Merge remote-tracking branch 'stable/linux-3.0.y' into develop-3.0
[firefly-linux-kernel-4.4.55.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  * 
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/usb.h>
43 #include <linux/usb/hcd.h>
44
45 #include "usb.h"
46
47
48 /*-------------------------------------------------------------------------*/
49
50 /*
51  * USB Host Controller Driver framework
52  *
53  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
54  * HCD-specific behaviors/bugs.
55  *
56  * This does error checks, tracks devices and urbs, and delegates to a
57  * "hc_driver" only for code (and data) that really needs to know about
58  * hardware differences.  That includes root hub registers, i/o queues,
59  * and so on ... but as little else as possible.
60  *
61  * Shared code includes most of the "root hub" code (these are emulated,
62  * though each HC's hardware works differently) and PCI glue, plus request
63  * tracking overhead.  The HCD code should only block on spinlocks or on
64  * hardware handshaking; blocking on software events (such as other kernel
65  * threads releasing resources, or completing actions) is all generic.
66  *
67  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
68  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
69  * only by the hub driver ... and that neither should be seen or used by
70  * usb client device drivers.
71  *
72  * Contributors of ideas or unattributed patches include: David Brownell,
73  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
74  *
75  * HISTORY:
76  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
77  *              associated cleanup.  "usb_hcd" still != "usb_bus".
78  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
79  */
80
81 /*-------------------------------------------------------------------------*/
82
83 /* Keep track of which host controller drivers are loaded */
84 unsigned long usb_hcds_loaded;
85 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
86
87 /* host controllers we manage */
88 LIST_HEAD (usb_bus_list);
89 EXPORT_SYMBOL_GPL (usb_bus_list);
90
91 /* used when allocating bus numbers */
92 #define USB_MAXBUS              64
93 struct usb_busmap {
94         unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
95 };
96 static struct usb_busmap busmap;
97
98 /* used when updating list of hcds */
99 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
100 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
101
102 /* used for controlling access to virtual root hubs */
103 static DEFINE_SPINLOCK(hcd_root_hub_lock);
104
105 /* used when updating an endpoint's URB list */
106 static DEFINE_SPINLOCK(hcd_urb_list_lock);
107
108 /* used to protect against unlinking URBs after the device is gone */
109 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
110
111 /* wait queue for synchronous unlinks */
112 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
113
114 static inline int is_root_hub(struct usb_device *udev)
115 {
116         return (udev->parent == NULL);
117 }
118
119 /*-------------------------------------------------------------------------*/
120
121 /*
122  * Sharable chunks of root hub code.
123  */
124
125 /*-------------------------------------------------------------------------*/
126
127 #define KERNEL_REL      ((LINUX_VERSION_CODE >> 16) & 0x0ff)
128 #define KERNEL_VER      ((LINUX_VERSION_CODE >> 8) & 0x0ff)
129
130 /* usb 3.0 root hub device descriptor */
131 static const u8 usb3_rh_dev_descriptor[18] = {
132         0x12,       /*  __u8  bLength; */
133         0x01,       /*  __u8  bDescriptorType; Device */
134         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
135
136         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
137         0x00,       /*  __u8  bDeviceSubClass; */
138         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
139         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
140
141         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
142         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
143         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
144
145         0x03,       /*  __u8  iManufacturer; */
146         0x02,       /*  __u8  iProduct; */
147         0x01,       /*  __u8  iSerialNumber; */
148         0x01        /*  __u8  bNumConfigurations; */
149 };
150
151 /* usb 2.0 root hub device descriptor */
152 static const u8 usb2_rh_dev_descriptor [18] = {
153         0x12,       /*  __u8  bLength; */
154         0x01,       /*  __u8  bDescriptorType; Device */
155         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
156
157         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
158         0x00,       /*  __u8  bDeviceSubClass; */
159         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
160         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
161
162         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
163         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
164         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
165
166         0x03,       /*  __u8  iManufacturer; */
167         0x02,       /*  __u8  iProduct; */
168         0x01,       /*  __u8  iSerialNumber; */
169         0x01        /*  __u8  bNumConfigurations; */
170 };
171
172 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
173
174 /* usb 1.1 root hub device descriptor */
175 static const u8 usb11_rh_dev_descriptor [18] = {
176         0x12,       /*  __u8  bLength; */
177         0x01,       /*  __u8  bDescriptorType; Device */
178         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
179
180         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
181         0x00,       /*  __u8  bDeviceSubClass; */
182         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
183         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
184
185         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
186         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
187         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
188
189         0x03,       /*  __u8  iManufacturer; */
190         0x02,       /*  __u8  iProduct; */
191         0x01,       /*  __u8  iSerialNumber; */
192         0x01        /*  __u8  bNumConfigurations; */
193 };
194
195
196 /*-------------------------------------------------------------------------*/
197
198 /* Configuration descriptors for our root hubs */
199
200 static const u8 fs_rh_config_descriptor [] = {
201
202         /* one configuration */
203         0x09,       /*  __u8  bLength; */
204         0x02,       /*  __u8  bDescriptorType; Configuration */
205         0x19, 0x00, /*  __le16 wTotalLength; */
206         0x01,       /*  __u8  bNumInterfaces; (1) */
207         0x01,       /*  __u8  bConfigurationValue; */
208         0x00,       /*  __u8  iConfiguration; */
209         0xc0,       /*  __u8  bmAttributes; 
210                                  Bit 7: must be set,
211                                      6: Self-powered,
212                                      5: Remote wakeup,
213                                      4..0: resvd */
214         0x00,       /*  __u8  MaxPower; */
215       
216         /* USB 1.1:
217          * USB 2.0, single TT organization (mandatory):
218          *      one interface, protocol 0
219          *
220          * USB 2.0, multiple TT organization (optional):
221          *      two interfaces, protocols 1 (like single TT)
222          *      and 2 (multiple TT mode) ... config is
223          *      sometimes settable
224          *      NOT IMPLEMENTED
225          */
226
227         /* one interface */
228         0x09,       /*  __u8  if_bLength; */
229         0x04,       /*  __u8  if_bDescriptorType; Interface */
230         0x00,       /*  __u8  if_bInterfaceNumber; */
231         0x00,       /*  __u8  if_bAlternateSetting; */
232         0x01,       /*  __u8  if_bNumEndpoints; */
233         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
234         0x00,       /*  __u8  if_bInterfaceSubClass; */
235         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
236         0x00,       /*  __u8  if_iInterface; */
237      
238         /* one endpoint (status change endpoint) */
239         0x07,       /*  __u8  ep_bLength; */
240         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
241         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
242         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
243         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
244         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
245 };
246
247 static const u8 hs_rh_config_descriptor [] = {
248
249         /* one configuration */
250         0x09,       /*  __u8  bLength; */
251         0x02,       /*  __u8  bDescriptorType; Configuration */
252         0x19, 0x00, /*  __le16 wTotalLength; */
253         0x01,       /*  __u8  bNumInterfaces; (1) */
254         0x01,       /*  __u8  bConfigurationValue; */
255         0x00,       /*  __u8  iConfiguration; */
256         0xc0,       /*  __u8  bmAttributes; 
257                                  Bit 7: must be set,
258                                      6: Self-powered,
259                                      5: Remote wakeup,
260                                      4..0: resvd */
261         0x00,       /*  __u8  MaxPower; */
262       
263         /* USB 1.1:
264          * USB 2.0, single TT organization (mandatory):
265          *      one interface, protocol 0
266          *
267          * USB 2.0, multiple TT organization (optional):
268          *      two interfaces, protocols 1 (like single TT)
269          *      and 2 (multiple TT mode) ... config is
270          *      sometimes settable
271          *      NOT IMPLEMENTED
272          */
273
274         /* one interface */
275         0x09,       /*  __u8  if_bLength; */
276         0x04,       /*  __u8  if_bDescriptorType; Interface */
277         0x00,       /*  __u8  if_bInterfaceNumber; */
278         0x00,       /*  __u8  if_bAlternateSetting; */
279         0x01,       /*  __u8  if_bNumEndpoints; */
280         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
281         0x00,       /*  __u8  if_bInterfaceSubClass; */
282         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
283         0x00,       /*  __u8  if_iInterface; */
284      
285         /* one endpoint (status change endpoint) */
286         0x07,       /*  __u8  ep_bLength; */
287         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
288         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
289         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
290                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
291                      * see hub.c:hub_configure() for details. */
292         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
293         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
294 };
295
296 static const u8 ss_rh_config_descriptor[] = {
297         /* one configuration */
298         0x09,       /*  __u8  bLength; */
299         0x02,       /*  __u8  bDescriptorType; Configuration */
300         0x1f, 0x00, /*  __le16 wTotalLength; */
301         0x01,       /*  __u8  bNumInterfaces; (1) */
302         0x01,       /*  __u8  bConfigurationValue; */
303         0x00,       /*  __u8  iConfiguration; */
304         0xc0,       /*  __u8  bmAttributes;
305                                  Bit 7: must be set,
306                                      6: Self-powered,
307                                      5: Remote wakeup,
308                                      4..0: resvd */
309         0x00,       /*  __u8  MaxPower; */
310
311         /* one interface */
312         0x09,       /*  __u8  if_bLength; */
313         0x04,       /*  __u8  if_bDescriptorType; Interface */
314         0x00,       /*  __u8  if_bInterfaceNumber; */
315         0x00,       /*  __u8  if_bAlternateSetting; */
316         0x01,       /*  __u8  if_bNumEndpoints; */
317         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
318         0x00,       /*  __u8  if_bInterfaceSubClass; */
319         0x00,       /*  __u8  if_bInterfaceProtocol; */
320         0x00,       /*  __u8  if_iInterface; */
321
322         /* one endpoint (status change endpoint) */
323         0x07,       /*  __u8  ep_bLength; */
324         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
325         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
326         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
327                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
328                      * see hub.c:hub_configure() for details. */
329         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
330         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
331
332         /* one SuperSpeed endpoint companion descriptor */
333         0x06,        /* __u8 ss_bLength */
334         0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
335         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
336         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
337         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
338 };
339
340 /*-------------------------------------------------------------------------*/
341
342 /**
343  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
344  * @s: Null-terminated ASCII (actually ISO-8859-1) string
345  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
346  * @len: Length (in bytes; may be odd) of descriptor buffer.
347  *
348  * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
349  * buflen, whichever is less.
350  *
351  * USB String descriptors can contain at most 126 characters; input
352  * strings longer than that are truncated.
