tty: Re-open /dev/tty without tty_mutex
[firefly-linux-kernel-4.4.55.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156
157 /**
158  *      free_tty_struct         -       free a disused tty
159  *      @tty: tty struct to free
160  *
161  *      Free the write buffers, tty queue and tty memory itself.
162  *
163  *      Locking: none. Must be called after tty is definitely unused
164  */
165
166 void free_tty_struct(struct tty_struct *tty)
167 {
168         if (!tty)
169                 return;
170         if (tty->dev)
171                 put_device(tty->dev);
172         kfree(tty->write_buf);
173         tty->magic = 0xDEADDEAD;
174         kfree(tty);
175 }
176
177 static inline struct tty_struct *file_tty(struct file *file)
178 {
179         return ((struct tty_file_private *)file->private_data)->tty;
180 }
181
182 int tty_alloc_file(struct file *file)
183 {
184         struct tty_file_private *priv;
185
186         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
187         if (!priv)
188                 return -ENOMEM;
189
190         file->private_data = priv;
191
192         return 0;
193 }
194
195 /* Associate a new file with the tty structure */
196 void tty_add_file(struct tty_struct *tty, struct file *file)
197 {
198         struct tty_file_private *priv = file->private_data;
199
200         priv->tty = tty;
201         priv->file = file;
202
203         spin_lock(&tty_files_lock);
204         list_add(&priv->list, &tty->tty_files);
205         spin_unlock(&tty_files_lock);
206 }
207
208 /**
209  * tty_free_file - free file->private_data
210  *
211  * This shall be used only for fail path handling when tty_add_file was not
212  * called yet.
213  */
214 void tty_free_file(struct file *file)
215 {
216         struct tty_file_private *priv = file->private_data;
217
218         file->private_data = NULL;
219         kfree(priv);
220 }
221
222 /* Delete file from its tty */
223 static void tty_del_file(struct file *file)
224 {
225         struct tty_file_private *priv = file->private_data;
226
227         spin_lock(&tty_files_lock);
228         list_del(&priv->list);
229         spin_unlock(&tty_files_lock);
230         tty_free_file(file);
231 }
232
233
234 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
235
236 /**
237  *      tty_name        -       return tty naming
238  *      @tty: tty structure
239  *      @buf: buffer for output
240  *
241  *      Convert a tty structure into a name. The name reflects the kernel
242  *      naming policy and if udev is in use may not reflect user space
243  *
244  *      Locking: none
245  */
246
247 char *tty_name(struct tty_struct *tty, char *buf)
248 {
249         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
250                 strcpy(buf, "NULL tty");
251         else
252                 strcpy(buf, tty->name);
253         return buf;
254 }
255
256 EXPORT_SYMBOL(tty_name);
257
258 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
259                               const char *routine)
260 {
261 #ifdef TTY_PARANOIA_CHECK
262         if (!tty) {
263                 printk(KERN_WARNING
264                         "null TTY for (%d:%d) in %s\n",
265                         imajor(inode), iminor(inode), routine);
266                 return 1;
267         }
268         if (tty->magic != TTY_MAGIC) {
269                 printk(KERN_WARNING
270                         "bad magic number for tty struct (%d:%d) in %s\n",
271                         imajor(inode), iminor(inode), routine);
272                 return 1;
273         }
274 #endif
275         return 0;
276 }
277
278 static int check_tty_count(struct tty_struct *tty, const char *routine)
279 {
280 #ifdef CHECK_TTY_COUNT
281         struct list_head *p;
282         int count = 0;
283
284         spin_lock(&tty_files_lock);
285         list_for_each(p, &tty->tty_files) {
286                 count++;
287         }
288         spin_unlock(&tty_files_lock);
289         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
290             tty->driver->subtype == PTY_TYPE_SLAVE &&
291             tty->link && tty->link->count)
292                 count++;
293         if (tty->count != count) {
294                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
295                                     "!= #fd's(%d) in %s\n",
296                        tty->name, tty->count, count, routine);
297                 return count;
298         }
299 #endif
300         return 0;
301 }
302
303 /**
304  *      get_tty_driver          -       find device of a tty
305  *      @dev_t: device identifier
306  *      @index: returns the index of the tty
307  *
308  *      This routine returns a tty driver structure, given a device number
309  *      and also passes back the index number.
310  *
311  *      Locking: caller must hold tty_mutex
312  */
313
314 static struct tty_driver *get_tty_driver(dev_t device, int *index)
315 {
316         struct tty_driver *p;
317
318         list_for_each_entry(p, &tty_drivers, tty_drivers) {
319                 dev_t base = MKDEV(p->major, p->minor_start);
320                 if (device < base || device >= base + p->num)
321                         continue;
322                 *index = device - base;
323                 return tty_driver_kref_get(p);
324         }
325         return NULL;
326 }
327
328 #ifdef CONFIG_CONSOLE_POLL
329
330 /**
331  *      tty_find_polling_driver -       find device of a polled tty
332  *      @name: name string to match
333  *      @line: pointer to resulting tty line nr
334  *
335  *      This routine returns a tty driver structure, given a name
336  *      and the condition that the tty driver is capable of polled
337  *      operation.
338  */
339 struct tty_driver *tty_find_polling_driver(char *name, int *line)
340 {
341         struct tty_driver *p, *res = NULL;
342         int tty_line = 0;
343         int len;
344         char *str, *stp;
345
346         for (str = name; *str; str++)
347                 if ((*str >= '0' && *str <= '9') || *str == ',')
348                         break;
349         if (!*str)
350                 return NULL;
351
352         len = str - name;
353         tty_line = simple_strtoul(str, &str, 10);
354
355         mutex_lock(&tty_mutex);
356         /* Search through the tty devices to look for a match */
357         list_for_each_entry(p, &tty_drivers, tty_drivers) {
358                 if (strncmp(name, p->name, len) != 0)
359                         continue;
360                 stp = str;
361                 if (*stp == ',')
362                         stp++;
363                 if (*stp == '\0')
364                         stp = NULL;
365
366                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
367                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
368                         res = tty_driver_kref_get(p);
369                         *line = tty_line;
370                         break;
371                 }
372         }
373         mutex_unlock(&tty_mutex);
374
375         return res;
376 }
377 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
378 #endif
379
380 /**
381  *      tty_check_change        -       check for POSIX terminal changes
382  *      @tty: tty to check
383  *
384  *      If we try to write to, or set the state of, a terminal and we're
385  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
386  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
387  *
388  *      Locking: ctrl_lock
389  */
390
391 int tty_check_change(struct tty_struct *tty)
392 {
393         unsigned long flags;
394         int ret = 0;
395
396         if (current->signal->tty != tty)
397                 return 0;
398
399         spin_lock_irqsave(&tty->ctrl_lock, flags);
400
401         if (!tty->pgrp) {
402                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
403                 goto out_unlock;
404         }
405         if (task_pgrp(current) == tty->pgrp)
406                 goto out_unlock;
407         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
408         if (is_ignored(SIGTTOU))
409                 goto out;
410         if (is_current_pgrp_orphaned()) {
411                 ret = -EIO;
412                 goto out;
413         }
414         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
415         set_thread_flag(TIF_SIGPENDING);
416         ret = -ERESTARTSYS;
417 out:
418         return ret;
419 out_unlock:
420         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
421         return ret;
422 }
423
424 EXPORT_SYMBOL(tty_check_change);
425
426 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
427                                 size_t count, loff_t *ppos)
428 {
429         return 0;
430 }
431
432 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
433                                  size_t count, loff_t *ppos)
434 {
435         return -EIO;
436 }
437
438 /* No kernel lock held - none needed ;) */
439 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
440 {
441         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
442 }
443
444 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
445                 unsigned long arg)
446 {
447         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
448 }
449
450 static long hung_up_tty_compat_ioctl(struct file *file,
451                                      unsigned int cmd, unsigned long arg)
452 {
453         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
454 }
455
456 static const struct file_operations tty_fops = {
457         .llseek         = no_llseek,
458         .read           = tty_read,
459         .write          = tty_write,
460         .poll           = tty_poll,
461         .unlocked_ioctl = tty_ioctl,
462         .compat_ioctl   = tty_compat_ioctl,
463         .open           = tty_open,
464         .release        = tty_release,
465         .fasync         = tty_fasync,
466 };
467
468 static const struct file_operations console_fops = {
469         .llseek         = no_llseek,
470         .read           = tty_read,
471         .write          = redirected_tty_write,
472         .poll           = tty_poll,
473         .unlocked_ioctl = tty_ioctl,
474         .compat_ioctl   = tty_compat_ioctl,
475         .open           = tty_open,
476         .release        = tty_release,
477         .fasync         = tty_fasync,
478 };
479
480 static const struct file_operations hung_up_tty_fops = {
481         .llseek         = no_llseek,
482         .read           = hung_up_tty_read,
483         .write          = hung_up_tty_write,
484         .poll           = hung_up_tty_poll,
485         .unlocked_ioctl = hung_up_tty_ioctl,
486         .compat_ioctl   = hung_up_tty_compat_ioctl,
487         .release        = tty_release,
488 };
489
490 static DEFINE_SPINLOCK(redirect_lock);
491 static struct file *redirect;
492
493
494 void proc_clear_tty(struct task_struct *p)
495 {
496         unsigned long flags;
497         struct tty_struct *tty;
498         spin_lock_irqsave(&p->sighand->siglock, flags);
499         tty = p->signal->tty;
500         p->signal->tty = NULL;
501         spin_unlock_irqrestore(&p->sighand->siglock, flags);
502         tty_kref_put(tty);
503 }
504
505 /**
506  * proc_set_tty -  set the controlling terminal
507  *
508  * Only callable by the session leader and only if it does not already have
509  * a controlling terminal.
510  *
511  * Caller must hold:  tty_lock()
512  *                    a readlock on tasklist_lock
513  *                    sighand lock
514  */
515 static void __proc_set_tty(struct tty_struct *tty)
516 {
517         unsigned long flags;
518
519         spin_lock_irqsave(&tty->ctrl_lock, flags);
520         /*
521          * The session and fg pgrp references will be non-NULL if
522          * tiocsctty() is stealing the controlling tty
523          */
524         put_pid(tty->session);
525         put_pid(tty->pgrp);
526         tty->pgrp = get_pid(task_pgrp(current));
527         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
528         tty->session = get_pid(task_session(current));
529         if (current->signal->tty) {
530                 printk(KERN_DEBUG "tty not NULL!!\n");
531                 tty_kref_put(current->signal->tty);
532         }
533         put_pid(current->signal->tty_old_pgrp);
534         current->signal->tty = tty_kref_get(tty);
535         current->signal->tty_old_pgrp = NULL;
536 }
537
538 static void proc_set_tty(struct tty_struct *tty)
539 {
540         spin_lock_irq(&current->sighand->siglock);
541         __proc_set_tty(tty);
542         spin_unlock_irq(&current->sighand->siglock);
543 }
544
545 struct tty_struct *get_current_tty(void)
546 {
547         struct tty_struct *tty;
548         unsigned long flags;
549
550         spin_lock_irqsave(&current->sighand->siglock, flags);
551         tty = tty_kref_get(current->signal->tty);
552         spin_unlock_irqrestore(&current->sighand->siglock, flags);
553         return tty;
554 }
555 EXPORT_SYMBOL_GPL(get_current_tty);
556
557 static void session_clear_tty(struct pid *session)
558 {
559         struct task_struct *p;
560         do_each_pid_task(session, PIDTYPE_SID, p) {
561                 proc_clear_tty(p);
562         } while_each_pid_task(session, PIDTYPE_SID, p);
563 }
564
565 /**
566  *      tty_wakeup      -       request more data
567  *      @tty: terminal
568  *
569  *      Internal and external helper for wakeups of tty. This function
570  *      informs the line discipline if present that the driver is ready
571  *      to receive more output data.
572  */
573
574 void tty_wakeup(struct tty_struct *tty)
575 {
576         struct tty_ldisc *ld;
577
578         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
579                 ld = tty_ldisc_ref(tty);
580                 if (ld) {
581                         if (ld->ops->write_wakeup)
582                                 ld->ops->write_wakeup(tty);
583                         tty_ldisc_deref(ld);
584                 }
585         }
586         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
587 }
588
589 EXPORT_SYMBOL_GPL(tty_wakeup);
590
591 /**
592  *      tty_signal_session_leader       - sends SIGHUP to session leader
593  *      @tty            controlling tty
594  *      @exit_session   if non-zero, signal all foreground group processes
595  *
596  *      Send SIGHUP and SIGCONT to the session leader and its process group.
597  *      Optionally, signal all processes in the foreground process group.
598  *
599  *      Returns the number of processes in the session with this tty
600  *      as their controlling terminal. This value is used to drop
601  *      tty references for those processes.
