usb: dwc2: remove no longer needed init_mutex
[firefly-linux-kernel-4.4.55.git] / drivers / usb / dwc2 / gadget.c
1 /**
2  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3  *              http://www.samsung.com
4  *
5  * Copyright 2008 Openmoko, Inc.
6  * Copyright 2008 Simtec Electronics
7  *      Ben Dooks <ben@simtec.co.uk>
8  *      http://armlinux.simtec.co.uk/
9  *
10  * S3C USB2.0 High-speed / OtG driver
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/mutex.h>
24 #include <linux/seq_file.h>
25 #include <linux/delay.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/clk.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/of_platform.h>
31 #include <linux/phy/phy.h>
32
33 #include <linux/usb/ch9.h>
34 #include <linux/usb/gadget.h>
35 #include <linux/usb/phy.h>
36 #include <linux/platform_data/s3c-hsotg.h>
37
38 #include "core.h"
39 #include "hw.h"
40
41 /* conversion functions */
42 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
43 {
44         return container_of(req, struct dwc2_hsotg_req, req);
45 }
46
47 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
48 {
49         return container_of(ep, struct dwc2_hsotg_ep, ep);
50 }
51
52 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
53 {
54         return container_of(gadget, struct dwc2_hsotg, gadget);
55 }
56
57 static inline void __orr32(void __iomem *ptr, u32 val)
58 {
59         dwc2_writel(dwc2_readl(ptr) | val, ptr);
60 }
61
62 static inline void __bic32(void __iomem *ptr, u32 val)
63 {
64         dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
65 }
66
67 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
68                                                 u32 ep_index, u32 dir_in)
69 {
70         if (dir_in)
71                 return hsotg->eps_in[ep_index];
72         else
73                 return hsotg->eps_out[ep_index];
74 }
75
76 /* forward declaration of functions */
77 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
78
79 /**
80  * using_dma - return the DMA status of the driver.
81  * @hsotg: The driver state.
82  *
83  * Return true if we're using DMA.
84  *
85  * Currently, we have the DMA support code worked into everywhere
86  * that needs it, but the AMBA DMA implementation in the hardware can
87  * only DMA from 32bit aligned addresses. This means that gadgets such
88  * as the CDC Ethernet cannot work as they often pass packets which are
89  * not 32bit aligned.
90  *
91  * Unfortunately the choice to use DMA or not is global to the controller
92  * and seems to be only settable when the controller is being put through
93  * a core reset. This means we either need to fix the gadgets to take
94  * account of DMA alignment, or add bounce buffers (yuerk).
95  *
96  * g_using_dma is set depending on dts flag.
97  */
98 static inline bool using_dma(struct dwc2_hsotg *hsotg)
99 {
100         return hsotg->g_using_dma;
101 }
102
103 /**
104  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
105  * @hsotg: The device state
106  * @ints: A bitmask of the interrupts to enable
107  */
108 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
109 {
110         u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
111         u32 new_gsintmsk;
112
113         new_gsintmsk = gsintmsk | ints;
114
115         if (new_gsintmsk != gsintmsk) {
116                 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
117                 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
118         }
119 }
120
121 /**
122  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
123  * @hsotg: The device state
124  * @ints: A bitmask of the interrupts to enable
125  */
126 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
127 {
128         u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
129         u32 new_gsintmsk;
130
131         new_gsintmsk = gsintmsk & ~ints;
132
133         if (new_gsintmsk != gsintmsk)
134                 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
135 }
136
137 /**
138  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
139  * @hsotg: The device state
140  * @ep: The endpoint index
141  * @dir_in: True if direction is in.
142  * @en: The enable value, true to enable
143  *
144  * Set or clear the mask for an individual endpoint's interrupt
145  * request.
146  */
147 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
148                                  unsigned int ep, unsigned int dir_in,
149                                  unsigned int en)
150 {
151         unsigned long flags;
152         u32 bit = 1 << ep;
153         u32 daint;
154
155         if (!dir_in)
156                 bit <<= 16;
157
158         local_irq_save(flags);
159         daint = dwc2_readl(hsotg->regs + DAINTMSK);
160         if (en)
161                 daint |= bit;
162         else
163                 daint &= ~bit;
164         dwc2_writel(daint, hsotg->regs + DAINTMSK);
165         local_irq_restore(flags);
166 }
167
168 /**
169  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
170  * @hsotg: The device instance.
171  */
172 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
173 {
174         unsigned int ep;
175         unsigned int addr;
176         int timeout;
177         u32 val;
178
179         /* Reset fifo map if not correctly cleared during previous session */
180         WARN_ON(hsotg->fifo_map);
181         hsotg->fifo_map = 0;
182
183         /* set RX/NPTX FIFO sizes */
184         dwc2_writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
185         dwc2_writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
186                 (hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
187                 hsotg->regs + GNPTXFSIZ);
188
189         /*
190          * arange all the rest of the TX FIFOs, as some versions of this
191          * block have overlapping default addresses. This also ensures
192          * that if the settings have been changed, then they are set to
193          * known values.
194          */
195
196         /* start at the end of the GNPTXFSIZ, rounded up */
197         addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
198
199         /*
200          * Configure fifos sizes from provided configuration and assign
201          * them to endpoints dynamically according to maxpacket size value of
202          * given endpoint.
203          */
204         for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
205                 if (!hsotg->g_tx_fifo_sz[ep])
206                         continue;
207                 val = addr;
208                 val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
209                 WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
210                           "insufficient fifo memory");
211                 addr += hsotg->g_tx_fifo_sz[ep];
212
213                 dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
214         }
215
216         /*
217          * according to p428 of the design guide, we need to ensure that
218          * all fifos are flushed before continuing
219          */
220
221         dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
222                GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
223
224         /* wait until the fifos are both flushed */
225         timeout = 100;
226         while (1) {
227                 val = dwc2_readl(hsotg->regs + GRSTCTL);
228
229                 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
230                         break;
231
232                 if (--timeout == 0) {
233                         dev_err(hsotg->dev,
234                                 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
235                                 __func__, val);
236                         break;
237                 }
238
239                 udelay(1);
240         }
241
242         dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
243 }
244
245 /**
246  * @ep: USB endpoint to allocate request for.
247  * @flags: Allocation flags
248  *
249  * Allocate a new USB request structure appropriate for the specified endpoint
250  */
251 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
252                                                       gfp_t flags)
253 {
254         struct dwc2_hsotg_req *req;
255
256         req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
257         if (!req)
258                 return NULL;
259
260         INIT_LIST_HEAD(&req->queue);
261
262         return &req->req;
263 }
264
265 /**
266  * is_ep_periodic - return true if the endpoint is in periodic mode.
267  * @hs_ep: The endpoint to query.
268  *
269  * Returns true if the endpoint is in periodic mode, meaning it is being
270  * used for an Interrupt or ISO transfer.
271  */
272 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
273 {
274         return hs_ep->periodic;
275 }
276
277 /**
278  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
279  * @hsotg: The device state.
280  * @hs_ep: The endpoint for the request
281  * @hs_req: The request being processed.
282  *
283  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
284  * of a request to ensure the buffer is ready for access by the caller.
285  */
286 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
287                                 struct dwc2_hsotg_ep *hs_ep,
288                                 struct dwc2_hsotg_req *hs_req)
289 {
290         struct usb_request *req = &hs_req->req;
291
292         /* ignore this if we're not moving any data */
293         if (hs_req->req.length == 0)
294                 return;
295
296         usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
297 }
298
299 /**
300  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
301  * @hsotg: The controller state.
302  * @hs_ep: The endpoint we're going to write for.
303  * @hs_req: The request to write data for.
304  *
305  * This is called when the TxFIFO has some space in it to hold a new
306  * transmission and we have something to give it. The actual setup of
307  * the data size is done elsewhere, so all we have to do is to actually
308  * write the data.
309  *
310  * The return value is zero if there is more space (or nothing was done)
311  * otherwise -ENOSPC is returned if the FIFO space was used up.
312  *
313  * This routine is only needed for PIO
314  */
315 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
316                                 struct dwc2_hsotg_ep *hs_ep,
317                                 struct dwc2_hsotg_req *hs_req)
318 {
319         bool periodic = is_ep_periodic(hs_ep);
320         u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
321         int buf_pos = hs_req->req.actual;
322         int to_write = hs_ep->size_loaded;
323         void *data;
324         int can_write;
325         int pkt_round;
326         int max_transfer;
327
328         to_write -= (buf_pos - hs_ep->last_load);
329
330         /* if there's nothing to write, get out early */
331         if (to_write == 0)
332                 return 0;
333
334         if (periodic && !hsotg->dedicated_fifos) {
335                 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
336                 int size_left;
337                 int size_done;
338
339                 /*
340                  * work out how much data was loaded so we can calculate
341                  * how much data is left in the fifo.
342                  */
343
344                 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
345
346                 /*
347                  * if shared fifo, we cannot write anything until the
348                  * previous data has been completely sent.
349                  */
350                 if (hs_ep->fifo_load != 0) {
351                         dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
352                         return -ENOSPC;
353                 }
354
355                 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
356                         __func__, size_left,
357                         hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
358
359                 /* how much of the data has moved */
360                 size_done = hs_ep->size_loaded - size_left;
361
362                 /* how much data is left in the fifo */
363                 can_write = hs_ep->fifo_load - size_done;
364                 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
365                         __func__, can_write);
366
367                 can_write = hs_ep->fifo_size - can_write;
368                 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
369                         __func__, can_write);
370
371                 if (can_write <= 0) {
372                         dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
373                         return -ENOSPC;
374                 }
375         } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
376                 can_write = dwc2_readl(hsotg->regs + DTXFSTS(hs_ep->index));
377
378                 can_write &= 0xffff;
379                 can_write *= 4;
380         } else {
381                 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
382                         dev_dbg(hsotg->dev,
383                                 "%s: no queue slots available (0x%08x)\n",
384                                 __func__, gnptxsts);
385
386                         dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
387                         return -ENOSPC;
388                 }
389
390                 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
391                 can_write *= 4; /* fifo size is in 32bit quantities. */
392         }
393
394         max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
395
396         dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
397                  __func__, gnptxsts, can_write, to_write, max_transfer);
398
399         /*
400          * limit to 512 bytes of data, it seems at least on the non-periodic
401          * FIFO, requests of >512 cause the endpoint to get stuck with a
402          * fragment of the end of the transfer in it.
403          */
404         if (can_write > 512 && !periodic)
405                 can_write = 512;
406
407         /*
408          * limit the write to one max-packet size worth of data, but allow
409          * the transfer to return that it did not run out of fifo space
410          * doing it.
411          */
412         if (to_write > max_transfer) {
413                 to_write = max_transfer;
414
415                 /* it's needed only when we do not use dedicated fifos */
416                 if (!hsotg->dedicated_fifos)
417                         dwc2_hsotg_en_gsint(hsotg,
418                                            periodic ? GINTSTS_PTXFEMP :
419                                            GINTSTS_NPTXFEMP);
420         }
421
422         /* see if we can write data */
423
424         if (to_write > can_write) {
425                 to_write = can_write;
426                 pkt_round = to_write % max_transfer;
427
428                 /*
429                  * Round the write down to an
430                  * exact number of packets.
431                  *
432                  * Note, we do not currently check to see if we can ever
433                  * write a full packet or not to the FIFO.
434                  */
435
436                 if (pkt_round)
437                         to_write -= pkt_round;
438
439                 /*
440                  * enable correct FIFO interrupt to alert us when there
441                  * is more room left.
442                  */
443
444                 /* it's needed only when we do not use dedicated fifos */
445                 if (!hsotg->dedicated_fifos)
446                         dwc2_hsotg_en_gsint(hsotg,
447                                            periodic ? GINTSTS_PTXFEMP :
448                                            GINTSTS_NPTXFEMP);
449         }
450
451         dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
452                  to_write, hs_req->req.length, can_write, buf_pos);
453
454         if (to_write <= 0)
455                 return -ENOSPC;
456
457         hs_req->req.actual = buf_pos + to_write;
458         hs_ep->total_data += to_write;
459
460         if (periodic)
461                 hs_ep->fifo_load += to_write;
462
463         to_write = DIV_ROUND_UP(to_write, 4);
464         data = hs_req->req.buf + buf_pos;
465
466         iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
467
468         return (to_write >= can_write) ? -ENOSPC : 0;
469 }
470
471 /**
472  * get_ep_limit - get the maximum data legnth for this endpoint
473  * @hs_ep: The endpoint
474  *
475  * Return the maximum data that can be queued in one go on a given endpoint
476  * so that transfers that are too long can be split.
477  */
478 static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
479 {
480         int index = hs_ep->index;
481         unsigned maxsize;
482         unsigned maxpkt;
483
484         if (index != 0) {
485                 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
486                 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
487         } else {
488                 maxsize = 64+64;
489                 if (hs_ep->dir_in)
490                         maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
491                 else
492                         maxpkt = 2;
493         }
494
495         /* we made the constant loading easier above by using +1 */
496         maxpkt--;
497         maxsize--;
498
499         /*
500          * constrain by packet count if maxpkts*pktsize is greater
501          * than the length register size.
502          */
503
504         if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
505                 maxsize = maxpkt * hs_ep->ep.maxpacket;
506
507         return maxsize;
508 }
509
510 /**
511  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
512  * @hsotg: The controller state.
513  * @hs_ep: The endpoint to process a request for
514  * @hs_req: The request to start.
515  * @continuing: True if we are doing more for the current request.
516  *
517  * Start the given request running by setting the endpoint registers
518  * appropriately, and writing any data to the FIFOs.
519  */
520 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
521                                 struct dwc2_hsotg_ep *hs_ep,
522                                 struct dwc2_hsotg_req *hs_req,
523                                 bool continuing)
524 {
525         struct usb_request *ureq = &hs_req->req;
526         int index = hs_ep->index;
527         int dir_in = hs_ep->dir_in;
528         u32 epctrl_reg;
529         u32 epsize_reg;
530         u32 epsize;
531         u32 ctrl;
532         unsigned length;
533         unsigned packets;
534         unsigned maxreq;
535
536         if (index != 0) {
537                 if (hs_ep->req && !continuing) {
538                         dev_err(hsotg->dev, "%s: active request\n", __func__);
539                         WARN_ON(1);
540                         return;
541                 } else if (hs_ep->req != hs_req && continuing) {
542                         dev_err(hsotg->dev,
543                                 "%s: continue different req\n", __func__);
544                         WARN_ON(1);
545                         return;
546                 }
547         }
548
549         epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
550         epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
551
552         dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
553                 __func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
554                 hs_ep->dir_in ? "in" : "out");
555
556         /* If endpoint is stalled, we will restart request later */
557         ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
558
559         if (index && ctrl & DXEPCTL_STALL) {
560                 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
561                 return;
562         }
563
564         length = ureq->length - ureq->actual;
565         dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
566                 ureq->length, ureq->actual);
567
568         maxreq = get_ep_limit(hs_ep);
569         if (length > maxreq) {
570                 int round = maxreq % hs_ep->ep.maxpacket;
571
572                 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
573                         __func__, length, maxreq, round);
574
575                 /* round down to multiple of packets */
576                 if (round)
577                         maxreq -= round;
578
579                 length = maxreq;
580         }
581
582         if (length)
583                 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
584         else
585                 packets = 1;    /* send one packet if length is zero. */
586
587         if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
588                 dev_err(hsotg->dev, "req length > maxpacket*mc\n");
589                 return;
590         }
591
592         if (dir_in && index != 0)
593                 if (hs_ep->isochronous)
594                         epsize = DXEPTSIZ_MC(packets);
595                 else
596                         epsize = DXEPTSIZ_MC(1);
597         else
598                 epsize = 0;
599
600         /*
601          * zero length packet should be programmed on its own and should not
602          * be counted in DIEPTSIZ.PktCnt with other packets.
603          */
604         if (dir_in && ureq->zero && !continuing) {
605                 /* Test if zlp is actually required. */
606                 if ((ureq->length >= hs_ep->ep.maxpacket) &&
607                                         !(ureq->length % hs_ep->ep.maxpacket))
608                         hs_ep->send_zlp = 1;
609         }
610
611         epsize |= DXEPTSIZ_PKTCNT(packets);
612         epsize |= DXEPTSIZ_XFERSIZE(length);
613
614         dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
615                 __func__, packets, length, ureq->length, epsize, epsize_reg);
616
617         /* store the request as the current one we're doing */
618         hs_ep->req = hs_req;
619
620         /* write size / packets */
621         dwc2_writel(epsize, hsotg->regs + epsize_reg);
622
623         if (using_dma(hsotg) && !continuing) {
624                 unsigned int dma_reg;
625
626                 /*
627                  * write DMA address to control register, buffer already
628                  * synced by dwc2_hsotg_ep_queue().
629                  */
630
631                 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
632                 dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
633
634                 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
635                         __func__, &ureq->dma, dma_reg);
636         }
637
638         ctrl |= DXEPCTL_EPENA;  /* ensure ep enabled */
639         ctrl |= DXEPCTL_USBACTEP;
640
641         dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
642
643         /* For Setup request do not clear NAK */
644         if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
645                 ctrl |= DXEPCTL_CNAK;   /* clear NAK set by core */
646
647         dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
648         dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
649
650         /*
651          * set these, it seems that DMA support increments past the end
652          * of the packet buffer so we need to calculate the length from
653          * this information.
654          */
655         hs_ep->size_loaded = length;
656         hs_ep->last_load = ureq->actual;
657
658         if (dir_in && !using_dma(hsotg)) {
659                 /* set these anyway, we may need them for non-periodic in */
660                 hs_ep->fifo_load = 0;
661
662                 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
663         }
664
665         /*
666          * clear the INTknTXFEmpMsk when we start request, more as a aide
667          * to debugging to see what is going on.
668          */
669         if (dir_in)
670                 dwc2_writel(DIEPMSK_INTKNTXFEMPMSK,
671                        hsotg->regs + DIEPINT(index));
672
673         /*
674          * Note, trying to clear the NAK here causes problems with transmit
675          * on the S3C6400 ending up with the TXFIFO becoming full.
676          */
677
678         /* check ep is enabled */
679         if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
680                 dev_dbg(hsotg->dev,
681                          "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
682                          index, dwc2_readl(hsotg->regs + epctrl_reg));
683
684         dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
685                 __func__, dwc2_readl(hsotg->regs + epctrl_reg));
686
687         /* enable ep interrupts */
688         dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
689 }
690
691 /**
692  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
693  * @hsotg: The device state.
694  * @hs_ep: The endpoint the request is on.
695  * @req: The request being processed.
696  *
697  * We've been asked to queue a request, so ensure that the memory buffer
698  * is correctly setup for DMA. If we've been passed an extant DMA address
699  * then ensure the buffer has been synced to memory. If our buffer has no
700  * DMA memory, then we map the memory and mark our request to allow us to
701  * cleanup on completion.
702  */
703 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
704                              struct dwc2_hsotg_ep *hs_ep,
705                              struct usb_request *req)
706 {
707         struct dwc2_hsotg_req *hs_req = our_req(req);
708         int ret;
709
710         /* if the length is zero, ignore the DMA data */
711         if (hs_req->req.length == 0)
712                 return 0;
713
714         ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
715         if (ret)
716                 goto dma_error;
717
718         return 0;
719
720 dma_error:
721         dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
722                 __func__, req->buf, req->length);
723
724         return -EIO;
725 }
726
727 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
728         struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
729 {
730         void *req_buf = hs_req->req.buf;
731
732         /* If dma is not being used or buffer is aligned */
733         if (!using_dma(hsotg) || !((long)req_buf & 3))
734                 return 0;
735
736         WARN_ON(hs_req->saved_req_buf);
737
738         dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
739                         hs_ep->ep.name, req_buf, hs_req->req.length);
740
741         hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
742         if (!hs_req->req.buf) {
743                 hs_req->req.buf = req_buf;
744                 dev_err(hsotg->dev,
745                         "%s: unable to allocate memory for bounce buffer\n",
746                         __func__);
747                 return -ENOMEM;
748         }
749
750         /* Save actual buffer */
751         hs_req->saved_req_buf = req_buf;
752
753         if (hs_ep->dir_in)
754                 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
755         return 0;
756 }
757
758 static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
759         struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
760 {
761         /* If dma is not being used or buffer was aligned */
762         if (!using_dma(hsotg) || !hs_req->saved_req_buf)
763                 return;
764
765         dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
766                 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
767
768         /* Copy data from bounce buffer on successful out transfer */
769         if (!hs_ep->dir_in && !hs_req->req.status)
770                 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
771                                                         hs_req->req.actual);
772
773         /* Free bounce buffer */
774         kfree(hs_req->req.buf);
775
776         hs_req->req.buf = hs_req->saved_req_buf;
777         hs_req->saved_req_buf = NULL;
778 }
779
780 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
781                               gfp_t gfp_flags)
782 {
783         struct dwc2_hsotg_req *hs_req = our_req(req);
784         struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
785         struct dwc2_hsotg *hs = hs_ep->parent;
786         bool first;
787         int ret;
788
789         dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
790                 ep->name, req, req->length, req->buf, req->no_interrupt,
791                 req->zero, req->short_not_ok);
792
793         /* Prevent new request submission when controller is suspended */
794         if (hs->lx_state == DWC2_L2) {
795                 dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
796                                 __func__);
797                 return -EAGAIN;
798         }
799
800         /* initialise status of the request */
801         INIT_LIST_HEAD(&hs_req->queue);
802         req->actual = 0;
803         req->status = -EINPROGRESS;
804
805         ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
806         if (ret)
807                 return ret;
808
809         /* if we're using DMA, sync the buffers as necessary */
810         if (using_dma(hs)) {
811                 ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
812                 if (ret)
813                         return ret;
814         }
815
816         first = list_empty(&hs_ep->queue);
817         list_add_tail(&hs_req->queue, &hs_ep->queue);
818
819         if (first)
820                 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
821
822         return 0;
823 }
824
825 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
826                               gfp_t gfp_flags)
827 {
828         struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
829         struct dwc2_hsotg *hs = hs_ep->parent;
830         unsigned long flags = 0;
831         int ret = 0;
832
833         spin_lock_irqsave(&hs->lock, flags);
834         ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
835         spin_unlock_irqrestore(&hs->lock, flags);
836
837         return ret;
838 }
839
840 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
841                                       struct usb_request *req)
842 {
843         struct dwc2_hsotg_req *hs_req = our_req(req);
844
845         kfree(hs_req);
846 }
847
848 /**
849  * dwc2_hsotg_complete_oursetup - setup completion callback
850  * @ep: The endpoint the request was on.
851  * @req: The request completed.
852  *
853  * Called on completion of any requests the driver itself
854  * submitted that need cleaning up.
855  */
856 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
857                                         struct usb_request *req)
858 {
859         struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
860         struct dwc2_hsotg *hsotg = hs_ep->parent;
861
862         dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
863
864         dwc2_hsotg_ep_free_request(ep, req);
865 }
866
867 /**
868  * ep_from_windex - convert control wIndex value to endpoint
869  * @hsotg: The driver state.
870  * @windex: The control request wIndex field (in host order).
871  *
872  * Convert the given wIndex into a pointer to an driver endpoint
873  * structure, or return NULL if it is not a valid endpoint.
874  */
875 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
876                                            u32 windex)
877 {
878         struct dwc2_hsotg_ep *ep;
879         int dir = (windex & USB_DIR_IN) ? 1 : 0;
880         int idx = windex & 0x7F;
881
882         if (windex >= 0x100)
883                 return NULL;
884
885         if (idx > hsotg->num_of_eps)
886                 return NULL;
887
888         ep = index_to_ep(hsotg, idx, dir);
889
890         if (idx && ep->dir_in != dir)
891                 return NULL;
892
893         return ep;
894 }
895
896 /**
897  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
898  * @hsotg: The driver state.
899  * @testmode: requested usb test mode
900  * Enable usb Test Mode requested by the Host.
901  */
902 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
903 {
904         int dctl = dwc2_readl(hsotg->regs + DCTL);
905
906         dctl &= ~DCTL_TSTCTL_MASK;
907         switch (testmode) {
908         case TEST_J:
909         case TEST_K:
910         case TEST_SE0_NAK:
911         case TEST_PACKET:
912         case TEST_FORCE_EN:
913                 dctl |= testmode << DCTL_TSTCTL_SHIFT;
914                 break;
915         default:
916                 return -EINVAL;
917         }
918         dwc2_writel(dctl, hsotg->regs + DCTL);
919         return 0;
920 }
921
922 /**
923  * dwc2_hsotg_send_reply - send reply to control request
924  * @hsotg: The device state
925  * @ep: Endpoint 0
926  * @buff: Buffer for request
927  * @length: Length of reply.
928  *
929  * Create a request and queue it on the given endpoint. This is useful as
930  * an internal method of sending replies to certain control requests, etc.
931  */
932 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
933                                 struct dwc2_hsotg_ep *ep,
934                                 void *buff,
935                                 int length)
936 {
937         struct usb_request *req;
938         int ret;
939
940         dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
941
942         req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
943         hsotg->ep0_reply = req;
944         if (!req) {
945                 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
946                 return -ENOMEM;
947         }
948
949         req->buf = hsotg->ep0_buff;
950         req->length = length;
951         /*
952          * zero flag is for sending zlp in DATA IN stage. It has no impact on
953          * STATUS stage.
954          */
955         req->zero = 0;
956         req->complete = dwc2_hsotg_complete_oursetup;
957
958         if (length)
959                 memcpy(req->buf, buff, length);
960
961         ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
962         if (ret) {
963                 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
964                 return ret;
965         }
966
967         return 0;
968 }
969
970 /**
971  * dwc2_hsotg_process_req_status - process request GET_STATUS
972  * @hsotg: The device state
973  * @ctrl: USB control request
974  */
975 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
976                                         struct usb_ctrlrequest *ctrl)
977 {
978         struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
979         struct dwc2_hsotg_ep *ep;
980         __le16 reply;
981         int ret;
982
983         dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
984
985         if (!ep0->dir_in) {
986                 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
987                 return -EINVAL;
988         }
989
990         switch (ctrl->bRequestType & USB_RECIP_MASK) {
991         case USB_RECIP_DEVICE:
992                 reply = cpu_to_le16(0); /* bit 0 => self powered,
993                                          * bit 1 => remote wakeup */
994                 break;
995
996         case USB_RECIP_INTERFACE:
997                 /* currently, the data result should be zero */
998                 reply = cpu_to_le16(0);
999                 break;
1000
1001         case USB_RECIP_ENDPOINT:
1002                 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1003                 if (!ep)
1004                         return -ENOENT;
1005
1006                 reply = cpu_to_le16(ep->halted ? 1 : 0);
1007                 break;
1008
1009         default:
1010                 return 0;
1011         }
1012
1013         if (le16_to_cpu(ctrl->wLength) != 2)
1014                 return -EINVAL;
1015
1016         ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1017         if (ret) {
1018                 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1019                 return ret;
1020         }
1021
1022         return 1;
1023 }
1024
1025 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1026
1027 /**
1028  * get_ep_head - return the first request on the endpoint
1029  * @hs_ep: The controller endpoint to get
1030  *
1031  * Get the first request on the endpoint.
1032  */
1033 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1034 {
1035         if (list_empty(&hs_ep->queue))
1036                 return NULL;
1037
1038         return list_first_entry(&hs_ep->queue, struct dwc2_hsotg_req, queue);
1039 }
1040
1041 /**
1042  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1043  * @hsotg: The device state
1044  * @ctrl: USB control request
1045  */
1046 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1047                                          struct usb_ctrlrequest *ctrl)
1048 {
1049         struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1050         struct dwc2_hsotg_req *hs_req;
1051         bool restart;
1052         bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1053         struct dwc2_hsotg_ep *ep;
1054         int ret;
1055         bool halted;
1056         u32 recip;
1057         u32 wValue;
1058         u32 wIndex;
1059
1060         dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1061                 __func__, set ? "SET" : "CLEAR");
1062
1063         wValue = le16_to_cpu(ctrl->wValue);
1064         wIndex = le16_to_cpu(ctrl->wIndex);
1065         recip = ctrl->bRequestType & USB_RECIP_MASK;
1066
1067         switch (recip) {
1068         case USB_RECIP_DEVICE:
1069                 switch (wValue) {
1070                 case USB_DEVICE_TEST_MODE:
1071                         if ((wIndex & 0xff) != 0)
1072                                 return -EINVAL;
1073                         if (!set)
1074                                 return -EINVAL;
1075
1076                         hsotg->test_mode = wIndex >> 8;
1077                         ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1078                         if (ret) {
1079                                 dev_err(hsotg->dev,
1080                                         "%s: failed to send reply\n", __func__);
1081                                 return ret;
1082                         }
1083                         break;
1084                 default:
1085                         return -ENOENT;
1086                 }
1087                 break;
1088
1089         case USB_RECIP_ENDPOINT:
1090                 ep = ep_from_windex(hsotg, wIndex);
1091                 if (!ep) {
1092                         dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1093                                 __func__, wIndex);
1094                         return -ENOENT;
1095                 }
1096
1097                 switch (wValue) {
1098                 case USB_ENDPOINT_HALT:
1099                         halted = ep->halted;
1100
1101                         dwc2_hsotg_ep_sethalt(&ep->ep, set);
1102
1103                         ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1104                         if (ret) {
1105                                 dev_err(hsotg->dev,
1106                                         "%s: failed to send reply\n", __func__);
1107                                 return ret;
1108                         }
1109
1110                         /*
1111                          * we have to complete all requests for ep if it was
1112                          * halted, and the halt was cleared by CLEAR_FEATURE
1113                          */
1114
1115                         if (!set && halted) {
1116                                 /*
1117                                  * If we have request in progress,
1118                                  * then complete it
1119                                  */
1120                                 if (ep->req) {
1121                                         hs_req = ep->req;
1122                                         ep->req = NULL;
1123                                         list_del_init(&hs_req->queue);
1124                                         if (hs_req->req.complete) {
1125                                                 spin_unlock(&hsotg->lock);
1126                                                 usb_gadget_giveback_request(
1127                                                         &ep->ep, &hs_req->req);
1128                                                 spin_lock(&hsotg->lock);
1129                                         }
1130                                 }
1131
1132                                 /* If we have pending request, then start it */
1133                                 if (!ep->req) {
1134                                         restart = !list_empty(&ep->queue);
1135                                         if (restart) {
1136                                                 hs_req = get_ep_head(ep);
1137                                                 dwc2_hsotg_start_req(hsotg, ep,
1138                                                                 hs_req, false);
1139                                         }
1140                                 }
1141                         }
1142
1143                         break;
1144
1145                 default:
1146                         return -ENOENT;
1147                 }
1148                 break;
1149         default:
1150                 return -ENOENT;
1151         }
1152         return 1;
1153 }
1154
1155 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1156
1157 /**
1158  * dwc2_hsotg_stall_ep0 - stall ep0
1159  * @hsotg: The device state
1160  *
1161  * Set stall for ep0 as response for setup request.
1162  */
1163 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1164 {
1165         struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1166         u32 reg;
1167         u32 ctrl;
1168
1169         dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1170         reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1171
1172         /*
1173          * DxEPCTL_Stall will be cleared by EP once it has
1174          * taken effect, so no need to clear later.
1175          */
1176
1177         ctrl = dwc2_readl(hsotg->regs + reg);
1178         ctrl |= DXEPCTL_STALL;
1179         ctrl |= DXEPCTL_CNAK;
1180         dwc2_writel(ctrl, hsotg->regs + reg);
1181
1182         dev_dbg(hsotg->dev,
1183                 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1184                 ctrl, reg, dwc2_readl(hsotg->regs + reg));
1185
1186          /*
1187           * complete won't be called, so we enqueue
1188           * setup request here
1189           */
1190          dwc2_hsotg_enqueue_setup(hsotg);
1191 }
1192
1193 /**
1194  * dwc2_hsotg_process_control - process a control request
1195  * @hsotg: The device state
1196  * @ctrl: The control request received
1197  *
1198  * The controller has received the SETUP phase of a control request, and
1199  * needs to work out what to do next (and whether to pass it on to the
1200  * gadget driver).
1201  */
1202 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1203                                       struct usb_ctrlrequest *ctrl)
1204 {
1205         struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1206         int ret = 0;
1207         u32 dcfg;
1208
1209         dev_dbg(hsotg->dev,
1210                 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1211                 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1212                 ctrl->wIndex, ctrl->wLength);
1213
1214         if (ctrl->wLength == 0) {
1215                 ep0->dir_in = 1;
1216                 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1217         } else if (ctrl->bRequestType & USB_DIR_IN) {
1218                 ep0->dir_in = 1;
1219                 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1220         } else {
1221                 ep0->dir_in = 0;
1222                 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1223         }
1224
1225         if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1226                 switch (ctrl->bRequest) {
1227                 case USB_REQ_SET_ADDRESS:
1228                         hsotg->connected = 1;
1229                         dcfg = dwc2_readl(hsotg->regs + DCFG);
1230                         dcfg &= ~DCFG_DEVADDR_MASK;
1231                         dcfg |= (le16_to_cpu(ctrl->wValue) <<
1232                                  DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1233                         dwc2_writel(dcfg, hsotg->regs + DCFG);
1234
1235                         dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1236
1237                         ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1238                         return;
1239
1240                 case USB_REQ_GET_STATUS:
1241                         ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1242                         break;
1243
1244                 case USB_REQ_CLEAR_FEATURE:
1245                 case USB_REQ_SET_FEATURE:
1246                         ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1247                         break;
1248                 }
1249         }
1250
1251         /* as a fallback, try delivering it to the driver to deal with */
1252
1253         if (ret == 0 && hsotg->driver) {
1254                 spin_unlock(&hsotg->lock);
1255                 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1256                 spin_lock(&hsotg->lock);
1257                 if (ret < 0)
1258                         dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1259         }
1260
1261         /*
1262          * the request is either unhandlable, or is not formatted correctly
1263          * so respond with a STALL for the status stage to indicate failure.
1264          */
1265
1266         if (ret < 0)
1267                 dwc2_hsotg_stall_ep0(hsotg);
1268 }
1269
1270 /**
1271  * dwc2_hsotg_complete_setup - completion of a setup transfer
1272  * @ep: The endpoint the request was on.
1273  * @req: The request completed.
1274  *
1275  * Called on completion of any requests the driver itself submitted for
1276  * EP0 setup packets
1277  */
1278 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1279                                      struct usb_request *req)
1280 {
1281         struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1282         struct dwc2_hsotg *hsotg = hs_ep->parent;
1283
1284         if (req->status < 0) {
1285                 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1286                 return;
1287         }
1288
1289         spin_lock(&hsotg->lock);
1290         if (req->actual == 0)
1291                 dwc2_hsotg_enqueue_setup(hsotg);
1292         else
1293                 dwc2_hsotg_process_control(hsotg, req->buf);
1294         spin_unlock(&hsotg->lock);
1295 }
1296
1297 /**
1298  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1299  * @hsotg: The device state.
1300  *
1301  * Enqueue a request on EP0 if necessary to received any SETUP packets
1302  * received from the host.
1303  */
1304 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1305 {
1306         struct usb_request *req = hsotg->ctrl_req;
1307         struct dwc2_hsotg_req *hs_req = our_req(req);
1308         int ret;
1309
1310         dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1311
1312         req->zero = 0;
1313         req->length = 8;
1314         req->buf = hsotg->ctrl_buff;
1315         req->complete = dwc2_hsotg_complete_setup;
1316
1317         if (!list_empty(&hs_req->queue)) {
1318                 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1319                 return;
1320         }
1321
1322         hsotg->eps_out[0]->dir_in = 0;
1323         hsotg->eps_out[0]->send_zlp = 0;
1324         hsotg->ep0_state = DWC2_EP0_SETUP;
1325
1326         ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1327         if (ret < 0) {
1328                 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1329                 /*
1330                  * Don't think there's much we can do other than watch the
1331                  * driver fail.
1332                  */
1333         }
1334 }
1335
1336 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1337                                         struct dwc2_hsotg_ep *hs_ep)
1338 {
1339         u32 ctrl;
1340         u8 index = hs_ep->index;
1341         u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1342         u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1343
1344         if (hs_ep->dir_in)
1345                 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1346                                                                         index);
1347         else
1348                 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1349                                                                         index);
1350
1351         dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1352                     DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1353                     epsiz_reg);
1354
1355         ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1356         ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1357         ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1358         ctrl |= DXEPCTL_USBACTEP;
1359         dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1360 }
1361
1362 /**
1363  * dwc2_hsotg_complete_request - complete a request given to us
1364  * @hsotg: The device state.
1365  * @hs_ep: The endpoint the request was on.
1366  * @hs_req: The request to complete.
1367  * @result: The result code (0 => Ok, otherwise errno)
1368  *
1369  * The given request has finished, so call the necessary completion
1370  * if it has one and then look to see if we can start a new request
1371  * on the endpoint.
1372  *
1373  * Note, expects the ep to already be locked as appropriate.
1374  */
1375 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1376                                        struct dwc2_hsotg_ep *hs_ep,
1377                                        struct dwc2_hsotg_req *hs_req,
1378                                        int result)
1379 {
1380         bool restart;
1381
1382         if (!hs_req) {
1383                 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1384                 return;
1385         }
1386
1387         dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1388                 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1389
1390         /*
1391          * only replace the status if we've not already set an error
1392          * from a previous transaction
1393          */
1394
1395         if (hs_req->req.status == -EINPROGRESS)
1396                 hs_req->req.status = result;
1397
1398         if (using_dma(hsotg))
1399                 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1400
1401         dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1402
1403         hs_ep->req = NULL;
1404         list_del_init(&hs_req->queue);
1405
1406         /*
1407          * call the complete request with the locks off, just in case the
1408          * request tries to queue more work for this endpoint.
1409          */
1410
1411         if (hs_req->req.complete) {
1412                 spin_unlock(&hsotg->lock);
1413                 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1414                 spin_lock(&hsotg->lock);
1415         }
1416
1417         /*
1418          * Look to see if there is anything else to do. Note, the completion
1419          * of the previous request may have caused a new request to be started
1420          * so be careful when doing this.
1421          */
1422
1423         if (!hs_ep->req && result >= 0) {
1424                 restart = !list_empty(&hs_ep->queue);
1425                 if (restart) {
1426                         hs_req = get_ep_head(hs_ep);
1427                         dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1428                 }
1429         }
1430 }
1431
1432 /**
1433  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1434  * @hsotg: The device state.
1435  * @ep_idx: The endpoint index for the data
1436  * @size: The size of data in the fifo, in bytes
1437  *
1438  * The FIFO status shows there is data to read from the FIFO for a given
1439  * endpoint, so sort out whether we need to read the data into a request
1440  * that has been made for that endpoint.
1441  */
1442 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1443 {
1444         struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1445         struct dwc2_hsotg_req *hs_req = hs_ep->req;
1446         void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1447         int to_read;
1448         int max_req;
1449         int read_ptr;
1450
1451
1452         if (!hs_req) {
1453                 u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1454                 int ptr;
1455
1456                 dev_dbg(hsotg->dev,
1457                          "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1458                          __func__, size, ep_idx, epctl);
1459
1460                 /* dump the data from the FIFO, we've nothing we can do */
1461                 for (ptr = 0; ptr < size; ptr += 4)
1462                         (void)dwc2_readl(fifo);
1463
1464                 return;
1465         }
1466
1467         to_read = size;
1468         read_ptr = hs_req->req.actual;
1469         max_req = hs_req->req.length - read_ptr;
1470
1471         dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1472                 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1473
1474         if (to_read > max_req) {
1475                 /*
1476                  * more data appeared than we where willing
1477                  * to deal with in this request.
1478                  */
1479
1480                 /* currently we don't deal this */
1481                 WARN_ON_ONCE(1);
1482         }
1483
1484         hs_ep->total_data += to_read;
1485         hs_req->req.actual += to_read;
1486         to_read = DIV_ROUND_UP(to_read, 4);
1487
1488         /*
1489          * note, we might over-write the buffer end by 3 bytes depending on
1490          * alignment of the data.
1491          */
1492         ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1493 }
1494
1495 /**
1496  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1497  * @hsotg: The device instance
1498  * @dir_in: If IN zlp
1499  *
1500  * Generate a zero-length IN packet request for terminating a SETUP
1501  * transaction.
1502  *
1503  * Note, since we don't write any data to the TxFIFO, then it is
1504  * currently believed that we do not need to wait for any space in
1505  * the TxFIFO.
1506  */
1507 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1508 {
1509         /* eps_out[0] is used in both directions */
1510         hsotg->eps_out[0]->dir_in = dir_in;
1511         hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1512
1513         dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1514 }
1515
1516 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
1517                         u32 epctl_reg)
1518 {
1519         u32 ctrl;
1520
1521         ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1522         if (ctrl & DXEPCTL_EOFRNUM)
1523                 ctrl |= DXEPCTL_SETEVENFR;
1524         else
1525                 ctrl |= DXEPCTL_SETODDFR;
1526         dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1527 }
1528
1529 /**
1530  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1531  * @hsotg: The device instance
1532  * @epnum: The endpoint received from
1533  *
1534  * The RXFIFO has delivered an OutDone event, which means that the data
1535  * transfer for an OUT endpoint has been completed, either by a short
1536  * packet or by the finish of a transfer.
1537  */
1538 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1539 {
1540         u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1541         struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1542         struct dwc2_hsotg_req *hs_req = hs_ep->req;
1543         struct usb_request *req = &hs_req->req;
1544         unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1545         int result = 0;
1546
1547         if (!hs_req) {
1548                 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1549                 return;
1550         }
1551
1552         if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
1553                 dev_dbg(hsotg->dev, "zlp packet received\n");
1554                 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1555                 dwc2_hsotg_enqueue_setup(hsotg);
1556                 return;
1557         }
1558
1559         if (using_dma(hsotg)) {
1560                 unsigned size_done;
1561
1562                 /*
1563                  * Calculate the size of the transfer by checking how much
1564                  * is left in the endpoint size register and then working it
1565                  * out from the amount we loaded for the transfer.
1566                  *
1567                  * We need to do this as DMA pointers are always 32bit aligned
1568                  * so may overshoot/undershoot the transfer.
1569                  */
1570
1571                 size_done = hs_ep->size_loaded - size_left;
1572                 size_done += hs_ep->last_load;
1573
1574                 req->actual = size_done;
1575         }
1576
1577         /* if there is more request to do, schedule new transfer */
1578         if (req->actual < req->length && size_left == 0) {
1579                 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1580                 return;
1581         }
1582
1583         if (req->actual < req->length && req->short_not_ok) {
1584                 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1585                         __func__, req->actual, req->length);
1586
1587                 /*
1588                  * todo - what should we return here? there's no one else
1589                  * even bothering to check the status.
1590                  */
1591         }
1592
1593         if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
1594                 /* Move to STATUS IN */
1595                 dwc2_hsotg_ep0_zlp(hsotg, true);
1596                 return;
1597         }
1598
1599         /*
1600          * Slave mode OUT transfers do not go through XferComplete so
1601          * adjust the ISOC parity here.
1602          */
1603         if (!using_dma(hsotg)) {
1604                 hs_ep->has_correct_parity = 1;
1605                 if (hs_ep->isochronous && hs_ep->interval == 1)
1606                         dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
1607         }
1608
1609         dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1610 }
1611
1612 /**
1613  * dwc2_hsotg_read_frameno - read current frame number
1614  * @hsotg: The device instance
1615  *
1616  * Return the current frame number
1617  */
1618 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1619 {
1620         u32 dsts;
1621
1622         dsts = dwc2_readl(hsotg->regs + DSTS);
1623         dsts &= DSTS_SOFFN_MASK;
1624         dsts >>= DSTS_SOFFN_SHIFT;
1625
1626         return dsts;
1627 }
1628
1629 /**
1630  * dwc2_hsotg_handle_rx - RX FIFO has data
1631  * @hsotg: The device instance
1632  *
1633  * The IRQ handler has detected that the RX FIFO has some data in it
1634  * that requires processing, so find out what is in there and do the
1635  * appropriate read.
1636  *
1637  * The RXFIFO is a true FIFO, the packets coming out are still in packet
1638  * chunks, so if you have x packets received on an endpoint you'll get x
1639  * FIFO events delivered, each with a packet's worth of data in it.
1640  *
1641  * When using DMA, we should not be processing events from the RXFIFO
1642  * as the actual data should be sent to the memory directly and we turn
1643  * on the completion interrupts to get notifications of transfer completion.
1644  */
1645 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1646 {
1647         u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
1648         u32 epnum, status, size;
1649
1650         WARN_ON(using_dma(hsotg));
1651
1652         epnum = grxstsr & GRXSTS_EPNUM_MASK;
1653         status = grxstsr & GRXSTS_PKTSTS_MASK;
1654
1655         size = grxstsr & GRXSTS_BYTECNT_MASK;
1656         size >>= GRXSTS_BYTECNT_SHIFT;
1657
1658         dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1659                         __func__, grxstsr, size, epnum);
1660
1661         switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1662         case GRXSTS_PKTSTS_GLOBALOUTNAK:
1663                 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1664                 break;
1665
1666         case GRXSTS_PKTSTS_OUTDONE:
1667                 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1668                         dwc2_hsotg_read_frameno(hsotg));
1669
1670                 if (!using_dma(hsotg))
1671                         dwc2_hsotg_handle_outdone(hsotg, epnum);
1672                 break;
1673
1674         case GRXSTS_PKTSTS_SETUPDONE:
1675                 dev_dbg(hsotg->dev,
1676                         "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1677                         dwc2_hsotg_read_frameno(hsotg),
1678                         dwc2_readl(hsotg->regs + DOEPCTL(0)));
1679                 /*
1680                  * Call dwc2_hsotg_handle_outdone here if it was not called from
1681                  * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
1682                  * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
1683                  */
1684                 if (hsotg->ep0_state == DWC2_EP0_SETUP)
1685                         dwc2_hsotg_handle_outdone(hsotg, epnum);
1686                 break;
1687
1688         case GRXSTS_PKTSTS_OUTRX:
1689                 dwc2_hsotg_rx_data(hsotg, epnum, size);
1690                 break;
1691
1692         case GRXSTS_PKTSTS_SETUPRX:
1693                 dev_dbg(hsotg->dev,
1694                         "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1695                         dwc2_hsotg_read_frameno(hsotg),
1696                         dwc2_readl(hsotg->regs + DOEPCTL(0)));
1697
1698                 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
1699
1700                 dwc2_hsotg_rx_data(hsotg, epnum, size);
1701                 break;
1702
1703         default:
1704                 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1705                          __func__, grxstsr);
1706
1707                 dwc2_hsotg_dump(hsotg);
1708                 break;
1709         }
1710 }
1711
1712 /**
1713  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
1714  * @mps: The maximum packet size in bytes.
1715  */
1716 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
1717 {
1718         switch (mps) {
1719         case 64:
1720                 return D0EPCTL_MPS_64;
1721         case 32:
1722                 return D0EPCTL_MPS_32;
1723         case 16:
1724                 return D0EPCTL_MPS_16;
1725         case 8:
1726                 return D0EPCTL_MPS_8;
1727         }
1728
1729         /* bad max packet size, warn and return invalid result */
1730         WARN_ON(1);
1731         return (u32)-1;
1732 }
1733
1734 /**
1735  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1736  * @hsotg: The driver state.
1737  * @ep: The index number of the endpoint
1738  * @mps: The maximum packet size in bytes
1739  *
1740  * Configure the maximum packet size for the given endpoint, updating
1741  * the hardware control registers to reflect this.
1742  */
1743 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1744                         unsigned int ep, unsigned int mps, unsigned int dir_in)
1745 {
1746         struct dwc2_hsotg_ep *hs_ep;
1747         void __iomem *regs = hsotg->regs;
1748         u32 mpsval;
1749         u32 mcval;
1750         u32 reg;
1751
1752         hs_ep = index_to_ep(hsotg, ep, dir_in);
1753         if (!hs_ep)
1754                 return;
1755
1756         if (ep == 0) {
1757                 /* EP0 is a special case */
1758                 mpsval = dwc2_hsotg_ep0_mps(mps);
1759                 if (mpsval > 3)
1760                         goto bad_mps;
1761                 hs_ep->ep.maxpacket = mps;
1762                 hs_ep->mc = 1;
1763         } else {
1764                 mpsval = mps & DXEPCTL_MPS_MASK;
1765                 if (mpsval > 1024)
1766                         goto bad_mps;
1767                 mcval = ((mps >> 11) & 0x3) + 1;
1768                 hs_ep->mc = mcval;
1769                 if (mcval > 3)
1770                         goto bad_mps;
1771                 hs_ep->ep.maxpacket = mpsval;
1772         }
1773
1774         if (dir_in) {
1775                 reg = dwc2_readl(regs + DIEPCTL(ep));
1776                 reg &= ~DXEPCTL_MPS_MASK;
1777                 reg |= mpsval;
1778                 dwc2_writel(reg, regs + DIEPCTL(ep));
1779         } else {
1780                 reg = dwc2_readl(regs + DOEPCTL(ep));
1781                 reg &= ~DXEPCTL_MPS_MASK;
1782                 reg |= mpsval;
1783                 dwc2_writel(reg, regs + DOEPCTL(ep));
1784         }
1785
1786         return;
1787
1788 bad_mps:
1789         dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1790 }
1791
1792 /**
1793  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
1794  * @hsotg: The driver state
1795  * @idx: The index for the endpoint (0..15)
1796  */
1797 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1798 {
1799         int timeout;
1800         int val;
1801
1802         dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1803                     hsotg->regs + GRSTCTL);
1804
1805         /* wait until the fifo is flushed */
1806         timeout = 100;
1807
1808         while (1) {
1809                 val = dwc2_readl(hsotg->regs + GRSTCTL);
1810
1811                 if ((val & (GRSTCTL_TXFFLSH)) == 0)
1812                         break;
1813
1814                 if (--timeout == 0) {
1815                         dev_err(hsotg->dev,
1816                                 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1817                                 __func__, val);
1818                         break;
1819                 }
1820
1821                 udelay(1);
1822         }
1823 }
1824
1825 /**
1826  * dwc2_hsotg_trytx - check to see if anything needs transmitting
1827  * @hsotg: The driver state
1828  * @hs_ep: The driver endpoint to check.
1829  *
1830  * Check to see if there is a request that has data to send, and if so
1831  * make an attempt to write data into the FIFO.
1832  */
1833 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
1834                            struct dwc2_hsotg_ep *hs_ep)
1835 {
1836         struct dwc2_hsotg_req *hs_req = hs_ep->req;
1837
1838         if (!hs_ep->dir_in || !hs_req) {
1839                 /**
1840                  * if request is not enqueued, we disable interrupts
1841                  * for endpoints, excepting ep0
1842                  */
1843                 if (hs_ep->index != 0)
1844                         dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
1845                                              hs_ep->dir_in, 0);
1846                 return 0;
1847         }
1848
1849         if (hs_req->req.actual < hs_req->req.length) {
1850                 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1851                         hs_ep->index);
1852                 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1853         }
1854
1855         return 0;
1856 }
1857
1858 /**
1859  * dwc2_hsotg_complete_in - complete IN transfer
1860  * @hsotg: The device state.
1861  * @hs_ep: The endpoint that has just completed.
1862  *
1863  * An IN transfer has been completed, update the transfer's state and then
1864  * call the relevant completion routines.
1865  */
1866 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1867                                   struct dwc2_hsotg_ep *hs_ep)
1868 {
1869         struct dwc2_hsotg_req *hs_req = hs_ep->req;
1870         u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1871         int size_left, size_done;
1872
1873         if (!hs_req) {
1874                 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1875                 return;
1876         }
1877
1878         /* Finish ZLP handling for IN EP0 transactions */
1879         if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
1880                 dev_dbg(hsotg->dev, "zlp packet sent\n");
1881                 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1882                 if (hsotg->test_mode) {
1883                         int ret;
1884
1885                         ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1886                         if (ret < 0) {
1887                                 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
1888                                                 hsotg->test_mode);
1889                                 dwc2_hsotg_stall_ep0(hsotg);
1890                                 return;
1891                         }
1892                 }
1893                 dwc2_hsotg_enqueue_setup(hsotg);
1894                 return;
1895         }
1896
1897         /*
1898          * Calculate the size of the transfer by checking how much is left
1899          * in the endpoint size register and then working it out from
1900          * the amount we loaded for the transfer.
1901          *
1902          * We do this even for DMA, as the transfer may have incremented
1903          * past the end of the buffer (DMA transfers are always 32bit
1904          * aligned).
1905          */
1906
1907         size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1908
1909         size_done = hs_ep->size_loaded - size_left;
1910         size_done += hs_ep->last_load;
1911
1912         if (hs_req->req.actual != size_done)
1913                 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1914                         __func__, hs_req->req.actual, size_done);
1915
1916         hs_req->req.actual = size_done;
1917         dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1918                 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1919
1920         if (!size_left && hs_req->req.actual < hs_req->req.length) {
1921                 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1922                 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1923                 return;
1924         }
1925
1926         /* Zlp for all endpoints, for ep0 only in DATA IN stage */
1927         if (hs_ep->send_zlp) {
1928                 dwc2_hsotg_program_zlp(hsotg, hs_ep);
1929                 hs_ep->send_zlp = 0;
1930                 /* transfer will be completed on next complete interrupt */
1931                 return;
1932         }
1933
1934         if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
1935                 /* Move to STATUS OUT */
1936                 dwc2_hsotg_ep0_zlp(hsotg, false);
1937                 return;
1938         }
1939
1940         dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1941 }
1942
1943 /**
1944  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
1945  * @hsotg: The driver state
1946  * @idx: The index for the endpoint (0..15)
1947  * @dir_in: Set if this is an IN endpoint
1948  *
1949  * Process and clear any interrupt pending for an individual endpoint
1950  */
1951 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1952                             int dir_in)
1953 {
1954         struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1955         u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1956         u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1957         u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1958         u32 ints;
1959         u32 ctrl;
1960
1961         ints = dwc2_readl(hsotg->regs + epint_reg);
1962         ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1963
1964         /* Clear endpoint interrupts */
1965         dwc2_writel(ints, hsotg->regs + epint_reg);
1966
1967         if (!hs_ep) {
1968                 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
1969                                         __func__, idx, dir_in ? "in" : "out");
1970                 return;
1971         }
1972
1973         dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1974                 __func__, idx, dir_in ? "in" : "out", ints);
1975
1976         /* Don't process XferCompl interrupt if it is a setup packet */
1977         if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
1978                 ints &= ~DXEPINT_XFERCOMPL;
1979
1980         if (ints & DXEPINT_XFERCOMPL) {
1981                 hs_ep->has_correct_parity = 1;
1982                 if (hs_ep->isochronous && hs_ep->interval == 1)
1983                         dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
1984
1985                 dev_dbg(hsotg->dev,
1986                         "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1987                         __func__, dwc2_readl(hsotg->regs + epctl_reg),
1988                         dwc2_readl(hsotg->regs + epsiz_reg));
1989
1990                 /*
1991                  * we get OutDone from the FIFO, so we only need to look
1992                  * at completing IN requests here
1993                  */
1994                 if (dir_in) {
1995                         dwc2_hsotg_complete_in(hsotg, hs_ep);
1996
1997                         if (idx == 0 && !hs_ep->req)
1998                                 dwc2_hsotg_enqueue_setup(hsotg);
1999                 } else if (using_dma(hsotg)) {
2000                         /*
2001                          * We're using DMA, we need to fire an OutDone here
2002                          * as we ignore the RXFIFO.
2003                          */
2004
2005                         dwc2_hsotg_handle_outdone(hsotg, idx);
2006                 }
2007         }
2008
2009         if (ints & DXEPINT_EPDISBLD) {
2010                 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2011
2012                 if (dir_in) {
2013                         int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2014
2015                         dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2016
2017                         if ((epctl & DXEPCTL_STALL) &&
2018                                 (epctl & DXEPCTL_EPTYPE_BULK)) {
2019                                 int dctl = dwc2_readl(hsotg->regs + DCTL);
2020
2021                                 dctl |= DCTL_CGNPINNAK;
2022                                 dwc2_writel(dctl, hsotg->regs + DCTL);
2023                         }
2024                 }
2025         }
2026
2027         if (ints & DXEPINT_AHBERR)
2028                 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2029
2030         if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2031                 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2032
2033                 if (using_dma(hsotg) && idx == 0) {
2034                         /*
2035                          * this is the notification we've received a
2036                          * setup packet. In non-DMA mode we'd get this
2037                          * from the RXFIFO, instead we need to process
2038                          * the setup here.
2039                          */
2040
2041                         if (dir_in)
2042                                 WARN_ON_ONCE(1);
2043                         else
2044                                 dwc2_hsotg_handle_outdone(hsotg, 0);
2045                 }
2046         }
2047
2048         if (ints & DXEPINT_BACK2BACKSETUP)
2049                 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2050
2051         if (dir_in && !hs_ep->isochronous) {
2052                 /* not sure if this is important, but we'll clear it anyway */
2053                 if (ints & DIEPMSK_INTKNTXFEMPMSK) {
2054                         dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2055                                 __func__, idx);
2056                 }
2057
2058                 /* this probably means something bad is happening */
2059                 if (ints & DIEPMSK_INTKNEPMISMSK) {
2060                         dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2061                                  __func__, idx);
2062                 }
2063
2064                 /* FIFO has space or is empty (see GAHBCFG) */
2065                 if (hsotg->dedicated_fifos &&
2066                     ints & DIEPMSK_TXFIFOEMPTY) {
2067                         dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2068                                 __func__, idx);
2069                         if (!using_dma(hsotg))
2070                                 dwc2_hsotg_trytx(hsotg, hs_ep);
2071                 }
2072         }
2073 }
2074
2075 /**
2076  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2077  * @hsotg: The device state.
2078  *
2079  * Handle updating the device settings after the enumeration phase has
2080  * been completed.
2081  */
2082 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2083 {
2084         u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2085         int ep0_mps = 0, ep_mps = 8;
2086
2087         /*
2088          * This should signal the finish of the enumeration phase
2089          * of the USB handshaking, so we should now know what rate
2090          * we connected at.
2091          */
2092
2093         dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2094
2095         /*
2096          * note, since we're limited by the size of transfer on EP0, and
2097          * it seems IN transfers must be a even number of packets we do
2098          * not advertise a 64byte MPS on EP0.
2099          */
2100
2101         /* catch both EnumSpd_FS and EnumSpd_FS48 */
2102         switch (dsts & DSTS_ENUMSPD_MASK) {
2103         case DSTS_ENUMSPD_FS:
2104         case DSTS_ENUMSPD_FS48:
2105                 hsotg->gadget.speed = USB_SPEED_FULL;
2106                 ep0_mps = EP0_MPS_LIMIT;
2107                 ep_mps = 1023;
2108                 break;
2109
2110         case DSTS_ENUMSPD_HS:
2111                 hsotg->gadget.speed = USB_SPEED_HIGH;
2112                 ep0_mps = EP0_MPS_LIMIT;
2113                 ep_mps = 1024;
2114                 break;
2115
2116         case DSTS_ENUMSPD_LS:
2117                 hsotg->gadget.speed = USB_SPEED_LOW;
2118                 /*
2119                  * note, we don't actually support LS in this driver at the
2120                  * moment, and the documentation seems to imply that it isn't
2121                  * supported by the PHYs on some of the devices.
2122                  */
2123                 break;
2124         }
2125         dev_info(hsotg->dev, "new device is %s\n",
2126                  usb_speed_string(hsotg->gadget.speed));
2127
2128         /*
2129          * we should now know the maximum packet size for an
2130          * endpoint, so set the endpoints to a default value.
2131          */
2132
2133         if (ep0_mps) {
2134                 int i;
2135                 /* Initialize ep0 for both in and out directions */
2136                 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
2137                 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2138                 for (i = 1; i < hsotg->num_of_eps; i++) {
2139                         if (hsotg->eps_in[i])
2140                                 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
2141                         if (hsotg->eps_out[i])
2142                                 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
2143                 }
2144         }
2145
2146         /* ensure after enumeration our EP0 is active */
2147
2148         dwc2_hsotg_enqueue_setup(hsotg);
2149
2150         dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2151                 dwc2_readl(hsotg->regs + DIEPCTL0),
2152                 dwc2_readl(hsotg->regs + DOEPCTL0));
2153 }
2154
2155 /**
2156  * kill_all_requests - remove all requests from the endpoint's queue
2157  * @hsotg: The device state.
2158  * @ep: The endpoint the requests may be on.
2159  * @result: The result code to use.
2160  *
2161  * Go through the requests on the given endpoint and mark them
2162  * completed with the given result code.
2163  */
2164 static void kill_all_requests(struct dwc2_hsotg *hsotg,
2165                               struct dwc2_hsotg_ep *ep,
2166                               int result)
2167 {
2168         struct dwc2_hsotg_req *req, *treq;
2169         unsigned size;
2170
2171         ep->req = NULL;
2172
2173         list_for_each_entry_safe(req, treq, &ep->queue, queue)
2174                 dwc2_hsotg_complete_request(hsotg, ep, req,
2175                                            result);
2176
2177         if (!hsotg->dedicated_fifos)
2178                 return;
2179         size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2180         if (size < ep->fifo_size)
2181                 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2182 }
2183
2184 /**
2185  * dwc2_hsotg_disconnect - disconnect service
2186  * @hsotg: The device state.
2187  *
2188  * The device has been disconnected. Remove all current
2189  * transactions and signal the gadget driver that this
2190  * has happened.
2191  */
2192 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2193 {
2194         unsigned ep;
2195
2196         if (!hsotg->connected)
2197                 return;
2198
2199         hsotg->connected = 0;
2200         hsotg->test_mode = 0;
2201
2202         for (ep = 0; ep < hsotg->num_of_eps; ep++) {
2203                 if (hsotg->eps_in[ep])
2204                         kill_all_requests(hsotg, hsotg->eps_in[ep],
2205                                                                 -ESHUTDOWN);
2206                 if (hsotg->eps_out[ep])
2207                         kill_all_requests(hsotg, hsotg->eps_out[ep],
2208                                                                 -ESHUTDOWN);
2209         }
2210
2211         call_gadget(hsotg, disconnect);
2212         hsotg->lx_state = DWC2_L3;
2213 }
2214
2215 /**
2216  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2217  * @hsotg: The device state:
2218  * @periodic: True if this is a periodic FIFO interrupt
2219  */
2220 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2221 {
2222         struct dwc2_hsotg_ep *ep;
2223         int epno, ret;
2224
2225         /* look through for any more data to transmit */
2226         for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2227                 ep = index_to_ep(hsotg, epno, 1);
2228
2229                 if (!ep)
2230                         continue;
2231
2232                 if (!ep->dir_in)
2233                         continue;
2234
2235                 if ((periodic && !ep->periodic) ||
2236                     (!periodic && ep->periodic))
2237                         continue;
2238
2239                 ret = dwc2_hsotg_trytx(hsotg, ep);
2240                 if (ret < 0)
2241                         break;
2242         }
2243 }
2244
2245 /* IRQ flags which will trigger a retry around the IRQ loop */
2246 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2247                         GINTSTS_PTXFEMP |  \
2248                         GINTSTS_RXFLVL)
2249
2250 /**
2251  * dwc2_hsotg_corereset - issue softreset to the core
2252  * @hsotg: The device state
2253  *
2254  * Issue a soft reset to the core, and await the core finishing it.
2255  */
2256 static int dwc2_hsotg_corereset(struct dwc2_hsotg *hsotg)
2257 {
2258         int timeout;
2259         u32 grstctl;
2260
2261         dev_dbg(hsotg->dev, "resetting core\n");
2262
2263         /* issue soft reset */
2264         dwc2_writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2265
2266         timeout = 10000;
2267         do {
2268                 grstctl = dwc2_readl(hsotg->regs + GRSTCTL);
2269         } while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2270
2271         if (grstctl & GRSTCTL_CSFTRST) {
2272                 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2273                 return -EINVAL;
2274         }
2275
2276         timeout = 10000;
2277
2278         while (1) {
2279                 u32 grstctl = dwc2_readl(hsotg->regs + GRSTCTL);
2280
2281                 if (timeout-- < 0) {
2282                         dev_info(hsotg->dev,
2283                                  "%s: reset failed, GRSTCTL=%08x\n",
2284                                  __func__, grstctl);
2285                         return -ETIMEDOUT;
2286                 }
2287
2288                 if (!(grstctl & GRSTCTL_AHBIDLE))
2289                         continue;
2290
2291                 break;          /* reset done */
2292         }
2293
2294         dev_dbg(hsotg->dev, "reset successful\n");
2295         return 0;
2296 }
2297
2298 /**
2299  * dwc2_hsotg_core_init - issue softreset to the core
2300  * @hsotg: The device state
2301  *
2302  * Issue a soft reset to the core, and await the core finishing it.
2303  */
2304 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2305                                                 bool is_usb_reset)
2306 {
2307         u32 intmsk;
2308         u32 val;
2309
2310         /* Kill any ep0 requests as controller will be reinitialized */
2311         kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
2312
2313         if (!is_usb_reset)
2314                 if (dwc2_hsotg_corereset(hsotg))
2315                         return;
2316
2317         /*
2318          * we must now enable ep0 ready for host detection and then
2319          * set configuration.
2320          */
2321
2322         /* set the PLL on, remove the HNP/SRP and set the PHY */
2323         val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2324         dwc2_writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2325                (val << GUSBCFG_USBTRDTIM_SHIFT), hsotg->regs + GUSBCFG);
2326
2327         dwc2_hsotg_init_fifo(hsotg);
2328
2329         if (!is_usb_reset)
2330                 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2331
2332         dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2333
2334         /* Clear any pending OTG interrupts */
2335         dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2336
2337         /* Clear any pending interrupts */
2338         dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2339         intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2340                 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2341                 GINTSTS_USBRST | GINTSTS_RESETDET |
2342                 GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2343                 GINTSTS_USBSUSP | GINTSTS_WKUPINT |
2344                 GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
2345
2346         if (hsotg->core_params->external_id_pin_ctl <= 0)
2347                 intmsk |= GINTSTS_CONIDSTSCHNG;
2348
2349         dwc2_writel(intmsk, hsotg->regs + GINTMSK);
2350
2351         if (using_dma(hsotg))
2352                 dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2353                             (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2354                             hsotg->regs + GAHBCFG);
2355         else
2356                 dwc2_writel(((hsotg->dedicated_fifos) ?
2357                                                 (GAHBCFG_NP_TXF_EMP_LVL |
2358                                                  GAHBCFG_P_TXF_EMP_LVL) : 0) |
2359                             GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
2360
2361         /*
2362          * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2363          * when we have no data to transfer. Otherwise we get being flooded by
2364          * interrupts.
2365          */
2366
2367         dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2368                 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2369                 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2370                 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2371                 DIEPMSK_INTKNEPMISMSK,
2372                 hsotg->regs + DIEPMSK);
2373
2374         /*
2375          * don't need XferCompl, we get that from RXFIFO in slave mode. In
2376          * DMA mode we may need this.
2377          */
2378         dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2379                                     DIEPMSK_TIMEOUTMSK) : 0) |
2380                 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2381                 DOEPMSK_SETUPMSK,
2382                 hsotg->regs + DOEPMSK);
2383
2384         dwc2_writel(0, hsotg->regs + DAINTMSK);
2385
2386         dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2387                 dwc2_readl(hsotg->regs + DIEPCTL0),
2388                 dwc2_readl(hsotg->regs + DOEPCTL0));
2389
2390         /* enable in and out endpoint interrupts */
2391         dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2392
2393         /*
2394          * Enable the RXFIFO when in slave mode, as this is how we collect
2395          * the data. In DMA mode, we get events from the FIFO but also
2396          * things we cannot process, so do not use it.
2397          */
2398         if (!using_dma(hsotg))
2399                 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2400
2401         /* Enable interrupts for EP0 in and out */
2402         dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2403         dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2404
2405         if (!is_usb_reset) {
2406                 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2407                 udelay(10);  /* see openiboot */
2408                 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2409         }
2410
2411         dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2412
2413         /*
2414          * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2415          * writing to the EPCTL register..
2416          */
2417
2418         /* set to read 1 8byte packet */
2419         dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2420                DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2421
2422         dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2423                DXEPCTL_CNAK | DXEPCTL_EPENA |
2424                DXEPCTL_USBACTEP,
2425                hsotg->regs + DOEPCTL0);
2426
2427         /* enable, but don't activate EP0in */
2428         dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2429                DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2430
2431         dwc2_hsotg_enqueue_setup(hsotg);
2432
2433         dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2434                 dwc2_readl(hsotg->regs + DIEPCTL0),
2435                 dwc2_readl(hsotg->regs + DOEPCTL0));
2436
2437         /* clear global NAKs */
2438         val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
2439         if (!is_usb_reset)
2440                 val |= DCTL_SFTDISCON;
2441         __orr32(hsotg->regs + DCTL, val);
2442
2443         /* must be at-least 3ms to allow bus to see disconnect */
2444         mdelay(3);
2445
2446         hsotg->lx_state = DWC2_L0;
2447 }
2448
2449 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2450 {
2451         /* set the soft-disconnect bit */
2452         __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2453 }
2454
2455 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2456 {
2457         /* remove the soft-disconnect and let's go */
2458         __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2459 }
2460
2461 /**
2462  * dwc2_hsotg_irq - handle device interrupt
2463  * @irq: The IRQ number triggered
2464  * @pw: The pw value when registered the handler.
2465  */
2466 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
2467 {
2468         struct dwc2_hsotg *hsotg = pw;
2469         int retry_count = 8;
2470         u32 gintsts;
2471         u32 gintmsk;
2472
2473         spin_lock(&hsotg->lock);
2474 irq_retry:
2475         gintsts = dwc2_readl(hsotg->regs + GINTSTS);
2476         gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2477
2478         dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2479                 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2480
2481         gintsts &= gintmsk;
2482
2483         if (gintsts & GINTSTS_RESETDET) {
2484                 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
2485
2486                 dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
2487
2488                 /* This event must be used only if controller is suspended */
2489                 if (hsotg->lx_state == DWC2_L2) {
2490                         dwc2_exit_hibernation(hsotg, true);
2491                         hsotg->lx_state = DWC2_L0;
2492                 }
2493         }
2494
2495         if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
2496
2497                 u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
2498                 u32 connected = hsotg->connected;
2499
2500                 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2501                 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2502                         dwc2_readl(hsotg->regs + GNPTXSTS));
2503
2504                 dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2505
2506                 /* Report disconnection if it is not already done. */
2507                 dwc2_hsotg_disconnect(hsotg);
2508
2509                 if (usb_status & GOTGCTL_BSESVLD && connected)
2510                         dwc2_hsotg_core_init_disconnected(hsotg, true);
2511         }
2512
2513         if (gintsts & GINTSTS_ENUMDONE) {
2514                 dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2515
2516                 dwc2_hsotg_irq_enumdone(hsotg);
2517         }
2518
2519         if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2520                 u32 daint = dwc2_readl(hsotg->regs + DAINT);
2521                 u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
2522                 u32 daint_out, daint_in;
2523                 int ep;
2524
2525                 daint &= daintmsk;
2526                 daint_out = daint >> DAINT_OUTEP_SHIFT;
2527                 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2528
2529                 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2530
2531                 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
2532                                                 ep++, daint_out >>= 1) {
2533                         if (daint_out & 1)
2534                                 dwc2_hsotg_epint(hsotg, ep, 0);
2535                 }
2536
2537                 for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
2538                                                 ep++, daint_in >>= 1) {
2539                         if (daint_in & 1)
2540                                 dwc2_hsotg_epint(hsotg, ep, 1);
2541                 }
2542         }
2543
2544         /* check both FIFOs */
2545
2546         if (gintsts & GINTSTS_NPTXFEMP) {
2547                 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2548
2549                 /*
2550                  * Disable the interrupt to stop it happening again
2551                  * unless one of these endpoint routines decides that
2552                  * it needs re-enabling
2553                  */
2554
2555                 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2556                 dwc2_hsotg_irq_fifoempty(hsotg, false);
2557         }
2558
2559         if (gintsts & GINTSTS_PTXFEMP) {
2560                 dev_dbg(hsotg->dev, "PTxFEmp\n");
2561
2562                 /* See note in GINTSTS_NPTxFEmp */
2563
2564                 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2565                 dwc2_hsotg_irq_fifoempty(hsotg, true);
2566         }
2567
2568         if (gintsts & GINTSTS_RXFLVL) {
2569                 /*
2570                  * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2571                  * we need to retry dwc2_hsotg_handle_rx if this is still
2572                  * set.
2573                  */
2574
2575                 dwc2_hsotg_handle_rx(hsotg);
2576         }
2577
2578         if (gintsts & GINTSTS_ERLYSUSP) {
2579                 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2580                 dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2581         }
2582
2583         /*
2584          * these next two seem to crop-up occasionally causing the core
2585          * to shutdown the USB transfer, so try clearing them and logging
2586          * the occurrence.
2587          */
2588
2589         if (gintsts & GINTSTS_GOUTNAKEFF) {
2590                 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2591
2592                 dwc2_writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2593
2594                 dwc2_hsotg_dump(hsotg);
2595         }
2596
2597         if (gintsts & GINTSTS_GINNAKEFF) {
2598                 dev_info(hsotg->dev, "GINNakEff triggered\n");
2599
2600                 dwc2_writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2601
2602                 dwc2_hsotg_dump(hsotg);
2603         }
2604
2605         if (gintsts & GINTSTS_INCOMPL_SOIN) {
2606                 u32 idx, epctl_reg;
2607                 struct dwc2_hsotg_ep *hs_ep;
2608
2609                 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOIN\n", __func__);
2610                 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
2611                         hs_ep = hsotg->eps_in[idx];
2612
2613                         if (!hs_ep->isochronous || hs_ep->has_correct_parity)
2614                                 continue;
2615
2616                         epctl_reg = DIEPCTL(idx);
2617                         dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
2618                 }
2619                 dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
2620         }
2621
2622         if (gintsts & GINTSTS_INCOMPL_SOOUT) {
2623                 u32 idx, epctl_reg;
2624                 struct dwc2_hsotg_ep *hs_ep;
2625
2626                 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
2627                 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
2628                         hs_ep = hsotg->eps_out[idx];
2629
2630                         if (!hs_ep->isochronous || hs_ep->has_correct_parity)
2631                                 continue;
2632
2633                         epctl_reg = DOEPCTL(idx);
2634                         dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
2635                 }
2636                 dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
2637         }
2638
2639         /*
2640          * if we've had fifo events, we should try and go around the
2641          * loop again to see if there's any point in returning yet.
2642          */
2643
2644         if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2645                         goto irq_retry;
2646
2647         spin_unlock(&hsotg->lock);
2648
2649         return IRQ_HANDLED;
2650 }
2651
2652 /**
2653  * dwc2_hsotg_ep_enable - enable the given endpoint
2654  * @ep: The USB endpint to configure
2655  * @desc: The USB endpoint descriptor to configure with.
2656  *
2657  * This is called from the USB gadget code's usb_ep_enable().
2658  */
2659 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
2660                                const struct usb_endpoint_descriptor *desc)
2661 {
2662         struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2663         struct dwc2_hsotg *hsotg = hs_ep->parent;
2664         unsigned long flags;
2665         unsigned int index = hs_ep->index;
2666         u32 epctrl_reg;
2667         u32 epctrl;
2668         u32 mps;
2669         unsigned int dir_in;
2670         unsigned int i, val, size;
2671         int ret = 0;
2672
2673         dev_dbg(hsotg->dev,
2674                 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2675                 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2676                 desc->wMaxPacketSize, desc->bInterval);
2677
2678         /* not to be called for EP0 */
2679         WARN_ON(index == 0);
2680
2681         dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2682         if (dir_in != hs_ep->dir_in) {
2683                 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2684                 return -EINVAL;
2685         }
2686
2687         mps = usb_endpoint_maxp(desc);
2688
2689         /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
2690
2691         epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2692         epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2693
2694         dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2695                 __func__, epctrl, epctrl_reg);
2696
2697         spin_lock_irqsave(&hsotg->lock, flags);
2698
2699         epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2700         epctrl |= DXEPCTL_MPS(mps);
2701
2702         /*
2703          * mark the endpoint as active, otherwise the core may ignore
2704          * transactions entirely for this endpoint
2705          */
2706         epctrl |= DXEPCTL_USBACTEP;
2707
2708         /*
2709          * set the NAK status on the endpoint, otherwise we might try and
2710          * do something with data that we've yet got a request to process
2711          * since the RXFIFO will take data for an endpoint even if the
2712          * size register hasn't been set.
2713          */
2714
2715         epctrl |= DXEPCTL_SNAK;
2716
2717         /* update the endpoint state */
2718         dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2719
2720         /* default, set to non-periodic */
2721         hs_ep->isochronous = 0;
2722         hs_ep->periodic = 0;
2723         hs_ep->halted = 0;
2724         hs_ep->interval = desc->bInterval;
2725         hs_ep->has_correct_parity = 0;
2726
2727         if (hs_ep->interval > 1 && hs_ep->mc > 1)
2728                 dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2729
2730         switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2731         case USB_ENDPOINT_XFER_ISOC:
2732                 epctrl |= DXEPCTL_EPTYPE_ISO;
2733                 epctrl |= DXEPCTL_SETEVENFR;
2734                 hs_ep->isochronous = 1;
2735                 if (dir_in)
2736                         hs_ep->periodic = 1;
2737                 break;
2738
2739         case USB_ENDPOINT_XFER_BULK:
2740                 epctrl |= DXEPCTL_EPTYPE_BULK;
2741                 break;
2742
2743         case USB_ENDPOINT_XFER_INT:
2744                 if (dir_in)
2745                         hs_ep->periodic = 1;
2746
2747                 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2748                 break;
2749
2750         case USB_ENDPOINT_XFER_CONTROL:
2751                 epctrl |= DXEPCTL_EPTYPE_CONTROL;
2752                 break;
2753         }
2754
2755         /* If fifo is already allocated for this ep */
2756         if (hs_ep->fifo_index) {
2757                 size =  hs_ep->ep.maxpacket * hs_ep->mc;
2758                 /* If bigger fifo is required deallocate current one */
2759                 if (size > hs_ep->fifo_size) {
2760                         hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
2761                         hs_ep->fifo_index = 0;
2762                         hs_ep->fifo_size = 0;
2763                 }
2764         }
2765
2766         /*
2767          * if the hardware has dedicated fifos, we must give each IN EP
2768          * a unique tx-fifo even if it is non-periodic.
2769          */
2770         if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2771                 u32 fifo_index = 0;
2772                 u32 fifo_size = UINT_MAX;
2773                 size = hs_ep->ep.maxpacket*hs_ep->mc;
2774                 for (i = 1; i < hsotg->num_of_eps; ++i) {
2775                         if (hsotg->fifo_map & (1<<i))
2776                                 continue;
2777                         val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
2778                         val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
2779                         if (val < size)
2780                                 continue;
2781                         /* Search for smallest acceptable fifo */
2782                         if (val < fifo_size) {
2783                                 fifo_size = val;
2784                                 fifo_index = i;
2785                         }
2786                 }
2787                 if (!fifo_index) {
2788                         dev_err(hsotg->dev,
2789                                 "%s: No suitable fifo found\n", __func__);
2790                         ret = -ENOMEM;
2791                         goto error;
2792                 }
2793                 hsotg->fifo_map |= 1 << fifo_index;
2794                 epctrl |= DXEPCTL_TXFNUM(fifo_index);
2795                 hs_ep->fifo_index = fifo_index;
2796                 hs_ep->fifo_size = fifo_size;
2797         }
2798
2799         /* for non control endpoints, set PID to D0 */
2800         if (index)
2801                 epctrl |= DXEPCTL_SETD0PID;
2802
2803         dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2804                 __func__, epctrl);
2805
2806         dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
2807         dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2808                 __func__, dwc2_readl(hsotg->regs + epctrl_reg));
2809
2810         /* enable the endpoint interrupt */
2811         dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2812
2813 error:
2814         spin_unlock_irqrestore(&hsotg->lock, flags);
2815         return ret;
2816 }
2817
2818 /**
2819  * dwc2_hsotg_ep_disable - disable given endpoint
2820  * @ep: The endpoint to disable.
2821  */
2822 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
2823 {
2824         struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2825         struct dwc2_hsotg *hsotg = hs_ep->parent;
2826         int dir_in = hs_ep->dir_in;
2827         int index = hs_ep->index;
2828         unsigned long flags;
2829         u32 epctrl_reg;
2830         u32 ctrl;
2831
2832         dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2833
2834         if (ep == &hsotg->eps_out[0]->ep) {
2835                 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2836                 return -EINVAL;
2837         }
2838
2839         epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2840
2841         spin_lock_irqsave(&hsotg->lock, flags);
2842
2843         hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
2844         hs_ep->fifo_index = 0;
2845         hs_ep->fifo_size = 0;
2846
2847         ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2848         ctrl &= ~DXEPCTL_EPENA;
2849         ctrl &= ~DXEPCTL_USBACTEP;
2850         ctrl |= DXEPCTL_SNAK;
2851
2852         dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2853         dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
2854
2855         /* disable endpoint interrupts */
2856         dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2857
2858         /* terminate all requests with shutdown */
2859         kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
2860
2861         spin_unlock_irqrestore(&hsotg->lock, flags);
2862         return 0;
2863 }
2864
2865 /**
2866  * on_list - check request is on the given endpoint
2867  * @ep: The endpoint to check.
2868  * @test: The request to test if it is on the endpoint.
2869  */
2870 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
2871 {
2872         struct dwc2_hsotg_req *req, *treq;
2873
2874         list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2875                 if (req == test)
2876                         return true;
2877         }
2878
2879         return false;
2880 }
2881
2882 static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
2883                                                         u32 bit, u32 timeout)
2884 {
2885         u32 i;
2886
2887         for (i = 0; i < timeout; i++) {
2888                 if (dwc2_readl(hs_otg->regs + reg) & bit)
2889                         return 0;
2890                 udelay(1);
2891         }
2892
2893         return -ETIMEDOUT;
2894 }
2895
2896 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2897                                                 struct dwc2_hsotg_ep *hs_ep)
2898 {
2899         u32 epctrl_reg;
2900         u32 epint_reg;
2901
2902         epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
2903                 DOEPCTL(hs_ep->index);
2904         epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
2905                 DOEPINT(hs_ep->index);
2906
2907         dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
2908                         hs_ep->name);
2909         if (hs_ep->dir_in) {
2910                 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
2911                 /* Wait for Nak effect */
2912                 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
2913                                                 DXEPINT_INEPNAKEFF, 100))
2914                         dev_warn(hsotg->dev,
2915                                 "%s: timeout DIEPINT.NAKEFF\n", __func__);
2916         } else {
2917                 /* Clear any pending nak effect interrupt */
2918                 dwc2_writel(GINTSTS_GINNAKEFF, hsotg->regs + GINTSTS);
2919
2920                 __orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
2921
2922                 /* Wait for global nak to take effect */
2923                 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
2924                                                 GINTSTS_GINNAKEFF, 100))
2925                         dev_warn(hsotg->dev,
2926                                 "%s: timeout GINTSTS.GINNAKEFF\n", __func__);
2927         }
2928
2929         /* Disable ep */
2930         __orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
2931
2932         /* Wait for ep to be disabled */
2933         if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
2934                 dev_warn(hsotg->dev,
2935                         "%s: timeout DOEPCTL.EPDisable\n", __func__);
2936
2937         if (hs_ep->dir_in) {
2938                 if (hsotg->dedicated_fifos) {
2939                         dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
2940                                 GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
2941                         /* Wait for fifo flush */
2942                         if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
2943                                                         GRSTCTL_TXFFLSH, 100))
2944                                 dev_warn(hsotg->dev,
2945                                         "%s: timeout flushing fifos\n",
2946                                         __func__);
2947                 }
2948                 /* TODO: Flush shared tx fifo */
2949         } else {
2950                 /* Remove global NAKs */
2951                 __bic32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
2952         }
2953 }
2954
2955 /**
2956  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
2957  * @ep: The endpoint to dequeue.
2958  * @req: The request to be removed from a queue.
