
2328  *      Update the termios variables and send the necessary signals to
2329  *      peform a terminal resize correctly
2330  */
2331
2332 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2333 {
2334         struct pid *pgrp;
2335
2336         /* Lock the tty */
2337         mutex_lock(&tty->winsize_mutex);
2338         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2339                 goto done;
2340
2341         /* Signal the foreground process group */
2342         pgrp = tty_get_pgrp(tty);
2343         if (pgrp)
2344                 kill_pgrp(pgrp, SIGWINCH, 1);
2345         put_pid(pgrp);
2346
2347         tty->winsize = *ws;
2348 done:
2349         mutex_unlock(&tty->winsize_mutex);
2350         return 0;
2351 }
2352 EXPORT_SYMBOL(tty_do_resize);
2353
2354 /**
2355  *      tiocswinsz              -       implement window size set ioctl
2356  *      @tty; tty side of tty
2357  *      @arg: user buffer for result
2358  *
2359  *      Copies the user idea of the window size to the kernel. Traditionally
2360  *      this is just advisory information but for the Linux console it
2361  *      actually has driver level meaning and triggers a VC resize.
2362  *
2363  *      Locking:
2364  *              Driver dependent. The default do_resize method takes the
2365  *      tty termios mutex and ctrl_lock. The console takes its own lock
2366  *      then calls into the default method.
2367  */
2368
2369 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2370 {
2371         struct winsize tmp_ws;
2372         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2373                 return -EFAULT;
2374
2375         if (tty->ops->resize)
2376                 return tty->ops->resize(tty, &tmp_ws);
2377         else
2378                 return tty_do_resize(tty, &tmp_ws);
2379 }
2380
2381 /**
2382  *      tioccons        -       allow admin to move logical console
2383  *      @file: the file to become console
2384  *
2385  *      Allow the administrator to move the redirected console device
2386  *
2387  *      Locking: uses redirect_lock to guard the redirect information
2388  */
2389
2390 static int tioccons(struct file *file)
2391 {
2392         if (!capable(CAP_SYS_ADMIN))
2393                 return -EPERM;
2394         if (file->f_op->write == redirected_tty_write) {
2395                 struct file *f;
2396                 spin_lock(&redirect_lock);
2397                 f = redirect;
2398                 redirect = NULL;
2399                 spin_unlock(&redirect_lock);
2400                 if (f)
2401                         fput(f);
2402                 return 0;
2403         }
2404         spin_lock(&redirect_lock);
2405         if (redirect) {
2406                 spin_unlock(&redirect_lock);
2407                 return -EBUSY;
2408         }
2409         redirect = get_file(file);
2410         spin_unlock(&redirect_lock);
2411         return 0;
2412 }
2413
2414 /**
2415  *      fionbio         -       non blocking ioctl
2416  *      @file: file to set blocking value
2417  *      @p: user parameter
2418  *
2419  *      Historical tty interfaces had a blocking control ioctl before
2420  *      the generic functionality existed. This piece of history is preserved
2421  *      in the expected tty API of posix OS's.
2422  *
2423  *      Locking: none, the open file handle ensures it won't go away.
2424  */
2425
2426 static int fionbio(struct file *file, int __user *p)
2427 {
2428         int nonblock;
2429
2430         if (get_user(nonblock, p))
2431                 return -EFAULT;
2432
2433         spin_lock(&file->f_lock);
2434         if (nonblock)
2435                 file->f_flags |= O_NONBLOCK;
2436         else
2437                 file->f_flags &= ~O_NONBLOCK;
2438         spin_unlock(&file->f_lock);
2439         return 0;
2440 }
2441
2442 /**
2443  *      tiocsctty       -       set controlling tty
2444  *      @tty: tty structure
2445  *      @arg: user argument
2446  *
2447  *      This ioctl is used to manage job control. It permits a session
2448  *      leader to set this tty as the controlling tty for the session.
2449  *
2450  *      Locking:
2451  *              Takes tty_mutex() to protect tty instance
2452  *              Takes tasklist_lock internally to walk sessions
2453  *              Takes ->siglock() when updating signal->tty
2454  */
2455
2456 static int tiocsctty(struct tty_struct *tty, int arg)
2457 {
2458         int ret = 0;
2459
2460         mutex_lock(&tty_mutex);
2461         read_lock(&tasklist_lock);
2462
2463         if (current->signal->leader && (task_session(current) == tty->session))
2464                 goto unlock;
2465
2466         /*
2467          * The process must be a session leader and
2468          * not have a controlling tty already.
2469          */
2470         if (!current->signal->leader || current->signal->tty) {
2471                 ret = -EPERM;
2472                 goto unlock;
2473         }
2474
2475         if (tty->session) {
2476                 /*
2477                  * This tty is already the controlling
2478                  * tty for another session group!
