176f8af0d576129c2f0aaae966ad743431c193ab
[firefly-linux-kernel-4.4.55.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  * 
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43
44 #include <linux/usb.h>
45 #include <linux/usb/hcd.h>
46
47 #include "usb.h"
48
49
50 /*-------------------------------------------------------------------------*/
51
52 /*
53  * USB Host Controller Driver framework
54  *
55  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
56  * HCD-specific behaviors/bugs.
57  *
58  * This does error checks, tracks devices and urbs, and delegates to a
59  * "hc_driver" only for code (and data) that really needs to know about
60  * hardware differences.  That includes root hub registers, i/o queues,
61  * and so on ... but as little else as possible.
62  *
63  * Shared code includes most of the "root hub" code (these are emulated,
64  * though each HC's hardware works differently) and PCI glue, plus request
65  * tracking overhead.  The HCD code should only block on spinlocks or on
66  * hardware handshaking; blocking on software events (such as other kernel
67  * threads releasing resources, or completing actions) is all generic.
68  *
69  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
70  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
71  * only by the hub driver ... and that neither should be seen or used by
72  * usb client device drivers.
73  *
74  * Contributors of ideas or unattributed patches include: David Brownell,
75  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
76  *
77  * HISTORY:
78  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
79  *              associated cleanup.  "usb_hcd" still != "usb_bus".
80  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
81  */
82
83 /*-------------------------------------------------------------------------*/
84
85 /* Keep track of which host controller drivers are loaded */
86 unsigned long usb_hcds_loaded;
87 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
88
89 /* host controllers we manage */
90 LIST_HEAD (usb_bus_list);
91 EXPORT_SYMBOL_GPL (usb_bus_list);
92
93 /* used when allocating bus numbers */
94 #define USB_MAXBUS              64
95 struct usb_busmap {
96         unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
97 };
98 static struct usb_busmap busmap;
99
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
103
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115
116 static inline int is_root_hub(struct usb_device *udev)
117 {
118         return (udev->parent == NULL);
119 }
120
121 /*-------------------------------------------------------------------------*/
122
123 /*
124  * Sharable chunks of root hub code.
125  */
126
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL      bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER      bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130
131 /* usb 3.0 root hub device descriptor */
132 static const u8 usb3_rh_dev_descriptor[18] = {
133         0x12,       /*  __u8  bLength; */
134         0x01,       /*  __u8  bDescriptorType; Device */
135         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
136
137         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
138         0x00,       /*  __u8  bDeviceSubClass; */
139         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
140         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
141
142         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
143         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
144         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
145
146         0x03,       /*  __u8  iManufacturer; */
147         0x02,       /*  __u8  iProduct; */
148         0x01,       /*  __u8  iSerialNumber; */
149         0x01        /*  __u8  bNumConfigurations; */
150 };
151
152 /* usb 2.0 root hub device descriptor */
153 static const u8 usb2_rh_dev_descriptor [18] = {
154         0x12,       /*  __u8  bLength; */
155         0x01,       /*  __u8  bDescriptorType; Device */
156         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
157
158         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
159         0x00,       /*  __u8  bDeviceSubClass; */
160         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
161         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
162
163         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
164         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
165         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
166
167         0x03,       /*  __u8  iManufacturer; */
168         0x02,       /*  __u8  iProduct; */
169         0x01,       /*  __u8  iSerialNumber; */
170         0x01        /*  __u8  bNumConfigurations; */
171 };
172
173 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
174
175 /* usb 1.1 root hub device descriptor */
176 static const u8 usb11_rh_dev_descriptor [18] = {
177         0x12,       /*  __u8  bLength; */
178         0x01,       /*  __u8  bDescriptorType; Device */
179         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
180
181         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
182         0x00,       /*  __u8  bDeviceSubClass; */
183         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
184         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
185
186         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
187         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
188         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
189
190         0x03,       /*  __u8  iManufacturer; */
191         0x02,       /*  __u8  iProduct; */
192         0x01,       /*  __u8  iSerialNumber; */
193         0x01        /*  __u8  bNumConfigurations; */
194 };
195
196
197 /*-------------------------------------------------------------------------*/
198
199 /* Configuration descriptors for our root hubs */
200
201 static const u8 fs_rh_config_descriptor [] = {
202
203         /* one configuration */
204         0x09,       /*  __u8  bLength; */
205         0x02,       /*  __u8  bDescriptorType; Configuration */
206         0x19, 0x00, /*  __le16 wTotalLength; */
207         0x01,       /*  __u8  bNumInterfaces; (1) */
208         0x01,       /*  __u8  bConfigurationValue; */
209         0x00,       /*  __u8  iConfiguration; */
210         0xc0,       /*  __u8  bmAttributes; 
211                                  Bit 7: must be set,
212                                      6: Self-powered,
213                                      5: Remote wakeup,
214                                      4..0: resvd */
215         0x00,       /*  __u8  MaxPower; */
216       
217         /* USB 1.1:
218          * USB 2.0, single TT organization (mandatory):
219          *      one interface, protocol 0
220          *
221          * USB 2.0, multiple TT organization (optional):
222          *      two interfaces, protocols 1 (like single TT)
223          *      and 2 (multiple TT mode) ... config is
224          *      sometimes settable
225          *      NOT IMPLEMENTED
226          */
227
228         /* one interface */
229         0x09,       /*  __u8  if_bLength; */
230         0x04,       /*  __u8  if_bDescriptorType; Interface */
231         0x00,       /*  __u8  if_bInterfaceNumber; */
232         0x00,       /*  __u8  if_bAlternateSetting; */
233         0x01,       /*  __u8  if_bNumEndpoints; */
234         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
235         0x00,       /*  __u8  if_bInterfaceSubClass; */
236         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
237         0x00,       /*  __u8  if_iInterface; */
238      
239         /* one endpoint (status change endpoint) */
240         0x07,       /*  __u8  ep_bLength; */
241         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
242         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
243         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
244         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
245         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
246 };
247
248 static const u8 hs_rh_config_descriptor [] = {
249
250         /* one configuration */
251         0x09,       /*  __u8  bLength; */
252         0x02,       /*  __u8  bDescriptorType; Configuration */
253         0x19, 0x00, /*  __le16 wTotalLength; */
254         0x01,       /*  __u8  bNumInterfaces; (1) */
255         0x01,       /*  __u8  bConfigurationValue; */
256         0x00,       /*  __u8  iConfiguration; */
257         0xc0,       /*  __u8  bmAttributes; 
258                                  Bit 7: must be set,
259                                      6: Self-powered,
260                                      5: Remote wakeup,
261                                      4..0: resvd */
262         0x00,       /*  __u8  MaxPower; */
263       
264         /* USB 1.1:
265          * USB 2.0, single TT organization (mandatory):
266          *      one interface, protocol 0
267          *
268          * USB 2.0, multiple TT organization (optional):
269          *      two interfaces, protocols 1 (like single TT)
270          *      and 2 (multiple TT mode) ... config is
271          *      sometimes settable
272          *      NOT IMPLEMENTED
273          */
274
275         /* one interface */
276         0x09,       /*  __u8  if_bLength; */
277         0x04,       /*  __u8  if_bDescriptorType; Interface */
278         0x00,       /*  __u8  if_bInterfaceNumber; */
279         0x00,       /*  __u8  if_bAlternateSetting; */
280         0x01,       /*  __u8  if_bNumEndpoints; */
281         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
282         0x00,       /*  __u8  if_bInterfaceSubClass; */
283         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
284         0x00,       /*  __u8  if_iInterface; */
285      
286         /* one endpoint (status change endpoint) */
287         0x07,       /*  __u8  ep_bLength; */
288         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
289         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
290         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
291                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
292                      * see hub.c:hub_configure() for details. */
293         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
294         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
295 };
296
297 static const u8 ss_rh_config_descriptor[] = {
298         /* one configuration */
299         0x09,       /*  __u8  bLength; */
300         0x02,       /*  __u8  bDescriptorType; Configuration */
301         0x1f, 0x00, /*  __le16 wTotalLength; */
302         0x01,       /*  __u8  bNumInterfaces; (1) */
303         0x01,       /*  __u8  bConfigurationValue; */
304         0x00,       /*  __u8  iConfiguration; */
305         0xc0,       /*  __u8  bmAttributes;
306                                  Bit 7: must be set,
307                                      6: Self-powered,
308                                      5: Remote wakeup,
309                                      4..0: resvd */
310         0x00,       /*  __u8  MaxPower; */
311
312         /* one interface */
313         0x09,       /*  __u8  if_bLength; */
314         0x04,       /*  __u8  if_bDescriptorType; Interface */
315         0x00,       /*  __u8  if_bInterfaceNumber; */
316         0x00,       /*  __u8  if_bAlternateSetting; */
317         0x01,       /*  __u8  if_bNumEndpoints; */
318         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
319         0x00,       /*  __u8  if_bInterfaceSubClass; */
320         0x00,       /*  __u8  if_bInterfaceProtocol; */
321         0x00,       /*  __u8  if_iInterface; */
322
323         /* one endpoint (status change endpoint) */
324         0x07,       /*  __u8  ep_bLength; */
325         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
326         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
327         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
328                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
329                      * see hub.c:hub_configure() for details. */
330         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
331         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
332
333         /* one SuperSpeed endpoint companion descriptor */
334         0x06,        /* __u8 ss_bLength */
335         0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
336         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
337         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
338         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
339 };
340
341 /* authorized_default behaviour:
342  * -1 is authorized for all devices except wireless (old behaviour)
343  * 0 is unauthorized for all devices
344  * 1 is authorized for all devices
345  */
346 static int authorized_default = -1;
347 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
348 MODULE_PARM_DESC(authorized_default,
349                 "Default USB device authorization: 0 is not authorized, 1 is "
350                 "authorized, -1 is authorized except for wireless USB (default, "
351                 "old behaviour");
352 /*-------------------------------------------------------------------------*/
353
354 /**
355  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
356  * @s: Null-terminated ASCII (actually ISO-8859-1) string
357  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
358  * @len: Length (in bytes; may be odd) of descriptor buffer.
359  *
360  * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
361  * buflen, whichever is less.
362  *
363  * USB String descriptors can contain at most 126 characters; input
364  * strings longer than that are truncated.
365  */
366 static unsigned
367 ascii2desc(char const *s, u8 *buf, unsigned len)
368 {
369         unsigned n, t = 2 + 2*strlen(s);
370
371         if (t > 254)
372                 t = 254;        /* Longest possible UTF string descriptor */
373         if (len > t)
374                 len = t;
375
376         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
377
378         n = len;
379         while (n--) {
380                 *buf++ = t;
381                 if (!n--)
382                         break;
383                 *buf++ = t >> 8;
384                 t = (unsigned char)*s++;
385         }
386         return len;
387 }
388
389 /**
390  * rh_string() - provides string descriptors for root hub
391  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
392  * @hcd: the host controller for this root hub
393  * @data: buffer for output packet
394  * @len: length of the provided buffer
395  *
396  * Produces either a manufacturer, product or serial number string for the
397  * virtual root hub device.