353  */
354 static unsigned
355 ascii2desc(char const *s, u8 *buf, unsigned len)
356 {
357         unsigned n, t = 2 + 2*strlen(s);
358
359         if (t > 254)
360                 t = 254;        /* Longest possible UTF string descriptor */
361         if (len > t)
362                 len = t;
363
364         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
365
366         n = len;
367         while (n--) {
368                 *buf++ = t;
369                 if (!n--)
370                         break;
371                 *buf++ = t >> 8;
372                 t = (unsigned char)*s++;
373         }
374         return len;
375 }
376
377 /**
378  * rh_string() - provides string descriptors for root hub
379  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
380  * @hcd: the host controller for this root hub
381  * @data: buffer for output packet
382  * @len: length of the provided buffer
383  *
384  * Produces either a manufacturer, product or serial number string for the
385  * virtual root hub device.
386  * Returns the number of bytes filled in: the length of the descriptor or
387  * of the provided buffer, whichever is less.
388  */
389 static unsigned
390 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
391 {
392         char buf[100];
393         char const *s;
394         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
395
396         // language ids
397         switch (id) {
398         case 0:
399                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
400                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
401                 if (len > 4)
402                         len = 4;
403                 memcpy(data, langids, len);
404                 return len;
405         case 1:
406                 /* Serial number */
407                 s = hcd->self.bus_name;
408                 break;
409         case 2:
410                 /* Product name */
411                 s = hcd->product_desc;
412                 break;
413         case 3:
414                 /* Manufacturer */
415                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
416                         init_utsname()->release, hcd->driver->description);
417                 s = buf;
418                 break;
419         default:
420                 /* Can't happen; caller guarantees it */
421                 return 0;
422         }
423
424         return ascii2desc(s, data, len);
425 }
426
427
428 /* Root hub control transfers execute synchronously */
429 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
430 {
431         struct usb_ctrlrequest *cmd;
432         u16             typeReq, wValue, wIndex, wLength;
433         u8              *ubuf = urb->transfer_buffer;
434         u8              tbuf [sizeof (struct usb_hub_descriptor)]
435                 __attribute__((aligned(4)));
436         const u8        *bufp = tbuf;
437         unsigned        len = 0;
438         int             status;
439         u8              patch_wakeup = 0;
440         u8              patch_protocol = 0;
441
442         might_sleep();
443
444         spin_lock_irq(&hcd_root_hub_lock);
445         status = usb_hcd_link_urb_to_ep(hcd, urb);
446         spin_unlock_irq(&hcd_root_hub_lock);
447         if (status)
448                 return status;
449         urb->hcpriv = hcd;      /* Indicate it's queued */
450
451         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
452         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
453         wValue   = le16_to_cpu (cmd->wValue);
454         wIndex   = le16_to_cpu (cmd->wIndex);
455         wLength  = le16_to_cpu (cmd->wLength);
456
457         if (wLength > urb->transfer_buffer_length)
458                 goto error;
459
460         urb->actual_length = 0;
461         switch (typeReq) {
462
463         /* DEVICE REQUESTS */
464
465         /* The root hub's remote wakeup enable bit is implemented using
466          * driver model wakeup flags.  If this system supports wakeup
467          * through USB, userspace may change the default "allow wakeup"
468          * policy through sysfs or these calls.
469          *
470          * Most root hubs support wakeup from downstream devices, for
471          * runtime power management (disabling USB clocks and reducing
472          * VBUS power usage).  However, not all of them do so; silicon,
473          * board, and BIOS bugs here are not uncommon, so these can't
474          * be treated quite like external hubs.
475          *
476          * Likewise, not all root hubs will pass wakeup events upstream,
477          * to wake up the whole system.  So don't assume root hub and
478          * controller capabilities are identical.
479          */
480
481         case DeviceRequest | USB_REQ_GET_STATUS:
482                 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
483                                         << USB_DEVICE_REMOTE_WAKEUP)
484                                 | (1 << USB_DEVICE_SELF_POWERED);
485                 tbuf [1] = 0;
486                 len = 2;
487                 break;
488         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
489                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
490                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
491                 else
492                         goto error;
493                 break;
494         case DeviceOutRequest | USB_REQ_SET_FEATURE:
495                 if (device_can_wakeup(&hcd->self.root_hub->dev)
496                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
497                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
498                 else
499                         goto error;
500                 break;
501         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
502                 tbuf [0] = 1;
503                 len = 1;
504                         /* FALLTHROUGH */
505         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
506                 break;
507         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
508                 switch (wValue & 0xff00) {
509                 case USB_DT_DEVICE << 8:
510                         switch (hcd->speed) {
511                         case HCD_USB3:
512                                 bufp = usb3_rh_dev_descriptor;
513                                 break;
514                         case HCD_USB2:
515                                 bufp = usb2_rh_dev_descriptor;
516                                 break;
517                         case HCD_USB11:
518                                 bufp = usb11_rh_dev_descriptor;
519                                 break;
520                         default:
521                                 goto error;
522                         }
523                         len = 18;
524                         if (hcd->has_tt)
525                                 patch_protocol = 1;
526                         break;
527                 case USB_DT_CONFIG << 8:
528                         switch (hcd->speed) {
529                         case HCD_USB3:
530                                 bufp = ss_rh_config_descriptor;
531                                 len = sizeof ss_rh_config_descriptor;
532                                 break;
533                         case HCD_USB2:
534                                 bufp = hs_rh_config_descriptor;
535                                 len = sizeof hs_rh_config_descriptor;
536                                 break;
537                         case HCD_USB11:
538                                 bufp = fs_rh_config_descriptor;
539                                 len = sizeof fs_rh_config_descriptor;
540                                 break;
541                         default:
542                                 goto error;
543                         }
544                         if (device_can_wakeup(&hcd->self.root_hub->dev))
545                                 patch_wakeup = 1;
546                         break;
547                 case USB_DT_STRING << 8:
548                         if ((wValue & 0xff) < 4)
549                                 urb->actual_length = rh_string(wValue & 0xff,
550                                                 hcd, ubuf, wLength);
551                         else /* unsupported IDs --> "protocol stall" */
552                                 goto error;
553                         break;
554                 default:
555                         goto error;
556                 }
557                 break;
558         case DeviceRequest | USB_REQ_GET_INTERFACE:
559                 tbuf [0] = 0;
560                 len = 1;
561                         /* FALLTHROUGH */
562         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
563                 break;
564         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
565                 // wValue == urb->dev->devaddr
566                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
567                         wValue);
568                 break;
569
570         /* INTERFACE REQUESTS (no defined feature/status flags) */
571
572         /* ENDPOINT REQUESTS */
573
574         case EndpointRequest | USB_REQ_GET_STATUS:
575                 // ENDPOINT_HALT flag
576                 tbuf [0] = 0;
577                 tbuf [1] = 0;
578                 len = 2;
579                         /* FALLTHROUGH */
580         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
581         case EndpointOutRequest | USB_REQ_SET_FEATURE:
582                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
583                 break;
584
585         /* CLASS REQUESTS (and errors) */
586
587         default:
588                 /* non-generic request */
589                 switch (typeReq) {
590                 case GetHubStatus:
591                 case GetPortStatus:
592                         len = 4;
593                         break;
594                 case GetHubDescriptor:
595                         len = sizeof (struct usb_hub_descriptor);
596                         break;
597                 }
598                 status = hcd->driver->hub_control (hcd,
599                         typeReq, wValue, wIndex,
600                         tbuf, wLength);
601                 break;
602 error:
603                 /* "protocol stall" on error */
604                 status = -EPIPE;
605         }
606
607         if (status) {
608                 len = 0;
609                 if (status != -EPIPE) {
610                         dev_dbg (hcd->self.controller,
611                                 "CTRL: TypeReq=0x%x val=0x%x "
612                                 "idx=0x%x len=%d ==> %d\n",
613                                 typeReq, wValue, wIndex,
614                                 wLength, status);
615                 }
616         }
617         if (len) {
618                 if (urb->transfer_buffer_length < len)
619                         len = urb->transfer_buffer_length;
620                 urb->actual_length = len;
621                 // always USB_DIR_IN, toward host
622                 memcpy (ubuf, bufp, len);
623
624                 /* report whether RH hardware supports remote wakeup */
625                 if (patch_wakeup &&
626                                 len > offsetof (struct usb_config_descriptor,
627                                                 bmAttributes))
628                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
629                                 |= USB_CONFIG_ATT_WAKEUP;
630
631                 /* report whether RH hardware has an integrated TT */
632                 if (patch_protocol &&
633                                 len > offsetof(struct usb_device_descriptor,
634                                                 bDeviceProtocol))
635                         ((struct usb_device_descriptor *) ubuf)->
636                                         bDeviceProtocol = 1;
637         }
638
639         /* any errors get returned through the urb completion */
640         spin_lock_irq(&hcd_root_hub_lock);
641         usb_hcd_unlink_urb_from_ep(hcd, urb);
642
643         /* This peculiar use of spinlocks echoes what real HC drivers do.
644          * Avoiding calls to local_irq_disable/enable makes the code
645          * RT-friendly.
646          */
647         spin_unlock(&hcd_root_hub_lock);
648         usb_hcd_giveback_urb(hcd, urb, status);
649         spin_lock(&hcd_root_hub_lock);
650
651         spin_unlock_irq(&hcd_root_hub_lock);
652         return 0;
653 }
654
655 /*-------------------------------------------------------------------------*/
656
657 /*
658  * Root Hub interrupt transfers are polled using a timer if the
659  * driver requests it; otherwise the driver is responsible for
660  * calling usb_hcd_poll_rh_status() when an event occurs.
661  *
662  * Completions are called in_interrupt(), but they may or may not
663  * be in_irq().