2479                  */
2480                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2481                         /*
2482                          * Steal it away
2483                          */
2484                         session_clear_tty(tty->session);
2485                 } else {
2486                         ret = -EPERM;
2487                         goto unlock;
2488                 }
2489         }
2490         proc_set_tty(tty);
2491 unlock:
2492         read_unlock(&tasklist_lock);
2493         mutex_unlock(&tty_mutex);
2494         return ret;
2495 }
2496
2497 /**
2498  *      tty_get_pgrp    -       return a ref counted pgrp pid
2499  *      @tty: tty to read
2500  *
2501  *      Returns a refcounted instance of the pid struct for the process
2502  *      group controlling the tty.
2503  */
2504
2505 struct pid *tty_get_pgrp(struct tty_struct *tty)
2506 {
2507         unsigned long flags;
2508         struct pid *pgrp;
2509
2510         spin_lock_irqsave(&tty->ctrl_lock, flags);
2511         pgrp = get_pid(tty->pgrp);
2512         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2513
2514         return pgrp;
2515 }
2516 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2517
2518 /**
2519  *      tiocgpgrp               -       get process group
2520  *      @tty: tty passed by user
2521  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2522  *      @p: returned pid
2523  *
2524  *      Obtain the process group of the tty. If there is no process group
2525  *      return an error.
2526  *
2527  *      Locking: none. Reference to current->signal->tty is safe.
2528  */
2529
2530 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2531 {
2532         struct pid *pid;
2533         int ret;
2534         /*
2535          * (tty == real_tty) is a cheap way of
2536          * testing if the tty is NOT a master pty.
2537          */
2538         if (tty == real_tty && current->signal->tty != real_tty)
2539                 return -ENOTTY;
2540         pid = tty_get_pgrp(real_tty);
2541         ret =  put_user(pid_vnr(pid), p);
2542         put_pid(pid);
2543         return ret;
2544 }
2545
2546 /**
2547  *      tiocspgrp               -       attempt to set process group
2548  *      @tty: tty passed by user
2549  *      @real_tty: tty side device matching tty passed by user
2550  *      @p: pid pointer
2551  *
2552  *      Set the process group of the tty to the session passed. Only
2553  *      permitted where the tty session is our session.
2554  *
2555  *      Locking: RCU, ctrl lock
2556  */
2557
2558 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2559 {
2560         struct pid *pgrp;
2561         pid_t pgrp_nr;
2562         int retval = tty_check_change(real_tty);
2563         unsigned long flags;
2564
2565         if (retval == -EIO)
2566                 return -ENOTTY;
2567         if (retval)
2568                 return retval;
2569         if (!current->signal->tty ||
2570             (current->signal->tty != real_tty) ||
2571             (real_tty->session != task_session(current)))
2572                 return -ENOTTY;
2573         if (get_user(pgrp_nr, p))
2574                 return -EFAULT;
2575         if (pgrp_nr < 0)
2576                 return -EINVAL;
2577         rcu_read_lock();
2578         pgrp = find_vpid(pgrp_nr);
2579         retval = -ESRCH;
2580         if (!pgrp)
2581                 goto out_unlock;
2582         retval = -EPERM;
2583         if (session_of_pgrp(pgrp) != task_session(current))
2584                 goto out_unlock;
2585         retval = 0;
2586         spin_lock_irqsave(&tty->ctrl_lock, flags);
2587         put_pid(real_tty->pgrp);
2588         real_tty->pgrp = get_pid(pgrp);
2589         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2590 out_unlock:
2591         rcu_read_unlock();
2592         return retval;
2593 }
2594
2595 /**
2596  *      tiocgsid                -       get session id
2597  *      @tty: tty passed by user
2598  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2599  *      @p: pointer to returned session id
2600  *
2601  *      Obtain the session id of the tty. If there is no session
2602  *      return an error.
2603  *
2604  *      Locking: none. Reference to current->signal->tty is safe.
2605  */
2606
2607 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2608 {
2609         /*
2610          * (tty == real_tty) is a cheap way of
2611          * testing if the tty is NOT a master pty.
2612         */
2613         if (tty == real_tty && current->signal->tty != real_tty)
2614                 return -ENOTTY;
2615         if (!real_tty->session)
2616                 return -ENOTTY;
2617         return put_user(pid_vnr(real_tty->session), p);
2618 }
2619
2620 /**
2621  *      tiocsetd        -       set line discipline
2622  *      @tty: tty device
2623  *      @p: pointer to user data
2624  *
2625  *      Set the line discipline according to user request.
2626  *
2627  *      Locking: see tty_set_ldisc, this function is just a helper
2628  */
2629
2630 static int tiocsetd(struct tty_struct *tty, int __user *p)
2631 {
2632         int ldisc;
2633         int ret;
2634
2635         if (get_user(ldisc, p))
2636                 return -EFAULT;
2637
2638         ret = tty_set_ldisc(tty, ldisc);
2639
2640         return ret;
2641 }
2642
2643 /**
2644  *      send_break      -       performed time break
2645  *      @tty: device to break on
2646  *      @duration: timeout in mS
2647  *
2648  *      Perform a timed break on hardware that lacks its own driver level
2649  *      timed break functionality.
2650  *
2651  *      Locking:
2652  *              atomic_write_lock serializes
2653  *
2654  */
2655
2656 static int send_break(struct tty_struct *tty, unsigned int duration)
2657 {
2658         int retval;
2659
2660         if (tty->ops->break_ctl == NULL)
2661                 return 0;
2662
2663         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2664                 retval = tty->ops->break_ctl(tty, duration);
2665         else {
2666                 /* Do the work ourselves */
2667                 if (tty_write_lock(tty, 0) < 0)
2668                         return -EINTR;
2669                 retval = tty->ops->break_ctl(tty, -1);
2670                 if (retval)
2671                         goto out;
2672                 if (!signal_pending(current))
2673                         msleep_interruptible(duration);
2674                 retval = tty->ops->break_ctl(tty, 0);
2675 out:
2676                 tty_write_unlock(tty);
2677                 if (signal_pending(current))
2678                         retval = -EINTR;
2679         }
2680         return retval;
2681 }
2682
2683 /**
2684  *      tty_tiocmget            -       get modem status
2685  *      @tty: tty device
2686  *      @file: user file pointer
2687  *      @p: pointer to result
2688  *
2689  *      Obtain the modem status bits from the tty driver if the feature
2690  *      is supported. Return -EINVAL if it is not available.
2691  *
2692  *      Locking: none (up to the driver)
2693  */
2694
2695 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2696 {
2697         int retval = -EINVAL;
2698
2699         if (tty->ops->tiocmget) {
2700                 retval = tty->ops->tiocmget(tty);
2701
2702                 if (retval >= 0)
2703                         retval = put_user(retval, p);
2704         }
2705         return retval;
2706 }
2707
2708 /**
2709  *      tty_tiocmset            -       set modem status
2710  *      @tty: tty device
2711  *      @cmd: command - clear bits, set bits or set all
2712  *      @p: pointer to desired bits
2713  *
2714  *      Set the modem status bits from the tty driver if the feature
2715  *      is supported. Return -EINVAL if it is not available.
2716  *
2717  *      Locking: none (up to the driver)
2718  */
2719
2720 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2721              unsigned __user *p)
2722 {
2723         int retval;
2724         unsigned int set, clear, val;
2725
2726         if (tty->ops->tiocmset == NULL)
2727                 return -EINVAL;
2728
2729         retval = get_user(val, p);
2730         if (retval)
2731                 return retval;
2732         set = clear = 0;
2733         switch (cmd) {
2734         case TIOCMBIS:
2735                 set = val;
2736                 break;
2737         case TIOCMBIC:
2738                 clear = val;
2739                 break;
2740         case TIOCMSET:
2741                 set = val;
2742                 clear = ~val;
2743                 break;
2744         }
2745         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2746         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2747         return tty->ops->tiocmset(tty, set, clear);
2748 }
2749
2750 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2751 {
2752         int retval = -EINVAL;
2753         struct serial_icounter_struct icount;
2754         memset(&icount, 0, sizeof(icount));
2755         if (tty->ops->get_icount)
2756                 retval = tty->ops->get_icount(tty, &icount);
2757         if (retval != 0)
2758                 return retval;
2759         if (copy_to_user(arg, &icount, sizeof(icount)))
2760                 return -EFAULT;
2761         return 0;
2762 }
2763
2764 /*
2765  * if pty, return the slave side (real_tty)
2766  * otherwise, return self
2767  */
2768 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2769 {
2770         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2771             tty->driver->subtype == PTY_TYPE_MASTER)
2772                 tty = tty->link;
2773         return tty;
2774 }
2775
2776 /*
2777  * Split this up, as gcc can choke on it otherwise..
2778  */
2779 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2780 {
2781         struct tty_struct *tty = file_tty(file);
2782         struct tty_struct *real_tty;
2783         void __user *p = (void __user *)arg;
2784         int retval;
2785         struct tty_ldisc *ld;
2786
2787         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2788                 return -EINVAL;
2789
2790         real_tty = tty_pair_get_tty(tty);
2791
2792         /*
2793          * Factor out some common prep work
2794          */
2795         switch (cmd) {
2796         case TIOCSETD:
2797         case TIOCSBRK:
2798         case TIOCCBRK:
2799         case TCSBRK:
2800         case TCSBRKP:
2801                 retval = tty_check_change(tty);
2802                 if (retval)
2803                         return retval;
2804                 if (cmd != TIOCCBRK) {
2805                         tty_wait_until_sent(tty, 0);
2806                         if (signal_pending(current))
2807                                 return -EINTR;
2808                 }
2809                 break;
2810         }
2811
2812         /*
2813          *      Now do the stuff.
2814          */
2815         switch (cmd) {
2816         case TIOCSTI:
2817                 return tiocsti(tty, p);
2818         case TIOCGWINSZ:
2819                 return tiocgwinsz(real_tty, p);
2820         case TIOCSWINSZ:
2821                 return tiocswinsz(real_tty, p);
2822         case TIOCCONS:
2823                 return real_tty != tty ? -EINVAL : tioccons(file);
2824         case FIONBIO:
2825                 return fionbio(file, p);
2826         case TIOCEXCL:
2827                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2828                 return 0;
2829         case TIOCNXCL:
2830                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2831                 return 0;
2832         case TIOCGEXCL:
2833         {
2834                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2835                 return put_user(excl, (int __user *)p);
2836         }
2837         case TIOCNOTTY:
2838                 if (current->signal->tty != tty)
2839                         return -ENOTTY;
2840                 no_tty();
2841                 return 0;
2842         case TIOCSCTTY:
2843                 return tiocsctty(tty, arg);
2844         case TIOCGPGRP:
2845                 return tiocgpgrp(tty, real_tty, p);
2846         case TIOCSPGRP:
2847                 return tiocspgrp(tty, real_tty, p);
2848         case TIOCGSID:
2849                 return tiocgsid(tty, real_tty, p);
2850         case TIOCGETD:
2851                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2852         case TIOCSETD:
2853                 return tiocsetd(tty, p);
2854         case TIOCVHANGUP:
2855                 if (!capable(CAP_SYS_ADMIN))
2856                         return -EPERM;
2857                 tty_vhangup(tty);
2858                 return 0;
2859         case TIOCGDEV:
2860         {
2861                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2862                 return put_user(ret, (unsigned int __user *)p);
2863         }
2864         /*
2865          * Break handling
2866          */
2867         case TIOCSBRK:  /* Turn break on, unconditionally */
2868                 if (tty->ops->break_ctl)
2869                         return tty->ops->break_ctl(tty, -1);
2870                 return 0;
2871         case TIOCCBRK:  /* Turn break off, unconditionally */
2872                 if (tty->ops->break_ctl)
2873                         return tty->ops->break_ctl(tty, 0);
2874                 return 0;
2875         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2876                 /* non-zero arg means wait for all output data
2877                  * to be sent (performed above) but don't send break.
2878                  * This is used by the tcdrain() termios function.
2879                  */
2880                 if (!arg)
2881                         return send_break(tty, 250);
2882                 return 0;
2883         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2884                 return send_break(tty, arg ? arg*100 : 250);
2885
2886         case TIOCMGET:
2887                 return tty_tiocmget(tty, p);
2888         case TIOCMSET:
2889         case TIOCMBIC:
2890         case TIOCMBIS:
2891                 return tty_tiocmset(tty, cmd, p);
2892         case TIOCGICOUNT:
2893                 retval = tty_tiocgicount(tty, p);
2894                 /* For the moment allow fall through to the old method */
2895                 if (retval != -EINVAL)
2896                         return retval;
2897                 break;
2898         case TCFLSH:
2899                 switch (arg) {
2900                 case TCIFLUSH:
2901                 case TCIOFLUSH:
2902                 /* flush tty buffer and allow ldisc to process ioctl */
2903                         tty_buffer_flush(tty);
2904                         break;
2905                 }
2906                 break;
2907         }
2908         if (tty->ops->ioctl) {
2909                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2910                 if (retval != -ENOIOCTLCMD)
2911                         return retval;
2912         }
2913         ld = tty_ldisc_ref_wait(tty);
2914         retval = -EINVAL;
2915         if (ld->ops->ioctl) {
2916                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2917                 if (retval == -ENOIOCTLCMD)
2918                         retval = -ENOTTY;
2919         }
2920         tty_ldisc_deref(ld);
2921         return retval;
2922 }
2923
2924 #ifdef CONFIG_COMPAT
2925 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2926                                 unsigned long arg)
2927 {
2928         struct tty_struct *tty = file_tty(file);
2929         struct tty_ldisc *ld;
2930         int retval = -ENOIOCTLCMD;
2931
2932         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2933                 return -EINVAL;
2934
2935         if (tty->ops->compat_ioctl) {
2936                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2937                 if (retval != -ENOIOCTLCMD)
2938                         return retval;
2939         }
2940
2941         ld = tty_ldisc_ref_wait(tty);
2942         if (ld->ops->compat_ioctl)
2943                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2944         else
2945                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2946         tty_ldisc_deref(ld);
2947
2948         return retval;
2949 }
2950 #endif
2951
2952 static int this_tty(const void *t, struct file *file, unsigned fd)
2953 {
2954         if (likely(file->f_op->read != tty_read))
2955                 return 0;
2956         return file_tty(file) != t ? 0 : fd + 1;
2957 }
2958         
2959 /*
2960  * This implements the "Secure Attention Key" ---  the idea is to
2961  * prevent trojan horses by killing all processes associated with this
2962  * tty when the user hits the "Secure Attention Key".  Required for
2963  * super-paranoid applications --- see the Orange Book for more details.
2964  *
2965  * This code could be nicer; ideally it should send a HUP, wait a few
2966  * seconds, then send a INT, and then a KILL signal.  But you then
2967  * have to coordinate with the init process, since all processes associated
2968  * with the current tty must be dead before the new getty is allowed
2969  * to spawn.
2970  *
2971  * Now, if it would be correct ;-/ The current code has a nasty hole -
2972  * it doesn't catch files in flight. We may send the descriptor to ourselves
2973  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2974  *
2975  * Nasty bug: do_SAK is being called in interrupt context.  This can
2976  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2977  */
2978 void __do_SAK(struct tty_struct *tty)
2979 {
2980 #ifdef TTY_SOFT_SAK
2981         tty_hangup(tty);
2982 #else
2983         struct task_struct *g, *p;
2984         struct pid *session;
2985         int             i;
2986
2987         if (!tty)
2988                 return;
2989         session = tty->session;
2990
2991         tty_ldisc_flush(tty);
2992
2993         tty_driver_flush_buffer(tty);
2994
2995         read_lock(&tasklist_lock);
2996         /* Kill the entire session */
2997         do_each_pid_task(session, PIDTYPE_SID, p) {
2998                 printk(KERN_NOTICE "SAK: killed process %d"
2999                         " (%s): task_session(p)==tty->session\n",
3000                         task_pid_nr(p), p->comm);
3001                 send_sig(SIGKILL, p, 1);
3002         } while_each_pid_task(session, PIDTYPE_SID, p);
3003         /* Now kill any processes that happen to have the
3004          * tty open.
3005          */
3006         do_each_thread(g, p) {
3007                 if (p->signal->tty == tty) {
3008                         printk(KERN_NOTICE "SAK: killed process %d"
3009                             " (%s): task_session(p)==tty->session\n",
3010                             task_pid_nr(p), p->comm);
3011                         send_sig(SIGKILL, p, 1);
3012                         continue;
3013                 }
3014                 task_lock(p);
3015                 i = iterate_fd(p->files, 0, this_tty, tty);
3016                 if (i != 0) {
3017                         printk(KERN_NOTICE "SAK: killed process %d"
3018                             " (%s): fd#%d opened to the tty\n",
3019                                     task_pid_nr(p), p->comm, i - 1);
3020                         force_sig(SIGKILL, p);
3021                 }
3022                 task_unlock(p);
3023         } while_each_thread(g, p);
3024         read_unlock(&tasklist_lock);
3025 #endif
3026 }
3027
3028 static void do_SAK_work(struct work_struct *work)
3029 {
3030         struct tty_struct *tty =
3031                 container_of(work, struct tty_struct, SAK_work);
3032         __do_SAK(tty);
3033 }
3034
3035 /*
3036  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3037  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3038  * the values which we write to it will be identical to the values which it
3039  * already has. --akpm
3040  */
3041 void do_SAK(struct tty_struct *tty)
3042 {
3043         if (!tty)
3044                 return;
3045         schedule_work(&tty->SAK_work);
3046 }
3047
3048 EXPORT_SYMBOL(do_SAK);
3049
3050 static int dev_match_devt(struct device *dev, const void *data)
3051 {
3052         const dev_t *devt = data;
3053         return dev->devt == *devt;
3054 }
3055
3056 /* Must put_device() after it's unused! */
3057 static struct device *tty_get_device(struct tty_struct *tty)
3058 {
3059         dev_t devt = tty_devnum(tty);
3060         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3061 }
3062
3063
3064 /**
3065  *      alloc_tty_struct
3066  *
3067  *      This subroutine allocates and initializes a tty structure.
3068  *
3069  *      Locking: none - tty in question is not exposed at this point
3070  */
3071
3072 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3073 {
3074         struct tty_struct *tty;
3075
3076         tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3077         if (!tty)
3078                 return NULL;
3079
3080         kref_init(&tty->kref);
3081         tty->magic = TTY_MAGIC;
3082         tty_ldisc_init(tty);
3083         tty->session = NULL;
3084         tty->pgrp = NULL;
3085         mutex_init(&tty->legacy_mutex);
3086         mutex_init(&tty->throttle_mutex);
3087         init_rwsem(&tty->termios_rwsem);
3088         mutex_init(&tty->winsize_mutex);
3089         init_ldsem(&tty->ldisc_sem);
3090         init_waitqueue_head(&tty->write_wait);
3091         init_waitqueue_head(&tty->read_wait);
3092         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3093         mutex_init(&tty->atomic_write_lock);
3094         spin_lock_init(&tty->ctrl_lock);
3095         spin_lock_init(&tty->flow_lock);
3096         INIT_LIST_HEAD(&tty->tty_files);
3097         INIT_WORK(&tty->SAK_work, do_SAK_work);
3098
3099         tty->driver = driver;
3100         tty->ops = driver->ops;
3101         tty->index = idx;
3102         tty_line_name(driver, idx, tty->name);
3103         tty->dev = tty_get_device(tty);
3104
3105         return tty;
3106 }
3107
3108 /**
3109  *      deinitialize_tty_struct
3110  *      @tty: tty to deinitialize
3111  *
3112  *      This subroutine deinitializes a tty structure that has been newly
3113  *      allocated but tty_release cannot be called on that yet.