398  * Returns the number of bytes filled in: the length of the descriptor or
399  * of the provided buffer, whichever is less.
400  */
401 static unsigned
402 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
403 {
404         char buf[100];
405         char const *s;
406         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
407
408         // language ids
409         switch (id) {
410         case 0:
411                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
412                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
413                 if (len > 4)
414                         len = 4;
415                 memcpy(data, langids, len);
416                 return len;
417         case 1:
418                 /* Serial number */
419                 s = hcd->self.bus_name;
420                 break;
421         case 2:
422                 /* Product name */
423                 s = hcd->product_desc;
424                 break;
425         case 3:
426                 /* Manufacturer */
427                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
428                         init_utsname()->release, hcd->driver->description);
429                 s = buf;
430                 break;
431         default:
432                 /* Can't happen; caller guarantees it */
433                 return 0;
434         }
435
436         return ascii2desc(s, data, len);
437 }
438
439
440 /* Root hub control transfers execute synchronously */
441 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
442 {
443         struct usb_ctrlrequest *cmd;
444         u16             typeReq, wValue, wIndex, wLength;
445         u8              *ubuf = urb->transfer_buffer;
446         /*
447          * tbuf should be as big as the BOS descriptor and
448          * the USB hub descriptor.
449          */
450         u8              tbuf[USB_DT_BOS_SIZE + USB_DT_USB_SS_CAP_SIZE]
451                 __attribute__((aligned(4)));
452         const u8        *bufp = tbuf;
453         unsigned        len = 0;
454         int             status;
455         u8              patch_wakeup = 0;
456         u8              patch_protocol = 0;
457
458         might_sleep();
459
460         spin_lock_irq(&hcd_root_hub_lock);
461         status = usb_hcd_link_urb_to_ep(hcd, urb);
462         spin_unlock_irq(&hcd_root_hub_lock);
463         if (status)
464                 return status;
465         urb->hcpriv = hcd;      /* Indicate it's queued */
466
467         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
468         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
469         wValue   = le16_to_cpu (cmd->wValue);
470         wIndex   = le16_to_cpu (cmd->wIndex);
471         wLength  = le16_to_cpu (cmd->wLength);
472
473         if (wLength > urb->transfer_buffer_length)
474                 goto error;
475
476         urb->actual_length = 0;
477         switch (typeReq) {
478
479         /* DEVICE REQUESTS */
480
481         /* The root hub's remote wakeup enable bit is implemented using
482          * driver model wakeup flags.  If this system supports wakeup
483          * through USB, userspace may change the default "allow wakeup"
484          * policy through sysfs or these calls.
485          *
486          * Most root hubs support wakeup from downstream devices, for
487          * runtime power management (disabling USB clocks and reducing
488          * VBUS power usage).  However, not all of them do so; silicon,
489          * board, and BIOS bugs here are not uncommon, so these can't
490          * be treated quite like external hubs.
491          *
492          * Likewise, not all root hubs will pass wakeup events upstream,
493          * to wake up the whole system.  So don't assume root hub and
494          * controller capabilities are identical.
495          */
496
497         case DeviceRequest | USB_REQ_GET_STATUS:
498                 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
499                                         << USB_DEVICE_REMOTE_WAKEUP)
500                                 | (1 << USB_DEVICE_SELF_POWERED);
501                 tbuf [1] = 0;
502                 len = 2;
503                 break;
504         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
505                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
506                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
507                 else
508                         goto error;
509                 break;
510         case DeviceOutRequest | USB_REQ_SET_FEATURE:
511                 if (device_can_wakeup(&hcd->self.root_hub->dev)
512                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
513                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
514                 else
515                         goto error;
516                 break;
517         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
518                 tbuf [0] = 1;
519                 len = 1;
520                         /* FALLTHROUGH */
521         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
522                 break;
523         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
524                 switch (wValue & 0xff00) {
525                 case USB_DT_DEVICE << 8:
526                         switch (hcd->speed) {
527                         case HCD_USB3:
528                                 bufp = usb3_rh_dev_descriptor;
529                                 break;
530                         case HCD_USB2:
531                                 bufp = usb2_rh_dev_descriptor;
532                                 break;
533                         case HCD_USB11:
534                                 bufp = usb11_rh_dev_descriptor;
535                                 break;
536                         default:
537                                 goto error;
538                         }
539                         len = 18;
540                         if (hcd->has_tt)
541                                 patch_protocol = 1;
542                         break;
543                 case USB_DT_CONFIG << 8:
544                         switch (hcd->speed) {
545                         case HCD_USB3:
546                                 bufp = ss_rh_config_descriptor;
547                                 len = sizeof ss_rh_config_descriptor;
548                                 break;
549                         case HCD_USB2:
550                                 bufp = hs_rh_config_descriptor;
551                                 len = sizeof hs_rh_config_descriptor;
552                                 break;
553                         case HCD_USB11:
554                                 bufp = fs_rh_config_descriptor;
555                                 len = sizeof fs_rh_config_descriptor;
556                                 break;
557                         default:
558                                 goto error;
559                         }
560                         if (device_can_wakeup(&hcd->self.root_hub->dev))
561                                 patch_wakeup = 1;
562                         break;
563                 case USB_DT_STRING << 8:
564                         if ((wValue & 0xff) < 4)
565                                 urb->actual_length = rh_string(wValue & 0xff,
566                                                 hcd, ubuf, wLength);
567                         else /* unsupported IDs --> "protocol stall" */
568                                 goto error;
569                         break;
570                 case USB_DT_BOS << 8:
571                         goto nongeneric;
572                 default:
573                         goto error;
574                 }
575                 break;
576         case DeviceRequest | USB_REQ_GET_INTERFACE:
577                 tbuf [0] = 0;
578                 len = 1;
579                         /* FALLTHROUGH */
580         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
581                 break;
582         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
583                 // wValue == urb->dev->devaddr
584                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
585                         wValue);
586                 break;
587
588         /* INTERFACE REQUESTS (no defined feature/status flags) */
589
590         /* ENDPOINT REQUESTS */
591
592         case EndpointRequest | USB_REQ_GET_STATUS:
593                 // ENDPOINT_HALT flag
594                 tbuf [0] = 0;
595                 tbuf [1] = 0;
596                 len = 2;
597                         /* FALLTHROUGH */
598         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
599         case EndpointOutRequest | USB_REQ_SET_FEATURE:
600                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
601                 break;
602
603         /* CLASS REQUESTS (and errors) */
604
605         default:
606 nongeneric:
607                 /* non-generic request */
608                 switch (typeReq) {
609                 case GetHubStatus:
610                 case GetPortStatus:
611                         len = 4;
612                         break;
613                 case GetHubDescriptor:
614                         len = sizeof (struct usb_hub_descriptor);
615                         break;
616                 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
617                         /* len is returned by hub_control */
618                         break;
619                 }
620                 status = hcd->driver->hub_control (hcd,
621                         typeReq, wValue, wIndex,
622                         tbuf, wLength);
623
624                 if (typeReq == GetHubDescriptor)
625                         usb_hub_adjust_deviceremovable(hcd->self.root_hub,
626                                 (struct usb_hub_descriptor *)tbuf);
627                 break;
628 error:
629                 /* "protocol stall" on error */
630                 status = -EPIPE;
631         }
632
633         if (status < 0) {
634                 len = 0;
635                 if (status != -EPIPE) {
636                         dev_dbg (hcd->self.controller,
637                                 "CTRL: TypeReq=0x%x val=0x%x "
638                                 "idx=0x%x len=%d ==> %d\n",
639                                 typeReq, wValue, wIndex,
640                                 wLength, status);
641                 }
642         } else if (status > 0) {
643                 /* hub_control may return the length of data copied. */
644                 len = status;
645                 status = 0;
646         }
647         if (len) {
648                 if (urb->transfer_buffer_length < len)
649                         len = urb->transfer_buffer_length;
650                 urb->actual_length = len;
651                 // always USB_DIR_IN, toward host
652                 memcpy (ubuf, bufp, len);
653
654                 /* report whether RH hardware supports remote wakeup */
655                 if (patch_wakeup &&
656                                 len > offsetof (struct usb_config_descriptor,
657                                                 bmAttributes))
658                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
659                                 |= USB_CONFIG_ATT_WAKEUP;
660
661                 /* report whether RH hardware has an integrated TT */
662                 if (patch_protocol &&
663                                 len > offsetof(struct usb_device_descriptor,
664                                                 bDeviceProtocol))
665                         ((struct usb_device_descriptor *) ubuf)->
666                                 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
667         }
668
669         /* any errors get returned through the urb completion */
670         spin_lock_irq(&hcd_root_hub_lock);
671         usb_hcd_unlink_urb_from_ep(hcd, urb);
672
673         /* This peculiar use of spinlocks echoes what real HC drivers do.
674          * Avoiding calls to local_irq_disable/enable makes the code
675          * RT-friendly.
676          */
677         spin_unlock(&hcd_root_hub_lock);
678         usb_hcd_giveback_urb(hcd, urb, status);
679         spin_lock(&hcd_root_hub_lock);
680
681         spin_unlock_irq(&hcd_root_hub_lock);
682         return 0;
683 }
684
685 /*-------------------------------------------------------------------------*/
686
687 /*
688  * Root Hub interrupt transfers are polled using a timer if the
689  * driver requests it; otherwise the driver is responsible for
690  * calling usb_hcd_poll_rh_status() when an event occurs.
691  *
692  * Completions are called in_interrupt(), but they may or may not
693  * be in_irq().