2959  */
2960 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2961 {
2962         struct dwc2_hsotg_req *hs_req = our_req(req);
2963         struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2964         struct dwc2_hsotg *hs = hs_ep->parent;
2965         unsigned long flags;
2966
2967         dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2968
2969         spin_lock_irqsave(&hs->lock, flags);
2970
2971         if (!on_list(hs_ep, hs_req)) {
2972                 spin_unlock_irqrestore(&hs->lock, flags);
2973                 return -EINVAL;
2974         }
2975
2976         /* Dequeue already started request */
2977         if (req == &hs_ep->req->req)
2978                 dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
2979
2980         dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2981         spin_unlock_irqrestore(&hs->lock, flags);
2982
2983         return 0;
2984 }
2985
2986 /**
2987  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
2988  * @ep: The endpoint to set halt.
2989  * @value: Set or unset the halt.
2990  */
2991 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2992 {
2993         struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2994         struct dwc2_hsotg *hs = hs_ep->parent;
2995         int index = hs_ep->index;
2996         u32 epreg;
2997         u32 epctl;
2998         u32 xfertype;
2999
3000         dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
3001
3002         if (index == 0) {
3003                 if (value)
3004                         dwc2_hsotg_stall_ep0(hs);
3005                 else
3006                         dev_warn(hs->dev,
3007                                  "%s: can't clear halt on ep0\n", __func__);
3008                 return 0;
3009         }
3010
3011         if (hs_ep->dir_in) {
3012                 epreg = DIEPCTL(index);
3013                 epctl = dwc2_readl(hs->regs + epreg);
3014
3015                 if (value) {
3016                         epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
3017                         if (epctl & DXEPCTL_EPENA)
3018                                 epctl |= DXEPCTL_EPDIS;
3019                 } else {
3020                         epctl &= ~DXEPCTL_STALL;
3021                         xfertype = epctl & DXEPCTL_EPTYPE_MASK;
3022                         if (xfertype == DXEPCTL_EPTYPE_BULK ||
3023                                 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
3024                                         epctl |= DXEPCTL_SETD0PID;
3025                 }
3026                 dwc2_writel(epctl, hs->regs + epreg);
3027         } else {
3028
3029                 epreg = DOEPCTL(index);
3030                 epctl = dwc2_readl(hs->regs + epreg);
3031
3032                 if (value)
3033                         epctl |= DXEPCTL_STALL;
3034                 else {
3035                         epctl &= ~DXEPCTL_STALL;
3036                         xfertype = epctl & DXEPCTL_EPTYPE_MASK;
3037                         if (xfertype == DXEPCTL_EPTYPE_BULK ||
3038                                 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
3039                                         epctl |= DXEPCTL_SETD0PID;
3040                 }
3041                 dwc2_writel(epctl, hs->regs + epreg);
3042         }
3043
3044         hs_ep->halted = value;
3045
3046         return 0;
3047 }
3048
3049 /**
3050  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
3051  * @ep: The endpoint to set halt.
3052  * @value: Set or unset the halt.
3053  */
3054 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
3055 {
3056         struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3057         struct dwc2_hsotg *hs = hs_ep->parent;
3058         unsigned long flags = 0;
3059         int ret = 0;
3060
3061         spin_lock_irqsave(&hs->lock, flags);
3062         ret = dwc2_hsotg_ep_sethalt(ep, value);
3063         spin_unlock_irqrestore(&hs->lock, flags);
3064
3065         return ret;
3066 }
3067
3068 static struct usb_ep_ops dwc2_hsotg_ep_ops = {
3069         .enable         = dwc2_hsotg_ep_enable,
3070         .disable        = dwc2_hsotg_ep_disable,
3071         .alloc_request  = dwc2_hsotg_ep_alloc_request,
3072         .free_request   = dwc2_hsotg_ep_free_request,
3073         .queue          = dwc2_hsotg_ep_queue_lock,
3074         .dequeue        = dwc2_hsotg_ep_dequeue,
3075         .set_halt       = dwc2_hsotg_ep_sethalt_lock,
3076         /* note, don't believe we have any call for the fifo routines */
3077 };
3078
3079 /**
3080  * dwc2_hsotg_phy_enable - enable platform phy dev
3081  * @hsotg: The driver state
3082  *
3083  * A wrapper for platform code responsible for controlling
3084  * low-level USB code
3085  */
3086 static void dwc2_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
3087 {
3088         struct platform_device *pdev = to_platform_device(hsotg->dev);
3089
3090         dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
3091
3092         if (hsotg->uphy)
3093                 usb_phy_init(hsotg->uphy);
3094         else if (hsotg->plat && hsotg->plat->phy_init)
3095                 hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
3096         else {
3097                 phy_init(hsotg->phy);
3098                 phy_power_on(hsotg->phy);
3099         }
3100 }
3101
3102 /**
3103  * dwc2_hsotg_phy_disable - disable platform phy dev
3104  * @hsotg: The driver state
3105  *
3106  * A wrapper for platform code responsible for controlling
3107  * low-level USB code
3108  */
3109 static void dwc2_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
3110 {
3111         struct platform_device *pdev = to_platform_device(hsotg->dev);
3112
3113         if (hsotg->uphy)
3114                 usb_phy_shutdown(hsotg->uphy);
3115         else if (hsotg->plat && hsotg->plat->phy_exit)
3116                 hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
3117         else {
3118                 phy_power_off(hsotg->phy);
3119                 phy_exit(hsotg->phy);
3120         }
3121 }
3122
3123 /**
3124  * dwc2_hsotg_init - initalize the usb core
3125  * @hsotg: The driver state
3126  */
3127 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3128 {
3129         u32 trdtim;
3130         /* unmask subset of endpoint interrupts */
3131
3132         dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
3133                     DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
3134                     hsotg->regs + DIEPMSK);
3135
3136         dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
3137                     DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
3138                     hsotg->regs + DOEPMSK);
3139
3140         dwc2_writel(0, hsotg->regs + DAINTMSK);
3141
3142         /* Be in disconnected state until gadget is registered */
3143         __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3144
3145         /* setup fifos */
3146
3147         dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3148                 dwc2_readl(hsotg->regs + GRXFSIZ),
3149                 dwc2_readl(hsotg->regs + GNPTXFSIZ));
3150
3151         dwc2_hsotg_init_fifo(hsotg);
3152
3153         /* set the PLL on, remove the HNP/SRP and set the PHY */
3154         trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3155         dwc2_writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3156                 (trdtim << GUSBCFG_USBTRDTIM_SHIFT),
3157                 hsotg->regs + GUSBCFG);
3158
3159         if (using_dma(hsotg))
3160                 __orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3161 }
3162
3163 /**
3164  * dwc2_hsotg_udc_start - prepare the udc for work
3165  * @gadget: The usb gadget state
3166  * @driver: The usb gadget driver
3167  *
3168  * Perform initialization to prepare udc device and driver
3169  * to work.
3170  */
3171 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3172                            struct usb_gadget_driver *driver)
3173 {
3174         struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3175         unsigned long flags;
3176         int ret;
3177
3178         if (!hsotg) {
3179                 pr_err("%s: called with no device\n", __func__);
3180                 return -ENODEV;
3181         }
3182
3183         if (!driver) {
3184                 dev_err(hsotg->dev, "%s: no driver\n", __func__);
3185                 return -EINVAL;
3186         }
3187
3188         if (driver->max_speed < USB_SPEED_FULL)
3189                 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
3190
3191         if (!driver->setup) {
3192                 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
3193                 return -EINVAL;
3194         }
3195
3196         WARN_ON(hsotg->driver);
3197
3198         driver->driver.bus = NULL;
3199         hsotg->driver = driver;
3200         hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3201         hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3202
3203         ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3204                                     hsotg->supplies);
3205         if (ret) {
3206                 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3207                 goto err;
3208         }
3209
3210         dwc2_hsotg_phy_enable(hsotg);
3211         if (!IS_ERR_OR_NULL(hsotg->uphy))
3212                 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3213
3214         spin_lock_irqsave(&hsotg->lock, flags);
3215         dwc2_hsotg_init(hsotg);
3216         dwc2_hsotg_core_init_disconnected(hsotg, false);
3217         hsotg->enabled = 0;
3218         spin_unlock_irqrestore(&hsotg->lock, flags);
3219
3220         dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3221
3222         return 0;
3223
3224 err:
3225         hsotg->driver = NULL;
3226         return ret;
3227 }
3228
3229 /**
3230  * dwc2_hsotg_udc_stop - stop the udc
3231  * @gadget: The usb gadget state
3232  * @driver: The usb gadget driver
3233  *
3234  * Stop udc hw block and stay tunned for future transmissions
3235  */
3236 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3237 {
3238         struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3239         unsigned long flags = 0;
3240         int ep;
3241
3242         if (!hsotg)
3243                 return -ENODEV;
3244
3245         /* all endpoints should be shutdown */
3246         for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3247                 if (hsotg->eps_in[ep])
3248                         dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3249                 if (hsotg->eps_out[ep])
3250                         dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3251         }
3252
3253         spin_lock_irqsave(&hsotg->lock, flags);
3254
3255         hsotg->driver = NULL;
3256         hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3257         hsotg->enabled = 0;
3258
3259         spin_unlock_irqrestore(&hsotg->lock, flags);
3260
3261         if (!IS_ERR_OR_NULL(hsotg->uphy))
3262                 otg_set_peripheral(hsotg->uphy->otg, NULL);
3263         dwc2_hsotg_phy_disable(hsotg);
3264
3265         regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3266
3267         return 0;
3268 }
3269
3270 /**
3271  * dwc2_hsotg_gadget_getframe - read the frame number
3272  * @gadget: The usb gadget state
3273  *
3274  * Read the {micro} frame number
3275  */
3276 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3277 {
3278         return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3279 }
3280
3281 /**
3282  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3283  * @gadget: The usb gadget state
3284  * @is_on: Current state of the USB PHY
3285  *
3286  * Connect/Disconnect the USB PHY pullup
3287  */
3288 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3289 {
3290         struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3291         unsigned long flags = 0;
3292
3293         dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
3294                         hsotg->op_state);
3295
3296         /* Don't modify pullup state while in host mode */
3297         if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
3298                 hsotg->enabled = is_on;
3299                 return 0;
3300         }
3301
3302         spin_lock_irqsave(&hsotg->lock, flags);
3303         if (is_on) {
3304                 hsotg->enabled = 1;
3305                 dwc2_hsotg_core_init_disconnected(hsotg, false);
3306                 dwc2_hsotg_core_connect(hsotg);
3307         } else {
3308                 dwc2_hsotg_core_disconnect(hsotg);
3309                 dwc2_hsotg_disconnect(hsotg);
3310                 hsotg->enabled = 0;
3311         }
3312
3313         hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3314         spin_unlock_irqrestore(&hsotg->lock, flags);
3315
3316         return 0;
3317 }
3318
3319 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3320 {
3321         struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3322         unsigned long flags;
3323
3324         dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
3325         spin_lock_irqsave(&hsotg->lock, flags);
3326
3327         /*
3328          * If controller is hibernated, it must exit from hibernation
3329          * before being initialized / de-initialized
3330          */
3331         if (hsotg->lx_state == DWC2_L2)
3332                 dwc2_exit_hibernation(hsotg, false);
3333
3334         if (is_active) {
3335                 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3336
3337                 dwc2_hsotg_core_init_disconnected(hsotg, false);
3338                 if (hsotg->enabled)
3339                         dwc2_hsotg_core_connect(hsotg);
3340         } else {
3341                 dwc2_hsotg_core_disconnect(hsotg);
3342                 dwc2_hsotg_disconnect(hsotg);
3343         }
3344
3345         spin_unlock_irqrestore(&hsotg->lock, flags);
3346         return 0;
3347 }
3348
3349 /**
3350  * dwc2_hsotg_vbus_draw - report bMaxPower field
3351  * @gadget: The usb gadget state
3352  * @mA: Amount of current
3353  *
3354  * Report how much power the device may consume to the phy.
3355  */
3356 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3357 {
3358         struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3359
3360         if (IS_ERR_OR_NULL(hsotg->uphy))
3361                 return -ENOTSUPP;
3362         return usb_phy_set_power(hsotg->uphy, mA);
3363 }
3364
3365 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
3366         .get_frame      = dwc2_hsotg_gadget_getframe,
3367         .udc_start              = dwc2_hsotg_udc_start,
3368         .udc_stop               = dwc2_hsotg_udc_stop,
3369         .pullup                 = dwc2_hsotg_pullup,
3370         .vbus_session           = dwc2_hsotg_vbus_session,
3371         .vbus_draw              = dwc2_hsotg_vbus_draw,
3372 };
3373
3374 /**
3375  * dwc2_hsotg_initep - initialise a single endpoint
3376  * @hsotg: The device state.
3377  * @hs_ep: The endpoint to be initialised.
3378  * @epnum: The endpoint number
3379  *
3380  * Initialise the given endpoint (as part of the probe and device state
3381  * creation) to give to the gadget driver. Setup the endpoint name, any
3382  * direction information and other state that may be required.
3383  */
3384 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
3385                                        struct dwc2_hsotg_ep *hs_ep,
3386                                        int epnum,
3387                                        bool dir_in)
3388 {
3389         char *dir;
3390
3391         if (epnum == 0)
3392                 dir = "";
3393         else if (dir_in)
3394                 dir = "in";
3395         else
3396                 dir = "out";
3397
3398         hs_ep->dir_in = dir_in;
3399         hs_ep->index = epnum;
3400
3401         snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3402
3403         INIT_LIST_HEAD(&hs_ep->queue);
3404         INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3405
3406         /* add to the list of endpoints known by the gadget driver */
3407         if (epnum)
3408                 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3409
3410         hs_ep->parent = hsotg;
3411         hs_ep->ep.name = hs_ep->name;
3412         usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3413         hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
3414
3415         if (epnum == 0) {
3416                 hs_ep->ep.caps.type_control = true;
3417         } else {
3418                 hs_ep->ep.caps.type_iso = true;
3419                 hs_ep->ep.caps.type_bulk = true;
3420                 hs_ep->ep.caps.type_int = true;
3421         }
3422
3423         if (dir_in)
3424                 hs_ep->ep.caps.dir_in = true;
3425         else
3426                 hs_ep->ep.caps.dir_out = true;
3427
3428         /*
3429          * if we're using dma, we need to set the next-endpoint pointer
3430          * to be something valid.
3431          */
3432
3433         if (using_dma(hsotg)) {
3434                 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3435                 if (dir_in)
3436                         dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
3437                 else
3438                         dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
3439         }
3440 }
3441
3442 /**
3443  * dwc2_hsotg_hw_cfg - read HW configuration registers
3444  * @param: The device state
3445  *
3446  * Read the USB core HW configuration registers
3447  */
3448 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3449 {
3450         u32 cfg;
3451         u32 ep_type;
3452         u32 i;
3453
3454         /* check hardware configuration */
3455
3456         cfg = dwc2_readl(hsotg->regs + GHWCFG2);
3457         hsotg->num_of_eps = (cfg >> GHWCFG2_NUM_DEV_EP_SHIFT) & 0xF;
3458         /* Add ep0 */
3459         hsotg->num_of_eps++;
3460
3461         hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
3462                                                                 GFP_KERNEL);
3463         if (!hsotg->eps_in[0])
3464                 return -ENOMEM;
3465         /* Same dwc2_hsotg_ep is used in both directions for ep0 */
3466         hsotg->eps_out[0] = hsotg->eps_in[0];
3467
3468         cfg = dwc2_readl(hsotg->regs + GHWCFG1);
3469         for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3470                 ep_type = cfg & 3;
3471                 /* Direction in or both */
3472                 if (!(ep_type & 2)) {
3473                         hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3474                                 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3475                         if (!hsotg->eps_in[i])
3476                                 return -ENOMEM;
3477                 }
3478                 /* Direction out or both */
3479                 if (!(ep_type & 1)) {
3480                         hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3481                                 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3482                         if (!hsotg->eps_out[i])
3483                                 return -ENOMEM;
3484                 }
3485         }
3486
3487         cfg = dwc2_readl(hsotg->regs + GHWCFG3);
3488         hsotg->fifo_mem = (cfg >> GHWCFG3_DFIFO_DEPTH_SHIFT);
3489
3490         cfg = dwc2_readl(hsotg->regs + GHWCFG4);
3491         hsotg->dedicated_fifos = (cfg >> GHWCFG4_DED_FIFO_SHIFT) & 1;
3492
3493         dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
3494                  hsotg->num_of_eps,
3495                  hsotg->dedicated_fifos ? "dedicated" : "shared",
3496                  hsotg->fifo_mem);
3497         return 0;
3498 }
3499
3500 /**
3501  * dwc2_hsotg_dump - dump state of the udc
3502  * @param: The device state
3503  */
3504 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
3505 {
3506 #ifdef DEBUG
3507         struct device *dev = hsotg->dev;
3508         void __iomem *regs = hsotg->regs;
3509         u32 val;
3510         int idx;
3511
3512         dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3513                  dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
3514                  dwc2_readl(regs + DIEPMSK));
3515
3516         dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3517                  dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
3518
3519         dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3520                  dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
3521
3522         /* show periodic fifo settings */
3523
3524         for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3525                 val = dwc2_readl(regs + DPTXFSIZN(idx));
3526                 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3527                          val >> FIFOSIZE_DEPTH_SHIFT,
3528                          val & FIFOSIZE_STARTADDR_MASK);
3529         }
3530
3531         for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3532                 dev_info(dev,
3533                          "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3534                          dwc2_readl(regs + DIEPCTL(idx)),
3535                          dwc2_readl(regs + DIEPTSIZ(idx)),
3536                          dwc2_readl(regs + DIEPDMA(idx)));
3537
3538                 val = dwc2_readl(regs + DOEPCTL(idx));
3539                 dev_info(dev,
3540                          "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3541                          idx, dwc2_readl(regs + DOEPCTL(idx)),
3542                          dwc2_readl(regs + DOEPTSIZ(idx)),
3543                          dwc2_readl(regs + DOEPDMA(idx)));
3544
3545         }
3546
3547         dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3548                  dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
3549 #endif
3550 }
3551
3552 #ifdef CONFIG_OF
3553 static void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3554 {
3555         struct device_node *np = hsotg->dev->of_node;
3556         u32 len = 0;
3557         u32 i = 0;
3558
3559         /* Enable dma if requested in device tree */
3560         hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3561
3562         /*
3563         * Register TX periodic fifo size per endpoint.
3564         * EP0 is excluded since it has no fifo configuration.
3565         */
3566         if (!of_find_property(np, "g-tx-fifo-size", &len))
3567                 goto rx_fifo;
3568
3569         len /= sizeof(u32);
3570
3571         /* Read tx fifo sizes other than ep0 */
3572         if (of_property_read_u32_array(np, "g-tx-fifo-size",
3573                                                 &hsotg->g_tx_fifo_sz[1], len))
3574                 goto rx_fifo;
3575
3576         /* Add ep0 */
3577         len++;
3578
3579         /* Make remaining TX fifos unavailable */
3580         if (len < MAX_EPS_CHANNELS) {
3581                 for (i = len; i < MAX_EPS_CHANNELS; i++)
3582                         hsotg->g_tx_fifo_sz[i] = 0;
3583         }
3584
3585 rx_fifo:
3586         /* Register RX fifo size */
3587         of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);
3588
3589         /* Register NPTX fifo size */
3590         of_property_read_u32(np, "g-np-tx-fifo-size",
3591                                                 &hsotg->g_np_g_tx_fifo_sz);
3592 }
3593 #else
3594 static inline void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3595 #endif
3596
3597 /**
3598  * dwc2_gadget_init - init function for gadget
3599  * @dwc2: The data structure for the DWC2 driver.
3600  * @irq: The IRQ number for the controller.
3601  */
3602 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3603 {
3604         struct device *dev = hsotg->dev;
3605         struct dwc2_hsotg_plat *plat = dev->platform_data;
3606         int epnum;
3607         int ret;
3608         int i;
3609         u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3610
3611         /* Set default UTMI width */
3612         hsotg->phyif = GUSBCFG_PHYIF16;
3613
3614         /* Initialize to legacy fifo configuration values */
3615         hsotg->g_rx_fifo_sz = 2048;
3616         hsotg->g_np_g_tx_fifo_sz = 1024;
3617         memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
3618         /* Device tree specific probe */
3619         dwc2_hsotg_of_probe(hsotg);
3620         /* Dump fifo information */
3621         dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
3622                                                 hsotg->g_np_g_tx_fifo_sz);
3623         dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
3624         for (i = 0; i < MAX_EPS_CHANNELS; i++)
3625                 dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
3626                                                 hsotg->g_tx_fifo_sz[i]);
3627         /*
3628          * If platform probe couldn't find a generic PHY or an old style
3629          * USB PHY, fall back to pdata
3630          */
3631         if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
3632                 plat = dev_get_platdata(dev);
3633                 if (!plat) {
3634                         dev_err(dev,
3635                         "no platform data or transceiver defined\n");
3636                         return -EPROBE_DEFER;
3637                 }
3638                 hsotg->plat = plat;
3639         } else if (hsotg->phy) {
3640                 /*
3641                  * If using the generic PHY framework, check if the PHY bus
3642                  * width is 8-bit and set the phyif appropriately.
3643                  */
3644                 if (phy_get_bus_width(hsotg->phy) == 8)
3645                         hsotg->phyif = GUSBCFG_PHYIF8;
3646         }
3647
3648         hsotg->clk = devm_clk_get(dev, "otg");
3649         if (IS_ERR(hsotg->clk)) {
3650                 hsotg->clk = NULL;
3651                 dev_dbg(dev, "cannot get otg clock\n");
3652         }
3653
3654         hsotg->gadget.max_speed = USB_SPEED_HIGH;
3655         hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
3656         hsotg->gadget.name = dev_name(dev);
3657         if (hsotg->dr_mode == USB_DR_MODE_OTG)
3658                 hsotg->gadget.is_otg = 1;
3659         else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
3660                 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3661
3662         /* reset the system */
3663
3664         ret = clk_prepare_enable(hsotg->clk);
3665         if (ret) {
3666                 dev_err(dev, "failed to enable otg clk\n");
3667                 goto err_clk;
3668         }
3669
3670
3671         /* regulators */
3672
3673         for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3674                 hsotg->supplies[i].supply = dwc2_hsotg_supply_names[i];
3675
3676         ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3677                                  hsotg->supplies);
3678         if (ret) {
3679                 dev_err(dev, "failed to request supplies: %d\n", ret);
3680                 goto err_clk;
3681         }
3682
3683         ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3684                                     hsotg->supplies);
3685
3686         if (ret) {
3687                 dev_err(dev, "failed to enable supplies: %d\n", ret);
3688                 goto err_clk;
3689         }
3690
3691         /* usb phy enable */
3692         dwc2_hsotg_phy_enable(hsotg);
3693
3694         /*
3695          * Force Device mode before initialization.
3696          * This allows correctly configuring fifo for device mode.
3697          */
3698         __bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEHOSTMODE);
3699         __orr32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);
3700
3701         /*
3702          * According to Synopsys databook, this sleep is needed for the force
3703          * device mode to take effect.
3704          */
3705         msleep(25);
3706
3707         dwc2_hsotg_corereset(hsotg);
3708         ret = dwc2_hsotg_hw_cfg(hsotg);
3709         if (ret) {
3710                 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3711                 goto err_clk;
3712         }
3713
3714         dwc2_hsotg_init(hsotg);
3715
3716         /* Switch back to default configuration */
3717         __bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);
3718
3719         hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
3720                         DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3721         if (!hsotg->ctrl_buff) {
3722                 dev_err(dev, "failed to allocate ctrl request buff\n");
3723                 ret = -ENOMEM;
3724                 goto err_supplies;
3725         }
3726
3727         hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
3728                         DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3729         if (!hsotg->ep0_buff) {
3730                 dev_err(dev, "failed to allocate ctrl reply buff\n");
3731                 ret = -ENOMEM;
3732                 goto err_supplies;
3733         }
3734
3735         ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
3736                                 dev_name(hsotg->dev), hsotg);
3737         if (ret < 0) {
3738                 dwc2_hsotg_phy_disable(hsotg);
3739                 clk_disable_unprepare(hsotg->clk);
3740                 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3741                                        hsotg->supplies);
3742                 dev_err(dev, "cannot claim IRQ for gadget\n");
3743                 goto err_supplies;
3744         }
3745
3746         /* hsotg->num_of_eps holds number of EPs other than ep0 */
3747
3748         if (hsotg->num_of_eps == 0) {
3749                 dev_err(dev, "wrong number of EPs (zero)\n");
3750                 ret = -EINVAL;
3751                 goto err_supplies;
3752         }
3753
3754         /* setup endpoint information */
3755
3756         INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3757         hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3758
3759         /* allocate EP0 request */
3760
3761         hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3762                                                      GFP_KERNEL);
3763         if (!hsotg->ctrl_req) {
3764                 dev_err(dev, "failed to allocate ctrl req\n");
3765                 ret = -ENOMEM;
3766                 goto err_supplies;
3767         }
3768
3769         /* initialise the endpoints now the core has been initialised */
3770         for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
3771                 if (hsotg->eps_in[epnum])
3772                         dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3773                                                                 epnum, 1);
3774                 if (hsotg->eps_out[epnum])
3775                         dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3776                                                                 epnum, 0);
3777         }
3778
3779         /* disable power and clock */
3780         dwc2_hsotg_phy_disable(hsotg);
3781
3782         ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3783                                     hsotg->supplies);
3784         if (ret) {
3785                 dev_err(dev, "failed to disable supplies: %d\n", ret);
3786                 goto err_supplies;
3787         }
3788
3789         ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3790         if (ret)
3791                 goto err_supplies;
3792
3793         dwc2_hsotg_dump(hsotg);
3794
3795         return 0;
3796
3797 err_supplies:
3798         dwc2_hsotg_phy_disable(hsotg);
3799 err_clk:
3800         clk_disable_unprepare(hsotg->clk);
3801
3802         return ret;
3803 }
3804
3805 /**
3806  * dwc2_hsotg_remove - remove function for hsotg driver
3807  * @pdev: The platform information for the driver
3808  */
3809 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
3810 {
3811         usb_del_gadget_udc(&hsotg->gadget);
3812         clk_disable_unprepare(hsotg->clk);
3813
3814         return 0;
3815 }
3816
3817 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
3818 {
3819         unsigned long flags;
3820         int ret = 0;
3821
3822         if (hsotg->lx_state != DWC2_L0)
3823                 return ret;
3824
3825         if (hsotg->driver) {
3826                 int ep;
3827
3828                 dev_info(hsotg->dev, "suspending usb gadget %s\n",
3829                          hsotg->driver->driver.name);
3830
3831                 spin_lock_irqsave(&hsotg->lock, flags);
3832                 if (hsotg->enabled)
3833                         dwc2_hsotg_core_disconnect(hsotg);
3834                 dwc2_hsotg_disconnect(hsotg);
3835                 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3836                 spin_unlock_irqrestore(&hsotg->lock, flags);
3837
3838                 dwc2_hsotg_phy_disable(hsotg);
3839
3840                 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3841                         if (hsotg->eps_in[ep])
3842                                 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3843                         if (hsotg->eps_out[ep])
3844                                 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3845                 }
3846
3847                 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3848                                              hsotg->supplies);
3849                 clk_disable(hsotg->clk);
3850         }
3851
3852         return ret;
3853 }
3854
3855 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
3856 {
3857         unsigned long flags;
3858         int ret = 0;
3859
3860         if (hsotg->lx_state == DWC2_L2)
3861                 return ret;
3862
3863         if (hsotg->driver) {
3864                 dev_info(hsotg->dev, "resuming usb gadget %s\n",
3865                          hsotg->driver->driver.name);
3866
3867                 clk_enable(hsotg->clk);
3868                 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3869                                             hsotg->supplies);
3870
3871                 dwc2_hsotg_phy_enable(hsotg);
3872
3873                 spin_lock_irqsave(&hsotg->lock, flags);
3874                 dwc2_hsotg_core_init_disconnected(hsotg, false);
3875                 if (hsotg->enabled)
3876                         dwc2_hsotg_core_connect(hsotg);
3877                 spin_unlock_irqrestore(&hsotg->lock, flags);
3878         }
3879
3880         return ret;
3881 }