usb: dwc2: gadget: only reset core after addressed state
[firefly-linux-kernel-4.4.55.git] / drivers / usb / dwc2 / gadget.c
1 /**
2  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3  *              http://www.samsung.com
4  *
5  * Copyright 2008 Openmoko, Inc.
6  * Copyright 2008 Simtec Electronics
7  *      Ben Dooks <ben@simtec.co.uk>
8  *      http://armlinux.simtec.co.uk/
9  *
10  * S3C USB2.0 High-speed / OtG driver
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/mutex.h>
24 #include <linux/seq_file.h>
25 #include <linux/delay.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/clk.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/of_platform.h>
31 #include <linux/phy/phy.h>
32
33 #include <linux/usb/ch9.h>
34 #include <linux/usb/gadget.h>
35 #include <linux/usb/phy.h>
36 #include <linux/platform_data/s3c-hsotg.h>
37
38 #include "core.h"
39 #include "hw.h"
40
41 /* conversion functions */
42 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
43 {
44         return container_of(req, struct dwc2_hsotg_req, req);
45 }
46
47 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
48 {
49         return container_of(ep, struct dwc2_hsotg_ep, ep);
50 }
51
52 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
53 {
54         return container_of(gadget, struct dwc2_hsotg, gadget);
55 }
56
57 static inline void __orr32(void __iomem *ptr, u32 val)
58 {
59         dwc2_writel(dwc2_readl(ptr) | val, ptr);
60 }
61
62 static inline void __bic32(void __iomem *ptr, u32 val)
63 {
64         dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
65 }
66
67 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
68                                                 u32 ep_index, u32 dir_in)
69 {
70         if (dir_in)
71                 return hsotg->eps_in[ep_index];
72         else
73                 return hsotg->eps_out[ep_index];
74 }
75
76 /* forward declaration of functions */
77 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
78
79 /**
80  * using_dma - return the DMA status of the driver.
81  * @hsotg: The driver state.
82  *
83  * Return true if we're using DMA.
84  *
85  * Currently, we have the DMA support code worked into everywhere
86  * that needs it, but the AMBA DMA implementation in the hardware can
87  * only DMA from 32bit aligned addresses. This means that gadgets such
88  * as the CDC Ethernet cannot work as they often pass packets which are
89  * not 32bit aligned.
90  *
91  * Unfortunately the choice to use DMA or not is global to the controller
92  * and seems to be only settable when the controller is being put through
93  * a core reset. This means we either need to fix the gadgets to take
94  * account of DMA alignment, or add bounce buffers (yuerk).
95  *
96  * g_using_dma is set depending on dts flag.
97  */
98 static inline bool using_dma(struct dwc2_hsotg *hsotg)
99 {
100         return hsotg->g_using_dma;
101 }
102
103 /**
104  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
105  * @hsotg: The device state
106  * @ints: A bitmask of the interrupts to enable
107  */
108 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
109 {
110         u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
111         u32 new_gsintmsk;
112
113         new_gsintmsk = gsintmsk | ints;
114
115         if (new_gsintmsk != gsintmsk) {
116                 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
117                 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
118         }
119 }
120
121 /**
122  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
123  * @hsotg: The device state
124  * @ints: A bitmask of the interrupts to enable
125  */
126 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
127 {
128         u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
129         u32 new_gsintmsk;
130
131         new_gsintmsk = gsintmsk & ~ints;
132
133         if (new_gsintmsk != gsintmsk)
134                 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
135 }
136
137 /**
138  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
139  * @hsotg: The device state
140  * @ep: The endpoint index
141  * @dir_in: True if direction is in.
142  * @en: The enable value, true to enable
143  *
144  * Set or clear the mask for an individual endpoint's interrupt
145  * request.
146  */
147 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
148                                  unsigned int ep, unsigned int dir_in,
149                                  unsigned int en)
150 {
151         unsigned long flags;
152         u32 bit = 1 << ep;
153         u32 daint;
154
155         if (!dir_in)
156                 bit <<= 16;
157
158         local_irq_save(flags);
159         daint = dwc2_readl(hsotg->regs + DAINTMSK);
160         if (en)
161                 daint |= bit;
162         else
163                 daint &= ~bit;
164         dwc2_writel(daint, hsotg->regs + DAINTMSK);
165         local_irq_restore(flags);
166 }
167
168 /**
169  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
170  * @hsotg: The device instance.
171  */
172 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
173 {
174         unsigned int ep;
175         unsigned int addr;
176         int timeout;
177         u32 val;
178
179         /* Reset fifo map if not correctly cleared during previous session */
180         WARN_ON(hsotg->fifo_map);
181         hsotg->fifo_map = 0;
182
183         /* set RX/NPTX FIFO sizes */
184         dwc2_writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
185         dwc2_writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
186                 (hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
187                 hsotg->regs + GNPTXFSIZ);
188
189         /*
190          * arange all the rest of the TX FIFOs, as some versions of this
191          * block have overlapping default addresses. This also ensures
192          * that if the settings have been changed, then they are set to
193          * known values.
194          */
195
196         /* start at the end of the GNPTXFSIZ, rounded up */
197         addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
198
199         /*
200          * Configure fifos sizes from provided configuration and assign
201          * them to endpoints dynamically according to maxpacket size value of
202          * given endpoint.
203          */
204         for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
205                 if (!hsotg->g_tx_fifo_sz[ep])
206                         continue;
207                 val = addr;
208                 val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
209                 WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
210                           "insufficient fifo memory");
211                 addr += hsotg->g_tx_fifo_sz[ep];
212
213                 dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
214         }
215
216         /*
217          * according to p428 of the design guide, we need to ensure that
218          * all fifos are flushed before continuing
219          */
220
221         dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
222                GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
223
224         /* wait until the fifos are both flushed */
225         timeout = 100;
226         while (1) {
227                 val = dwc2_readl(hsotg->regs + GRSTCTL);
228
229                 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
230                         break;
231
232                 if (--timeout == 0) {
233                         dev_err(hsotg->dev,
234                                 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
235                                 __func__, val);
236                         break;
237                 }
238
239                 udelay(1);
240         }
241
242         dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
243 }
244
245 /**
246  * @ep: USB endpoint to allocate request for.
247  * @flags: Allocation flags
248  *
249  * Allocate a new USB request structure appropriate for the specified endpoint
250  */
251 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
252                                                       gfp_t flags)
253 {
254         struct dwc2_hsotg_req *req;
255
256         req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
257         if (!req)
258                 return NULL;
259
260         INIT_LIST_HEAD(&req->queue);
261
262         return &req->req;
263 }
264
265 /**
266  * is_ep_periodic - return true if the endpoint is in periodic mode.
267  * @hs_ep: The endpoint to query.
268  *
269  * Returns true if the endpoint is in periodic mode, meaning it is being
270  * used for an Interrupt or ISO transfer.
271  */
272 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
273 {
274         return hs_ep->periodic;
275 }
276
277 /**
278  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
279  * @hsotg: The device state.
280  * @hs_ep: The endpoint for the request
281  * @hs_req: The request being processed.
282  *
283  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
284  * of a request to ensure the buffer is ready for access by the caller.
285  */
286 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
287                                 struct dwc2_hsotg_ep *hs_ep,
288                                 struct dwc2_hsotg_req *hs_req)
289 {
290         struct usb_request *req = &hs_req->req;
291
292         /* ignore this if we're not moving any data */
293         if (hs_req->req.length == 0)
294                 return;
295
296         usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
297 }
298
299 /**
300  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
301  * @hsotg: The controller state.
302  * @hs_ep: The endpoint we're going to write for.
303  * @hs_req: The request to write data for.
304  *
305  * This is called when the TxFIFO has some space in it to hold a new
306  * transmission and we have something to give it. The actual setup of
307  * the data size is done elsewhere, so all we have to do is to actually
308  * write the data.
309  *
310  * The return value is zero if there is more space (or nothing was done)
311  * otherwise -ENOSPC is returned if the FIFO space was used up.
312  *
313  * This routine is only needed for PIO
314  */
315 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
316                                 struct dwc2_hsotg_ep *hs_ep,
317                                 struct dwc2_hsotg_req *hs_req)
318 {
319         bool periodic = is_ep_periodic(hs_ep);
320         u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
321         int buf_pos = hs_req->req.actual;
322         int to_write = hs_ep->size_loaded;
323         void *data;
324         int can_write;
325         int pkt_round;
326         int max_transfer;
327
328         to_write -= (buf_pos - hs_ep->last_load);
329
330         /* if there's nothing to write, get out early */
331         if (to_write == 0)
332                 return 0;
333
334         if (periodic && !hsotg->dedicated_fifos) {
335                 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
336                 int size_left;
337                 int size_done;
338
339                 /*
340                  * work out how much data was loaded so we can calculate
341                  * how much data is left in the fifo.
342                  */
343
344                 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
345
346                 /*
347                  * if shared fifo, we cannot write anything until the
348                  * previous data has been completely sent.
349                  */
350                 if (hs_ep->fifo_load != 0) {
351                         dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
352                         return -ENOSPC;
353                 }
354
355                 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
356                         __func__, size_left,
357                         hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
358
359                 /* how much of the data has moved */
360                 size_done = hs_ep->size_loaded - size_left;
361
362                 /* how much data is left in the fifo */
363                 can_write = hs_ep->fifo_load - size_done;
364                 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
365                         __func__, can_write);
366
367                 can_write = hs_ep->fifo_size - can_write;
368                 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
369                         __func__, can_write);
370
371                 if (can_write <= 0) {
372                         dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
373                         return -ENOSPC;
374                 }
375         } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
376                 can_write = dwc2_readl(hsotg->regs + DTXFSTS(hs_ep->index));
377
378                 can_write &= 0xffff;
379                 can_write *= 4;
380         } else {
381                 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
382                         dev_dbg(hsotg->dev,
383                                 "%s: no queue slots available (0x%08x)\n",
384                                 __func__, gnptxsts);
385
386                         dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
387                         return -ENOSPC;
388                 }
389
390                 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
391                 can_write *= 4; /* fifo size is in 32bit quantities. */
392         }
393
394         max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
395
396         dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
397                  __func__, gnptxsts, can_write, to_write, max_transfer);
398
399         /*
400          * limit to 512 bytes of data, it seems at least on the non-periodic
401          * FIFO, requests of >512 cause the endpoint to get stuck with a
402          * fragment of the end of the transfer in it.
403          */
404         if (can_write > 512 && !periodic)
405                 can_write = 512;
406
407         /*
408          * limit the write to one max-packet size worth of data, but allow
409          * the transfer to return that it did not run out of fifo space
410          * doing it.
411          */
412         if (to_write > max_transfer) {
413                 to_write = max_transfer;
414
415                 /* it's needed only when we do not use dedicated fifos */
416                 if (!hsotg->dedicated_fifos)
417                         dwc2_hsotg_en_gsint(hsotg,
418                                            periodic ? GINTSTS_PTXFEMP :
419                                            GINTSTS_NPTXFEMP);
420         }
421
422         /* see if we can write data */
423
424         if (to_write > can_write) {
425                 to_write = can_write;
426                 pkt_round = to_write % max_transfer;
427
428                 /*
429                  * Round the write down to an
430                  * exact number of packets.
431                  *
432                  * Note, we do not currently check to see if we can ever
433                  * write a full packet or not to the FIFO.
434                  */
435
436                 if (pkt_round)
437                         to_write -= pkt_round;
438
439                 /*
440                  * enable correct FIFO interrupt to alert us when there
441                  * is more room left.
442                  */
443
444                 /* it's needed only when we do not use dedicated fifos */
445                 if (!hsotg->dedicated_fifos)
446                         dwc2_hsotg_en_gsint(hsotg,
447                                            periodic ? GINTSTS_PTXFEMP :
448                                            GINTSTS_NPTXFEMP);
449         }
450
451         dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
452                  to_write, hs_req->req.length, can_write, buf_pos);
453
454         if (to_write <= 0)
455                 return -ENOSPC;
456
457         hs_req->req.actual = buf_pos + to_write;
458         hs_ep->total_data += to_write;
459
460         if (periodic)
461                 hs_ep->fifo_load += to_write;
462
463         to_write = DIV_ROUND_UP(to_write, 4);
464         data = hs_req->req.buf + buf_pos;
465
466         iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
467
468         return (to_write >= can_write) ? -ENOSPC : 0;
469 }
470
471 /**
472  * get_ep_limit - get the maximum data legnth for this endpoint
473  * @hs_ep: The endpoint
474  *
475  * Return the maximum data that can be queued in one go on a given endpoint
476  * so that transfers that are too long can be split.
477  */
478 static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
479 {
480         int index = hs_ep->index;
481         unsigned maxsize;
482         unsigned maxpkt;
483
484         if (index != 0) {
485                 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
486                 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
487         } else {
488                 maxsize = 64+64;
489                 if (hs_ep->dir_in)
490                         maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
491                 else
492                         maxpkt = 2;
493         }
494
495         /* we made the constant loading easier above by using +1 */
496         maxpkt--;
497         maxsize--;
498
499         /*
500          * constrain by packet count if maxpkts*pktsize is greater
501          * than the length register size.
502          */
503
504         if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
505                 maxsize = maxpkt * hs_ep->ep.maxpacket;
506
507         return maxsize;
508 }
509
510 /**
511  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
512  * @hsotg: The controller state.
513  * @hs_ep: The endpoint to process a request for
514  * @hs_req: The request to start.
515  * @continuing: True if we are doing more for the current request.
516  *
517  * Start the given request running by setting the endpoint registers
518  * appropriately, and writing any data to the FIFOs.
519  */
520 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
521                                 struct dwc2_hsotg_ep *hs_ep,
522                                 struct dwc2_hsotg_req *hs_req,
523                                 bool continuing)
524 {
525         struct usb_request *ureq = &hs_req->req;
526         int index = hs_ep->index;
527         int dir_in = hs_ep->dir_in;
528         u32 epctrl_reg;
529         u32 epsize_reg;
530         u32 epsize;
531         u32 ctrl;
532         unsigned length;
533         unsigned packets;
534         unsigned maxreq;
535
536         if (index != 0) {
537                 if (hs_ep->req && !continuing) {
538                         dev_err(hsotg->dev, "%s: active request\n", __func__);
539                         WARN_ON(1);
540                         return;
541                 } else if (hs_ep->req != hs_req && continuing) {
542                         dev_err(hsotg->dev,
543                                 "%s: continue different req\n", __func__);
544                         WARN_ON(1);
545                         return;
546                 }
547         }
548
549         epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
550         epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
551
552         dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
553                 __func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
554                 hs_ep->dir_in ? "in" : "out");
555
556         /* If endpoint is stalled, we will restart request later */
557         ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
558
559         if (index && ctrl & DXEPCTL_STALL) {
560                 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
561                 return;
562         }
563
564         length = ureq->length - ureq->actual;
565         dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
566                 ureq->length, ureq->actual);
567
568         maxreq = get_ep_limit(hs_ep);
569         if (length > maxreq) {
570                 int round = maxreq % hs_ep->ep.maxpacket;
571
572                 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
573                         __func__, length, maxreq, round);
574
575                 /* round down to multiple of packets */
576                 if (round)
577                         maxreq -= round;
578
579                 length = maxreq;
580         }
581
582         if (length)
583                 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
584         else
585                 packets = 1;    /* send one packet if length is zero. */
586
587         if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
588                 dev_err(hsotg->dev, "req length > maxpacket*mc\n");
589                 return;
590         }
591
592         if (dir_in && index != 0)
593                 if (hs_ep->isochronous)
594                         epsize = DXEPTSIZ_MC(packets);
595                 else
596                         epsize = DXEPTSIZ_MC(1);
597         else
598                 epsize = 0;
599
600         /*
601          * zero length packet should be programmed on its own and should not
602          * be counted in DIEPTSIZ.PktCnt with other packets.
603          */
604         if (dir_in && ureq->zero && !continuing) {
605                 /* Test if zlp is actually required. */
606                 if ((ureq->length >= hs_ep->ep.maxpacket) &&
607                                         !(ureq->length % hs_ep->ep.maxpacket))
608                         hs_ep->send_zlp = 1;
609         }
610
611         epsize |= DXEPTSIZ_PKTCNT(packets);
612         epsize |= DXEPTSIZ_XFERSIZE(length);
613
614         dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
615                 __func__, packets, length, ureq->length, epsize, epsize_reg);
616
617         /* store the request as the current one we're doing */
618         hs_ep->req = hs_req;
619
620         /* write size / packets */
621         dwc2_writel(epsize, hsotg->regs + epsize_reg);
622
623         if (using_dma(hsotg) && !continuing) {
624                 unsigned int dma_reg;
625
626                 /*
627                  * write DMA address to control register, buffer already
628                  * synced by dwc2_hsotg_ep_queue().
629                  */
630
631                 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
632                 dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
633
634                 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
635                         __func__, &ureq->dma, dma_reg);
636         }
637
638         ctrl |= DXEPCTL_EPENA;  /* ensure ep enabled */
639         ctrl |= DXEPCTL_USBACTEP;
640
641         dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
642
643         /* For Setup request do not clear NAK */
644         if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
645                 ctrl |= DXEPCTL_CNAK;   /* clear NAK set by core */
646
647         dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
648         dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
649
650         /*
651          * set these, it seems that DMA support increments past the end
652          * of the packet buffer so we need to calculate the length from
653          * this information.
654          */
655         hs_ep->size_loaded = length;
656         hs_ep->last_load = ureq->actual;
657
658         if (dir_in && !using_dma(hsotg)) {
659                 /* set these anyway, we may need them for non-periodic in */
660                 hs_ep->fifo_load = 0;
661
662                 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
663         }
664
665         /*
666          * clear the INTknTXFEmpMsk when we start request, more as a aide
667          * to debugging to see what is going on.
668          */
669         if (dir_in)
670                 dwc2_writel(DIEPMSK_INTKNTXFEMPMSK,
671                        hsotg->regs + DIEPINT(index));
672
673         /*
674          * Note, trying to clear the NAK here causes problems with transmit
675          * on the S3C6400 ending up with the TXFIFO becoming full.
676          */
677
678         /* check ep is enabled */
679         if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
680                 dev_dbg(hsotg->dev,
681                          "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
682                          index, dwc2_readl(hsotg->regs + epctrl_reg));
683
684         dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
685                 __func__, dwc2_readl(hsotg->regs + epctrl_reg));
686
687         /* enable ep interrupts */
688         dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
689 }
690
691 /**
692  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
693  * @hsotg: The device state.
694  * @hs_ep: The endpoint the request is on.
695  * @req: The request being processed.
696  *
697  * We've been asked to queue a request, so ensure that the memory buffer
698  * is correctly setup for DMA. If we've been passed an extant DMA address
699  * then ensure the buffer has been synced to memory. If our buffer has no
700  * DMA memory, then we map the memory and mark our request to allow us to
701  * cleanup on completion.
702  */
703 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
704                              struct dwc2_hsotg_ep *hs_ep,
705                              struct usb_request *req)
706 {
707         struct dwc2_hsotg_req *hs_req = our_req(req);
708         int ret;
709
710         /* if the length is zero, ignore the DMA data */
711         if (hs_req->req.length == 0)
712                 return 0;
713
714         ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
715         if (ret)
716                 goto dma_error;
717
718         return 0;
719
720 dma_error:
721         dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
722                 __func__, req->buf, req->length);
723
724         return -EIO;
725 }
726
727 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
728         struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
729 {
730         void *req_buf = hs_req->req.buf;
731
732         /* If dma is not being used or buffer is aligned */
733         if (!using_dma(hsotg) || !((long)req_buf & 3))
734                 return 0;
735
736         WARN_ON(hs_req->saved_req_buf);
737
738         dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
739                         hs_ep->ep.name, req_buf, hs_req->req.length);
740
741         hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
742         if (!hs_req->req.buf) {
743                 hs_req->req.buf = req_buf;
744                 dev_err(hsotg->dev,
745                         "%s: unable to allocate memory for bounce buffer\n",
746                         __func__);
747                 return -ENOMEM;
748         }
749
750         /* Save actual buffer */
751         hs_req->saved_req_buf = req_buf;
752
753         if (hs_ep->dir_in)
754                 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
755         return 0;
756 }
757
758 static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
759         struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
760 {
761         /* If dma is not being used or buffer was aligned */
762         if (!using_dma(hsotg) || !hs_req->saved_req_buf)
763                 return;
764
765         dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
766                 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
767
768         /* Copy data from bounce buffer on successful out transfer */
769         if (!hs_ep->dir_in && !hs_req->req.status)
770                 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
771                                                         hs_req->req.actual);
772
773         /* Free bounce buffer */
774         kfree(hs_req->req.buf);
775
776         hs_req->req.buf = hs_req->saved_req_buf;
777         hs_req->saved_req_buf = NULL;
778 }
779
780 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
781                               gfp_t gfp_flags)
782 {
783         struct dwc2_hsotg_req *hs_req = our_req(req);
784         struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
785         struct dwc2_hsotg *hs = hs_ep->parent;
786         bool first;
787         int ret;
788
789         dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
790                 ep->name, req, req->length, req->buf, req->no_interrupt,
791                 req->zero, req->short_not_ok);
792
793         /* Prevent new request submission when controller is suspended */
794         if (hs->lx_state == DWC2_L2) {
795                 dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
796                                 __func__);
797                 return -EAGAIN;
798         }
799
800         /* initialise status of the request */
801         INIT_LIST_HEAD(&hs_req->queue);
802         req->actual = 0;
803         req->status = -EINPROGRESS;
804
805         ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
806         if (ret)
807                 return ret;
808
809         /* if we're using DMA, sync the buffers as necessary */
810         if (using_dma(hs)) {
811                 ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
812                 if (ret)
813                         return ret;
814         }
815
816         first = list_empty(&hs_ep->queue);
817         list_add_tail(&hs_req->queue, &hs_ep->queue);
818
819         if (first)
820                 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
821
822         return 0;
823 }
824
825 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
826                               gfp_t gfp_flags)
827 {
828         struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
829         struct dwc2_hsotg *hs = hs_ep->parent;
830         unsigned long flags = 0;
831         int ret = 0;
832
833         spin_lock_irqsave(&hs->lock, flags);
834         ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
835         spin_unlock_irqrestore(&hs->lock, flags);
836
837         return ret;
838 }
839
840 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
841                                       struct usb_request *req)
842 {
843         struct dwc2_hsotg_req *hs_req = our_req(req);
844
845         kfree(hs_req);
846 }
847
848 /**
849  * dwc2_hsotg_complete_oursetup - setup completion callback
850  * @ep: The endpoint the request was on.
851  * @req: The request completed.
852  *
853  * Called on completion of any requests the driver itself
854  * submitted that need cleaning up.
855  */
856 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
857                                         struct usb_request *req)
858 {
859         struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
860         struct dwc2_hsotg *hsotg = hs_ep->parent;
861
862         dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
863
864         dwc2_hsotg_ep_free_request(ep, req);
865 }
866
867 /**
868  * ep_from_windex - convert control wIndex value to endpoint
869  * @hsotg: The driver state.
870  * @windex: The control request wIndex field (in host order).
871  *
872  * Convert the given wIndex into a pointer to an driver endpoint
873  * structure, or return NULL if it is not a valid endpoint.
874  */
875 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
876                                            u32 windex)
877 {
878         struct dwc2_hsotg_ep *ep;
879         int dir = (windex & USB_DIR_IN) ? 1 : 0;
880         int idx = windex & 0x7F;
881
882         if (windex >= 0x100)
883                 return NULL;
884
885         if (idx > hsotg->num_of_eps)
886                 return NULL;
887
888         ep = index_to_ep(hsotg, idx, dir);
889
890         if (idx && ep->dir_in != dir)
891                 return NULL;
892
893         return ep;
894 }
895
896 /**
897  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
898  * @hsotg: The driver state.
899  * @testmode: requested usb test mode
900  * Enable usb Test Mode requested by the Host.
901  */
902 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
903 {
904         int dctl = dwc2_readl(hsotg->regs + DCTL);
905
906         dctl &= ~DCTL_TSTCTL_MASK;
907         switch (testmode) {
908         case TEST_J:
909         case TEST_K:
910         case TEST_SE0_NAK:
911         case TEST_PACKET:
912         case TEST_FORCE_EN:
913                 dctl |= testmode << DCTL_TSTCTL_SHIFT;
914                 break;
915         default:
916                 return -EINVAL;
917         }
918         dwc2_writel(dctl, hsotg->regs + DCTL);
919         return 0;
920 }
921
922 /**
923  * dwc2_hsotg_send_reply - send reply to control request
924  * @hsotg: The device state
925  * @ep: Endpoint 0
926  * @buff: Buffer for request
927  * @length: Length of reply.
928  *
929  * Create a request and queue it on the given endpoint. This is useful as
930  * an internal method of sending replies to certain control requests, etc.
931  */
932 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
933                                 struct dwc2_hsotg_ep *ep,
934                                 void *buff,
935                                 int length)
936 {
937         struct usb_request *req;
938         int ret;
939
940         dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
941
942         req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
943         hsotg->ep0_reply = req;
944         if (!req) {
945                 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
946                 return -ENOMEM;
947         }
948
949         req->buf = hsotg->ep0_buff;
950         req->length = length;
951         /*
952          * zero flag is for sending zlp in DATA IN stage. It has no impact on
953          * STATUS stage.
954          */
955         req->zero = 0;
956         req->complete = dwc2_hsotg_complete_oursetup;
957
958         if (length)
959                 memcpy(req->buf, buff, length);
960
961         ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
962         if (ret) {
963                 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
964                 return ret;
965         }
966
967         return 0;
968 }
969
970 /**
971  * dwc2_hsotg_process_req_status - process request GET_STATUS
972  * @hsotg: The device state
973  * @ctrl: USB control request
974  */
975 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
976                                         struct usb_ctrlrequest *ctrl)
977 {
978         struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
979         struct dwc2_hsotg_ep *ep;
980         __le16 reply;
981         int ret;
982
983         dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
984
985         if (!ep0->dir_in) {
986                 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
987                 return -EINVAL;
988         }
989
990         switch (ctrl->bRequestType & USB_RECIP_MASK) {
991         case USB_RECIP_DEVICE:
992                 reply = cpu_to_le16(0); /* bit 0 => self powered,
993                                          * bit 1 => remote wakeup */
994                 break;
995
996         case USB_RECIP_INTERFACE:
997                 /* currently, the data result should be zero */
998                 reply = cpu_to_le16(0);
999                 break;
1000
1001         case USB_RECIP_ENDPOINT:
1002                 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1003                 if (!ep)
1004                         return -ENOENT;
1005
1006                 reply = cpu_to_le16(ep->halted ? 1 : 0);
1007                 break;
1008
1009         default:
1010                 return 0;
1011         }
1012
1013         if (le16_to_cpu(ctrl->wLength) != 2)
1014                 return -EINVAL;
1015
1016         ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1017         if (ret) {
1018                 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1019                 return ret;
1020         }
1021
1022         return 1;
1023 }
1024
1025 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1026
1027 /**
1028  * get_ep_head - return the first request on the endpoint
1029  * @hs_ep: The controller endpoint to get
1030  *
1031  * Get the first request on the endpoint.
1032  */
1033 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1034 {
1035         if (list_empty(&hs_ep->queue))
1036                 return NULL;
1037
1038         return list_first_entry(&hs_ep->queue, struct dwc2_hsotg_req, queue);
1039 }
1040
1041 /**
1042  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1043  * @hsotg: The device state
1044  * @ctrl: USB control request
1045  */
1046 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1047                                          struct usb_ctrlrequest *ctrl)
1048 {
1049         struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1050         struct dwc2_hsotg_req *hs_req;
1051         bool restart;
1052         bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1053         struct dwc2_hsotg_ep *ep;
1054         int ret;
1055         bool halted;
1056         u32 recip;
1057         u32 wValue;
1058         u32 wIndex;
1059
1060         dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1061                 __func__, set ? "SET" : "CLEAR");
1062
1063         wValue = le16_to_cpu(ctrl->wValue);
1064         wIndex = le16_to_cpu(ctrl->wIndex);
1065         recip = ctrl->bRequestType & USB_RECIP_MASK;
1066
1067         switch (recip) {
1068         case USB_RECIP_DEVICE:
1069                 switch (wValue) {
1070                 case USB_DEVICE_TEST_MODE:
1071                         if ((wIndex & 0xff) != 0)
1072                                 return -EINVAL;
1073                         if (!set)
1074                                 return -EINVAL;
1075
1076                         hsotg->test_mode = wIndex >> 8;
1077                         ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1078                         if (ret) {
1079                                 dev_err(hsotg->dev,
1080                                         "%s: failed to send reply\n", __func__);
1081                                 return ret;
1082                         }
1083                         break;
1084                 default:
1085                         return -ENOENT;
1086                 }
1087                 break;
1088
1089         case USB_RECIP_ENDPOINT:
1090                 ep = ep_from_windex(hsotg, wIndex);
1091                 if (!ep) {
1092                         dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1093                                 __func__, wIndex);
1094                         return -ENOENT;
1095                 }
1096
1097                 switch (wValue) {
1098                 case USB_ENDPOINT_HALT:
1099                         halted = ep->halted;
1100
1101                         dwc2_hsotg_ep_sethalt(&ep->ep, set);
1102
1103                         ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1104                         if (ret) {
1105                                 dev_err(hsotg->dev,
1106                                         "%s: failed to send reply\n", __func__);
1107                                 return ret;
1108                         }
1109
1110                         /*
1111                          * we have to complete all requests for ep if it was
1112                          * halted, and the halt was cleared by CLEAR_FEATURE
1113                          */
1114
1115                         if (!set && halted) {
1116                                 /*
1117                                  * If we have request in progress,
1118                                  * then complete it
1119                                  */
1120                                 if (ep->req) {
1121                                         hs_req = ep->req;
1122                                         ep->req = NULL;
1123                                         list_del_init(&hs_req->queue);
1124                                         if (hs_req->req.complete) {
1125                                                 spin_unlock(&hsotg->lock);
1126                                                 usb_gadget_giveback_request(
1127                                                         &ep->ep, &hs_req->req);
1128                                                 spin_lock(&hsotg->lock);
1129                                         }
1130                                 }
1131
1132                                 /* If we have pending request, then start it */
1133                                 if (!ep->req) {
1134                                         restart = !list_empty(&ep->queue);
1135                                         if (restart) {
1136                                                 hs_req = get_ep_head(ep);
1137                                                 dwc2_hsotg_start_req(hsotg, ep,
1138                                                                 hs_req, false);
1139                                         }
1140                                 }
1141                         }
1142
1143                         break;
1144
1145                 default:
1146                         return -ENOENT;
1147                 }
1148                 break;
1149         default:
1150                 return -ENOENT;
1151         }
1152         return 1;
1153 }
1154
1155 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1156
1157 /**
1158  * dwc2_hsotg_stall_ep0 - stall ep0
1159  * @hsotg: The device state
1160  *
1161  * Set stall for ep0 as response for setup request.
1162  */
1163 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1164 {
1165         struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1166         u32 reg;
1167         u32 ctrl;
1168
1169         dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1170         reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1171
1172         /*
1173          * DxEPCTL_Stall will be cleared by EP once it has
1174          * taken effect, so no need to clear later.
1175          */
1176
1177         ctrl = dwc2_readl(hsotg->regs + reg);
1178         ctrl |= DXEPCTL_STALL;
1179         ctrl |= DXEPCTL_CNAK;
1180         dwc2_writel(ctrl, hsotg->regs + reg);
1181
1182         dev_dbg(hsotg->dev,
1183                 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1184                 ctrl, reg, dwc2_readl(hsotg->regs + reg));
1185
1186          /*
1187           * complete won't be called, so we enqueue
1188           * setup request here
1189           */
1190          dwc2_hsotg_enqueue_setup(hsotg);
1191 }
1192
1193 /**
1194  * dwc2_hsotg_process_control - process a control request
1195  * @hsotg: The device state
1196  * @ctrl: The control request received
1197  *
1198  * The controller has received the SETUP phase of a control request, and
1199  * needs to work out what to do next (and whether to pass it on to the
1200  * gadget driver).
1201  */
1202 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1203                                       struct usb_ctrlrequest *ctrl)
1204 {
1205         struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1206         int ret = 0;
1207         u32 dcfg;
1208
1209         dev_dbg(hsotg->dev,
1210                 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1211                 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1212                 ctrl->wIndex, ctrl->wLength);
1213
1214         if (ctrl->wLength == 0) {
1215                 ep0->dir_in = 1;
1216                 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1217         } else if (ctrl->bRequestType & USB_DIR_IN) {
1218                 ep0->dir_in = 1;
1219                 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1220         } else {
1221                 ep0->dir_in = 0;
1222                 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1223         }
1224
1225         if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1226                 switch (ctrl->bRequest) {
1227                 case USB_REQ_SET_ADDRESS:
1228                         hsotg->connected = 1;
1229                         dcfg = dwc2_readl(hsotg->regs + DCFG);
1230                         dcfg &= ~DCFG_DEVADDR_MASK;
1231                         dcfg |= (le16_to_cpu(ctrl->wValue) <<
1232                                  DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1233                         dwc2_writel(dcfg, hsotg->regs + DCFG);
1234
1235                         dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1236
1237                         ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1238                         return;
1239
1240                 case USB_REQ_GET_STATUS:
1241                         ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1242                         break;
1243
1244                 case USB_REQ_CLEAR_FEATURE:
1245                 case USB_REQ_SET_FEATURE:
1246                         ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1247                         break;
1248                 }
1249         }
1250
1251         /* as a fallback, try delivering it to the driver to deal with */
1252
1253         if (ret == 0 && hsotg->driver) {
1254                 spin_unlock(&hsotg->lock);
1255                 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1256                 spin_lock(&hsotg->lock);
1257                 if (ret < 0)
1258                         dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1259         }
1260
1261         /*
1262          * the request is either unhandlable, or is not formatted correctly
1263          * so respond with a STALL for the status stage to indicate failure.
1264          */
1265
1266         if (ret < 0)
1267                 dwc2_hsotg_stall_ep0(hsotg);
1268 }
1269
1270 /**
1271  * dwc2_hsotg_complete_setup - completion of a setup transfer
1272  * @ep: The endpoint the request was on.
1273  * @req: The request completed.
1274  *
1275  * Called on completion of any requests the driver itself submitted for
1276  * EP0 setup packets
1277  */
1278 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1279                                      struct usb_request *req)
1280 {
1281         struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1282         struct dwc2_hsotg *hsotg = hs_ep->parent;
1283
1284         if (req->status < 0) {
1285                 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1286                 return;
1287         }
1288
1289         spin_lock(&hsotg->lock);
1290         if (req->actual == 0)
1291                 dwc2_hsotg_enqueue_setup(hsotg);
1292         else
1293                 dwc2_hsotg_process_control(hsotg, req->buf);
1294         spin_unlock(&hsotg->lock);
1295 }
1296
1297 /**
1298  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1299  * @hsotg: The device state.
1300  *
1301  * Enqueue a request on EP0 if necessary to received any SETUP packets
1302  * received from the host.
1303  */
1304 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1305 {
1306         struct usb_request *req = hsotg->ctrl_req;
1307         struct dwc2_hsotg_req *hs_req = our_req(req);
1308         int ret;
1309
1310         dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1311
1312         req->zero = 0;
1313         req->length = 8;
1314         req->buf = hsotg->ctrl_buff;
1315         req->complete = dwc2_hsotg_complete_setup;
1316
1317         if (!list_empty(&hs_req->queue)) {
1318                 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1319                 return;
1320         }
1321
1322         hsotg->eps_out[0]->dir_in = 0;
1323         hsotg->eps_out[0]->send_zlp = 0;
1324         hsotg->ep0_state = DWC2_EP0_SETUP;
1325
1326         ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1327         if (ret < 0) {
1328                 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1329                 /*
1330                  * Don't think there's much we can do other than watch the
1331                  * driver fail.
1332                  */
1333         }
1334 }
1335
1336 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1337                                         struct dwc2_hsotg_ep *hs_ep)
1338 {
1339         u32 ctrl;
1340         u8 index = hs_ep->index;
1341         u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1342         u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1343
1344         if (hs_ep->dir_in)
1345                 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1346                                                                         index);
1347         else
1348                 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1349                                                                         index);
1350
1351         dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1352                     DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1353                     epsiz_reg);
1354
1355         ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1356         ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1357         ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1358         ctrl |= DXEPCTL_USBACTEP;
1359         dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1360 }
1361
1362 /**
1363  * dwc2_hsotg_complete_request - complete a request given to us
1364  * @hsotg: The device state.
1365  * @hs_ep: The endpoint the request was on.
1366  * @hs_req: The request to complete.
1367  * @result: The result code (0 => Ok, otherwise errno)
1368  *
1369  * The given request has finished, so call the necessary completion
1370  * if it has one and then look to see if we can start a new request
1371  * on the endpoint.
1372  *
1373  * Note, expects the ep to already be locked as appropriate.
1374  */
1375 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1376                                        struct dwc2_hsotg_ep *hs_ep,
1377                                        struct dwc2_hsotg_req *hs_req,
1378                                        int result)
1379 {
1380         bool restart;
1381
1382         if (!hs_req) {
1383                 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1384                 return;
1385         }
1386
1387         dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1388                 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1389
1390         /*
1391          * only replace the status if we've not already set an error
1392          * from a previous transaction
1393          */
1394
1395         if (hs_req->req.status == -EINPROGRESS)
1396                 hs_req->req.status = result;
1397
1398         dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1399
1400         hs_ep->req = NULL;
1401         list_del_init(&hs_req->queue);
1402
1403         if (using_dma(hsotg))
1404                 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1405
1406         /*
1407          * call the complete request with the locks off, just in case the
1408          * request tries to queue more work for this endpoint.
1409          */
1410
1411         if (hs_req->req.complete) {
1412                 spin_unlock(&hsotg->lock);
1413                 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1414                 spin_lock(&hsotg->lock);
1415         }
1416
1417         /*
1418          * Look to see if there is anything else to do. Note, the completion
1419          * of the previous request may have caused a new request to be started
1420          * so be careful when doing this.
1421          */
1422
1423         if (!hs_ep->req && result >= 0) {
1424                 restart = !list_empty(&hs_ep->queue);
1425                 if (restart) {
1426                         hs_req = get_ep_head(hs_ep);
1427                         dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1428                 }
1429         }
1430 }
1431
1432 /**
1433  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1434  * @hsotg: The device state.
1435  * @ep_idx: The endpoint index for the data
1436  * @size: The size of data in the fifo, in bytes
1437  *
1438  * The FIFO status shows there is data to read from the FIFO for a given
1439  * endpoint, so sort out whether we need to read the data into a request
1440  * that has been made for that endpoint.
1441  */
1442 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1443 {
1444         struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1445         struct dwc2_hsotg_req *hs_req = hs_ep->req;
1446         void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1447         int to_read;
1448         int max_req;
1449         int read_ptr;
1450
1451
1452         if (!hs_req) {
1453                 u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1454                 int ptr;
1455
1456                 dev_dbg(hsotg->dev,
1457                          "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1458                          __func__, size, ep_idx, epctl);
1459
1460                 /* dump the data from the FIFO, we've nothing we can do */
1461                 for (ptr = 0; ptr < size; ptr += 4)
1462                         (void)dwc2_readl(fifo);
1463
1464                 return;
1465         }
1466
1467         to_read = size;
1468         read_ptr = hs_req->req.actual;
1469         max_req = hs_req->req.length - read_ptr;
1470
1471         dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1472                 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1473
1474         if (to_read > max_req) {
1475                 /*
1476                  * more data appeared than we where willing
1477                  * to deal with in this request.
1478                  */
1479
1480                 /* currently we don't deal this */
1481                 WARN_ON_ONCE(1);
1482         }
1483
1484         hs_ep->total_data += to_read;
1485         hs_req->req.actual += to_read;
1486         to_read = DIV_ROUND_UP(to_read, 4);
1487
1488         /*
1489          * note, we might over-write the buffer end by 3 bytes depending on
1490          * alignment of the data.
1491          */
1492         ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1493 }
1494
1495 /**
1496  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1497  * @hsotg: The device instance
1498  * @dir_in: If IN zlp
1499  *
1500  * Generate a zero-length IN packet request for terminating a SETUP
1501  * transaction.
1502  *
1503  * Note, since we don't write any data to the TxFIFO, then it is
1504  * currently believed that we do not need to wait for any space in
1505  * the TxFIFO.
1506  */
1507 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1508 {
1509         /* eps_out[0] is used in both directions */
1510         hsotg->eps_out[0]->dir_in = dir_in;
1511         hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1512
1513         dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1514 }
1515
1516 /**
1517  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1518  * @hsotg: The device instance
1519  * @epnum: The endpoint received from
1520  *
1521  * The RXFIFO has delivered an OutDone event, which means that the data
1522  * transfer for an OUT endpoint has been completed, either by a short
1523  * packet or by the finish of a transfer.
1524  */
1525 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1526 {
1527         u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1528         struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1529         struct dwc2_hsotg_req *hs_req = hs_ep->req;
1530         struct usb_request *req = &hs_req->req;
1531         unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1532         int result = 0;
1533
1534         if (!hs_req) {
1535                 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1536                 return;
1537         }
1538
1539         if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
1540                 dev_dbg(hsotg->dev, "zlp packet received\n");
1541                 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1542                 dwc2_hsotg_enqueue_setup(hsotg);
1543                 return;
1544         }
1545
1546         if (using_dma(hsotg)) {
1547                 unsigned size_done;
1548
1549                 /*
1550                  * Calculate the size of the transfer by checking how much
1551                  * is left in the endpoint size register and then working it
1552                  * out from the amount we loaded for the transfer.
1553                  *
1554                  * We need to do this as DMA pointers are always 32bit aligned
1555                  * so may overshoot/undershoot the transfer.