694  */
695 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
696 {
697         struct urb      *urb;
698         int             length;
699         unsigned long   flags;
700         char            buffer[6];      /* Any root hubs with > 31 ports? */
701
702         if (unlikely(!hcd->rh_pollable))
703                 return;
704         if (!hcd->uses_new_polling && !hcd->status_urb)
705                 return;
706
707         length = hcd->driver->hub_status_data(hcd, buffer);
708         if (length > 0) {
709
710                 /* try to complete the status urb */
711                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
712                 urb = hcd->status_urb;
713                 if (urb) {
714                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
715                         hcd->status_urb = NULL;
716                         urb->actual_length = length;
717                         memcpy(urb->transfer_buffer, buffer, length);
718
719                         usb_hcd_unlink_urb_from_ep(hcd, urb);
720                         spin_unlock(&hcd_root_hub_lock);
721                         usb_hcd_giveback_urb(hcd, urb, 0);
722                         spin_lock(&hcd_root_hub_lock);
723                 } else {
724                         length = 0;
725                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
726                 }
727                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
728         }
729
730         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
731          * exceed that limit if HZ is 100. The math is more clunky than
732          * maybe expected, this is to make sure that all timers for USB devices
733          * fire at the same time to give the CPU a break in between */
734         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
735                         (length == 0 && hcd->status_urb != NULL))
736                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
737 }
738 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
739
740 /* timer callback */
741 static void rh_timer_func (unsigned long _hcd)
742 {
743         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
744 }
745
746 /*-------------------------------------------------------------------------*/
747
748 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
749 {
750         int             retval;
751         unsigned long   flags;
752         unsigned        len = 1 + (urb->dev->maxchild / 8);
753
754         spin_lock_irqsave (&hcd_root_hub_lock, flags);
755         if (hcd->status_urb || urb->transfer_buffer_length < len) {
756                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
757                 retval = -EINVAL;
758                 goto done;
759         }
760
761         retval = usb_hcd_link_urb_to_ep(hcd, urb);
762         if (retval)
763                 goto done;
764
765         hcd->status_urb = urb;
766         urb->hcpriv = hcd;      /* indicate it's queued */
767         if (!hcd->uses_new_polling)
768                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
769
770         /* If a status change has already occurred, report it ASAP */
771         else if (HCD_POLL_PENDING(hcd))
772                 mod_timer(&hcd->rh_timer, jiffies);
773         retval = 0;
774  done:
775         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
776         return retval;
777 }
778
779 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
780 {
781         if (usb_endpoint_xfer_int(&urb->ep->desc))
782                 return rh_queue_status (hcd, urb);
783         if (usb_endpoint_xfer_control(&urb->ep->desc))
784                 return rh_call_control (hcd, urb);
785         return -EINVAL;
786 }
787
788 /*-------------------------------------------------------------------------*/
789
790 /* Unlinks of root-hub control URBs are legal, but they don't do anything
791  * since these URBs always execute synchronously.
792  */
793 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
794 {
795         unsigned long   flags;
796         int             rc;
797
798         spin_lock_irqsave(&hcd_root_hub_lock, flags);
799         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
800         if (rc)
801                 goto done;
802
803         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
804                 ;       /* Do nothing */
805
806         } else {                                /* Status URB */
807                 if (!hcd->uses_new_polling)
808                         del_timer (&hcd->rh_timer);
809                 if (urb == hcd->status_urb) {
810                         hcd->status_urb = NULL;
811                         usb_hcd_unlink_urb_from_ep(hcd, urb);
812
813                         spin_unlock(&hcd_root_hub_lock);
814                         usb_hcd_giveback_urb(hcd, urb, status);
815                         spin_lock(&hcd_root_hub_lock);
816                 }
817         }
818  done:
819         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
820         return rc;
821 }
822
823
824
825 /*
826  * Show & store the current value of authorized_default
827  */
828 static ssize_t usb_host_authorized_default_show(struct device *dev,
829                                                 struct device_attribute *attr,
830                                                 char *buf)
831 {
832         struct usb_device *rh_usb_dev = to_usb_device(dev);
833         struct usb_bus *usb_bus = rh_usb_dev->bus;
834         struct usb_hcd *usb_hcd;
835
836         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
837                 return -ENODEV;
838         usb_hcd = bus_to_hcd(usb_bus);
839         return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
840 }
841
842 static ssize_t usb_host_authorized_default_store(struct device *dev,
843                                                  struct device_attribute *attr,
844                                                  const char *buf, size_t size)
845 {
846         ssize_t result;
847         unsigned val;
848         struct usb_device *rh_usb_dev = to_usb_device(dev);
849         struct usb_bus *usb_bus = rh_usb_dev->bus;
850         struct usb_hcd *usb_hcd;
851
852         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
853                 return -ENODEV;
854         usb_hcd = bus_to_hcd(usb_bus);
855         result = sscanf(buf, "%u\n", &val);
856         if (result == 1) {
857                 usb_hcd->authorized_default = val? 1 : 0;
858                 result = size;
859         }
860         else
861                 result = -EINVAL;
862         return result;
863 }
864
865 static DEVICE_ATTR(authorized_default, 0644,
866             usb_host_authorized_default_show,
867             usb_host_authorized_default_store);
868
869
870 /* Group all the USB bus attributes */
871 static struct attribute *usb_bus_attrs[] = {
872                 &dev_attr_authorized_default.attr,
873                 NULL,
874 };
875
876 static struct attribute_group usb_bus_attr_group = {
877         .name = NULL,   /* we want them in the same directory */
878         .attrs = usb_bus_attrs,
879 };
880
881
882
883 /*-------------------------------------------------------------------------*/
884
885 /**
886  * usb_bus_init - shared initialization code
887  * @bus: the bus structure being initialized
888  *
889  * This code is used to initialize a usb_bus structure, memory for which is
890  * separately managed.
891  */
892 static void usb_bus_init (struct usb_bus *bus)
893 {
894         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
895
896         bus->devnum_next = 1;
897
898         bus->root_hub = NULL;
899         bus->busnum = -1;
900         bus->bandwidth_allocated = 0;
901         bus->bandwidth_int_reqs  = 0;
902         bus->bandwidth_isoc_reqs = 0;
903
904         INIT_LIST_HEAD (&bus->bus_list);
905 }
906
907 /*-------------------------------------------------------------------------*/
908
909 /**
910  * usb_register_bus - registers the USB host controller with the usb core
911  * @bus: pointer to the bus to register
912  * Context: !in_interrupt()
913  *
914  * Assigns a bus number, and links the controller into usbcore data
915  * structures so that it can be seen by scanning the bus list.
916  */
917 static int usb_register_bus(struct usb_bus *bus)
918 {
919         int result = -E2BIG;
920         int busnum;
921
922         mutex_lock(&usb_bus_list_lock);
923         busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
924         if (busnum >= USB_MAXBUS) {
925                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
926                 goto error_find_busnum;
927         }
928         set_bit (busnum, busmap.busmap);
929         bus->busnum = busnum;
930
931         /* Add it to the local list of buses */
932         list_add (&bus->bus_list, &usb_bus_list);
933         mutex_unlock(&usb_bus_list_lock);
934
935         usb_notify_add_bus(bus);
936
937         dev_info (bus->controller, "new USB bus registered, assigned bus "
938                   "number %d\n", bus->busnum);
939         return 0;
940
941 error_find_busnum:
942         mutex_unlock(&usb_bus_list_lock);
943         return result;
944 }
945
946 /**
947  * usb_deregister_bus - deregisters the USB host controller
948  * @bus: pointer to the bus to deregister
949  * Context: !in_interrupt()
950  *
951  * Recycles the bus number, and unlinks the controller from usbcore data
952  * structures so that it won't be seen by scanning the bus list.
953  */
954 static void usb_deregister_bus (struct usb_bus *bus)
955 {
956         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
957
958         /*
959          * NOTE: make sure that all the devices are removed by the
960          * controller code, as well as having it call this when cleaning
961          * itself up
962          */
963         mutex_lock(&usb_bus_list_lock);
964         list_del (&bus->bus_list);
965         mutex_unlock(&usb_bus_list_lock);
966
967         usb_notify_remove_bus(bus);
968
969         clear_bit (bus->busnum, busmap.busmap);
970 }
971
972 /**
973  * register_root_hub - called by usb_add_hcd() to register a root hub
974  * @hcd: host controller for this root hub
975  *
976  * This function registers the root hub with the USB subsystem.  It sets up
977  * the device properly in the device tree and then calls usb_new_device()
978  * to register the usb device.  It also assigns the root hub's USB address
979  * (always 1).
980  */
981 static int register_root_hub(struct usb_hcd *hcd)
982 {
983         struct device *parent_dev = hcd->self.controller;
984         struct usb_device *usb_dev = hcd->self.root_hub;
985         const int devnum = 1;
986         int retval;
987
988         usb_dev->devnum = devnum;
989         usb_dev->bus->devnum_next = devnum + 1;
990         memset (&usb_dev->bus->devmap.devicemap, 0,
991                         sizeof usb_dev->bus->devmap.devicemap);
992         set_bit (devnum, usb_dev->bus->devmap.devicemap);
993         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
994
995         mutex_lock(&usb_bus_list_lock);
996
997         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
998         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
999         if (retval != sizeof usb_dev->descriptor) {
1000                 mutex_unlock(&usb_bus_list_lock);
1001                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1002                                 dev_name(&usb_dev->dev), retval);
1003                 return (retval < 0) ? retval : -EMSGSIZE;
1004         }
1005         if (usb_dev->speed == USB_SPEED_SUPER) {
1006                 retval = usb_get_bos_descriptor(usb_dev);
1007                 if (retval < 0) {
1008                         mutex_unlock(&usb_bus_list_lock);
1009                         dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1010                                         dev_name(&usb_dev->dev), retval);
1011                         return retval;
1012                 }
1013                 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1014         }
1015
1016         retval = usb_new_device (usb_dev);
1017         if (retval) {
1018                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1019                                 dev_name(&usb_dev->dev), retval);
1020         } else {
1021                 spin_lock_irq (&hcd_root_hub_lock);
1022                 hcd->rh_registered = 1;
1023                 spin_unlock_irq (&hcd_root_hub_lock);
1024
1025                 /* Did the HC die before the root hub was registered? */
1026                 if (HCD_DEAD(hcd))
1027                         usb_hc_died (hcd);      /* This time clean up */
1028         }
1029         mutex_unlock(&usb_bus_list_lock);
1030
1031         return retval;
1032 }
1033
1034 /*
1035  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1036  * @bus: the bus which the root hub belongs to
1037  * @portnum: the port which is being resumed
1038  *
1039  * HCDs should call this function when they know that a resume signal is
1040  * being sent to a root-hub port.  The root hub will be prevented from
1041  * going into autosuspend until usb_hcd_end_port_resume() is called.
1042  *
1043  * The bus's private lock must be held by the caller.
1044  */
1045 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1046 {
1047         unsigned bit = 1 << portnum;
1048
1049         if (!(bus->resuming_ports & bit)) {
1050                 bus->resuming_ports |= bit;
1051                 pm_runtime_get_noresume(&bus->root_hub->dev);
1052         }
1053 }
1054 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1055
1056 /*
1057  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1058  * @bus: the bus which the root hub belongs to
1059  * @portnum: the port which is being resumed
1060  *
1061  * HCDs should call this function when they know that a resume signal has
1062  * stopped being sent to a root-hub port.  The root hub will be allowed to
1063  * autosuspend again.
1064  *
1065  * The bus's private lock must be held by the caller.
1066  */
1067 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1068 {
1069         unsigned bit = 1 << portnum;
1070
1071         if (bus->resuming_ports & bit) {
1072                 bus->resuming_ports &= ~bit;
1073                 pm_runtime_put_noidle(&bus->root_hub->dev);
1074         }
1075 }
1076 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1077
1078 /*-------------------------------------------------------------------------*/
1079
1080 /**
1081  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1082  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1083  * @is_input: true iff the transaction sends data to the host
1084  * @isoc: true for isochronous transactions, false for interrupt ones
1085  * @bytecount: how many bytes in the transaction.