664  */
665 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
666 {
667         struct urb      *urb;
668         int             length;
669         unsigned long   flags;
670         char            buffer[6];      /* Any root hubs with > 31 ports? */
671
672         if (unlikely(!hcd->rh_pollable))
673                 return;
674         if (!hcd->uses_new_polling && !hcd->status_urb)
675                 return;
676
677         length = hcd->driver->hub_status_data(hcd, buffer);
678         if (length > 0) {
679
680                 /* try to complete the status urb */
681                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
682                 urb = hcd->status_urb;
683                 if (urb) {
684                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
685                         hcd->status_urb = NULL;
686                         urb->actual_length = length;
687                         memcpy(urb->transfer_buffer, buffer, length);
688
689                         usb_hcd_unlink_urb_from_ep(hcd, urb);
690                         spin_unlock(&hcd_root_hub_lock);
691                         usb_hcd_giveback_urb(hcd, urb, 0);
692                         spin_lock(&hcd_root_hub_lock);
693                 } else {
694                         length = 0;
695                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
696                 }
697                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
698         }
699
700         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
701          * exceed that limit if HZ is 100. The math is more clunky than
702          * maybe expected, this is to make sure that all timers for USB devices
703          * fire at the same time to give the CPU a break in between */
704         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
705                         (length == 0 && hcd->status_urb != NULL))
706                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
707 }
708 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
709
710 /* timer callback */
711 static void rh_timer_func (unsigned long _hcd)
712 {
713         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
714 }
715
716 /*-------------------------------------------------------------------------*/
717
718 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
719 {
720         int             retval;
721         unsigned long   flags;
722         unsigned        len = 1 + (urb->dev->maxchild / 8);
723
724         spin_lock_irqsave (&hcd_root_hub_lock, flags);
725         if (hcd->status_urb || urb->transfer_buffer_length < len) {
726                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
727                 retval = -EINVAL;
728                 goto done;
729         }
730
731         retval = usb_hcd_link_urb_to_ep(hcd, urb);
732         if (retval)
733                 goto done;
734
735         hcd->status_urb = urb;
736         urb->hcpriv = hcd;      /* indicate it's queued */
737         if (!hcd->uses_new_polling)
738                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
739
740         /* If a status change has already occurred, report it ASAP */
741         else if (HCD_POLL_PENDING(hcd))
742                 mod_timer(&hcd->rh_timer, jiffies);
743         retval = 0;
744  done:
745         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
746         return retval;
747 }
748
749 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
750 {
751         if (usb_endpoint_xfer_int(&urb->ep->desc))
752                 return rh_queue_status (hcd, urb);
753         if (usb_endpoint_xfer_control(&urb->ep->desc))
754                 return rh_call_control (hcd, urb);
755         return -EINVAL;
756 }
757
758 /*-------------------------------------------------------------------------*/
759
760 /* Unlinks of root-hub control URBs are legal, but they don't do anything
761  * since these URBs always execute synchronously.
762  */
763 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
764 {
765         unsigned long   flags;
766         int             rc;
767
768         spin_lock_irqsave(&hcd_root_hub_lock, flags);
769         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
770         if (rc)
771                 goto done;
772
773         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
774                 ;       /* Do nothing */
775
776         } else {                                /* Status URB */
777                 if (!hcd->uses_new_polling)
778                         del_timer (&hcd->rh_timer);
779                 if (urb == hcd->status_urb) {
780                         hcd->status_urb = NULL;
781                         usb_hcd_unlink_urb_from_ep(hcd, urb);
782
783                         spin_unlock(&hcd_root_hub_lock);
784                         usb_hcd_giveback_urb(hcd, urb, status);
785                         spin_lock(&hcd_root_hub_lock);
786                 }
787         }
788  done:
789         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
790         return rc;
791 }
792
793
794
795 /*
796  * Show & store the current value of authorized_default
797  */
798 static ssize_t usb_host_authorized_default_show(struct device *dev,
799                                                 struct device_attribute *attr,
800                                                 char *buf)
801 {
802         struct usb_device *rh_usb_dev = to_usb_device(dev);
803         struct usb_bus *usb_bus = rh_usb_dev->bus;
804         struct usb_hcd *usb_hcd;
805
806         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
807                 return -ENODEV;
808         usb_hcd = bus_to_hcd(usb_bus);
809         return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
810 }
811
812 static ssize_t usb_host_authorized_default_store(struct device *dev,
813                                                  struct device_attribute *attr,
814                                                  const char *buf, size_t size)
815 {
816         ssize_t result;
817         unsigned val;
818         struct usb_device *rh_usb_dev = to_usb_device(dev);
819         struct usb_bus *usb_bus = rh_usb_dev->bus;
820         struct usb_hcd *usb_hcd;
821
822         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
823                 return -ENODEV;
824         usb_hcd = bus_to_hcd(usb_bus);
825         result = sscanf(buf, "%u\n", &val);
826         if (result == 1) {
827                 usb_hcd->authorized_default = val? 1 : 0;
828                 result = size;
829         }
830         else
831                 result = -EINVAL;
832         return result;
833 }
834
835 static DEVICE_ATTR(authorized_default, 0644,
836             usb_host_authorized_default_show,
837             usb_host_authorized_default_store);
838
839
840 /* Group all the USB bus attributes */
841 static struct attribute *usb_bus_attrs[] = {
842                 &dev_attr_authorized_default.attr,
843                 NULL,
844 };
845
846 static struct attribute_group usb_bus_attr_group = {
847         .name = NULL,   /* we want them in the same directory */
848         .attrs = usb_bus_attrs,
849 };
850
851
852
853 /*-------------------------------------------------------------------------*/
854
855 /**
856  * usb_bus_init - shared initialization code
857  * @bus: the bus structure being initialized
858  *
859  * This code is used to initialize a usb_bus structure, memory for which is
860  * separately managed.
861  */
862 static void usb_bus_init (struct usb_bus *bus)
863 {
864         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
865
866         bus->devnum_next = 1;
867
868         bus->root_hub = NULL;
869         bus->busnum = -1;
870         bus->bandwidth_allocated = 0;
871         bus->bandwidth_int_reqs  = 0;
872         bus->bandwidth_isoc_reqs = 0;
873
874         INIT_LIST_HEAD (&bus->bus_list);
875 }
876
877 /*-------------------------------------------------------------------------*/
878
879 /**
880  * usb_register_bus - registers the USB host controller with the usb core
881  * @bus: pointer to the bus to register
882  * Context: !in_interrupt()
883  *
884  * Assigns a bus number, and links the controller into usbcore data
885  * structures so that it can be seen by scanning the bus list.
886  */
887 static int usb_register_bus(struct usb_bus *bus)
888 {
889         int result = -E2BIG;
890         int busnum;
891
892         mutex_lock(&usb_bus_list_lock);
893         busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
894         if (busnum >= USB_MAXBUS) {
895                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
896                 goto error_find_busnum;
897         }
898         set_bit (busnum, busmap.busmap);
899         bus->busnum = busnum;
900
901         /* Add it to the local list of buses */
902         list_add (&bus->bus_list, &usb_bus_list);
903         mutex_unlock(&usb_bus_list_lock);
904
905         usb_notify_add_bus(bus);
906
907         dev_info (bus->controller, "new USB bus registered, assigned bus "
908                   "number %d\n", bus->busnum);
909         return 0;
910
911 error_find_busnum:
912         mutex_unlock(&usb_bus_list_lock);
913         return result;
914 }
915
916 /**
917  * usb_deregister_bus - deregisters the USB host controller
918  * @bus: pointer to the bus to deregister
919  * Context: !in_interrupt()
920  *
921  * Recycles the bus number, and unlinks the controller from usbcore data
922  * structures so that it won't be seen by scanning the bus list.
923  */
924 static void usb_deregister_bus (struct usb_bus *bus)
925 {
926         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
927
928         /*
929          * NOTE: make sure that all the devices are removed by the
930          * controller code, as well as having it call this when cleaning
931          * itself up
932          */
933         mutex_lock(&usb_bus_list_lock);
934         list_del (&bus->bus_list);
935         mutex_unlock(&usb_bus_list_lock);
936
937         usb_notify_remove_bus(bus);
938
939         clear_bit (bus->busnum, busmap.busmap);
940 }
941
942 /**
943  * register_root_hub - called by usb_add_hcd() to register a root hub
944  * @hcd: host controller for this root hub
945  *
946  * This function registers the root hub with the USB subsystem.  It sets up
947  * the device properly in the device tree and then calls usb_new_device()
948  * to register the usb device.  It also assigns the root hub's USB address
949  * (always 1).
950  */
951 static int register_root_hub(struct usb_hcd *hcd)
952 {
953         struct device *parent_dev = hcd->self.controller;
954         struct usb_device *usb_dev = hcd->self.root_hub;
955         const int devnum = 1;
956         int retval;
957
958         usb_dev->devnum = devnum;
959         usb_dev->bus->devnum_next = devnum + 1;
960         memset (&usb_dev->bus->devmap.devicemap, 0,
961                         sizeof usb_dev->bus->devmap.devicemap);
962         set_bit (devnum, usb_dev->bus->devmap.devicemap);
963         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
964
965         mutex_lock(&usb_bus_list_lock);
966
967         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
968         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
969         if (retval != sizeof usb_dev->descriptor) {
970                 mutex_unlock(&usb_bus_list_lock);
971                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
972                                 dev_name(&usb_dev->dev), retval);
973                 return (retval < 0) ? retval : -EMSGSIZE;
974         }
975
976         retval = usb_new_device (usb_dev);
977         if (retval) {
978                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
979                                 dev_name(&usb_dev->dev), retval);
980         } else {
981                 spin_lock_irq (&hcd_root_hub_lock);
982                 hcd->rh_registered = 1;
983                 spin_unlock_irq (&hcd_root_hub_lock);
984
985                 /* Did the HC die before the root hub was registered? */
986                 if (HCD_DEAD(hcd))
987                         usb_hc_died (hcd);      /* This time clean up */
988         }
989         mutex_unlock(&usb_bus_list_lock);
990
991         return retval;
992 }
993
994
995 /*-------------------------------------------------------------------------*/
996
997 /**
998  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
999  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1000  * @is_input: true iff the transaction sends data to the host
1001  * @isoc: true for isochronous transactions, false for interrupt ones
1002  * @bytecount: how many bytes in the transaction.
1003  *
1004  * Returns approximate bus time in nanoseconds for a periodic transaction.
1005  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1006  * scheduled in software, this function is only used for such scheduling.
1007  */
1008 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1009 {
1010         unsigned long   tmp;
1011
1012         switch (speed) {
1013         case USB_SPEED_LOW:     /* INTR only */
1014                 if (is_input) {
1015                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1016                         return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1017                 } else {
1018                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1019                         return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1020                 }
1021         case USB_SPEED_FULL:    /* ISOC or INTR */
1022                 if (isoc) {
1023                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1024                         return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1025                 } else {
1026                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1027                         return (9107L + BW_HOST_DELAY + tmp);
1028                 }
1029         case USB_SPEED_HIGH:    /* ISOC or INTR */
1030                 // FIXME adjust for input vs output
1031                 if (isoc)
1032                         tmp = HS_NSECS_ISO (bytecount);
1033                 else
1034                         tmp = HS_NSECS (bytecount);
1035                 return tmp;
1036         default:
1037                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1038                 return -1;
1039         }
1040 }
1041 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1042
1043
1044 /*-------------------------------------------------------------------------*/
1045
1046 /*
1047  * Generic HC operations.
1048  */
1049
1050 /*-------------------------------------------------------------------------*/
1051
1052 /**
1053  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1054  * @hcd: host controller to which @urb was submitted
1055  * @urb: URB being submitted
1056  *
1057  * Host controller drivers should call this routine in their enqueue()
1058  * method.  The HCD's private spinlock must be held and interrupts must
1059  * be disabled.  The actions carried out here are required for URB
1060  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1061  *
1062  * Returns 0 for no error, otherwise a negative error code (in which case
1063  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1064  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1065  * the private spinlock and returning.
1066  */
1067 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1068 {
1069         int             rc = 0;
1070
1071         spin_lock(&hcd_urb_list_lock);
1072
1073         /* Check that the URB isn't being killed */
1074         if (unlikely(atomic_read(&urb->reject))) {
1075                 rc = -EPERM;
1076                 goto done;
1077         }
1078
1079         if (unlikely(!urb->ep->enabled)) {
1080                 rc = -ENOENT;
1081                 goto done;
1082         }
1083
1084         if (unlikely(!urb->dev->can_submit)) {
1085                 rc = -EHOSTUNREACH;
1086                 goto done;
1087         }
1088
1089         /*
1090          * Check the host controller's state and add the URB to the
1091          * endpoint's queue.
1092          */
1093         if (HCD_RH_RUNNING(hcd)) {
1094                 urb->unlinked = 0;
1095                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1096         } else {
1097                 rc = -ESHUTDOWN;
1098                 goto done;
1099         }
1100  done:
1101         spin_unlock(&hcd_urb_list_lock);
1102         return rc;
1103 }
1104 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1105
1106 /**
1107  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1108  * @hcd: host controller to which @urb was submitted
1109  * @urb: URB being checked for unlinkability
1110  * @status: error code to store in @urb if the unlink succeeds
1111  *
1112  * Host controller drivers should call this routine in their dequeue()
1113  * method.  The HCD's private spinlock must be held and interrupts must
1114  * be disabled.  The actions carried out here are required for making
1115  * sure than an unlink is valid.
1116  *
1117  * Returns 0 for no error, otherwise a negative error code (in which case
1118  * the dequeue() method must fail).  The possible error codes are:
1119  *
1120  *      -EIDRM: @urb was not submitted or has already completed.
1121  *              The completion function may not have been called yet.
1122  *
1123  *      -EBUSY: @urb has already been unlinked.
1124  */
1125 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1126                 int status)
1127 {
1128         struct list_head        *tmp;
1129
1130         /* insist the urb is still queued */
1131         list_for_each(tmp, &urb->ep->urb_list) {
1132                 if (tmp == &urb->urb_list)
1133                         break;
1134         }
1135         if (tmp != &urb->urb_list)
1136                 return -EIDRM;
1137
1138         /* Any status except -EINPROGRESS means something already started to
1139          * unlink this URB from the hardware.  So there's no more work to do.
1140          */
1141         if (urb->unlinked)
1142                 return -EBUSY;
1143         urb->unlinked = status;
1144
1145         /* IRQ setup can easily be broken so that USB controllers
1146          * never get completion IRQs ... maybe even the ones we need to
1147          * finish unlinking the initial failed usb_set_address()
1148          * or device descriptor fetch.
1149          */
1150         if (!HCD_SAW_IRQ(hcd) && !is_root_hub(urb->dev)) {
1151                 dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1152                         "Controller is probably using the wrong IRQ.\n");
1153                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1154                 if (hcd->shared_hcd)
1155                         set_bit(HCD_FLAG_SAW_IRQ, &hcd->shared_hcd->flags);
1156         }
1157
1158         return 0;
1159 }
1160 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1161
1162 /**
1163  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1164  * @hcd: host controller to which @urb was submitted
1165  * @urb: URB being unlinked
1166  *
1167  * Host controller drivers should call this routine before calling
1168  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1169  * interrupts must be disabled.  The actions carried out here are required
1170  * for URB completion.
1171  */
1172 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1173 {
1174         /* clear all state linking urb to this dev (and hcd) */
1175         spin_lock(&hcd_urb_list_lock);
1176         list_del_init(&urb->urb_list);
1177         spin_unlock(&hcd_urb_list_lock);
1178 }
1179 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1180
1181 /*
1182  * Some usb host controllers can only perform dma using a small SRAM area.
1183  * The usb core itself is however optimized for host controllers that can dma
1184  * using regular system memory - like pci devices doing bus mastering.
1185  *
1186  * To support host controllers with limited dma capabilites we provide dma
1187  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1188  * For this to work properly the host controller code must first use the
1189  * function dma_declare_coherent_memory() to point out which memory area
1190  * that should be used for dma allocations.
1191  *
1192  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1193  * dma using dma_alloc_coherent() which in turn allocates from the memory
1194  * area pointed out with dma_declare_coherent_memory().
1195  *
1196  * So, to summarize...
1197  *
1198  * - We need "local" memory, canonical example being
1199  *   a small SRAM on a discrete controller being the
1200  *   only memory that the controller can read ...
1201  *   (a) "normal" kernel memory is no good, and
1202  *   (b) there's not enough to share
1203  *
1204  * - The only *portable* hook for such stuff in the
1205  *   DMA framework is dma_declare_coherent_memory()
1206  *
1207  * - So we use that, even though the primary requirement
1208  *   is that the memory be "local" (hence addressible
1209  *   by that device), not "coherent".
1210  *
1211  */
1212
1213 static int hcd_alloc_coherent(struct usb_bus *bus,
1214                               gfp_t mem_flags, dma_addr_t *dma_handle,
1215                               void **vaddr_handle, size_t size,
1216                               enum dma_data_direction dir)
1217 {
1218         unsigned char *vaddr;
1219
1220         if (*vaddr_handle == NULL) {
1221                 WARN_ON_ONCE(1);
1222                 return -EFAULT;
1223         }
1224
1225         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1226                                  mem_flags, dma_handle);
1227         if (!vaddr)
1228                 return -ENOMEM;
1229
1230         /*
1231          * Store the virtual address of the buffer at the end
1232          * of the allocated dma buffer. The size of the buffer
1233          * may be uneven so use unaligned functions instead
1234          * of just rounding up. It makes sense to optimize for
1235          * memory footprint over access speed since the amount
1236          * of memory available for dma may be limited.
1237          */
1238         put_unaligned((unsigned long)*vaddr_handle,
1239                       (unsigned long *)(vaddr + size));
1240
1241         if (dir == DMA_TO_DEVICE)
1242                 memcpy(vaddr, *vaddr_handle, size);
1243
1244         *vaddr_handle = vaddr;
1245         return 0;
1246 }
1247
1248 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1249                               void **vaddr_handle, size_t size,
1250                               enum dma_data_direction dir)
1251 {
1252         unsigned char *vaddr = *vaddr_handle;
1253
1254         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1255
1256         if (dir == DMA_FROM_DEVICE)
1257                 memcpy(vaddr, *vaddr_handle, size);
1258
1259         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1260
1261         *vaddr_handle = vaddr;
1262         *dma_handle = 0;
1263 }
1264
1265 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1266 {
1267         if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1268                 dma_unmap_single(hcd->self.controller,
1269                                 urb->setup_dma,
1270                                 sizeof(struct usb_ctrlrequest),
1271                                 DMA_TO_DEVICE);
1272         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1273                 hcd_free_coherent(urb->dev->bus,
1274                                 &urb->setup_dma,
1275                                 (void **) &urb->setup_packet,
1276                                 sizeof(struct usb_ctrlrequest),
1277                                 DMA_TO_DEVICE);
1278
1279         /* Make it safe to call this routine more than once */
1280         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1281 }
1282 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1283
1284 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1285 {
1286         if (hcd->driver->unmap_urb_for_dma)
1287                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1288         else
1289                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1290 }
1291
1292 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1293 {
1294         enum dma_data_direction dir;
1295
1296         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1297
1298         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1299         if (urb->transfer_flags & URB_DMA_MAP_SG)
1300                 dma_unmap_sg(hcd->self.controller,
1301                                 urb->sg,
1302                                 urb->num_sgs,
1303                                 dir);
1304         else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1305                 dma_unmap_page(hcd->self.controller,
1306                                 urb->transfer_dma,
1307                                 urb->transfer_buffer_length,
1308                                 dir);
1309         else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1310                 dma_unmap_single(hcd->self.controller,
1311                                 urb->transfer_dma,
1312                                 urb->transfer_buffer_length,
1313                                 dir);
1314         else if (urb->transfer_flags & URB_MAP_LOCAL)
1315                 hcd_free_coherent(urb->dev->bus,
1316                                 &urb->transfer_dma,
1317                                 &urb->transfer_buffer,
1318                                 urb->transfer_buffer_length,
1319                                 dir);
1320
1321         /* Make it safe to call this routine more than once */
1322         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1323                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1324 }
1325 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1326
1327 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1328                            gfp_t mem_flags)
1329 {
1330         if (hcd->driver->map_urb_for_dma)
1331                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1332         else
1333                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1334 }
1335
1336 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1337                             gfp_t mem_flags)
1338 {
1339         enum dma_data_direction dir;
1340         int ret = 0;
1341
1342         /* Map the URB's buffers for DMA access.
1343          * Lower level HCD code should use *_dma exclusively,
1344          * unless it uses pio or talks to another transport,
1345          * or uses the provided scatter gather list for bulk.
1346          */
1347
1348         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1349                 if (hcd->self.uses_pio_for_control)
1350                         return ret;
1351                 if (hcd->self.uses_dma) {
1352                         urb->setup_dma = dma_map_single(
1353                                         hcd->self.controller,
1354                                         urb->setup_packet,
1355                                         sizeof(struct usb_ctrlrequest),
1356                                         DMA_TO_DEVICE);
1357                         if (dma_mapping_error(hcd->self.controller,
1358                                                 urb->setup_dma))
1359                                 return -EAGAIN;
1360                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1361                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1362                         ret = hcd_alloc_coherent(
1363                                         urb->dev->bus, mem_flags,
1364                                         &urb->setup_dma,
1365                                         (void **)&urb->setup_packet,
1366                                         sizeof(struct usb_ctrlrequest),
1367                                         DMA_TO_DEVICE);
1368                         if (ret)
1369                                 return ret;
1370                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1371                 }
1372         }
1373
1374         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1375         if (urb->transfer_buffer_length != 0
1376             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1377                 if (hcd->self.uses_dma) {
1378                         if (urb->num_sgs) {
1379                                 int n = dma_map_sg(
1380                                                 hcd->self.controller,
1381                                                 urb->sg,
1382                                                 urb->num_sgs,
1383                                                 dir);
1384                                 if (n <= 0)
1385                                         ret = -EAGAIN;
1386                                 else
1387                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1388                                 urb->num_mapped_sgs = n;
1389                                 if (n != urb->num_sgs)
1390                                         urb->transfer_flags |=
1391                                                         URB_DMA_SG_COMBINED;
1392                         } else if (urb->sg) {
1393                                 struct scatterlist *sg = urb->sg;
1394                                 urb->transfer_dma = dma_map_page(
1395                                                 hcd->self.controller,
1396                                                 sg_page(sg),
1397                                                 sg->offset,
1398                                                 urb->transfer_buffer_length,
1399                                                 dir);
1400                                 if (dma_mapping_error(hcd->self.controller,
1401                                                 urb->transfer_dma))
1402                                         ret = -EAGAIN;
1403                                 else
1404                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1405                         } else {
1406                                 urb->transfer_dma = dma_map_single(
1407                                                 hcd->self.controller,
1408                                                 urb->transfer_buffer,
1409                                                 urb->transfer_buffer_length,
1410                                                 dir);
1411                                 if (dma_mapping_error(hcd->self.controller,
1412                                                 urb->transfer_dma))
1413                                         ret = -EAGAIN;
1414                                 else
1415                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1416                         }
1417                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1418                         ret = hcd_alloc_coherent(
1419                                         urb->dev->bus, mem_flags,
1420                                         &urb->transfer_dma,
1421                                         &urb->transfer_buffer,
1422                                         urb->transfer_buffer_length,
1423                                         dir);
1424                         if (ret == 0)
1425                                 urb->transfer_flags |= URB_MAP_LOCAL;
1426                 }
1427                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1428                                 URB_SETUP_MAP_LOCAL)))
1429                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1430         }
1431         return ret;
1432 }
1433 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1434
1435 /*-------------------------------------------------------------------------*/
1436
1437 /* may be called in any context with a valid urb->dev usecount
1438  * caller surrenders "ownership" of urb
1439  * expects usb_submit_urb() to have sanity checked and conditioned all
1440  * inputs in the urb
1441  */
1442 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1443 {
1444         int                     status;
1445         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1446
1447         /* increment urb's reference count as part of giving it to the HCD
1448          * (which will control it).  HCD guarantees that it either returns
1449          * an error or calls giveback(), but not both.
1450          */
1451         usb_get_urb(urb);
1452         atomic_inc(&urb->use_count);
1453         atomic_inc(&urb->dev->urbnum);
1454         usbmon_urb_submit(&hcd->self, urb);
1455
1456         /* NOTE requirements on root-hub callers (usbfs and the hub
1457          * driver, for now):  URBs' urb->transfer_buffer must be
1458          * valid and usb_buffer_{sync,unmap}() not be needed, since
1459          * they could clobber root hub response data.  Also, control
1460          * URBs must be submitted in process context with interrupts
1461          * enabled.
1462          */
1463
1464         if (is_root_hub(urb->dev)) {
1465                 status = rh_urb_enqueue(hcd, urb);
1466         } else {
1467                 status = map_urb_for_dma(hcd, urb, mem_flags);
1468                 if (likely(status == 0)) {
1469                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1470                         if (unlikely(status))
1471                                 unmap_urb_for_dma(hcd, urb);
1472                 }
1473         }
1474
1475         if (unlikely(status)) {
1476                 usbmon_urb_submit_error(&hcd->self, urb, status);
1477                 urb->hcpriv = NULL;
1478                 INIT_LIST_HEAD(&urb->urb_list);
1479                 atomic_dec(&urb->use_count);
1480                 atomic_dec(&urb->dev->urbnum);
1481                 if (atomic_read(&urb->reject))
1482                         wake_up(&usb_kill_urb_queue);
1483                 usb_put_urb(urb);
1484         }
1485         return status;
1486 }
1487
1488 /*-------------------------------------------------------------------------*/
1489
1490 /* this makes the hcd giveback() the urb more quickly, by kicking it
1491  * off hardware queues (which may take a while) and returning it as
1492  * soon as practical.  we've already set up the urb's return status,
1493  * but we can't know if the callback completed already.
1494  */
1495 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1496 {
1497         int             value;
1498
1499         if (is_root_hub(urb->dev))
1500                 value = usb_rh_urb_dequeue(hcd, urb, status);
1501         else {
1502
1503                 /* The only reason an HCD might fail this call is if
1504                  * it has not yet fully queued the urb to begin with.
1505                  * Such failures should be harmless. */
1506                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1507         }
1508         return value;
1509 }
1510
1511 /*
1512  * called in any context
1513  *
1514  * caller guarantees urb won't be recycled till both unlink()
1515  * and the urb's completion function return
1516  */
1517 int usb_hcd_unlink_urb (struct urb *urb, int status)
1518 {
1519         struct usb_hcd          *hcd;
1520         int                     retval = -EIDRM;
1521         unsigned long           flags;
1522
1523         /* Prevent the device and bus from going away while
1524          * the unlink is carried out.  If they are already gone
1525          * then urb->use_count must be 0, since disconnected
1526          * devices can't have any active URBs.
1527          */
1528         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1529         if (atomic_read(&urb->use_count) > 0) {
1530                 retval = 0;
1531                 usb_get_dev(urb->dev);
1532         }
1533         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1534         if (retval == 0) {
1535                 hcd = bus_to_hcd(urb->dev->bus);
1536                 retval = unlink1(hcd, urb, status);
1537                 usb_put_dev(urb->dev);
1538         }
1539
1540         if (retval == 0)
1541                 retval = -EINPROGRESS;
1542         else if (retval != -EIDRM && retval != -EBUSY)
1543                 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1544                                 urb, retval);
1545         return retval;
1546 }
1547
1548 /*-------------------------------------------------------------------------*/
1549
1550 /**
1551  * usb_hcd_giveback_urb - return URB from HCD to device driver
1552  * @hcd: host controller returning the URB
1553  * @urb: urb being returned to the USB device driver.
1554  * @status: completion status code for the URB.
1555  * Context: in_interrupt()
1556  *
1557  * This hands the URB from HCD to its USB device driver, using its
1558  * completion function.  The HCD has freed all per-urb resources
1559  * (and is done using urb->hcpriv).  It also released all HCD locks;
1560  * the device driver won't cause problems if it frees, modifies,
1561  * or resubmits this URB.
1562  *
1563  * If @urb was unlinked, the value of @status will be overridden by
1564  * @urb->unlinked.  Erroneous short transfers are detected in case
1565  * the HCD hasn't checked for them.
1566  */
1567 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1568 {
1569         urb->hcpriv = NULL;
1570         if (unlikely(urb->unlinked))
1571                 status = urb->unlinked;
1572         else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1573                         urb->actual_length < urb->transfer_buffer_length &&
1574                         !status))
1575                 status = -EREMOTEIO;
1576
1577         unmap_urb_for_dma(hcd, urb);
1578         usbmon_urb_complete(&hcd->self, urb, status);
1579         usb_unanchor_urb(urb);
1580
1581         /* pass ownership to the completion handler */
1582         urb->status = status;
1583         atomic_dec (&urb->use_count);
1584         urb->complete (urb);
1585         if (unlikely(atomic_read(&urb->reject)))
1586                 wake_up (&usb_kill_urb_queue);
1587         usb_put_urb (urb);
1588 }
1589 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1590
1591 /*-------------------------------------------------------------------------*/
1592
1593 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1594  * queue to drain completely.  The caller must first insure that no more
1595  * URBs can be submitted for this endpoint.
1596  */
1597 void usb_hcd_flush_endpoint(struct usb_device *udev,
1598                 struct usb_host_endpoint *ep)
1599 {
1600         struct usb_hcd          *hcd;
1601         struct urb              *urb;
1602
1603         if (!ep)
1604                 return;
1605         might_sleep();
1606         hcd = bus_to_hcd(udev->bus);
1607
1608         /* No more submits can occur */
1609         spin_lock_irq(&hcd_urb_list_lock);
1610 rescan:
1611         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1612                 int     is_in;
1613
1614                 if (urb->unlinked)
1615                         continue;
1616                 usb_get_urb (urb);
1617                 is_in = usb_urb_dir_in(urb);
1618                 spin_unlock(&hcd_urb_list_lock);
1619
1620                 /* kick hcd */
1621                 unlink1(hcd, urb, -ESHUTDOWN);
1622                 dev_dbg (hcd->self.controller,
1623                         "shutdown urb %p ep%d%s%s\n",
1624                         urb, usb_endpoint_num(&ep->desc),
1625                         is_in ? "in" : "out",
1626                         ({      char *s;
1627
1628                                  switch (usb_endpoint_type(&ep->desc)) {
1629                                  case USB_ENDPOINT_XFER_CONTROL:
1630                                         s = ""; break;
1631                                  case USB_ENDPOINT_XFER_BULK:
1632                                         s = "-bulk"; break;
1633                                  case USB_ENDPOINT_XFER_INT:
1634                                         s = "-intr"; break;
1635                                  default:
1636                                         s = "-iso"; break;
1637                                 };
1638                                 s;
1639                         }));
1640                 usb_put_urb (urb);
1641
1642                 /* list contents may have changed */
1643                 spin_lock(&hcd_urb_list_lock);
1644                 goto rescan;
1645         }
1646         spin_unlock_irq(&hcd_urb_list_lock);
1647
1648         /* Wait until the endpoint queue is completely empty */
1649         while (!list_empty (&ep->urb_list)) {
1650                 spin_lock_irq(&hcd_urb_list_lock);
1651
1652                 /* The list may have changed while we acquired the spinlock */
1653                 urb = NULL;
1654                 if (!list_empty (&ep->urb_list)) {
1655                         urb = list_entry (ep->urb_list.prev, struct urb,
1656                                         urb_list);
1657                         usb_get_urb (urb);
1658                 }
1659                 spin_unlock_irq(&hcd_urb_list_lock);
1660
1661                 if (urb) {
1662                         usb_kill_urb (urb);
1663                         usb_put_urb (urb);
1664                 }
1665         }
1666 }
1667
1668 /**
1669  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1670  *                              the bus bandwidth
1671  * @udev: target &usb_device
1672  * @new_config: new configuration to install
1673  * @cur_alt: the current alternate interface setting
1674  * @new_alt: alternate interface setting that is being installed
1675  *
1676  * To change configurations, pass in the new configuration in new_config,
1677  * and pass NULL for cur_alt and new_alt.
1678  *
1679  * To reset a device's configuration (put the device in the ADDRESSED state),
1680  * pass in NULL for new_config, cur_alt, and new_alt.
1681  *
1682  * To change alternate interface settings, pass in NULL for new_config,
1683  * pass in the current alternate interface setting in cur_alt,
1684  * and pass in the new alternate interface setting in new_alt.
1685  *
1686  * Returns an error if the requested bandwidth change exceeds the
1687  * bus bandwidth or host controller internal resources.
1688  */
1689 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1690                 struct usb_host_config *new_config,
1691                 struct usb_host_interface *cur_alt,
1692                 struct usb_host_interface *new_alt)
1693 {
1694         int num_intfs, i, j;
1695         struct usb_host_interface *alt = NULL;
1696         int ret = 0;
1697         struct usb_hcd *hcd;
1698         struct usb_host_endpoint *ep;
1699
1700         hcd = bus_to_hcd(udev->bus);
1701         if (!hcd->driver->check_bandwidth)
1702                 return 0;
1703
1704         /* Configuration is being removed - set configuration 0 */
1705         if (!new_config && !cur_alt) {
1706                 for (i = 1; i < 16; ++i) {
1707                         ep = udev->ep_out[i];
1708                         if (ep)
1709                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1710                         ep = udev->ep_in[i];
1711                         if (ep)
1712                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1713                 }
1714                 hcd->driver->check_bandwidth(hcd, udev);
1715                 return 0;
1716         }
1717         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1718          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1719          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1720          * ok to exclude it.
1721          */
1722         if (new_config) {
1723                 num_intfs = new_config->desc.bNumInterfaces;
1724                 /* Remove endpoints (except endpoint 0, which is always on the
1725                  * schedule) from the old config from the schedule
1726                  */
1727                 for (i = 1; i < 16; ++i) {
1728                         ep = udev->ep_out[i];
1729                         if (ep) {
1730                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1731                                 if (ret < 0)
1732                                         goto reset;
1733                         }
1734                         ep = udev->ep_in[i];
1735                         if (ep) {
1736                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1737                                 if (ret < 0)
1738                                         goto reset;
1739                         }
1740                 }
1741                 for (i = 0; i < num_intfs; ++i) {
1742                         struct usb_host_interface *first_alt;
1743                         int iface_num;
1744
1745                         first_alt = &new_config->intf_cache[i]->altsetting[0];
1746                         iface_num = first_alt->desc.bInterfaceNumber;
1747                         /* Set up endpoints for alternate interface setting 0 */
1748                         alt = usb_find_alt_setting(new_config, iface_num, 0);
1749                         if (!alt)
1750                                 /* No alt setting 0? Pick the first setting. */
1751                                 alt = first_alt;
1752
1753                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1754                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1755                                 if (ret < 0)
1756                                         goto reset;
1757                         }
1758                 }
1759         }
1760         if (cur_alt && new_alt) {
1761                 struct usb_interface *iface = usb_ifnum_to_if(udev,
1762                                 cur_alt->desc.bInterfaceNumber);
1763
1764                 if (!iface)
1765                         return -EINVAL;
1766                 if (iface->resetting_device) {
1767                         /*
1768                          * The USB core just reset the device, so the xHCI host
1769                          * and the device will think alt setting 0 is installed.
1770                          * However, the USB core will pass in the alternate
1771                          * setting installed before the reset as cur_alt.  Dig
1772                          * out the alternate setting 0 structure, or the first
1773                          * alternate setting if a broken device doesn't have alt
1774                          * setting 0.
1775                          */
1776                         cur_alt = usb_altnum_to_altsetting(iface, 0);
1777                         if (!cur_alt)
1778                                 cur_alt = &iface->altsetting[0];
1779                 }
1780
1781                 /* Drop all the endpoints in the current alt setting */
1782                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1783                         ret = hcd->driver->drop_endpoint(hcd, udev,
1784                                         &cur_alt->endpoint[i]);
1785                         if (ret < 0)
1786                                 goto reset;
1787                 }
1788                 /* Add all the endpoints in the new alt setting */
1789                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1790                         ret = hcd->driver->add_endpoint(hcd, udev,
1791                                         &new_alt->endpoint[i]);
1792                         if (ret < 0)
1793                                 goto reset;
1794                 }
1795         }
1796         ret = hcd->driver->check_bandwidth(hcd, udev);
1797 reset:
1798         if (ret < 0)
1799                 hcd->driver->reset_bandwidth(hcd, udev);
1800         return ret;
1801 }
1802
1803 /* Disables the endpoint: synchronizes with the hcd to make sure all
1804  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1805  * have been called previously.  Use for set_configuration, set_interface,
1806  * driver removal, physical disconnect.
1807  *
1808  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1809  * type, maxpacket size, toggle, halt status, and scheduling.
1810  */
1811 void usb_hcd_disable_endpoint(struct usb_device *udev,
1812                 struct usb_host_endpoint *ep)
1813 {
1814         struct usb_hcd          *hcd;
1815
1816         might_sleep();
1817         hcd = bus_to_hcd(udev->bus);
1818         if (hcd->driver->endpoint_disable)
1819                 hcd->driver->endpoint_disable(hcd, ep);
1820 }
1821
1822 /**
1823  * usb_hcd_reset_endpoint - reset host endpoint state
1824  * @udev: USB device.
1825  * @ep:   the endpoint to reset.
1826  *
1827  * Resets any host endpoint state such as the toggle bit, sequence
1828  * number and current window.
1829  */
1830 void usb_hcd_reset_endpoint(struct usb_device *udev,
1831                             struct usb_host_endpoint *ep)
1832 {
1833         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1834
1835         if (hcd->driver->endpoint_reset)
1836                 hcd->driver->endpoint_reset(hcd, ep);
1837         else {
1838                 int epnum = usb_endpoint_num(&ep->desc);
1839                 int is_out = usb_endpoint_dir_out(&ep->desc);
1840                 int is_control = usb_endpoint_xfer_control(&ep->desc);
1841
1842                 usb_settoggle(udev, epnum, is_out, 0);
1843                 if (is_control)
1844                         usb_settoggle(udev, epnum, !is_out, 0);
1845         }
1846 }
1847
1848 /**
1849  * usb_alloc_streams - allocate bulk endpoint stream IDs.
1850  * @interface:          alternate setting that includes all endpoints.
1851  * @eps:                array of endpoints that need streams.
1852  * @num_eps:            number of endpoints in the array.
1853  * @num_streams:        number of streams to allocate.
1854  * @mem_flags:          flags hcd should use to allocate memory.
1855  *
1856  * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1857  * Drivers may queue multiple transfers to different stream IDs, which may
1858  * complete in a different order than they were queued.
1859  */
1860 int usb_alloc_streams(struct usb_interface *interface,
1861                 struct usb_host_endpoint **eps, unsigned int num_eps,
1862                 unsigned int num_streams, gfp_t mem_flags)
1863 {
1864         struct usb_hcd *hcd;
1865         struct usb_device *dev;
1866         int i;
1867
1868         dev = interface_to_usbdev(interface);
1869         hcd = bus_to_hcd(dev->bus);
1870         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1871                 return -EINVAL;
1872         if (dev->speed != USB_SPEED_SUPER)
1873                 return -EINVAL;
1874
1875         /* Streams only apply to bulk endpoints. */
1876         for (i = 0; i < num_eps; i++)
1877                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1878                         return -EINVAL;
1879
1880         return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1881                         num_streams, mem_flags);
1882 }
1883 EXPORT_SYMBOL_GPL(usb_alloc_streams);
1884
1885 /**
1886  * usb_free_streams - free bulk endpoint stream IDs.
1887  * @interface:  alternate setting that includes all endpoints.
1888  * @eps:        array of endpoints to remove streams from.
1889  * @num_eps:    number of endpoints in the array.
1890  * @mem_flags:  flags hcd should use to allocate memory.
1891  *
1892  * Reverts a group of bulk endpoints back to not using stream IDs.
1893  * Can fail if we are given bad arguments, or HCD is broken.
1894  */
1895 void usb_free_streams(struct usb_interface *interface,
1896                 struct usb_host_endpoint **eps, unsigned int num_eps,
1897                 gfp_t mem_flags)
1898 {
1899         struct usb_hcd *hcd;
1900         struct usb_device *dev;
1901         int i;
1902
1903         dev = interface_to_usbdev(interface);
1904         hcd = bus_to_hcd(dev->bus);
1905         if (dev->speed != USB_SPEED_SUPER)
1906                 return;
1907
1908         /* Streams only apply to bulk endpoints. */
1909         for (i = 0; i < num_eps; i++)
1910                 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1911                         return;
1912
1913         hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1914 }
1915 EXPORT_SYMBOL_GPL(usb_free_streams);
1916
1917 /* Protect against drivers that try to unlink URBs after the device
1918  * is gone, by waiting until all unlinks for @udev are finished.
1919  * Since we don't currently track URBs by device, simply wait until
1920  * nothing is running in the locked region of usb_hcd_unlink_urb().
1921  */
1922 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1923 {
1924         spin_lock_irq(&hcd_urb_unlink_lock);
1925         spin_unlock_irq(&hcd_urb_unlink_lock);
1926 }
1927
1928 /*-------------------------------------------------------------------------*/
1929
1930 /* called in any context */
1931 int usb_hcd_get_frame_number (struct usb_device *udev)
1932 {
1933         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
1934
1935         if (!HCD_RH_RUNNING(hcd))
1936                 return -ESHUTDOWN;
1937         return hcd->driver->get_frame_number (hcd);
1938 }
1939
1940 /*-------------------------------------------------------------------------*/
1941
1942 #ifdef  CONFIG_PM
1943
1944 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1945 {
1946         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1947         int             status;
1948         int             old_state = hcd->state;
1949
1950         dev_dbg(&rhdev->dev, "bus %s%s\n",
1951                         (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
1952         if (HCD_DEAD(hcd)) {
1953                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
1954                 return 0;
1955         }
1956
1957         if (!hcd->driver->bus_suspend) {
1958                 printk("%s,error,everest\n",__func__);
1959                 status = -ENOENT;
1960         } else {
1961                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1962                 hcd->state = HC_STATE_QUIESCING;
1963                 status = hcd->driver->bus_suspend(hcd);
1964         }
1965         if (status == 0) {
1966                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1967                 hcd->state = HC_STATE_SUSPENDED;
1968         } else {
1969                 spin_lock_irq(&hcd_root_hub_lock);
1970                 if (!HCD_DEAD(hcd)) {
1971                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1972                         hcd->state = old_state;
1973                 }
1974                 spin_unlock_irq(&hcd_root_hub_lock);
1975                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1976                                 "suspend", status);
1977         }
1978         return status;
1979 }
1980
1981 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1982 {
1983         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1984         int             status;
1985         int             old_state = hcd->state;
1986
1987         dev_dbg(&rhdev->dev, "usb %s%s\n",
1988                         (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
1989         if (HCD_DEAD(hcd)) {
1990                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
1991                 return 0;
1992         }
1993         if (!hcd->driver->bus_resume)
1994                 return -ENOENT;
1995         if (HCD_RH_RUNNING(hcd))
1996                 return 0;
1997
1998         hcd->state = HC_STATE_RESUMING;
1999         status = hcd->driver->bus_resume(hcd);
2000         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2001         if (status == 0) {
2002                 /* TRSMRCY = 10 msec */
2003                 msleep(10);
2004                 spin_lock_irq(&hcd_root_hub_lock);
2005                 if (!HCD_DEAD(hcd)) {
2006                         usb_set_device_state(rhdev, rhdev->actconfig
2007                                         ? USB_STATE_CONFIGURED
2008                                         : USB_STATE_ADDRESS);
2009                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2010                         hcd->state = HC_STATE_RUNNING;
2011                 }
2012                 spin_unlock_irq(&hcd_root_hub_lock);
2013         } else {
2014                 hcd->state = old_state;
2015                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2016                                 "resume", status);
2017                 if (status != -ESHUTDOWN)
2018                         usb_hc_died(hcd);
2019         }
2020         return status;
2021 }
2022
2023 #endif  /* CONFIG_PM */
2024
2025 #ifdef  CONFIG_USB_SUSPEND
2026
2027 /* Workqueue routine for root-hub remote wakeup */
2028 static void hcd_resume_work(struct work_struct *work)
2029 {
2030         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2031         struct usb_device *udev = hcd->self.root_hub;
2032
2033         usb_lock_device(udev);
2034         usb_remote_wakeup(udev);
2035         usb_unlock_device(udev);
2036 }
2037
2038 /**
2039  * usb_hcd_resume_root_hub - called by HCD to resume its root hub 
2040  * @hcd: host controller for this root hub
2041  *
2042  * The USB host controller calls this function when its root hub is
2043  * suspended (with the remote wakeup feature enabled) and a remote
2044  * wakeup request is received.  The routine submits a workqueue request
2045  * to resume the root hub (that is, manage its downstream ports again).
2046  */
2047 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2048 {
2049         unsigned long flags;
2050
2051         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2052         if (hcd->rh_registered) {
2053                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2054                 queue_work(pm_wq, &hcd->wakeup_work);
2055         }
2056         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2057 }
2058 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2059
2060 #endif  /* CONFIG_USB_SUSPEND */
2061
2062 /*-------------------------------------------------------------------------*/
2063
2064 #ifdef  CONFIG_USB_OTG
2065
2066 /**
2067  * usb_bus_start_enum - start immediate enumeration (for OTG)
2068  * @bus: the bus (must use hcd framework)
2069  * @port_num: 1-based number of port; usually bus->otg_port
2070  * Context: in_interrupt()
2071  *
2072  * Starts enumeration, with an immediate reset followed later by
2073  * khubd identifying and possibly configuring the device.
2074  * This is needed by OTG controller drivers, where it helps meet
2075  * HNP protocol timing requirements for starting a port reset.
2076  */
2077 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2078 {
2079         struct usb_hcd          *hcd;
2080         int                     status = -EOPNOTSUPP;
2081
2082         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2083          * boards with root hubs hooked up to internal devices (instead of
2084          * just the OTG port) may need more attention to resetting...
2085          */
2086         hcd = container_of (bus, struct usb_hcd, self);
2087         if (port_num && hcd->driver->start_port_reset)
2088                 status = hcd->driver->start_port_reset(hcd, port_num);
2089
2090         /* run khubd shortly after (first) root port reset finishes;
2091          * it may issue others, until at least 50 msecs have passed.
2092          */
2093         if (status == 0)
2094                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2095         return status;
2096 }
2097 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2098
2099 #endif
2100
2101 /*-------------------------------------------------------------------------*/
2102
2103 /**
2104  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2105  * @irq: the IRQ being raised
2106  * @__hcd: pointer to the HCD whose IRQ is being signaled
2107  *
2108  * If the controller isn't HALTed, calls the driver's irq handler.
2109  * Checks whether the controller is now dead.
2110  */
2111 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2112 {
2113         struct usb_hcd          *hcd = __hcd;
2114         unsigned long           flags;
2115         irqreturn_t             rc;
2116
2117         /* IRQF_DISABLED doesn't work correctly with shared IRQs
2118          * when the first handler doesn't use it.  So let's just
2119          * assume it's never used.
2120          */
2121         local_irq_save(flags);
2122
2123         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) {
2124                 rc = IRQ_NONE;
2125         } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
2126                 rc = IRQ_NONE;
2127         } else {
2128                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2129                 if (hcd->shared_hcd)
2130                         set_bit(HCD_FLAG_SAW_IRQ, &hcd->shared_hcd->flags);
2131                 rc = IRQ_HANDLED;
2132         }
2133
2134         local_irq_restore(flags);
2135         return rc;
2136 }
2137 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2138
2139 /*-------------------------------------------------------------------------*/
2140
2141 /**
2142  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2143  * @hcd: pointer to the HCD representing the controller
2144  *
2145  * This is called by bus glue to report a USB host controller that died
2146  * while operations may still have been pending.  It's called automatically
2147  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2148  *
2149  * Only call this function with the primary HCD.
2150  */
2151 void usb_hc_died (struct usb_hcd *hcd)
2152 {
2153         unsigned long flags;
2154
2155         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2156
2157         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2158         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2159         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2160         if (hcd->rh_registered) {
2161                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2162
2163                 /* make khubd clean up old urbs and devices */
2164                 usb_set_device_state (hcd->self.root_hub,
2165                                 USB_STATE_NOTATTACHED);
2166                 usb_kick_khubd (hcd->self.root_hub);
2167         }
2168         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2169                 hcd = hcd->shared_hcd;
2170                 if (hcd->rh_registered) {
2171                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2172
2173                         /* make khubd clean up old urbs and devices */
2174                         usb_set_device_state(hcd->self.root_hub,
2175                                         USB_STATE_NOTATTACHED);
2176                         usb_kick_khubd(hcd->self.root_hub);
2177                 }
2178         }
2179         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2180         /* Make sure that the other roothub is also deallocated. */
2181 }
2182 EXPORT_SYMBOL_GPL (usb_hc_died);
2183
2184 /*-------------------------------------------------------------------------*/
2185
2186 /**
2187  * usb_create_shared_hcd - create and initialize an HCD structure
2188  * @driver: HC driver that will use this hcd
2189  * @dev: device for this HC, stored in hcd->self.controller
2190  * @bus_name: value to store in hcd->self.bus_name
2191  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2192  *              PCI device.  Only allocate certain resources for the primary HCD
2193  * Context: !in_interrupt()
2194  *
2195  * Allocate a struct usb_hcd, with extra space at the end for the
2196  * HC driver's private data.  Initialize the generic members of the
2197  * hcd structure.
2198  *
2199  * If memory is unavailable, returns NULL.
2200  */
2201 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2202                 struct device *dev, const char *bus_name,
2203                 struct usb_hcd *primary_hcd)
2204 {
2205         struct usb_hcd *hcd;
2206
2207         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2208         if (!hcd) {
2209                 dev_dbg (dev, "hcd alloc failed\n");
2210                 return NULL;
2211         }
2212         if (primary_hcd == NULL) {
2213                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2214                                 GFP_KERNEL);
2215                 if (!hcd->bandwidth_mutex) {
2216                         kfree(hcd);
2217                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2218                         return NULL;
2219                 }
2220                 mutex_init(hcd->bandwidth_mutex);
2221                 dev_set_drvdata(dev, hcd);
2222         } else {
2223                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2224                 hcd->primary_hcd = primary_hcd;
2225                 primary_hcd->primary_hcd = primary_hcd;
2226                 hcd->shared_hcd = primary_hcd;
2227                 primary_hcd->shared_hcd = hcd;
2228         }
2229
2230         kref_init(&hcd->kref);
2231
2232         usb_bus_init(&hcd->self);
2233         hcd->self.controller = dev;
2234         hcd->self.bus_name = bus_name;
2235         hcd->self.uses_dma = (dev->dma_mask != NULL);
2236
2237         init_timer(&hcd->rh_timer);
2238         hcd->rh_timer.function = rh_timer_func;
2239         hcd->rh_timer.data = (unsigned long) hcd;
2240 #ifdef CONFIG_USB_SUSPEND
2241         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2242 #endif
2243
2244         hcd->driver = driver;
2245         hcd->speed = driver->flags & HCD_MASK;
2246         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2247                         "USB Host Controller";
2248         return hcd;
2249 }
2250 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2251
2252 /**
2253  * usb_create_hcd - create and initialize an HCD structure
2254  * @driver: HC driver that will use this hcd
2255  * @dev: device for this HC, stored in hcd->self.controller
2256  * @bus_name: value to store in hcd->self.bus_name
2257  * Context: !in_interrupt()
2258  *
2259  * Allocate a struct usb_hcd, with extra space at the end for the
2260  * HC driver's private data.  Initialize the generic members of the
2261  * hcd structure.
2262  *
2263  * If memory is unavailable, returns NULL.
2264  */
2265 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2266                 struct device *dev, const char *bus_name)
2267 {
2268         return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2269 }
2270 EXPORT_SYMBOL_GPL(usb_create_hcd);
2271
2272 /*
2273  * Roothubs that share one PCI device must also share the bandwidth mutex.
2274  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2275  * deallocated.
2276  *
2277  * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2278  * freed.  When hcd_release() is called for the non-primary HCD, set the
2279  * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2280  * freed shortly).