602  */
603 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
604 {
605         struct task_struct *p;
606         int refs = 0;
607         struct pid *tty_pgrp = NULL;
608
609         read_lock(&tasklist_lock);
610         if (tty->session) {
611                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
612                         spin_lock_irq(&p->sighand->siglock);
613                         if (p->signal->tty == tty) {
614                                 p->signal->tty = NULL;
615                                 /* We defer the dereferences outside fo
616                                    the tasklist lock */
617                                 refs++;
618                         }
619                         if (!p->signal->leader) {
620                                 spin_unlock_irq(&p->sighand->siglock);
621                                 continue;
622                         }
623                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
624                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
625                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
626                         spin_lock(&tty->ctrl_lock);
627                         tty_pgrp = get_pid(tty->pgrp);
628                         if (tty->pgrp)
629                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
630                         spin_unlock(&tty->ctrl_lock);
631                         spin_unlock_irq(&p->sighand->siglock);
632                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
633         }
634         read_unlock(&tasklist_lock);
635
636         if (tty_pgrp) {
637                 if (exit_session)
638                         kill_pgrp(tty_pgrp, SIGHUP, exit_session);
639                 put_pid(tty_pgrp);
640         }
641
642         return refs;
643 }
644
645 /**
646  *      __tty_hangup            -       actual handler for hangup events
647  *      @work: tty device
648  *
649  *      This can be called by a "kworker" kernel thread.  That is process
650  *      synchronous but doesn't hold any locks, so we need to make sure we
651  *      have the appropriate locks for what we're doing.
652  *
653  *      The hangup event clears any pending redirections onto the hung up
654  *      device. It ensures future writes will error and it does the needed
655  *      line discipline hangup and signal delivery. The tty object itself
656  *      remains intact.
657  *
658  *      Locking:
659  *              BTM
660  *                redirect lock for undoing redirection
661  *                file list lock for manipulating list of ttys
662  *                tty_ldiscs_lock from called functions
663  *                termios_rwsem resetting termios data
664  *                tasklist_lock to walk task list for hangup event
665  *                  ->siglock to protect ->signal/->sighand
666  */
667 static void __tty_hangup(struct tty_struct *tty, int exit_session)
668 {
669         struct file *cons_filp = NULL;
670         struct file *filp, *f = NULL;
671         struct tty_file_private *priv;
672         int    closecount = 0, n;
673         int refs;
674
675         if (!tty)
676                 return;
677
678
679         spin_lock(&redirect_lock);
680         if (redirect && file_tty(redirect) == tty) {
681                 f = redirect;
682                 redirect = NULL;
683         }
684         spin_unlock(&redirect_lock);
685
686         tty_lock(tty);
687
688         if (test_bit(TTY_HUPPED, &tty->flags)) {
689                 tty_unlock(tty);
690                 return;
691         }
692
693         /* inuse_filps is protected by the single tty lock,
694            this really needs to change if we want to flush the
695            workqueue with the lock held */
696         check_tty_count(tty, "tty_hangup");
697
698         spin_lock(&tty_files_lock);
699         /* This breaks for file handles being sent over AF_UNIX sockets ? */
700         list_for_each_entry(priv, &tty->tty_files, list) {
701                 filp = priv->file;
702                 if (filp->f_op->write == redirected_tty_write)
703                         cons_filp = filp;
704                 if (filp->f_op->write != tty_write)
705                         continue;
706                 closecount++;
707                 __tty_fasync(-1, filp, 0);      /* can't block */
708                 filp->f_op = &hung_up_tty_fops;
709         }
710         spin_unlock(&tty_files_lock);
711
712         refs = tty_signal_session_leader(tty, exit_session);
713         /* Account for the p->signal references we killed */
714         while (refs--)
715                 tty_kref_put(tty);
716
717         tty_ldisc_hangup(tty);
718
719         spin_lock_irq(&tty->ctrl_lock);
720         clear_bit(TTY_THROTTLED, &tty->flags);
721         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
722         put_pid(tty->session);
723         put_pid(tty->pgrp);
724         tty->session = NULL;
725         tty->pgrp = NULL;
726         tty->ctrl_status = 0;
727         spin_unlock_irq(&tty->ctrl_lock);
728
729         /*
730          * If one of the devices matches a console pointer, we
731          * cannot just call hangup() because that will cause
732          * tty->count and state->count to go out of sync.
733          * So we just call close() the right number of times.
734          */
735         if (cons_filp) {
736                 if (tty->ops->close)
737                         for (n = 0; n < closecount; n++)
738                                 tty->ops->close(tty, cons_filp);
739         } else if (tty->ops->hangup)
740                 tty->ops->hangup(tty);
741         /*
742          * We don't want to have driver/ldisc interactions beyond
743          * the ones we did here. The driver layer expects no
744          * calls after ->hangup() from the ldisc side. However we
745          * can't yet guarantee all that.
746          */
747         set_bit(TTY_HUPPED, &tty->flags);
748         tty_unlock(tty);
749
750         if (f)
751                 fput(f);
752 }
753
754 static void do_tty_hangup(struct work_struct *work)
755 {
756         struct tty_struct *tty =
757                 container_of(work, struct tty_struct, hangup_work);
758
759         __tty_hangup(tty, 0);
760 }
761
762 /**
763  *      tty_hangup              -       trigger a hangup event
764  *      @tty: tty to hangup
765  *
766  *      A carrier loss (virtual or otherwise) has occurred on this like
767  *      schedule a hangup sequence to run after this event.
768  */
769
770 void tty_hangup(struct tty_struct *tty)
771 {
772 #ifdef TTY_DEBUG_HANGUP
773         char    buf[64];
774         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
775 #endif
776         schedule_work(&tty->hangup_work);
777 }
778
779 EXPORT_SYMBOL(tty_hangup);
780
781 /**
782  *      tty_vhangup             -       process vhangup
783  *      @tty: tty to hangup
784  *
785  *      The user has asked via system call for the terminal to be hung up.
786  *      We do this synchronously so that when the syscall returns the process
787  *      is complete. That guarantee is necessary for security reasons.
788  */
789
790 void tty_vhangup(struct tty_struct *tty)
791 {
792 #ifdef TTY_DEBUG_HANGUP
793         char    buf[64];
794
795         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
796 #endif
797         __tty_hangup(tty, 0);
798 }
799
800 EXPORT_SYMBOL(tty_vhangup);
801
802
803 /**
804  *      tty_vhangup_self        -       process vhangup for own ctty
805  *
806  *      Perform a vhangup on the current controlling tty
807  */
808
809 void tty_vhangup_self(void)
810 {
811         struct tty_struct *tty;
812
813         tty = get_current_tty();
814         if (tty) {
815                 tty_vhangup(tty);
816                 tty_kref_put(tty);
817         }
818 }
819
820 /**
821  *      tty_vhangup_session             -       hangup session leader exit
822  *      @tty: tty to hangup
823  *
824  *      The session leader is exiting and hanging up its controlling terminal.
825  *      Every process in the foreground process group is signalled SIGHUP.
826  *
827  *      We do this synchronously so that when the syscall returns the process
828  *      is complete. That guarantee is necessary for security reasons.
829  */
830
831 static void tty_vhangup_session(struct tty_struct *tty)
832 {
833 #ifdef TTY_DEBUG_HANGUP
834         char    buf[64];
835
836         printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
837 #endif
838         __tty_hangup(tty, 1);
839 }
840
841 /**
842  *      tty_hung_up_p           -       was tty hung up
843  *      @filp: file pointer of tty
844  *
845  *      Return true if the tty has been subject to a vhangup or a carrier
846  *      loss
847  */
848
849 int tty_hung_up_p(struct file *filp)
850 {
851         return (filp->f_op == &hung_up_tty_fops);
852 }
853
854 EXPORT_SYMBOL(tty_hung_up_p);
855
856 /**
857  *      disassociate_ctty       -       disconnect controlling tty
858  *      @on_exit: true if exiting so need to "hang up" the session
859  *
860  *      This function is typically called only by the session leader, when
861  *      it wants to disassociate itself from its controlling tty.
862  *
863  *      It performs the following functions:
864  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
865  *      (2)  Clears the tty from being controlling the session
866  *      (3)  Clears the controlling tty for all processes in the
867  *              session group.
868  *
869  *      The argument on_exit is set to 1 if called when a process is
870  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
871  *
872  *      Locking:
873  *              BTM is taken for hysterical raisins, and held when
874  *                called from no_tty().
875  *                tty_mutex is taken to protect tty
876  *                ->siglock is taken to protect ->signal/->sighand
877  *                tasklist_lock is taken to walk process list for sessions
878  *                  ->siglock is taken to protect ->signal/->sighand
879  */
880
881 void disassociate_ctty(int on_exit)
882 {
883         struct tty_struct *tty;
884
885         if (!current->signal->leader)
886                 return;
887
888         tty = get_current_tty();
889         if (tty) {
890                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
891                         tty_vhangup_session(tty);
892                 } else {
893                         struct pid *tty_pgrp = tty_get_pgrp(tty);
894                         if (tty_pgrp) {
895                                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
896                                 if (!on_exit)
897                                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
898                                 put_pid(tty_pgrp);
899                         }
900                 }
901                 tty_kref_put(tty);
902
903         } else if (on_exit) {
904                 struct pid *old_pgrp;
905                 spin_lock_irq(&current->sighand->siglock);
906                 old_pgrp = current->signal->tty_old_pgrp;
907                 current->signal->tty_old_pgrp = NULL;
908                 spin_unlock_irq(&current->sighand->siglock);
909                 if (old_pgrp) {
910                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
911                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
912                         put_pid(old_pgrp);
913                 }
914                 return;
915         }
916
917         spin_lock_irq(&current->sighand->siglock);
918         put_pid(current->signal->tty_old_pgrp);
919         current->signal->tty_old_pgrp = NULL;
920
921         tty = tty_kref_get(current->signal->tty);
922         if (tty) {
923                 unsigned long flags;
924                 spin_lock_irqsave(&tty->ctrl_lock, flags);
925                 put_pid(tty->session);
926                 put_pid(tty->pgrp);
927                 tty->session = NULL;
928                 tty->pgrp = NULL;
929                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
930                 tty_kref_put(tty);
931         } else {
932 #ifdef TTY_DEBUG_HANGUP
933                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
934                        " = NULL", tty);
935 #endif
936         }
937
938         spin_unlock_irq(&current->sighand->siglock);
939         /* Now clear signal->tty under the lock */
940         read_lock(&tasklist_lock);
941         session_clear_tty(task_session(current));
942         read_unlock(&tasklist_lock);
943 }
944
945 /**
946  *
947  *      no_tty  - Ensure the current process does not have a controlling tty
948  */
949 void no_tty(void)
950 {
951         /* FIXME: Review locking here. The tty_lock never covered any race
952            between a new association and proc_clear_tty but possible we need
953            to protect against this anyway */
954         struct task_struct *tsk = current;
955         disassociate_ctty(0);
956         proc_clear_tty(tsk);
957 }
958
959
960 /**
961  *      stop_tty        -       propagate flow control
962  *      @tty: tty to stop
963  *
964  *      Perform flow control to the driver. May be called
965  *      on an already stopped device and will not re-call the driver
966  *      method.
967  *
968  *      This functionality is used by both the line disciplines for
969  *      halting incoming flow and by the driver. It may therefore be
970  *      called from any context, may be under the tty atomic_write_lock
971  *      but not always.
972  *
973  *      Locking:
974  *              flow_lock
975  */
976
977 void __stop_tty(struct tty_struct *tty)
978 {
979         if (tty->stopped)
980                 return;
981         tty->stopped = 1;
982         if (tty->ops->stop)
983                 (tty->ops->stop)(tty);
984 }
985
986 void stop_tty(struct tty_struct *tty)
987 {
988         unsigned long flags;
989
990         spin_lock_irqsave(&tty->flow_lock, flags);
991         __stop_tty(tty);
992         spin_unlock_irqrestore(&tty->flow_lock, flags);
993 }
994 EXPORT_SYMBOL(stop_tty);
995
996 /**
997  *      start_tty       -       propagate flow control
998  *      @tty: tty to start
999  *
1000  *      Start a tty that has been stopped if at all possible. If this
1001  *      tty was previous stopped and is now being started, the driver
1002  *      start method is invoked and the line discipline woken.
1003  *
1004  *      Locking:
1005  *              flow_lock
1006  */
1007
1008 void __start_tty(struct tty_struct *tty)
1009 {
1010         if (!tty->stopped || tty->flow_stopped)
1011                 return;
1012         tty->stopped = 0;
1013         if (tty->ops->start)
1014                 (tty->ops->start)(tty);
1015         tty_wakeup(tty);
1016 }
1017
1018 void start_tty(struct tty_struct *tty)
1019 {
1020         unsigned long flags;
1021
1022         spin_lock_irqsave(&tty->flow_lock, flags);
1023         __start_tty(tty);
1024         spin_unlock_irqrestore(&tty->flow_lock, flags);
1025 }
1026 EXPORT_SYMBOL(start_tty);
1027
1028 /* We limit tty time update visibility to every 8 seconds or so. */
1029 static void tty_update_time(struct timespec *time)
1030 {
1031         unsigned long sec = get_seconds() & ~7;
1032         if ((long)(sec - time->tv_sec) > 0)
1033                 time->tv_sec = sec;
1034 }
1035
1036 /**
1037  *      tty_read        -       read method for tty device files
1038  *      @file: pointer to tty file
1039  *      @buf: user buffer
1040  *      @count: size of user buffer
1041  *      @ppos: unused
1042  *
1043  *      Perform the read system call function on this terminal device. Checks
1044  *      for hung up devices before calling the line discipline method.
1045  *
1046  *      Locking:
1047  *              Locks the line discipline internally while needed. Multiple
1048  *      read calls may be outstanding in parallel.
1049  */
1050
1051 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1052                         loff_t *ppos)
1053 {
1054         int i;
1055         struct inode *inode = file_inode(file);
1056         struct tty_struct *tty = file_tty(file);
1057         struct tty_ldisc *ld;
1058
1059         if (tty_paranoia_check(tty, inode, "tty_read"))
1060                 return -EIO;
1061         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1062                 return -EIO;
1063
1064         /* We want to wait for the line discipline to sort out in this
1065            situation */
1066         ld = tty_ldisc_ref_wait(tty);
1067         if (ld->ops->read)
1068                 i = (ld->ops->read)(tty, file, buf, count);
1069         else
1070                 i = -EIO;
1071         tty_ldisc_deref(ld);
1072
1073         if (i > 0)
1074                 tty_update_time(&inode->i_atime);
1075
1076         return i;
1077 }
1078
1079 static void tty_write_unlock(struct tty_struct *tty)
1080 {
1081         mutex_unlock(&tty->atomic_write_lock);
1082         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1083 }
1084
1085 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1086 {
1087         if (!mutex_trylock(&tty->atomic_write_lock)) {
1088                 if (ndelay)
1089                         return -EAGAIN;
1090                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1091                         return -ERESTARTSYS;
1092         }
1093         return 0;
1094 }
1095
1096 /*
1097  * Split writes up in sane blocksizes to avoid
1098  * denial-of-service type attacks
1099  */
1100 static inline ssize_t do_tty_write(
1101         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1102         struct tty_struct *tty,
1103         struct file *file,
1104         const char __user *buf,
1105         size_t count)
1106 {
1107         ssize_t ret, written = 0;
1108         unsigned int chunk;
1109
1110         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1111         if (ret < 0)
1112                 return ret;
1113
1114         /*
1115          * We chunk up writes into a temporary buffer. This
1116          * simplifies low-level drivers immensely, since they
1117          * don't have locking issues and user mode accesses.
1118          *
1119          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1120          * big chunk-size..
1121          *
1122          * The default chunk-size is 2kB, because the NTTY
1123          * layer has problems with bigger chunks. It will
1124          * claim to be able to handle more characters than
1125          * it actually does.
1126          *
1127          * FIXME: This can probably go away now except that 64K chunks
1128          * are too likely to fail unless switched to vmalloc...
1129          */
1130         chunk = 2048;
1131         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1132                 chunk = 65536;
1133         if (count < chunk)
1134                 chunk = count;
1135
1136         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1137         if (tty->write_cnt < chunk) {
1138                 unsigned char *buf_chunk;
1139
1140                 if (chunk < 1024)
1141                         chunk = 1024;
1142
1143                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1144                 if (!buf_chunk) {
1145                         ret = -ENOMEM;
1146                         goto out;
1147                 }
1148                 kfree(tty->write_buf);
1149                 tty->write_cnt = chunk;
1150                 tty->write_buf = buf_chunk;
1151         }
1152
1153         /* Do the write .. */
1154         for (;;) {
1155                 size_t size = count;
1156                 if (size > chunk)
1157                         size = chunk;
1158                 ret = -EFAULT;
1159                 if (copy_from_user(tty->write_buf, buf, size))
1160                         break;
1161                 ret = write(tty, file, tty->write_buf, size);
1162                 if (ret <= 0)
1163                         break;
1164                 written += ret;
1165                 buf += ret;
1166                 count -= ret;
1167                 if (!count)
1168                         break;
1169                 ret = -ERESTARTSYS;
1170                 if (signal_pending(current))
1171                         break;
1172                 cond_resched();
1173         }
1174         if (written) {
1175                 tty_update_time(&file_inode(file)->i_mtime);
1176                 ret = written;
1177         }
1178 out:
1179         tty_write_unlock(tty);
1180         return ret;
1181 }
1182
1183 /**
1184  * tty_write_message - write a message to a certain tty, not just the console.
1185  * @tty: the destination tty_struct
1186  * @msg: the message to write
1187  *
1188  * This is used for messages that need to be redirected to a specific tty.
1189  * We don't put it into the syslog queue right now maybe in the future if
1190  * really needed.
1191  *
1192  * We must still hold the BTM and test the CLOSING flag for the moment.
1193  */
1194
1195 void tty_write_message(struct tty_struct *tty, char *msg)
1196 {
1197         if (tty) {
1198                 mutex_lock(&tty->atomic_write_lock);
1199                 tty_lock(tty);
1200                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1201                         tty_unlock(tty);
1202                         tty->ops->write(tty, msg, strlen(msg));
1203                 } else
1204                         tty_unlock(tty);
1205                 tty_write_unlock(tty);
1206         }
1207         return;
1208 }
1209
1210
1211 /**
1212  *      tty_write               -       write method for tty device file
1213  *      @file: tty file pointer
1214  *      @buf: user data to write
1215  *      @count: bytes to write
1216  *      @ppos: unused
1217  *
1218  *      Write data to a tty device via the line discipline.
1219  *
1220  *      Locking:
1221  *              Locks the line discipline as required
1222  *              Writes to the tty driver are serialized by the atomic_write_lock
1223  *      and are then processed in chunks to the device. The line discipline
1224  *      write method will not be invoked in parallel for each device.
1225  */
1226
1227 static ssize_t tty_write(struct file *file, const char __user *buf,
1228                                                 size_t count, loff_t *ppos)
1229 {
1230         struct tty_struct *tty = file_tty(file);
1231         struct tty_ldisc *ld;
1232         ssize_t ret;
1233
1234         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1235                 return -EIO;
1236         if (!tty || !tty->ops->write ||
1237                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1238                         return -EIO;
1239         /* Short term debug to catch buggy drivers */
1240         if (tty->ops->write_room == NULL)
1241                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1242                         tty->driver->name);
1243         ld = tty_ldisc_ref_wait(tty);
1244         if (!ld->ops->write)
1245                 ret = -EIO;
1246         else
1247                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1248         tty_ldisc_deref(ld);
1249         return ret;
1250 }
1251
1252 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1253                                                 size_t count, loff_t *ppos)
1254 {
1255         struct file *p = NULL;
1256
1257         spin_lock(&redirect_lock);
1258         if (redirect)
1259                 p = get_file(redirect);
1260         spin_unlock(&redirect_lock);
1261
1262         if (p) {
1263                 ssize_t res;
1264                 res = vfs_write(p, buf, count, &p->f_pos);
1265                 fput(p);
1266                 return res;
1267         }
1268         return tty_write(file, buf, count, ppos);
1269 }
1270
1271 /**
1272  *      tty_send_xchar  -       send priority character
1273  *
1274  *      Send a high priority character to the tty even if stopped
1275  *
1276  *      Locking: none for xchar method, write ordering for write method.
1277  */
1278
1279 int tty_send_xchar(struct tty_struct *tty, char ch)
1280 {
1281         int     was_stopped = tty->stopped;
1282
1283         if (tty->ops->send_xchar) {
1284                 tty->ops->send_xchar(tty, ch);
1285                 return 0;
1286         }
1287
1288         if (tty_write_lock(tty, 0) < 0)
1289                 return -ERESTARTSYS;
1290
1291         if (was_stopped)
1292                 start_tty(tty);
1293         tty->ops->write(tty, &ch, 1);
1294         if (was_stopped)
1295                 stop_tty(tty);
1296         tty_write_unlock(tty);
1297         return 0;
1298 }
1299
1300 static char ptychar[] = "pqrstuvwxyzabcde";
1301
1302 /**
1303  *      pty_line_name   -       generate name for a pty
1304  *      @driver: the tty driver in use
1305  *      @index: the minor number
1306  *      @p: output buffer of at least 6 bytes
1307  *
1308  *      Generate a name from a driver reference and write it to the output
1309  *      buffer.
1310  *
1311  *      Locking: None
1312  */
1313 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1314 {
1315         int i = index + driver->name_base;
1316         /* ->name is initialized to "ttyp", but "tty" is expected */
1317         sprintf(p, "%s%c%x",
1318                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1319                 ptychar[i >> 4 & 0xf], i & 0xf);
1320 }
1321
1322 /**
1323  *      tty_line_name   -       generate name for a tty
1324  *      @driver: the tty driver in use
1325  *      @index: the minor number
1326  *      @p: output buffer of at least 7 bytes
1327  *
1328  *      Generate a name from a driver reference and write it to the output
1329  *      buffer.
1330  *
1331  *      Locking: None
1332  */
1333 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1334 {
1335         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1336                 return sprintf(p, "%s", driver->name);
1337         else
1338                 return sprintf(p, "%s%d", driver->name,
1339                                index + driver->name_base);
1340 }
1341
1342 /**
1343  *      tty_driver_lookup_tty() - find an existing tty, if any
1344  *      @driver: the driver for the tty
1345  *      @idx:    the minor number
1346  *
1347  *      Return the tty, if found or ERR_PTR() otherwise.
1348  *
1349  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1350  *      be held until the 'fast-open' is also done. Will change once we
1351  *      have refcounting in the driver and per driver locking
1352  */
1353 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1354                 struct inode *inode, int idx)
1355 {
1356         if (driver->ops->lookup)
1357                 return driver->ops->lookup(driver, inode, idx);
1358
1359         return driver->ttys[idx];
1360 }
1361
1362 /**
1363  *      tty_init_termios        -  helper for termios setup
1364  *      @tty: the tty to set up
1365  *
1366  *      Initialise the termios structures for this tty. Thus runs under
1367  *      the tty_mutex currently so we can be relaxed about ordering.
1368  */
1369
1370 int tty_init_termios(struct tty_struct *tty)
1371 {
1372         struct ktermios *tp;
1373         int idx = tty->index;
1374
1375         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1376                 tty->termios = tty->driver->init_termios;
1377         else {
1378                 /* Check for lazy saved data */
1379                 tp = tty->driver->termios[idx];
1380                 if (tp != NULL)
1381                         tty->termios = *tp;
1382                 else
1383                         tty->termios = tty->driver->init_termios;
1384         }
1385         /* Compatibility until drivers always set this */
1386         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1387         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1388         return 0;
1389 }
1390 EXPORT_SYMBOL_GPL(tty_init_termios);
1391
1392 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1393 {
1394         int ret = tty_init_termios(tty);
1395         if (ret)
1396                 return ret;
1397
1398         tty_driver_kref_get(driver);
1399         tty->count++;
1400         driver->ttys[tty->index] = tty;
1401         return 0;
1402 }
1403 EXPORT_SYMBOL_GPL(tty_standard_install);
1404
1405 /**
1406  *      tty_driver_install_tty() - install a tty entry in the driver
1407  *      @driver: the driver for the tty
1408  *      @tty: the tty
1409  *
1410  *      Install a tty object into the driver tables. The tty->index field
1411  *      will be set by the time this is called. This method is responsible
1412  *      for ensuring any need additional structures are allocated and
1413  *      configured.
1414  *
1415  *      Locking: tty_mutex for now
1416  */
1417 static int tty_driver_install_tty(struct tty_driver *driver,
1418                                                 struct tty_struct *tty)
1419 {
1420         return driver->ops->install ? driver->ops->install(driver, tty) :
1421                 tty_standard_install(driver, tty);
1422 }
1423
1424 /**
1425  *      tty_driver_remove_tty() - remove a tty from the driver tables
1426  *      @driver: the driver for the tty
1427  *      @idx:    the minor number
1428  *
1429  *      Remvoe a tty object from the driver tables. The tty->index field
1430  *      will be set by the time this is called.
1431  *
1432  *      Locking: tty_mutex for now
1433  */
1434 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1435 {
1436         if (driver->ops->remove)
1437                 driver->ops->remove(driver, tty);
1438         else
1439                 driver->ttys[tty->index] = NULL;
1440 }
1441
1442 /*
1443  *      tty_reopen()    - fast re-open of an open tty
1444  *      @tty    - the tty to open
1445  *
1446  *      Return 0 on success, -errno on error.
1447  *      Re-opens on master ptys are not allowed and return -EIO.
1448  *
1449  *      Locking: Caller must hold tty_lock
1450  */
1451 static int tty_reopen(struct tty_struct *tty)
1452 {
1453         struct tty_driver *driver = tty->driver;
1454
1455         if (!tty->count)
1456                 return -EIO;
1457
1458         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1459             driver->subtype == PTY_TYPE_MASTER)
1460                 return -EIO;
1461
1462         tty->count++;
1463
1464         WARN_ON(!tty->ldisc);
1465
1466         return 0;
1467 }
1468
1469 /**
1470  *      tty_init_dev            -       initialise a tty device
1471  *      @driver: tty driver we are opening a device on
1472  *      @idx: device index
1473  *      @ret_tty: returned tty structure
1474  *
1475  *      Prepare a tty device. This may not be a "new" clean device but
1476  *      could also be an active device. The pty drivers require special
1477  *      handling because of this.
1478  *
1479  *      Locking:
1480  *              The function is called under the tty_mutex, which
1481  *      protects us from the tty struct or driver itself going away.
1482  *
1483  *      On exit the tty device has the line discipline attached and
1484  *      a reference count of 1. If a pair was created for pty/tty use
1485  *      and the other was a pty master then it too has a reference count of 1.
1486  *
1487  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1488  * failed open.  The new code protects the open with a mutex, so it's
1489  * really quite straightforward.  The mutex locking can probably be
1490  * relaxed for the (most common) case of reopening a tty.
1491  */
1492
1493 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1494 {
1495         struct tty_struct *tty;
1496         int retval;
1497
1498         /*
1499          * First time open is complex, especially for PTY devices.
1500          * This code guarantees that either everything succeeds and the
1501          * TTY is ready for operation, or else the table slots are vacated
1502          * and the allocated memory released.  (Except that the termios
1503          * and locked termios may be retained.)
1504          */
1505
1506         if (!try_module_get(driver->owner))
1507                 return ERR_PTR(-ENODEV);
1508
1509         tty = alloc_tty_struct(driver, idx);
1510         if (!tty) {
1511                 retval = -ENOMEM;
1512                 goto err_module_put;
1513         }
1514
1515         tty_lock(tty);
1516         retval = tty_driver_install_tty(driver, tty);
1517         if (retval < 0)
1518                 goto err_deinit_tty;
1519
1520         if (!tty->port)
1521                 tty->port = driver->ports[idx];
1522
1523         WARN_RATELIMIT(!tty->port,
1524                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1525                         __func__, tty->driver->name);
1526
1527         tty->port->itty = tty;
1528
1529         /*
1530          * Structures all installed ... call the ldisc open routines.
1531          * If we fail here just call release_tty to clean up.  No need
1532          * to decrement the use counts, as release_tty doesn't care.
1533          */
1534         retval = tty_ldisc_setup(tty, tty->link);
1535         if (retval)
1536                 goto err_release_tty;
1537         /* Return the tty locked so that it cannot vanish under the caller */
1538         return tty;
1539
1540 err_deinit_tty:
1541         tty_unlock(tty);
1542         deinitialize_tty_struct(tty);
1543         free_tty_struct(tty);
1544 err_module_put:
1545         module_put(driver->owner);
1546         return ERR_PTR(retval);
1547
1548         /* call the tty release_tty routine to clean out this slot */
1549 err_release_tty:
1550         tty_unlock(tty);
1551         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1552                                  "clearing slot %d\n", idx);
1553         release_tty(tty, idx);
1554         return ERR_PTR(retval);
1555 }
1556
1557 void tty_free_termios(struct tty_struct *tty)
1558 {
1559         struct ktermios *tp;
1560         int idx = tty->index;
1561
1562         /* If the port is going to reset then it has no termios to save */
1563         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1564                 return;
1565
1566         /* Stash the termios data */
1567         tp = tty->driver->termios[idx];
1568         if (tp == NULL) {
1569                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1570                 if (tp == NULL) {
1571                         pr_warn("tty: no memory to save termios state.\n");
1572                         return;
1573                 }
1574                 tty->driver->termios[idx] = tp;
1575         }
1576         *tp = tty->termios;
1577 }
1578 EXPORT_SYMBOL(tty_free_termios);
1579
1580 /**
1581  *      tty_flush_works         -       flush all works of a tty
1582  *      @tty: tty device to flush works for
1583  *
1584  *      Sync flush all works belonging to @tty.
1585  */
1586 static void tty_flush_works(struct tty_struct *tty)
1587 {
1588         flush_work(&tty->SAK_work);
1589         flush_work(&tty->hangup_work);
1590 }
1591
1592 /**
1593  *      release_one_tty         -       release tty structure memory
1594  *      @kref: kref of tty we are obliterating
1595  *
1596  *      Releases memory associated with a tty structure, and clears out the
1597  *      driver table slots. This function is called when a device is no longer
1598  *      in use. It also gets called when setup of a device fails.
1599  *
1600  *      Locking:
1601  *              takes the file list lock internally when working on the list
1602  *      of ttys that the driver keeps.
1603  *
1604  *      This method gets called from a work queue so that the driver private
1605  *      cleanup ops can sleep (needed for USB at least)
1606  */
1607 static void release_one_tty(struct work_struct *work)
1608 {
1609         struct tty_struct *tty =
1610                 container_of(work, struct tty_struct, hangup_work);
1611         struct tty_driver *driver = tty->driver;
1612         struct module *owner = driver->owner;
1613
1614         if (tty->ops->cleanup)
1615                 tty->ops->cleanup(tty);
1616
1617         tty->magic = 0;
1618         tty_driver_kref_put(driver);
1619         module_put(owner);
1620
1621         spin_lock(&tty_files_lock);
1622         list_del_init(&tty->tty_files);
1623         spin_unlock(&tty_files_lock);
1624
1625         put_pid(tty->pgrp);
1626         put_pid(tty->session);
1627         free_tty_struct(tty);
1628 }
1629
1630 static void queue_release_one_tty(struct kref *kref)
1631 {
1632         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1633
1634         /* The hangup queue is now free so we can reuse it rather than
1635            waste a chunk of memory for each port */
1636         INIT_WORK(&tty->hangup_work, release_one_tty);
1637         schedule_work(&tty->hangup_work);
1638 }
1639
1640 /**
1641  *      tty_kref_put            -       release a tty kref
1642  *      @tty: tty device
1643  *
1644  *      Release a reference to a tty device and if need be let the kref
1645  *      layer destruct the object for us
1646  */
1647
1648 void tty_kref_put(struct tty_struct *tty)
1649 {
1650         if (tty)
1651                 kref_put(&tty->kref, queue_release_one_tty);
1652 }
1653 EXPORT_SYMBOL(tty_kref_put);
1654
1655 /**
1656  *      release_tty             -       release tty structure memory
1657  *
1658  *      Release both @tty and a possible linked partner (think pty pair),
1659  *      and decrement the refcount of the backing module.
1660  *
1661  *      Locking:
1662  *              tty_mutex
1663  *              takes the file list lock internally when working on the list
1664  *      of ttys that the driver keeps.
1665  *
1666  */
1667 static void release_tty(struct tty_struct *tty, int idx)
1668 {
1669         /* This should always be true but check for the moment */
1670         WARN_ON(tty->index != idx);
1671         WARN_ON(!mutex_is_locked(&tty_mutex));
1672         if (tty->ops->shutdown)
1673                 tty->ops->shutdown(tty);
1674         tty_free_termios(tty);
1675         tty_driver_remove_tty(tty->driver, tty);
1676         tty->port->itty = NULL;
1677         if (tty->link)
1678                 tty->link->port->itty = NULL;
1679         cancel_work_sync(&tty->port->buf.work);
1680
1681         if (tty->link)
1682                 tty_kref_put(tty->link);
1683         tty_kref_put(tty);
1684 }
1685
1686 /**
1687  *      tty_release_checks - check a tty before real release
1688  *      @tty: tty to check
1689  *      @o_tty: link of @tty (if any)
1690  *      @idx: index of the tty
1691  *
1692  *      Performs some paranoid checking before true release of the @tty.
1693  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1694  */
1695 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1696                 int idx)
1697 {
1698 #ifdef TTY_PARANOIA_CHECK
1699         if (idx < 0 || idx >= tty->driver->num) {
1700                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1701                                 __func__, tty->name);
1702                 return -1;
1703         }
1704
1705         /* not much to check for devpts */
1706         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1707                 return 0;
1708
1709         if (tty != tty->driver->ttys[idx]) {
1710                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1711                                 __func__, idx, tty->name);
1712                 return -1;
1713         }
1714         if (tty->driver->other) {
1715                 if (o_tty != tty->driver->other->ttys[idx]) {
1716                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1717                                         __func__, idx, tty->name);
1718                         return -1;
1719                 }
1720                 if (o_tty->link != tty) {
1721                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1722                         return -1;
1723                 }
1724         }
1725 #endif
1726         return 0;
1727 }
1728
1729 /**
1730  *      tty_release             -       vfs callback for close
1731  *      @inode: inode of tty
1732  *      @filp: file pointer for handle to tty
1733  *
1734  *      Called the last time each file handle is closed that references
1735  *      this tty. There may however be several such references.
1736  *
1737  *      Locking:
1738  *              Takes bkl. See tty_release_dev
1739  *
1740  * Even releasing the tty structures is a tricky business.. We have
1741  * to be very careful that the structures are all released at the
1742  * same time, as interrupts might otherwise get the wrong pointers.
1743  *
1744  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1745  * lead to double frees or releasing memory still in use.
1746  */
1747
1748 int tty_release(struct inode *inode, struct file *filp)
1749 {
1750         struct tty_struct *tty = file_tty(filp);
1751         struct tty_struct *o_tty;
1752         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1753         int     idx;
1754         char    buf[64];
1755
1756         if (tty_paranoia_check(tty, inode, __func__))
1757                 return 0;
1758
1759         tty_lock(tty);
1760         check_tty_count(tty, __func__);
1761
1762         __tty_fasync(-1, filp, 0);
1763
1764         idx = tty->index;
1765         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1766                       tty->driver->subtype == PTY_TYPE_MASTER);
1767         /* Review: parallel close */
1768         o_tty = tty->link;
1769
1770         if (tty_release_checks(tty, o_tty, idx)) {
1771                 tty_unlock(tty);
1772                 return 0;
1773         }
1774
1775 #ifdef TTY_DEBUG_HANGUP
1776         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1777                         tty_name(tty, buf), tty->count);
1778 #endif
1779
1780         if (tty->ops->close)
1781                 tty->ops->close(tty, filp);
1782
1783         tty_unlock(tty);
1784         /*
1785          * Sanity check: if tty->count is going to zero, there shouldn't be
1786          * any waiters on tty->read_wait or tty->write_wait.  We test the
1787          * wait queues and kick everyone out _before_ actually starting to
1788          * close.  This ensures that we won't block while releasing the tty
1789          * structure.
1790          *
1791          * The test for the o_tty closing is necessary, since the master and
1792          * slave sides may close in any order.  If the slave side closes out
1793          * first, its count will be one, since the master side holds an open.
1794          * Thus this test wouldn't be triggered at the time the slave closes,
1795          * so we do it now.
1796          *
1797          * Note that it's possible for the tty to be opened again while we're
1798          * flushing out waiters.  By recalculating the closing flags before
1799          * each iteration we avoid any problems.
1800          */
1801         while (1) {
1802                 /* Guard against races with tty->count changes elsewhere and
1803                    opens on /dev/tty */
1804
1805                 mutex_lock(&tty_mutex);
1806                 tty_lock_pair(tty, o_tty);
1807                 tty_closing = tty->count <= 1;
1808                 o_tty_closing = o_tty &&
1809                         (o_tty->count <= (pty_master ? 1 : 0));
1810                 do_sleep = 0;
1811
1812                 if (tty_closing) {
1813                         if (waitqueue_active(&tty->read_wait)) {
1814                                 wake_up_poll(&tty->read_wait, POLLIN);
1815                                 do_sleep++;
1816                         }
1817                         if (waitqueue_active(&tty->write_wait)) {
1818                                 wake_up_poll(&tty->write_wait, POLLOUT);
1819                                 do_sleep++;
1820                         }
1821                 }
1822                 if (o_tty_closing) {
1823                         if (waitqueue_active(&o_tty->read_wait)) {
1824                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1825                                 do_sleep++;
1826                         }
1827                         if (waitqueue_active(&o_tty->write_wait)) {
1828                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1829                                 do_sleep++;
1830                         }
1831                 }
1832                 if (!do_sleep)
1833                         break;
1834
1835                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1836                                 __func__, tty_name(tty, buf));
1837                 tty_unlock_pair(tty, o_tty);
1838                 mutex_unlock(&tty_mutex);
1839                 schedule();
1840         }
1841
1842         /*
1843          * The closing flags are now consistent with the open counts on
1844          * both sides, and we've completed the last operation that could
1845          * block, so it's safe to proceed with closing.
1846          *
1847          * We must *not* drop the tty_mutex until we ensure that a further
1848          * entry into tty_open can not pick up this tty.
1849          */
1850         if (pty_master) {
1851                 if (--o_tty->count < 0) {
1852                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1853                                 __func__, o_tty->count, tty_name(o_tty, buf));
1854                         o_tty->count = 0;
1855                 }
1856         }
1857         if (--tty->count < 0) {
1858                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1859                                 __func__, tty->count, tty_name(tty, buf));
1860                 tty->count = 0;
1861         }
1862
1863         /*
1864          * We've decremented tty->count, so we need to remove this file
1865          * descriptor off the tty->tty_files list; this serves two
1866          * purposes:
1867          *  - check_tty_count sees the correct number of file descriptors
1868          *    associated with this tty.
1869          *  - do_tty_hangup no longer sees this file descriptor as
1870          *    something that needs to be handled for hangups.
1871          */
1872         tty_del_file(filp);
1873
1874         /*
1875          * Perform some housekeeping before deciding whether to return.
1876          *
1877          * Set the TTY_CLOSING flag if this was the last open.  In the
1878          * case of a pty we may have to wait around for the other side
1879          * to close, and TTY_CLOSING makes sure we can't be reopened.
1880          */
1881         if (tty_closing)
1882                 set_bit(TTY_CLOSING, &tty->flags);
1883         if (o_tty_closing)
1884                 set_bit(TTY_CLOSING, &o_tty->flags);
1885
1886         /*
1887          * If _either_ side is closing, make sure there aren't any
1888          * processes that still think tty or o_tty is their controlling
1889          * tty.
1890          */
1891         if (tty_closing || o_tty_closing) {
1892                 read_lock(&tasklist_lock);
1893                 session_clear_tty(tty->session);
1894                 if (o_tty)
1895                         session_clear_tty(o_tty->session);
1896                 read_unlock(&tasklist_lock);
1897         }
1898
1899         mutex_unlock(&tty_mutex);
1900         tty_unlock_pair(tty, o_tty);
1901         /* At this point the TTY_CLOSING flag should ensure a dead tty
1902            cannot be re-opened by a racing opener */
1903
1904         /* check whether both sides are closing ... */
1905         if (!tty_closing || (o_tty && !o_tty_closing))
1906                 return 0;
1907
1908 #ifdef TTY_DEBUG_HANGUP
1909         printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1910 #endif
1911         /*
1912          * Ask the line discipline code to release its structures
1913          */
1914         tty_ldisc_release(tty, o_tty);
1915
1916         /* Wait for pending work before tty destruction commmences */
1917         tty_flush_works(tty);
1918         if (o_tty)
1919                 tty_flush_works(o_tty);
1920
1921 #ifdef TTY_DEBUG_HANGUP
1922         printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1923 #endif
1924         /*
1925          * The release_tty function takes care of the details of clearing
1926          * the slots and preserving the termios structure. The tty_unlock_pair
1927          * should be safe as we keep a kref while the tty is locked (so the
1928          * unlock never unlocks a freed tty).
1929          */
1930         mutex_lock(&tty_mutex);
1931         release_tty(tty, idx);
1932         mutex_unlock(&tty_mutex);
1933
1934         return 0;
1935 }
1936
1937 /**
1938  *      tty_open_current_tty - get locked tty of current task
1939  *      @device: device number
1940  *      @filp: file pointer to tty
1941  *      @return: locked tty of the current task iff @device is /dev/tty
1942  *
1943  *      Performs a re-open of the current task's controlling tty.
1944  *
1945  *      We cannot return driver and index like for the other nodes because
1946  *      devpts will not work then. It expects inodes to be from devpts FS.
1947  */
1948 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1949 {
1950         struct tty_struct *tty;
1951         int retval;
1952
1953         if (device != MKDEV(TTYAUX_MAJOR, 0))
1954                 return NULL;
1955
1956         tty = get_current_tty();
1957         if (!tty)
1958                 return ERR_PTR(-ENXIO);
1959
1960         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1961         /* noctty = 1; */
1962         tty_lock(tty);
1963         tty_kref_put(tty);      /* safe to drop the kref now */
1964
1965         retval = tty_reopen(tty);
1966         if (retval < 0) {
1967                 tty_unlock(tty);
1968                 tty = ERR_PTR(retval);
1969         }
1970         return tty;
1971 }
1972
1973 /**
1974  *      tty_lookup_driver - lookup a tty driver for a given device file
1975  *      @device: device number
1976  *      @filp: file pointer to tty
1977  *      @noctty: set if the device should not become a controlling tty
1978  *      @index: index for the device in the @return driver
1979  *      @return: driver for this inode (with increased refcount)
1980  *
1981  *      If @return is not erroneous, the caller is responsible to decrement the
1982  *      refcount by tty_driver_kref_put.
1983  *
1984  *      Locking: tty_mutex protects get_tty_driver
1985  */
1986 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1987                 int *noctty, int *index)
1988 {
1989         struct tty_driver *driver;
1990
1991         switch (device) {
1992 #ifdef CONFIG_VT
1993         case MKDEV(TTY_MAJOR, 0): {
1994                 extern struct tty_driver *console_driver;
1995                 driver = tty_driver_kref_get(console_driver);
1996                 *index = fg_console;
1997                 *noctty = 1;
1998                 break;
1999         }
2000 #endif
2001         case MKDEV(TTYAUX_MAJOR, 1): {
2002                 struct tty_driver *console_driver = console_device(index);
2003                 if (console_driver) {
2004                         driver = tty_driver_kref_get(console_driver);
2005                         if (driver) {
2006                                 /* Don't let /dev/console block */
2007                                 filp->f_flags |= O_NONBLOCK;
2008                                 *noctty = 1;
2009                                 break;
2010                         }
2011                 }
2012                 return ERR_PTR(-ENODEV);
2013         }
2014         default:
2015                 driver = get_tty_driver(device, index);
2016                 if (!driver)
2017                         return ERR_PTR(-ENODEV);
2018                 break;
2019         }
2020         return driver;
2021 }
2022
2023 /**
2024  *      tty_open                -       open a tty device
2025  *      @inode: inode of device file
2026  *      @filp: file pointer to tty
2027  *
2028  *      tty_open and tty_release keep up the tty count that contains the
2029  *      number of opens done on a tty. We cannot use the inode-count, as
2030  *      different inodes might point to the same tty.
2031  *
2032  *      Open-counting is needed for pty masters, as well as for keeping
2033  *      track of serial lines: DTR is dropped when the last close happens.
2034  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
2035  *
2036  *      The termios state of a pty is reset on first open so that
2037  *      settings don't persist across reuse.
2038  *
2039  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2040  *               tty->count should protect the rest.
2041  *               ->siglock protects ->signal/->sighand
2042  *
2043  *      Note: the tty_unlock/lock cases without a ref are only safe due to
2044  *      tty_mutex
2045  */
2046
2047 static int tty_open(struct inode *inode, struct file *filp)
2048 {
2049         struct tty_struct *tty;
2050         int noctty, retval;
2051         struct tty_driver *driver = NULL;
2052         int index;
2053         dev_t device = inode->i_rdev;
2054         unsigned saved_flags = filp->f_flags;
2055
2056         nonseekable_open(inode, filp);
2057
2058 retry_open:
2059         retval = tty_alloc_file(filp);
2060         if (retval)
2061                 return -ENOMEM;
2062
2063         noctty = filp->f_flags & O_NOCTTY;
2064         index  = -1;
2065         retval = 0;
2066
2067         tty = tty_open_current_tty(device, filp);
2068         if (!tty) {
2069                 mutex_lock(&tty_mutex);
2070                 driver = tty_lookup_driver(device, filp, &noctty, &index);
2071                 if (IS_ERR(driver)) {
2072                         retval = PTR_ERR(driver);
2073                         goto err_unlock;
2074                 }
2075
2076                 /* check whether we're reopening an existing tty */
2077                 tty = tty_driver_lookup_tty(driver, inode, index);
2078                 if (IS_ERR(tty)) {
2079                         retval = PTR_ERR(tty);
2080                         goto err_unlock;
2081                 }
2082
2083                 if (tty) {
2084                         tty_lock(tty);
2085                         retval = tty_reopen(tty);
2086                         if (retval < 0) {
2087                                 tty_unlock(tty);
2088                                 tty = ERR_PTR(retval);
2089                         }
2090                 } else  /* Returns with the tty_lock held for now */
2091                         tty = tty_init_dev(driver, index);
2092
2093                 mutex_unlock(&tty_mutex);
2094                 tty_driver_kref_put(driver);
2095         }
2096
2097         if (IS_ERR(tty)) {
2098                 retval = PTR_ERR(tty);
2099                 goto err_file;
2100         }
2101
2102         tty_add_file(tty, filp);
2103
2104         check_tty_count(tty, __func__);
2105         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2106             tty->driver->subtype == PTY_TYPE_MASTER)
2107                 noctty = 1;
2108 #ifdef TTY_DEBUG_HANGUP
2109         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2110 #endif
2111         if (tty->ops->open)
2112                 retval = tty->ops->open(tty, filp);
2113         else
2114                 retval = -ENODEV;
2115         filp->f_flags = saved_flags;
2116
2117         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2118                                                 !capable(CAP_SYS_ADMIN))
2119                 retval = -EBUSY;
2120
2121         if (retval) {
2122 #ifdef TTY_DEBUG_HANGUP
2123                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2124                                 retval, tty->name);
2125 #endif
2126                 tty_unlock(tty); /* need to call tty_release without BTM */
2127                 tty_release(inode, filp);
2128                 if (retval != -ERESTARTSYS)
2129                         return retval;
2130
2131                 if (signal_pending(current))
2132                         return retval;
2133
2134                 schedule();
2135                 /*
2136                  * Need to reset f_op in case a hangup happened.
2137                  */
2138                 if (filp->f_op == &hung_up_tty_fops)
2139                         filp->f_op = &tty_fops;
2140                 goto retry_open;
2141         }
2142         clear_bit(TTY_HUPPED, &tty->flags);
2143
2144
2145         read_lock(&tasklist_lock);
2146         spin_lock_irq(&current->sighand->siglock);
2147         if (!noctty &&
2148             current->signal->leader &&
2149             !current->signal->tty &&
2150             tty->session == NULL)
2151                 __proc_set_tty(tty);
2152         spin_unlock_irq(&current->sighand->siglock);
2153         read_unlock(&tasklist_lock);
2154         tty_unlock(tty);
2155         return 0;
2156 err_unlock:
2157         mutex_unlock(&tty_mutex);
2158         /* after locks to avoid deadlock */
2159         if (!IS_ERR_OR_NULL(driver))
2160                 tty_driver_kref_put(driver);
2161 err_file:
2162         tty_free_file(filp);
2163         return retval;
2164 }
2165
2166
2167
2168 /**
2169  *      tty_poll        -       check tty status
2170  *      @filp: file being polled
2171  *      @wait: poll wait structures to update
2172  *
2173  *      Call the line discipline polling method to obtain the poll
2174  *      status of the device.
2175  *
2176  *      Locking: locks called line discipline but ldisc poll method
2177  *      may be re-entered freely by other callers.
2178  */
2179
2180 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2181 {
2182         struct tty_struct *tty = file_tty(filp);
2183         struct tty_ldisc *ld;
2184         int ret = 0;
2185
2186         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2187                 return 0;
2188
2189         ld = tty_ldisc_ref_wait(tty);
2190         if (ld->ops->poll)
2191                 ret = (ld->ops->poll)(tty, filp, wait);
2192         tty_ldisc_deref(ld);
2193         return ret;
2194 }
2195
2196 static int __tty_fasync(int fd, struct file *filp, int on)
2197 {
2198         struct tty_struct *tty = file_tty(filp);
2199         struct tty_ldisc *ldisc;
2200         unsigned long flags;
2201         int retval = 0;
2202
2203         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2204                 goto out;
2205
2206         retval = fasync_helper(fd, filp, on, &tty->fasync);
2207         if (retval <= 0)
2208                 goto out;
2209
2210         ldisc = tty_ldisc_ref(tty);
2211         if (ldisc) {
2212                 if (ldisc->ops->fasync)
2213                         ldisc->ops->fasync(tty, on);
2214                 tty_ldisc_deref(ldisc);
2215         }
2216
2217         if (on) {
2218                 enum pid_type type;
2219                 struct pid *pid;
2220
2221                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2222                 if (tty->pgrp) {
2223                         pid = tty->pgrp;
2224                         type = PIDTYPE_PGID;
2225                 } else {
2226                         pid = task_pid(current);
2227                         type = PIDTYPE_PID;
2228                 }
2229                 get_pid(pid);
2230                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2231                 __f_setown(filp, pid, type, 0);
2232                 put_pid(pid);
2233                 retval = 0;
2234         }
2235 out:
2236         return retval;
2237 }
2238
2239 static int tty_fasync(int fd, struct file *filp, int on)
2240 {
2241         struct tty_struct *tty = file_tty(filp);
2242         int retval;
2243
2244         tty_lock(tty);
2245         retval = __tty_fasync(fd, filp, on);
2246         tty_unlock(tty);
2247
2248         return retval;
2249 }
2250
2251 /**
2252  *      tiocsti                 -       fake input character
2253  *      @tty: tty to fake input into
2254  *      @p: pointer to character
2255  *
2256  *      Fake input to a tty device. Does the necessary locking and
2257  *      input management.
2258  *
2259  *      FIXME: does not honour flow control ??
2260  *
2261  *      Locking:
2262  *              Called functions take tty_ldiscs_lock
2263  *              current->signal->tty check is safe without locks
2264  *
2265  *      FIXME: may race normal receive processing
2266  */
2267
2268 static int tiocsti(struct tty_struct *tty, char __user *p)
2269 {
2270         char ch, mbz = 0;
2271         struct tty_ldisc *ld;
2272
2273         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2274                 return -EPERM;
2275         if (get_user(ch, p))
2276                 return -EFAULT;
2277         tty_audit_tiocsti(tty, ch);
2278         ld = tty_ldisc_ref_wait(tty);
2279         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2280         tty_ldisc_deref(ld);
2281         return 0;
2282 }
2283
2284 /**
2285  *      tiocgwinsz              -       implement window query ioctl
2286  *      @tty; tty
2287  *      @arg: user buffer for result
2288  *
2289  *      Copies the kernel idea of the window size into the user buffer.
2290  *
2291  *      Locking: tty->winsize_mutex is taken to ensure the winsize data
2292  *              is consistent.
2293  */
2294
2295 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2296 {
2297         int err;
2298
2299         mutex_lock(&tty->winsize_mutex);
2300         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2301         mutex_unlock(&tty->winsize_mutex);
2302
2303         return err ? -EFAULT: 0;
2304 }
2305
2306 /**
2307  *      tty_do_resize           -       resize event
2308  *      @tty: tty being resized
2309  *      @rows: rows (character)
2310  *      @cols: cols (character)
2311  *
2312  *      Update the termios variables and send the necessary signals to
2313  *      peform a terminal resize correctly
2314  */
2315
2316 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2317 {
2318         struct pid *pgrp;
2319
2320         /* Lock the tty */
2321         mutex_lock(&tty->winsize_mutex);
2322         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2323                 goto done;
2324
2325         /* Signal the foreground process group */
2326         pgrp = tty_get_pgrp(tty);
2327         if (pgrp)
2328                 kill_pgrp(pgrp, SIGWINCH, 1);
2329         put_pid(pgrp);
2330
2331         tty->winsize = *ws;
2332 done:
2333         mutex_unlock(&tty->winsize_mutex);
2334         return 0;
2335 }
2336 EXPORT_SYMBOL(tty_do_resize);
2337
2338 /**
2339  *      tiocswinsz              -       implement window size set ioctl
2340  *      @tty; tty side of tty
2341  *      @arg: user buffer for result
2342  *
2343  *      Copies the user idea of the window size to the kernel. Traditionally
2344  *      this is just advisory information but for the Linux console it
2345  *      actually has driver level meaning and triggers a VC resize.
2346  *
2347  *      Locking:
2348  *              Driver dependent. The default do_resize method takes the
2349  *      tty termios mutex and ctrl_lock. The console takes its own lock
2350  *      then calls into the default method.
2351  */
2352
2353 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2354 {
2355         struct winsize tmp_ws;
2356         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2357                 return -EFAULT;
2358
2359         if (tty->ops->resize)
2360                 return tty->ops->resize(tty, &tmp_ws);
2361         else
2362                 return tty_do_resize(tty, &tmp_ws);
2363 }
2364
2365 /**
2366  *      tioccons        -       allow admin to move logical console
2367  *      @file: the file to become console
2368  *
2369  *      Allow the administrator to move the redirected console device
2370  *
2371  *      Locking: uses redirect_lock to guard the redirect information
2372  */
2373
2374 static int tioccons(struct file *file)
2375 {
2376         if (!capable(CAP_SYS_ADMIN))
2377                 return -EPERM;
2378         if (file->f_op->write == redirected_tty_write) {
2379                 struct file *f;
2380                 spin_lock(&redirect_lock);
2381                 f = redirect;
2382                 redirect = NULL;
2383                 spin_unlock(&redirect_lock);
2384                 if (f)
2385                         fput(f);
2386                 return 0;
2387         }
2388         spin_lock(&redirect_lock);
2389         if (redirect) {
2390                 spin_unlock(&redirect_lock);
2391                 return -EBUSY;
2392         }
2393         redirect = get_file(file);
2394         spin_unlock(&redirect_lock);
2395         return 0;
2396 }
2397
2398 /**
2399  *      fionbio         -       non blocking ioctl
2400  *      @file: file to set blocking value
2401  *      @p: user parameter
2402  *
2403  *      Historical tty interfaces had a blocking control ioctl before
2404  *      the generic functionality existed. This piece of history is preserved
2405  *      in the expected tty API of posix OS's.
2406  *
2407  *      Locking: none, the open file handle ensures it won't go away.
2408  */
2409
2410 static int fionbio(struct file *file, int __user *p)
2411 {
2412         int nonblock;
2413
2414         if (get_user(nonblock, p))
2415                 return -EFAULT;
2416
2417         spin_lock(&file->f_lock);
2418         if (nonblock)
2419                 file->f_flags |= O_NONBLOCK;
2420         else
2421                 file->f_flags &= ~O_NONBLOCK;
2422         spin_unlock(&file->f_lock);
2423         return 0;
2424 }
2425
2426 /**
2427  *      tiocsctty       -       set controlling tty
2428  *      @tty: tty structure
2429  *      @arg: user argument
2430  *
2431  *      This ioctl is used to manage job control. It permits a session
2432  *      leader to set this tty as the controlling tty for the session.
2433  *
2434  *      Locking:
2435  *              Takes tty_lock() to serialize proc_set_tty() for this tty
2436  *              Takes tasklist_lock internally to walk sessions
2437  *              Takes ->siglock() when updating signal->tty
2438  */
2439
2440 static int tiocsctty(struct tty_struct *tty, int arg)
2441 {
2442         int ret = 0;
2443
2444         tty_lock(tty);
2445         read_lock(&tasklist_lock);
2446
2447         if (current->signal->leader && (task_session(current) == tty->session))
2448                 goto unlock;
2449
2450         /*
2451          * The process must be a session leader and
2452          * not have a controlling tty already.
2453          */
2454         if (!current->signal->leader || current->signal->tty) {
2455                 ret = -EPERM;
2456                 goto unlock;
2457         }
2458
2459         if (tty->session) {
2460                 /*
2461                  * This tty is already the controlling
2462                  * tty for another session group!
2463                  */
2464                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2465                         /*
2466                          * Steal it away
2467                          */
2468                         session_clear_tty(tty->session);
2469                 } else {
2470                         ret = -EPERM;
2471                         goto unlock;
2472                 }
2473         }
2474         proc_set_tty(tty);
2475 unlock:
2476         read_unlock(&tasklist_lock);
2477         tty_unlock(tty);
2478         return ret;
2479 }
2480
2481 /**
2482  *      tty_get_pgrp    -       return a ref counted pgrp pid
2483  *      @tty: tty to read
2484  *
2485  *      Returns a refcounted instance of the pid struct for the process
2486  *      group controlling the tty.
2487  */
2488
2489 struct pid *tty_get_pgrp(struct tty_struct *tty)
2490 {
2491         unsigned long flags;
2492         struct pid *pgrp;
2493
2494         spin_lock_irqsave(&tty->ctrl_lock, flags);
2495         pgrp = get_pid(tty->pgrp);
2496         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2497
2498         return pgrp;
2499 }
2500 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2501
2502 /*
2503  * This checks not only the pgrp, but falls back on the pid if no
2504  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2505  * without this...
2506  *
2507  * The caller must hold rcu lock or the tasklist lock.
2508  */
2509 static struct pid *session_of_pgrp(struct pid *pgrp)
2510 {
2511         struct task_struct *p;
2512         struct pid *sid = NULL;
2513
2514         p = pid_task(pgrp, PIDTYPE_PGID);
2515         if (p == NULL)
2516                 p = pid_task(pgrp, PIDTYPE_PID);
2517         if (p != NULL)
2518                 sid = task_session(p);
2519
2520         return sid;
2521 }
2522
2523 /**
2524  *      tiocgpgrp               -       get process group
2525  *      @tty: tty passed by user
2526  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2527  *      @p: returned pid
2528  *
2529  *      Obtain the process group of the tty. If there is no process group
2530  *      return an error.
2531  *
2532  *      Locking: none. Reference to current->signal->tty is safe.
2533  */
2534
2535 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2536 {
2537         struct pid *pid;
2538         int ret;
2539         /*
2540          * (tty == real_tty) is a cheap way of
2541          * testing if the tty is NOT a master pty.
2542          */
2543         if (tty == real_tty && current->signal->tty != real_tty)
2544                 return -ENOTTY;
2545         pid = tty_get_pgrp(real_tty);
2546         ret =  put_user(pid_vnr(pid), p);
2547         put_pid(pid);
2548         return ret;
2549 }
2550
2551 /**
2552  *      tiocspgrp               -       attempt to set process group
2553  *      @tty: tty passed by user
2554  *      @real_tty: tty side device matching tty passed by user
2555  *      @p: pid pointer
2556  *
2557  *      Set the process group of the tty to the session passed. Only
2558  *      permitted where the tty session is our session.
2559  *
2560  *      Locking: RCU, ctrl lock
2561  */
2562
2563 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2564 {
2565         struct pid *pgrp;
2566         pid_t pgrp_nr;
2567         int retval = tty_check_change(real_tty);
2568         unsigned long flags;
2569
2570         if (retval == -EIO)
2571                 return -ENOTTY;
2572         if (retval)
2573                 return retval;
2574         if (!current->signal->tty ||
2575             (current->signal->tty != real_tty) ||
2576             (real_tty->session != task_session(current)))
2577                 return -ENOTTY;
2578         if (get_user(pgrp_nr, p))
2579                 return -EFAULT;
2580         if (pgrp_nr < 0)
2581                 return -EINVAL;
2582         rcu_read_lock();
2583         pgrp = find_vpid(pgrp_nr);
2584         retval = -ESRCH;
2585         if (!pgrp)
2586                 goto out_unlock;
2587         retval = -EPERM;
2588         if (session_of_pgrp(pgrp) != task_session(current))
2589                 goto out_unlock;
2590         retval = 0;
2591         spin_lock_irqsave(&tty->ctrl_lock, flags);
2592         put_pid(real_tty->pgrp);
2593         real_tty->pgrp = get_pid(pgrp);
2594         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2595 out_unlock:
2596         rcu_read_unlock();
2597         return retval;
2598 }
2599
2600 /**
2601  *      tiocgsid                -       get session id
2602  *      @tty: tty passed by user
2603  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2604  *      @p: pointer to returned session id
2605  *
2606  *      Obtain the session id of the tty. If there is no session
2607  *      return an error.
2608  *
2609  *      Locking: none. Reference to current->signal->tty is safe.
2610  */
2611
2612 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2613 {
2614         /*
2615          * (tty == real_tty) is a cheap way of
2616          * testing if the tty is NOT a master pty.
2617         */
2618         if (tty == real_tty && current->signal->tty != real_tty)
2619                 return -ENOTTY;
2620         if (!real_tty->session)
2621                 return -ENOTTY;
2622         return put_user(pid_vnr(real_tty->session), p);
2623 }
2624
2625 /**
2626  *      tiocsetd        -       set line discipline
2627  *      @tty: tty device
2628  *      @p: pointer to user data
2629  *
2630  *      Set the line discipline according to user request.
2631  *
2632  *      Locking: see tty_set_ldisc, this function is just a helper
2633  */
2634
2635 static int tiocsetd(struct tty_struct *tty, int __user *p)
2636 {
2637         int ldisc;
2638         int ret;
2639
2640         if (get_user(ldisc, p))
2641                 return -EFAULT;
2642
2643         ret = tty_set_ldisc(tty, ldisc);
2644
2645         return ret;
2646 }
2647
2648 /**
2649  *      send_break      -       performed time break
2650  *      @tty: device to break on
2651  *      @duration: timeout in mS
2652  *
2653  *      Perform a timed break on hardware that lacks its own driver level
2654  *      timed break functionality.
2655  *
2656  *      Locking:
2657  *              atomic_write_lock serializes
2658  *
2659  */
2660
2661 static int send_break(struct tty_struct *tty, unsigned int duration)
2662 {
2663         int retval;
2664
2665         if (tty->ops->break_ctl == NULL)
2666                 return 0;
2667
2668         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2669                 retval = tty->ops->break_ctl(tty, duration);
2670         else {
2671                 /* Do the work ourselves */
2672                 if (tty_write_lock(tty, 0) < 0)
2673                         return -EINTR;
2674                 retval = tty->ops->break_ctl(tty, -1);
2675                 if (retval)
2676                         goto out;
2677                 if (!signal_pending(current))
2678                         msleep_interruptible(duration);
2679                 retval = tty->ops->break_ctl(tty, 0);
2680 out:
2681                 tty_write_unlock(tty);
2682                 if (signal_pending(current))
2683                         retval = -EINTR;
2684         }
2685         return retval;
2686 }
2687
2688 /**
2689  *      tty_tiocmget            -       get modem status
2690  *      @tty: tty device
2691  *      @file: user file pointer
2692  *      @p: pointer to result
2693  *
2694  *      Obtain the modem status bits from the tty driver if the feature
2695  *      is supported. Return -EINVAL if it is not available.
2696  *
2697  *      Locking: none (up to the driver)
2698  */
2699
2700 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2701 {
2702         int retval = -EINVAL;
2703
2704         if (tty->ops->tiocmget) {
2705                 retval = tty->ops->tiocmget(tty);
2706
2707                 if (retval >= 0)
2708                         retval = put_user(retval, p);
2709         }
2710         return retval;
2711 }
2712
2713 /**
2714  *      tty_tiocmset            -       set modem status
2715  *      @tty: tty device
2716  *      @cmd: command - clear bits, set bits or set all
2717  *      @p: pointer to desired bits
2718  *
2719  *      Set the modem status bits from the tty driver if the feature
2720  *      is supported. Return -EINVAL if it is not available.
2721  *
2722  *      Locking: none (up to the driver)
2723  */
2724
2725 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2726              unsigned __user *p)
2727 {
2728         int retval;
2729         unsigned int set, clear, val;
2730
2731         if (tty->ops->tiocmset == NULL)
2732                 return -EINVAL;
2733
2734         retval = get_user(val, p);
2735         if (retval)
2736                 return retval;
2737         set = clear = 0;
2738         switch (cmd) {
2739         case TIOCMBIS:
2740                 set = val;
2741                 break;
2742         case TIOCMBIC:
2743                 clear = val;
2744                 break;
2745         case TIOCMSET:
2746                 set = val;
2747                 clear = ~val;
2748                 break;
2749         }
2750         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2751         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2752         return tty->ops->tiocmset(tty, set, clear);
2753 }
2754
2755 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2756 {
2757         int retval = -EINVAL;
2758         struct serial_icounter_struct icount;
2759         memset(&icount, 0, sizeof(icount));
2760         if (tty->ops->get_icount)
2761                 retval = tty->ops->get_icount(tty, &icount);
2762         if (retval != 0)
2763                 return retval;
2764         if (copy_to_user(arg, &icount, sizeof(icount)))
2765                 return -EFAULT;
2766         return 0;
2767 }
2768
2769 /*
2770  * if pty, return the slave side (real_tty)
2771  * otherwise, return self
2772  */
2773 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2774 {
2775         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2776             tty->driver->subtype == PTY_TYPE_MASTER)
2777                 tty = tty->link;
2778         return tty;
2779 }
2780
2781 /*
2782  * Split this up, as gcc can choke on it otherwise..
2783  */
2784 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2785 {
2786         struct tty_struct *tty = file_tty(file);
2787         struct tty_struct *real_tty;
2788         void __user *p = (void __user *)arg;
2789         int retval;
2790         struct tty_ldisc *ld;
2791
2792         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2793                 return -EINVAL;
2794
2795         real_tty = tty_pair_get_tty(tty);
2796
2797         /*
2798          * Factor out some common prep work
2799          */
2800         switch (cmd) {
2801         case TIOCSETD:
2802         case TIOCSBRK:
2803         case TIOCCBRK:
2804         case TCSBRK:
2805         case TCSBRKP:
2806                 retval = tty_check_change(tty);
2807                 if (retval)
2808                         return retval;
2809                 if (cmd != TIOCCBRK) {
2810                         tty_wait_until_sent(tty, 0);
2811                         if (signal_pending(current))
2812                                 return -EINTR;
2813                 }
2814                 break;
2815         }
2816
2817         /*
2818          *      Now do the stuff.
2819          */
2820         switch (cmd) {
2821         case TIOCSTI:
2822                 return tiocsti(tty, p);
2823         case TIOCGWINSZ:
2824                 return tiocgwinsz(real_tty, p);
2825         case TIOCSWINSZ:
2826                 return tiocswinsz(real_tty, p);
2827         case TIOCCONS:
2828                 return real_tty != tty ? -EINVAL : tioccons(file);
2829         case FIONBIO:
2830                 return fionbio(file, p);
2831         case TIOCEXCL:
2832                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2833                 return 0;
2834         case TIOCNXCL:
2835                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2836                 return 0;
2837         case TIOCGEXCL:
2838         {
2839                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2840                 return put_user(excl, (int __user *)p);
2841         }
2842         case TIOCNOTTY:
2843                 if (current->signal->tty != tty)
2844                         return -ENOTTY;
2845                 no_tty();
2846                 return 0;
2847         case TIOCSCTTY:
2848                 return tiocsctty(tty, arg);
2849         case TIOCGPGRP:
2850                 return tiocgpgrp(tty, real_tty, p);
2851         case TIOCSPGRP:
2852                 return tiocspgrp(tty, real_tty, p);
2853         case TIOCGSID:
2854                 return tiocgsid(tty, real_tty, p);
2855         case TIOCGETD:
2856                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2857         case TIOCSETD:
2858                 return tiocsetd(tty, p);
2859         case TIOCVHANGUP:
2860                 if (!capable(CAP_SYS_ADMIN))
2861                         return -EPERM;
2862                 tty_vhangup(tty);
2863                 return 0;
2864         case TIOCGDEV:
2865         {
2866                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2867                 return put_user(ret, (unsigned int __user *)p);
2868         }
2869         /*
2870          * Break handling
2871          */
2872         case TIOCSBRK:  /* Turn break on, unconditionally */
2873                 if (tty->ops->break_ctl)
2874                         return tty->ops->break_ctl(tty, -1);
2875                 return 0;
2876         case TIOCCBRK:  /* Turn break off, unconditionally */
2877                 if (tty->ops->break_ctl)
2878                         return tty->ops->break_ctl(tty, 0);
2879                 return 0;
2880         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2881                 /* non-zero arg means wait for all output data
2882                  * to be sent (performed above) but don't send break.
2883                  * This is used by the tcdrain() termios function.
2884                  */
2885                 if (!arg)
2886                         return send_break(tty, 250);
2887                 return 0;
2888         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2889                 return send_break(tty, arg ? arg*100 : 250);
2890
2891         case TIOCMGET:
2892                 return tty_tiocmget(tty, p);
2893         case TIOCMSET:
2894         case TIOCMBIC:
2895         case TIOCMBIS:
2896                 return tty_tiocmset(tty, cmd, p);
2897         case TIOCGICOUNT:
2898                 retval = tty_tiocgicount(tty, p);
2899                 /* For the moment allow fall through to the old method */
2900                 if (retval != -EINVAL)
2901                         return retval;
2902                 break;
2903         case TCFLSH:
2904                 switch (arg) {
2905                 case TCIFLUSH:
2906                 case TCIOFLUSH:
2907                 /* flush tty buffer and allow ldisc to process ioctl */
2908                         tty_buffer_flush(tty);
2909                         break;
2910                 }
2911                 break;
2912         }
2913         if (tty->ops->ioctl) {
2914                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2915                 if (retval != -ENOIOCTLCMD)
2916                         return retval;
2917         }
2918         ld = tty_ldisc_ref_wait(tty);
2919         retval = -EINVAL;
2920         if (ld->ops->ioctl) {
2921                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2922                 if (retval == -ENOIOCTLCMD)
2923                         retval = -ENOTTY;
2924         }
2925         tty_ldisc_deref(ld);
2926         return retval;
2927 }
2928
2929 #ifdef CONFIG_COMPAT
2930 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2931                                 unsigned long arg)
2932 {
2933         struct tty_struct *tty = file_tty(file);
2934         struct tty_ldisc *ld;
2935         int retval = -ENOIOCTLCMD;
2936
2937         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2938                 return -EINVAL;
2939
2940         if (tty->ops->compat_ioctl) {
2941                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2942                 if (retval != -ENOIOCTLCMD)
2943                         return retval;
2944         }
2945
2946         ld = tty_ldisc_ref_wait(tty);
2947         if (ld->ops->compat_ioctl)
2948                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2949         else
2950                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2951         tty_ldisc_deref(ld);
2952
2953         return retval;
2954 }
2955 #endif
2956
2957 static int this_tty(const void *t, struct file *file, unsigned fd)
2958 {
2959         if (likely(file->f_op->read != tty_read))
2960                 return 0;
2961         return file_tty(file) != t ? 0 : fd + 1;
2962 }
2963         
2964 /*
2965  * This implements the "Secure Attention Key" ---  the idea is to
2966  * prevent trojan horses by killing all processes associated with this
2967  * tty when the user hits the "Secure Attention Key".  Required for
2968  * super-paranoid applications --- see the Orange Book for more details.
2969  *
2970  * This code could be nicer; ideally it should send a HUP, wait a few
2971  * seconds, then send a INT, and then a KILL signal.  But you then
2972  * have to coordinate with the init process, since all processes associated
2973  * with the current tty must be dead before the new getty is allowed
2974  * to spawn.
2975  *
2976  * Now, if it would be correct ;-/ The current code has a nasty hole -
2977  * it doesn't catch files in flight. We may send the descriptor to ourselves
2978  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2979  *
2980  * Nasty bug: do_SAK is being called in interrupt context.  This can
2981  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2982  */
2983 void __do_SAK(struct tty_struct *tty)
2984 {
2985 #ifdef TTY_SOFT_SAK
2986         tty_hangup(tty);
2987 #else
2988         struct task_struct *g, *p;
2989         struct pid *session;
2990         int             i;
2991
2992         if (!tty)
2993                 return;
2994         session = tty->session;
2995
2996         tty_ldisc_flush(tty);
2997
2998         tty_driver_flush_buffer(tty);
2999
3000         read_lock(&tasklist_lock);
3001         /* Kill the entire session */
3002         do_each_pid_task(session, PIDTYPE_SID, p) {
3003                 printk(KERN_NOTICE "SAK: killed process %d"
3004                         " (%s): task_session(p)==tty->session\n",
3005                         task_pid_nr(p), p->comm);
3006                 send_sig(SIGKILL, p, 1);
3007         } while_each_pid_task(session, PIDTYPE_SID, p);
3008         /* Now kill any processes that happen to have the
3009          * tty open.
3010          */
3011         do_each_thread(g, p) {
3012                 if (p->signal->tty == tty) {
3013                         printk(KERN_NOTICE "SAK: killed process %d"
3014                             " (%s): task_session(p)==tty->session\n",
3015                             task_pid_nr(p), p->comm);
3016                         send_sig(SIGKILL, p, 1);
3017                         continue;
3018                 }
3019                 task_lock(p);
3020                 i = iterate_fd(p->files, 0, this_tty, tty);
3021                 if (i != 0) {
3022                         printk(KERN_NOTICE "SAK: killed process %d"
3023                             " (%s): fd#%d opened to the tty\n",
3024                                     task_pid_nr(p), p->comm, i - 1);
3025                         force_sig(SIGKILL, p);
3026                 }
3027                 task_unlock(p);
3028         } while_each_thread(g, p);
3029         read_unlock(&tasklist_lock);
3030 #endif
3031 }
3032
3033 static void do_SAK_work(struct work_struct *work)
3034 {
3035         struct tty_struct *tty =
3036                 container_of(work, struct tty_struct, SAK_work);
3037         __do_SAK(tty);
3038 }
3039
3040 /*
3041  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3042  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3043  * the values which we write to it will be identical to the values which it
3044  * already has. --akpm
3045  */
3046 void do_SAK(struct tty_struct *tty)
3047 {
3048         if (!tty)
3049                 return;
3050         schedule_work(&tty->SAK_work);
3051 }
3052
3053 EXPORT_SYMBOL(do_SAK);
3054
3055 static int dev_match_devt(struct device *dev, const void *data)
3056 {
3057         const dev_t *devt = data;
3058         return dev->devt == *devt;
3059 }
3060
3061 /* Must put_device() after it's unused! */
3062 static struct device *tty_get_device(struct tty_struct *tty)
3063 {
3064         dev_t devt = tty_devnum(tty);
3065         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3066 }
3067
3068
3069 /**
3070  *      alloc_tty_struct
3071  *
3072  *      This subroutine allocates and initializes a tty structure.
3073  *
3074  *      Locking: none - tty in question is not exposed at this point
3075  */
3076
3077 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3078 {
3079         struct tty_struct *tty;
3080
3081         tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3082         if (!tty)
3083                 return NULL;
3084
3085         kref_init(&tty->kref);
3086         tty->magic = TTY_MAGIC;
3087         tty_ldisc_init(tty);
3088         tty->session = NULL;
3089         tty->pgrp = NULL;
3090         mutex_init(&tty->legacy_mutex);
3091         mutex_init(&tty->throttle_mutex);
3092         init_rwsem(&tty->termios_rwsem);
3093         mutex_init(&tty->winsize_mutex);
3094         init_ldsem(&tty->ldisc_sem);
3095         init_waitqueue_head(&tty->write_wait);
3096         init_waitqueue_head(&tty->read_wait);
3097         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3098         mutex_init(&tty->atomic_write_lock);
3099         spin_lock_init(&tty->ctrl_lock);
3100         spin_lock_init(&tty->flow_lock);
3101         INIT_LIST_HEAD(&tty->tty_files);
3102         INIT_WORK(&tty->SAK_work, do_SAK_work);
3103
3104         tty->driver = driver;
3105         tty->ops = driver->ops;
3106         tty->index = idx;
3107         tty_line_name(driver, idx, tty->name);
3108         tty->dev = tty_get_device(tty);
3109
3110         return tty;
3111 }
3112
3113 /**
3114  *      deinitialize_tty_struct
3115  *      @tty: tty to deinitialize
3116  *
3117  *      This subroutine deinitializes a tty structure that has been newly
3118  *      allocated but tty_release cannot be called on that yet.
3119  *
3120  *      Locking: none - tty in question must not be exposed at this point
3121  */
3122 void deinitialize_tty_struct(struct tty_struct *tty)
3123 {
3124         tty_ldisc_deinit(tty);
3125 }
3126
3127 /**
3128  *      tty_put_char    -       write one character to a tty
3129  *      @tty: tty
3130  *      @ch: character
3131  *
3132  *      Write one byte to the tty using the provided put_char method
3133  *      if present. Returns the number of characters successfully output.
3134  *
3135  *      Note: the specific put_char operation in the driver layer may go
3136  *      away soon. Don't call it directly, use this method
3137  */
3138
3139 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3140 {
3141         if (tty->ops->put_char)
3142                 return tty->ops->put_char(tty, ch);
3143         return tty->ops->write(tty, &ch, 1);
3144 }
3145 EXPORT_SYMBOL_GPL(tty_put_char);
3146
3147 struct class *tty_class;
3148
3149 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3150                 unsigned int index, unsigned int count)
3151 {
3152         /* init here, since reused cdevs cause crashes */
3153         cdev_init(&driver->cdevs[index], &tty_fops);
3154         driver->cdevs[index].owner = driver->owner;
3155         return cdev_add(&driver->cdevs[index], dev, count);
3156 }
3157
3158 /**
3159  *      tty_register_device - register a tty device
3160  *      @driver: the tty driver that describes the tty device
3161  *      @index: the index in the tty driver for this tty device
3162  *      @device: a struct device that is associated with this tty device.
3163  *              This field is optional, if there is no known struct device
3164  *              for this tty device it can be set to NULL safely.
3165  *
3166  *      Returns a pointer to the struct device for this tty device
3167  *      (or ERR_PTR(-EFOO) on error).
3168  *
3169  *      This call is required to be made to register an individual tty device
3170  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3171  *      that bit is not set, this function should not be called by a tty
3172  *      driver.
3173  *
3174  *      Locking: ??
3175  */
3176
3177 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3178                                    struct device *device)
3179 {
3180         return tty_register_device_attr(driver, index, device, NULL, NULL);
3181 }
3182 EXPORT_SYMBOL(tty_register_device);
3183
3184 static void tty_device_create_release(struct device *dev)
3185 {
3186         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3187         kfree(dev);
3188 }
3189
3190 /**
3191  *      tty_register_device_attr - register a tty device
3192  *      @driver: the tty driver that describes the tty device
3193  *      @index: the index in the tty driver for this tty device
3194  *      @device: a struct device that is associated with this tty device.
3195  *              This field is optional, if there is no known struct device
3196  *              for this tty device it can be set to NULL safely.
3197  *      @drvdata: Driver data to be set to device.
3198  *      @attr_grp: Attribute group to be set on device.
3199  *
3200  *      Returns a pointer to the struct device for this tty device
3201  *      (or ERR_PTR(-EFOO) on error).
3202  *
3203  *      This call is required to be made to register an individual tty device
3204  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3205  *      that bit is not set, this function should not be called by a tty
3206  *      driver.
3207  *
3208  *      Locking: ??
3209  */
3210 struct device *tty_register_device_attr(struct tty_driver *driver,
3211                                    unsigned index, struct device *device,
3212                                    void *drvdata,
3213                                    const struct attribute_group **attr_grp)
3214 {
3215         char name[64];
3216         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3217         struct device *dev = NULL;
3218         int retval = -ENODEV;
3219         bool cdev = false;
3220
3221         if (index >= driver->num) {
3222                 printk(KERN_ERR "Attempt to register invalid tty line number "
3223                        " (%d).\n", index);
3224                 return ERR_PTR(-EINVAL);
3225         }
3226
3227         if (driver->type == TTY_DRIVER_TYPE_PTY)
3228                 pty_line_name(driver, index, name);
3229         else
3230                 tty_line_name(driver, index, name);
3231
3232         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3233                 retval = tty_cdev_add(driver, devt, index, 1);
3234                 if (retval)
3235                         goto error;
3236                 cdev = true;
3237         }
3238
3239         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3240         if (!dev) {
3241                 retval = -ENOMEM;
3242                 goto error;
3243         }
3244
3245         dev->devt = devt;
3246         dev->class = tty_class;
3247         dev->parent = device;
3248         dev->release = tty_device_create_release;
3249         dev_set_name(dev, "%s", name);
3250         dev->groups = attr_grp;
3251         dev_set_drvdata(dev, drvdata);
3252
3253         retval = device_register(dev);
3254         if (retval)
3255                 goto error;
3256
3257         return dev;
3258
3259 error:
3260         put_device(dev);
3261         if (cdev)
3262                 cdev_del(&driver->cdevs[index]);
3263         return ERR_PTR(retval);
3264 }
3265 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3266
3267 /**
3268  *      tty_unregister_device - unregister a tty device
3269  *      @driver: the tty driver that describes the tty device
3270  *      @index: the index in the tty driver for this tty device
3271  *
3272  *      If a tty device is registered with a call to tty_register_device() then
3273  *      this function must be called when the tty device is gone.
3274  *
3275  *      Locking: ??
3276  */
3277
3278 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3279 {
3280         device_destroy(tty_class,
3281                 MKDEV(driver->major, driver->minor_start) + index);
3282         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3283                 cdev_del(&driver->cdevs[index]);
3284 }
3285 EXPORT_SYMBOL(tty_unregister_device);
3286
3287 /**
3288  * __tty_alloc_driver -- allocate tty driver
3289  * @lines: count of lines this driver can handle at most
3290  * @owner: module which is repsonsible for this driver
3291  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3292  *
3293  * This should not be called directly, some of the provided macros should be
3294  * used instead. Use IS_ERR and friends on @retval.
3295  */
3296 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3297                 unsigned long flags)
3298 {
3299         struct tty_driver *driver;
3300         unsigned int cdevs = 1;
3301         int err;
3302
3303         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3304                 return ERR_PTR(-EINVAL);
3305
3306         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3307         if (!driver)
3308                 return ERR_PTR(-ENOMEM);
3309
3310         kref_init(&driver->kref);
3311         driver->magic = TTY_DRIVER_MAGIC;
3312         driver->num = lines;
3313         driver->owner = owner;
3314         driver->flags = flags;
3315
3316         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3317                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3318                                 GFP_KERNEL);
3319                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3320                                 GFP_KERNEL);
3321                 if (!driver->ttys || !driver->termios) {
3322                         err = -ENOMEM;
3323                         goto err_free_all;
3324                 }
3325         }
3326
3327         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3328                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3329                                 GFP_KERNEL);
3330                 if (!driver->ports) {
3331                         err = -ENOMEM;
3332                         goto err_free_all;
3333                 }
3334                 cdevs = lines;
3335         }
3336
3337         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3338         if (!driver->cdevs) {
3339                 err = -ENOMEM;
3340                 goto err_free_all;
3341         }
3342
3343         return driver;
3344 err_free_all:
3345         kfree(driver->ports);
3346         kfree(driver->ttys);
3347         kfree(driver->termios);
3348         kfree(driver);
3349         return ERR_PTR(err);
3350 }
3351 EXPORT_SYMBOL(__tty_alloc_driver);
3352
3353 static void destruct_tty_driver(struct kref *kref)
3354 {
3355         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3356         int i;
3357         struct ktermios *tp;
3358
3359         if (driver->flags & TTY_DRIVER_INSTALLED) {
3360                 /*
3361                  * Free the termios and termios_locked structures because
3362                  * we don't want to get memory leaks when modular tty
3363                  * drivers are removed from the kernel.
3364                  */
3365                 for (i = 0; i < driver->num; i++) {
3366                         tp = driver->termios[i];
3367                         if (tp) {
3368                                 driver->termios[i] = NULL;
3369                                 kfree(tp);
3370                         }
3371                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3372                                 tty_unregister_device(driver, i);
3373                 }
3374                 proc_tty_unregister_driver(driver);
3375                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3376                         cdev_del(&driver->cdevs[0]);
3377         }
3378         kfree(driver->cdevs);
3379         kfree(driver->ports);
3380         kfree(driver->termios);
3381         kfree(driver->ttys);
3382         kfree(driver);
3383 }
3384
3385 void tty_driver_kref_put(struct tty_driver *driver)
3386 {
3387         kref_put(&driver->kref, destruct_tty_driver);
3388 }
3389 EXPORT_SYMBOL(tty_driver_kref_put);
3390
3391 void tty_set_operations(struct tty_driver *driver,
3392                         const struct tty_operations *op)
3393 {
3394         driver->ops = op;
3395 };
3396 EXPORT_SYMBOL(tty_set_operations);
3397
3398 void put_tty_driver(struct tty_driver *d)
3399 {
3400         tty_driver_kref_put(d);
3401 }
3402 EXPORT_SYMBOL(put_tty_driver);
3403
3404 /*
3405  * Called by a tty driver to register itself.
3406  */
3407 int tty_register_driver(struct tty_driver *driver)
3408 {
3409         int error;
3410         int i;
3411         dev_t dev;
3412         struct device *d;
3413
3414         if (!driver->major) {
3415                 error = alloc_chrdev_region(&dev, driver->minor_start,
3416                                                 driver->num, driver->name);
3417                 if (!error) {
3418                         driver->major = MAJOR(dev);
3419                         driver->minor_start = MINOR(dev);
3420                 }
3421         } else {
3422                 dev = MKDEV(driver->major, driver->minor_start);
3423                 error = register_chrdev_region(dev, driver->num, driver->name);
3424         }
3425         if (error < 0)
3426                 goto err;
3427
3428         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3429                 error = tty_cdev_add(driver, dev, 0, driver->num);
3430                 if (error)
3431                         goto err_unreg_char;
3432         }
3433
3434         mutex_lock(&tty_mutex);
3435         list_add(&driver->tty_drivers, &tty_drivers);
3436         mutex_unlock(&tty_mutex);
3437
3438         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3439                 for (i = 0; i < driver->num; i++) {
3440                         d = tty_register_device(driver, i, NULL);
3441                         if (IS_ERR(d)) {
3442                                 error = PTR_ERR(d);
3443                                 goto err_unreg_devs;
3444                         }
3445                 }
3446         }
3447         proc_tty_register_driver(driver);
3448         driver->flags |= TTY_DRIVER_INSTALLED;
3449         return 0;
3450
3451 err_unreg_devs:
3452         for (i--; i >= 0; i--)
3453                 tty_unregister_device(driver, i);
3454
3455         mutex_lock(&tty_mutex);
3456         list_del(&driver->tty_drivers);
3457         mutex_unlock(&tty_mutex);
3458
3459 err_unreg_char:
3460         unregister_chrdev_region(dev, driver->num);
3461 err:
3462         return error;
3463 }
3464 EXPORT_SYMBOL(tty_register_driver);
3465
3466 /*
3467  * Called by a tty driver to unregister itself.
3468  */
3469 int tty_unregister_driver(struct tty_driver *driver)
3470 {
3471 #if 0
3472         /* FIXME */
3473         if (driver->refcount)
3474                 return -EBUSY;
3475 #endif
3476         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3477                                 driver->num);
3478         mutex_lock(&tty_mutex);
3479         list_del(&driver->tty_drivers);
3480         mutex_unlock(&tty_mutex);
3481         return 0;
3482 }
3483
3484 EXPORT_SYMBOL(tty_unregister_driver);
3485
3486 dev_t tty_devnum(struct tty_struct *tty)
3487 {
3488         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3489 }
3490 EXPORT_SYMBOL(tty_devnum);
3491
3492 void tty_default_fops(struct file_operations *fops)
3493 {
3494         *fops = tty_fops;
3495 }
3496
3497 /*
3498  * Initialize the console device. This is called *early*, so
3499  * we can't necessarily depend on lots of kernel help here.
3500  * Just do some early initializations, and do the complex setup
3501  * later.
3502  */
3503 void __init console_init(void)
3504 {
3505         initcall_t *call;
3506
3507         /* Setup the default TTY line discipline. */
3508         tty_ldisc_begin();
3509
3510         /*
3511          * set up the console device so that later boot sequences can
3512          * inform about problems etc..
3513          */
3514         call = __con_initcall_start;
3515         while (call < __con_initcall_end) {
3516                 (*call)();
3517                 call++;
3518         }
3519 }
3520
3521 static char *tty_devnode(struct device *dev, umode_t *mode)
3522 {
3523         if (!mode)
3524                 return NULL;
3525         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3526             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3527                 *mode = 0666;
3528         return NULL;
3529 }
3530
3531 static int __init tty_class_init(void)
3532 {
3533         tty_class = class_create(THIS_MODULE, "tty");
3534         if (IS_ERR(tty_class))
3535                 return PTR_ERR(tty_class);
3536         tty_class->devnode = tty_devnode;
3537         return 0;
3538 }
3539
3540 postcore_initcall(tty_class_init);
3541
3542 /* 3/2004 jmc: why do these devices exist? */
3543 static struct cdev tty_cdev, console_cdev;
3544
3545 static ssize_t show_cons_active(struct device *dev,
3546                                 struct device_attribute *attr, char *buf)
3547 {
3548         struct console *cs[16];
3549         int i = 0;
3550         struct console *c;
3551         ssize_t count = 0;
3552
3553         console_lock();
3554         for_each_console(c) {
3555                 if (!c->device)
3556                         continue;
3557                 if (!c->write)
3558                         continue;
3559                 if ((c->flags & CON_ENABLED) == 0)
3560                         continue;
3561                 cs[i++] = c;
3562                 if (i >= ARRAY_SIZE(cs))
3563                         break;
3564         }
3565         while (i--) {
3566                 int index = cs[i]->index;
3567                 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3568
3569                 /* don't resolve tty0 as some programs depend on it */
3570                 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3571                         count += tty_line_name(drv, index, buf + count);
3572                 else
3573                         count += sprintf(buf + count, "%s%d",
3574                                          cs[i]->name, cs[i]->index);
3575
3576                 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3577         }
3578         console_unlock();
3579
3580         return count;
3581 }
3582 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3583
3584 static struct device *consdev;
3585
3586 void console_sysfs_notify(void)
3587 {
3588         if (consdev)
3589                 sysfs_notify(&consdev->kobj, NULL, "active");
3590 }
3591
3592 /*
3593  * Ok, now we can initialize the rest of the tty devices and can count
3594  * on memory allocations, interrupts etc..
3595  */
3596 int __init tty_init(void)
3597 {
3598         cdev_init(&tty_cdev, &tty_fops);
3599         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3600             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3601                 panic("Couldn't register /dev/tty driver\n");
3602         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3603
3604         cdev_init(&console_cdev, &console_fops);
3605         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3606             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3607                 panic("Couldn't register /dev/console driver\n");
3608         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3609                               "console");
3610         if (IS_ERR(consdev))
3611                 consdev = NULL;
3612         else
3613                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3614
3615 #ifdef CONFIG_VT
3616         vty_init(&console_fops);
3617 #endif
3618         return 0;
3619 }
3620