1086  *
1087  * Returns approximate bus time in nanoseconds for a periodic transaction.
1088  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1089  * scheduled in software, this function is only used for such scheduling.
1090  */
1091 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1092 {
1093         unsigned long   tmp;
1094
1095         switch (speed) {
1096         case USB_SPEED_LOW:     /* INTR only */
1097                 if (is_input) {
1098                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1099                         return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1100                 } else {
1101                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1102                         return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1103                 }
1104         case USB_SPEED_FULL:    /* ISOC or INTR */
1105                 if (isoc) {
1106                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1107                         return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1108                 } else {
1109                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1110                         return (9107L + BW_HOST_DELAY + tmp);
1111                 }
1112         case USB_SPEED_HIGH:    /* ISOC or INTR */
1113                 // FIXME adjust for input vs output
1114                 if (isoc)
1115                         tmp = HS_NSECS_ISO (bytecount);
1116                 else
1117                         tmp = HS_NSECS (bytecount);
1118                 return tmp;
1119         default:
1120                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1121                 return -1;
1122         }
1123 }
1124 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1125
1126
1127 /*-------------------------------------------------------------------------*/
1128
1129 /*
1130  * Generic HC operations.
1131  */
1132
1133 /*-------------------------------------------------------------------------*/
1134
1135 /**
1136  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1137  * @hcd: host controller to which @urb was submitted
1138  * @urb: URB being submitted
1139  *
1140  * Host controller drivers should call this routine in their enqueue()
1141  * method.  The HCD's private spinlock must be held and interrupts must
1142  * be disabled.  The actions carried out here are required for URB
1143  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1144  *
1145  * Returns 0 for no error, otherwise a negative error code (in which case
1146  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1147  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1148  * the private spinlock and returning.
1149  */
1150 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1151 {
1152         int             rc = 0;
1153
1154         spin_lock(&hcd_urb_list_lock);
1155
1156         /* Check that the URB isn't being killed */
1157         if (unlikely(atomic_read(&urb->reject))) {
1158                 rc = -EPERM;
1159                 goto done;
1160         }
1161
1162         if (unlikely(!urb->ep->enabled)) {
1163                 rc = -ENOENT;
1164                 goto done;
1165         }
1166
1167         if (unlikely(!urb->dev->can_submit)) {
1168                 rc = -EHOSTUNREACH;
1169                 goto done;
1170         }
1171
1172         /*
1173          * Check the host controller's state and add the URB to the
1174          * endpoint's queue.
1175          */
1176         if (HCD_RH_RUNNING(hcd)) {
1177                 urb->unlinked = 0;
1178                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1179         } else {
1180                 rc = -ESHUTDOWN;
1181                 goto done;
1182         }
1183  done:
1184         spin_unlock(&hcd_urb_list_lock);
1185         return rc;
1186 }
1187 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1188
1189 /**
1190  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1191  * @hcd: host controller to which @urb was submitted
1192  * @urb: URB being checked for unlinkability
1193  * @status: error code to store in @urb if the unlink succeeds
1194  *
1195  * Host controller drivers should call this routine in their dequeue()
1196  * method.  The HCD's private spinlock must be held and interrupts must
1197  * be disabled.  The actions carried out here are required for making
1198  * sure than an unlink is valid.
1199  *
1200  * Returns 0 for no error, otherwise a negative error code (in which case
1201  * the dequeue() method must fail).  The possible error codes are:
1202  *
1203  *      -EIDRM: @urb was not submitted or has already completed.
1204  *              The completion function may not have been called yet.
1205  *
1206  *      -EBUSY: @urb has already been unlinked.
1207  */
1208 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1209                 int status)
1210 {
1211         struct list_head        *tmp;
1212
1213         /* insist the urb is still queued */
1214         list_for_each(tmp, &urb->ep->urb_list) {
1215                 if (tmp == &urb->urb_list)
1216                         break;
1217         }
1218         if (tmp != &urb->urb_list)
1219                 return -EIDRM;
1220
1221         /* Any status except -EINPROGRESS means something already started to
1222          * unlink this URB from the hardware.  So there's no more work to do.
1223          */
1224         if (urb->unlinked)
1225                 return -EBUSY;
1226         urb->unlinked = status;
1227         return 0;
1228 }
1229 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1230
1231 /**
1232  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1233  * @hcd: host controller to which @urb was submitted
1234  * @urb: URB being unlinked
1235  *
1236  * Host controller drivers should call this routine before calling
1237  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1238  * interrupts must be disabled.  The actions carried out here are required
1239  * for URB completion.
1240  */
1241 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1242 {
1243         /* clear all state linking urb to this dev (and hcd) */
1244         spin_lock(&hcd_urb_list_lock);
1245         list_del_init(&urb->urb_list);
1246         spin_unlock(&hcd_urb_list_lock);
1247 }
1248 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1249
1250 /*
1251  * Some usb host controllers can only perform dma using a small SRAM area.
1252  * The usb core itself is however optimized for host controllers that can dma
1253  * using regular system memory - like pci devices doing bus mastering.
1254  *
1255  * To support host controllers with limited dma capabilites we provide dma
1256  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1257  * For this to work properly the host controller code must first use the
1258  * function dma_declare_coherent_memory() to point out which memory area
1259  * that should be used for dma allocations.
1260  *
1261  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1262  * dma using dma_alloc_coherent() which in turn allocates from the memory
1263  * area pointed out with dma_declare_coherent_memory().
1264  *
1265  * So, to summarize...
1266  *
1267  * - We need "local" memory, canonical example being
1268  *   a small SRAM on a discrete controller being the
1269  *   only memory that the controller can read ...
1270  *   (a) "normal" kernel memory is no good, and
1271  *   (b) there's not enough to share
1272  *
1273  * - The only *portable* hook for such stuff in the
1274  *   DMA framework is dma_declare_coherent_memory()
1275  *
1276  * - So we use that, even though the primary requirement
1277  *   is that the memory be "local" (hence addressible
1278  *   by that device), not "coherent".
1279  *
1280  */
1281
1282 static int hcd_alloc_coherent(struct usb_bus *bus,
1283                               gfp_t mem_flags, dma_addr_t *dma_handle,
1284                               void **vaddr_handle, size_t size,
1285                               enum dma_data_direction dir)
1286 {
1287         unsigned char *vaddr;
1288
1289         if (*vaddr_handle == NULL) {
1290                 WARN_ON_ONCE(1);
1291                 return -EFAULT;
1292         }
1293
1294         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1295                                  mem_flags, dma_handle);
1296         if (!vaddr)
1297                 return -ENOMEM;
1298
1299         /*
1300          * Store the virtual address of the buffer at the end
1301          * of the allocated dma buffer. The size of the buffer
1302          * may be uneven so use unaligned functions instead
1303          * of just rounding up. It makes sense to optimize for
1304          * memory footprint over access speed since the amount
1305          * of memory available for dma may be limited.
1306          */
1307         put_unaligned((unsigned long)*vaddr_handle,
1308                       (unsigned long *)(vaddr + size));
1309
1310         if (dir == DMA_TO_DEVICE)
1311                 memcpy(vaddr, *vaddr_handle, size);
1312
1313         *vaddr_handle = vaddr;
1314         return 0;
1315 }
1316
1317 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1318                               void **vaddr_handle, size_t size,
1319                               enum dma_data_direction dir)
1320 {
1321         unsigned char *vaddr = *vaddr_handle;
1322
1323         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1324
1325         if (dir == DMA_FROM_DEVICE)
1326                 memcpy(vaddr, *vaddr_handle, size);
1327
1328         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1329
1330         *vaddr_handle = vaddr;
1331         *dma_handle = 0;
1332 }
1333
1334 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1335 {
1336         if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1337                 dma_unmap_single(hcd->self.controller,
1338                                 urb->setup_dma,
1339                                 sizeof(struct usb_ctrlrequest),
1340                                 DMA_TO_DEVICE);
1341         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1342                 hcd_free_coherent(urb->dev->bus,
1343                                 &urb->setup_dma,
1344                                 (void **) &urb->setup_packet,
1345                                 sizeof(struct usb_ctrlrequest),
1346                                 DMA_TO_DEVICE);
1347
1348         /* Make it safe to call this routine more than once */
1349         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1350 }
1351 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1352
1353 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1354 {
1355         if (hcd->driver->unmap_urb_for_dma)
1356                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1357         else
1358                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1359 }
1360
1361 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1362 {
1363         enum dma_data_direction dir;
1364
1365         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1366
1367         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1368         if (urb->transfer_flags & URB_DMA_MAP_SG)
1369                 dma_unmap_sg(hcd->self.controller,
1370                                 urb->sg,
1371                                 urb->num_sgs,
1372                                 dir);
1373         else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1374                 dma_unmap_page(hcd->self.controller,
1375                                 urb->transfer_dma,
1376                                 urb->transfer_buffer_length,
1377                                 dir);
1378         else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1379                 dma_unmap_single(hcd->self.controller,
1380                                 urb->transfer_dma,
1381                                 urb->transfer_buffer_length,
1382                                 dir);
1383         else if (urb->transfer_flags & URB_MAP_LOCAL)
1384                 hcd_free_coherent(urb->dev->bus,
1385                                 &urb->transfer_dma,
1386                                 &urb->transfer_buffer,
1387                                 urb->transfer_buffer_length,
1388                                 dir);
1389
1390         /* Make it safe to call this routine more than once */
1391         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1392                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1393 }
1394 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1395
1396 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1397                            gfp_t mem_flags)
1398 {
1399         if (hcd->driver->map_urb_for_dma)
1400                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1401         else
1402                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1403 }
1404
1405 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1406                             gfp_t mem_flags)
1407 {
1408         enum dma_data_direction dir;
1409         int ret = 0;
1410
1411         /* Map the URB's buffers for DMA access.
1412          * Lower level HCD code should use *_dma exclusively,
1413          * unless it uses pio or talks to another transport,
1414          * or uses the provided scatter gather list for bulk.
1415          */
1416
1417         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1418                 if (hcd->self.uses_pio_for_control)
1419                         return ret;
1420                 if (hcd->self.uses_dma) {
1421                         urb->setup_dma = dma_map_single(
1422                                         hcd->self.controller,
1423                                         urb->setup_packet,
1424                                         sizeof(struct usb_ctrlrequest),
1425                                         DMA_TO_DEVICE);
1426                         if (dma_mapping_error(hcd->self.controller,
1427                                                 urb->setup_dma))
1428                                 return -EAGAIN;
1429                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1430                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1431                         ret = hcd_alloc_coherent(
1432                                         urb->dev->bus, mem_flags,
1433                                         &urb->setup_dma,
1434                                         (void **)&urb->setup_packet,
1435                                         sizeof(struct usb_ctrlrequest),
1436                                         DMA_TO_DEVICE);
1437                         if (ret)
1438                                 return ret;
1439                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1440                 }
1441         }
1442
1443         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1444         if (urb->transfer_buffer_length != 0
1445             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1446                 if (hcd->self.uses_dma) {
1447                         if (urb->num_sgs) {
1448                                 int n;
1449
1450                                 /* We don't support sg for isoc transfers ! */
1451                                 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1452                                         WARN_ON(1);
1453                                         return -EINVAL;
1454                                 }
1455
1456                                 n = dma_map_sg(
1457                                                 hcd->self.controller,
1458                                                 urb->sg,
1459                                                 urb->num_sgs,
1460                                                 dir);
1461                                 if (n <= 0)
1462                                         ret = -EAGAIN;
1463                                 else
1464                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1465                                 urb->num_mapped_sgs = n;
1466                                 if (n != urb->num_sgs)
1467                                         urb->transfer_flags |=
1468                                                         URB_DMA_SG_COMBINED;
1469                         } else if (urb->sg) {
1470                                 struct scatterlist *sg = urb->sg;
1471                                 urb->transfer_dma = dma_map_page(
1472                                                 hcd->self.controller,
1473                                                 sg_page(sg),
1474                                                 sg->offset,
1475                                                 urb->transfer_buffer_length,
1476                                                 dir);
1477                                 if (dma_mapping_error(hcd->self.controller,
1478                                                 urb->transfer_dma))
1479                                         ret = -EAGAIN;
1480                                 else
1481                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1482                         } else {
1483                                 urb->transfer_dma = dma_map_single(
1484                                                 hcd->self.controller,
1485                                                 urb->transfer_buffer,
1486                                                 urb->transfer_buffer_length,
1487                                                 dir);
1488                                 if (dma_mapping_error(hcd->self.controller,
1489                                                 urb->transfer_dma))
1490                                         ret = -EAGAIN;
1491                                 else
1492                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1493                         }
1494                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1495                         ret = hcd_alloc_coherent(
1496                                         urb->dev->bus, mem_flags,
1497                                         &urb->transfer_dma,
1498                                         &urb->transfer_buffer,
1499                                         urb->transfer_buffer_length,
1500                                         dir);
1501                         if (ret == 0)
1502                                 urb->transfer_flags |= URB_MAP_LOCAL;
1503                 }
1504                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1505                                 URB_SETUP_MAP_LOCAL)))
1506                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1507         }
1508         return ret;
1509 }
1510 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1511
1512 /*-------------------------------------------------------------------------*/
1513
1514 /* may be called in any context with a valid urb->dev usecount
1515  * caller surrenders "ownership" of urb
1516  * expects usb_submit_urb() to have sanity checked and conditioned all
1517  * inputs in the urb
1518  */
1519 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1520 {
1521         int                     status;
1522         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1523
1524         /* increment urb's reference count as part of giving it to the HCD
1525          * (which will control it).  HCD guarantees that it either returns
1526          * an error or calls giveback(), but not both.
1527          */
1528         usb_get_urb(urb);
1529         atomic_inc(&urb->use_count);
1530         atomic_inc(&urb->dev->urbnum);
1531         usbmon_urb_submit(&hcd->self, urb);
1532
1533         /* NOTE requirements on root-hub callers (usbfs and the hub
1534          * driver, for now):  URBs' urb->transfer_buffer must be
1535          * valid and usb_buffer_{sync,unmap}() not be needed, since
1536          * they could clobber root hub response data.  Also, control
1537          * URBs must be submitted in process context with interrupts
1538          * enabled.
1539          */
1540
1541         if (is_root_hub(urb->dev)) {
1542                 status = rh_urb_enqueue(hcd, urb);
1543         } else {
1544                 status = map_urb_for_dma(hcd, urb, mem_flags);
1545                 if (likely(status == 0)) {
1546                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1547                         if (unlikely(status))
1548                                 unmap_urb_for_dma(hcd, urb);
1549                 }
1550         }
1551
1552         if (unlikely(status)) {
1553                 usbmon_urb_submit_error(&hcd->self, urb, status);
1554                 urb->hcpriv = NULL;
1555                 INIT_LIST_HEAD(&urb->urb_list);
1556                 atomic_dec(&urb->use_count);
1557                 atomic_dec(&urb->dev->urbnum);
1558                 if (atomic_read(&urb->reject))
1559                         wake_up(&usb_kill_urb_queue);
1560                 usb_put_urb(urb);
1561         }
1562         return status;
1563 }
1564
1565 /*-------------------------------------------------------------------------*/
1566
1567 /* this makes the hcd giveback() the urb more quickly, by kicking it
1568  * off hardware queues (which may take a while) and returning it as
1569  * soon as practical.  we've already set up the urb's return status,
1570  * but we can't know if the callback completed already.
1571  */
1572 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1573 {
1574         int             value;
1575
1576         if (is_root_hub(urb->dev))
1577                 value = usb_rh_urb_dequeue(hcd, urb, status);
1578         else {
1579
1580                 /* The only reason an HCD might fail this call is if
1581                  * it has not yet fully queued the urb to begin with.
1582                  * Such failures should be harmless. */
1583                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1584         }
1585         return value;
1586 }
1587
1588 /*
1589  * called in any context
1590  *
1591  * caller guarantees urb won't be recycled till both unlink()
1592  * and the urb's completion function return
1593  */
1594 int usb_hcd_unlink_urb (struct urb *urb, int status)
1595 {
1596         struct usb_hcd          *hcd;
1597         int                     retval = -EIDRM;
1598         unsigned long           flags;
1599
1600         /* Prevent the device and bus from going away while
1601          * the unlink is carried out.  If they are already gone
1602          * then urb->use_count must be 0, since disconnected
1603          * devices can't have any active URBs.
1604          */
1605         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1606         if (atomic_read(&urb->use_count) > 0) {
1607                 retval = 0;
1608                 usb_get_dev(urb->dev);
1609         }
1610         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1611         if (retval == 0) {
1612                 hcd = bus_to_hcd(urb->dev->bus);
1613                 retval = unlink1(hcd, urb, status);
1614                 usb_put_dev(urb->dev);
1615         }
1616
1617         if (retval == 0)
1618                 retval = -EINPROGRESS;
1619         else if (retval != -EIDRM && retval != -EBUSY)
1620                 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1621                                 urb, retval);
1622         return retval;
1623 }
1624
1625 /*-------------------------------------------------------------------------*/
1626
1627 /**
1628  * usb_hcd_giveback_urb - return URB from HCD to device driver
1629  * @hcd: host controller returning the URB
1630  * @urb: urb being returned to the USB device driver.
1631  * @status: completion status code for the URB.
1632  * Context: in_interrupt()
1633  *
1634  * This hands the URB from HCD to its USB device driver, using its
1635  * completion function.  The HCD has freed all per-urb resources
1636  * (and is done using urb->hcpriv).  It also released all HCD locks;
1637  * the device driver won't cause problems if it frees, modifies,
1638  * or resubmits this URB.
1639  *
1640  * If @urb was unlinked, the value of @status will be overridden by
1641  * @urb->unlinked.  Erroneous short transfers are detected in case
1642  * the HCD hasn't checked for them.
1643  */
1644 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1645 {
1646         urb->hcpriv = NULL;
1647         if (unlikely(urb->unlinked))
1648                 status = urb->unlinked;
1649         else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1650                         urb->actual_length < urb->transfer_buffer_length &&
1651                         !status))
1652                 status = -EREMOTEIO;
1653
1654         unmap_urb_for_dma(hcd, urb);
1655         usbmon_urb_complete(&hcd->self, urb, status);
1656         usb_unanchor_urb(urb);
1657
1658         /* pass ownership to the completion handler */
1659         urb->status = status;
1660         if(!atomic_read(&urb->use_count)){
1661                 printk("%s %d\n", __func__, atomic_read(&urb->use_count));
1662                 return;
1663         }
1664         atomic_dec (&urb->use_count);
1665         urb->complete (urb);
1666         if (unlikely(atomic_read(&urb->reject)))
1667                 wake_up (&usb_kill_urb_queue);
1668         usb_put_urb (urb);
1669 }
1670 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1671
1672 /*-------------------------------------------------------------------------*/
1673
1674 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1675  * queue to drain completely.  The caller must first insure that no more
1676  * URBs can be submitted for this endpoint.
1677  */
1678 void usb_hcd_flush_endpoint(struct usb_device *udev,
1679                 struct usb_host_endpoint *ep)
1680 {
1681         struct usb_hcd          *hcd;
1682         struct urb              *urb;
1683
1684         if (!ep)
1685                 return;
1686         might_sleep();
1687         hcd = bus_to_hcd(udev->bus);
1688
1689         /* No more submits can occur */
1690         spin_lock_irq(&hcd_urb_list_lock);
1691 rescan:
1692         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1693                 int     is_in;
1694
1695                 if (urb->unlinked)
1696                         continue;
1697                 usb_get_urb (urb);
1698                 is_in = usb_urb_dir_in(urb);
1699                 spin_unlock(&hcd_urb_list_lock);
1700
1701                 /* kick hcd */
1702                 unlink1(hcd, urb, -ESHUTDOWN);
1703                 dev_dbg (hcd->self.controller,
1704                         "shutdown urb %p ep%d%s%s\n",
1705                         urb, usb_endpoint_num(&ep->desc),
1706                         is_in ? "in" : "out",
1707                         ({      char *s;
1708
1709                                  switch (usb_endpoint_type(&ep->desc)) {
1710                                  case USB_ENDPOINT_XFER_CONTROL:
1711                                         s = ""; break;
1712                                  case USB_ENDPOINT_XFER_BULK:
1713                                         s = "-bulk"; break;
1714                                  case USB_ENDPOINT_XFER_INT:
1715                                         s = "-intr"; break;
1716                                  default:
1717                                         s = "-iso"; break;
1718                                 };
1719                                 s;
1720                         }));
1721                 usb_put_urb (urb);
1722
1723                 /* list contents may have changed */
1724                 spin_lock(&hcd_urb_list_lock);
1725                 goto rescan;
1726         }
1727         spin_unlock_irq(&hcd_urb_list_lock);
1728
1729         /* Wait until the endpoint queue is completely empty */
1730         while (!list_empty (&ep->urb_list)) {
1731                 spin_lock_irq(&hcd_urb_list_lock);
1732
1733                 /* The list may have changed while we acquired the spinlock */
1734                 urb = NULL;
1735                 if (!list_empty (&ep->urb_list)) {
1736                         urb = list_entry (ep->urb_list.prev, struct urb,
1737                                         urb_list);
1738                         usb_get_urb (urb);
1739                 }
1740                 spin_unlock_irq(&hcd_urb_list_lock);
1741
1742                 if (urb) {
1743                         usb_kill_urb (urb);
1744                         usb_put_urb (urb);
1745                 }
1746         }
1747 }
1748
1749 /**
1750  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1751  *                              the bus bandwidth
1752  * @udev: target &usb_device
1753  * @new_config: new configuration to install
1754  * @cur_alt: the current alternate interface setting
1755  * @new_alt: alternate interface setting that is being installed
1756  *
1757  * To change configurations, pass in the new configuration in new_config,
1758  * and pass NULL for cur_alt and new_alt.