3114  *
3115  *      Locking: none - tty in question must not be exposed at this point
3116  */
3117 void deinitialize_tty_struct(struct tty_struct *tty)
3118 {
3119         tty_ldisc_deinit(tty);
3120 }
3121
3122 /**
3123  *      tty_put_char    -       write one character to a tty
3124  *      @tty: tty
3125  *      @ch: character
3126  *
3127  *      Write one byte to the tty using the provided put_char method
3128  *      if present. Returns the number of characters successfully output.
3129  *
3130  *      Note: the specific put_char operation in the driver layer may go
3131  *      away soon. Don't call it directly, use this method
3132  */
3133
3134 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3135 {
3136         if (tty->ops->put_char)
3137                 return tty->ops->put_char(tty, ch);
3138         return tty->ops->write(tty, &ch, 1);
3139 }
3140 EXPORT_SYMBOL_GPL(tty_put_char);
3141
3142 struct class *tty_class;
3143
3144 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3145                 unsigned int index, unsigned int count)
3146 {
3147         /* init here, since reused cdevs cause crashes */
3148         cdev_init(&driver->cdevs[index], &tty_fops);
3149         driver->cdevs[index].owner = driver->owner;
3150         return cdev_add(&driver->cdevs[index], dev, count);
3151 }
3152
3153 /**
3154  *      tty_register_device - register a tty device
3155  *      @driver: the tty driver that describes the tty device
3156  *      @index: the index in the tty driver for this tty device
3157  *      @device: a struct device that is associated with this tty device.
3158  *              This field is optional, if there is no known struct device
3159  *              for this tty device it can be set to NULL safely.
3160  *
3161  *      Returns a pointer to the struct device for this tty device
3162  *      (or ERR_PTR(-EFOO) on error).
3163  *
3164  *      This call is required to be made to register an individual tty device
3165  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3166  *      that bit is not set, this function should not be called by a tty
3167  *      driver.
3168  *
3169  *      Locking: ??
3170  */
3171
3172 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3173                                    struct device *device)
3174 {
3175         return tty_register_device_attr(driver, index, device, NULL, NULL);
3176 }
3177 EXPORT_SYMBOL(tty_register_device);
3178
3179 static void tty_device_create_release(struct device *dev)
3180 {
3181         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3182         kfree(dev);
3183 }
3184
3185 /**
3186  *      tty_register_device_attr - register a tty device
3187  *      @driver: the tty driver that describes the tty device
3188  *      @index: the index in the tty driver for this tty device
3189  *      @device: a struct device that is associated with this tty device.
3190  *              This field is optional, if there is no known struct device
3191  *              for this tty device it can be set to NULL safely.
3192  *      @drvdata: Driver data to be set to device.
3193  *      @attr_grp: Attribute group to be set on device.
3194  *
3195  *      Returns a pointer to the struct device for this tty device
3196  *      (or ERR_PTR(-EFOO) on error).
3197  *
3198  *      This call is required to be made to register an individual tty device
3199  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3200  *      that bit is not set, this function should not be called by a tty
3201  *      driver.
3202  *
3203  *      Locking: ??
3204  */
3205 struct device *tty_register_device_attr(struct tty_driver *driver,
3206                                    unsigned index, struct device *device,
3207                                    void *drvdata,
3208                                    const struct attribute_group **attr_grp)
3209 {
3210         char name[64];
3211         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3212         struct device *dev = NULL;
3213         int retval = -ENODEV;
3214         bool cdev = false;
3215
3216         if (index >= driver->num) {
3217                 printk(KERN_ERR "Attempt to register invalid tty line number "
3218                        " (%d).\n", index);
3219                 return ERR_PTR(-EINVAL);
3220         }
3221
3222         if (driver->type == TTY_DRIVER_TYPE_PTY)
3223                 pty_line_name(driver, index, name);
3224         else
3225                 tty_line_name(driver, index, name);
3226
3227         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3228                 retval = tty_cdev_add(driver, devt, index, 1);
3229                 if (retval)
3230                         goto error;
3231                 cdev = true;
3232         }
3233
3234         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3235         if (!dev) {
3236                 retval = -ENOMEM;
3237                 goto error;
3238         }
3239
3240         dev->devt = devt;
3241         dev->class = tty_class;
3242         dev->parent = device;
3243         dev->release = tty_device_create_release;
3244         dev_set_name(dev, "%s", name);
3245         dev->groups = attr_grp;
3246         dev_set_drvdata(dev, drvdata);
3247
3248         retval = device_register(dev);
3249         if (retval)
3250                 goto error;
3251
3252         return dev;
3253
3254 error:
3255         put_device(dev);
3256         if (cdev)
3257                 cdev_del(&driver->cdevs[index]);
3258         return ERR_PTR(retval);
3259 }
3260 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3261
3262 /**
3263  *      tty_unregister_device - unregister a tty device
3264  *      @driver: the tty driver that describes the tty device
3265  *      @index: the index in the tty driver for this tty device
3266  *
3267  *      If a tty device is registered with a call to tty_register_device() then
3268  *      this function must be called when the tty device is gone.
3269  *
3270  *      Locking: ??
3271  */
3272
3273 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3274 {
3275         device_destroy(tty_class,
3276                 MKDEV(driver->major, driver->minor_start) + index);
3277         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3278                 cdev_del(&driver->cdevs[index]);
3279 }
3280 EXPORT_SYMBOL(tty_unregister_device);
3281
3282 /**
3283  * __tty_alloc_driver -- allocate tty driver
3284  * @lines: count of lines this driver can handle at most
3285  * @owner: module which is repsonsible for this driver
3286  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3287  *
3288  * This should not be called directly, some of the provided macros should be
3289  * used instead. Use IS_ERR and friends on @retval.
3290  */
3291 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3292                 unsigned long flags)
3293 {
3294         struct tty_driver *driver;
3295         unsigned int cdevs = 1;
3296         int err;
3297
3298         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3299                 return ERR_PTR(-EINVAL);
3300
3301         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3302         if (!driver)
3303                 return ERR_PTR(-ENOMEM);
3304
3305         kref_init(&driver->kref);
3306         driver->magic = TTY_DRIVER_MAGIC;
3307         driver->num = lines;
3308         driver->owner = owner;
3309         driver->flags = flags;
3310
3311         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3312                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3313                                 GFP_KERNEL);
3314                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3315                                 GFP_KERNEL);
3316                 if (!driver->ttys || !driver->termios) {
3317                         err = -ENOMEM;
3318                         goto err_free_all;
3319                 }
3320         }
3321
3322         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3323                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3324                                 GFP_KERNEL);
3325                 if (!driver->ports) {
3326                         err = -ENOMEM;
3327                         goto err_free_all;
3328                 }
3329                 cdevs = lines;
3330         }
3331
3332         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3333         if (!driver->cdevs) {
3334                 err = -ENOMEM;
3335                 goto err_free_all;
3336         }
3337
3338         return driver;
3339 err_free_all:
3340         kfree(driver->ports);
3341         kfree(driver->ttys);
3342         kfree(driver->termios);
3343         kfree(driver);
3344         return ERR_PTR(err);
3345 }
3346 EXPORT_SYMBOL(__tty_alloc_driver);
3347
3348 static void destruct_tty_driver(struct kref *kref)
3349 {
3350         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3351         int i;
3352         struct ktermios *tp;
3353
3354         if (driver->flags & TTY_DRIVER_INSTALLED) {
3355                 /*
3356                  * Free the termios and termios_locked structures because
3357                  * we don't want to get memory leaks when modular tty
3358                  * drivers are removed from the kernel.
3359                  */
3360                 for (i = 0; i < driver->num; i++) {
3361                         tp = driver->termios[i];
3362                         if (tp) {
3363                                 driver->termios[i] = NULL;
3364                                 kfree(tp);
3365                         }
3366                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3367                                 tty_unregister_device(driver, i);
3368                 }
3369                 proc_tty_unregister_driver(driver);
3370                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3371                         cdev_del(&driver->cdevs[0]);
3372         }
3373         kfree(driver->cdevs);
3374         kfree(driver->ports);
3375         kfree(driver->termios);
3376         kfree(driver->ttys);
3377         kfree(driver);
3378 }
3379
3380 void tty_driver_kref_put(struct tty_driver *driver)
3381 {
3382         kref_put(&driver->kref, destruct_tty_driver);
3383 }
3384 EXPORT_SYMBOL(tty_driver_kref_put);
3385
3386 void tty_set_operations(struct tty_driver *driver,
3387                         const struct tty_operations *op)
3388 {
3389         driver->ops = op;
3390 };
3391 EXPORT_SYMBOL(tty_set_operations);
3392
3393 void put_tty_driver(struct tty_driver *d)
3394 {
3395         tty_driver_kref_put(d);
3396 }
3397 EXPORT_SYMBOL(put_tty_driver);
3398
3399 /*
3400  * Called by a tty driver to register itself.
3401  */
3402 int tty_register_driver(struct tty_driver *driver)
3403 {
3404         int error;
3405         int i;
3406         dev_t dev;
3407         struct device *d;
3408
3409         if (!driver->major) {
3410                 error = alloc_chrdev_region(&dev, driver->minor_start,
3411                                                 driver->num, driver->name);
3412                 if (!error) {
3413                         driver->major = MAJOR(dev);
3414                         driver->minor_start = MINOR(dev);
3415                 }
3416         } else {
3417                 dev = MKDEV(driver->major, driver->minor_start);
3418                 error = register_chrdev_region(dev, driver->num, driver->name);
3419         }
3420         if (error < 0)
3421                 goto err;
3422
3423         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3424                 error = tty_cdev_add(driver, dev, 0, driver->num);
3425                 if (error)
3426                         goto err_unreg_char;
3427         }
3428
3429         mutex_lock(&tty_mutex);
3430         list_add(&driver->tty_drivers, &tty_drivers);
3431         mutex_unlock(&tty_mutex);
3432
3433         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3434                 for (i = 0; i < driver->num; i++) {
3435                         d = tty_register_device(driver, i, NULL);
3436                         if (IS_ERR(d)) {
3437                                 error = PTR_ERR(d);
3438                                 goto err_unreg_devs;
3439                         }
3440                 }
3441         }
3442         proc_tty_register_driver(driver);
3443         driver->flags |= TTY_DRIVER_INSTALLED;
3444         return 0;
3445
3446 err_unreg_devs:
3447         for (i--; i >= 0; i--)
3448                 tty_unregister_device(driver, i);
3449
3450         mutex_lock(&tty_mutex);
3451         list_del(&driver->tty_drivers);
3452         mutex_unlock(&tty_mutex);
3453
3454 err_unreg_char:
3455         unregister_chrdev_region(dev, driver->num);
3456 err:
3457         return error;
3458 }
3459 EXPORT_SYMBOL(tty_register_driver);
3460
3461 /*
3462  * Called by a tty driver to unregister itself.
3463  */
3464 int tty_unregister_driver(struct tty_driver *driver)
3465 {
3466 #if 0
3467         /* FIXME */
3468         if (driver->refcount)
3469                 return -EBUSY;
3470 #endif
3471         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3472                                 driver->num);
3473         mutex_lock(&tty_mutex);
3474         list_del(&driver->tty_drivers);
3475         mutex_unlock(&tty_mutex);
3476         return 0;
3477 }
3478
3479 EXPORT_SYMBOL(tty_unregister_driver);
3480
3481 dev_t tty_devnum(struct tty_struct *tty)
3482 {
3483         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3484 }
3485 EXPORT_SYMBOL(tty_devnum);
3486
3487 void tty_default_fops(struct file_operations *fops)
3488 {
3489         *fops = tty_fops;
3490 }
3491
3492 /*
3493  * Initialize the console device. This is called *early*, so
3494  * we can't necessarily depend on lots of kernel help here.
3495  * Just do some early initializations, and do the complex setup
3496  * later.
3497  */
3498 void __init console_init(void)
3499 {
3500         initcall_t *call;
3501
3502         /* Setup the default TTY line discipline. */
3503         tty_ldisc_begin();
3504
3505         /*
3506          * set up the console device so that later boot sequences can
3507          * inform about problems etc..
3508          */
3509         call = __con_initcall_start;
3510         while (call < __con_initcall_end) {
3511                 (*call)();
3512                 call++;
3513         }
3514 }
3515
3516 static char *tty_devnode(struct device *dev, umode_t *mode)
3517 {
3518         if (!mode)
3519                 return NULL;
3520         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3521             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3522                 *mode = 0666;
3523         return NULL;
3524 }
3525
3526 static int __init tty_class_init(void)
3527 {
3528         tty_class = class_create(THIS_MODULE, "tty");
3529         if (IS_ERR(tty_class))
3530                 return PTR_ERR(tty_class);
3531         tty_class->devnode = tty_devnode;
3532         return 0;
3533 }
3534
3535 postcore_initcall(tty_class_init);
3536
3537 /* 3/2004 jmc: why do these devices exist? */
3538 static struct cdev tty_cdev, console_cdev;
3539
3540 static ssize_t show_cons_active(struct device *dev,
3541                                 struct device_attribute *attr, char *buf)
3542 {
3543         struct console *cs[16];
3544         int i = 0;
3545         struct console *c;
3546         ssize_t count = 0;
3547
3548         console_lock();
3549         for_each_console(c) {
3550                 if (!c->device)
3551                         continue;
3552                 if (!c->write)
3553                         continue;
3554                 if ((c->flags & CON_ENABLED) == 0)
3555                         continue;
3556                 cs[i++] = c;
3557                 if (i >= ARRAY_SIZE(cs))
3558                         break;
3559         }
3560         while (i--) {
3561                 int index = cs[i]->index;
3562                 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3563
3564                 /* don't resolve tty0 as some programs depend on it */
3565                 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3566                         count += tty_line_name(drv, index, buf + count);
3567                 else
3568                         count += sprintf(buf + count, "%s%d",
3569                                          cs[i]->name, cs[i]->index);
3570
3571                 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3572         }
3573         console_unlock();
3574
3575         return count;
3576 }
3577 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3578
3579 static struct device *consdev;
3580
3581 void console_sysfs_notify(void)
3582 {
3583         if (consdev)
3584                 sysfs_notify(&consdev->kobj, NULL, "active");
3585 }
3586
3587 /*
3588  * Ok, now we can initialize the rest of the tty devices and can count
3589  * on memory allocations, interrupts etc..
3590  */
3591 int __init tty_init(void)
3592 {
3593         cdev_init(&tty_cdev, &tty_fops);
3594         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3595             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3596                 panic("Couldn't register /dev/tty driver\n");
3597         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3598
3599         cdev_init(&console_cdev, &console_fops);
3600         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3601             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3602                 panic("Couldn't register /dev/console driver\n");
3603         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3604                               "console");
3605         if (IS_ERR(consdev))
3606                 consdev = NULL;
3607         else
3608                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3609
3610 #ifdef CONFIG_VT
3611         vty_init(&console_fops);
3612 #endif
3613         return 0;
3614 }
3615