1556                  */
1557
1558                 size_done = hs_ep->size_loaded - size_left;
1559                 size_done += hs_ep->last_load;
1560
1561                 req->actual = size_done;
1562         }
1563
1564         /* if there is more request to do, schedule new transfer */
1565         if (req->actual < req->length && size_left == 0) {
1566                 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1567                 return;
1568         }
1569
1570         if (req->actual < req->length && req->short_not_ok) {
1571                 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1572                         __func__, req->actual, req->length);
1573
1574                 /*
1575                  * todo - what should we return here? there's no one else
1576                  * even bothering to check the status.
1577                  */
1578         }
1579
1580         if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
1581                 /* Move to STATUS IN */
1582                 dwc2_hsotg_ep0_zlp(hsotg, true);
1583                 return;
1584         }
1585
1586         dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1587 }
1588
1589 /**
1590  * dwc2_hsotg_read_frameno - read current frame number
1591  * @hsotg: The device instance
1592  *
1593  * Return the current frame number
1594  */
1595 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1596 {
1597         u32 dsts;
1598
1599         dsts = dwc2_readl(hsotg->regs + DSTS);
1600         dsts &= DSTS_SOFFN_MASK;
1601         dsts >>= DSTS_SOFFN_SHIFT;
1602
1603         return dsts;
1604 }
1605
1606 /**
1607  * dwc2_hsotg_handle_rx - RX FIFO has data
1608  * @hsotg: The device instance
1609  *
1610  * The IRQ handler has detected that the RX FIFO has some data in it
1611  * that requires processing, so find out what is in there and do the
1612  * appropriate read.
1613  *
1614  * The RXFIFO is a true FIFO, the packets coming out are still in packet
1615  * chunks, so if you have x packets received on an endpoint you'll get x
1616  * FIFO events delivered, each with a packet's worth of data in it.
1617  *
1618  * When using DMA, we should not be processing events from the RXFIFO
1619  * as the actual data should be sent to the memory directly and we turn
1620  * on the completion interrupts to get notifications of transfer completion.
1621  */
1622 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1623 {
1624         u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
1625         u32 epnum, status, size;
1626
1627         WARN_ON(using_dma(hsotg));
1628
1629         epnum = grxstsr & GRXSTS_EPNUM_MASK;
1630         status = grxstsr & GRXSTS_PKTSTS_MASK;
1631
1632         size = grxstsr & GRXSTS_BYTECNT_MASK;
1633         size >>= GRXSTS_BYTECNT_SHIFT;
1634
1635         dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1636                         __func__, grxstsr, size, epnum);
1637
1638         switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1639         case GRXSTS_PKTSTS_GLOBALOUTNAK:
1640                 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1641                 break;
1642
1643         case GRXSTS_PKTSTS_OUTDONE:
1644                 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1645                         dwc2_hsotg_read_frameno(hsotg));
1646
1647                 if (!using_dma(hsotg))
1648                         dwc2_hsotg_handle_outdone(hsotg, epnum);
1649                 break;
1650
1651         case GRXSTS_PKTSTS_SETUPDONE:
1652                 dev_dbg(hsotg->dev,
1653                         "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1654                         dwc2_hsotg_read_frameno(hsotg),
1655                         dwc2_readl(hsotg->regs + DOEPCTL(0)));
1656                 /*
1657                  * Call dwc2_hsotg_handle_outdone here if it was not called from
1658                  * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
1659                  * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
1660                  */
1661                 if (hsotg->ep0_state == DWC2_EP0_SETUP)
1662                         dwc2_hsotg_handle_outdone(hsotg, epnum);
1663                 break;
1664
1665         case GRXSTS_PKTSTS_OUTRX:
1666                 dwc2_hsotg_rx_data(hsotg, epnum, size);
1667                 break;
1668
1669         case GRXSTS_PKTSTS_SETUPRX:
1670                 dev_dbg(hsotg->dev,
1671                         "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1672                         dwc2_hsotg_read_frameno(hsotg),
1673                         dwc2_readl(hsotg->regs + DOEPCTL(0)));
1674
1675                 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
1676
1677                 dwc2_hsotg_rx_data(hsotg, epnum, size);
1678                 break;
1679
1680         default:
1681                 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1682                          __func__, grxstsr);
1683
1684                 dwc2_hsotg_dump(hsotg);
1685                 break;
1686         }
1687 }
1688
1689 /**
1690  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
1691  * @mps: The maximum packet size in bytes.
1692  */
1693 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
1694 {
1695         switch (mps) {
1696         case 64:
1697                 return D0EPCTL_MPS_64;
1698         case 32:
1699                 return D0EPCTL_MPS_32;
1700         case 16:
1701                 return D0EPCTL_MPS_16;
1702         case 8:
1703                 return D0EPCTL_MPS_8;
1704         }
1705
1706         /* bad max packet size, warn and return invalid result */
1707         WARN_ON(1);
1708         return (u32)-1;
1709 }
1710
1711 /**
1712  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1713  * @hsotg: The driver state.
1714  * @ep: The index number of the endpoint
1715  * @mps: The maximum packet size in bytes
1716  *
1717  * Configure the maximum packet size for the given endpoint, updating
1718  * the hardware control registers to reflect this.
1719  */
1720 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1721                         unsigned int ep, unsigned int mps, unsigned int dir_in)
1722 {
1723         struct dwc2_hsotg_ep *hs_ep;
1724         void __iomem *regs = hsotg->regs;
1725         u32 mpsval;
1726         u32 mcval;
1727         u32 reg;
1728
1729         hs_ep = index_to_ep(hsotg, ep, dir_in);
1730         if (!hs_ep)
1731                 return;
1732
1733         if (ep == 0) {
1734                 /* EP0 is a special case */
1735                 mpsval = dwc2_hsotg_ep0_mps(mps);
1736                 if (mpsval > 3)
1737                         goto bad_mps;
1738                 hs_ep->ep.maxpacket = mps;
1739                 hs_ep->mc = 1;
1740         } else {
1741                 mpsval = mps & DXEPCTL_MPS_MASK;
1742                 if (mpsval > 1024)
1743                         goto bad_mps;
1744                 mcval = ((mps >> 11) & 0x3) + 1;
1745                 hs_ep->mc = mcval;
1746                 if (mcval > 3)
1747                         goto bad_mps;
1748                 hs_ep->ep.maxpacket = mpsval;
1749         }
1750
1751         if (dir_in) {
1752                 reg = dwc2_readl(regs + DIEPCTL(ep));
1753                 reg &= ~DXEPCTL_MPS_MASK;
1754                 reg |= mpsval;
1755                 dwc2_writel(reg, regs + DIEPCTL(ep));
1756         } else {
1757                 reg = dwc2_readl(regs + DOEPCTL(ep));
1758                 reg &= ~DXEPCTL_MPS_MASK;
1759                 reg |= mpsval;
1760                 dwc2_writel(reg, regs + DOEPCTL(ep));
1761         }
1762
1763         return;
1764
1765 bad_mps:
1766         dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1767 }
1768
1769 /**
1770  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
1771  * @hsotg: The driver state
1772  * @idx: The index for the endpoint (0..15)
1773  */
1774 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1775 {
1776         int timeout;
1777         int val;
1778
1779         dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1780                     hsotg->regs + GRSTCTL);
1781
1782         /* wait until the fifo is flushed */
1783         timeout = 100;
1784
1785         while (1) {
1786                 val = dwc2_readl(hsotg->regs + GRSTCTL);
1787
1788                 if ((val & (GRSTCTL_TXFFLSH)) == 0)
1789                         break;
1790
1791                 if (--timeout == 0) {
1792                         dev_err(hsotg->dev,
1793                                 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1794                                 __func__, val);
1795                         break;
1796                 }
1797
1798                 udelay(1);
1799         }
1800 }
1801
1802 /**
1803  * dwc2_hsotg_trytx - check to see if anything needs transmitting
1804  * @hsotg: The driver state
1805  * @hs_ep: The driver endpoint to check.
1806  *
1807  * Check to see if there is a request that has data to send, and if so
1808  * make an attempt to write data into the FIFO.
1809  */
1810 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
1811                            struct dwc2_hsotg_ep *hs_ep)
1812 {
1813         struct dwc2_hsotg_req *hs_req = hs_ep->req;
1814
1815         if (!hs_ep->dir_in || !hs_req) {
1816                 /**
1817                  * if request is not enqueued, we disable interrupts
1818                  * for endpoints, excepting ep0
1819                  */
1820                 if (hs_ep->index != 0)
1821                         dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
1822                                              hs_ep->dir_in, 0);
1823                 return 0;
1824         }
1825
1826         if (hs_req->req.actual < hs_req->req.length) {
1827                 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1828                         hs_ep->index);
1829                 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1830         }
1831
1832         return 0;
1833 }
1834
1835 /**
1836  * dwc2_hsotg_complete_in - complete IN transfer
1837  * @hsotg: The device state.
1838  * @hs_ep: The endpoint that has just completed.
1839  *
1840  * An IN transfer has been completed, update the transfer's state and then
1841  * call the relevant completion routines.
1842  */
1843 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1844                                   struct dwc2_hsotg_ep *hs_ep)
1845 {
1846         struct dwc2_hsotg_req *hs_req = hs_ep->req;
1847         u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1848         int size_left, size_done;
1849
1850         if (!hs_req) {
1851                 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1852                 return;
1853         }
1854
1855         /* Finish ZLP handling for IN EP0 transactions */
1856         if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
1857                 dev_dbg(hsotg->dev, "zlp packet sent\n");
1858                 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1859                 if (hsotg->test_mode) {
1860                         int ret;
1861
1862                         ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1863                         if (ret < 0) {
1864                                 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
1865                                                 hsotg->test_mode);
1866                                 dwc2_hsotg_stall_ep0(hsotg);
1867                                 return;
1868                         }
1869                 }
1870                 dwc2_hsotg_enqueue_setup(hsotg);
1871                 return;
1872         }
1873
1874         /*
1875          * Calculate the size of the transfer by checking how much is left
1876          * in the endpoint size register and then working it out from
1877          * the amount we loaded for the transfer.
1878          *
1879          * We do this even for DMA, as the transfer may have incremented
1880          * past the end of the buffer (DMA transfers are always 32bit
1881          * aligned).
1882          */
1883
1884         size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1885
1886         size_done = hs_ep->size_loaded - size_left;
1887         size_done += hs_ep->last_load;
1888
1889         if (hs_req->req.actual != size_done)
1890                 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1891                         __func__, hs_req->req.actual, size_done);
1892
1893         hs_req->req.actual = size_done;
1894         dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1895                 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1896
1897         if (!size_left && hs_req->req.actual < hs_req->req.length) {
1898                 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1899                 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1900                 return;
1901         }
1902
1903         /* Zlp for all endpoints, for ep0 only in DATA IN stage */
1904         if (hs_ep->send_zlp) {
1905                 dwc2_hsotg_program_zlp(hsotg, hs_ep);
1906                 hs_ep->send_zlp = 0;
1907                 /* transfer will be completed on next complete interrupt */
1908                 return;
1909         }
1910
1911         if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
1912                 /* Move to STATUS OUT */
1913                 dwc2_hsotg_ep0_zlp(hsotg, false);
1914                 return;
1915         }
1916
1917         dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1918 }
1919
1920 /**
1921  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
1922  * @hsotg: The driver state
1923  * @idx: The index for the endpoint (0..15)
1924  * @dir_in: Set if this is an IN endpoint
1925  *
1926  * Process and clear any interrupt pending for an individual endpoint
1927  */
1928 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1929                             int dir_in)
1930 {
1931         struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1932         u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1933         u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1934         u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1935         u32 ints;
1936         u32 ctrl;
1937
1938         ints = dwc2_readl(hsotg->regs + epint_reg);
1939         ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1940
1941         /* Clear endpoint interrupts */
1942         dwc2_writel(ints, hsotg->regs + epint_reg);
1943
1944         if (!hs_ep) {
1945                 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
1946                                         __func__, idx, dir_in ? "in" : "out");
1947                 return;
1948         }
1949
1950         dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1951                 __func__, idx, dir_in ? "in" : "out", ints);
1952
1953         /* Don't process XferCompl interrupt if it is a setup packet */
1954         if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
1955                 ints &= ~DXEPINT_XFERCOMPL;
1956
1957         if (ints & DXEPINT_XFERCOMPL) {
1958                 if (hs_ep->isochronous && hs_ep->interval == 1) {
1959                         if (ctrl & DXEPCTL_EOFRNUM)
1960                                 ctrl |= DXEPCTL_SETEVENFR;
1961                         else
1962                                 ctrl |= DXEPCTL_SETODDFR;
1963                         dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1964                 }
1965
1966                 dev_dbg(hsotg->dev,
1967                         "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1968                         __func__, dwc2_readl(hsotg->regs + epctl_reg),
1969                         dwc2_readl(hsotg->regs + epsiz_reg));
1970
1971                 /*
1972                  * we get OutDone from the FIFO, so we only need to look
1973                  * at completing IN requests here
1974                  */
1975                 if (dir_in) {
1976                         dwc2_hsotg_complete_in(hsotg, hs_ep);
1977
1978                         if (idx == 0 && !hs_ep->req)
1979                                 dwc2_hsotg_enqueue_setup(hsotg);
1980                 } else if (using_dma(hsotg)) {
1981                         /*
1982                          * We're using DMA, we need to fire an OutDone here
1983                          * as we ignore the RXFIFO.
1984                          */
1985
1986                         dwc2_hsotg_handle_outdone(hsotg, idx);
1987                 }
1988         }
1989
1990         if (ints & DXEPINT_EPDISBLD) {
1991                 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1992
1993                 if (dir_in) {
1994                         int epctl = dwc2_readl(hsotg->regs + epctl_reg);
1995
1996                         dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1997
1998                         if ((epctl & DXEPCTL_STALL) &&
1999                                 (epctl & DXEPCTL_EPTYPE_BULK)) {
2000                                 int dctl = dwc2_readl(hsotg->regs + DCTL);
2001
2002                                 dctl |= DCTL_CGNPINNAK;
2003                                 dwc2_writel(dctl, hsotg->regs + DCTL);
2004                         }
2005                 }
2006         }
2007
2008         if (ints & DXEPINT_AHBERR)
2009                 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2010
2011         if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2012                 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2013
2014                 if (using_dma(hsotg) && idx == 0) {
2015                         /*
2016                          * this is the notification we've received a
2017                          * setup packet. In non-DMA mode we'd get this
2018                          * from the RXFIFO, instead we need to process
2019                          * the setup here.
2020                          */
2021
2022                         if (dir_in)
2023                                 WARN_ON_ONCE(1);
2024                         else
2025                                 dwc2_hsotg_handle_outdone(hsotg, 0);
2026                 }
2027         }
2028
2029         if (ints & DXEPINT_BACK2BACKSETUP)
2030                 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2031
2032         if (dir_in && !hs_ep->isochronous) {
2033                 /* not sure if this is important, but we'll clear it anyway */
2034                 if (ints & DIEPMSK_INTKNTXFEMPMSK) {
2035                         dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2036                                 __func__, idx);
2037                 }
2038
2039                 /* this probably means something bad is happening */
2040                 if (ints & DIEPMSK_INTKNEPMISMSK) {
2041                         dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2042                                  __func__, idx);
2043                 }
2044
2045                 /* FIFO has space or is empty (see GAHBCFG) */
2046                 if (hsotg->dedicated_fifos &&
2047                     ints & DIEPMSK_TXFIFOEMPTY) {
2048                         dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2049                                 __func__, idx);
2050                         if (!using_dma(hsotg))
2051                                 dwc2_hsotg_trytx(hsotg, hs_ep);
2052                 }
2053         }
2054 }
2055
2056 /**
2057  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2058  * @hsotg: The device state.
2059  *
2060  * Handle updating the device settings after the enumeration phase has
2061  * been completed.
2062  */
2063 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2064 {
2065         u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2066         int ep0_mps = 0, ep_mps = 8;
2067
2068         /*
2069          * This should signal the finish of the enumeration phase
2070          * of the USB handshaking, so we should now know what rate
2071          * we connected at.
2072          */
2073
2074         dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2075
2076         /*
2077          * note, since we're limited by the size of transfer on EP0, and
2078          * it seems IN transfers must be a even number of packets we do
2079          * not advertise a 64byte MPS on EP0.
2080          */
2081
2082         /* catch both EnumSpd_FS and EnumSpd_FS48 */
2083         switch (dsts & DSTS_ENUMSPD_MASK) {
2084         case DSTS_ENUMSPD_FS:
2085         case DSTS_ENUMSPD_FS48:
2086                 hsotg->gadget.speed = USB_SPEED_FULL;
2087                 ep0_mps = EP0_MPS_LIMIT;
2088                 ep_mps = 1023;
2089                 break;
2090
2091         case DSTS_ENUMSPD_HS:
2092                 hsotg->gadget.speed = USB_SPEED_HIGH;
2093                 ep0_mps = EP0_MPS_LIMIT;
2094                 ep_mps = 1024;
2095                 break;
2096
2097         case DSTS_ENUMSPD_LS:
2098                 hsotg->gadget.speed = USB_SPEED_LOW;
2099                 /*
2100                  * note, we don't actually support LS in this driver at the
2101                  * moment, and the documentation seems to imply that it isn't
2102                  * supported by the PHYs on some of the devices.
2103                  */
2104                 break;
2105         }
2106         dev_info(hsotg->dev, "new device is %s\n",
2107                  usb_speed_string(hsotg->gadget.speed));
2108
2109         /*
2110          * we should now know the maximum packet size for an
2111          * endpoint, so set the endpoints to a default value.
2112          */
2113
2114         if (ep0_mps) {
2115                 int i;
2116                 /* Initialize ep0 for both in and out directions */
2117                 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
2118                 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2119                 for (i = 1; i < hsotg->num_of_eps; i++) {
2120                         if (hsotg->eps_in[i])
2121                                 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
2122                         if (hsotg->eps_out[i])
2123                                 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
2124                 }
2125         }
2126
2127         /* ensure after enumeration our EP0 is active */
2128
2129         dwc2_hsotg_enqueue_setup(hsotg);
2130
2131         dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2132                 dwc2_readl(hsotg->regs + DIEPCTL0),
2133                 dwc2_readl(hsotg->regs + DOEPCTL0));
2134 }
2135
2136 /**
2137  * kill_all_requests - remove all requests from the endpoint's queue
2138  * @hsotg: The device state.
2139  * @ep: The endpoint the requests may be on.
2140  * @result: The result code to use.
2141  *
2142  * Go through the requests on the given endpoint and mark them
2143  * completed with the given result code.
2144  */
2145 static void kill_all_requests(struct dwc2_hsotg *hsotg,
2146                               struct dwc2_hsotg_ep *ep,
2147                               int result)
2148 {
2149         struct dwc2_hsotg_req *req, *treq;
2150         unsigned size;
2151
2152         ep->req = NULL;
2153
2154         list_for_each_entry_safe(req, treq, &ep->queue, queue)
2155                 dwc2_hsotg_complete_request(hsotg, ep, req,
2156                                            result);
2157
2158         if (!hsotg->dedicated_fifos)
2159                 return;
2160         size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2161         if (size < ep->fifo_size)
2162                 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2163 }
2164
2165 /**
2166  * dwc2_hsotg_disconnect - disconnect service
2167  * @hsotg: The device state.
2168  *
2169  * The device has been disconnected. Remove all current
2170  * transactions and signal the gadget driver that this
2171  * has happened.
2172  */
2173 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2174 {
2175         unsigned ep;
2176
2177         if (!hsotg->connected)
2178                 return;
2179
2180         hsotg->connected = 0;
2181         hsotg->test_mode = 0;
2182
2183         for (ep = 0; ep < hsotg->num_of_eps; ep++) {
2184                 if (hsotg->eps_in[ep])
2185                         kill_all_requests(hsotg, hsotg->eps_in[ep],
2186                                                                 -ESHUTDOWN);
2187                 if (hsotg->eps_out[ep])
2188                         kill_all_requests(hsotg, hsotg->eps_out[ep],
2189                                                                 -ESHUTDOWN);
2190         }
2191
2192         call_gadget(hsotg, disconnect);
2193         hsotg->lx_state = DWC2_L3;
2194 }
2195
2196 /**
2197  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2198  * @hsotg: The device state:
2199  * @periodic: True if this is a periodic FIFO interrupt
2200  */
2201 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2202 {
2203         struct dwc2_hsotg_ep *ep;
2204         int epno, ret;
2205
2206         /* look through for any more data to transmit */
2207         for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2208                 ep = index_to_ep(hsotg, epno, 1);
2209
2210                 if (!ep)
2211                         continue;
2212
2213                 if (!ep->dir_in)
2214                         continue;
2215
2216                 if ((periodic && !ep->periodic) ||
2217                     (!periodic && ep->periodic))
2218                         continue;
2219
2220                 ret = dwc2_hsotg_trytx(hsotg, ep);
2221                 if (ret < 0)
2222                         break;
2223         }
2224 }
2225
2226 /* IRQ flags which will trigger a retry around the IRQ loop */
2227 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2228                         GINTSTS_PTXFEMP |  \
2229                         GINTSTS_RXFLVL)
2230
2231 /**
2232  * dwc2_hsotg_corereset - issue softreset to the core
2233  * @hsotg: The device state
2234  *
2235  * Issue a soft reset to the core, and await the core finishing it.
2236  */
2237 static int dwc2_hsotg_corereset(struct dwc2_hsotg *hsotg)
2238 {
2239         int timeout;
2240         u32 grstctl;
2241
2242         dev_dbg(hsotg->dev, "resetting core\n");
2243
2244         /* issue soft reset */
2245         dwc2_writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2246
2247         timeout = 10000;
2248         do {
2249                 grstctl = dwc2_readl(hsotg->regs + GRSTCTL);
2250         } while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2251
2252         if (grstctl & GRSTCTL_CSFTRST) {
2253                 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2254                 return -EINVAL;
2255         }
2256
2257         timeout = 10000;
2258
2259         while (1) {
2260                 u32 grstctl = dwc2_readl(hsotg->regs + GRSTCTL);
2261
2262                 if (timeout-- < 0) {
2263                         dev_info(hsotg->dev,
2264                                  "%s: reset failed, GRSTCTL=%08x\n",
2265                                  __func__, grstctl);
2266                         return -ETIMEDOUT;
2267                 }
2268
2269                 if (!(grstctl & GRSTCTL_AHBIDLE))
2270                         continue;
2271
2272                 break;          /* reset done */
2273         }
2274
2275         dev_dbg(hsotg->dev, "reset successful\n");
2276         return 0;
2277 }
2278
2279 /**
2280  * dwc2_hsotg_core_init - issue softreset to the core
2281  * @hsotg: The device state
2282  *
2283  * Issue a soft reset to the core, and await the core finishing it.
2284  */
2285 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2286                                                 bool is_usb_reset)
2287 {
2288         u32 val;
2289
2290         /* Kill any ep0 requests as controller will be reinitialized */
2291         kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
2292
2293         if (!is_usb_reset)
2294                 if (dwc2_hsotg_corereset(hsotg))
2295                         return;
2296
2297         /*
2298          * we must now enable ep0 ready for host detection and then
2299          * set configuration.
2300          */
2301
2302         /* set the PLL on, remove the HNP/SRP and set the PHY */
2303         val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2304         dwc2_writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2305                (val << GUSBCFG_USBTRDTIM_SHIFT), hsotg->regs + GUSBCFG);
2306
2307         dwc2_hsotg_init_fifo(hsotg);
2308
2309         if (!is_usb_reset)
2310                 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2311
2312         dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2313
2314         /* Clear any pending OTG interrupts */
2315         dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2316
2317         /* Clear any pending interrupts */
2318         dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2319
2320         dwc2_writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2321                 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2322                 GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
2323                 GINTSTS_RESETDET | GINTSTS_ENUMDONE |
2324                 GINTSTS_OTGINT | GINTSTS_USBSUSP |
2325                 GINTSTS_WKUPINT,
2326                 hsotg->regs + GINTMSK);
2327
2328         if (using_dma(hsotg))
2329                 dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2330                             (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2331                             hsotg->regs + GAHBCFG);
2332         else
2333                 dwc2_writel(((hsotg->dedicated_fifos) ?
2334                                                 (GAHBCFG_NP_TXF_EMP_LVL |
2335                                                  GAHBCFG_P_TXF_EMP_LVL) : 0) |
2336                             GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
2337
2338         /*
2339          * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2340          * when we have no data to transfer. Otherwise we get being flooded by
2341          * interrupts.
2342          */
2343
2344         dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2345                 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2346                 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2347                 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2348                 DIEPMSK_INTKNEPMISMSK,
2349                 hsotg->regs + DIEPMSK);
2350
2351         /*
2352          * don't need XferCompl, we get that from RXFIFO in slave mode. In
2353          * DMA mode we may need this.
2354          */
2355         dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2356                                     DIEPMSK_TIMEOUTMSK) : 0) |
2357                 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2358                 DOEPMSK_SETUPMSK,
2359                 hsotg->regs + DOEPMSK);
2360
2361         dwc2_writel(0, hsotg->regs + DAINTMSK);
2362
2363         dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2364                 dwc2_readl(hsotg->regs + DIEPCTL0),
2365                 dwc2_readl(hsotg->regs + DOEPCTL0));
2366
2367         /* enable in and out endpoint interrupts */
2368         dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2369
2370         /*
2371          * Enable the RXFIFO when in slave mode, as this is how we collect
2372          * the data. In DMA mode, we get events from the FIFO but also
2373          * things we cannot process, so do not use it.
2374          */
2375         if (!using_dma(hsotg))
2376                 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2377
2378         /* Enable interrupts for EP0 in and out */
2379         dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2380         dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2381
2382         if (!is_usb_reset) {
2383                 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2384                 udelay(10);  /* see openiboot */
2385                 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2386         }
2387
2388         dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2389
2390         /*
2391          * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2392          * writing to the EPCTL register..
2393          */
2394
2395         /* set to read 1 8byte packet */
2396         dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2397                DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2398
2399         dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2400                DXEPCTL_CNAK | DXEPCTL_EPENA |
2401                DXEPCTL_USBACTEP,
2402                hsotg->regs + DOEPCTL0);
2403
2404         /* enable, but don't activate EP0in */
2405         dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2406                DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2407
2408         dwc2_hsotg_enqueue_setup(hsotg);
2409
2410         dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2411                 dwc2_readl(hsotg->regs + DIEPCTL0),
2412                 dwc2_readl(hsotg->regs + DOEPCTL0));
2413
2414         /* clear global NAKs */
2415         val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
2416         if (!is_usb_reset)
2417                 val |= DCTL_SFTDISCON;
2418         __orr32(hsotg->regs + DCTL, val);
2419
2420         /* must be at-least 3ms to allow bus to see disconnect */
2421         mdelay(3);
2422
2423         hsotg->lx_state = DWC2_L0;
2424 }
2425
2426 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2427 {
2428         /* set the soft-disconnect bit */
2429         __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2430 }
2431
2432 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2433 {
2434         /* remove the soft-disconnect and let's go */
2435         __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2436 }
2437
2438 /**
2439  * dwc2_hsotg_irq - handle device interrupt
2440  * @irq: The IRQ number triggered
2441  * @pw: The pw value when registered the handler.
2442  */
2443 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
2444 {
2445         struct dwc2_hsotg *hsotg = pw;
2446         int retry_count = 8;
2447         u32 gintsts;
2448         u32 gintmsk;
2449
2450         spin_lock(&hsotg->lock);
2451 irq_retry:
2452         gintsts = dwc2_readl(hsotg->regs + GINTSTS);
2453         gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2454
2455         dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2456                 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2457
2458         gintsts &= gintmsk;
2459
2460         if (gintsts & GINTSTS_ENUMDONE) {
2461                 dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2462
2463                 dwc2_hsotg_irq_enumdone(hsotg);
2464         }
2465
2466         if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2467                 u32 daint = dwc2_readl(hsotg->regs + DAINT);
2468                 u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
2469                 u32 daint_out, daint_in;
2470                 int ep;
2471
2472                 daint &= daintmsk;
2473                 daint_out = daint >> DAINT_OUTEP_SHIFT;
2474                 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2475
2476                 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2477
2478                 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
2479                                                 ep++, daint_out >>= 1) {
2480                         if (daint_out & 1)
2481                                 dwc2_hsotg_epint(hsotg, ep, 0);
2482                 }
2483
2484                 for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
2485                                                 ep++, daint_in >>= 1) {
2486                         if (daint_in & 1)
2487                                 dwc2_hsotg_epint(hsotg, ep, 1);
2488                 }
2489         }
2490
2491         if (gintsts & GINTSTS_RESETDET) {
2492                 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
2493
2494                 dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
2495
2496                 /* This event must be used only if controller is suspended */
2497                 if (hsotg->lx_state == DWC2_L2) {
2498                         dwc2_exit_hibernation(hsotg, true);
2499                         hsotg->lx_state = DWC2_L0;
2500                 }
2501         }
2502
2503         if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
2504
2505                 u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
2506                 u32 connected = hsotg->connected;
2507
2508                 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2509                 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2510                         dwc2_readl(hsotg->regs + GNPTXSTS));
2511
2512                 dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2513
2514                 /* Report disconnection if it is not already done. */
2515                 dwc2_hsotg_disconnect(hsotg);
2516
2517                 if (usb_status & GOTGCTL_BSESVLD && connected)
2518                         dwc2_hsotg_core_init_disconnected(hsotg, true);
2519         }
2520
2521         /* check both FIFOs */
2522
2523         if (gintsts & GINTSTS_NPTXFEMP) {
2524                 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2525
2526                 /*
2527                  * Disable the interrupt to stop it happening again
2528                  * unless one of these endpoint routines decides that
2529                  * it needs re-enabling
2530                  */
2531
2532                 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2533                 dwc2_hsotg_irq_fifoempty(hsotg, false);
2534         }
2535
2536         if (gintsts & GINTSTS_PTXFEMP) {
2537                 dev_dbg(hsotg->dev, "PTxFEmp\n");
2538
2539                 /* See note in GINTSTS_NPTxFEmp */
2540
2541                 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2542                 dwc2_hsotg_irq_fifoempty(hsotg, true);
2543         }
2544
2545         if (gintsts & GINTSTS_RXFLVL) {
2546                 /*
2547                  * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2548                  * we need to retry dwc2_hsotg_handle_rx if this is still
2549                  * set.
2550                  */
2551
2552                 dwc2_hsotg_handle_rx(hsotg);
2553         }
2554
2555         if (gintsts & GINTSTS_ERLYSUSP) {
2556                 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2557                 dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2558         }
2559
2560         /*
2561          * these next two seem to crop-up occasionally causing the core
2562          * to shutdown the USB transfer, so try clearing them and logging
2563          * the occurrence.
2564          */
2565
2566         if (gintsts & GINTSTS_GOUTNAKEFF) {
2567                 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2568
2569                 dwc2_writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2570
2571                 dwc2_hsotg_dump(hsotg);
2572         }
2573
2574         if (gintsts & GINTSTS_GINNAKEFF) {
2575                 dev_info(hsotg->dev, "GINNakEff triggered\n");
2576
2577                 dwc2_writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2578
2579                 dwc2_hsotg_dump(hsotg);
2580         }
2581
2582         /*
2583          * if we've had fifo events, we should try and go around the
2584          * loop again to see if there's any point in returning yet.
2585          */
2586
2587         if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2588                         goto irq_retry;
2589
2590         spin_unlock(&hsotg->lock);
2591
2592         return IRQ_HANDLED;
2593 }
2594
2595 /**
2596  * dwc2_hsotg_ep_enable - enable the given endpoint
2597  * @ep: The USB endpint to configure
2598  * @desc: The USB endpoint descriptor to configure with.
2599  *
2600  * This is called from the USB gadget code's usb_ep_enable().
2601  */
2602 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
2603                                const struct usb_endpoint_descriptor *desc)
2604 {
2605         struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2606         struct dwc2_hsotg *hsotg = hs_ep->parent;
2607         unsigned long flags;
2608         unsigned int index = hs_ep->index;
2609         u32 epctrl_reg;
2610         u32 epctrl;
2611         u32 mps;
2612         unsigned int dir_in;
2613         unsigned int i, val, size;
2614         int ret = 0;
2615
2616         dev_dbg(hsotg->dev,
2617                 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2618                 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2619                 desc->wMaxPacketSize, desc->bInterval);
2620
2621         /* not to be called for EP0 */
2622         WARN_ON(index == 0);
2623
2624         dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2625         if (dir_in != hs_ep->dir_in) {
2626                 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2627                 return -EINVAL;
2628         }
2629
2630         mps = usb_endpoint_maxp(desc);
2631
2632         /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
2633
2634         epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2635         epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2636
2637         dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2638                 __func__, epctrl, epctrl_reg);
2639
2640         spin_lock_irqsave(&hsotg->lock, flags);
2641
2642         epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2643         epctrl |= DXEPCTL_MPS(mps);
2644
2645         /*
2646          * mark the endpoint as active, otherwise the core may ignore
2647          * transactions entirely for this endpoint
2648          */
2649         epctrl |= DXEPCTL_USBACTEP;
2650
2651         /*
2652          * set the NAK status on the endpoint, otherwise we might try and
2653          * do something with data that we've yet got a request to process
2654          * since the RXFIFO will take data for an endpoint even if the
2655          * size register hasn't been set.
2656          */
2657
2658         epctrl |= DXEPCTL_SNAK;
2659
2660         /* update the endpoint state */
2661         dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2662
2663         /* default, set to non-periodic */
2664         hs_ep->isochronous = 0;
2665         hs_ep->periodic = 0;
2666         hs_ep->halted = 0;
2667         hs_ep->interval = desc->bInterval;
2668
2669         if (hs_ep->interval > 1 && hs_ep->mc > 1)
2670                 dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2671
2672         switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2673         case USB_ENDPOINT_XFER_ISOC:
2674                 epctrl |= DXEPCTL_EPTYPE_ISO;
2675                 epctrl |= DXEPCTL_SETEVENFR;
2676                 hs_ep->isochronous = 1;
2677                 if (dir_in)
2678                         hs_ep->periodic = 1;
2679                 break;
2680
2681         case USB_ENDPOINT_XFER_BULK:
2682                 epctrl |= DXEPCTL_EPTYPE_BULK;
2683                 break;
2684
2685         case USB_ENDPOINT_XFER_INT:
2686                 if (dir_in)
2687                         hs_ep->periodic = 1;
2688
2689                 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2690                 break;
2691
2692         case USB_ENDPOINT_XFER_CONTROL:
2693                 epctrl |= DXEPCTL_EPTYPE_CONTROL;
2694                 break;
2695         }
2696
2697         /* If fifo is already allocated for this ep */
2698         if (hs_ep->fifo_index) {
2699                 size =  hs_ep->ep.maxpacket * hs_ep->mc;
2700                 /* If bigger fifo is required deallocate current one */
2701                 if (size > hs_ep->fifo_size) {
2702                         hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
2703                         hs_ep->fifo_index = 0;
2704                         hs_ep->fifo_size = 0;
2705                 }
2706         }
2707
2708         /*
2709          * if the hardware has dedicated fifos, we must give each IN EP
2710          * a unique tx-fifo even if it is non-periodic.
2711          */
2712         if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2713                 u32 fifo_index = 0;
2714                 u32 fifo_size = UINT_MAX;
2715                 size = hs_ep->ep.maxpacket*hs_ep->mc;
2716                 for (i = 1; i < hsotg->num_of_eps; ++i) {
2717                         if (hsotg->fifo_map & (1<<i))
2718                                 continue;
2719                         val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
2720                         val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
2721                         if (val < size)
2722                                 continue;
2723                         /* Search for smallest acceptable fifo */
2724                         if (val < fifo_size) {
2725                                 fifo_size = val;
2726                                 fifo_index = i;
2727                         }
2728                 }
2729                 if (!fifo_index) {
2730                         dev_err(hsotg->dev,
2731                                 "%s: No suitable fifo found\n", __func__);
2732                         ret = -ENOMEM;
2733                         goto error;
2734                 }
2735                 hsotg->fifo_map |= 1 << fifo_index;
2736                 epctrl |= DXEPCTL_TXFNUM(fifo_index);
2737                 hs_ep->fifo_index = fifo_index;
2738                 hs_ep->fifo_size = fifo_size;
2739         }
2740
2741         /* for non control endpoints, set PID to D0 */
2742         if (index)
2743                 epctrl |= DXEPCTL_SETD0PID;
2744
2745         dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2746                 __func__, epctrl);
2747
2748         dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
2749         dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2750                 __func__, dwc2_readl(hsotg->regs + epctrl_reg));
2751
2752         /* enable the endpoint interrupt */
2753         dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2754
2755 error:
2756         spin_unlock_irqrestore(&hsotg->lock, flags);
2757         return ret;
2758 }
2759
2760 /**
2761  * dwc2_hsotg_ep_disable - disable given endpoint
2762  * @ep: The endpoint to disable.
2763  */
2764 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
2765 {
2766         struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2767         struct dwc2_hsotg *hsotg = hs_ep->parent;
2768         int dir_in = hs_ep->dir_in;
2769         int index = hs_ep->index;
2770         unsigned long flags;
2771         u32 epctrl_reg;
2772         u32 ctrl;
2773
2774         dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2775
2776         if (ep == &hsotg->eps_out[0]->ep) {
2777                 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2778                 return -EINVAL;
2779         }
2780
2781         epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2782
2783         spin_lock_irqsave(&hsotg->lock, flags);
2784
2785         hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
2786         hs_ep->fifo_index = 0;
2787         hs_ep->fifo_size = 0;
2788
2789         ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2790         ctrl &= ~DXEPCTL_EPENA;
2791         ctrl &= ~DXEPCTL_USBACTEP;
2792         ctrl |= DXEPCTL_SNAK;
2793
2794         dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2795         dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
2796
2797         /* disable endpoint interrupts */
2798         dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2799
2800         /* terminate all requests with shutdown */
2801         kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
2802
2803         spin_unlock_irqrestore(&hsotg->lock, flags);
2804         return 0;
2805 }
2806
2807 /**
2808  * on_list - check request is on the given endpoint
2809  * @ep: The endpoint to check.
2810  * @test: The request to test if it is on the endpoint.
2811  */
2812 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
2813 {
2814         struct dwc2_hsotg_req *req, *treq;
2815
2816         list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2817                 if (req == test)
2818                         return true;
2819         }
2820
2821         return false;
2822 }
2823
2824 static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
2825                                                         u32 bit, u32 timeout)
2826 {
2827         u32 i;
2828
2829         for (i = 0; i < timeout; i++) {
2830                 if (dwc2_readl(hs_otg->regs + reg) & bit)
2831                         return 0;
2832                 udelay(1);
2833         }
2834
2835         return -ETIMEDOUT;
2836 }
2837
2838 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2839                                                 struct dwc2_hsotg_ep *hs_ep)
2840 {
2841         u32 epctrl_reg;
2842         u32 epint_reg;
2843
2844         epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
2845                 DOEPCTL(hs_ep->index);
2846         epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
2847                 DOEPINT(hs_ep->index);
2848
2849         dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
2850                         hs_ep->name);
2851         if (hs_ep->dir_in) {
2852                 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
2853                 /* Wait for Nak effect */
2854                 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
2855                                                 DXEPINT_INEPNAKEFF, 100))
2856                         dev_warn(hsotg->dev,
2857                                 "%s: timeout DIEPINT.NAKEFF\n", __func__);
2858         } else {
2859                 /* Clear any pending nak effect interrupt */
2860                 dwc2_writel(GINTSTS_GINNAKEFF, hsotg->regs + GINTSTS);
2861
2862                 __orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
2863
2864                 /* Wait for global nak to take effect */
2865                 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
2866                                                 GINTSTS_GINNAKEFF, 100))
2867                         dev_warn(hsotg->dev,
2868                                 "%s: timeout GINTSTS.GINNAKEFF\n", __func__);
2869         }
2870
2871         /* Disable ep */
2872         __orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
2873
2874         /* Wait for ep to be disabled */
2875         if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
2876                 dev_warn(hsotg->dev,
2877                         "%s: timeout DOEPCTL.EPDisable\n", __func__);
2878
2879         if (hs_ep->dir_in) {
2880                 if (hsotg->dedicated_fifos) {
2881                         dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
2882                                 GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
2883                         /* Wait for fifo flush */
2884                         if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
2885                                                         GRSTCTL_TXFFLSH, 100))
2886                                 dev_warn(hsotg->dev,
2887                                         "%s: timeout flushing fifos\n",
2888                                         __func__);
2889                 }
2890                 /* TODO: Flush shared tx fifo */
2891         } else {
2892                 /* Remove global NAKs */
2893                 __bic32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
2894         }
2895 }
2896
2897 /**
2898  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
2899  * @ep: The endpoint to dequeue.
2900  * @req: The request to be removed from a queue.
2901  */
2902 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2903 {
2904         struct dwc2_hsotg_req *hs_req = our_req(req);
2905         struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2906         struct dwc2_hsotg *hs = hs_ep->parent;
2907         unsigned long flags;
2908
2909         dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2910
2911         spin_lock_irqsave(&hs->lock, flags);
2912
2913         if (!on_list(hs_ep, hs_req)) {
2914                 spin_unlock_irqrestore(&hs->lock, flags);
2915                 return -EINVAL;
2916         }
2917
2918         /* Dequeue already started request */
2919         if (req == &hs_ep->req->req)
2920                 dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
2921
2922         dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2923         spin_unlock_irqrestore(&hs->lock, flags);
2924
2925         return 0;
2926 }
2927
2928 /**
2929  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
2930  * @ep: The endpoint to set halt.
2931  * @value: Set or unset the halt.
2932  */
2933 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2934 {
2935         struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2936         struct dwc2_hsotg *hs = hs_ep->parent;
2937         int index = hs_ep->index;
2938         u32 epreg;
2939         u32 epctl;
2940         u32 xfertype;
2941
2942         dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2943
2944         if (index == 0) {
2945                 if (value)
2946                         dwc2_hsotg_stall_ep0(hs);
2947                 else
2948                         dev_warn(hs->dev,
2949                                  "%s: can't clear halt on ep0\n", __func__);
2950                 return 0;
2951         }
2952
2953         if (hs_ep->dir_in) {
2954                 epreg = DIEPCTL(index);
2955                 epctl = dwc2_readl(hs->regs + epreg);
2956
2957                 if (value) {
2958                         epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
2959                         if (epctl & DXEPCTL_EPENA)
2960                                 epctl |= DXEPCTL_EPDIS;
2961                 } else {
2962                         epctl &= ~DXEPCTL_STALL;
2963                         xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2964                         if (xfertype == DXEPCTL_EPTYPE_BULK ||
2965                                 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2966                                         epctl |= DXEPCTL_SETD0PID;
2967                 }
2968                 dwc2_writel(epctl, hs->regs + epreg);
2969         } else {
2970
2971                 epreg = DOEPCTL(index);
2972                 epctl = dwc2_readl(hs->regs + epreg);
2973
2974                 if (value)
2975                         epctl |= DXEPCTL_STALL;
2976                 else {
2977                         epctl &= ~DXEPCTL_STALL;
2978                         xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2979                         if (xfertype == DXEPCTL_EPTYPE_BULK ||
2980                                 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2981                                         epctl |= DXEPCTL_SETD0PID;
2982                 }
2983                 dwc2_writel(epctl, hs->regs + epreg);
2984         }
2985
2986         hs_ep->halted = value;
2987
2988         return 0;
2989 }
2990
2991 /**
2992  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2993  * @ep: The endpoint to set halt.
2994  * @value: Set or unset the halt.
2995  */
2996 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2997 {
2998         struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2999         struct dwc2_hsotg *hs = hs_ep->parent;
3000         unsigned long flags = 0;
3001         int ret = 0;
3002
3003         spin_lock_irqsave(&hs->lock, flags);
3004         ret = dwc2_hsotg_ep_sethalt(ep, value);
3005         spin_unlock_irqrestore(&hs->lock, flags);
3006
3007         return ret;
3008 }
3009
3010 static struct usb_ep_ops dwc2_hsotg_ep_ops = {
3011         .enable         = dwc2_hsotg_ep_enable,
3012         .disable        = dwc2_hsotg_ep_disable,
3013         .alloc_request  = dwc2_hsotg_ep_alloc_request,
3014         .free_request   = dwc2_hsotg_ep_free_request,
3015         .queue          = dwc2_hsotg_ep_queue_lock,
3016         .dequeue        = dwc2_hsotg_ep_dequeue,
3017         .set_halt       = dwc2_hsotg_ep_sethalt_lock,
3018         /* note, don't believe we have any call for the fifo routines */
3019 };
3020
3021 /**
3022  * dwc2_hsotg_phy_enable - enable platform phy dev
3023  * @hsotg: The driver state
3024  *
3025  * A wrapper for platform code responsible for controlling
3026  * low-level USB code
3027  */
3028 static void dwc2_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
3029 {
3030         struct platform_device *pdev = to_platform_device(hsotg->dev);
3031
3032         dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
3033
3034         if (hsotg->uphy)
3035                 usb_phy_init(hsotg->uphy);
3036         else if (hsotg->plat && hsotg->plat->phy_init)
3037                 hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
3038         else {
3039                 phy_init(hsotg->phy);
3040                 phy_power_on(hsotg->phy);
3041         }
3042 }
3043
3044 /**
3045  * dwc2_hsotg_phy_disable - disable platform phy dev
3046  * @hsotg: The driver state
3047  *
3048  * A wrapper for platform code responsible for controlling
3049  * low-level USB code
3050  */
3051 static void dwc2_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
3052 {
3053         struct platform_device *pdev = to_platform_device(hsotg->dev);
3054
3055         if (hsotg->uphy)
3056                 usb_phy_shutdown(hsotg->uphy);
3057         else if (hsotg->plat && hsotg->plat->phy_exit)
3058                 hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
3059         else {
3060                 phy_power_off(hsotg->phy);
3061                 phy_exit(hsotg->phy);
3062         }
3063 }
3064
3065 /**
3066  * dwc2_hsotg_init - initalize the usb core
3067  * @hsotg: The driver state
3068  */
3069 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3070 {
3071         u32 trdtim;
3072         /* unmask subset of endpoint interrupts */
3073
3074         dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
3075                     DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
3076                     hsotg->regs + DIEPMSK);
3077
3078         dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
3079                     DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
3080                     hsotg->regs + DOEPMSK);
3081
3082         dwc2_writel(0, hsotg->regs + DAINTMSK);
3083
3084         /* Be in disconnected state until gadget is registered */
3085         __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3086
3087         /* setup fifos */
3088
3089         dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3090                 dwc2_readl(hsotg->regs + GRXFSIZ),
3091                 dwc2_readl(hsotg->regs + GNPTXFSIZ));
3092
3093         dwc2_hsotg_init_fifo(hsotg);
3094
3095         /* set the PLL on, remove the HNP/SRP and set the PHY */
3096         trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3097         dwc2_writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3098                 (trdtim << GUSBCFG_USBTRDTIM_SHIFT),
3099                 hsotg->regs + GUSBCFG);
3100
3101         if (using_dma(hsotg))
3102                 __orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3103 }
3104
3105 /**
3106  * dwc2_hsotg_udc_start - prepare the udc for work
3107  * @gadget: The usb gadget state
3108  * @driver: The usb gadget driver
3109  *
3110  * Perform initialization to prepare udc device and driver
3111  * to work.
3112  */
3113 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3114                            struct usb_gadget_driver *driver)
3115 {
3116         struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3117         unsigned long flags;
3118         int ret;
3119
3120         if (!hsotg) {
3121                 pr_err("%s: called with no device\n", __func__);
3122                 return -ENODEV;
3123         }
3124
3125         if (!driver) {
3126                 dev_err(hsotg->dev, "%s: no driver\n", __func__);
3127                 return -EINVAL;
3128         }
3129
3130         if (driver->max_speed < USB_SPEED_FULL)
3131                 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
3132
3133         if (!driver->setup) {
3134                 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
3135                 return -EINVAL;
3136         }
3137
3138         mutex_lock(&hsotg->init_mutex);
3139         WARN_ON(hsotg->driver);
3140
3141         driver->driver.bus = NULL;
3142         hsotg->driver = driver;
3143         hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3144         hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3145
3146         clk_enable(hsotg->clk);
3147
3148         ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3149                                     hsotg->supplies);
3150         if (ret) {
3151                 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3152                 goto err;
3153         }
3154
3155         dwc2_hsotg_phy_enable(hsotg);
3156         if (!IS_ERR_OR_NULL(hsotg->uphy))
3157                 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3158
3159         spin_lock_irqsave(&hsotg->lock, flags);
3160         dwc2_hsotg_init(hsotg);
3161         dwc2_hsotg_core_init_disconnected(hsotg, false);
3162         hsotg->enabled = 0;
3163         spin_unlock_irqrestore(&hsotg->lock, flags);
3164
3165         dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3166
3167         mutex_unlock(&hsotg->init_mutex);
3168
3169         return 0;
3170
3171 err:
3172         mutex_unlock(&hsotg->init_mutex);
3173         hsotg->driver = NULL;
3174         return ret;
3175 }
3176
3177 /**
3178  * dwc2_hsotg_udc_stop - stop the udc
3179  * @gadget: The usb gadget state
3180  * @driver: The usb gadget driver
3181  *
3182  * Stop udc hw block and stay tunned for future transmissions
3183  */
3184 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3185 {
3186         struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3187         unsigned long flags = 0;
3188         int ep;
3189
3190         if (!hsotg)
3191                 return -ENODEV;
3192
3193         mutex_lock(&hsotg->init_mutex);
3194
3195         /* all endpoints should be shutdown */
3196         for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3197                 if (hsotg->eps_in[ep])
3198                         dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3199                 if (hsotg->eps_out[ep])
3200                         dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3201         }
3202
3203         spin_lock_irqsave(&hsotg->lock, flags);
3204
3205         hsotg->driver = NULL;
3206         hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3207         hsotg->enabled = 0;
3208
3209         spin_unlock_irqrestore(&hsotg->lock, flags);
3210
3211         if (!IS_ERR_OR_NULL(hsotg->uphy))
3212                 otg_set_peripheral(hsotg->uphy->otg, NULL);
3213         dwc2_hsotg_phy_disable(hsotg);
3214
3215         regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3216
3217         clk_disable(hsotg->clk);
3218
3219         mutex_unlock(&hsotg->init_mutex);
3220
3221         return 0;
3222 }
3223
3224 /**
3225  * dwc2_hsotg_gadget_getframe - read the frame number
3226  * @gadget: The usb gadget state
3227  *
3228  * Read the {micro} frame number
3229  */
3230 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3231 {
3232         return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3233 }
3234
3235 /**
3236  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3237  * @gadget: The usb gadget state
3238  * @is_on: Current state of the USB PHY
3239  *
3240  * Connect/Disconnect the USB PHY pullup
3241  */
3242 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3243 {
3244         struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3245         unsigned long flags = 0;
3246
3247         dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
3248                         hsotg->op_state);
3249
3250         /* Don't modify pullup state while in host mode */
3251         if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
3252                 hsotg->enabled = is_on;
3253                 return 0;
3254         }
3255
3256         mutex_lock(&hsotg->init_mutex);
3257         spin_lock_irqsave(&hsotg->lock, flags);
3258         if (is_on) {
3259                 clk_enable(hsotg->clk);
3260                 hsotg->enabled = 1;
3261                 dwc2_hsotg_core_init_disconnected(hsotg, false);
3262                 dwc2_hsotg_core_connect(hsotg);
3263         } else {
3264                 dwc2_hsotg_core_disconnect(hsotg);
3265                 dwc2_hsotg_disconnect(hsotg);
3266                 hsotg->enabled = 0;
3267                 clk_disable(hsotg->clk);
3268         }
3269
3270         hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3271         spin_unlock_irqrestore(&hsotg->lock, flags);
3272         mutex_unlock(&hsotg->init_mutex);
3273
3274         return 0;
3275 }
3276
3277 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3278 {
3279         struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3280         unsigned long flags;
3281
3282         dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
3283         spin_lock_irqsave(&hsotg->lock, flags);
3284
3285         if (is_active) {
3286                 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3287                 /*
3288                  * If controller is hibernated, it must exit from hibernation
3289                  * before being initialized
3290                  */
3291                 if (hsotg->lx_state == DWC2_L2)
3292                         dwc2_exit_hibernation(hsotg, false);
3293
3294                 dwc2_hsotg_core_init_disconnected(hsotg, false);
3295                 if (hsotg->enabled)
3296                         dwc2_hsotg_core_connect(hsotg);
3297         } else {
3298                 dwc2_hsotg_core_disconnect(hsotg);
3299                 dwc2_hsotg_disconnect(hsotg);
3300         }
3301
3302         spin_unlock_irqrestore(&hsotg->lock, flags);
3303         return 0;
3304 }
3305
3306 /**
3307  * dwc2_hsotg_vbus_draw - report bMaxPower field
3308  * @gadget: The usb gadget state
3309  * @mA: Amount of current
3310  *
3311  * Report how much power the device may consume to the phy.
3312  */
3313 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3314 {
3315         struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3316
3317         if (IS_ERR_OR_NULL(hsotg->uphy))
3318                 return -ENOTSUPP;
3319         return usb_phy_set_power(hsotg->uphy, mA);
3320 }
3321
3322 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
3323         .get_frame      = dwc2_hsotg_gadget_getframe,
3324         .udc_start              = dwc2_hsotg_udc_start,
3325         .udc_stop               = dwc2_hsotg_udc_stop,
3326         .pullup                 = dwc2_hsotg_pullup,
3327         .vbus_session           = dwc2_hsotg_vbus_session,
3328         .vbus_draw              = dwc2_hsotg_vbus_draw,
3329 };
3330
3331 /**
3332  * dwc2_hsotg_initep - initialise a single endpoint
3333  * @hsotg: The device state.
3334  * @hs_ep: The endpoint to be initialised.
3335  * @epnum: The endpoint number
3336  *
3337  * Initialise the given endpoint (as part of the probe and device state
3338  * creation) to give to the gadget driver. Setup the endpoint name, any
3339  * direction information and other state that may be required.
3340  */
3341 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
3342                                        struct dwc2_hsotg_ep *hs_ep,
3343                                        int epnum,
3344                                        bool dir_in)
3345 {
3346         char *dir;
3347
3348         if (epnum == 0)
3349                 dir = "";
3350         else if (dir_in)
3351                 dir = "in";
3352         else
3353                 dir = "out";
3354
3355         hs_ep->dir_in = dir_in;
3356         hs_ep->index = epnum;
3357
3358         snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3359
3360         INIT_LIST_HEAD(&hs_ep->queue);
3361         INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3362
3363         /* add to the list of endpoints known by the gadget driver */
3364         if (epnum)
3365                 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3366
3367         hs_ep->parent = hsotg;
3368         hs_ep->ep.name = hs_ep->name;
3369         usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3370         hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
3371
3372         if (epnum == 0) {
3373                 hs_ep->ep.caps.type_control = true;
3374         } else {
3375                 hs_ep->ep.caps.type_iso = true;
3376                 hs_ep->ep.caps.type_bulk = true;
3377                 hs_ep->ep.caps.type_int = true;
3378         }
3379
3380         if (dir_in)
3381                 hs_ep->ep.caps.dir_in = true;
3382         else
3383                 hs_ep->ep.caps.dir_out = true;
3384
3385         /*
3386          * if we're using dma, we need to set the next-endpoint pointer
3387          * to be something valid.
3388          */
3389
3390         if (using_dma(hsotg)) {
3391                 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3392                 if (dir_in)
3393                         dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
3394                 else
3395                         dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
3396         }
3397 }
3398
3399 /**
3400  * dwc2_hsotg_hw_cfg - read HW configuration registers
3401  * @param: The device state
3402  *
3403  * Read the USB core HW configuration registers
3404  */
3405 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3406 {
3407         u32 cfg;
3408         u32 ep_type;
3409         u32 i;
3410
3411         /* check hardware configuration */
3412
3413         cfg = dwc2_readl(hsotg->regs + GHWCFG2);
3414         hsotg->num_of_eps = (cfg >> GHWCFG2_NUM_DEV_EP_SHIFT) & 0xF;
3415         /* Add ep0 */
3416         hsotg->num_of_eps++;
3417
3418         hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
3419                                                                 GFP_KERNEL);
3420         if (!hsotg->eps_in[0])
3421                 return -ENOMEM;
3422         /* Same dwc2_hsotg_ep is used in both directions for ep0 */
3423         hsotg->eps_out[0] = hsotg->eps_in[0];
3424
3425         cfg = dwc2_readl(hsotg->regs + GHWCFG1);
3426         for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3427                 ep_type = cfg & 3;
3428                 /* Direction in or both */
3429                 if (!(ep_type & 2)) {
3430                         hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3431                                 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3432                         if (!hsotg->eps_in[i])
3433                                 return -ENOMEM;
3434                 }
3435                 /* Direction out or both */
3436                 if (!(ep_type & 1)) {
3437                         hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3438                                 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3439                         if (!hsotg->eps_out[i])
3440                                 return -ENOMEM;
3441                 }
3442         }
3443
3444         cfg = dwc2_readl(hsotg->regs + GHWCFG3);
3445         hsotg->fifo_mem = (cfg >> GHWCFG3_DFIFO_DEPTH_SHIFT);
3446
3447         cfg = dwc2_readl(hsotg->regs + GHWCFG4);
3448         hsotg->dedicated_fifos = (cfg >> GHWCFG4_DED_FIFO_SHIFT) & 1;
3449
3450         dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
3451                  hsotg->num_of_eps,
3452                  hsotg->dedicated_fifos ? "dedicated" : "shared",
3453                  hsotg->fifo_mem);
3454         return 0;
3455 }
3456
3457 /**
3458  * dwc2_hsotg_dump - dump state of the udc
3459  * @param: The device state
3460  */
3461 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
3462 {
3463 #ifdef DEBUG
3464         struct device *dev = hsotg->dev;
3465         void __iomem *regs = hsotg->regs;
3466         u32 val;
3467         int idx;
3468
3469         dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3470                  dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
3471                  dwc2_readl(regs + DIEPMSK));
3472
3473         dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3474                  dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
3475
3476         dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3477                  dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
3478
3479         /* show periodic fifo settings */
3480
3481         for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3482                 val = dwc2_readl(regs + DPTXFSIZN(idx));
3483                 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3484                          val >> FIFOSIZE_DEPTH_SHIFT,
3485                          val & FIFOSIZE_STARTADDR_MASK);
3486         }
3487
3488         for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3489                 dev_info(dev,
3490                          "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3491                          dwc2_readl(regs + DIEPCTL(idx)),
3492                          dwc2_readl(regs + DIEPTSIZ(idx)),
3493                          dwc2_readl(regs + DIEPDMA(idx)));
3494
3495                 val = dwc2_readl(regs + DOEPCTL(idx));
3496                 dev_info(dev,
3497                          "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3498                          idx, dwc2_readl(regs + DOEPCTL(idx)),
3499                          dwc2_readl(regs + DOEPTSIZ(idx)),
3500                          dwc2_readl(regs + DOEPDMA(idx)));
3501
3502         }
3503
3504         dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3505                  dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
3506 #endif
3507 }
3508
3509 #ifdef CONFIG_OF
3510 static void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3511 {
3512         struct device_node *np = hsotg->dev->of_node;
3513         u32 len = 0;
3514         u32 i = 0;
3515
3516         /* Enable dma if requested in device tree */
3517         hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3518
3519         /*
3520         * Register TX periodic fifo size per endpoint.
3521         * EP0 is excluded since it has no fifo configuration.
3522         */
3523         if (!of_find_property(np, "g-tx-fifo-size", &len))
3524                 goto rx_fifo;
3525
3526         len /= sizeof(u32);
3527
3528         /* Read tx fifo sizes other than ep0 */
3529         if (of_property_read_u32_array(np, "g-tx-fifo-size",
3530                                                 &hsotg->g_tx_fifo_sz[1], len))
3531                 goto rx_fifo;
3532
3533         /* Add ep0 */
3534         len++;
3535
3536         /* Make remaining TX fifos unavailable */
3537         if (len < MAX_EPS_CHANNELS) {
3538                 for (i = len; i < MAX_EPS_CHANNELS; i++)
3539                         hsotg->g_tx_fifo_sz[i] = 0;
3540         }
3541
3542 rx_fifo:
3543         /* Register RX fifo size */
3544         of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);
3545
3546         /* Register NPTX fifo size */
3547         of_property_read_u32(np, "g-np-tx-fifo-size",
3548                                                 &hsotg->g_np_g_tx_fifo_sz);
3549 }
3550 #else
3551 static inline void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3552 #endif
3553
3554 /**
3555  * dwc2_gadget_init - init function for gadget
3556  * @dwc2: The data structure for the DWC2 driver.
3557  * @irq: The IRQ number for the controller.
3558  */
3559 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3560 {
3561         struct device *dev = hsotg->dev;
3562         struct dwc2_hsotg_plat *plat = dev->platform_data;
3563         int epnum;
3564         int ret;
3565         int i;
3566         u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3567
3568         /* Set default UTMI width */
3569         hsotg->phyif = GUSBCFG_PHYIF16;
3570
3571         dwc2_hsotg_of_probe(hsotg);
3572
3573         /* Initialize to legacy fifo configuration values */
3574         hsotg->g_rx_fifo_sz = 2048;
3575         hsotg->g_np_g_tx_fifo_sz = 1024;
3576         memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
3577         /* Device tree specific probe */
3578         dwc2_hsotg_of_probe(hsotg);
3579         /* Dump fifo information */
3580         dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
3581                                                 hsotg->g_np_g_tx_fifo_sz);
3582         dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
3583         for (i = 0; i < MAX_EPS_CHANNELS; i++)
3584                 dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
3585                                                 hsotg->g_tx_fifo_sz[i]);
3586         /*
3587          * If platform probe couldn't find a generic PHY or an old style
3588          * USB PHY, fall back to pdata
3589          */
3590         if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
3591                 plat = dev_get_platdata(dev);
3592                 if (!plat) {
3593                         dev_err(dev,
3594                         "no platform data or transceiver defined\n");
3595                         return -EPROBE_DEFER;
3596                 }
3597                 hsotg->plat = plat;
3598         } else if (hsotg->phy) {
3599                 /*
3600                  * If using the generic PHY framework, check if the PHY bus
3601                  * width is 8-bit and set the phyif appropriately.
3602                  */
3603                 if (phy_get_bus_width(hsotg->phy) == 8)
3604                         hsotg->phyif = GUSBCFG_PHYIF8;
3605         }
3606
3607         hsotg->clk = devm_clk_get(dev, "otg");
3608         if (IS_ERR(hsotg->clk)) {
3609                 hsotg->clk = NULL;
3610                 dev_dbg(dev, "cannot get otg clock\n");
3611         }
3612
3613         hsotg->gadget.max_speed = USB_SPEED_HIGH;
3614         hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
3615         hsotg->gadget.name = dev_name(dev);
3616         if (hsotg->dr_mode == USB_DR_MODE_OTG)
3617                 hsotg->gadget.is_otg = 1;
3618         else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
3619                 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3620
3621         /* reset the system */
3622
3623         ret = clk_prepare_enable(hsotg->clk);
3624         if (ret) {
3625                 dev_err(dev, "failed to enable otg clk\n");
3626                 goto err_clk;
3627         }
3628
3629
3630         /* regulators */
3631
3632         for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3633                 hsotg->supplies[i].supply = dwc2_hsotg_supply_names[i];
3634
3635         ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3636                                  hsotg->supplies);
3637         if (ret) {
3638                 dev_err(dev, "failed to request supplies: %d\n", ret);
3639                 goto err_clk;
3640         }
3641
3642         ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3643                                     hsotg->supplies);
3644
3645         if (ret) {
3646                 dev_err(dev, "failed to enable supplies: %d\n", ret);
3647                 goto err_clk;
3648         }
3649
3650         /* usb phy enable */
3651         dwc2_hsotg_phy_enable(hsotg);
3652
3653         /*
3654          * Force Device mode before initialization.
3655          * This allows correctly configuring fifo for device mode.
3656          */
3657         __bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEHOSTMODE);
3658         __orr32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);
3659
3660         /*
3661          * According to Synopsys databook, this sleep is needed for the force
3662          * device mode to take effect.
3663          */
3664         msleep(25);
3665
3666         dwc2_hsotg_corereset(hsotg);
3667         ret = dwc2_hsotg_hw_cfg(hsotg);
3668         if (ret) {
3669                 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3670                 goto err_clk;
3671         }
3672
3673         dwc2_hsotg_init(hsotg);
3674
3675         /* Switch back to default configuration */
3676         __bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);
3677
3678         hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
3679                         DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3680         if (!hsotg->ctrl_buff) {
3681                 dev_err(dev, "failed to allocate ctrl request buff\n");
3682                 ret = -ENOMEM;
3683                 goto err_supplies;
3684         }
3685
3686         hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
3687                         DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3688         if (!hsotg->ep0_buff) {
3689                 dev_err(dev, "failed to allocate ctrl reply buff\n");
3690                 ret = -ENOMEM;
3691                 goto err_supplies;
3692         }
3693
3694         ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
3695                                 dev_name(hsotg->dev), hsotg);
3696         if (ret < 0) {
3697                 dwc2_hsotg_phy_disable(hsotg);
3698                 clk_disable_unprepare(hsotg->clk);
3699                 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3700                                        hsotg->supplies);
3701                 dev_err(dev, "cannot claim IRQ for gadget\n");
3702                 goto err_supplies;
3703         }
3704
3705         /* hsotg->num_of_eps holds number of EPs other than ep0 */
3706
3707         if (hsotg->num_of_eps == 0) {
3708                 dev_err(dev, "wrong number of EPs (zero)\n");
3709                 ret = -EINVAL;
3710                 goto err_supplies;
3711         }
3712
3713         /* setup endpoint information */
3714
3715         INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3716         hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3717
3718         /* allocate EP0 request */
3719
3720         hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3721                                                      GFP_KERNEL);
3722         if (!hsotg->ctrl_req) {
3723                 dev_err(dev, "failed to allocate ctrl req\n");
3724                 ret = -ENOMEM;
3725                 goto err_supplies;
3726         }
3727
3728         /* initialise the endpoints now the core has been initialised */
3729         for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
3730                 if (hsotg->eps_in[epnum])
3731                         dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3732                                                                 epnum, 1);
3733                 if (hsotg->eps_out[epnum])
3734                         dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3735                                                                 epnum, 0);
3736         }
3737
3738         /* disable power and clock */
3739         dwc2_hsotg_phy_disable(hsotg);
3740
3741         ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3742                                     hsotg->supplies);
3743         if (ret) {
3744                 dev_err(dev, "failed to disable supplies: %d\n", ret);
3745                 goto err_supplies;
3746         }
3747
3748         ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3749         if (ret)
3750                 goto err_supplies;
3751
3752         dwc2_hsotg_dump(hsotg);
3753
3754         return 0;
3755
3756 err_supplies:
3757         dwc2_hsotg_phy_disable(hsotg);
3758 err_clk:
3759         clk_disable_unprepare(hsotg->clk);
3760
3761         return ret;
3762 }
3763
3764 /**
3765  * dwc2_hsotg_remove - remove function for hsotg driver
3766  * @pdev: The platform information for the driver
3767  */
3768 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
3769 {
3770         usb_del_gadget_udc(&hsotg->gadget);
3771         clk_disable_unprepare(hsotg->clk);
3772
3773         return 0;
3774 }
3775
3776 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
3777 {
3778         unsigned long flags;
3779         int ret = 0;
3780
3781         if (hsotg->lx_state != DWC2_L0)
3782                 return ret;
3783
3784         mutex_lock(&hsotg->init_mutex);
3785
3786         if (hsotg->driver) {
3787                 int ep;
3788
3789                 dev_info(hsotg->dev, "suspending usb gadget %s\n",
3790                          hsotg->driver->driver.name);
3791
3792                 spin_lock_irqsave(&hsotg->lock, flags);
3793                 if (hsotg->enabled)
3794                         dwc2_hsotg_core_disconnect(hsotg);
3795                 dwc2_hsotg_disconnect(hsotg);
3796                 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3797                 spin_unlock_irqrestore(&hsotg->lock, flags);
3798
3799                 dwc2_hsotg_phy_disable(hsotg);
3800
3801                 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3802                         if (hsotg->eps_in[ep])
3803                                 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3804                         if (hsotg->eps_out[ep])
3805                                 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3806                 }
3807
3808                 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3809                                              hsotg->supplies);
3810                 clk_disable(hsotg->clk);
3811         }
3812
3813         mutex_unlock(&hsotg->init_mutex);
3814
3815         return ret;
3816 }
3817
3818 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
3819 {
3820         unsigned long flags;
3821         int ret = 0;
3822
3823         if (hsotg->lx_state == DWC2_L2)
3824                 return ret;
3825
3826         mutex_lock(&hsotg->init_mutex);
3827
3828         if (hsotg->driver) {
3829                 dev_info(hsotg->dev, "resuming usb gadget %s\n",
3830                          hsotg->driver->driver.name);
3831
3832                 clk_enable(hsotg->clk);
3833                 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3834                                             hsotg->supplies);
3835
3836                 dwc2_hsotg_phy_enable(hsotg);
3837
3838                 spin_lock_irqsave(&hsotg->lock, flags);
3839                 dwc2_hsotg_core_init_disconnected(hsotg, false);
3840                 if (hsotg->enabled)
3841                         dwc2_hsotg_core_connect(hsotg);
3842                 spin_unlock_irqrestore(&hsotg->lock, flags);
3843         }
3844         mutex_unlock(&hsotg->init_mutex);
3845
3846         return ret;
3847 }