1759  *
1760  * To reset a device's configuration (put the device in the ADDRESSED state),
1761  * pass in NULL for new_config, cur_alt, and new_alt.
1762  *
1763  * To change alternate interface settings, pass in NULL for new_config,
1764  * pass in the current alternate interface setting in cur_alt,
1765  * and pass in the new alternate interface setting in new_alt.
1766  *
1767  * Returns an error if the requested bandwidth change exceeds the
1768  * bus bandwidth or host controller internal resources.
1769  */
1770 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1771                 struct usb_host_config *new_config,
1772                 struct usb_host_interface *cur_alt,
1773                 struct usb_host_interface *new_alt)
1774 {
1775         int num_intfs, i, j;
1776         struct usb_host_interface *alt = NULL;
1777         int ret = 0;
1778         struct usb_hcd *hcd;
1779         struct usb_host_endpoint *ep;
1780
1781         hcd = bus_to_hcd(udev->bus);
1782         if (!hcd->driver->check_bandwidth)
1783                 return 0;
1784
1785         /* Configuration is being removed - set configuration 0 */
1786         if (!new_config && !cur_alt) {
1787                 for (i = 1; i < 16; ++i) {
1788                         ep = udev->ep_out[i];
1789                         if (ep)
1790                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1791                         ep = udev->ep_in[i];
1792                         if (ep)
1793                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1794                 }
1795                 hcd->driver->check_bandwidth(hcd, udev);
1796                 return 0;
1797         }
1798         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1799          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1800          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1801          * ok to exclude it.
1802          */
1803         if (new_config) {
1804                 num_intfs = new_config->desc.bNumInterfaces;
1805                 /* Remove endpoints (except endpoint 0, which is always on the
1806                  * schedule) from the old config from the schedule
1807                  */
1808                 for (i = 1; i < 16; ++i) {
1809                         ep = udev->ep_out[i];
1810                         if (ep) {
1811                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1812                                 if (ret < 0)
1813                                         goto reset;
1814                         }
1815                         ep = udev->ep_in[i];
1816                         if (ep) {
1817                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1818                                 if (ret < 0)
1819                                         goto reset;
1820                         }
1821                 }
1822                 for (i = 0; i < num_intfs; ++i) {
1823                         struct usb_host_interface *first_alt;
1824                         int iface_num;
1825
1826                         first_alt = &new_config->intf_cache[i]->altsetting[0];
1827                         iface_num = first_alt->desc.bInterfaceNumber;
1828                         /* Set up endpoints for alternate interface setting 0 */
1829                         alt = usb_find_alt_setting(new_config, iface_num, 0);
1830                         if (!alt)
1831                                 /* No alt setting 0? Pick the first setting. */
1832                                 alt = first_alt;
1833
1834                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1835                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1836                                 if (ret < 0)
1837                                         goto reset;
1838                         }
1839                 }
1840         }
1841         if (cur_alt && new_alt) {
1842                 struct usb_interface *iface = usb_ifnum_to_if(udev,
1843                                 cur_alt->desc.bInterfaceNumber);
1844
1845                 if (!iface)
1846                         return -EINVAL;
1847                 if (iface->resetting_device) {
1848                         /*
1849                          * The USB core just reset the device, so the xHCI host
1850                          * and the device will think alt setting 0 is installed.
1851                          * However, the USB core will pass in the alternate
1852                          * setting installed before the reset as cur_alt.  Dig
1853                          * out the alternate setting 0 structure, or the first
1854                          * alternate setting if a broken device doesn't have alt
1855                          * setting 0.
1856                          */
1857                         cur_alt = usb_altnum_to_altsetting(iface, 0);
1858                         if (!cur_alt)
1859                                 cur_alt = &iface->altsetting[0];
1860                 }
1861
1862                 /* Drop all the endpoints in the current alt setting */
1863                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1864                         ret = hcd->driver->drop_endpoint(hcd, udev,
1865                                         &cur_alt->endpoint[i]);
1866                         if (ret < 0)
1867                                 goto reset;
1868                 }
1869                 /* Add all the endpoints in the new alt setting */
1870                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1871                         ret = hcd->driver->add_endpoint(hcd, udev,
1872                                         &new_alt->endpoint[i]);
1873                         if (ret < 0)
1874                                 goto reset;
1875                 }
1876         }
1877         ret = hcd->driver->check_bandwidth(hcd, udev);
1878 reset:
1879         if (ret < 0)
1880                 hcd->driver->reset_bandwidth(hcd, udev);
1881         return ret;
1882 }
1883
1884 /* Disables the endpoint: synchronizes with the hcd to make sure all
1885  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1886  * have been called previously.  Use for set_configuration, set_interface,
1887  * driver removal, physical disconnect.
1888  *
1889  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1890  * type, maxpacket size, toggle, halt status, and scheduling.
1891  */
1892 void usb_hcd_disable_endpoint(struct usb_device *udev,
1893                 struct usb_host_endpoint *ep)
1894 {
1895         struct usb_hcd          *hcd;
1896
1897         might_sleep();
1898         hcd = bus_to_hcd(udev->bus);
1899         if (hcd->driver->endpoint_disable)
1900                 hcd->driver->endpoint_disable(hcd, ep);
1901 }
1902
1903 /**
1904  * usb_hcd_reset_endpoint - reset host endpoint state
1905  * @udev: USB device.
1906  * @ep:   the endpoint to reset.
1907  *
1908  * Resets any host endpoint state such as the toggle bit, sequence
1909  * number and current window.
1910  */
1911 void usb_hcd_reset_endpoint(struct usb_device *udev,
1912                             struct usb_host_endpoint *ep)
1913 {
1914         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1915
1916         if (hcd->driver->endpoint_reset)
1917                 hcd->driver->endpoint_reset(hcd, ep);
1918         else {
1919                 int epnum = usb_endpoint_num(&ep->desc);
1920                 int is_out = usb_endpoint_dir_out(&ep->desc);
1921                 int is_control = usb_endpoint_xfer_control(&ep->desc);
1922
1923                 usb_settoggle(udev, epnum, is_out, 0);
1924                 if (is_control)
1925                         usb_settoggle(udev, epnum, !is_out, 0);
1926         }
1927 }
1928
1929 /**
1930  * usb_alloc_streams - allocate bulk endpoint stream IDs.
1931  * @interface:          alternate setting that includes all endpoints.
1932  * @eps:                array of endpoints that need streams.
1933  * @num_eps:            number of endpoints in the array.
1934  * @num_streams:        number of streams to allocate.
1935  * @mem_flags:          flags hcd should use to allocate memory.
1936  *
1937  * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1938  * Drivers may queue multiple transfers to different stream IDs, which may
1939  * complete in a different order than they were queued.
1940  */
1941 int usb_alloc_streams(struct usb_interface *interface,
1942                 struct usb_host_endpoint **eps, unsigned int num_eps,
1943                 unsigned int num_streams, gfp_t mem_flags)
1944 {
1945         struct usb_hcd *hcd;
1946         struct usb_device *dev;
1947         int i;
1948
1949         dev = interface_to_usbdev(interface);
1950         hcd = bus_to_hcd(dev->bus);
1951         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1952                 return -EINVAL;
1953         if (dev->speed != USB_SPEED_SUPER)
1954                 return -EINVAL;
1955
1956         /* Streams only apply to bulk endpoints. */
1957         for (i = 0; i < num_eps; i++)
1958                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1959                         return -EINVAL;
1960
1961         return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1962                         num_streams, mem_flags);
1963 }
1964 EXPORT_SYMBOL_GPL(usb_alloc_streams);
1965
1966 /**
1967  * usb_free_streams - free bulk endpoint stream IDs.
1968  * @interface:  alternate setting that includes all endpoints.
1969  * @eps:        array of endpoints to remove streams from.
1970  * @num_eps:    number of endpoints in the array.
1971  * @mem_flags:  flags hcd should use to allocate memory.
1972  *
1973  * Reverts a group of bulk endpoints back to not using stream IDs.
1974  * Can fail if we are given bad arguments, or HCD is broken.
1975  */
1976 void usb_free_streams(struct usb_interface *interface,
1977                 struct usb_host_endpoint **eps, unsigned int num_eps,
1978                 gfp_t mem_flags)
1979 {
1980         struct usb_hcd *hcd;
1981         struct usb_device *dev;
1982         int i;
1983
1984         dev = interface_to_usbdev(interface);
1985         hcd = bus_to_hcd(dev->bus);
1986         if (dev->speed != USB_SPEED_SUPER)
1987                 return;
1988
1989         /* Streams only apply to bulk endpoints. */
1990         for (i = 0; i < num_eps; i++)
1991                 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1992                         return;
1993
1994         hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1995 }
1996 EXPORT_SYMBOL_GPL(usb_free_streams);
1997
1998 /* Protect against drivers that try to unlink URBs after the device
1999  * is gone, by waiting until all unlinks for @udev are finished.
2000  * Since we don't currently track URBs by device, simply wait until
2001  * nothing is running in the locked region of usb_hcd_unlink_urb().
2002  */
2003 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2004 {
2005         spin_lock_irq(&hcd_urb_unlink_lock);
2006         spin_unlock_irq(&hcd_urb_unlink_lock);
2007 }
2008
2009 /*-------------------------------------------------------------------------*/
2010
2011 /* called in any context */
2012 int usb_hcd_get_frame_number (struct usb_device *udev)
2013 {
2014         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
2015
2016         if (!HCD_RH_RUNNING(hcd))
2017                 return -ESHUTDOWN;
2018         return hcd->driver->get_frame_number (hcd);
2019 }
2020
2021 /*-------------------------------------------------------------------------*/
2022
2023 #ifdef  CONFIG_PM
2024
2025 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2026 {
2027         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2028         int             status;
2029         int             old_state = hcd->state;
2030
2031         dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2032                         (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2033                         rhdev->do_remote_wakeup);
2034         if (HCD_DEAD(hcd)) {
2035                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2036                 return 0;
2037         }
2038
2039         if (!hcd->driver->bus_suspend) {
2040                 status = -ENOENT;
2041         } else {
2042                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2043                 hcd->state = HC_STATE_QUIESCING;
2044                 status = hcd->driver->bus_suspend(hcd);
2045         }
2046         if (status == 0) {
2047                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2048                 hcd->state = HC_STATE_SUSPENDED;
2049
2050                 /* Did we race with a root-hub wakeup event? */
2051                 if (rhdev->do_remote_wakeup) {
2052                         char    buffer[6];
2053
2054                         status = hcd->driver->hub_status_data(hcd, buffer);
2055                         if (status != 0) {
2056                                 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2057                                 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2058                                 status = -EBUSY;
2059                         }
2060                 }
2061         } else {
2062                 spin_lock_irq(&hcd_root_hub_lock);
2063                 if (!HCD_DEAD(hcd)) {
2064                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2065                         hcd->state = old_state;
2066                 }
2067                 spin_unlock_irq(&hcd_root_hub_lock);
2068                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2069                                 "suspend", status);
2070         }
2071         return status;
2072 }
2073
2074 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2075 {
2076         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2077         int             status;
2078         int             old_state = hcd->state;
2079
2080         dev_dbg(&rhdev->dev, "usb %sresume\n",
2081                         (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2082         if (HCD_DEAD(hcd)) {
2083                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2084                 return 0;
2085         }
2086         if (!hcd->driver->bus_resume)
2087                 return -ENOENT;
2088         if (HCD_RH_RUNNING(hcd))
2089                 return 0;
2090
2091         hcd->state = HC_STATE_RESUMING;
2092         status = hcd->driver->bus_resume(hcd);
2093         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2094         if (status == 0) {
2095                 struct usb_device *udev;
2096                 int port1;
2097
2098                 spin_lock_irq(&hcd_root_hub_lock);
2099                 if (!HCD_DEAD(hcd)) {
2100                         usb_set_device_state(rhdev, rhdev->actconfig
2101                                         ? USB_STATE_CONFIGURED
2102                                         : USB_STATE_ADDRESS);
2103                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2104                         hcd->state = HC_STATE_RUNNING;
2105                 }
2106                 spin_unlock_irq(&hcd_root_hub_lock);
2107
2108                 /*
2109                  * Check whether any of the enabled ports on the root hub are
2110                  * unsuspended.  If they are then a TRSMRCY delay is needed
2111                  * (this is what the USB-2 spec calls a "global resume").
2112                  * Otherwise we can skip the delay.
2113                  */
2114                 usb_hub_for_each_child(rhdev, port1, udev) {
2115                         if (udev->state != USB_STATE_NOTATTACHED &&
2116                                         !udev->port_is_suspended) {
2117                                 usleep_range(10000, 11000);     /* TRSMRCY */
2118                                 break;
2119                         }
2120                 }
2121         } else {
2122                 hcd->state = old_state;
2123                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2124                                 "resume", status);
2125                 if (status != -ESHUTDOWN)
2126                         usb_hc_died(hcd);
2127         }
2128         return status;
2129 }
2130
2131 #endif  /* CONFIG_PM */
2132
2133 #ifdef  CONFIG_PM_RUNTIME
2134
2135 /* Workqueue routine for root-hub remote wakeup */
2136 static void hcd_resume_work(struct work_struct *work)
2137 {
2138         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2139         struct usb_device *udev = hcd->self.root_hub;
2140
2141         usb_lock_device(udev);
2142         usb_remote_wakeup(udev);
2143         usb_unlock_device(udev);
2144 }
2145
2146 /**
2147  * usb_hcd_resume_root_hub - called by HCD to resume its root hub 
2148  * @hcd: host controller for this root hub
2149  *
2150  * The USB host controller calls this function when its root hub is
2151  * suspended (with the remote wakeup feature enabled) and a remote
2152  * wakeup request is received.  The routine submits a workqueue request
2153  * to resume the root hub (that is, manage its downstream ports again).
2154  */
2155 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2156 {
2157         unsigned long flags;
2158
2159         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2160         if (hcd->rh_registered) {
2161                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2162                 queue_work(pm_wq, &hcd->wakeup_work);
2163         }
2164         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2165 }
2166 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2167
2168 #endif  /* CONFIG_PM_RUNTIME */
2169
2170 /*-------------------------------------------------------------------------*/
2171
2172 #ifdef  CONFIG_USB_OTG
2173
2174 /**
2175  * usb_bus_start_enum - start immediate enumeration (for OTG)
2176  * @bus: the bus (must use hcd framework)
2177  * @port_num: 1-based number of port; usually bus->otg_port
2178  * Context: in_interrupt()
2179  *
2180  * Starts enumeration, with an immediate reset followed later by
2181  * khubd identifying and possibly configuring the device.
2182  * This is needed by OTG controller drivers, where it helps meet
2183  * HNP protocol timing requirements for starting a port reset.
2184  */
2185 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2186 {
2187         struct usb_hcd          *hcd;
2188         int                     status = -EOPNOTSUPP;
2189
2190         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2191          * boards with root hubs hooked up to internal devices (instead of
2192          * just the OTG port) may need more attention to resetting...
2193          */
2194         hcd = container_of (bus, struct usb_hcd, self);
2195         if (port_num && hcd->driver->start_port_reset)
2196                 status = hcd->driver->start_port_reset(hcd, port_num);
2197
2198         /* run khubd shortly after (first) root port reset finishes;
2199          * it may issue others, until at least 50 msecs have passed.
2200          */
2201         if (status == 0)
2202                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2203         return status;
2204 }
2205 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2206
2207 #endif
2208
2209 /*-------------------------------------------------------------------------*/
2210
2211 /**
2212  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2213  * @irq: the IRQ being raised
2214  * @__hcd: pointer to the HCD whose IRQ is being signaled
2215  *
2216  * If the controller isn't HALTed, calls the driver's irq handler.
2217  * Checks whether the controller is now dead.
2218  */
2219 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2220 {
2221         struct usb_hcd          *hcd = __hcd;
2222         unsigned long           flags;
2223         irqreturn_t             rc;
2224
2225         /* IRQF_DISABLED doesn't work correctly with shared IRQs
2226          * when the first handler doesn't use it.  So let's just
2227          * assume it's never used.
2228          */
2229         local_irq_save(flags);
2230
2231         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2232                 rc = IRQ_NONE;
2233         else if (hcd->driver->irq(hcd) == IRQ_NONE)
2234                 rc = IRQ_NONE;
2235         else
2236                 rc = IRQ_HANDLED;
2237
2238         local_irq_restore(flags);
2239         return rc;
2240 }
2241 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2242
2243 /*-------------------------------------------------------------------------*/
2244
2245 /**
2246  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2247  * @hcd: pointer to the HCD representing the controller
2248  *
2249  * This is called by bus glue to report a USB host controller that died
2250  * while operations may still have been pending.  It's called automatically
2251  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2252  *
2253  * Only call this function with the primary HCD.
2254  */
2255 void usb_hc_died (struct usb_hcd *hcd)
2256 {
2257         unsigned long flags;
2258
2259         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2260
2261         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2262         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2263         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2264         if (hcd->rh_registered) {
2265                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2266
2267                 /* make khubd clean up old urbs and devices */
2268                 usb_set_device_state (hcd->self.root_hub,
2269                                 USB_STATE_NOTATTACHED);
2270                 usb_kick_khubd (hcd->self.root_hub);
2271         }
2272         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2273                 hcd = hcd->shared_hcd;
2274                 if (hcd->rh_registered) {
2275                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2276
2277                         /* make khubd clean up old urbs and devices */
2278                         usb_set_device_state(hcd->self.root_hub,
2279                                         USB_STATE_NOTATTACHED);
2280                         usb_kick_khubd(hcd->self.root_hub);
2281                 }
2282         }
2283         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2284         /* Make sure that the other roothub is also deallocated. */
2285 }
2286 EXPORT_SYMBOL_GPL (usb_hc_died);
2287
2288 /*-------------------------------------------------------------------------*/
2289
2290 /**
2291  * usb_create_shared_hcd - create and initialize an HCD structure
2292  * @driver: HC driver that will use this hcd
2293  * @dev: device for this HC, stored in hcd->self.controller
2294  * @bus_name: value to store in hcd->self.bus_name
2295  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2296  *              PCI device.  Only allocate certain resources for the primary HCD
2297  * Context: !in_interrupt()
2298  *
2299  * Allocate a struct usb_hcd, with extra space at the end for the
2300  * HC driver's private data.  Initialize the generic members of the
2301  * hcd structure.
2302  *
2303  * If memory is unavailable, returns NULL.
2304  */
2305 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2306                 struct device *dev, const char *bus_name,
2307                 struct usb_hcd *primary_hcd)
2308 {
2309         struct usb_hcd *hcd;
2310
2311         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2312         if (!hcd) {
2313                 dev_dbg (dev, "hcd alloc failed\n");
2314                 return NULL;
2315         }
2316         if (primary_hcd == NULL) {
2317                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2318                                 GFP_KERNEL);
2319                 if (!hcd->bandwidth_mutex) {
2320                         kfree(hcd);
2321                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2322                         return NULL;
2323                 }
2324                 mutex_init(hcd->bandwidth_mutex);
2325                 dev_set_drvdata(dev, hcd);
2326         } else {
2327                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2328                 hcd->primary_hcd = primary_hcd;
2329                 primary_hcd->primary_hcd = primary_hcd;
2330                 hcd->shared_hcd = primary_hcd;
2331                 primary_hcd->shared_hcd = hcd;
2332         }
2333
2334         kref_init(&hcd->kref);
2335
2336         usb_bus_init(&hcd->self);
2337         hcd->self.controller = dev;
2338         hcd->self.bus_name = bus_name;
2339         hcd->self.uses_dma = (dev->dma_mask != NULL);
2340
2341         init_timer(&hcd->rh_timer);
2342         hcd->rh_timer.function = rh_timer_func;
2343         hcd->rh_timer.data = (unsigned long) hcd;
2344 #ifdef CONFIG_PM_RUNTIME
2345         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2346 #endif
2347
2348         hcd->driver = driver;
2349         hcd->speed = driver->flags & HCD_MASK;
2350         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2351                         "USB Host Controller";
2352         return hcd;
2353 }
2354 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2355
2356 /**
2357  * usb_create_hcd - create and initialize an HCD structure
2358  * @driver: HC driver that will use this hcd
2359  * @dev: device for this HC, stored in hcd->self.controller
2360  * @bus_name: value to store in hcd->self.bus_name
2361  * Context: !in_interrupt()
2362  *
2363  * Allocate a struct usb_hcd, with extra space at the end for the
2364  * HC driver's private data.  Initialize the generic members of the
2365  * hcd structure.
2366  *
2367  * If memory is unavailable, returns NULL.
2368  */
2369 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2370                 struct device *dev, const char *bus_name)
2371 {
2372         return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2373 }
2374 EXPORT_SYMBOL_GPL(usb_create_hcd);
2375
2376 /*
2377  * Roothubs that share one PCI device must also share the bandwidth mutex.
2378  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2379  * deallocated.
2380  *
2381  * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2382  * freed.  When hcd_release() is called for the non-primary HCD, set the
2383  * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2384  * freed shortly).
2385  */
2386 static void hcd_release (struct kref *kref)
2387 {
2388         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2389
2390         if (usb_hcd_is_primary_hcd(hcd))
2391                 kfree(hcd->bandwidth_mutex);
2392         else
2393                 hcd->shared_hcd->shared_hcd = NULL;
2394         kfree(hcd);
2395 }
2396
2397 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2398 {
2399         if (hcd)
2400                 kref_get (&hcd->kref);
2401         return hcd;
2402 }
2403 EXPORT_SYMBOL_GPL(usb_get_hcd);
2404
2405 void usb_put_hcd (struct usb_hcd *hcd)
2406 {
2407         if (hcd)
2408                 kref_put (&hcd->kref, hcd_release);
2409 }
2410 EXPORT_SYMBOL_GPL(usb_put_hcd);
2411
2412 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2413 {
2414         if (!hcd->primary_hcd)
2415                 return 1;
2416         return hcd == hcd->primary_hcd;
2417 }
2418 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2419
2420 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2421 {
2422         if (!hcd->driver->find_raw_port_number)
2423                 return port1;
2424
2425         return hcd->driver->find_raw_port_number(hcd, port1);
2426 }
2427
2428 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2429                 unsigned int irqnum, unsigned long irqflags)
2430 {
2431         int retval;
2432
2433         if (hcd->driver->irq) {
2434
2435                 /* IRQF_DISABLED doesn't work as advertised when used together
2436                  * with IRQF_SHARED. As usb_hcd_irq() will always disable
2437                  * interrupts we can remove it here.
2438                  */
2439                 if (irqflags & IRQF_SHARED)
2440                         irqflags &= ~IRQF_DISABLED;
2441
2442                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2443                                 hcd->driver->description, hcd->self.busnum);
2444                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2445                                 hcd->irq_descr, hcd);
2446                 if (retval != 0) {
2447                         dev_err(hcd->self.controller,
2448                                         "request interrupt %d failed\n",
2449                                         irqnum);
2450                         return retval;
2451                 }
2452                 hcd->irq = irqnum;
2453                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2454                                 (hcd->driver->flags & HCD_MEMORY) ?
2455                                         "io mem" : "io base",
2456                                         (unsigned long long)hcd->rsrc_start);
2457         } else {
2458                 hcd->irq = 0;
2459                 if (hcd->rsrc_start)
2460                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2461                                         (hcd->driver->flags & HCD_MEMORY) ?
2462                                         "io mem" : "io base",
2463                                         (unsigned long long)hcd->rsrc_start);
2464         }
2465         return 0;
2466 }
2467
2468 /**
2469  * usb_add_hcd - finish generic HCD structure initialization and register
2470  * @hcd: the usb_hcd structure to initialize
2471  * @irqnum: Interrupt line to allocate
2472  * @irqflags: Interrupt type flags
2473  *
2474  * Finish the remaining parts of generic HCD initialization: allocate the
2475  * buffers of consistent memory, register the bus, request the IRQ line,
2476  * and call the driver's reset() and start() routines.
2477  */
2478 int usb_add_hcd(struct usb_hcd *hcd,
2479                 unsigned int irqnum, unsigned long irqflags)
2480 {
2481         int retval;
2482         struct usb_device *rhdev;
2483
2484         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2485
2486         /* Keep old behaviour if authorized_default is not in [0, 1]. */
2487         if (authorized_default < 0 || authorized_default > 1)
2488                 hcd->authorized_default = hcd->wireless? 0 : 1;
2489         else
2490                 hcd->authorized_default = authorized_default;
2491         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2492
2493         /* HC is in reset state, but accessible.  Now do the one-time init,
2494          * bottom up so that hcds can customize the root hubs before khubd
2495          * starts talking to them.  (Note, bus id is assigned early too.)
2496          */
2497         if ((retval = hcd_buffer_create(hcd)) != 0) {
2498                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2499                 return retval;
2500         }
2501
2502         if ((retval = usb_register_bus(&hcd->self)) < 0)
2503                 goto err_register_bus;
2504
2505         if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2506                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2507                 retval = -ENOMEM;
2508                 goto err_allocate_root_hub;
2509         }
2510         hcd->self.root_hub = rhdev;
2511
2512         switch (hcd->speed) {
2513         case HCD_USB11:
2514                 rhdev->speed = USB_SPEED_FULL;
2515                 break;
2516         case HCD_USB2:
2517                 rhdev->speed = USB_SPEED_HIGH;
2518                 break;
2519         case HCD_USB3:
2520                 rhdev->speed = USB_SPEED_SUPER;
2521                 break;
2522         default:
2523                 retval = -EINVAL;
2524                 goto err_set_rh_speed;
2525         }
2526
2527         /* wakeup flag init defaults to "everything works" for root hubs,
2528          * but drivers can override it in reset() if needed, along with
2529          * recording the overall controller's system wakeup capability.
2530          */
2531         device_set_wakeup_capable(&rhdev->dev, 1);
2532
2533         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2534          * registered.  But since the controller can die at any time,
2535          * let's initialize the flag before touching the hardware.
2536          */
2537         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2538
2539         /* "reset" is misnamed; its role is now one-time init. the controller
2540          * should already have been reset (and boot firmware kicked off etc).
2541          */
2542         if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2543                 dev_err(hcd->self.controller, "can't setup\n");
2544                 goto err_hcd_driver_setup;
2545         }
2546         hcd->rh_pollable = 1;
2547
2548         /* NOTE: root hub and controller capabilities may not be the same */
2549         if (device_can_wakeup(hcd->self.controller)
2550                         && device_can_wakeup(&hcd->self.root_hub->dev))
2551                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2552
2553         /* enable irqs just before we start the controller,
2554          * if the BIOS provides legacy PCI irqs.
2555          */
2556         if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2557                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2558                 if (retval)
2559                         goto err_request_irq;
2560         }
2561
2562         hcd->state = HC_STATE_RUNNING;
2563         retval = hcd->driver->start(hcd);
2564         if (retval < 0) {
2565                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2566                 goto err_hcd_driver_start;
2567         }
2568
2569         /* starting here, usbcore will pay attention to this root hub */
2570         if ((retval = register_root_hub(hcd)) != 0)
2571                 goto err_register_root_hub;
2572
2573         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2574         if (retval < 0) {
2575                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2576                        retval);
2577                 goto error_create_attr_group;
2578         }
2579         if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2580                 usb_hcd_poll_rh_status(hcd);
2581
2582         /*
2583          * Host controllers don't generate their own wakeup requests;
2584          * they only forward requests from the root hub.  Therefore
2585          * controllers should always be enabled for remote wakeup.
2586          */
2587         device_wakeup_enable(hcd->self.controller);
2588         return retval;
2589
2590 error_create_attr_group:
2591         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2592         if (HC_IS_RUNNING(hcd->state))
2593                 hcd->state = HC_STATE_QUIESCING;
2594         spin_lock_irq(&hcd_root_hub_lock);
2595         hcd->rh_registered = 0;
2596         spin_unlock_irq(&hcd_root_hub_lock);
2597
2598 #ifdef CONFIG_PM_RUNTIME
2599         cancel_work_sync(&hcd->wakeup_work);
2600 #endif
2601         mutex_lock(&usb_bus_list_lock);
2602         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2603         mutex_unlock(&usb_bus_list_lock);
2604 err_register_root_hub:
2605         hcd->rh_pollable = 0;
2606         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2607         del_timer_sync(&hcd->rh_timer);
2608         hcd->driver->stop(hcd);
2609         hcd->state = HC_STATE_HALT;
2610         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2611         del_timer_sync(&hcd->rh_timer);
2612 err_hcd_driver_start:
2613         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2614                 free_irq(irqnum, hcd);
2615 err_request_irq:
2616 err_hcd_driver_setup:
2617 err_set_rh_speed:
2618         usb_put_dev(hcd->self.root_hub);
2619 err_allocate_root_hub:
2620         usb_deregister_bus(&hcd->self);
2621 err_register_bus:
2622         hcd_buffer_destroy(hcd);
2623         return retval;
2624
2625 EXPORT_SYMBOL_GPL(usb_add_hcd);
2626
2627 /**
2628  * usb_remove_hcd - shutdown processing for generic HCDs
2629  * @hcd: the usb_hcd structure to remove
2630  * Context: !in_interrupt()
2631  *
2632  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2633  * invoking the HCD's stop() method.
2634  */
2635 void usb_remove_hcd(struct usb_hcd *hcd)
2636 {
2637         struct usb_device *rhdev = hcd->self.root_hub;
2638
2639         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2640
2641         usb_get_dev(rhdev);
2642         sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2643
2644         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2645         if (HC_IS_RUNNING (hcd->state))
2646                 hcd->state = HC_STATE_QUIESCING;
2647
2648         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2649         spin_lock_irq (&hcd_root_hub_lock);
2650         hcd->rh_registered = 0;
2651         spin_unlock_irq (&hcd_root_hub_lock);
2652
2653 #ifdef CONFIG_PM_RUNTIME
2654         cancel_work_sync(&hcd->wakeup_work);
2655 #endif
2656
2657         mutex_lock(&usb_bus_list_lock);
2658         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2659         mutex_unlock(&usb_bus_list_lock);
2660
2661         /* Prevent any more root-hub status calls from the timer.
2662          * The HCD might still restart the timer (if a port status change
2663          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2664          * the hub_status_data() callback.
2665          */
2666         hcd->rh_pollable = 0;
2667         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2668         del_timer_sync(&hcd->rh_timer);
2669
2670         hcd->driver->stop(hcd);
2671         hcd->state = HC_STATE_HALT;
2672
2673         /* In case the HCD restarted the timer, stop it again. */
2674         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2675         del_timer_sync(&hcd->rh_timer);
2676
2677         if (usb_hcd_is_primary_hcd(hcd)) {
2678                 if (hcd->irq > 0)
2679                         free_irq(hcd->irq, hcd);
2680         }
2681
2682         usb_put_dev(hcd->self.root_hub);
2683         usb_deregister_bus(&hcd->self);
2684         hcd_buffer_destroy(hcd);
2685 }
2686 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2687
2688 void
2689 usb_hcd_platform_shutdown(struct platform_device* dev)
2690 {
2691         struct usb_hcd *hcd = platform_get_drvdata(dev);
2692
2693         if (hcd->driver->shutdown)
2694                 hcd->driver->shutdown(hcd);
2695 }
2696 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2697
2698 /*-------------------------------------------------------------------------*/
2699
2700 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2701
2702 struct usb_mon_operations *mon_ops;
2703
2704 /*
2705  * The registration is unlocked.
2706  * We do it this way because we do not want to lock in hot paths.
2707  *
2708  * Notice that the code is minimally error-proof. Because usbmon needs
2709  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2710  */
2711  
2712 int usb_mon_register (struct usb_mon_operations *ops)
2713 {
2714
2715         if (mon_ops)
2716                 return -EBUSY;
2717
2718         mon_ops = ops;
2719         mb();
2720         return 0;
2721 }
2722 EXPORT_SYMBOL_GPL (usb_mon_register);
2723
2724 void usb_mon_deregister (void)
2725 {
2726
2727         if (mon_ops == NULL) {
2728                 printk(KERN_ERR "USB: monitor was not registered\n");
2729                 return;
2730         }
2731         mon_ops = NULL;
2732         mb();
2733 }
2734 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2735
2736 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */