Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[firefly-linux-kernel-4.4.55.git] / drivers / usb / gadget / udc / mv_udc_core.c
1 /*
2  * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
3  * Author: Chao Xie <chao.xie@marvell.com>
4  *         Neil Zhang <zhangwm@marvell.com>
5  *
6  * This program is free software; you can redistribute  it and/or modify it
7  * under  the terms of  the GNU General  Public License as published by the
8  * Free Software Foundation;  either version 2 of the  License, or (at your
9  * option) any later version.
10  */
11
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/timer.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/moduleparam.h>
27 #include <linux/device.h>
28 #include <linux/usb/ch9.h>
29 #include <linux/usb/gadget.h>
30 #include <linux/usb/otg.h>
31 #include <linux/pm.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/platform_device.h>
35 #include <linux/clk.h>
36 #include <linux/platform_data/mv_usb.h>
37 #include <asm/unaligned.h>
38
39 #include "mv_udc.h"
40
41 #define DRIVER_DESC             "Marvell PXA USB Device Controller driver"
42 #define DRIVER_VERSION          "8 Nov 2010"
43
44 #define ep_dir(ep)      (((ep)->ep_num == 0) ? \
45                                 ((ep)->udc->ep0_dir) : ((ep)->direction))
46
47 /* timeout value -- usec */
48 #define RESET_TIMEOUT           10000
49 #define FLUSH_TIMEOUT           10000
50 #define EPSTATUS_TIMEOUT        10000
51 #define PRIME_TIMEOUT           10000
52 #define READSAFE_TIMEOUT        1000
53
54 #define LOOPS_USEC_SHIFT        1
55 #define LOOPS_USEC              (1 << LOOPS_USEC_SHIFT)
56 #define LOOPS(timeout)          ((timeout) >> LOOPS_USEC_SHIFT)
57
58 static DECLARE_COMPLETION(release_done);
59
60 static const char driver_name[] = "mv_udc";
61 static const char driver_desc[] = DRIVER_DESC;
62
63 static void nuke(struct mv_ep *ep, int status);
64 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
65
66 /* for endpoint 0 operations */
67 static const struct usb_endpoint_descriptor mv_ep0_desc = {
68         .bLength =              USB_DT_ENDPOINT_SIZE,
69         .bDescriptorType =      USB_DT_ENDPOINT,
70         .bEndpointAddress =     0,
71         .bmAttributes =         USB_ENDPOINT_XFER_CONTROL,
72         .wMaxPacketSize =       EP0_MAX_PKT_SIZE,
73 };
74
75 static void ep0_reset(struct mv_udc *udc)
76 {
77         struct mv_ep *ep;
78         u32 epctrlx;
79         int i = 0;
80
81         /* ep0 in and out */
82         for (i = 0; i < 2; i++) {
83                 ep = &udc->eps[i];
84                 ep->udc = udc;
85
86                 /* ep0 dQH */
87                 ep->dqh = &udc->ep_dqh[i];
88
89                 /* configure ep0 endpoint capabilities in dQH */
90                 ep->dqh->max_packet_length =
91                         (EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
92                         | EP_QUEUE_HEAD_IOS;
93
94                 ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
95
96                 epctrlx = readl(&udc->op_regs->epctrlx[0]);
97                 if (i) {        /* TX */
98                         epctrlx |= EPCTRL_TX_ENABLE
99                                 | (USB_ENDPOINT_XFER_CONTROL
100                                         << EPCTRL_TX_EP_TYPE_SHIFT);
101
102                 } else {        /* RX */
103                         epctrlx |= EPCTRL_RX_ENABLE
104                                 | (USB_ENDPOINT_XFER_CONTROL
105                                         << EPCTRL_RX_EP_TYPE_SHIFT);
106                 }
107
108                 writel(epctrlx, &udc->op_regs->epctrlx[0]);
109         }
110 }
111
112 /* protocol ep0 stall, will automatically be cleared on new transaction */
113 static void ep0_stall(struct mv_udc *udc)
114 {
115         u32     epctrlx;
116
117         /* set TX and RX to stall */
118         epctrlx = readl(&udc->op_regs->epctrlx[0]);
119         epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
120         writel(epctrlx, &udc->op_regs->epctrlx[0]);
121
122         /* update ep0 state */
123         udc->ep0_state = WAIT_FOR_SETUP;
124         udc->ep0_dir = EP_DIR_OUT;
125 }
126
127 static int process_ep_req(struct mv_udc *udc, int index,
128         struct mv_req *curr_req)
129 {
130         struct mv_dtd   *curr_dtd;
131         struct mv_dqh   *curr_dqh;
132         int td_complete, actual, remaining_length;
133         int i, direction;
134         int retval = 0;
135         u32 errors;
136         u32 bit_pos;
137
138         curr_dqh = &udc->ep_dqh[index];
139         direction = index % 2;
140
141         curr_dtd = curr_req->head;
142         td_complete = 0;
143         actual = curr_req->req.length;
144
145         for (i = 0; i < curr_req->dtd_count; i++) {
146                 if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
147                         dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
148                                 udc->eps[index].name);
149                         return 1;
150                 }
151
152                 errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
153                 if (!errors) {
154                         remaining_length =
155                                 (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
156                                         >> DTD_LENGTH_BIT_POS;
157                         actual -= remaining_length;
158
159                         if (remaining_length) {
160                                 if (direction) {
161                                         dev_dbg(&udc->dev->dev,
162                                                 "TX dTD remains data\n");
163                                         retval = -EPROTO;
164                                         break;
165                                 } else
166                                         break;
167                         }
168                 } else {
169                         dev_info(&udc->dev->dev,
170                                 "complete_tr error: ep=%d %s: error = 0x%x\n",
171                                 index >> 1, direction ? "SEND" : "RECV",
172                                 errors);
173                         if (errors & DTD_STATUS_HALTED) {
174                                 /* Clear the errors and Halt condition */
175                                 curr_dqh->size_ioc_int_sts &= ~errors;
176                                 retval = -EPIPE;
177                         } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
178                                 retval = -EPROTO;
179                         } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
180                                 retval = -EILSEQ;
181                         }
182                 }
183                 if (i != curr_req->dtd_count - 1)
184                         curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
185         }
186         if (retval)
187                 return retval;
188
189         if (direction == EP_DIR_OUT)
190                 bit_pos = 1 << curr_req->ep->ep_num;
191         else
192                 bit_pos = 1 << (16 + curr_req->ep->ep_num);
193
194         while ((curr_dqh->curr_dtd_ptr == curr_dtd->td_dma)) {
195                 if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
196                         while (readl(&udc->op_regs->epstatus) & bit_pos)
197                                 udelay(1);
198                         break;
199                 }
200                 udelay(1);
201         }
202
203         curr_req->req.actual = actual;
204
205         return 0;
206 }
207
208 /*
209  * done() - retire a request; caller blocked irqs
210  * @status : request status to be set, only works when
211  * request is still in progress.
212  */
213 static void done(struct mv_ep *ep, struct mv_req *req, int status)
214         __releases(&ep->udc->lock)
215         __acquires(&ep->udc->lock)
216 {
217         struct mv_udc *udc = NULL;
218         unsigned char stopped = ep->stopped;
219         struct mv_dtd *curr_td, *next_td;
220         int j;
221
222         udc = (struct mv_udc *)ep->udc;
223         /* Removed the req from fsl_ep->queue */
224         list_del_init(&req->queue);
225
226         /* req.status should be set as -EINPROGRESS in ep_queue() */
227         if (req->req.status == -EINPROGRESS)
228                 req->req.status = status;
229         else
230                 status = req->req.status;
231
232         /* Free dtd for the request */
233         next_td = req->head;
234         for (j = 0; j < req->dtd_count; j++) {
235                 curr_td = next_td;
236                 if (j != req->dtd_count - 1)
237                         next_td = curr_td->next_dtd_virt;
238                 dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
239         }
240
241         usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
242
243         if (status && (status != -ESHUTDOWN))
244                 dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
245                         ep->ep.name, &req->req, status,
246                         req->req.actual, req->req.length);
247
248         ep->stopped = 1;
249
250         spin_unlock(&ep->udc->lock);
251
252         usb_gadget_giveback_request(&ep->ep, &req->req);
253
254         spin_lock(&ep->udc->lock);
255         ep->stopped = stopped;
256 }
257
258 static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
259 {
260         struct mv_udc *udc;
261         struct mv_dqh *dqh;
262         u32 bit_pos, direction;
263         u32 usbcmd, epstatus;
264         unsigned int loops;
265         int retval = 0;
266
267         udc = ep->udc;
268         direction = ep_dir(ep);
269         dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
270         bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
271
272         /* check if the pipe is empty */
273         if (!(list_empty(&ep->queue))) {
274                 struct mv_req *lastreq;
275                 lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
276                 lastreq->tail->dtd_next =
277                         req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
278
279                 wmb();
280
281                 if (readl(&udc->op_regs->epprime) & bit_pos)
282                         goto done;
283
284                 loops = LOOPS(READSAFE_TIMEOUT);
285                 while (1) {
286                         /* start with setting the semaphores */
287                         usbcmd = readl(&udc->op_regs->usbcmd);
288                         usbcmd |= USBCMD_ATDTW_TRIPWIRE_SET;
289                         writel(usbcmd, &udc->op_regs->usbcmd);
290
291                         /* read the endpoint status */
292                         epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
293
294                         /*
295                          * Reread the ATDTW semaphore bit to check if it is
296                          * cleared. When hardware see a hazard, it will clear
297                          * the bit or else we remain set to 1 and we can
298                          * proceed with priming of endpoint if not already
299                          * primed.
300                          */
301                         if (readl(&udc->op_regs->usbcmd)
302                                 & USBCMD_ATDTW_TRIPWIRE_SET)
303                                 break;
304
305                         loops--;
306                         if (loops == 0) {
307                                 dev_err(&udc->dev->dev,
308                                         "Timeout for ATDTW_TRIPWIRE...\n");
309                                 retval = -ETIME;
310                                 goto done;
311                         }
312                         udelay(LOOPS_USEC);
313                 }
314
315                 /* Clear the semaphore */
316                 usbcmd = readl(&udc->op_regs->usbcmd);
317                 usbcmd &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
318                 writel(usbcmd, &udc->op_regs->usbcmd);
319
320                 if (epstatus)
321                         goto done;
322         }
323
324         /* Write dQH next pointer and terminate bit to 0 */
325         dqh->next_dtd_ptr = req->head->td_dma
326                                 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
327
328         /* clear active and halt bit, in case set from a previous error */
329         dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
330
331         /* Ensure that updates to the QH will occur before priming. */
332         wmb();
333
334         /* Prime the Endpoint */
335         writel(bit_pos, &udc->op_regs->epprime);
336
337 done:
338         return retval;
339 }
340
341 static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
342                 dma_addr_t *dma, int *is_last)
343 {
344         struct mv_dtd *dtd;
345         struct mv_udc *udc;
346         struct mv_dqh *dqh;
347         u32 temp, mult = 0;
348
349         /* how big will this transfer be? */
350         if (usb_endpoint_xfer_isoc(req->ep->ep.desc)) {
351                 dqh = req->ep->dqh;
352                 mult = (dqh->max_packet_length >> EP_QUEUE_HEAD_MULT_POS)
353                                 & 0x3;
354                 *length = min(req->req.length - req->req.actual,
355                                 (unsigned)(mult * req->ep->ep.maxpacket));
356         } else
357                 *length = min(req->req.length - req->req.actual,
358                                 (unsigned)EP_MAX_LENGTH_TRANSFER);
359
360         udc = req->ep->udc;
361
362         /*
363          * Be careful that no _GFP_HIGHMEM is set,
364          * or we can not use dma_to_virt
365          */
366         dtd = dma_pool_alloc(udc->dtd_pool, GFP_ATOMIC, dma);
367         if (dtd == NULL)
368                 return dtd;
369
370         dtd->td_dma = *dma;
371         /* initialize buffer page pointers */
372         temp = (u32)(req->req.dma + req->req.actual);
373         dtd->buff_ptr0 = cpu_to_le32(temp);
374         temp &= ~0xFFF;
375         dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
376         dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
377         dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
378         dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
379
380         req->req.actual += *length;
381
382         /* zlp is needed if req->req.zero is set */
383         if (req->req.zero) {
384                 if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
385                         *is_last = 1;
386                 else
387                         *is_last = 0;
388         } else if (req->req.length == req->req.actual)
389                 *is_last = 1;
390         else
391                 *is_last = 0;
392
393         /* Fill in the transfer size; set active bit */
394         temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
395
396         /* Enable interrupt for the last dtd of a request */
397         if (*is_last && !req->req.no_interrupt)
398                 temp |= DTD_IOC;
399
400         temp |= mult << 10;
401
402         dtd->size_ioc_sts = temp;
403
404         mb();
405
406         return dtd;
407 }
408
409 /* generate dTD linked list for a request */
410 static int req_to_dtd(struct mv_req *req)
411 {
412         unsigned count;
413         int is_last, is_first = 1;
414         struct mv_dtd *dtd, *last_dtd = NULL;
415         struct mv_udc *udc;
416         dma_addr_t dma;
417
418         udc = req->ep->udc;
419
420         do {
421                 dtd = build_dtd(req, &count, &dma, &is_last);
422                 if (dtd == NULL)
423                         return -ENOMEM;
424
425                 if (is_first) {
426                         is_first = 0;
427                         req->head = dtd;
428                 } else {
429                         last_dtd->dtd_next = dma;
430                         last_dtd->next_dtd_virt = dtd;
431                 }
432                 last_dtd = dtd;
433                 req->dtd_count++;
434         } while (!is_last);
435
436         /* set terminate bit to 1 for the last dTD */
437         dtd->dtd_next = DTD_NEXT_TERMINATE;
438
439         req->tail = dtd;
440
441         return 0;
442 }
443
444 static int mv_ep_enable(struct usb_ep *_ep,
445                 const struct usb_endpoint_descriptor *desc)
446 {
447         struct mv_udc *udc;
448         struct mv_ep *ep;
449         struct mv_dqh *dqh;
450         u16 max = 0;
451         u32 bit_pos, epctrlx, direction;
452         unsigned char zlt = 0, ios = 0, mult = 0;
453         unsigned long flags;
454
455         ep = container_of(_ep, struct mv_ep, ep);
456         udc = ep->udc;
457
458         if (!_ep || !desc
459                         || desc->bDescriptorType != USB_DT_ENDPOINT)
460                 return -EINVAL;
461
462         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
463                 return -ESHUTDOWN;
464
465         direction = ep_dir(ep);
466         max = usb_endpoint_maxp(desc);
467
468         /*
469          * disable HW zero length termination select
470          * driver handles zero length packet through req->req.zero
471          */
472         zlt = 1;
473
474         bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
475
476         /* Check if the Endpoint is Primed */
477         if ((readl(&udc->op_regs->epprime) & bit_pos)
478                 || (readl(&udc->op_regs->epstatus) & bit_pos)) {
479                 dev_info(&udc->dev->dev,
480                         "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
481                         " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
482                         (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
483                         (unsigned)readl(&udc->op_regs->epprime),
484                         (unsigned)readl(&udc->op_regs->epstatus),
485                         (unsigned)bit_pos);
486                 goto en_done;
487         }
488         /* Set the max packet length, interrupt on Setup and Mult fields */
489         switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
490         case USB_ENDPOINT_XFER_BULK:
491                 zlt = 1;
492                 mult = 0;
493                 break;
494         case USB_ENDPOINT_XFER_CONTROL:
495                 ios = 1;
496         case USB_ENDPOINT_XFER_INT:
497                 mult = 0;
498                 break;
499         case USB_ENDPOINT_XFER_ISOC:
500                 /* Calculate transactions needed for high bandwidth iso */
501                 mult = (unsigned char)(1 + ((max >> 11) & 0x03));
502                 max = max & 0x7ff;      /* bit 0~10 */
503                 /* 3 transactions at most */
504                 if (mult > 3)
505                         goto en_done;
506                 break;
507         default:
508                 goto en_done;
509         }
510
511         spin_lock_irqsave(&udc->lock, flags);
512         /* Get the endpoint queue head address */
513         dqh = ep->dqh;
514         dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
515                 | (mult << EP_QUEUE_HEAD_MULT_POS)
516                 | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
517                 | (ios ? EP_QUEUE_HEAD_IOS : 0);
518         dqh->next_dtd_ptr = 1;
519         dqh->size_ioc_int_sts = 0;
520
521         ep->ep.maxpacket = max;
522         ep->ep.desc = desc;
523         ep->stopped = 0;
524
525         /* Enable the endpoint for Rx or Tx and set the endpoint type */
526         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
527         if (direction == EP_DIR_IN) {
528                 epctrlx &= ~EPCTRL_TX_ALL_MASK;
529                 epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
530                         | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
531                                 << EPCTRL_TX_EP_TYPE_SHIFT);
532         } else {
533                 epctrlx &= ~EPCTRL_RX_ALL_MASK;
534                 epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
535                         | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
536                                 << EPCTRL_RX_EP_TYPE_SHIFT);
537         }
538         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
539
540         /*
541          * Implement Guideline (GL# USB-7) The unused endpoint type must
542          * be programmed to bulk.
543          */
544         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
545         if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
546                 epctrlx |= (USB_ENDPOINT_XFER_BULK
547                                 << EPCTRL_RX_EP_TYPE_SHIFT);
548                 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
549         }
550
551         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
552         if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
553                 epctrlx |= (USB_ENDPOINT_XFER_BULK
554                                 << EPCTRL_TX_EP_TYPE_SHIFT);
555                 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
556         }
557
558         spin_unlock_irqrestore(&udc->lock, flags);
559
560         return 0;
561 en_done:
562         return -EINVAL;
563 }
564
565 static int  mv_ep_disable(struct usb_ep *_ep)
566 {
567         struct mv_udc *udc;
568         struct mv_ep *ep;
569         struct mv_dqh *dqh;
570         u32 bit_pos, epctrlx, direction;
571         unsigned long flags;
572
573         ep = container_of(_ep, struct mv_ep, ep);
574         if ((_ep == NULL) || !ep->ep.desc)
575                 return -EINVAL;
576
577         udc = ep->udc;
578
579         /* Get the endpoint queue head address */
580         dqh = ep->dqh;
581
582         spin_lock_irqsave(&udc->lock, flags);
583
584         direction = ep_dir(ep);
585         bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
586
587         /* Reset the max packet length and the interrupt on Setup */
588         dqh->max_packet_length = 0;
589
590         /* Disable the endpoint for Rx or Tx and reset the endpoint type */
591         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
592         epctrlx &= ~((direction == EP_DIR_IN)
593                         ? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
594                         : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
595         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
596
597         /* nuke all pending requests (does flush) */
598         nuke(ep, -ESHUTDOWN);
599
600         ep->ep.desc = NULL;
601         ep->stopped = 1;
602
603         spin_unlock_irqrestore(&udc->lock, flags);
604
605         return 0;
606 }
607
608 static struct usb_request *
609 mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
610 {
611         struct mv_req *req = NULL;
612
613         req = kzalloc(sizeof *req, gfp_flags);
614         if (!req)
615                 return NULL;
616
617         req->req.dma = DMA_ADDR_INVALID;
618         INIT_LIST_HEAD(&req->queue);
619
620         return &req->req;
621 }
622
623 static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
624 {
625         struct mv_req *req = NULL;
626
627         req = container_of(_req, struct mv_req, req);
628
629         if (_req)
630                 kfree(req);
631 }
632
633 static void mv_ep_fifo_flush(struct usb_ep *_ep)
634 {
635         struct mv_udc *udc;
636         u32 bit_pos, direction;
637         struct mv_ep *ep;
638         unsigned int loops;
639
640         if (!_ep)
641                 return;
642
643         ep = container_of(_ep, struct mv_ep, ep);
644         if (!ep->ep.desc)
645                 return;
646
647         udc = ep->udc;
648         direction = ep_dir(ep);
649
650         if (ep->ep_num == 0)
651                 bit_pos = (1 << 16) | 1;
652         else if (direction == EP_DIR_OUT)
653                 bit_pos = 1 << ep->ep_num;
654         else
655                 bit_pos = 1 << (16 + ep->ep_num);
656
657         loops = LOOPS(EPSTATUS_TIMEOUT);
658         do {
659                 unsigned int inter_loops;
660
661                 if (loops == 0) {
662                         dev_err(&udc->dev->dev,
663                                 "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
664                                 (unsigned)readl(&udc->op_regs->epstatus),
665                                 (unsigned)bit_pos);
666                         return;
667                 }
668                 /* Write 1 to the Flush register */
669                 writel(bit_pos, &udc->op_regs->epflush);
670
671                 /* Wait until flushing completed */
672                 inter_loops = LOOPS(FLUSH_TIMEOUT);
673                 while (readl(&udc->op_regs->epflush)) {
674                         /*
675                          * ENDPTFLUSH bit should be cleared to indicate this
676                          * operation is complete
677                          */
678                         if (inter_loops == 0) {
679                                 dev_err(&udc->dev->dev,
680                                         "TIMEOUT for ENDPTFLUSH=0x%x,"
681                                         "bit_pos=0x%x\n",
682                                         (unsigned)readl(&udc->op_regs->epflush),
683                                         (unsigned)bit_pos);
684                                 return;
685                         }
686                         inter_loops--;
687                         udelay(LOOPS_USEC);
688                 }
689                 loops--;
690         } while (readl(&udc->op_regs->epstatus) & bit_pos);
691 }
692
693 /* queues (submits) an I/O request to an endpoint */
694 static int
695 mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
696 {
697         struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
698         struct mv_req *req = container_of(_req, struct mv_req, req);
699         struct mv_udc *udc = ep->udc;
700         unsigned long flags;
701         int retval;
702
703         /* catch various bogus parameters */
704         if (!_req || !req->req.complete || !req->req.buf
705                         || !list_empty(&req->queue)) {
706                 dev_err(&udc->dev->dev, "%s, bad params", __func__);
707                 return -EINVAL;
708         }
709         if (unlikely(!_ep || !ep->ep.desc)) {
710                 dev_err(&udc->dev->dev, "%s, bad ep", __func__);
711                 return -EINVAL;
712         }
713
714         udc = ep->udc;
715         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
716                 return -ESHUTDOWN;
717
718         req->ep = ep;
719
720         /* map virtual address to hardware */
721         retval = usb_gadget_map_request(&udc->gadget, _req, ep_dir(ep));
722         if (retval)
723                 return retval;
724
725         req->req.status = -EINPROGRESS;
726         req->req.actual = 0;
727         req->dtd_count = 0;
728
729         spin_lock_irqsave(&udc->lock, flags);
730
731         /* build dtds and push them to device queue */
732         if (!req_to_dtd(req)) {
733                 retval = queue_dtd(ep, req);
734                 if (retval) {
735                         spin_unlock_irqrestore(&udc->lock, flags);
736                         dev_err(&udc->dev->dev, "Failed to queue dtd\n");
737                         goto err_unmap_dma;
738                 }
739         } else {
740                 spin_unlock_irqrestore(&udc->lock, flags);
741                 dev_err(&udc->dev->dev, "Failed to dma_pool_alloc\n");
742                 retval = -ENOMEM;
743                 goto err_unmap_dma;
744         }
745
746         /* Update ep0 state */
747         if (ep->ep_num == 0)
748                 udc->ep0_state = DATA_STATE_XMIT;
749
750         /* irq handler advances the queue */
751         list_add_tail(&req->queue, &ep->queue);
752         spin_unlock_irqrestore(&udc->lock, flags);
753
754         return 0;
755
756 err_unmap_dma:
757         usb_gadget_unmap_request(&udc->gadget, _req, ep_dir(ep));
758
759         return retval;
760 }
761
762 static void mv_prime_ep(struct mv_ep *ep, struct mv_req *req)
763 {
764         struct mv_dqh *dqh = ep->dqh;
765         u32 bit_pos;
766
767         /* Write dQH next pointer and terminate bit to 0 */
768         dqh->next_dtd_ptr = req->head->td_dma
769                 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
770
771         /* clear active and halt bit, in case set from a previous error */
772         dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
773
774         /* Ensure that updates to the QH will occure before priming. */
775         wmb();
776
777         bit_pos = 1 << (((ep_dir(ep) == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
778
779         /* Prime the Endpoint */
780         writel(bit_pos, &ep->udc->op_regs->epprime);
781 }
782
783 /* dequeues (cancels, unlinks) an I/O request from an endpoint */
784 static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
785 {
786         struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
787         struct mv_req *req;
788         struct mv_udc *udc = ep->udc;
789         unsigned long flags;
790         int stopped, ret = 0;
791         u32 epctrlx;
792
793         if (!_ep || !_req)
794                 return -EINVAL;
795
796         spin_lock_irqsave(&ep->udc->lock, flags);
797         stopped = ep->stopped;
798
799         /* Stop the ep before we deal with the queue */
800         ep->stopped = 1;
801         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
802         if (ep_dir(ep) == EP_DIR_IN)
803                 epctrlx &= ~EPCTRL_TX_ENABLE;
804         else
805                 epctrlx &= ~EPCTRL_RX_ENABLE;
806         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
807
808         /* make sure it's actually queued on this endpoint */
809         list_for_each_entry(req, &ep->queue, queue) {
810                 if (&req->req == _req)
811                         break;
812         }
813         if (&req->req != _req) {
814                 ret = -EINVAL;
815                 goto out;
816         }
817
818         /* The request is in progress, or completed but not dequeued */
819         if (ep->queue.next == &req->queue) {
820                 _req->status = -ECONNRESET;
821                 mv_ep_fifo_flush(_ep);  /* flush current transfer */
822
823                 /* The request isn't the last request in this ep queue */
824                 if (req->queue.next != &ep->queue) {
825                         struct mv_req *next_req;
826
827                         next_req = list_entry(req->queue.next,
828                                 struct mv_req, queue);
829
830                         /* Point the QH to the first TD of next request */
831                         mv_prime_ep(ep, next_req);
832                 } else {
833                         struct mv_dqh *qh;
834
835                         qh = ep->dqh;
836                         qh->next_dtd_ptr = 1;
837                         qh->size_ioc_int_sts = 0;
838                 }
839
840                 /* The request hasn't been processed, patch up the TD chain */
841         } else {
842                 struct mv_req *prev_req;
843
844                 prev_req = list_entry(req->queue.prev, struct mv_req, queue);
845                 writel(readl(&req->tail->dtd_next),
846                                 &prev_req->tail->dtd_next);
847
848         }
849
850         done(ep, req, -ECONNRESET);
851
852         /* Enable EP */
853 out:
854         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
855         if (ep_dir(ep) == EP_DIR_IN)
856                 epctrlx |= EPCTRL_TX_ENABLE;
857         else
858                 epctrlx |= EPCTRL_RX_ENABLE;
859         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
860         ep->stopped = stopped;
861
862         spin_unlock_irqrestore(&ep->udc->lock, flags);
863         return ret;
864 }
865
866 static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
867 {
868         u32 epctrlx;
869
870         epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
871
872         if (stall) {
873                 if (direction == EP_DIR_IN)
874                         epctrlx |= EPCTRL_TX_EP_STALL;
875                 else
876                         epctrlx |= EPCTRL_RX_EP_STALL;
877         } else {
878                 if (direction == EP_DIR_IN) {
879                         epctrlx &= ~EPCTRL_TX_EP_STALL;
880                         epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
881                 } else {
882                         epctrlx &= ~EPCTRL_RX_EP_STALL;
883                         epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
884                 }
885         }
886         writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
887 }
888
889 static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
890 {
891         u32 epctrlx;
892
893         epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
894
895         if (direction == EP_DIR_OUT)
896                 return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
897         else
898                 return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
899 }
900
901 static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
902 {
903         struct mv_ep *ep;
904         unsigned long flags = 0;
905         int status = 0;
906         struct mv_udc *udc;
907
908         ep = container_of(_ep, struct mv_ep, ep);
909         udc = ep->udc;
910         if (!_ep || !ep->ep.desc) {
911                 status = -EINVAL;
912                 goto out;
913         }
914
915         if (ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
916                 status = -EOPNOTSUPP;
917                 goto out;
918         }
919
920         /*
921          * Attempt to halt IN ep will fail if any transfer requests
922          * are still queue
923          */
924         if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
925                 status = -EAGAIN;
926                 goto out;
927         }
928
929         spin_lock_irqsave(&ep->udc->lock, flags);
930         ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
931         if (halt && wedge)
932                 ep->wedge = 1;
933         else if (!halt)
934                 ep->wedge = 0;
935         spin_unlock_irqrestore(&ep->udc->lock, flags);
936
937         if (ep->ep_num == 0) {
938                 udc->ep0_state = WAIT_FOR_SETUP;
939                 udc->ep0_dir = EP_DIR_OUT;
940         }
941 out:
942         return status;
943 }
944
945 static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
946 {
947         return mv_ep_set_halt_wedge(_ep, halt, 0);
948 }
949
950 static int mv_ep_set_wedge(struct usb_ep *_ep)
951 {
952         return mv_ep_set_halt_wedge(_ep, 1, 1);
953 }
954
955 static struct usb_ep_ops mv_ep_ops = {
956         .enable         = mv_ep_enable,
957         .disable        = mv_ep_disable,
958
959         .alloc_request  = mv_alloc_request,
960         .free_request   = mv_free_request,
961
962         .queue          = mv_ep_queue,
963         .dequeue        = mv_ep_dequeue,
964
965         .set_wedge      = mv_ep_set_wedge,
966         .set_halt       = mv_ep_set_halt,
967         .fifo_flush     = mv_ep_fifo_flush,     /* flush fifo */
968 };
969
970 static void udc_clock_enable(struct mv_udc *udc)
971 {
972         clk_prepare_enable(udc->clk);
973 }
974
975 static void udc_clock_disable(struct mv_udc *udc)
976 {
977         clk_disable_unprepare(udc->clk);
978 }
979
980 static void udc_stop(struct mv_udc *udc)
981 {
982         u32 tmp;
983
984         /* Disable interrupts */
985         tmp = readl(&udc->op_regs->usbintr);
986         tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
987                 USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
988         writel(tmp, &udc->op_regs->usbintr);
989
990         udc->stopped = 1;
991
992         /* Reset the Run the bit in the command register to stop VUSB */
993         tmp = readl(&udc->op_regs->usbcmd);
994         tmp &= ~USBCMD_RUN_STOP;
995         writel(tmp, &udc->op_regs->usbcmd);
996 }
997
998 static void udc_start(struct mv_udc *udc)
999 {
1000         u32 usbintr;
1001
1002         usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
1003                 | USBINTR_PORT_CHANGE_DETECT_EN
1004                 | USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
1005         /* Enable interrupts */
1006         writel(usbintr, &udc->op_regs->usbintr);
1007
1008         udc->stopped = 0;
1009
1010         /* Set the Run bit in the command register */
1011         writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
1012 }
1013
1014 static int udc_reset(struct mv_udc *udc)
1015 {
1016         unsigned int loops;
1017         u32 tmp, portsc;
1018
1019         /* Stop the controller */
1020         tmp = readl(&udc->op_regs->usbcmd);
1021         tmp &= ~USBCMD_RUN_STOP;
1022         writel(tmp, &udc->op_regs->usbcmd);
1023
1024         /* Reset the controller to get default values */
1025         writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
1026
1027         /* wait for reset to complete */
1028         loops = LOOPS(RESET_TIMEOUT);
1029         while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
1030                 if (loops == 0) {
1031                         dev_err(&udc->dev->dev,
1032                                 "Wait for RESET completed TIMEOUT\n");
1033                         return -ETIMEDOUT;
1034                 }
1035                 loops--;
1036                 udelay(LOOPS_USEC);
1037         }
1038
1039         /* set controller to device mode */
1040         tmp = readl(&udc->op_regs->usbmode);
1041         tmp |= USBMODE_CTRL_MODE_DEVICE;
1042
1043         /* turn setup lockout off, require setup tripwire in usbcmd */
1044         tmp |= USBMODE_SETUP_LOCK_OFF;
1045
1046         writel(tmp, &udc->op_regs->usbmode);
1047
1048         writel(0x0, &udc->op_regs->epsetupstat);
1049
1050         /* Configure the Endpoint List Address */
1051         writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
1052                 &udc->op_regs->eplistaddr);
1053
1054         portsc = readl(&udc->op_regs->portsc[0]);
1055         if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
1056                 portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
1057
1058         if (udc->force_fs)
1059                 portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
1060         else
1061                 portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
1062
1063         writel(portsc, &udc->op_regs->portsc[0]);
1064
1065         tmp = readl(&udc->op_regs->epctrlx[0]);
1066         tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
1067         writel(tmp, &udc->op_regs->epctrlx[0]);
1068
1069         return 0;
1070 }
1071
1072 static int mv_udc_enable_internal(struct mv_udc *udc)
1073 {
1074         int retval;
1075
1076         if (udc->active)
1077                 return 0;
1078
1079         dev_dbg(&udc->dev->dev, "enable udc\n");
1080         udc_clock_enable(udc);
1081         if (udc->pdata->phy_init) {
1082                 retval = udc->pdata->phy_init(udc->phy_regs);
1083                 if (retval) {
1084                         dev_err(&udc->dev->dev,
1085                                 "init phy error %d\n", retval);
1086                         udc_clock_disable(udc);
1087                         return retval;
1088                 }
1089         }
1090         udc->active = 1;
1091
1092         return 0;
1093 }
1094
1095 static int mv_udc_enable(struct mv_udc *udc)
1096 {
1097         if (udc->clock_gating)
1098                 return mv_udc_enable_internal(udc);
1099
1100         return 0;
1101 }
1102
1103 static void mv_udc_disable_internal(struct mv_udc *udc)
1104 {
1105         if (udc->active) {
1106                 dev_dbg(&udc->dev->dev, "disable udc\n");
1107                 if (udc->pdata->phy_deinit)
1108                         udc->pdata->phy_deinit(udc->phy_regs);
1109                 udc_clock_disable(udc);
1110                 udc->active = 0;
1111         }
1112 }
1113
1114 static void mv_udc_disable(struct mv_udc *udc)
1115 {
1116         if (udc->clock_gating)
1117                 mv_udc_disable_internal(udc);
1118 }
1119
1120 static int mv_udc_get_frame(struct usb_gadget *gadget)
1121 {
1122         struct mv_udc *udc;
1123         u16     retval;
1124
1125         if (!gadget)
1126                 return -ENODEV;
1127
1128         udc = container_of(gadget, struct mv_udc, gadget);
1129
1130         retval = readl(&udc->op_regs->frindex) & USB_FRINDEX_MASKS;
1131
1132         return retval;
1133 }
1134
1135 /* Tries to wake up the host connected to this gadget */
1136 static int mv_udc_wakeup(struct usb_gadget *gadget)
1137 {
1138         struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
1139         u32 portsc;
1140
1141         /* Remote wakeup feature not enabled by host */
1142         if (!udc->remote_wakeup)
1143                 return -ENOTSUPP;
1144
1145         portsc = readl(&udc->op_regs->portsc);
1146         /* not suspended? */
1147         if (!(portsc & PORTSCX_PORT_SUSPEND))
1148                 return 0;
1149         /* trigger force resume */
1150         portsc |= PORTSCX_PORT_FORCE_RESUME;
1151         writel(portsc, &udc->op_regs->portsc[0]);
1152         return 0;
1153 }
1154
1155 static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
1156 {
1157         struct mv_udc *udc;
1158         unsigned long flags;
1159         int retval = 0;
1160
1161         udc = container_of(gadget, struct mv_udc, gadget);
1162         spin_lock_irqsave(&udc->lock, flags);
1163
1164         udc->vbus_active = (is_active != 0);
1165
1166         dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1167                 __func__, udc->softconnect, udc->vbus_active);
1168
1169         if (udc->driver && udc->softconnect && udc->vbus_active) {
1170                 retval = mv_udc_enable(udc);
1171                 if (retval == 0) {
1172                         /* Clock is disabled, need re-init registers */
1173                         udc_reset(udc);
1174                         ep0_reset(udc);
1175                         udc_start(udc);
1176                 }
1177         } else if (udc->driver && udc->softconnect) {
1178                 if (!udc->active)
1179                         goto out;
1180
1181                 /* stop all the transfer in queue*/
1182                 stop_activity(udc, udc->driver);
1183                 udc_stop(udc);
1184                 mv_udc_disable(udc);
1185         }
1186
1187 out:
1188         spin_unlock_irqrestore(&udc->lock, flags);
1189         return retval;
1190 }
1191
1192 static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
1193 {
1194         struct mv_udc *udc;
1195         unsigned long flags;
1196         int retval = 0;
1197
1198         udc = container_of(gadget, struct mv_udc, gadget);
1199         spin_lock_irqsave(&udc->lock, flags);
1200
1201         udc->softconnect = (is_on != 0);
1202
1203         dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1204                         __func__, udc->softconnect, udc->vbus_active);
1205
1206         if (udc->driver && udc->softconnect && udc->vbus_active) {
1207                 retval = mv_udc_enable(udc);
1208                 if (retval == 0) {
1209                         /* Clock is disabled, need re-init registers */
1210                         udc_reset(udc);
1211                         ep0_reset(udc);
1212                         udc_start(udc);
1213                 }
1214         } else if (udc->driver && udc->vbus_active) {
1215                 /* stop all the transfer in queue*/
1216                 stop_activity(udc, udc->driver);
1217                 udc_stop(udc);
1218                 mv_udc_disable(udc);
1219         }
1220
1221         spin_unlock_irqrestore(&udc->lock, flags);
1222         return retval;
1223 }
1224
1225 static int mv_udc_start(struct usb_gadget *, struct usb_gadget_driver *);
1226 static int mv_udc_stop(struct usb_gadget *, struct usb_gadget_driver *);
1227 /* device controller usb_gadget_ops structure */
1228 static const struct usb_gadget_ops mv_ops = {
1229
1230         /* returns the current frame number */
1231         .get_frame      = mv_udc_get_frame,
1232
1233         /* tries to wake up the host connected to this gadget */
1234         .wakeup         = mv_udc_wakeup,
1235
1236         /* notify controller that VBUS is powered or not */
1237         .vbus_session   = mv_udc_vbus_session,
1238
1239         /* D+ pullup, software-controlled connect/disconnect to USB host */
1240         .pullup         = mv_udc_pullup,
1241         .udc_start      = mv_udc_start,
1242         .udc_stop       = mv_udc_stop,
1243 };
1244
1245 static int eps_init(struct mv_udc *udc)
1246 {
1247         struct mv_ep    *ep;
1248         char name[14];
1249         int i;
1250
1251         /* initialize ep0 */
1252         ep = &udc->eps[0];
1253         ep->udc = udc;
1254         strncpy(ep->name, "ep0", sizeof(ep->name));
1255         ep->ep.name = ep->name;
1256         ep->ep.ops = &mv_ep_ops;
1257         ep->wedge = 0;
1258         ep->stopped = 0;
1259         usb_ep_set_maxpacket_limit(&ep->ep, EP0_MAX_PKT_SIZE);
1260         ep->ep_num = 0;
1261         ep->ep.desc = &mv_ep0_desc;
1262         INIT_LIST_HEAD(&ep->queue);
1263
1264         ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
1265
1266         /* initialize other endpoints */
1267         for (i = 2; i < udc->max_eps * 2; i++) {
1268                 ep = &udc->eps[i];
1269                 if (i % 2) {
1270                         snprintf(name, sizeof(name), "ep%din", i / 2);
1271                         ep->direction = EP_DIR_IN;
1272                 } else {
1273                         snprintf(name, sizeof(name), "ep%dout", i / 2);
1274                         ep->direction = EP_DIR_OUT;
1275                 }
1276                 ep->udc = udc;
1277                 strncpy(ep->name, name, sizeof(ep->name));
1278                 ep->ep.name = ep->name;
1279
1280                 ep->ep.ops = &mv_ep_ops;
1281                 ep->stopped = 0;
1282                 usb_ep_set_maxpacket_limit(&ep->ep, (unsigned short) ~0);
1283                 ep->ep_num = i / 2;
1284
1285                 INIT_LIST_HEAD(&ep->queue);
1286                 list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1287
1288                 ep->dqh = &udc->ep_dqh[i];
1289         }
1290
1291         return 0;
1292 }
1293
1294 /* delete all endpoint requests, called with spinlock held */
1295 static void nuke(struct mv_ep *ep, int status)
1296 {
1297         /* called with spinlock held */
1298         ep->stopped = 1;
1299
1300         /* endpoint fifo flush */
1301         mv_ep_fifo_flush(&ep->ep);
1302
1303         while (!list_empty(&ep->queue)) {
1304                 struct mv_req *req = NULL;
1305                 req = list_entry(ep->queue.next, struct mv_req, queue);
1306                 done(ep, req, status);
1307         }
1308 }
1309
1310 /* stop all USB activities */
1311 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
1312 {
1313         struct mv_ep    *ep;
1314
1315         nuke(&udc->eps[0], -ESHUTDOWN);
1316
1317         list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1318                 nuke(ep, -ESHUTDOWN);
1319         }
1320
1321         /* report disconnect; the driver is already quiesced */
1322         if (driver) {
1323                 spin_unlock(&udc->lock);
1324                 driver->disconnect(&udc->gadget);
1325                 spin_lock(&udc->lock);
1326         }
1327 }
1328
1329 static int mv_udc_start(struct usb_gadget *gadget,
1330                 struct usb_gadget_driver *driver)
1331 {
1332         struct mv_udc *udc;
1333         int retval = 0;
1334         unsigned long flags;
1335
1336         udc = container_of(gadget, struct mv_udc, gadget);
1337
1338         if (udc->driver)
1339                 return -EBUSY;
1340
1341         spin_lock_irqsave(&udc->lock, flags);
1342
1343         /* hook up the driver ... */
1344         driver->driver.bus = NULL;
1345         udc->driver = driver;
1346
1347         udc->usb_state = USB_STATE_ATTACHED;
1348         udc->ep0_state = WAIT_FOR_SETUP;
1349         udc->ep0_dir = EP_DIR_OUT;
1350
1351         spin_unlock_irqrestore(&udc->lock, flags);
1352
1353         if (udc->transceiver) {
1354                 retval = otg_set_peripheral(udc->transceiver->otg,
1355                                         &udc->gadget);
1356                 if (retval) {
1357                         dev_err(&udc->dev->dev,
1358                                 "unable to register peripheral to otg\n");
1359                         udc->driver = NULL;
1360                         return retval;
1361                 }
1362         }
1363
1364         /* pullup is always on */
1365         mv_udc_pullup(&udc->gadget, 1);
1366
1367         /* When boot with cable attached, there will be no vbus irq occurred */
1368         if (udc->qwork)
1369                 queue_work(udc->qwork, &udc->vbus_work);
1370
1371         return 0;
1372 }
1373
1374 static int mv_udc_stop(struct usb_gadget *gadget,
1375                 struct usb_gadget_driver *driver)
1376 {
1377         struct mv_udc *udc;
1378         unsigned long flags;
1379
1380         udc = container_of(gadget, struct mv_udc, gadget);
1381
1382         spin_lock_irqsave(&udc->lock, flags);
1383
1384         mv_udc_enable(udc);
1385         udc_stop(udc);
1386
1387         /* stop all usb activities */
1388         udc->gadget.speed = USB_SPEED_UNKNOWN;
1389         stop_activity(udc, driver);
1390         mv_udc_disable(udc);
1391
1392         spin_unlock_irqrestore(&udc->lock, flags);
1393
1394         /* unbind gadget driver */
1395         udc->driver = NULL;
1396
1397         return 0;
1398 }
1399
1400 static void mv_set_ptc(struct mv_udc *udc, u32 mode)
1401 {
1402         u32 portsc;
1403
1404         portsc = readl(&udc->op_regs->portsc[0]);
1405         portsc |= mode << 16;
1406         writel(portsc, &udc->op_regs->portsc[0]);
1407 }
1408
1409 static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
1410 {
1411         struct mv_ep *mvep = container_of(ep, struct mv_ep, ep);
1412         struct mv_req *req = container_of(_req, struct mv_req, req);
1413         struct mv_udc *udc;
1414         unsigned long flags;
1415
1416         udc = mvep->udc;
1417
1418         dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
1419
1420         spin_lock_irqsave(&udc->lock, flags);
1421         if (req->test_mode) {
1422                 mv_set_ptc(udc, req->test_mode);
1423                 req->test_mode = 0;
1424         }
1425         spin_unlock_irqrestore(&udc->lock, flags);
1426 }
1427
1428 static int
1429 udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
1430 {
1431         int retval = 0;
1432         struct mv_req *req;
1433         struct mv_ep *ep;
1434
1435         ep = &udc->eps[0];
1436         udc->ep0_dir = direction;
1437         udc->ep0_state = WAIT_FOR_OUT_STATUS;
1438
1439         req = udc->status_req;
1440
1441         /* fill in the reqest structure */
1442         if (empty == false) {
1443                 *((u16 *) req->req.buf) = cpu_to_le16(status);
1444                 req->req.length = 2;
1445         } else
1446                 req->req.length = 0;
1447
1448         req->ep = ep;
1449         req->req.status = -EINPROGRESS;
1450         req->req.actual = 0;
1451         if (udc->test_mode) {
1452                 req->req.complete = prime_status_complete;
1453                 req->test_mode = udc->test_mode;
1454                 udc->test_mode = 0;
1455         } else
1456                 req->req.complete = NULL;
1457         req->dtd_count = 0;
1458
1459         if (req->req.dma == DMA_ADDR_INVALID) {
1460                 req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
1461                                 req->req.buf, req->req.length,
1462                                 ep_dir(ep) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1463                 req->mapped = 1;
1464         }
1465
1466         /* prime the data phase */
1467         if (!req_to_dtd(req)) {
1468                 retval = queue_dtd(ep, req);
1469                 if (retval) {
1470                         dev_err(&udc->dev->dev,
1471                                 "Failed to queue dtd when prime status\n");
1472                         goto out;
1473                 }
1474         } else{ /* no mem */
1475                 retval = -ENOMEM;
1476                 dev_err(&udc->dev->dev,
1477                         "Failed to dma_pool_alloc when prime status\n");
1478                 goto out;
1479         }
1480
1481         list_add_tail(&req->queue, &ep->queue);
1482
1483         return 0;
1484 out:
1485         usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
1486
1487         return retval;
1488 }
1489
1490 static void mv_udc_testmode(struct mv_udc *udc, u16 index)
1491 {
1492         if (index <= TEST_FORCE_EN) {
1493                 udc->test_mode = index;
1494                 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1495                         ep0_stall(udc);
1496         } else
1497                 dev_err(&udc->dev->dev,
1498                         "This test mode(%d) is not supported\n", index);
1499 }
1500
1501 static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1502 {
1503         udc->dev_addr = (u8)setup->wValue;
1504
1505         /* update usb state */
1506         udc->usb_state = USB_STATE_ADDRESS;
1507
1508         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1509                 ep0_stall(udc);
1510 }
1511
1512 static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
1513         struct usb_ctrlrequest *setup)
1514 {
1515         u16 status = 0;
1516         int retval;
1517
1518         if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
1519                 != (USB_DIR_IN | USB_TYPE_STANDARD))
1520                 return;
1521
1522         if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1523                 status = 1 << USB_DEVICE_SELF_POWERED;
1524                 status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
1525         } else if ((setup->bRequestType & USB_RECIP_MASK)
1526                         == USB_RECIP_INTERFACE) {
1527                 /* get interface status */
1528                 status = 0;
1529         } else if ((setup->bRequestType & USB_RECIP_MASK)
1530                         == USB_RECIP_ENDPOINT) {
1531                 u8 ep_num, direction;
1532
1533                 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1534                 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1535                                 ? EP_DIR_IN : EP_DIR_OUT;
1536                 status = ep_is_stall(udc, ep_num, direction)
1537                                 << USB_ENDPOINT_HALT;
1538         }
1539
1540         retval = udc_prime_status(udc, EP_DIR_IN, status, false);
1541         if (retval)
1542                 ep0_stall(udc);
1543         else
1544                 udc->ep0_state = DATA_STATE_XMIT;
1545 }
1546
1547 static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1548 {
1549         u8 ep_num;
1550         u8 direction;
1551         struct mv_ep *ep;
1552
1553         if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1554                 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1555                 switch (setup->wValue) {
1556                 case USB_DEVICE_REMOTE_WAKEUP:
1557                         udc->remote_wakeup = 0;
1558                         break;
1559                 default:
1560                         goto out;
1561                 }
1562         } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1563                 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1564                 switch (setup->wValue) {
1565                 case USB_ENDPOINT_HALT:
1566                         ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1567                         direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1568                                 ? EP_DIR_IN : EP_DIR_OUT;
1569                         if (setup->wValue != 0 || setup->wLength != 0
1570                                 || ep_num > udc->max_eps)
1571                                 goto out;
1572                         ep = &udc->eps[ep_num * 2 + direction];
1573                         if (ep->wedge == 1)
1574                                 break;
1575                         spin_unlock(&udc->lock);
1576                         ep_set_stall(udc, ep_num, direction, 0);
1577                         spin_lock(&udc->lock);
1578                         break;
1579                 default:
1580                         goto out;
1581                 }
1582         } else
1583                 goto out;
1584
1585         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1586                 ep0_stall(udc);
1587 out:
1588         return;
1589 }
1590
1591 static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1592 {
1593         u8 ep_num;
1594         u8 direction;
1595
1596         if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1597                 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1598                 switch (setup->wValue) {
1599                 case USB_DEVICE_REMOTE_WAKEUP:
1600                         udc->remote_wakeup = 1;
1601                         break;
1602                 case USB_DEVICE_TEST_MODE:
1603                         if (setup->wIndex & 0xFF
1604                                 ||  udc->gadget.speed != USB_SPEED_HIGH)
1605                                 ep0_stall(udc);
1606
1607                         if (udc->usb_state != USB_STATE_CONFIGURED
1608                                 && udc->usb_state != USB_STATE_ADDRESS
1609                                 && udc->usb_state != USB_STATE_DEFAULT)
1610                                 ep0_stall(udc);
1611
1612                         mv_udc_testmode(udc, (setup->wIndex >> 8));
1613                         goto out;
1614                 default:
1615                         goto out;
1616                 }
1617         } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1618                 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1619                 switch (setup->wValue) {
1620                 case USB_ENDPOINT_HALT:
1621                         ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1622                         direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1623                                 ? EP_DIR_IN : EP_DIR_OUT;
1624                         if (setup->wValue != 0 || setup->wLength != 0
1625                                 || ep_num > udc->max_eps)
1626                                 goto out;
1627                         spin_unlock(&udc->lock);
1628                         ep_set_stall(udc, ep_num, direction, 1);
1629                         spin_lock(&udc->lock);
1630                         break;
1631                 default:
1632                         goto out;
1633                 }
1634         } else
1635                 goto out;
1636
1637         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1638                 ep0_stall(udc);
1639 out:
1640         return;
1641 }
1642
1643 static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
1644         struct usb_ctrlrequest *setup)
1645         __releases(&ep->udc->lock)
1646         __acquires(&ep->udc->lock)
1647 {
1648         bool delegate = false;
1649
1650         nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
1651
1652         dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1653                         setup->bRequestType, setup->bRequest,
1654                         setup->wValue, setup->wIndex, setup->wLength);
1655         /* We process some standard setup requests here */
1656         if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1657                 switch (setup->bRequest) {
1658                 case USB_REQ_GET_STATUS:
1659                         ch9getstatus(udc, ep_num, setup);
1660                         break;
1661
1662                 case USB_REQ_SET_ADDRESS:
1663                         ch9setaddress(udc, setup);
1664                         break;
1665
1666                 case USB_REQ_CLEAR_FEATURE:
1667                         ch9clearfeature(udc, setup);
1668                         break;
1669
1670                 case USB_REQ_SET_FEATURE:
1671                         ch9setfeature(udc, setup);
1672                         break;
1673
1674                 default:
1675                         delegate = true;
1676                 }
1677         } else
1678                 delegate = true;
1679
1680         /* delegate USB standard requests to the gadget driver */
1681         if (delegate == true) {
1682                 /* USB requests handled by gadget */
1683                 if (setup->wLength) {
1684                         /* DATA phase from gadget, STATUS phase from udc */
1685                         udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
1686                                         ?  EP_DIR_IN : EP_DIR_OUT;
1687                         spin_unlock(&udc->lock);
1688                         if (udc->driver->setup(&udc->gadget,
1689                                 &udc->local_setup_buff) < 0)
1690                                 ep0_stall(udc);
1691                         spin_lock(&udc->lock);
1692                         udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
1693                                         ?  DATA_STATE_XMIT : DATA_STATE_RECV;
1694                 } else {
1695                         /* no DATA phase, IN STATUS phase from gadget */
1696                         udc->ep0_dir = EP_DIR_IN;
1697                         spin_unlock(&udc->lock);
1698                         if (udc->driver->setup(&udc->gadget,
1699                                 &udc->local_setup_buff) < 0)
1700                                 ep0_stall(udc);
1701                         spin_lock(&udc->lock);
1702                         udc->ep0_state = WAIT_FOR_OUT_STATUS;
1703                 }
1704         }
1705 }
1706
1707 /* complete DATA or STATUS phase of ep0 prime status phase if needed */
1708 static void ep0_req_complete(struct mv_udc *udc,
1709         struct mv_ep *ep0, struct mv_req *req)
1710 {
1711         u32 new_addr;
1712
1713         if (udc->usb_state == USB_STATE_ADDRESS) {
1714                 /* set the new address */
1715                 new_addr = (u32)udc->dev_addr;
1716                 writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
1717                         &udc->op_regs->deviceaddr);
1718         }
1719
1720         done(ep0, req, 0);
1721
1722         switch (udc->ep0_state) {
1723         case DATA_STATE_XMIT:
1724                 /* receive status phase */
1725                 if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
1726                         ep0_stall(udc);
1727                 break;
1728         case DATA_STATE_RECV:
1729                 /* send status phase */
1730                 if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
1731                         ep0_stall(udc);
1732                 break;
1733         case WAIT_FOR_OUT_STATUS:
1734                 udc->ep0_state = WAIT_FOR_SETUP;
1735                 break;
1736         case WAIT_FOR_SETUP:
1737                 dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
1738                 break;
1739         default:
1740                 ep0_stall(udc);
1741                 break;
1742         }
1743 }
1744
1745 static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
1746 {
1747         u32 temp;
1748         struct mv_dqh *dqh;
1749
1750         dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
1751
1752         /* Clear bit in ENDPTSETUPSTAT */
1753         writel((1 << ep_num), &udc->op_regs->epsetupstat);
1754
1755         /* while a hazard exists when setup package arrives */
1756         do {
1757                 /* Set Setup Tripwire */
1758                 temp = readl(&udc->op_regs->usbcmd);
1759                 writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1760
1761                 /* Copy the setup packet to local buffer */
1762                 memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
1763         } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
1764
1765         /* Clear Setup Tripwire */
1766         temp = readl(&udc->op_regs->usbcmd);
1767         writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1768 }
1769
1770 static void irq_process_tr_complete(struct mv_udc *udc)
1771 {
1772         u32 tmp, bit_pos;
1773         int i, ep_num = 0, direction = 0;
1774         struct mv_ep    *curr_ep;
1775         struct mv_req *curr_req, *temp_req;
1776         int status;
1777
1778         /*
1779          * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
1780          * because the setup packets are to be read ASAP
1781          */
1782
1783         /* Process all Setup packet received interrupts */
1784         tmp = readl(&udc->op_regs->epsetupstat);
1785
1786         if (tmp) {
1787                 for (i = 0; i < udc->max_eps; i++) {
1788                         if (tmp & (1 << i)) {
1789                                 get_setup_data(udc, i,
1790                                         (u8 *)(&udc->local_setup_buff));
1791                                 handle_setup_packet(udc, i,
1792                                         &udc->local_setup_buff);
1793                         }
1794                 }
1795         }
1796
1797         /* Don't clear the endpoint setup status register here.
1798          * It is cleared as a setup packet is read out of the buffer
1799          */
1800
1801         /* Process non-setup transaction complete interrupts */
1802         tmp = readl(&udc->op_regs->epcomplete);
1803
1804         if (!tmp)
1805                 return;
1806
1807         writel(tmp, &udc->op_regs->epcomplete);
1808
1809         for (i = 0; i < udc->max_eps * 2; i++) {
1810                 ep_num = i >> 1;
1811                 direction = i % 2;
1812
1813                 bit_pos = 1 << (ep_num + 16 * direction);
1814
1815                 if (!(bit_pos & tmp))
1816                         continue;
1817
1818                 if (i == 1)
1819                         curr_ep = &udc->eps[0];
1820                 else
1821                         curr_ep = &udc->eps[i];
1822                 /* process the req queue until an uncomplete request */
1823                 list_for_each_entry_safe(curr_req, temp_req,
1824                         &curr_ep->queue, queue) {
1825                         status = process_ep_req(udc, i, curr_req);
1826                         if (status)
1827                                 break;
1828
1829                         /* write back status to req */
1830                         curr_req->req.status = status;
1831
1832                         /* ep0 request completion */
1833                         if (ep_num == 0) {
1834                                 ep0_req_complete(udc, curr_ep, curr_req);
1835                                 break;
1836                         } else {
1837                                 done(curr_ep, curr_req, status);
1838                         }
1839                 }
1840         }
1841 }
1842
1843 static void irq_process_reset(struct mv_udc *udc)
1844 {
1845         u32 tmp;
1846         unsigned int loops;
1847
1848         udc->ep0_dir = EP_DIR_OUT;
1849         udc->ep0_state = WAIT_FOR_SETUP;
1850         udc->remote_wakeup = 0;         /* default to 0 on reset */
1851
1852         /* The address bits are past bit 25-31. Set the address */
1853         tmp = readl(&udc->op_regs->deviceaddr);
1854         tmp &= ~(USB_DEVICE_ADDRESS_MASK);
1855         writel(tmp, &udc->op_regs->deviceaddr);
1856
1857         /* Clear all the setup token semaphores */
1858         tmp = readl(&udc->op_regs->epsetupstat);
1859         writel(tmp, &udc->op_regs->epsetupstat);
1860
1861         /* Clear all the endpoint complete status bits */
1862         tmp = readl(&udc->op_regs->epcomplete);
1863         writel(tmp, &udc->op_regs->epcomplete);
1864
1865         /* wait until all endptprime bits cleared */
1866         loops = LOOPS(PRIME_TIMEOUT);
1867         while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
1868                 if (loops == 0) {
1869                         dev_err(&udc->dev->dev,
1870                                 "Timeout for ENDPTPRIME = 0x%x\n",
1871                                 readl(&udc->op_regs->epprime));
1872                         break;
1873                 }
1874                 loops--;
1875                 udelay(LOOPS_USEC);
1876         }
1877
1878         /* Write 1s to the Flush register */
1879         writel((u32)~0, &udc->op_regs->epflush);
1880
1881         if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
1882                 dev_info(&udc->dev->dev, "usb bus reset\n");
1883                 udc->usb_state = USB_STATE_DEFAULT;
1884                 /* reset all the queues, stop all USB activities */
1885                 stop_activity(udc, udc->driver);
1886         } else {
1887                 dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
1888                         readl(&udc->op_regs->portsc));
1889
1890                 /*
1891                  * re-initialize
1892                  * controller reset
1893                  */
1894                 udc_reset(udc);
1895
1896                 /* reset all the queues, stop all USB activities */
1897                 stop_activity(udc, udc->driver);
1898
1899                 /* reset ep0 dQH and endptctrl */
1900                 ep0_reset(udc);
1901
1902                 /* enable interrupt and set controller to run state */
1903                 udc_start(udc);
1904
1905                 udc->usb_state = USB_STATE_ATTACHED;
1906         }
1907 }
1908
1909 static void handle_bus_resume(struct mv_udc *udc)
1910 {
1911         udc->usb_state = udc->resume_state;
1912         udc->resume_state = 0;
1913
1914         /* report resume to the driver */
1915         if (udc->driver) {
1916                 if (udc->driver->resume) {
1917                         spin_unlock(&udc->lock);
1918                         udc->driver->resume(&udc->gadget);
1919                         spin_lock(&udc->lock);
1920                 }
1921         }
1922 }
1923
1924 static void irq_process_suspend(struct mv_udc *udc)
1925 {
1926         udc->resume_state = udc->usb_state;
1927         udc->usb_state = USB_STATE_SUSPENDED;
1928
1929         if (udc->driver->suspend) {
1930                 spin_unlock(&udc->lock);
1931                 udc->driver->suspend(&udc->gadget);
1932                 spin_lock(&udc->lock);
1933         }
1934 }
1935
1936 static void irq_process_port_change(struct mv_udc *udc)
1937 {
1938         u32 portsc;
1939
1940         portsc = readl(&udc->op_regs->portsc[0]);
1941         if (!(portsc & PORTSCX_PORT_RESET)) {
1942                 /* Get the speed */
1943                 u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
1944                 switch (speed) {
1945                 case PORTSCX_PORT_SPEED_HIGH:
1946                         udc->gadget.speed = USB_SPEED_HIGH;
1947                         break;
1948                 case PORTSCX_PORT_SPEED_FULL:
1949                         udc->gadget.speed = USB_SPEED_FULL;
1950                         break;
1951                 case PORTSCX_PORT_SPEED_LOW:
1952                         udc->gadget.speed = USB_SPEED_LOW;
1953                         break;
1954                 default:
1955                         udc->gadget.speed = USB_SPEED_UNKNOWN;
1956                         break;
1957                 }
1958         }
1959
1960         if (portsc & PORTSCX_PORT_SUSPEND) {
1961                 udc->resume_state = udc->usb_state;
1962                 udc->usb_state = USB_STATE_SUSPENDED;
1963                 if (udc->driver->suspend) {
1964                         spin_unlock(&udc->lock);
1965                         udc->driver->suspend(&udc->gadget);
1966                         spin_lock(&udc->lock);
1967                 }
1968         }
1969
1970         if (!(portsc & PORTSCX_PORT_SUSPEND)
1971                 && udc->usb_state == USB_STATE_SUSPENDED) {
1972                 handle_bus_resume(udc);
1973         }
1974
1975         if (!udc->resume_state)
1976                 udc->usb_state = USB_STATE_DEFAULT;
1977 }
1978
1979 static void irq_process_error(struct mv_udc *udc)
1980 {
1981         /* Increment the error count */
1982         udc->errors++;
1983 }
1984
1985 static irqreturn_t mv_udc_irq(int irq, void *dev)
1986 {
1987         struct mv_udc *udc = (struct mv_udc *)dev;
1988         u32 status, intr;
1989
1990         /* Disable ISR when stopped bit is set */
1991         if (udc->stopped)
1992                 return IRQ_NONE;
1993
1994         spin_lock(&udc->lock);
1995
1996         status = readl(&udc->op_regs->usbsts);
1997         intr = readl(&udc->op_regs->usbintr);
1998         status &= intr;
1999
2000         if (status == 0) {
2001                 spin_unlock(&udc->lock);
2002                 return IRQ_NONE;
2003         }
2004
2005         /* Clear all the interrupts occurred */
2006         writel(status, &udc->op_regs->usbsts);
2007
2008         if (status & USBSTS_ERR)
2009                 irq_process_error(udc);
2010
2011         if (status & USBSTS_RESET)
2012                 irq_process_reset(udc);
2013
2014         if (status & USBSTS_PORT_CHANGE)
2015                 irq_process_port_change(udc);
2016
2017         if (status & USBSTS_INT)
2018                 irq_process_tr_complete(udc);
2019
2020         if (status & USBSTS_SUSPEND)
2021                 irq_process_suspend(udc);
2022
2023         spin_unlock(&udc->lock);
2024
2025         return IRQ_HANDLED;
2026 }
2027
2028 static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
2029 {
2030         struct mv_udc *udc = (struct mv_udc *)dev;
2031
2032         /* polling VBUS and init phy may cause too much time*/
2033         if (udc->qwork)
2034                 queue_work(udc->qwork, &udc->vbus_work);
2035
2036         return IRQ_HANDLED;
2037 }
2038
2039 static void mv_udc_vbus_work(struct work_struct *work)
2040 {
2041         struct mv_udc *udc;
2042         unsigned int vbus;
2043
2044         udc = container_of(work, struct mv_udc, vbus_work);
2045         if (!udc->pdata->vbus)
2046                 return;
2047
2048         vbus = udc->pdata->vbus->poll();
2049         dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
2050
2051         if (vbus == VBUS_HIGH)
2052                 mv_udc_vbus_session(&udc->gadget, 1);
2053         else if (vbus == VBUS_LOW)
2054                 mv_udc_vbus_session(&udc->gadget, 0);
2055 }
2056
2057 /* release device structure */
2058 static void gadget_release(struct device *_dev)
2059 {
2060         struct mv_udc *udc;
2061
2062         udc = dev_get_drvdata(_dev);
2063
2064         complete(udc->done);
2065 }
2066
2067 static int mv_udc_remove(struct platform_device *pdev)
2068 {
2069         struct mv_udc *udc;
2070
2071         udc = platform_get_drvdata(pdev);
2072
2073         usb_del_gadget_udc(&udc->gadget);
2074
2075         if (udc->qwork) {
2076                 flush_workqueue(udc->qwork);
2077                 destroy_workqueue(udc->qwork);
2078         }
2079
2080         /* free memory allocated in probe */
2081         if (udc->dtd_pool)
2082                 dma_pool_destroy(udc->dtd_pool);
2083
2084         if (udc->ep_dqh)
2085                 dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2086                         udc->ep_dqh, udc->ep_dqh_dma);
2087
2088         mv_udc_disable(udc);
2089
2090         /* free dev, wait for the release() finished */
2091         wait_for_completion(udc->done);
2092
2093         return 0;
2094 }
2095
2096 static int mv_udc_probe(struct platform_device *pdev)
2097 {
2098         struct mv_usb_platform_data *pdata = dev_get_platdata(&pdev->dev);
2099         struct mv_udc *udc;
2100         int retval = 0;
2101         struct resource *r;
2102         size_t size;
2103
2104         if (pdata == NULL) {
2105                 dev_err(&pdev->dev, "missing platform_data\n");
2106                 return -ENODEV;
2107         }
2108
2109         udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2110         if (udc == NULL) {
2111                 dev_err(&pdev->dev, "failed to allocate memory for udc\n");
2112                 return -ENOMEM;
2113         }
2114
2115         udc->done = &release_done;
2116         udc->pdata = dev_get_platdata(&pdev->dev);
2117         spin_lock_init(&udc->lock);
2118
2119         udc->dev = pdev;
2120
2121         if (pdata->mode == MV_USB_MODE_OTG) {
2122                 udc->transceiver = devm_usb_get_phy(&pdev->dev,
2123                                         USB_PHY_TYPE_USB2);
2124                 if (IS_ERR(udc->transceiver)) {
2125                         retval = PTR_ERR(udc->transceiver);
2126
2127                         if (retval == -ENXIO)
2128                                 return retval;
2129
2130                         udc->transceiver = NULL;
2131                         return -EPROBE_DEFER;
2132                 }
2133         }
2134
2135         /* udc only have one sysclk. */
2136         udc->clk = devm_clk_get(&pdev->dev, NULL);
2137         if (IS_ERR(udc->clk))
2138                 return PTR_ERR(udc->clk);
2139
2140         r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
2141         if (r == NULL) {
2142                 dev_err(&pdev->dev, "no I/O memory resource defined\n");
2143                 return -ENODEV;
2144         }
2145
2146         udc->cap_regs = (struct mv_cap_regs __iomem *)
2147                 devm_ioremap(&pdev->dev, r->start, resource_size(r));
2148         if (udc->cap_regs == NULL) {
2149                 dev_err(&pdev->dev, "failed to map I/O memory\n");
2150                 return -EBUSY;
2151         }
2152
2153         r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
2154         if (r == NULL) {
2155                 dev_err(&pdev->dev, "no phy I/O memory resource defined\n");
2156                 return -ENODEV;
2157         }
2158
2159         udc->phy_regs = ioremap(r->start, resource_size(r));
2160         if (udc->phy_regs == NULL) {
2161                 dev_err(&pdev->dev, "failed to map phy I/O memory\n");
2162                 return -EBUSY;
2163         }
2164
2165         /* we will acces controller register, so enable the clk */
2166         retval = mv_udc_enable_internal(udc);
2167         if (retval)
2168                 return retval;
2169
2170         udc->op_regs =
2171                 (struct mv_op_regs __iomem *)((unsigned long)udc->cap_regs
2172                 + (readl(&udc->cap_regs->caplength_hciversion)
2173                         & CAPLENGTH_MASK));
2174         udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
2175
2176         /*
2177          * some platform will use usb to download image, it may not disconnect
2178          * usb gadget before loading kernel. So first stop udc here.
2179          */
2180         udc_stop(udc);
2181         writel(0xFFFFFFFF, &udc->op_regs->usbsts);
2182
2183         size = udc->max_eps * sizeof(struct mv_dqh) *2;
2184         size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
2185         udc->ep_dqh = dma_alloc_coherent(&pdev->dev, size,
2186                                         &udc->ep_dqh_dma, GFP_KERNEL);
2187
2188         if (udc->ep_dqh == NULL) {
2189                 dev_err(&pdev->dev, "allocate dQH memory failed\n");
2190                 retval = -ENOMEM;
2191                 goto err_disable_clock;
2192         }
2193         udc->ep_dqh_size = size;
2194
2195         /* create dTD dma_pool resource */
2196         udc->dtd_pool = dma_pool_create("mv_dtd",
2197                         &pdev->dev,
2198                         sizeof(struct mv_dtd),
2199                         DTD_ALIGNMENT,
2200                         DMA_BOUNDARY);
2201
2202         if (!udc->dtd_pool) {
2203                 retval = -ENOMEM;
2204                 goto err_free_dma;
2205         }
2206
2207         size = udc->max_eps * sizeof(struct mv_ep) *2;
2208         udc->eps = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
2209         if (udc->eps == NULL) {
2210                 dev_err(&pdev->dev, "allocate ep memory failed\n");
2211                 retval = -ENOMEM;
2212                 goto err_destroy_dma;
2213         }
2214
2215         /* initialize ep0 status request structure */
2216         udc->status_req = devm_kzalloc(&pdev->dev, sizeof(struct mv_req),
2217                                         GFP_KERNEL);
2218         if (!udc->status_req) {
2219                 dev_err(&pdev->dev, "allocate status_req memory failed\n");
2220                 retval = -ENOMEM;
2221                 goto err_destroy_dma;
2222         }
2223         INIT_LIST_HEAD(&udc->status_req->queue);
2224
2225         /* allocate a small amount of memory to get valid address */
2226         udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
2227         udc->status_req->req.dma = DMA_ADDR_INVALID;
2228
2229         udc->resume_state = USB_STATE_NOTATTACHED;
2230         udc->usb_state = USB_STATE_POWERED;
2231         udc->ep0_dir = EP_DIR_OUT;
2232         udc->remote_wakeup = 0;
2233
2234         r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
2235         if (r == NULL) {
2236                 dev_err(&pdev->dev, "no IRQ resource defined\n");
2237                 retval = -ENODEV;
2238                 goto err_destroy_dma;
2239         }
2240         udc->irq = r->start;
2241         if (devm_request_irq(&pdev->dev, udc->irq, mv_udc_irq,
2242                 IRQF_SHARED, driver_name, udc)) {
2243                 dev_err(&pdev->dev, "Request irq %d for UDC failed\n",
2244                         udc->irq);
2245                 retval = -ENODEV;
2246                 goto err_destroy_dma;
2247         }
2248
2249         /* initialize gadget structure */
2250         udc->gadget.ops = &mv_ops;      /* usb_gadget_ops */
2251         udc->gadget.ep0 = &udc->eps[0].ep;      /* gadget ep0 */
2252         INIT_LIST_HEAD(&udc->gadget.ep_list);   /* ep_list */
2253         udc->gadget.speed = USB_SPEED_UNKNOWN;  /* speed */
2254         udc->gadget.max_speed = USB_SPEED_HIGH; /* support dual speed */
2255
2256         /* the "gadget" abstracts/virtualizes the controller */
2257         udc->gadget.name = driver_name;         /* gadget name */
2258
2259         eps_init(udc);
2260
2261         /* VBUS detect: we can disable/enable clock on demand.*/
2262         if (udc->transceiver)
2263                 udc->clock_gating = 1;
2264         else if (pdata->vbus) {
2265                 udc->clock_gating = 1;
2266                 retval = devm_request_threaded_irq(&pdev->dev,
2267                                 pdata->vbus->irq, NULL,
2268                                 mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
2269                 if (retval) {
2270                         dev_info(&pdev->dev,
2271                                 "Can not request irq for VBUS, "
2272                                 "disable clock gating\n");
2273                         udc->clock_gating = 0;
2274                 }
2275
2276                 udc->qwork = create_singlethread_workqueue("mv_udc_queue");
2277                 if (!udc->qwork) {
2278                         dev_err(&pdev->dev, "cannot create workqueue\n");
2279                         retval = -ENOMEM;
2280                         goto err_destroy_dma;
2281                 }
2282
2283                 INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
2284         }
2285
2286         /*
2287          * When clock gating is supported, we can disable clk and phy.
2288          * If not, it means that VBUS detection is not supported, we
2289          * have to enable vbus active all the time to let controller work.
2290          */
2291         if (udc->clock_gating)
2292                 mv_udc_disable_internal(udc);
2293         else
2294                 udc->vbus_active = 1;
2295
2296         retval = usb_add_gadget_udc_release(&pdev->dev, &udc->gadget,
2297                         gadget_release);
2298         if (retval)
2299                 goto err_create_workqueue;
2300
2301         platform_set_drvdata(pdev, udc);
2302         dev_info(&pdev->dev, "successful probe UDC device %s clock gating.\n",
2303                 udc->clock_gating ? "with" : "without");
2304
2305         return 0;
2306
2307 err_create_workqueue:
2308         destroy_workqueue(udc->qwork);
2309 err_destroy_dma:
2310         dma_pool_destroy(udc->dtd_pool);
2311 err_free_dma:
2312         dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2313                         udc->ep_dqh, udc->ep_dqh_dma);
2314 err_disable_clock:
2315         mv_udc_disable_internal(udc);
2316
2317         return retval;
2318 }
2319
2320 #ifdef CONFIG_PM
2321 static int mv_udc_suspend(struct device *dev)
2322 {
2323         struct mv_udc *udc;
2324
2325         udc = dev_get_drvdata(dev);
2326
2327         /* if OTG is enabled, the following will be done in OTG driver*/
2328         if (udc->transceiver)
2329                 return 0;
2330
2331         if (udc->pdata->vbus && udc->pdata->vbus->poll)
2332                 if (udc->pdata->vbus->poll() == VBUS_HIGH) {
2333                         dev_info(&udc->dev->dev, "USB cable is connected!\n");
2334                         return -EAGAIN;
2335                 }
2336
2337         /*
2338          * only cable is unplugged, udc can suspend.
2339          * So do not care about clock_gating == 1.
2340          */
2341         if (!udc->clock_gating) {
2342                 udc_stop(udc);
2343
2344                 spin_lock_irq(&udc->lock);
2345                 /* stop all usb activities */
2346                 stop_activity(udc, udc->driver);
2347                 spin_unlock_irq(&udc->lock);
2348
2349                 mv_udc_disable_internal(udc);
2350         }
2351
2352         return 0;
2353 }
2354
2355 static int mv_udc_resume(struct device *dev)
2356 {
2357         struct mv_udc *udc;
2358         int retval;
2359
2360         udc = dev_get_drvdata(dev);
2361
2362         /* if OTG is enabled, the following will be done in OTG driver*/
2363         if (udc->transceiver)
2364                 return 0;
2365
2366         if (!udc->clock_gating) {
2367                 retval = mv_udc_enable_internal(udc);
2368                 if (retval)
2369                         return retval;
2370
2371                 if (udc->driver && udc->softconnect) {
2372                         udc_reset(udc);
2373                         ep0_reset(udc);
2374                         udc_start(udc);
2375                 }
2376         }
2377
2378         return 0;
2379 }
2380
2381 static const struct dev_pm_ops mv_udc_pm_ops = {
2382         .suspend        = mv_udc_suspend,
2383         .resume         = mv_udc_resume,
2384 };
2385 #endif
2386
2387 static void mv_udc_shutdown(struct platform_device *pdev)
2388 {
2389         struct mv_udc *udc;
2390         u32 mode;
2391
2392         udc = platform_get_drvdata(pdev);
2393         /* reset controller mode to IDLE */
2394         mv_udc_enable(udc);
2395         mode = readl(&udc->op_regs->usbmode);
2396         mode &= ~3;
2397         writel(mode, &udc->op_regs->usbmode);
2398         mv_udc_disable(udc);
2399 }
2400
2401 static struct platform_driver udc_driver = {
2402         .probe          = mv_udc_probe,
2403         .remove         = mv_udc_remove,
2404         .shutdown       = mv_udc_shutdown,
2405         .driver         = {
2406                 .owner  = THIS_MODULE,
2407                 .name   = "mv-udc",
2408 #ifdef CONFIG_PM
2409                 .pm     = &mv_udc_pm_ops,
2410 #endif
2411         },
2412 };
2413
2414 module_platform_driver(udc_driver);
2415 MODULE_ALIAS("platform:mv-udc");
2416 MODULE_DESCRIPTION(DRIVER_DESC);
2417 MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
2418 MODULE_VERSION(DRIVER_VERSION);
2419 MODULE_LICENSE("GPL");