2281  */
2282 static void hcd_release (struct kref *kref)
2283 {
2284         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2285
2286         if (usb_hcd_is_primary_hcd(hcd))
2287                 kfree(hcd->bandwidth_mutex);
2288         else
2289                 hcd->shared_hcd->shared_hcd = NULL;
2290         kfree(hcd);
2291 }
2292
2293 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2294 {
2295         if (hcd)
2296                 kref_get (&hcd->kref);
2297         return hcd;
2298 }
2299 EXPORT_SYMBOL_GPL(usb_get_hcd);
2300
2301 void usb_put_hcd (struct usb_hcd *hcd)
2302 {
2303         if (hcd)
2304                 kref_put (&hcd->kref, hcd_release);
2305 }
2306 EXPORT_SYMBOL_GPL(usb_put_hcd);
2307
2308 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2309 {
2310         if (!hcd->primary_hcd)
2311                 return 1;
2312         return hcd == hcd->primary_hcd;
2313 }
2314 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2315
2316 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2317                 unsigned int irqnum, unsigned long irqflags)
2318 {
2319         int retval;
2320
2321         if (hcd->driver->irq) {
2322
2323                 /* IRQF_DISABLED doesn't work as advertised when used together
2324                  * with IRQF_SHARED. As usb_hcd_irq() will always disable
2325                  * interrupts we can remove it here.
2326                  */
2327                 if (irqflags & IRQF_SHARED)
2328                         irqflags &= ~IRQF_DISABLED;
2329
2330                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2331                                 hcd->driver->description, hcd->self.busnum);
2332                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2333                                 hcd->irq_descr, hcd);
2334                 if (retval != 0) {
2335                         dev_err(hcd->self.controller,
2336                                         "request interrupt %d failed\n",
2337                                         irqnum);
2338                         return retval;
2339                 }
2340                 hcd->irq = irqnum;
2341                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2342                                 (hcd->driver->flags & HCD_MEMORY) ?
2343                                         "io mem" : "io base",
2344                                         (unsigned long long)hcd->rsrc_start);
2345         } else {
2346                 hcd->irq = -1;
2347                 if (hcd->rsrc_start)
2348                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2349                                         (hcd->driver->flags & HCD_MEMORY) ?
2350                                         "io mem" : "io base",
2351                                         (unsigned long long)hcd->rsrc_start);
2352         }
2353         return 0;
2354 }
2355
2356 /**
2357  * usb_add_hcd - finish generic HCD structure initialization and register
2358  * @hcd: the usb_hcd structure to initialize
2359  * @irqnum: Interrupt line to allocate
2360  * @irqflags: Interrupt type flags
2361  *
2362  * Finish the remaining parts of generic HCD initialization: allocate the
2363  * buffers of consistent memory, register the bus, request the IRQ line,
2364  * and call the driver's reset() and start() routines.
2365  */
2366 int usb_add_hcd(struct usb_hcd *hcd,
2367                 unsigned int irqnum, unsigned long irqflags)
2368 {
2369         int retval;
2370         struct usb_device *rhdev;
2371
2372         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2373
2374         hcd->authorized_default = hcd->wireless? 0 : 1;
2375         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2376
2377         /* HC is in reset state, but accessible.  Now do the one-time init,
2378          * bottom up so that hcds can customize the root hubs before khubd
2379          * starts talking to them.  (Note, bus id is assigned early too.)
2380          */
2381         if ((retval = hcd_buffer_create(hcd)) != 0) {
2382                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2383                 return retval;
2384         }
2385
2386         if ((retval = usb_register_bus(&hcd->self)) < 0)
2387                 goto err_register_bus;
2388
2389         if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2390                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2391                 retval = -ENOMEM;
2392                 goto err_allocate_root_hub;
2393         }
2394         hcd->self.root_hub = rhdev;
2395
2396         switch (hcd->speed) {
2397         case HCD_USB11:
2398                 rhdev->speed = USB_SPEED_FULL;
2399                 break;
2400         case HCD_USB2:
2401                 rhdev->speed = USB_SPEED_HIGH;
2402                 break;
2403         case HCD_USB3:
2404                 rhdev->speed = USB_SPEED_SUPER;
2405                 break;
2406         default:
2407                 retval = -EINVAL;
2408                 goto err_set_rh_speed;
2409         }
2410
2411         /* wakeup flag init defaults to "everything works" for root hubs,
2412          * but drivers can override it in reset() if needed, along with
2413          * recording the overall controller's system wakeup capability.
2414          */
2415         device_init_wakeup(&rhdev->dev, 1);
2416
2417         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2418          * registered.  But since the controller can die at any time,
2419          * let's initialize the flag before touching the hardware.
2420          */
2421         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2422
2423         /* "reset" is misnamed; its role is now one-time init. the controller
2424          * should already have been reset (and boot firmware kicked off etc).
2425          */
2426         if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2427                 dev_err(hcd->self.controller, "can't setup\n");
2428                 goto err_hcd_driver_setup;
2429         }
2430         hcd->rh_pollable = 1;
2431
2432         /* NOTE: root hub and controller capabilities may not be the same */
2433         if (device_can_wakeup(hcd->self.controller)
2434                         && device_can_wakeup(&hcd->self.root_hub->dev))
2435                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2436
2437         /* enable irqs just before we start the controller,
2438          * if the BIOS provides legacy PCI irqs.
2439          */
2440         if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2441                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2442                 if (retval)
2443                         goto err_request_irq;
2444         }
2445
2446         hcd->state = HC_STATE_RUNNING;
2447         retval = hcd->driver->start(hcd);
2448         if (retval < 0) {
2449                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2450                 goto err_hcd_driver_start;
2451         }
2452
2453         /* starting here, usbcore will pay attention to this root hub */
2454         rhdev->bus_mA = min(500u, hcd->power_budget);
2455         if ((retval = register_root_hub(hcd)) != 0)
2456                 goto err_register_root_hub;
2457
2458         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2459         if (retval < 0) {
2460                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2461                        retval);
2462                 goto error_create_attr_group;
2463         }
2464         if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2465                 usb_hcd_poll_rh_status(hcd);
2466         return retval;
2467
2468 error_create_attr_group:
2469         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2470         if (HC_IS_RUNNING(hcd->state))
2471                 hcd->state = HC_STATE_QUIESCING;
2472         spin_lock_irq(&hcd_root_hub_lock);
2473         hcd->rh_registered = 0;
2474         spin_unlock_irq(&hcd_root_hub_lock);
2475
2476 #ifdef CONFIG_USB_SUSPEND
2477         cancel_work_sync(&hcd->wakeup_work);
2478 #endif
2479         mutex_lock(&usb_bus_list_lock);
2480         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2481         mutex_unlock(&usb_bus_list_lock);
2482 err_register_root_hub:
2483         hcd->rh_pollable = 0;
2484         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2485         del_timer_sync(&hcd->rh_timer);
2486         hcd->driver->stop(hcd);
2487         hcd->state = HC_STATE_HALT;
2488         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2489         del_timer_sync(&hcd->rh_timer);
2490 err_hcd_driver_start:
2491         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq >= 0)
2492                 free_irq(irqnum, hcd);
2493 err_request_irq:
2494 err_hcd_driver_setup:
2495 err_set_rh_speed:
2496         usb_put_dev(hcd->self.root_hub);
2497 err_allocate_root_hub:
2498         usb_deregister_bus(&hcd->self);
2499 err_register_bus:
2500         hcd_buffer_destroy(hcd);
2501         return retval;
2502
2503 EXPORT_SYMBOL_GPL(usb_add_hcd);
2504
2505 /**
2506  * usb_remove_hcd - shutdown processing for generic HCDs
2507  * @hcd: the usb_hcd structure to remove
2508  * Context: !in_interrupt()
2509  *
2510  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2511  * invoking the HCD's stop() method.
2512  */
2513 void usb_remove_hcd(struct usb_hcd *hcd)
2514 {
2515         struct usb_device *rhdev = hcd->self.root_hub;
2516
2517         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2518
2519         usb_get_dev(rhdev);
2520         sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2521
2522         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2523         if (HC_IS_RUNNING (hcd->state))
2524                 hcd->state = HC_STATE_QUIESCING;
2525
2526         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2527         spin_lock_irq (&hcd_root_hub_lock);
2528         hcd->rh_registered = 0;
2529         spin_unlock_irq (&hcd_root_hub_lock);
2530
2531 #ifdef CONFIG_USB_SUSPEND
2532         cancel_work_sync(&hcd->wakeup_work);
2533 #endif
2534
2535         mutex_lock(&usb_bus_list_lock);
2536         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2537         mutex_unlock(&usb_bus_list_lock);
2538
2539         /* Prevent any more root-hub status calls from the timer.
2540          * The HCD might still restart the timer (if a port status change
2541          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2542          * the hub_status_data() callback.
2543          */
2544         hcd->rh_pollable = 0;
2545         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2546         del_timer_sync(&hcd->rh_timer);
2547
2548         hcd->driver->stop(hcd);
2549         hcd->state = HC_STATE_HALT;
2550
2551         /* In case the HCD restarted the timer, stop it again. */
2552         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2553         del_timer_sync(&hcd->rh_timer);
2554
2555         if (usb_hcd_is_primary_hcd(hcd)) {
2556                 if (hcd->irq >= 0)
2557                         free_irq(hcd->irq, hcd);
2558         }
2559
2560         usb_put_dev(hcd->self.root_hub);
2561         usb_deregister_bus(&hcd->self);
2562         hcd_buffer_destroy(hcd);
2563 }
2564 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2565
2566 void
2567 usb_hcd_platform_shutdown(struct platform_device* dev)
2568 {
2569         struct usb_hcd *hcd = platform_get_drvdata(dev);
2570
2571         if (hcd->driver->shutdown)
2572                 hcd->driver->shutdown(hcd);
2573 }
2574 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2575
2576 /*-------------------------------------------------------------------------*/
2577
2578 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2579
2580 struct usb_mon_operations *mon_ops;
2581
2582 /*
2583  * The registration is unlocked.
2584  * We do it this way because we do not want to lock in hot paths.
2585  *
2586  * Notice that the code is minimally error-proof. Because usbmon needs
2587  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2588  */
2589  
2590 int usb_mon_register (struct usb_mon_operations *ops)
2591 {
2592
2593         if (mon_ops)
2594                 return -EBUSY;
2595
2596         mon_ops = ops;
2597         mb();
2598         return 0;
2599 }
2600 EXPORT_SYMBOL_GPL (usb_mon_register);
2601
2602 void usb_mon_deregister (void)
2603 {
2604
2605         if (mon_ops == NULL) {
2606                 printk(KERN_ERR "USB: monitor was not registered\n");
2607                 return;
2608         }
2609         mon_ops = NULL;
2610         mb();
2611 }
2612 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2613
2614 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */