usb/host/fotg210: remove KERN_WARNING from pr_warn
[firefly-linux-kernel-4.4.55.git] / drivers / usb / host / fotg210-hcd.c
1 /* Faraday FOTG210 EHCI-like driver
2  *
3  * Copyright (c) 2013 Faraday Technology Corporation
4  *
5  * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
6  *         Feng-Hsin Chiang <john453@faraday-tech.com>
7  *         Po-Yu Chuang <ratbert.chuang@gmail.com>
8  *
9  * Most of code borrowed from the Linux-3.7 EHCI driver
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2 of the License, or (at your
14  * option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
18  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
19  * for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software Foundation,
23  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25 #include <linux/module.h>
26 #include <linux/device.h>
27 #include <linux/dmapool.h>
28 #include <linux/kernel.h>
29 #include <linux/delay.h>
30 #include <linux/ioport.h>
31 #include <linux/sched.h>
32 #include <linux/vmalloc.h>
33 #include <linux/errno.h>
34 #include <linux/init.h>
35 #include <linux/hrtimer.h>
36 #include <linux/list.h>
37 #include <linux/interrupt.h>
38 #include <linux/usb.h>
39 #include <linux/usb/hcd.h>
40 #include <linux/moduleparam.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/debugfs.h>
43 #include <linux/slab.h>
44 #include <linux/uaccess.h>
45 #include <linux/platform_device.h>
46 #include <linux/io.h>
47
48 #include <asm/byteorder.h>
49 #include <asm/irq.h>
50 #include <asm/unaligned.h>
51
52 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
53 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
54 static const char hcd_name[] = "fotg210_hcd";
55
56 #undef FOTG210_URB_TRACE
57 #define FOTG210_STATS
58
59 /* magic numbers that can affect system performance */
60 #define FOTG210_TUNE_CERR       3 /* 0-3 qtd retries; 0 == don't stop */
61 #define FOTG210_TUNE_RL_HS      4 /* nak throttle; see 4.9 */
62 #define FOTG210_TUNE_RL_TT      0
63 #define FOTG210_TUNE_MULT_HS    1 /* 1-3 transactions/uframe; 4.10.3 */
64 #define FOTG210_TUNE_MULT_TT    1
65
66 /* Some drivers think it's safe to schedule isochronous transfers more than 256
67  * ms into the future (partly as a result of an old bug in the scheduling
68  * code).  In an attempt to avoid trouble, we will use a minimum scheduling
69  * length of 512 frames instead of 256.
70  */
71 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
72
73 /* Initial IRQ latency:  faster than hw default */
74 static int log2_irq_thresh; /* 0 to 6 */
75 module_param(log2_irq_thresh, int, S_IRUGO);
76 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
77
78 /* initial park setting:  slower than hw default */
79 static unsigned park;
80 module_param(park, uint, S_IRUGO);
81 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
82
83 /* for link power management(LPM) feature */
84 static unsigned int hird;
85 module_param(hird, int, S_IRUGO);
86 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
87
88 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
89
90 #include "fotg210.h"
91
92 #define fotg210_dbg(fotg210, fmt, args...) \
93         dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
94 #define fotg210_err(fotg210, fmt, args...) \
95         dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
96 #define fotg210_info(fotg210, fmt, args...) \
97         dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
98 #define fotg210_warn(fotg210, fmt, args...) \
99         dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
100
101 /* check the values in the HCSPARAMS register (host controller _Structural_
102  * parameters) see EHCI spec, Table 2-4 for each value
103  */
104 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
105 {
106         u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
107
108         fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
109                         HCS_N_PORTS(params));
110 }
111
112 /* check the values in the HCCPARAMS register (host controller _Capability_
113  * parameters) see EHCI Spec, Table 2-5 for each value
114  */
115 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
116 {
117         u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
118
119         fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
120                         params,
121                         HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
122                         HCC_CANPARK(params) ? " park" : "");
123 }
124
125 static void __maybe_unused
126 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
127 {
128         fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
129                         hc32_to_cpup(fotg210, &qtd->hw_next),
130                         hc32_to_cpup(fotg210, &qtd->hw_alt_next),
131                         hc32_to_cpup(fotg210, &qtd->hw_token),
132                         hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
133         if (qtd->hw_buf[1])
134                 fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
135                                 hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
136                                 hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
137                                 hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
138                                 hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
139 }
140
141 static void __maybe_unused
142 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
143 {
144         struct fotg210_qh_hw *hw = qh->hw;
145
146         fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
147                         hw->hw_next, hw->hw_info1, hw->hw_info2,
148                         hw->hw_current);
149
150         dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
151 }
152
153 static void __maybe_unused
154 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
155 {
156         fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
157                         itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
158                         itd->urb);
159
160         fotg210_dbg(fotg210,
161                         "  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
162                         hc32_to_cpu(fotg210, itd->hw_transaction[0]),
163                         hc32_to_cpu(fotg210, itd->hw_transaction[1]),
164                         hc32_to_cpu(fotg210, itd->hw_transaction[2]),
165                         hc32_to_cpu(fotg210, itd->hw_transaction[3]),
166                         hc32_to_cpu(fotg210, itd->hw_transaction[4]),
167                         hc32_to_cpu(fotg210, itd->hw_transaction[5]),
168                         hc32_to_cpu(fotg210, itd->hw_transaction[6]),
169                         hc32_to_cpu(fotg210, itd->hw_transaction[7]));
170
171         fotg210_dbg(fotg210,
172                         "  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
173                         hc32_to_cpu(fotg210, itd->hw_bufp[0]),
174                         hc32_to_cpu(fotg210, itd->hw_bufp[1]),
175                         hc32_to_cpu(fotg210, itd->hw_bufp[2]),
176                         hc32_to_cpu(fotg210, itd->hw_bufp[3]),
177                         hc32_to_cpu(fotg210, itd->hw_bufp[4]),
178                         hc32_to_cpu(fotg210, itd->hw_bufp[5]),
179                         hc32_to_cpu(fotg210, itd->hw_bufp[6]));
180
181         fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
182                         itd->index[0], itd->index[1], itd->index[2],
183                         itd->index[3], itd->index[4], itd->index[5],
184                         itd->index[6], itd->index[7]);
185 }
186
187 static int __maybe_unused
188 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
189 {
190         return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
191                         label, label[0] ? " " : "", status,
192                         (status & STS_ASS) ? " Async" : "",
193                         (status & STS_PSS) ? " Periodic" : "",
194                         (status & STS_RECL) ? " Recl" : "",
195                         (status & STS_HALT) ? " Halt" : "",
196                         (status & STS_IAA) ? " IAA" : "",
197                         (status & STS_FATAL) ? " FATAL" : "",
198                         (status & STS_FLR) ? " FLR" : "",
199                         (status & STS_PCD) ? " PCD" : "",
200                         (status & STS_ERR) ? " ERR" : "",
201                         (status & STS_INT) ? " INT" : "");
202 }
203
204 static int __maybe_unused
205 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
206 {
207         return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
208                         label, label[0] ? " " : "", enable,
209                         (enable & STS_IAA) ? " IAA" : "",
210                         (enable & STS_FATAL) ? " FATAL" : "",
211                         (enable & STS_FLR) ? " FLR" : "",
212                         (enable & STS_PCD) ? " PCD" : "",
213                         (enable & STS_ERR) ? " ERR" : "",
214                         (enable & STS_INT) ? " INT" : "");
215 }
216
217 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
218
219 static int dbg_command_buf(char *buf, unsigned len, const char *label,
220                 u32 command)
221 {
222         return scnprintf(buf, len,
223                         "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
224                         label, label[0] ? " " : "", command,
225                         (command & CMD_PARK) ? " park" : "(park)",
226                         CMD_PARK_CNT(command),
227                         (command >> 16) & 0x3f,
228                         (command & CMD_IAAD) ? " IAAD" : "",
229                         (command & CMD_ASE) ? " Async" : "",
230                         (command & CMD_PSE) ? " Periodic" : "",
231                         fls_strings[(command >> 2) & 0x3],
232                         (command & CMD_RESET) ? " Reset" : "",
233                         (command & CMD_RUN) ? "RUN" : "HALT");
234 }
235
236 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
237                 u32 status)
238 {
239         char *sig;
240
241         /* signaling state */
242         switch (status & (3 << 10)) {
243         case 0 << 10:
244                 sig = "se0";
245                 break;
246         case 1 << 10:
247                 sig = "k";
248                 break; /* low speed */
249         case 2 << 10:
250                 sig = "j";
251                 break;
252         default:
253                 sig = "?";
254                 break;
255         }
256
257         scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
258                         label, label[0] ? " " : "", port, status,
259                         status >> 25, /*device address */
260                         sig,
261                         (status & PORT_RESET) ? " RESET" : "",
262                         (status & PORT_SUSPEND) ? " SUSPEND" : "",
263                         (status & PORT_RESUME) ? " RESUME" : "",
264                         (status & PORT_PEC) ? " PEC" : "",
265                         (status & PORT_PE) ? " PE" : "",
266                         (status & PORT_CSC) ? " CSC" : "",
267                         (status & PORT_CONNECT) ? " CONNECT" : "");
268
269         return buf;
270 }
271
272 /* functions have the "wrong" filename when they're output... */
273 #define dbg_status(fotg210, label, status) {                    \
274         char _buf[80];                                          \
275         dbg_status_buf(_buf, sizeof(_buf), label, status);      \
276         fotg210_dbg(fotg210, "%s\n", _buf);                     \
277 }
278
279 #define dbg_cmd(fotg210, label, command) {                      \
280         char _buf[80];                                          \
281         dbg_command_buf(_buf, sizeof(_buf), label, command);    \
282         fotg210_dbg(fotg210, "%s\n", _buf);                     \
283 }
284
285 #define dbg_port(fotg210, label, port, status) {                               \
286         char _buf[80];                                                         \
287         fotg210_dbg(fotg210, "%s\n",                                           \
288                         dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
289 }
290
291 /* troubleshooting help: expose state in debugfs */
292 static int debug_async_open(struct inode *, struct file *);
293 static int debug_periodic_open(struct inode *, struct file *);
294 static int debug_registers_open(struct inode *, struct file *);
295 static int debug_async_open(struct inode *, struct file *);
296
297 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
298 static int debug_close(struct inode *, struct file *);
299
300 static const struct file_operations debug_async_fops = {
301         .owner          = THIS_MODULE,
302         .open           = debug_async_open,
303         .read           = debug_output,
304         .release        = debug_close,
305         .llseek         = default_llseek,
306 };
307 static const struct file_operations debug_periodic_fops = {
308         .owner          = THIS_MODULE,
309         .open           = debug_periodic_open,
310         .read           = debug_output,
311         .release        = debug_close,
312         .llseek         = default_llseek,
313 };
314 static const struct file_operations debug_registers_fops = {
315         .owner          = THIS_MODULE,
316         .open           = debug_registers_open,
317         .read           = debug_output,
318         .release        = debug_close,
319         .llseek         = default_llseek,
320 };
321
322 static struct dentry *fotg210_debug_root;
323
324 struct debug_buffer {
325         ssize_t (*fill_func)(struct debug_buffer *);    /* fill method */
326         struct usb_bus *bus;
327         struct mutex mutex;     /* protect filling of buffer */
328         size_t count;           /* number of characters filled into buffer */
329         char *output_buf;
330         size_t alloc_size;
331 };
332
333 #define speed_char(info1)({ char tmp; \
334                 switch (info1 & (3 << 12)) { \
335                 case QH_FULL_SPEED:     \
336                         tmp = 'f'; break; \
337                 case QH_LOW_SPEED:      \
338                         tmp = 'l'; break; \
339                 case QH_HIGH_SPEED:     \
340                         tmp = 'h'; break; \
341                 default:                \
342                         tmp = '?'; break; \
343                 } tmp; })
344
345 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
346 {
347         __u32 v = hc32_to_cpu(fotg210, token);
348
349         if (v & QTD_STS_ACTIVE)
350                 return '*';
351         if (v & QTD_STS_HALT)
352                 return '-';
353         if (!IS_SHORT_READ(v))
354                 return ' ';
355         /* tries to advance through hw_alt_next */
356         return '/';
357 }
358
359 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
360                 char **nextp, unsigned *sizep)
361 {
362         u32 scratch;
363         u32 hw_curr;
364         struct fotg210_qtd *td;
365         unsigned temp;
366         unsigned size = *sizep;
367         char *next = *nextp;
368         char mark;
369         __le32 list_end = FOTG210_LIST_END(fotg210);
370         struct fotg210_qh_hw *hw = qh->hw;
371
372         if (hw->hw_qtd_next == list_end) /* NEC does this */
373                 mark = '@';
374         else
375                 mark = token_mark(fotg210, hw->hw_token);
376         if (mark == '/') { /* qh_alt_next controls qh advance? */
377                 if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
378                     fotg210->async->hw->hw_alt_next)
379                         mark = '#'; /* blocked */
380                 else if (hw->hw_alt_next == list_end)
381                         mark = '.'; /* use hw_qtd_next */
382                 /* else alt_next points to some other qtd */
383         }
384         scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
385         hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
386         temp = scnprintf(next, size,
387                         "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
388                         qh, scratch & 0x007f,
389                         speed_char(scratch),
390                         (scratch >> 8) & 0x000f,
391                         scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
392                         hc32_to_cpup(fotg210, &hw->hw_token), mark,
393                         (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
394                                 ? "data1" : "data0",
395                         (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
396         size -= temp;
397         next += temp;
398
399         /* hc may be modifying the list as we read it ... */
400         list_for_each_entry(td, &qh->qtd_list, qtd_list) {
401                 scratch = hc32_to_cpup(fotg210, &td->hw_token);
402                 mark = ' ';
403                 if (hw_curr == td->qtd_dma)
404                         mark = '*';
405                 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
406                         mark = '+';
407                 else if (QTD_LENGTH(scratch)) {
408                         if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
409                                 mark = '#';
410                         else if (td->hw_alt_next != list_end)
411                                 mark = '/';
412                 }
413                 temp = snprintf(next, size,
414                                 "\n\t%p%c%s len=%d %08x urb %p",
415                                 td, mark, ({ char *tmp;
416                                  switch ((scratch>>8)&0x03) {
417                                  case 0:
418                                         tmp = "out";
419                                         break;
420                                  case 1:
421                                         tmp = "in";
422                                         break;
423                                  case 2:
424                                         tmp = "setup";
425                                         break;
426                                  default:
427                                         tmp = "?";
428                                         break;
429                                  } tmp; }),
430                                 (scratch >> 16) & 0x7fff,
431                                 scratch,
432                                 td->urb);
433                 if (size < temp)
434                         temp = size;
435                 size -= temp;
436                 next += temp;
437                 if (temp == size)
438                         goto done;
439         }
440
441         temp = snprintf(next, size, "\n");
442         if (size < temp)
443                 temp = size;
444
445         size -= temp;
446         next += temp;
447
448 done:
449         *sizep = size;
450         *nextp = next;
451 }
452
453 static ssize_t fill_async_buffer(struct debug_buffer *buf)
454 {
455         struct usb_hcd *hcd;
456         struct fotg210_hcd *fotg210;
457         unsigned long flags;
458         unsigned temp, size;
459         char *next;
460         struct fotg210_qh *qh;
461
462         hcd = bus_to_hcd(buf->bus);
463         fotg210 = hcd_to_fotg210(hcd);
464         next = buf->output_buf;
465         size = buf->alloc_size;
466
467         *next = 0;
468
469         /* dumps a snapshot of the async schedule.
470          * usually empty except for long-term bulk reads, or head.
471          * one QH per line, and TDs we know about
472          */
473         spin_lock_irqsave(&fotg210->lock, flags);
474         for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
475                         qh = qh->qh_next.qh)
476                 qh_lines(fotg210, qh, &next, &size);
477         if (fotg210->async_unlink && size > 0) {
478                 temp = scnprintf(next, size, "\nunlink =\n");
479                 size -= temp;
480                 next += temp;
481
482                 for (qh = fotg210->async_unlink; size > 0 && qh;
483                                 qh = qh->unlink_next)
484                         qh_lines(fotg210, qh, &next, &size);
485         }
486         spin_unlock_irqrestore(&fotg210->lock, flags);
487
488         return strlen(buf->output_buf);
489 }
490
491 #define DBG_SCHED_LIMIT 64
492 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
493 {
494         struct usb_hcd *hcd;
495         struct fotg210_hcd *fotg210;
496         unsigned long flags;
497         union fotg210_shadow p, *seen;
498         unsigned temp, size, seen_count;
499         char *next;
500         unsigned i;
501         __hc32 tag;
502
503         seen = kmalloc(DBG_SCHED_LIMIT * sizeof(*seen), GFP_ATOMIC);
504         if (!seen)
505                 return 0;
506
507         seen_count = 0;
508
509         hcd = bus_to_hcd(buf->bus);
510         fotg210 = hcd_to_fotg210(hcd);
511         next = buf->output_buf;
512         size = buf->alloc_size;
513
514         temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
515         size -= temp;
516         next += temp;
517
518         /* dump a snapshot of the periodic schedule.
519          * iso changes, interrupt usually doesn't.
520          */
521         spin_lock_irqsave(&fotg210->lock, flags);
522         for (i = 0; i < fotg210->periodic_size; i++) {
523                 p = fotg210->pshadow[i];
524                 if (likely(!p.ptr))
525                         continue;
526
527                 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
528
529                 temp = scnprintf(next, size, "%4d: ", i);
530                 size -= temp;
531                 next += temp;
532
533                 do {
534                         struct fotg210_qh_hw *hw;
535
536                         switch (hc32_to_cpu(fotg210, tag)) {
537                         case Q_TYPE_QH:
538                                 hw = p.qh->hw;
539                                 temp = scnprintf(next, size, " qh%d-%04x/%p",
540                                                 p.qh->period,
541                                                 hc32_to_cpup(fotg210,
542                                                         &hw->hw_info2)
543                                                         /* uframe masks */
544                                                         & (QH_CMASK | QH_SMASK),
545                                                 p.qh);
546                                 size -= temp;
547                                 next += temp;
548                                 /* don't repeat what follows this qh */
549                                 for (temp = 0; temp < seen_count; temp++) {
550                                         if (seen[temp].ptr != p.ptr)
551                                                 continue;
552                                         if (p.qh->qh_next.ptr) {
553                                                 temp = scnprintf(next, size,
554                                                                 " ...");
555                                                 size -= temp;
556                                                 next += temp;
557                                         }
558                                         break;
559                                 }
560                                 /* show more info the first time around */
561                                 if (temp == seen_count) {
562                                         u32 scratch = hc32_to_cpup(fotg210,
563                                                         &hw->hw_info1);
564                                         struct fotg210_qtd *qtd;
565                                         char *type = "";
566
567                                         /* count tds, get ep direction */
568                                         temp = 0;
569                                         list_for_each_entry(qtd,
570                                                         &p.qh->qtd_list,
571                                                         qtd_list) {
572                                                 temp++;
573                                                 switch (0x03 & (hc32_to_cpu(
574                                                         fotg210,
575                                                         qtd->hw_token) >> 8)) {
576                                                 case 0:
577                                                         type = "out";
578                                                         continue;
579                                                 case 1:
580                                                         type = "in";
581                                                         continue;
582                                                 }
583                                         }
584
585                                         temp = scnprintf(next, size,
586                                                 "(%c%d ep%d%s [%d/%d] q%d p%d)",
587                                                 speed_char(scratch),
588                                                 scratch & 0x007f,
589                                                 (scratch >> 8) & 0x000f, type,
590                                                 p.qh->usecs, p.qh->c_usecs,
591                                                 temp,
592                                                 0x7ff & (scratch >> 16));
593
594                                         if (seen_count < DBG_SCHED_LIMIT)
595                                                 seen[seen_count++].qh = p.qh;
596                                 } else
597                                         temp = 0;
598                                 tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
599                                 p = p.qh->qh_next;
600                                 break;
601                         case Q_TYPE_FSTN:
602                                 temp = scnprintf(next, size,
603                                                 " fstn-%8x/%p",
604                                                 p.fstn->hw_prev, p.fstn);
605                                 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
606                                 p = p.fstn->fstn_next;
607                                 break;
608                         case Q_TYPE_ITD:
609                                 temp = scnprintf(next, size,
610                                                 " itd/%p", p.itd);
611                                 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
612                                 p = p.itd->itd_next;
613                                 break;
614                         }
615                         size -= temp;
616                         next += temp;
617                 } while (p.ptr);
618
619                 temp = scnprintf(next, size, "\n");
620                 size -= temp;
621                 next += temp;
622         }
623         spin_unlock_irqrestore(&fotg210->lock, flags);
624         kfree(seen);
625
626         return buf->alloc_size - size;
627 }
628 #undef DBG_SCHED_LIMIT
629
630 static const char *rh_state_string(struct fotg210_hcd *fotg210)
631 {
632         switch (fotg210->rh_state) {
633         case FOTG210_RH_HALTED:
634                 return "halted";
635         case FOTG210_RH_SUSPENDED:
636                 return "suspended";
637         case FOTG210_RH_RUNNING:
638                 return "running";
639         case FOTG210_RH_STOPPING:
640                 return "stopping";
641         }
642         return "?";
643 }
644
645 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
646 {
647         struct usb_hcd *hcd;
648         struct fotg210_hcd *fotg210;
649         unsigned long flags;
650         unsigned temp, size, i;
651         char *next, scratch[80];
652         static const char fmt[] = "%*s\n";
653         static const char label[] = "";
654
655         hcd = bus_to_hcd(buf->bus);
656         fotg210 = hcd_to_fotg210(hcd);
657         next = buf->output_buf;
658         size = buf->alloc_size;
659
660         spin_lock_irqsave(&fotg210->lock, flags);
661
662         if (!HCD_HW_ACCESSIBLE(hcd)) {
663                 size = scnprintf(next, size,
664                                 "bus %s, device %s\n"
665                                 "%s\n"
666                                 "SUSPENDED(no register access)\n",
667                                 hcd->self.controller->bus->name,
668                                 dev_name(hcd->self.controller),
669                                 hcd->product_desc);
670                 goto done;
671         }
672
673         /* Capability Registers */
674         i = HC_VERSION(fotg210, fotg210_readl(fotg210,
675                         &fotg210->caps->hc_capbase));
676         temp = scnprintf(next, size,
677                         "bus %s, device %s\n"
678                         "%s\n"
679                         "EHCI %x.%02x, rh state %s\n",
680                         hcd->self.controller->bus->name,
681                         dev_name(hcd->self.controller),
682                         hcd->product_desc,
683                         i >> 8, i & 0x0ff, rh_state_string(fotg210));
684         size -= temp;
685         next += temp;
686
687         /* FIXME interpret both types of params */
688         i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
689         temp = scnprintf(next, size, "structural params 0x%08x\n", i);
690         size -= temp;
691         next += temp;
692
693         i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
694         temp = scnprintf(next, size, "capability params 0x%08x\n", i);
695         size -= temp;
696         next += temp;
697
698         /* Operational Registers */
699         temp = dbg_status_buf(scratch, sizeof(scratch), label,
700                         fotg210_readl(fotg210, &fotg210->regs->status));
701         temp = scnprintf(next, size, fmt, temp, scratch);
702         size -= temp;
703         next += temp;
704
705         temp = dbg_command_buf(scratch, sizeof(scratch), label,
706                         fotg210_readl(fotg210, &fotg210->regs->command));
707         temp = scnprintf(next, size, fmt, temp, scratch);
708         size -= temp;
709         next += temp;
710
711         temp = dbg_intr_buf(scratch, sizeof(scratch), label,
712                         fotg210_readl(fotg210, &fotg210->regs->intr_enable));
713         temp = scnprintf(next, size, fmt, temp, scratch);
714         size -= temp;
715         next += temp;
716
717         temp = scnprintf(next, size, "uframe %04x\n",
718                         fotg210_read_frame_index(fotg210));
719         size -= temp;
720         next += temp;
721
722         if (fotg210->async_unlink) {
723                 temp = scnprintf(next, size, "async unlink qh %p\n",
724                                 fotg210->async_unlink);
725                 size -= temp;
726                 next += temp;
727         }
728
729 #ifdef FOTG210_STATS
730         temp = scnprintf(next, size,
731                         "irq normal %ld err %ld iaa %ld(lost %ld)\n",
732                         fotg210->stats.normal, fotg210->stats.error,
733                         fotg210->stats.iaa, fotg210->stats.lost_iaa);
734         size -= temp;
735         next += temp;
736
737         temp = scnprintf(next, size, "complete %ld unlink %ld\n",
738                         fotg210->stats.complete, fotg210->stats.unlink);
739         size -= temp;
740         next += temp;
741 #endif
742
743 done:
744         spin_unlock_irqrestore(&fotg210->lock, flags);
745
746         return buf->alloc_size - size;
747 }
748
749 static struct debug_buffer
750 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
751 {
752         struct debug_buffer *buf;
753
754         buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
755
756         if (buf) {
757                 buf->bus = bus;
758                 buf->fill_func = fill_func;
759                 mutex_init(&buf->mutex);
760                 buf->alloc_size = PAGE_SIZE;
761         }
762
763         return buf;
764 }
765
766 static int fill_buffer(struct debug_buffer *buf)
767 {
768         int ret = 0;
769
770         if (!buf->output_buf)
771                 buf->output_buf = vmalloc(buf->alloc_size);
772
773         if (!buf->output_buf) {
774                 ret = -ENOMEM;
775                 goto out;
776         }
777
778         ret = buf->fill_func(buf);
779
780         if (ret >= 0) {
781                 buf->count = ret;
782                 ret = 0;
783         }
784
785 out:
786         return ret;
787 }
788
789 static ssize_t debug_output(struct file *file, char __user *user_buf,
790                 size_t len, loff_t *offset)
791 {
792         struct debug_buffer *buf = file->private_data;
793         int ret = 0;
794
795         mutex_lock(&buf->mutex);
796         if (buf->count == 0) {
797                 ret = fill_buffer(buf);
798                 if (ret != 0) {
799                         mutex_unlock(&buf->mutex);
800                         goto out;
801                 }
802         }
803         mutex_unlock(&buf->mutex);
804
805         ret = simple_read_from_buffer(user_buf, len, offset,
806                         buf->output_buf, buf->count);
807
808 out:
809         return ret;
810
811 }
812
813 static int debug_close(struct inode *inode, struct file *file)
814 {
815         struct debug_buffer *buf = file->private_data;
816
817         if (buf) {
818                 vfree(buf->output_buf);
819                 kfree(buf);
820         }
821
822         return 0;
823 }
824 static int debug_async_open(struct inode *inode, struct file *file)
825 {
826         file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
827
828         return file->private_data ? 0 : -ENOMEM;
829 }
830
831 static int debug_periodic_open(struct inode *inode, struct file *file)
832 {
833         struct debug_buffer *buf;
834
835         buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
836         if (!buf)
837                 return -ENOMEM;
838
839         buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
840         file->private_data = buf;
841         return 0;
842 }
843
844 static int debug_registers_open(struct inode *inode, struct file *file)
845 {
846         file->private_data = alloc_buffer(inode->i_private,
847                         fill_registers_buffer);
848
849         return file->private_data ? 0 : -ENOMEM;
850 }
851
852 static inline void create_debug_files(struct fotg210_hcd *fotg210)
853 {
854         struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
855
856         fotg210->debug_dir = debugfs_create_dir(bus->bus_name,
857                         fotg210_debug_root);
858         if (!fotg210->debug_dir)
859                 return;
860
861         if (!debugfs_create_file("async", S_IRUGO, fotg210->debug_dir, bus,
862                         &debug_async_fops))
863                 goto file_error;
864
865         if (!debugfs_create_file("periodic", S_IRUGO, fotg210->debug_dir, bus,
866                         &debug_periodic_fops))
867                 goto file_error;
868
869         if (!debugfs_create_file("registers", S_IRUGO, fotg210->debug_dir, bus,
870                         &debug_registers_fops))
871                 goto file_error;
872
873         return;
874
875 file_error:
876         debugfs_remove_recursive(fotg210->debug_dir);
877 }
878
879 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
880 {
881         debugfs_remove_recursive(fotg210->debug_dir);
882 }
883
884 /* handshake - spin reading hc until handshake completes or fails
885  * @ptr: address of hc register to be read
886  * @mask: bits to look at in result of read
887  * @done: value of those bits when handshake succeeds
888  * @usec: timeout in microseconds
889  *
890  * Returns negative errno, or zero on success
891  *
892  * Success happens when the "mask" bits have the specified value (hardware
893  * handshake done).  There are two failure modes:  "usec" have passed (major
894  * hardware flakeout), or the register reads as all-ones (hardware removed).
895  *
896  * That last failure should_only happen in cases like physical cardbus eject
897  * before driver shutdown. But it also seems to be caused by bugs in cardbus
898  * bridge shutdown:  shutting down the bridge before the devices using it.
899  */
900 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
901                 u32 mask, u32 done, int usec)
902 {
903         u32 result;
904
905         do {
906                 result = fotg210_readl(fotg210, ptr);
907                 if (result == ~(u32)0)          /* card removed */
908                         return -ENODEV;
909                 result &= mask;
910                 if (result == done)
911                         return 0;
912                 udelay(1);
913                 usec--;
914         } while (usec > 0);
915         return -ETIMEDOUT;
916 }
917
918 /* Force HC to halt state from unknown (EHCI spec section 2.3).
919  * Must be called with interrupts enabled and the lock not held.
920  */
921 static int fotg210_halt(struct fotg210_hcd *fotg210)
922 {
923         u32 temp;
924
925         spin_lock_irq(&fotg210->lock);
926
927         /* disable any irqs left enabled by previous code */
928         fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
929
930         /*
931          * This routine gets called during probe before fotg210->command
932          * has been initialized, so we can't rely on its value.
933          */
934         fotg210->command &= ~CMD_RUN;
935         temp = fotg210_readl(fotg210, &fotg210->regs->command);
936         temp &= ~(CMD_RUN | CMD_IAAD);
937         fotg210_writel(fotg210, temp, &fotg210->regs->command);
938
939         spin_unlock_irq(&fotg210->lock);
940         synchronize_irq(fotg210_to_hcd(fotg210)->irq);
941
942         return handshake(fotg210, &fotg210->regs->status,
943                         STS_HALT, STS_HALT, 16 * 125);
944 }
945
946 /* Reset a non-running (STS_HALT == 1) controller.
947  * Must be called with interrupts enabled and the lock not held.
948  */
949 static int fotg210_reset(struct fotg210_hcd *fotg210)
950 {
951         int retval;
952         u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
953
954         /* If the EHCI debug controller is active, special care must be
955          * taken before and after a host controller reset
956          */
957         if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
958                 fotg210->debug = NULL;
959
960         command |= CMD_RESET;
961         dbg_cmd(fotg210, "reset", command);
962         fotg210_writel(fotg210, command, &fotg210->regs->command);
963         fotg210->rh_state = FOTG210_RH_HALTED;
964         fotg210->next_statechange = jiffies;
965         retval = handshake(fotg210, &fotg210->regs->command,
966                         CMD_RESET, 0, 250 * 1000);
967
968         if (retval)
969                 return retval;
970
971         if (fotg210->debug)
972                 dbgp_external_startup(fotg210_to_hcd(fotg210));
973
974         fotg210->port_c_suspend = fotg210->suspended_ports =
975                         fotg210->resuming_ports = 0;
976         return retval;
977 }
978
979 /* Idle the controller (turn off the schedules).
980  * Must be called with interrupts enabled and the lock not held.
981  */
982 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
983 {
984         u32 temp;
985
986         if (fotg210->rh_state != FOTG210_RH_RUNNING)
987                 return;
988
989         /* wait for any schedule enables/disables to take effect */
990         temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
991         handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
992                         16 * 125);
993
994         /* then disable anything that's still active */
995         spin_lock_irq(&fotg210->lock);
996         fotg210->command &= ~(CMD_ASE | CMD_PSE);
997         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
998         spin_unlock_irq(&fotg210->lock);
999
1000         /* hardware can take 16 microframes to turn off ... */
1001         handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
1002                         16 * 125);
1003 }
1004
1005 static void end_unlink_async(struct fotg210_hcd *fotg210);
1006 static void unlink_empty_async(struct fotg210_hcd *fotg210);
1007 static void fotg210_work(struct fotg210_hcd *fotg210);
1008 static void start_unlink_intr(struct fotg210_hcd *fotg210,
1009                               struct fotg210_qh *qh);
1010 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
1011
1012 /* Set a bit in the USBCMD register */
1013 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1014 {
1015         fotg210->command |= bit;
1016         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1017
1018         /* unblock posted write */
1019         fotg210_readl(fotg210, &fotg210->regs->command);
1020 }
1021
1022 /* Clear a bit in the USBCMD register */
1023 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1024 {
1025         fotg210->command &= ~bit;
1026         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1027
1028         /* unblock posted write */
1029         fotg210_readl(fotg210, &fotg210->regs->command);
1030 }
1031
1032 /* EHCI timer support...  Now using hrtimers.
1033  *
1034  * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1035  * the timer routine runs, it checks each possible event; events that are
1036  * currently enabled and whose expiration time has passed get handled.
1037  * The set of enabled events is stored as a collection of bitflags in
1038  * fotg210->enabled_hrtimer_events, and they are numbered in order of
1039  * increasing delay values (ranging between 1 ms and 100 ms).
1040  *
1041  * Rather than implementing a sorted list or tree of all pending events,
1042  * we keep track only of the lowest-numbered pending event, in
1043  * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1044  * expiration time is set to the timeout value for this event.
1045  *
1046  * As a result, events might not get handled right away; the actual delay
1047  * could be anywhere up to twice the requested delay.  This doesn't
1048  * matter, because none of the events are especially time-critical.  The
1049  * ones that matter most all have a delay of 1 ms, so they will be
1050  * handled after 2 ms at most, which is okay.  In addition to this, we
1051  * allow for an expiration range of 1 ms.
1052  */
1053
1054 /* Delay lengths for the hrtimer event types.
1055  * Keep this list sorted by delay length, in the same order as
1056  * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1057  */
1058 static unsigned event_delays_ns[] = {
1059         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_ASS */
1060         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_PSS */
1061         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_DEAD */
1062         1125 * NSEC_PER_USEC,   /* FOTG210_HRTIMER_UNLINK_INTR */
1063         2 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_FREE_ITDS */
1064         6 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1065         10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_IAA_WATCHDOG */
1066         10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1067         15 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_ASYNC */
1068         100 * NSEC_PER_MSEC,    /* FOTG210_HRTIMER_IO_WATCHDOG */
1069 };
1070
1071 /* Enable a pending hrtimer event */
1072 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1073                 bool resched)
1074 {
1075         ktime_t *timeout = &fotg210->hr_timeouts[event];
1076
1077         if (resched)
1078                 *timeout = ktime_add(ktime_get(),
1079                                 ktime_set(0, event_delays_ns[event]));
1080         fotg210->enabled_hrtimer_events |= (1 << event);
1081
1082         /* Track only the lowest-numbered pending event */
1083         if (event < fotg210->next_hrtimer_event) {
1084                 fotg210->next_hrtimer_event = event;
1085                 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1086                                 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1087         }
1088 }
1089
1090
1091 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1092 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1093 {
1094         unsigned actual, want;
1095
1096         /* Don't enable anything if the controller isn't running (e.g., died) */
1097         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1098                 return;
1099
1100         want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1101         actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1102
1103         if (want != actual) {
1104
1105                 /* Poll again later, but give up after about 20 ms */
1106                 if (fotg210->ASS_poll_count++ < 20) {
1107                         fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1108                                         true);
1109                         return;
1110                 }
1111                 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1112                                 want, actual);
1113         }
1114         fotg210->ASS_poll_count = 0;
1115
1116         /* The status is up-to-date; restart or stop the schedule as needed */
1117         if (want == 0) {        /* Stopped */
1118                 if (fotg210->async_count > 0)
1119                         fotg210_set_command_bit(fotg210, CMD_ASE);
1120
1121         } else {                /* Running */
1122                 if (fotg210->async_count == 0) {
1123
1124                         /* Turn off the schedule after a while */
1125                         fotg210_enable_event(fotg210,
1126                                         FOTG210_HRTIMER_DISABLE_ASYNC,
1127                                         true);
1128                 }
1129         }
1130 }
1131
1132 /* Turn off the async schedule after a brief delay */
1133 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1134 {
1135         fotg210_clear_command_bit(fotg210, CMD_ASE);
1136 }
1137
1138
1139 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1140 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1141 {
1142         unsigned actual, want;
1143
1144         /* Don't do anything if the controller isn't running (e.g., died) */
1145         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1146                 return;
1147
1148         want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1149         actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1150
1151         if (want != actual) {
1152
1153                 /* Poll again later, but give up after about 20 ms */
1154                 if (fotg210->PSS_poll_count++ < 20) {
1155                         fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1156                                         true);
1157                         return;
1158                 }
1159                 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1160                                 want, actual);
1161         }
1162         fotg210->PSS_poll_count = 0;
1163
1164         /* The status is up-to-date; restart or stop the schedule as needed */
1165         if (want == 0) {        /* Stopped */
1166                 if (fotg210->periodic_count > 0)
1167                         fotg210_set_command_bit(fotg210, CMD_PSE);
1168
1169         } else {                /* Running */
1170                 if (fotg210->periodic_count == 0) {
1171
1172                         /* Turn off the schedule after a while */
1173                         fotg210_enable_event(fotg210,
1174                                         FOTG210_HRTIMER_DISABLE_PERIODIC,
1175                                         true);
1176                 }
1177         }
1178 }
1179
1180 /* Turn off the periodic schedule after a brief delay */
1181 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1182 {
1183         fotg210_clear_command_bit(fotg210, CMD_PSE);
1184 }
1185
1186
1187 /* Poll the STS_HALT status bit; see when a dead controller stops */
1188 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1189 {
1190         if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1191
1192                 /* Give up after a few milliseconds */
1193                 if (fotg210->died_poll_count++ < 5) {
1194                         /* Try again later */
1195                         fotg210_enable_event(fotg210,
1196                                         FOTG210_HRTIMER_POLL_DEAD, true);
1197                         return;
1198                 }
1199                 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1200         }
1201
1202         /* Clean up the mess */
1203         fotg210->rh_state = FOTG210_RH_HALTED;
1204         fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1205         fotg210_work(fotg210);
1206         end_unlink_async(fotg210);
1207
1208         /* Not in process context, so don't try to reset the controller */
1209 }
1210
1211
1212 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1213 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1214 {
1215         bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1216
1217         /*
1218          * Process all the QHs on the intr_unlink list that were added
1219          * before the current unlink cycle began.  The list is in
1220          * temporal order, so stop when we reach the first entry in the
1221          * current cycle.  But if the root hub isn't running then
1222          * process all the QHs on the list.
1223          */
1224         fotg210->intr_unlinking = true;
1225         while (fotg210->intr_unlink) {
1226                 struct fotg210_qh *qh = fotg210->intr_unlink;
1227
1228                 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1229                         break;
1230                 fotg210->intr_unlink = qh->unlink_next;
1231                 qh->unlink_next = NULL;
1232                 end_unlink_intr(fotg210, qh);
1233         }
1234
1235         /* Handle remaining entries later */
1236         if (fotg210->intr_unlink) {
1237                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1238                                 true);
1239                 ++fotg210->intr_unlink_cycle;
1240         }
1241         fotg210->intr_unlinking = false;
1242 }
1243
1244
1245 /* Start another free-iTDs/siTDs cycle */
1246 static void start_free_itds(struct fotg210_hcd *fotg210)
1247 {
1248         if (!(fotg210->enabled_hrtimer_events &
1249                         BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1250                 fotg210->last_itd_to_free = list_entry(
1251                                 fotg210->cached_itd_list.prev,
1252                                 struct fotg210_itd, itd_list);
1253                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1254         }
1255 }
1256
1257 /* Wait for controller to stop using old iTDs and siTDs */
1258 static void end_free_itds(struct fotg210_hcd *fotg210)
1259 {
1260         struct fotg210_itd *itd, *n;
1261
1262         if (fotg210->rh_state < FOTG210_RH_RUNNING)
1263                 fotg210->last_itd_to_free = NULL;
1264
1265         list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1266                 list_del(&itd->itd_list);
1267                 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1268                 if (itd == fotg210->last_itd_to_free)
1269                         break;
1270         }
1271
1272         if (!list_empty(&fotg210->cached_itd_list))
1273                 start_free_itds(fotg210);
1274 }
1275
1276
1277 /* Handle lost (or very late) IAA interrupts */
1278 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1279 {
1280         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1281                 return;
1282
1283         /*
1284          * Lost IAA irqs wedge things badly; seen first with a vt8235.
1285          * So we need this watchdog, but must protect it against both
1286          * (a) SMP races against real IAA firing and retriggering, and
1287          * (b) clean HC shutdown, when IAA watchdog was pending.
1288          */
1289         if (fotg210->async_iaa) {
1290                 u32 cmd, status;
1291
1292                 /* If we get here, IAA is *REALLY* late.  It's barely
1293                  * conceivable that the system is so busy that CMD_IAAD
1294                  * is still legitimately set, so let's be sure it's
1295                  * clear before we read STS_IAA.  (The HC should clear
1296                  * CMD_IAAD when it sets STS_IAA.)
1297                  */
1298                 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1299
1300                 /*
1301                  * If IAA is set here it either legitimately triggered
1302                  * after the watchdog timer expired (_way_ late, so we'll
1303                  * still count it as lost) ... or a silicon erratum:
1304                  * - VIA seems to set IAA without triggering the IRQ;
1305                  * - IAAD potentially cleared without setting IAA.
1306                  */
1307                 status = fotg210_readl(fotg210, &fotg210->regs->status);
1308                 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1309                         COUNT(fotg210->stats.lost_iaa);
1310                         fotg210_writel(fotg210, STS_IAA,
1311                                         &fotg210->regs->status);
1312                 }
1313
1314                 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1315                                 status, cmd);
1316                 end_unlink_async(fotg210);
1317         }
1318 }
1319
1320
1321 /* Enable the I/O watchdog, if appropriate */
1322 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1323 {
1324         /* Not needed if the controller isn't running or it's already enabled */
1325         if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1326                         (fotg210->enabled_hrtimer_events &
1327                         BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1328                 return;
1329
1330         /*
1331          * Isochronous transfers always need the watchdog.
1332          * For other sorts we use it only if the flag is set.
1333          */
1334         if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1335                         fotg210->async_count + fotg210->intr_count > 0))
1336                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1337                                 true);
1338 }
1339
1340
1341 /* Handler functions for the hrtimer event types.
1342  * Keep this array in the same order as the event types indexed by
1343  * enum fotg210_hrtimer_event in fotg210.h.
1344  */
1345 static void (*event_handlers[])(struct fotg210_hcd *) = {
1346         fotg210_poll_ASS,                       /* FOTG210_HRTIMER_POLL_ASS */
1347         fotg210_poll_PSS,                       /* FOTG210_HRTIMER_POLL_PSS */
1348         fotg210_handle_controller_death,        /* FOTG210_HRTIMER_POLL_DEAD */
1349         fotg210_handle_intr_unlinks,    /* FOTG210_HRTIMER_UNLINK_INTR */
1350         end_free_itds,                  /* FOTG210_HRTIMER_FREE_ITDS */
1351         unlink_empty_async,             /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1352         fotg210_iaa_watchdog,           /* FOTG210_HRTIMER_IAA_WATCHDOG */
1353         fotg210_disable_PSE,            /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1354         fotg210_disable_ASE,            /* FOTG210_HRTIMER_DISABLE_ASYNC */
1355         fotg210_work,                   /* FOTG210_HRTIMER_IO_WATCHDOG */
1356 };
1357
1358 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1359 {
1360         struct fotg210_hcd *fotg210 =
1361                         container_of(t, struct fotg210_hcd, hrtimer);
1362         ktime_t now;
1363         unsigned long events;
1364         unsigned long flags;
1365         unsigned e;
1366
1367         spin_lock_irqsave(&fotg210->lock, flags);
1368
1369         events = fotg210->enabled_hrtimer_events;
1370         fotg210->enabled_hrtimer_events = 0;
1371         fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1372
1373         /*
1374          * Check each pending event.  If its time has expired, handle
1375          * the event; otherwise re-enable it.
1376          */
1377         now = ktime_get();
1378         for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1379                 if (now.tv64 >= fotg210->hr_timeouts[e].tv64)
1380                         event_handlers[e](fotg210);
1381                 else
1382                         fotg210_enable_event(fotg210, e, false);
1383         }
1384
1385         spin_unlock_irqrestore(&fotg210->lock, flags);
1386         return HRTIMER_NORESTART;
1387 }
1388
1389 #define fotg210_bus_suspend NULL
1390 #define fotg210_bus_resume NULL
1391
1392 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1393                 u32 __iomem *status_reg, int port_status)
1394 {
1395         if (!(port_status & PORT_CONNECT))
1396                 return port_status;
1397
1398         /* if reset finished and it's still not enabled -- handoff */
1399         if (!(port_status & PORT_PE)) {
1400                 /* with integrated TT, there's nobody to hand it to! */
1401                 fotg210_dbg(fotg210,
1402                                 "Failed to enable port %d on root hub TT\n",
1403                                 index + 1);
1404                 return port_status;
1405         } else {
1406                 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1407                                 index + 1);
1408         }
1409
1410         return port_status;
1411 }
1412
1413
1414 /* build "status change" packet (one or two bytes) from HC registers */
1415
1416 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1417 {
1418         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1419         u32 temp, status;
1420         u32 mask;
1421         int retval = 1;
1422         unsigned long flags;
1423
1424         /* init status to no-changes */
1425         buf[0] = 0;
1426
1427         /* Inform the core about resumes-in-progress by returning
1428          * a non-zero value even if there are no status changes.
1429          */
1430         status = fotg210->resuming_ports;
1431
1432         mask = PORT_CSC | PORT_PEC;
1433         /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1434
1435         /* no hub change reports (bit 0) for now (power, ...) */
1436
1437         /* port N changes (bit N)? */
1438         spin_lock_irqsave(&fotg210->lock, flags);
1439
1440         temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1441
1442         /*
1443          * Return status information even for ports with OWNER set.
1444          * Otherwise hub_wq wouldn't see the disconnect event when a
1445          * high-speed device is switched over to the companion
1446          * controller by the user.
1447          */
1448
1449         if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1450                         (fotg210->reset_done[0] &&
1451                         time_after_eq(jiffies, fotg210->reset_done[0]))) {
1452                 buf[0] |= 1 << 1;
1453                 status = STS_PCD;
1454         }
1455         /* FIXME autosuspend idle root hubs */
1456         spin_unlock_irqrestore(&fotg210->lock, flags);
1457         return status ? retval : 0;
1458 }
1459
1460 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1461                 struct usb_hub_descriptor *desc)
1462 {
1463         int ports = HCS_N_PORTS(fotg210->hcs_params);
1464         u16 temp;
1465
1466         desc->bDescriptorType = USB_DT_HUB;
1467         desc->bPwrOn2PwrGood = 10;      /* fotg210 1.0, 2.3.9 says 20ms max */
1468         desc->bHubContrCurrent = 0;
1469
1470         desc->bNbrPorts = ports;
1471         temp = 1 + (ports / 8);
1472         desc->bDescLength = 7 + 2 * temp;
1473
1474         /* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1475         memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1476         memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1477
1478         temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1479         temp |= HUB_CHAR_NO_LPSM;       /* no power switching */
1480         desc->wHubCharacteristics = cpu_to_le16(temp);
1481 }
1482
1483 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1484                 u16 wIndex, char *buf, u16 wLength)
1485 {
1486         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1487         int ports = HCS_N_PORTS(fotg210->hcs_params);
1488         u32 __iomem *status_reg = &fotg210->regs->port_status;
1489         u32 temp, temp1, status;
1490         unsigned long flags;
1491         int retval = 0;
1492         unsigned selector;
1493
1494         /*
1495          * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1496          * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1497          * (track current state ourselves) ... blink for diagnostics,
1498          * power, "this is the one", etc.  EHCI spec supports this.
1499          */
1500
1501         spin_lock_irqsave(&fotg210->lock, flags);
1502         switch (typeReq) {
1503         case ClearHubFeature:
1504                 switch (wValue) {
1505                 case C_HUB_LOCAL_POWER:
1506                 case C_HUB_OVER_CURRENT:
1507                         /* no hub-wide feature/status flags */
1508                         break;
1509                 default:
1510                         goto error;
1511                 }
1512                 break;
1513         case ClearPortFeature:
1514                 if (!wIndex || wIndex > ports)
1515                         goto error;
1516                 wIndex--;
1517                 temp = fotg210_readl(fotg210, status_reg);
1518                 temp &= ~PORT_RWC_BITS;
1519
1520                 /*
1521                  * Even if OWNER is set, so the port is owned by the
1522                  * companion controller, hub_wq needs to be able to clear
1523                  * the port-change status bits (especially
1524                  * USB_PORT_STAT_C_CONNECTION).
1525                  */
1526
1527                 switch (wValue) {
1528                 case USB_PORT_FEAT_ENABLE:
1529                         fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1530                         break;
1531                 case USB_PORT_FEAT_C_ENABLE:
1532                         fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1533                         break;
1534                 case USB_PORT_FEAT_SUSPEND:
1535                         if (temp & PORT_RESET)
1536                                 goto error;
1537                         if (!(temp & PORT_SUSPEND))
1538                                 break;
1539                         if ((temp & PORT_PE) == 0)
1540                                 goto error;
1541
1542                         /* resume signaling for 20 msec */
1543                         fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1544                         fotg210->reset_done[wIndex] = jiffies
1545                                         + msecs_to_jiffies(USB_RESUME_TIMEOUT);
1546                         break;
1547                 case USB_PORT_FEAT_C_SUSPEND:
1548                         clear_bit(wIndex, &fotg210->port_c_suspend);
1549                         break;
1550                 case USB_PORT_FEAT_C_CONNECTION:
1551                         fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1552                         break;
1553                 case USB_PORT_FEAT_C_OVER_CURRENT:
1554                         fotg210_writel(fotg210, temp | OTGISR_OVC,
1555                                         &fotg210->regs->otgisr);
1556                         break;
1557                 case USB_PORT_FEAT_C_RESET:
1558                         /* GetPortStatus clears reset */
1559                         break;
1560                 default:
1561                         goto error;
1562                 }
1563                 fotg210_readl(fotg210, &fotg210->regs->command);
1564                 break;
1565         case GetHubDescriptor:
1566                 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1567                                 buf);
1568                 break;
1569         case GetHubStatus:
1570                 /* no hub-wide feature/status flags */
1571                 memset(buf, 0, 4);
1572                 /*cpu_to_le32s ((u32 *) buf); */
1573                 break;
1574         case GetPortStatus:
1575                 if (!wIndex || wIndex > ports)
1576                         goto error;
1577                 wIndex--;
1578                 status = 0;
1579                 temp = fotg210_readl(fotg210, status_reg);
1580
1581                 /* wPortChange bits */
1582                 if (temp & PORT_CSC)
1583                         status |= USB_PORT_STAT_C_CONNECTION << 16;
1584                 if (temp & PORT_PEC)
1585                         status |= USB_PORT_STAT_C_ENABLE << 16;
1586
1587                 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1588                 if (temp1 & OTGISR_OVC)
1589                         status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1590
1591                 /* whoever resumes must GetPortStatus to complete it!! */
1592                 if (temp & PORT_RESUME) {
1593
1594                         /* Remote Wakeup received? */
1595                         if (!fotg210->reset_done[wIndex]) {
1596                                 /* resume signaling for 20 msec */
1597                                 fotg210->reset_done[wIndex] = jiffies
1598                                                 + msecs_to_jiffies(20);
1599                                 /* check the port again */
1600                                 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1601                                                 fotg210->reset_done[wIndex]);
1602                         }
1603
1604                         /* resume completed? */
1605                         else if (time_after_eq(jiffies,
1606                                         fotg210->reset_done[wIndex])) {
1607                                 clear_bit(wIndex, &fotg210->suspended_ports);
1608                                 set_bit(wIndex, &fotg210->port_c_suspend);
1609                                 fotg210->reset_done[wIndex] = 0;
1610
1611                                 /* stop resume signaling */
1612                                 temp = fotg210_readl(fotg210, status_reg);
1613                                 fotg210_writel(fotg210, temp &
1614                                                 ~(PORT_RWC_BITS | PORT_RESUME),
1615                                                 status_reg);
1616                                 clear_bit(wIndex, &fotg210->resuming_ports);
1617                                 retval = handshake(fotg210, status_reg,
1618                                                 PORT_RESUME, 0, 2000);/* 2ms */
1619                                 if (retval != 0) {
1620                                         fotg210_err(fotg210,
1621                                                         "port %d resume error %d\n",
1622                                                         wIndex + 1, retval);
1623                                         goto error;
1624                                 }
1625                                 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1626                         }
1627                 }
1628
1629                 /* whoever resets must GetPortStatus to complete it!! */
1630                 if ((temp & PORT_RESET) && time_after_eq(jiffies,
1631                                 fotg210->reset_done[wIndex])) {
1632                         status |= USB_PORT_STAT_C_RESET << 16;
1633                         fotg210->reset_done[wIndex] = 0;
1634                         clear_bit(wIndex, &fotg210->resuming_ports);
1635
1636                         /* force reset to complete */
1637                         fotg210_writel(fotg210,
1638                                         temp & ~(PORT_RWC_BITS | PORT_RESET),
1639                                         status_reg);
1640                         /* REVISIT:  some hardware needs 550+ usec to clear
1641                          * this bit; seems too long to spin routinely...
1642                          */
1643                         retval = handshake(fotg210, status_reg,
1644                                         PORT_RESET, 0, 1000);
1645                         if (retval != 0) {
1646                                 fotg210_err(fotg210, "port %d reset error %d\n",
1647                                                 wIndex + 1, retval);
1648                                 goto error;
1649                         }
1650
1651                         /* see what we found out */
1652                         temp = check_reset_complete(fotg210, wIndex, status_reg,
1653                                         fotg210_readl(fotg210, status_reg));
1654                 }
1655
1656                 if (!(temp & (PORT_RESUME|PORT_RESET))) {
1657                         fotg210->reset_done[wIndex] = 0;
1658                         clear_bit(wIndex, &fotg210->resuming_ports);
1659                 }
1660
1661                 /* transfer dedicated ports to the companion hc */
1662                 if ((temp & PORT_CONNECT) &&
1663                                 test_bit(wIndex, &fotg210->companion_ports)) {
1664                         temp &= ~PORT_RWC_BITS;
1665                         fotg210_writel(fotg210, temp, status_reg);
1666                         fotg210_dbg(fotg210, "port %d --> companion\n",
1667                                         wIndex + 1);
1668                         temp = fotg210_readl(fotg210, status_reg);
1669                 }
1670
1671                 /*
1672                  * Even if OWNER is set, there's no harm letting hub_wq
1673                  * see the wPortStatus values (they should all be 0 except
1674                  * for PORT_POWER anyway).
1675                  */
1676
1677                 if (temp & PORT_CONNECT) {
1678                         status |= USB_PORT_STAT_CONNECTION;
1679                         status |= fotg210_port_speed(fotg210, temp);
1680                 }
1681                 if (temp & PORT_PE)
1682                         status |= USB_PORT_STAT_ENABLE;
1683
1684                 /* maybe the port was unsuspended without our knowledge */
1685                 if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1686                         status |= USB_PORT_STAT_SUSPEND;
1687                 } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1688                         clear_bit(wIndex, &fotg210->suspended_ports);
1689                         clear_bit(wIndex, &fotg210->resuming_ports);
1690                         fotg210->reset_done[wIndex] = 0;
1691                         if (temp & PORT_PE)
1692                                 set_bit(wIndex, &fotg210->port_c_suspend);
1693                 }
1694
1695                 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1696                 if (temp1 & OTGISR_OVC)
1697                         status |= USB_PORT_STAT_OVERCURRENT;
1698                 if (temp & PORT_RESET)
1699                         status |= USB_PORT_STAT_RESET;
1700                 if (test_bit(wIndex, &fotg210->port_c_suspend))
1701                         status |= USB_PORT_STAT_C_SUSPEND << 16;
1702
1703                 if (status & ~0xffff)   /* only if wPortChange is interesting */
1704                         dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1705                 put_unaligned_le32(status, buf);
1706                 break;
1707         case SetHubFeature:
1708                 switch (wValue) {
1709                 case C_HUB_LOCAL_POWER:
1710                 case C_HUB_OVER_CURRENT:
1711                         /* no hub-wide feature/status flags */
1712                         break;
1713                 default:
1714                         goto error;
1715                 }
1716                 break;
1717         case SetPortFeature:
1718                 selector = wIndex >> 8;
1719                 wIndex &= 0xff;
1720
1721                 if (!wIndex || wIndex > ports)
1722                         goto error;
1723                 wIndex--;
1724                 temp = fotg210_readl(fotg210, status_reg);
1725                 temp &= ~PORT_RWC_BITS;
1726                 switch (wValue) {
1727                 case USB_PORT_FEAT_SUSPEND:
1728                         if ((temp & PORT_PE) == 0
1729                                         || (temp & PORT_RESET) != 0)
1730                                 goto error;
1731
1732                         /* After above check the port must be connected.
1733                          * Set appropriate bit thus could put phy into low power
1734                          * mode if we have hostpc feature
1735                          */
1736                         fotg210_writel(fotg210, temp | PORT_SUSPEND,
1737                                         status_reg);
1738                         set_bit(wIndex, &fotg210->suspended_ports);
1739                         break;
1740                 case USB_PORT_FEAT_RESET:
1741                         if (temp & PORT_RESUME)
1742                                 goto error;
1743                         /* line status bits may report this as low speed,
1744                          * which can be fine if this root hub has a
1745                          * transaction translator built in.
1746                          */
1747                         fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1748                         temp |= PORT_RESET;
1749                         temp &= ~PORT_PE;
1750
1751                         /*
1752                          * caller must wait, then call GetPortStatus
1753                          * usb 2.0 spec says 50 ms resets on root
1754                          */
1755                         fotg210->reset_done[wIndex] = jiffies
1756                                         + msecs_to_jiffies(50);
1757                         fotg210_writel(fotg210, temp, status_reg);
1758                         break;
1759
1760                 /* For downstream facing ports (these):  one hub port is put
1761                  * into test mode according to USB2 11.24.2.13, then the hub
1762                  * must be reset (which for root hub now means rmmod+modprobe,
1763                  * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1764                  * about the EHCI-specific stuff.
1765                  */
1766                 case USB_PORT_FEAT_TEST:
1767                         if (!selector || selector > 5)
1768                                 goto error;
1769                         spin_unlock_irqrestore(&fotg210->lock, flags);
1770                         fotg210_quiesce(fotg210);
1771                         spin_lock_irqsave(&fotg210->lock, flags);
1772
1773                         /* Put all enabled ports into suspend */
1774                         temp = fotg210_readl(fotg210, status_reg) &
1775                                 ~PORT_RWC_BITS;
1776                         if (temp & PORT_PE)
1777                                 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1778                                                 status_reg);
1779
1780                         spin_unlock_irqrestore(&fotg210->lock, flags);
1781                         fotg210_halt(fotg210);
1782                         spin_lock_irqsave(&fotg210->lock, flags);
1783
1784                         temp = fotg210_readl(fotg210, status_reg);
1785                         temp |= selector << 16;
1786                         fotg210_writel(fotg210, temp, status_reg);
1787                         break;
1788
1789                 default:
1790                         goto error;
1791                 }
1792                 fotg210_readl(fotg210, &fotg210->regs->command);
1793                 break;
1794
1795         default:
1796 error:
1797                 /* "stall" on error */
1798                 retval = -EPIPE;
1799         }
1800         spin_unlock_irqrestore(&fotg210->lock, flags);
1801         return retval;
1802 }
1803
1804 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1805                 int portnum)
1806 {
1807         return;
1808 }
1809
1810 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1811                 int portnum)
1812 {
1813         return 0;
1814 }
1815
1816 /* There's basically three types of memory:
1817  *      - data used only by the HCD ... kmalloc is fine
1818  *      - async and periodic schedules, shared by HC and HCD ... these
1819  *        need to use dma_pool or dma_alloc_coherent
1820  *      - driver buffers, read/written by HC ... single shot DMA mapped
1821  *
1822  * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1823  * No memory seen by this driver is pageable.
1824  */
1825
1826 /* Allocate the key transfer structures from the previously allocated pool */
1827 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1828                 struct fotg210_qtd *qtd, dma_addr_t dma)
1829 {
1830         memset(qtd, 0, sizeof(*qtd));
1831         qtd->qtd_dma = dma;
1832         qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1833         qtd->hw_next = FOTG210_LIST_END(fotg210);
1834         qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1835         INIT_LIST_HEAD(&qtd->qtd_list);
1836 }
1837
1838 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1839                 gfp_t flags)
1840 {
1841         struct fotg210_qtd *qtd;
1842         dma_addr_t dma;
1843
1844         qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1845         if (qtd != NULL)
1846                 fotg210_qtd_init(fotg210, qtd, dma);
1847
1848         return qtd;
1849 }
1850
1851 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1852                 struct fotg210_qtd *qtd)
1853 {
1854         dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1855 }
1856
1857
1858 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1859 {
1860         /* clean qtds first, and know this is not linked */
1861         if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1862                 fotg210_dbg(fotg210, "unused qh not empty!\n");
1863                 BUG();
1864         }
1865         if (qh->dummy)
1866                 fotg210_qtd_free(fotg210, qh->dummy);
1867         dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1868         kfree(qh);
1869 }
1870
1871 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1872                 gfp_t flags)
1873 {
1874         struct fotg210_qh *qh;
1875         dma_addr_t dma;
1876
1877         qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1878         if (!qh)
1879                 goto done;
1880         qh->hw = (struct fotg210_qh_hw *)
1881                 dma_pool_alloc(fotg210->qh_pool, flags, &dma);
1882         if (!qh->hw)
1883                 goto fail;
1884         memset(qh->hw, 0, sizeof(*qh->hw));
1885         qh->qh_dma = dma;
1886         INIT_LIST_HEAD(&qh->qtd_list);
1887
1888         /* dummy td enables safe urb queuing */
1889         qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1890         if (qh->dummy == NULL) {
1891                 fotg210_dbg(fotg210, "no dummy td\n");
1892                 goto fail1;
1893         }
1894 done:
1895         return qh;
1896 fail1:
1897         dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1898 fail:
1899         kfree(qh);
1900         return NULL;
1901 }
1902
1903 /* The queue heads and transfer descriptors are managed from pools tied
1904  * to each of the "per device" structures.
1905  * This is the initialisation and cleanup code.
1906  */
1907
1908 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1909 {
1910         if (fotg210->async)
1911                 qh_destroy(fotg210, fotg210->async);
1912         fotg210->async = NULL;
1913
1914         if (fotg210->dummy)
1915                 qh_destroy(fotg210, fotg210->dummy);
1916         fotg210->dummy = NULL;
1917
1918         /* DMA consistent memory and pools */
1919         dma_pool_destroy(fotg210->qtd_pool);
1920         fotg210->qtd_pool = NULL;
1921
1922         dma_pool_destroy(fotg210->qh_pool);
1923         fotg210->qh_pool = NULL;
1924
1925         dma_pool_destroy(fotg210->itd_pool);
1926         fotg210->itd_pool = NULL;
1927
1928         if (fotg210->periodic)
1929                 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1930                                 fotg210->periodic_size * sizeof(u32),
1931                                 fotg210->periodic, fotg210->periodic_dma);
1932         fotg210->periodic = NULL;
1933
1934         /* shadow periodic table */
1935         kfree(fotg210->pshadow);
1936         fotg210->pshadow = NULL;
1937 }
1938
1939 /* remember to add cleanup code (above) if you add anything here */
1940 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1941 {
1942         int i;
1943
1944         /* QTDs for control/bulk/intr transfers */
1945         fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1946                         fotg210_to_hcd(fotg210)->self.controller,
1947                         sizeof(struct fotg210_qtd),
1948                         32 /* byte alignment (for hw parts) */,
1949                         4096 /* can't cross 4K */);
1950         if (!fotg210->qtd_pool)
1951                 goto fail;
1952
1953         /* QHs for control/bulk/intr transfers */
1954         fotg210->qh_pool = dma_pool_create("fotg210_qh",
1955                         fotg210_to_hcd(fotg210)->self.controller,
1956                         sizeof(struct fotg210_qh_hw),
1957                         32 /* byte alignment (for hw parts) */,
1958                         4096 /* can't cross 4K */);
1959         if (!fotg210->qh_pool)
1960                 goto fail;
1961
1962         fotg210->async = fotg210_qh_alloc(fotg210, flags);
1963         if (!fotg210->async)
1964                 goto fail;
1965
1966         /* ITD for high speed ISO transfers */
1967         fotg210->itd_pool = dma_pool_create("fotg210_itd",
1968                         fotg210_to_hcd(fotg210)->self.controller,
1969                         sizeof(struct fotg210_itd),
1970                         64 /* byte alignment (for hw parts) */,
1971                         4096 /* can't cross 4K */);
1972         if (!fotg210->itd_pool)
1973                 goto fail;
1974
1975         /* Hardware periodic table */
1976         fotg210->periodic = (__le32 *)
1977                 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1978                                 fotg210->periodic_size * sizeof(__le32),
1979                                 &fotg210->periodic_dma, 0);
1980         if (fotg210->periodic == NULL)
1981                 goto fail;
1982
1983         for (i = 0; i < fotg210->periodic_size; i++)
1984                 fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1985
1986         /* software shadow of hardware table */
1987         fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1988                         flags);
1989         if (fotg210->pshadow != NULL)
1990                 return 0;
1991
1992 fail:
1993         fotg210_dbg(fotg210, "couldn't init memory\n");
1994         fotg210_mem_cleanup(fotg210);
1995         return -ENOMEM;
1996 }
1997 /* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
1998  *
1999  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
2000  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
2001  * buffers needed for the larger number).  We use one QH per endpoint, queue
2002  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
2003  *
2004  * ISO traffic uses "ISO TD" (itd) records, and (along with
2005  * interrupts) needs careful scheduling.  Performance improvements can be
2006  * an ongoing challenge.  That's in "ehci-sched.c".
2007  *
2008  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
2009  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
2010  * (b) special fields in qh entries or (c) split iso entries.  TTs will
2011  * buffer low/full speed data so the host collects it at high speed.
2012  */
2013
2014 /* fill a qtd, returning how much of the buffer we were able to queue up */
2015 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
2016                 dma_addr_t buf, size_t len, int token, int maxpacket)
2017 {
2018         int i, count;
2019         u64 addr = buf;
2020
2021         /* one buffer entry per 4K ... first might be short or unaligned */
2022         qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2023         qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2024         count = 0x1000 - (buf & 0x0fff);        /* rest of that page */
2025         if (likely(len < count))                /* ... iff needed */
2026                 count = len;
2027         else {
2028                 buf +=  0x1000;
2029                 buf &= ~0x0fff;
2030
2031                 /* per-qtd limit: from 16K to 20K (best alignment) */
2032                 for (i = 1; count < len && i < 5; i++) {
2033                         addr = buf;
2034                         qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2035                         qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2036                                         (u32)(addr >> 32));
2037                         buf += 0x1000;
2038                         if ((count + 0x1000) < len)
2039                                 count += 0x1000;
2040                         else
2041                                 count = len;
2042                 }
2043
2044                 /* short packets may only terminate transfers */
2045                 if (count != len)
2046                         count -= (count % maxpacket);
2047         }
2048         qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2049         qtd->length = count;
2050
2051         return count;
2052 }
2053
2054 static inline void qh_update(struct fotg210_hcd *fotg210,
2055                 struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2056 {
2057         struct fotg210_qh_hw *hw = qh->hw;
2058
2059         /* writes to an active overlay are unsafe */
2060         BUG_ON(qh->qh_state != QH_STATE_IDLE);
2061
2062         hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2063         hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2064
2065         /* Except for control endpoints, we make hardware maintain data
2066          * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2067          * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2068          * ever clear it.
2069          */
2070         if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2071                 unsigned is_out, epnum;
2072
2073                 is_out = qh->is_out;
2074                 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2075                 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2076                         hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2077                         usb_settoggle(qh->dev, epnum, is_out, 1);
2078                 }
2079         }
2080
2081         hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2082 }
2083
2084 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2085  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2086  * recovery (including urb dequeue) would need software changes to a QH...
2087  */
2088 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2089 {
2090         struct fotg210_qtd *qtd;
2091
2092         if (list_empty(&qh->qtd_list))
2093                 qtd = qh->dummy;
2094         else {
2095                 qtd = list_entry(qh->qtd_list.next,
2096                                 struct fotg210_qtd, qtd_list);
2097                 /*
2098                  * first qtd may already be partially processed.
2099                  * If we come here during unlink, the QH overlay region
2100                  * might have reference to the just unlinked qtd. The
2101                  * qtd is updated in qh_completions(). Update the QH
2102                  * overlay here.
2103                  */
2104                 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2105                         qh->hw->hw_qtd_next = qtd->hw_next;
2106                         qtd = NULL;
2107                 }
2108         }
2109
2110         if (qtd)
2111                 qh_update(fotg210, qh, qtd);
2112 }
2113
2114 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2115
2116 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2117                 struct usb_host_endpoint *ep)
2118 {
2119         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2120         struct fotg210_qh *qh = ep->hcpriv;
2121         unsigned long flags;
2122
2123         spin_lock_irqsave(&fotg210->lock, flags);
2124         qh->clearing_tt = 0;
2125         if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2126                         && fotg210->rh_state == FOTG210_RH_RUNNING)
2127                 qh_link_async(fotg210, qh);
2128         spin_unlock_irqrestore(&fotg210->lock, flags);
2129 }
2130
2131 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2132                 struct fotg210_qh *qh, struct urb *urb, u32 token)
2133 {
2134
2135         /* If an async split transaction gets an error or is unlinked,
2136          * the TT buffer may be left in an indeterminate state.  We
2137          * have to clear the TT buffer.
2138          *
2139          * Note: this routine is never called for Isochronous transfers.
2140          */
2141         if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2142                 struct usb_device *tt = urb->dev->tt->hub;
2143
2144                 dev_dbg(&tt->dev,
2145                                 "clear tt buffer port %d, a%d ep%d t%08x\n",
2146                                 urb->dev->ttport, urb->dev->devnum,
2147                                 usb_pipeendpoint(urb->pipe), token);
2148
2149                 if (urb->dev->tt->hub !=
2150                                 fotg210_to_hcd(fotg210)->self.root_hub) {
2151                         if (usb_hub_clear_tt_buffer(urb) == 0)
2152                                 qh->clearing_tt = 1;
2153                 }
2154         }
2155 }
2156
2157 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2158                 size_t length, u32 token)
2159 {
2160         int status = -EINPROGRESS;
2161
2162         /* count IN/OUT bytes, not SETUP (even short packets) */
2163         if (likely(QTD_PID(token) != 2))
2164                 urb->actual_length += length - QTD_LENGTH(token);
2165
2166         /* don't modify error codes */
2167         if (unlikely(urb->unlinked))
2168                 return status;
2169
2170         /* force cleanup after short read; not always an error */
2171         if (unlikely(IS_SHORT_READ(token)))
2172                 status = -EREMOTEIO;
2173
2174         /* serious "can't proceed" faults reported by the hardware */
2175         if (token & QTD_STS_HALT) {
2176                 if (token & QTD_STS_BABBLE) {
2177                         /* FIXME "must" disable babbling device's port too */
2178                         status = -EOVERFLOW;
2179                 /* CERR nonzero + halt --> stall */
2180                 } else if (QTD_CERR(token)) {
2181                         status = -EPIPE;
2182
2183                 /* In theory, more than one of the following bits can be set
2184                  * since they are sticky and the transaction is retried.
2185                  * Which to test first is rather arbitrary.
2186                  */
2187                 } else if (token & QTD_STS_MMF) {
2188                         /* fs/ls interrupt xfer missed the complete-split */
2189                         status = -EPROTO;
2190                 } else if (token & QTD_STS_DBE) {
2191                         status = (QTD_PID(token) == 1) /* IN ? */
2192                                 ? -ENOSR  /* hc couldn't read data */
2193                                 : -ECOMM; /* hc couldn't write data */
2194                 } else if (token & QTD_STS_XACT) {
2195                         /* timeout, bad CRC, wrong PID, etc */
2196                         fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2197                                         urb->dev->devpath,
2198                                         usb_pipeendpoint(urb->pipe),
2199                                         usb_pipein(urb->pipe) ? "in" : "out");
2200                         status = -EPROTO;
2201                 } else {        /* unknown */
2202                         status = -EPROTO;
2203                 }
2204
2205                 fotg210_dbg(fotg210,
2206                                 "dev%d ep%d%s qtd token %08x --> status %d\n",
2207                                 usb_pipedevice(urb->pipe),
2208                                 usb_pipeendpoint(urb->pipe),
2209                                 usb_pipein(urb->pipe) ? "in" : "out",
2210                                 token, status);
2211         }
2212
2213         return status;
2214 }
2215
2216 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2217                 int status)
2218 __releases(fotg210->lock)
2219 __acquires(fotg210->lock)
2220 {
2221         if (likely(urb->hcpriv != NULL)) {
2222                 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2223
2224                 /* S-mask in a QH means it's an interrupt urb */
2225                 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2226
2227                         /* ... update hc-wide periodic stats (for usbfs) */
2228                         fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2229                 }
2230         }
2231
2232         if (unlikely(urb->unlinked)) {
2233                 COUNT(fotg210->stats.unlink);
2234         } else {
2235                 /* report non-error and short read status as zero */
2236                 if (status == -EINPROGRESS || status == -EREMOTEIO)
2237                         status = 0;
2238                 COUNT(fotg210->stats.complete);
2239         }
2240
2241 #ifdef FOTG210_URB_TRACE
2242         fotg210_dbg(fotg210,
2243                         "%s %s urb %p ep%d%s status %d len %d/%d\n",
2244                         __func__, urb->dev->devpath, urb,
2245                         usb_pipeendpoint(urb->pipe),
2246                         usb_pipein(urb->pipe) ? "in" : "out",
2247                         status,
2248                         urb->actual_length, urb->transfer_buffer_length);
2249 #endif
2250
2251         /* complete() can reenter this HCD */
2252         usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2253         spin_unlock(&fotg210->lock);
2254         usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2255         spin_lock(&fotg210->lock);
2256 }
2257
2258 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2259
2260 /* Process and free completed qtds for a qh, returning URBs to drivers.
2261  * Chases up to qh->hw_current.  Returns number of completions called,
2262  * indicating how much "real" work we did.
2263  */
2264 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2265                 struct fotg210_qh *qh)
2266 {
2267         struct fotg210_qtd *last, *end = qh->dummy;
2268         struct list_head *entry, *tmp;
2269         int last_status;
2270         int stopped;
2271         unsigned count = 0;
2272         u8 state;
2273         struct fotg210_qh_hw *hw = qh->hw;
2274
2275         if (unlikely(list_empty(&qh->qtd_list)))
2276                 return count;
2277
2278         /* completions (or tasks on other cpus) must never clobber HALT
2279          * till we've gone through and cleaned everything up, even when
2280          * they add urbs to this qh's queue or mark them for unlinking.
2281          *
2282          * NOTE:  unlinking expects to be done in queue order.
2283          *
2284          * It's a bug for qh->qh_state to be anything other than
2285          * QH_STATE_IDLE, unless our caller is scan_async() or
2286          * scan_intr().
2287          */
2288         state = qh->qh_state;
2289         qh->qh_state = QH_STATE_COMPLETING;
2290         stopped = (state == QH_STATE_IDLE);
2291
2292 rescan:
2293         last = NULL;
2294         last_status = -EINPROGRESS;
2295         qh->needs_rescan = 0;
2296
2297         /* remove de-activated QTDs from front of queue.
2298          * after faults (including short reads), cleanup this urb
2299          * then let the queue advance.
2300          * if queue is stopped, handles unlinks.
2301          */
2302         list_for_each_safe(entry, tmp, &qh->qtd_list) {
2303                 struct fotg210_qtd *qtd;
2304                 struct urb *urb;
2305                 u32 token = 0;
2306
2307                 qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
2308                 urb = qtd->urb;
2309
2310                 /* clean up any state from previous QTD ...*/
2311                 if (last) {
2312                         if (likely(last->urb != urb)) {
2313                                 fotg210_urb_done(fotg210, last->urb,
2314                                                 last_status);
2315                                 count++;
2316                                 last_status = -EINPROGRESS;
2317                         }
2318                         fotg210_qtd_free(fotg210, last);
2319                         last = NULL;
2320                 }
2321
2322                 /* ignore urbs submitted during completions we reported */
2323                 if (qtd == end)
2324                         break;
2325
2326                 /* hardware copies qtd out of qh overlay */
2327                 rmb();
2328                 token = hc32_to_cpu(fotg210, qtd->hw_token);
2329
2330                 /* always clean up qtds the hc de-activated */
2331 retry_xacterr:
2332                 if ((token & QTD_STS_ACTIVE) == 0) {
2333
2334                         /* Report Data Buffer Error: non-fatal but useful */
2335                         if (token & QTD_STS_DBE)
2336                                 fotg210_dbg(fotg210,
2337                                         "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2338                                         urb, usb_endpoint_num(&urb->ep->desc),
2339                                         usb_endpoint_dir_in(&urb->ep->desc)
2340                                                 ? "in" : "out",
2341                                         urb->transfer_buffer_length, qtd, qh);
2342
2343                         /* on STALL, error, and short reads this urb must
2344                          * complete and all its qtds must be recycled.
2345                          */
2346                         if ((token & QTD_STS_HALT) != 0) {
2347
2348                                 /* retry transaction errors until we
2349                                  * reach the software xacterr limit
2350                                  */
2351                                 if ((token & QTD_STS_XACT) &&
2352                                                 QTD_CERR(token) == 0 &&
2353                                                 ++qh->xacterrs < QH_XACTERR_MAX &&
2354                                                 !urb->unlinked) {
2355                                         fotg210_dbg(fotg210,
2356                                                 "detected XactErr len %zu/%zu retry %d\n",
2357                                                 qtd->length - QTD_LENGTH(token),
2358                                                 qtd->length,
2359                                                 qh->xacterrs);
2360
2361                                         /* reset the token in the qtd and the
2362                                          * qh overlay (which still contains
2363                                          * the qtd) so that we pick up from
2364                                          * where we left off
2365                                          */
2366                                         token &= ~QTD_STS_HALT;
2367                                         token |= QTD_STS_ACTIVE |
2368                                                  (FOTG210_TUNE_CERR << 10);
2369                                         qtd->hw_token = cpu_to_hc32(fotg210,
2370                                                         token);
2371                                         wmb();
2372                                         hw->hw_token = cpu_to_hc32(fotg210,
2373                                                         token);
2374                                         goto retry_xacterr;
2375                                 }
2376                                 stopped = 1;
2377
2378                         /* magic dummy for some short reads; qh won't advance.
2379                          * that silicon quirk can kick in with this dummy too.
2380                          *
2381                          * other short reads won't stop the queue, including
2382                          * control transfers (status stage handles that) or
2383                          * most other single-qtd reads ... the queue stops if
2384                          * URB_SHORT_NOT_OK was set so the driver submitting
2385                          * the urbs could clean it up.
2386                          */
2387                         } else if (IS_SHORT_READ(token) &&
2388                                         !(qtd->hw_alt_next &
2389                                         FOTG210_LIST_END(fotg210))) {
2390                                 stopped = 1;
2391                         }
2392
2393                 /* stop scanning when we reach qtds the hc is using */
2394                 } else if (likely(!stopped
2395                                 && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2396                         break;
2397
2398                 /* scan the whole queue for unlinks whenever it stops */
2399                 } else {
2400                         stopped = 1;
2401
2402                         /* cancel everything if we halt, suspend, etc */
2403                         if (fotg210->rh_state < FOTG210_RH_RUNNING)
2404                                 last_status = -ESHUTDOWN;
2405
2406                         /* this qtd is active; skip it unless a previous qtd
2407                          * for its urb faulted, or its urb was canceled.
2408                          */
2409                         else if (last_status == -EINPROGRESS && !urb->unlinked)
2410                                 continue;
2411
2412                         /* qh unlinked; token in overlay may be most current */
2413                         if (state == QH_STATE_IDLE &&
2414                                         cpu_to_hc32(fotg210, qtd->qtd_dma)
2415                                         == hw->hw_current) {
2416                                 token = hc32_to_cpu(fotg210, hw->hw_token);
2417
2418                                 /* An unlink may leave an incomplete
2419                                  * async transaction in the TT buffer.
2420                                  * We have to clear it.
2421                                  */
2422                                 fotg210_clear_tt_buffer(fotg210, qh, urb,
2423                                                 token);
2424                         }
2425                 }
2426
2427                 /* unless we already know the urb's status, collect qtd status
2428                  * and update count of bytes transferred.  in common short read
2429                  * cases with only one data qtd (including control transfers),
2430                  * queue processing won't halt.  but with two or more qtds (for
2431                  * example, with a 32 KB transfer), when the first qtd gets a
2432                  * short read the second must be removed by hand.
2433                  */
2434                 if (last_status == -EINPROGRESS) {
2435                         last_status = qtd_copy_status(fotg210, urb,
2436                                         qtd->length, token);
2437                         if (last_status == -EREMOTEIO &&
2438                                         (qtd->hw_alt_next &
2439                                         FOTG210_LIST_END(fotg210)))
2440                                 last_status = -EINPROGRESS;
2441
2442                         /* As part of low/full-speed endpoint-halt processing
2443                          * we must clear the TT buffer (11.17.5).
2444                          */
2445                         if (unlikely(last_status != -EINPROGRESS &&
2446                                         last_status != -EREMOTEIO)) {
2447                                 /* The TT's in some hubs malfunction when they
2448                                  * receive this request following a STALL (they
2449                                  * stop sending isochronous packets).  Since a
2450                                  * STALL can't leave the TT buffer in a busy
2451                                  * state (if you believe Figures 11-48 - 11-51
2452                                  * in the USB 2.0 spec), we won't clear the TT
2453                                  * buffer in this case.  Strictly speaking this
2454                                  * is a violation of the spec.
2455                                  */
2456                                 if (last_status != -EPIPE)
2457                                         fotg210_clear_tt_buffer(fotg210, qh,
2458                                                         urb, token);
2459                         }
2460                 }
2461
2462                 /* if we're removing something not at the queue head,
2463                  * patch the hardware queue pointer.
2464                  */
2465                 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2466                         last = list_entry(qtd->qtd_list.prev,
2467                                         struct fotg210_qtd, qtd_list);
2468                         last->hw_next = qtd->hw_next;
2469                 }
2470
2471                 /* remove qtd; it's recycled after possible urb completion */
2472                 list_del(&qtd->qtd_list);
2473                 last = qtd;
2474
2475                 /* reinit the xacterr counter for the next qtd */
2476                 qh->xacterrs = 0;
2477         }
2478
2479         /* last urb's completion might still need calling */
2480         if (likely(last != NULL)) {
2481                 fotg210_urb_done(fotg210, last->urb, last_status);
2482                 count++;
2483                 fotg210_qtd_free(fotg210, last);
2484         }
2485
2486         /* Do we need to rescan for URBs dequeued during a giveback? */
2487         if (unlikely(qh->needs_rescan)) {
2488                 /* If the QH is already unlinked, do the rescan now. */
2489                 if (state == QH_STATE_IDLE)
2490                         goto rescan;
2491
2492                 /* Otherwise we have to wait until the QH is fully unlinked.
2493                  * Our caller will start an unlink if qh->needs_rescan is
2494                  * set.  But if an unlink has already started, nothing needs
2495                  * to be done.
2496                  */
2497                 if (state != QH_STATE_LINKED)
2498                         qh->needs_rescan = 0;
2499         }
2500
2501         /* restore original state; caller must unlink or relink */
2502         qh->qh_state = state;
2503
2504         /* be sure the hardware's done with the qh before refreshing
2505          * it after fault cleanup, or recovering from silicon wrongly
2506          * overlaying the dummy qtd (which reduces DMA chatter).
2507          */
2508         if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2509                 switch (state) {
2510                 case QH_STATE_IDLE:
2511                         qh_refresh(fotg210, qh);
2512                         break;
2513                 case QH_STATE_LINKED:
2514                         /* We won't refresh a QH that's linked (after the HC
2515                          * stopped the queue).  That avoids a race:
2516                          *  - HC reads first part of QH;
2517                          *  - CPU updates that first part and the token;
2518                          *  - HC reads rest of that QH, including token
2519                          * Result:  HC gets an inconsistent image, and then
2520                          * DMAs to/from the wrong memory (corrupting it).
2521                          *
2522                          * That should be rare for interrupt transfers,
2523                          * except maybe high bandwidth ...
2524                          */
2525
2526                         /* Tell the caller to start an unlink */
2527                         qh->needs_rescan = 1;
2528                         break;
2529                 /* otherwise, unlink already started */
2530                 }
2531         }
2532
2533         return count;
2534 }
2535
2536 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2537 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2538 /* ... and packet size, for any kind of endpoint descriptor */
2539 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2540
2541 /* reverse of qh_urb_transaction:  free a list of TDs.
2542  * used for cleanup after errors, before HC sees an URB's TDs.
2543  */
2544 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2545                 struct list_head *qtd_list)
2546 {
2547         struct list_head *entry, *temp;
2548
2549         list_for_each_safe(entry, temp, qtd_list) {
2550                 struct fotg210_qtd *qtd;
2551
2552                 qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
2553                 list_del(&qtd->qtd_list);
2554                 fotg210_qtd_free(fotg210, qtd);
2555         }
2556 }
2557
2558 /* create a list of filled qtds for this URB; won't link into qh.
2559  */
2560 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2561                 struct urb *urb, struct list_head *head, gfp_t flags)
2562 {
2563         struct fotg210_qtd *qtd, *qtd_prev;
2564         dma_addr_t buf;
2565         int len, this_sg_len, maxpacket;
2566         int is_input;
2567         u32 token;
2568         int i;
2569         struct scatterlist *sg;
2570
2571         /*
2572          * URBs map to sequences of QTDs:  one logical transaction
2573          */
2574         qtd = fotg210_qtd_alloc(fotg210, flags);
2575         if (unlikely(!qtd))
2576                 return NULL;
2577         list_add_tail(&qtd->qtd_list, head);
2578         qtd->urb = urb;
2579
2580         token = QTD_STS_ACTIVE;
2581         token |= (FOTG210_TUNE_CERR << 10);
2582         /* for split transactions, SplitXState initialized to zero */
2583
2584         len = urb->transfer_buffer_length;
2585         is_input = usb_pipein(urb->pipe);
2586         if (usb_pipecontrol(urb->pipe)) {
2587                 /* SETUP pid */
2588                 qtd_fill(fotg210, qtd, urb->setup_dma,
2589                                 sizeof(struct usb_ctrlrequest),
2590                                 token | (2 /* "setup" */ << 8), 8);
2591
2592                 /* ... and always at least one more pid */
2593                 token ^= QTD_TOGGLE;
2594                 qtd_prev = qtd;
2595                 qtd = fotg210_qtd_alloc(fotg210, flags);
2596                 if (unlikely(!qtd))
2597                         goto cleanup;
2598                 qtd->urb = urb;
2599                 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2600                 list_add_tail(&qtd->qtd_list, head);
2601
2602                 /* for zero length DATA stages, STATUS is always IN */
2603                 if (len == 0)
2604                         token |= (1 /* "in" */ << 8);
2605         }
2606
2607         /*
2608          * data transfer stage:  buffer setup
2609          */
2610         i = urb->num_mapped_sgs;
2611         if (len > 0 && i > 0) {
2612                 sg = urb->sg;
2613                 buf = sg_dma_address(sg);
2614
2615                 /* urb->transfer_buffer_length may be smaller than the
2616                  * size of the scatterlist (or vice versa)
2617                  */
2618                 this_sg_len = min_t(int, sg_dma_len(sg), len);
2619         } else {
2620                 sg = NULL;
2621                 buf = urb->transfer_dma;
2622                 this_sg_len = len;
2623         }
2624
2625         if (is_input)
2626                 token |= (1 /* "in" */ << 8);
2627         /* else it's already initted to "out" pid (0 << 8) */
2628
2629         maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2630
2631         /*
2632          * buffer gets wrapped in one or more qtds;
2633          * last one may be "short" (including zero len)
2634          * and may serve as a control status ack
2635          */
2636         for (;;) {
2637                 int this_qtd_len;
2638
2639                 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2640                                 maxpacket);
2641                 this_sg_len -= this_qtd_len;
2642                 len -= this_qtd_len;
2643                 buf += this_qtd_len;
2644
2645                 /*
2646                  * short reads advance to a "magic" dummy instead of the next
2647                  * qtd ... that forces the queue to stop, for manual cleanup.
2648                  * (this will usually be overridden later.)
2649                  */
2650                 if (is_input)
2651                         qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2652
2653                 /* qh makes control packets use qtd toggle; maybe switch it */
2654                 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2655                         token ^= QTD_TOGGLE;
2656
2657                 if (likely(this_sg_len <= 0)) {
2658                         if (--i <= 0 || len <= 0)
2659                                 break;
2660                         sg = sg_next(sg);
2661                         buf = sg_dma_address(sg);
2662                         this_sg_len = min_t(int, sg_dma_len(sg), len);
2663                 }
2664
2665                 qtd_prev = qtd;
2666                 qtd = fotg210_qtd_alloc(fotg210, flags);
2667                 if (unlikely(!qtd))
2668                         goto cleanup;
2669                 qtd->urb = urb;
2670                 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2671                 list_add_tail(&qtd->qtd_list, head);
2672         }
2673
2674         /*
2675          * unless the caller requires manual cleanup after short reads,
2676          * have the alt_next mechanism keep the queue running after the
2677          * last data qtd (the only one, for control and most other cases).
2678          */
2679         if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2680                         usb_pipecontrol(urb->pipe)))
2681                 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2682
2683         /*
2684          * control requests may need a terminating data "status" ack;
2685          * other OUT ones may need a terminating short packet
2686          * (zero length).
2687          */
2688         if (likely(urb->transfer_buffer_length != 0)) {
2689                 int one_more = 0;
2690
2691                 if (usb_pipecontrol(urb->pipe)) {
2692                         one_more = 1;
2693                         token ^= 0x0100;        /* "in" <--> "out"  */
2694                         token |= QTD_TOGGLE;    /* force DATA1 */
2695                 } else if (usb_pipeout(urb->pipe)
2696                                 && (urb->transfer_flags & URB_ZERO_PACKET)
2697                                 && !(urb->transfer_buffer_length % maxpacket)) {
2698                         one_more = 1;
2699                 }
2700                 if (one_more) {
2701                         qtd_prev = qtd;
2702                         qtd = fotg210_qtd_alloc(fotg210, flags);
2703                         if (unlikely(!qtd))
2704                                 goto cleanup;
2705                         qtd->urb = urb;
2706                         qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2707                         list_add_tail(&qtd->qtd_list, head);
2708
2709                         /* never any data in such packets */
2710                         qtd_fill(fotg210, qtd, 0, 0, token, 0);
2711                 }
2712         }
2713
2714         /* by default, enable interrupt on urb completion */
2715         if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2716                 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2717         return head;
2718
2719 cleanup:
2720         qtd_list_free(fotg210, urb, head);
2721         return NULL;
2722 }
2723
2724 /* Would be best to create all qh's from config descriptors,
2725  * when each interface/altsetting is established.  Unlink
2726  * any previous qh and cancel its urbs first; endpoints are
2727  * implicitly reset then (data toggle too).
2728  * That'd mean updating how usbcore talks to HCDs. (2.7?)
2729 */
2730
2731
2732 /* Each QH holds a qtd list; a QH is used for everything except iso.
2733  *
2734  * For interrupt urbs, the scheduler must set the microframe scheduling
2735  * mask(s) each time the QH gets scheduled.  For highspeed, that's
2736  * just one microframe in the s-mask.  For split interrupt transactions
2737  * there are additional complications: c-mask, maybe FSTNs.
2738  */
2739 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2740                 gfp_t flags)
2741 {
2742         struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2743         u32 info1 = 0, info2 = 0;
2744         int is_input, type;
2745         int maxp = 0;
2746         struct usb_tt *tt = urb->dev->tt;
2747         struct fotg210_qh_hw *hw;
2748
2749         if (!qh)
2750                 return qh;
2751
2752         /*
2753          * init endpoint/device data for this QH
2754          */
2755         info1 |= usb_pipeendpoint(urb->pipe) << 8;
2756         info1 |= usb_pipedevice(urb->pipe) << 0;
2757
2758         is_input = usb_pipein(urb->pipe);
2759         type = usb_pipetype(urb->pipe);
2760         maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2761
2762         /* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2763          * acts like up to 3KB, but is built from smaller packets.
2764          */
2765         if (max_packet(maxp) > 1024) {
2766                 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2767                                 max_packet(maxp));
2768                 goto done;
2769         }
2770
2771         /* Compute interrupt scheduling parameters just once, and save.
2772          * - allowing for high bandwidth, how many nsec/uframe are used?
2773          * - split transactions need a second CSPLIT uframe; same question
2774          * - splits also need a schedule gap (for full/low speed I/O)
2775          * - qh has a polling interval
2776          *
2777          * For control/bulk requests, the HC or TT handles these.
2778          */
2779         if (type == PIPE_INTERRUPT) {
2780                 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2781                                 is_input, 0,
2782                                 hb_mult(maxp) * max_packet(maxp)));
2783                 qh->start = NO_FRAME;
2784
2785                 if (urb->dev->speed == USB_SPEED_HIGH) {
2786                         qh->c_usecs = 0;
2787                         qh->gap_uf = 0;
2788
2789                         qh->period = urb->interval >> 3;
2790                         if (qh->period == 0 && urb->interval != 1) {
2791                                 /* NOTE interval 2 or 4 uframes could work.
2792                                  * But interval 1 scheduling is simpler, and
2793                                  * includes high bandwidth.
2794                                  */
2795                                 urb->interval = 1;
2796                         } else if (qh->period > fotg210->periodic_size) {
2797                                 qh->period = fotg210->periodic_size;
2798                                 urb->interval = qh->period << 3;
2799                         }
2800                 } else {
2801                         int think_time;
2802
2803                         /* gap is f(FS/LS transfer times) */
2804                         qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2805                                         is_input, 0, maxp) / (125 * 1000);
2806
2807                         /* FIXME this just approximates SPLIT/CSPLIT times */
2808                         if (is_input) {         /* SPLIT, gap, CSPLIT+DATA */
2809                                 qh->c_usecs = qh->usecs + HS_USECS(0);
2810                                 qh->usecs = HS_USECS(1);
2811                         } else {                /* SPLIT+DATA, gap, CSPLIT */
2812                                 qh->usecs += HS_USECS(1);
2813                                 qh->c_usecs = HS_USECS(0);
2814                         }
2815
2816                         think_time = tt ? tt->think_time : 0;
2817                         qh->tt_usecs = NS_TO_US(think_time +
2818                                         usb_calc_bus_time(urb->dev->speed,
2819                                         is_input, 0, max_packet(maxp)));
2820                         qh->period = urb->interval;
2821                         if (qh->period > fotg210->periodic_size) {
2822                                 qh->period = fotg210->periodic_size;
2823                                 urb->interval = qh->period;
2824                         }
2825                 }
2826         }
2827
2828         /* support for tt scheduling, and access to toggles */
2829         qh->dev = urb->dev;
2830
2831         /* using TT? */
2832         switch (urb->dev->speed) {
2833         case USB_SPEED_LOW:
2834                 info1 |= QH_LOW_SPEED;
2835                 /* FALL THROUGH */
2836
2837         case USB_SPEED_FULL:
2838                 /* EPS 0 means "full" */
2839                 if (type != PIPE_INTERRUPT)
2840                         info1 |= (FOTG210_TUNE_RL_TT << 28);
2841                 if (type == PIPE_CONTROL) {
2842                         info1 |= QH_CONTROL_EP;         /* for TT */
2843                         info1 |= QH_TOGGLE_CTL;         /* toggle from qtd */
2844                 }
2845                 info1 |= maxp << 16;
2846
2847                 info2 |= (FOTG210_TUNE_MULT_TT << 30);
2848
2849                 /* Some Freescale processors have an erratum in which the
2850                  * port number in the queue head was 0..N-1 instead of 1..N.
2851                  */
2852                 if (fotg210_has_fsl_portno_bug(fotg210))
2853                         info2 |= (urb->dev->ttport-1) << 23;
2854                 else
2855                         info2 |= urb->dev->ttport << 23;
2856
2857                 /* set the address of the TT; for TDI's integrated
2858                  * root hub tt, leave it zeroed.
2859                  */
2860                 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2861                         info2 |= tt->hub->devnum << 16;
2862
2863                 /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2864
2865                 break;
2866
2867         case USB_SPEED_HIGH:            /* no TT involved */
2868                 info1 |= QH_HIGH_SPEED;
2869                 if (type == PIPE_CONTROL) {
2870                         info1 |= (FOTG210_TUNE_RL_HS << 28);
2871                         info1 |= 64 << 16;      /* usb2 fixed maxpacket */
2872                         info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2873                         info2 |= (FOTG210_TUNE_MULT_HS << 30);
2874                 } else if (type == PIPE_BULK) {
2875                         info1 |= (FOTG210_TUNE_RL_HS << 28);
2876                         /* The USB spec says that high speed bulk endpoints
2877                          * always use 512 byte maxpacket.  But some device
2878                          * vendors decided to ignore that, and MSFT is happy
2879                          * to help them do so.  So now people expect to use
2880                          * such nonconformant devices with Linux too; sigh.
2881                          */
2882                         info1 |= max_packet(maxp) << 16;
2883                         info2 |= (FOTG210_TUNE_MULT_HS << 30);
2884                 } else {                /* PIPE_INTERRUPT */
2885                         info1 |= max_packet(maxp) << 16;
2886                         info2 |= hb_mult(maxp) << 30;
2887                 }
2888                 break;
2889         default:
2890                 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2891                                 urb->dev->speed);
2892 done:
2893                 qh_destroy(fotg210, qh);
2894                 return NULL;
2895         }
2896
2897         /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2898
2899         /* init as live, toggle clear, advance to dummy */
2900         qh->qh_state = QH_STATE_IDLE;
2901         hw = qh->hw;
2902         hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2903         hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2904         qh->is_out = !is_input;
2905         usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2906         qh_refresh(fotg210, qh);
2907         return qh;
2908 }
2909
2910 static void enable_async(struct fotg210_hcd *fotg210)
2911 {
2912         if (fotg210->async_count++)
2913                 return;
2914
2915         /* Stop waiting to turn off the async schedule */
2916         fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2917
2918         /* Don't start the schedule until ASS is 0 */
2919         fotg210_poll_ASS(fotg210);
2920         turn_on_io_watchdog(fotg210);
2921 }
2922
2923 static void disable_async(struct fotg210_hcd *fotg210)
2924 {
2925         if (--fotg210->async_count)
2926                 return;
2927
2928         /* The async schedule and async_unlink list are supposed to be empty */
2929         WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2930
2931         /* Don't turn off the schedule until ASS is 1 */
2932         fotg210_poll_ASS(fotg210);
2933 }
2934
2935 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
2936
2937 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2938 {
2939         __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2940         struct fotg210_qh *head;
2941
2942         /* Don't link a QH if there's a Clear-TT-Buffer pending */
2943         if (unlikely(qh->clearing_tt))
2944                 return;
2945
2946         WARN_ON(qh->qh_state != QH_STATE_IDLE);
2947
2948         /* clear halt and/or toggle; and maybe recover from silicon quirk */
2949         qh_refresh(fotg210, qh);
2950
2951         /* splice right after start */
2952         head = fotg210->async;
2953         qh->qh_next = head->qh_next;
2954         qh->hw->hw_next = head->hw->hw_next;
2955         wmb();
2956
2957         head->qh_next.qh = qh;
2958         head->hw->hw_next = dma;
2959
2960         qh->xacterrs = 0;
2961         qh->qh_state = QH_STATE_LINKED;
2962         /* qtd completions reported later by interrupt */
2963
2964         enable_async(fotg210);
2965 }
2966
2967 /* For control/bulk/interrupt, return QH with these TDs appended.
2968  * Allocates and initializes the QH if necessary.
2969  * Returns null if it can't allocate a QH it needs to.
2970  * If the QH has TDs (urbs) already, that's great.
2971  */
2972 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2973                 struct urb *urb, struct list_head *qtd_list,
2974                 int epnum, void **ptr)
2975 {
2976         struct fotg210_qh *qh = NULL;
2977         __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2978
2979         qh = (struct fotg210_qh *) *ptr;
2980         if (unlikely(qh == NULL)) {
2981                 /* can't sleep here, we have fotg210->lock... */
2982                 qh = qh_make(fotg210, urb, GFP_ATOMIC);
2983                 *ptr = qh;
2984         }
2985         if (likely(qh != NULL)) {
2986                 struct fotg210_qtd *qtd;
2987
2988                 if (unlikely(list_empty(qtd_list)))
2989                         qtd = NULL;
2990                 else
2991                         qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2992                                         qtd_list);
2993
2994                 /* control qh may need patching ... */
2995                 if (unlikely(epnum == 0)) {
2996                         /* usb_reset_device() briefly reverts to address 0 */
2997                         if (usb_pipedevice(urb->pipe) == 0)
2998                                 qh->hw->hw_info1 &= ~qh_addr_mask;
2999                 }
3000
3001                 /* just one way to queue requests: swap with the dummy qtd.
3002                  * only hc or qh_refresh() ever modify the overlay.
3003                  */
3004                 if (likely(qtd != NULL)) {
3005                         struct fotg210_qtd *dummy;
3006                         dma_addr_t dma;
3007                         __hc32 token;
3008
3009                         /* to avoid racing the HC, use the dummy td instead of
3010                          * the first td of our list (becomes new dummy).  both
3011                          * tds stay deactivated until we're done, when the
3012                          * HC is allowed to fetch the old dummy (4.10.2).
3013                          */
3014                         token = qtd->hw_token;
3015                         qtd->hw_token = HALT_BIT(fotg210);
3016
3017                         dummy = qh->dummy;
3018
3019                         dma = dummy->qtd_dma;
3020                         *dummy = *qtd;
3021                         dummy->qtd_dma = dma;
3022
3023                         list_del(&qtd->qtd_list);
3024                         list_add(&dummy->qtd_list, qtd_list);
3025                         list_splice_tail(qtd_list, &qh->qtd_list);
3026
3027                         fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3028                         qh->dummy = qtd;
3029
3030                         /* hc must see the new dummy at list end */
3031                         dma = qtd->qtd_dma;
3032                         qtd = list_entry(qh->qtd_list.prev,
3033                                         struct fotg210_qtd, qtd_list);
3034                         qtd->hw_next = QTD_NEXT(fotg210, dma);
3035
3036                         /* let the hc process these next qtds */
3037                         wmb();
3038                         dummy->hw_token = token;
3039
3040                         urb->hcpriv = qh;
3041                 }
3042         }
3043         return qh;
3044 }
3045
3046 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3047                 struct list_head *qtd_list, gfp_t mem_flags)
3048 {
3049         int epnum;
3050         unsigned long flags;
3051         struct fotg210_qh *qh = NULL;
3052         int rc;
3053
3054         epnum = urb->ep->desc.bEndpointAddress;
3055
3056 #ifdef FOTG210_URB_TRACE
3057         {
3058                 struct fotg210_qtd *qtd;
3059
3060                 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3061                 fotg210_dbg(fotg210,
3062                                 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3063                                 __func__, urb->dev->devpath, urb,
3064                                 epnum & 0x0f, (epnum & USB_DIR_IN)
3065                                         ? "in" : "out",
3066                                 urb->transfer_buffer_length,
3067                                 qtd, urb->ep->hcpriv);
3068         }
3069 #endif
3070
3071         spin_lock_irqsave(&fotg210->lock, flags);
3072         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3073                 rc = -ESHUTDOWN;
3074                 goto done;
3075         }
3076         rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3077         if (unlikely(rc))
3078                 goto done;
3079
3080         qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3081         if (unlikely(qh == NULL)) {
3082                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3083                 rc = -ENOMEM;
3084                 goto done;
3085         }
3086
3087         /* Control/bulk operations through TTs don't need scheduling,
3088          * the HC and TT handle it when the TT has a buffer ready.
3089          */
3090         if (likely(qh->qh_state == QH_STATE_IDLE))
3091                 qh_link_async(fotg210, qh);
3092 done:
3093         spin_unlock_irqrestore(&fotg210->lock, flags);
3094         if (unlikely(qh == NULL))
3095                 qtd_list_free(fotg210, urb, qtd_list);
3096         return rc;
3097 }
3098
3099 static void single_unlink_async(struct fotg210_hcd *fotg210,
3100                 struct fotg210_qh *qh)
3101 {
3102         struct fotg210_qh *prev;
3103
3104         /* Add to the end of the list of QHs waiting for the next IAAD */
3105         qh->qh_state = QH_STATE_UNLINK;
3106         if (fotg210->async_unlink)
3107                 fotg210->async_unlink_last->unlink_next = qh;
3108         else
3109                 fotg210->async_unlink = qh;
3110         fotg210->async_unlink_last = qh;
3111
3112         /* Unlink it from the schedule */
3113         prev = fotg210->async;
3114         while (prev->qh_next.qh != qh)
3115                 prev = prev->qh_next.qh;
3116
3117         prev->hw->hw_next = qh->hw->hw_next;
3118         prev->qh_next = qh->qh_next;
3119         if (fotg210->qh_scan_next == qh)
3120                 fotg210->qh_scan_next = qh->qh_next.qh;
3121 }
3122
3123 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3124 {
3125         /*
3126          * Do nothing if an IAA cycle is already running or
3127          * if one will be started shortly.
3128          */
3129         if (fotg210->async_iaa || fotg210->async_unlinking)
3130                 return;
3131
3132         /* Do all the waiting QHs at once */
3133         fotg210->async_iaa = fotg210->async_unlink;
3134         fotg210->async_unlink = NULL;
3135
3136         /* If the controller isn't running, we don't have to wait for it */
3137         if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3138                 if (!nested)            /* Avoid recursion */
3139                         end_unlink_async(fotg210);
3140
3141         /* Otherwise start a new IAA cycle */
3142         } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3143                 /* Make sure the unlinks are all visible to the hardware */
3144                 wmb();
3145
3146                 fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3147                                 &fotg210->regs->command);
3148                 fotg210_readl(fotg210, &fotg210->regs->command);
3149                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3150                                 true);
3151         }
3152 }
3153
3154 /* the async qh for the qtds being unlinked are now gone from the HC */
3155
3156 static void end_unlink_async(struct fotg210_hcd *fotg210)
3157 {
3158         struct fotg210_qh *qh;
3159
3160         /* Process the idle QHs */
3161 restart:
3162         fotg210->async_unlinking = true;
3163         while (fotg210->async_iaa) {
3164                 qh = fotg210->async_iaa;
3165                 fotg210->async_iaa = qh->unlink_next;
3166                 qh->unlink_next = NULL;
3167
3168                 qh->qh_state = QH_STATE_IDLE;
3169                 qh->qh_next.qh = NULL;
3170
3171                 qh_completions(fotg210, qh);
3172                 if (!list_empty(&qh->qtd_list) &&
3173                                 fotg210->rh_state == FOTG210_RH_RUNNING)
3174                         qh_link_async(fotg210, qh);
3175                 disable_async(fotg210);
3176         }
3177         fotg210->async_unlinking = false;
3178
3179         /* Start a new IAA cycle if any QHs are waiting for it */
3180         if (fotg210->async_unlink) {
3181                 start_iaa_cycle(fotg210, true);
3182                 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3183                         goto restart;
3184         }
3185 }
3186
3187 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3188 {
3189         struct fotg210_qh *qh, *next;
3190         bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3191         bool check_unlinks_later = false;
3192
3193         /* Unlink all the async QHs that have been empty for a timer cycle */
3194         next = fotg210->async->qh_next.qh;
3195         while (next) {
3196                 qh = next;
3197                 next = qh->qh_next.qh;
3198
3199                 if (list_empty(&qh->qtd_list) &&
3200                                 qh->qh_state == QH_STATE_LINKED) {
3201                         if (!stopped && qh->unlink_cycle ==
3202                                         fotg210->async_unlink_cycle)
3203                                 check_unlinks_later = true;
3204                         else
3205                                 single_unlink_async(fotg210, qh);
3206                 }
3207         }
3208
3209         /* Start a new IAA cycle if any QHs are waiting for it */
3210         if (fotg210->async_unlink)
3211                 start_iaa_cycle(fotg210, false);
3212
3213         /* QHs that haven't been empty for long enough will be handled later */
3214         if (check_unlinks_later) {
3215                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3216                                 true);
3217                 ++fotg210->async_unlink_cycle;
3218         }
3219 }
3220
3221 /* makes sure the async qh will become idle */
3222 /* caller must own fotg210->lock */
3223
3224 static void start_unlink_async(struct fotg210_hcd *fotg210,
3225                 struct fotg210_qh *qh)
3226 {
3227         /*
3228          * If the QH isn't linked then there's nothing we can do
3229          * unless we were called during a giveback, in which case
3230          * qh_completions() has to deal with it.
3231          */
3232         if (qh->qh_state != QH_STATE_LINKED) {
3233                 if (qh->qh_state == QH_STATE_COMPLETING)
3234                         qh->needs_rescan = 1;
3235                 return;
3236         }
3237
3238         single_unlink_async(fotg210, qh);
3239         start_iaa_cycle(fotg210, false);
3240 }
3241
3242 static void scan_async(struct fotg210_hcd *fotg210)
3243 {
3244         struct fotg210_qh *qh;
3245         bool check_unlinks_later = false;
3246
3247         fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3248         while (fotg210->qh_scan_next) {
3249                 qh = fotg210->qh_scan_next;
3250                 fotg210->qh_scan_next = qh->qh_next.qh;
3251 rescan:
3252                 /* clean any finished work for this qh */
3253                 if (!list_empty(&qh->qtd_list)) {
3254                         int temp;
3255
3256                         /*
3257                          * Unlinks could happen here; completion reporting
3258                          * drops the lock.  That's why fotg210->qh_scan_next
3259                          * always holds the next qh to scan; if the next qh
3260                          * gets unlinked then fotg210->qh_scan_next is adjusted
3261                          * in single_unlink_async().
3262                          */
3263                         temp = qh_completions(fotg210, qh);
3264                         if (qh->needs_rescan) {
3265                                 start_unlink_async(fotg210, qh);
3266                         } else if (list_empty(&qh->qtd_list)
3267                                         && qh->qh_state == QH_STATE_LINKED) {
3268                                 qh->unlink_cycle = fotg210->async_unlink_cycle;
3269                                 check_unlinks_later = true;
3270                         } else if (temp != 0)
3271                                 goto rescan;
3272                 }
3273         }
3274
3275         /*
3276          * Unlink empty entries, reducing DMA usage as well
3277          * as HCD schedule-scanning costs.  Delay for any qh
3278          * we just scanned, there's a not-unusual case that it
3279          * doesn't stay idle for long.
3280          */
3281         if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3282                         !(fotg210->enabled_hrtimer_events &
3283                         BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3284                 fotg210_enable_event(fotg210,
3285                                 FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3286                 ++fotg210->async_unlink_cycle;
3287         }
3288 }
3289 /* EHCI scheduled transaction support:  interrupt, iso, split iso
3290  * These are called "periodic" transactions in the EHCI spec.
3291  *
3292  * Note that for interrupt transfers, the QH/QTD manipulation is shared
3293  * with the "asynchronous" transaction support (control/bulk transfers).
3294  * The only real difference is in how interrupt transfers are scheduled.
3295  *
3296  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3297  * It keeps track of every ITD (or SITD) that's linked, and holds enough
3298  * pre-calculated schedule data to make appending to the queue be quick.
3299  */
3300 static int fotg210_get_frame(struct usb_hcd *hcd);
3301
3302 /* periodic_next_shadow - return "next" pointer on shadow list
3303  * @periodic: host pointer to qh/itd
3304  * @tag: hardware tag for type of this record
3305  */
3306 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3307                 union fotg210_shadow *periodic, __hc32 tag)
3308 {
3309         switch (hc32_to_cpu(fotg210, tag)) {
3310         case Q_TYPE_QH:
3311                 return &periodic->qh->qh_next;
3312         case Q_TYPE_FSTN:
3313                 return &periodic->fstn->fstn_next;
3314         default:
3315                 return &periodic->itd->itd_next;
3316         }
3317 }
3318
3319 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3320                 union fotg210_shadow *periodic, __hc32 tag)
3321 {
3322         switch (hc32_to_cpu(fotg210, tag)) {
3323         /* our fotg210_shadow.qh is actually software part */
3324         case Q_TYPE_QH:
3325                 return &periodic->qh->hw->hw_next;
3326         /* others are hw parts */
3327         default:
3328                 return periodic->hw_next;
3329         }
3330 }
3331
3332 /* caller must hold fotg210->lock */
3333 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3334                 void *ptr)
3335 {
3336         union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3337         __hc32 *hw_p = &fotg210->periodic[frame];
3338         union fotg210_shadow here = *prev_p;
3339
3340         /* find predecessor of "ptr"; hw and shadow lists are in sync */
3341         while (here.ptr && here.ptr != ptr) {
3342                 prev_p = periodic_next_shadow(fotg210, prev_p,
3343                                 Q_NEXT_TYPE(fotg210, *hw_p));
3344                 hw_p = shadow_next_periodic(fotg210, &here,
3345                                 Q_NEXT_TYPE(fotg210, *hw_p));
3346                 here = *prev_p;
3347         }
3348         /* an interrupt entry (at list end) could have been shared */
3349         if (!here.ptr)
3350                 return;
3351
3352         /* update shadow and hardware lists ... the old "next" pointers
3353          * from ptr may still be in use, the caller updates them.
3354          */
3355         *prev_p = *periodic_next_shadow(fotg210, &here,
3356                         Q_NEXT_TYPE(fotg210, *hw_p));
3357
3358         *hw_p = *shadow_next_periodic(fotg210, &here,
3359                         Q_NEXT_TYPE(fotg210, *hw_p));
3360 }
3361
3362 /* how many of the uframe's 125 usecs are allocated? */
3363 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3364                 unsigned frame, unsigned uframe)
3365 {
3366         __hc32 *hw_p = &fotg210->periodic[frame];
3367         union fotg210_shadow *q = &fotg210->pshadow[frame];
3368         unsigned usecs = 0;
3369         struct fotg210_qh_hw *hw;
3370
3371         while (q->ptr) {
3372                 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3373                 case Q_TYPE_QH:
3374                         hw = q->qh->hw;
3375                         /* is it in the S-mask? */
3376                         if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3377                                 usecs += q->qh->usecs;
3378                         /* ... or C-mask? */
3379                         if (hw->hw_info2 & cpu_to_hc32(fotg210,
3380                                         1 << (8 + uframe)))
3381                                 usecs += q->qh->c_usecs;
3382                         hw_p = &hw->hw_next;
3383                         q = &q->qh->qh_next;
3384                         break;
3385                 /* case Q_TYPE_FSTN: */
3386                 default:
3387                         /* for "save place" FSTNs, count the relevant INTR
3388                          * bandwidth from the previous frame
3389                          */
3390                         if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3391                                 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3392
3393                         hw_p = &q->fstn->hw_next;
3394                         q = &q->fstn->fstn_next;
3395                         break;
3396                 case Q_TYPE_ITD:
3397                         if (q->itd->hw_transaction[uframe])
3398                                 usecs += q->itd->stream->usecs;
3399                         hw_p = &q->itd->hw_next;
3400                         q = &q->itd->itd_next;
3401                         break;
3402                 }
3403         }
3404         if (usecs > fotg210->uframe_periodic_max)
3405                 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3406                                 frame * 8 + uframe, usecs);
3407         return usecs;
3408 }
3409
3410 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3411 {
3412         if (!dev1->tt || !dev2->tt)
3413                 return 0;
3414         if (dev1->tt != dev2->tt)
3415                 return 0;
3416         if (dev1->tt->multi)
3417                 return dev1->ttport == dev2->ttport;
3418         else
3419                 return 1;
3420 }
3421
3422 /* return true iff the device's transaction translator is available
3423  * for a periodic transfer starting at the specified frame, using
3424  * all the uframes in the mask.
3425  */
3426 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3427                 struct usb_device *dev, unsigned frame, u32 uf_mask)
3428 {
3429         if (period == 0)        /* error */
3430                 return 0;
3431
3432         /* note bandwidth wastage:  split never follows csplit
3433          * (different dev or endpoint) until the next uframe.
3434          * calling convention doesn't make that distinction.
3435          */
3436         for (; frame < fotg210->periodic_size; frame += period) {
3437                 union fotg210_shadow here;
3438                 __hc32 type;
3439                 struct fotg210_qh_hw *hw;
3440
3441                 here = fotg210->pshadow[frame];
3442                 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3443                 while (here.ptr) {
3444                         switch (hc32_to_cpu(fotg210, type)) {
3445                         case Q_TYPE_ITD:
3446                                 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3447                                 here = here.itd->itd_next;
3448                                 continue;
3449                         case Q_TYPE_QH:
3450                                 hw = here.qh->hw;
3451                                 if (same_tt(dev, here.qh->dev)) {
3452                                         u32 mask;
3453
3454                                         mask = hc32_to_cpu(fotg210,
3455                                                         hw->hw_info2);
3456                                         /* "knows" no gap is needed */
3457                                         mask |= mask >> 8;
3458                                         if (mask & uf_mask)
3459                                                 break;
3460                                 }
3461                                 type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3462                                 here = here.qh->qh_next;
3463                                 continue;
3464                         /* case Q_TYPE_FSTN: */
3465                         default:
3466                                 fotg210_dbg(fotg210,
3467                                                 "periodic frame %d bogus type %d\n",
3468                                                 frame, type);
3469                         }
3470
3471                         /* collision or error */
3472                         return 0;
3473                 }
3474         }
3475
3476         /* no collision */
3477         return 1;
3478 }
3479
3480 static void enable_periodic(struct fotg210_hcd *fotg210)
3481 {
3482         if (fotg210->periodic_count++)
3483                 return;
3484
3485         /* Stop waiting to turn off the periodic schedule */
3486         fotg210->enabled_hrtimer_events &=
3487                 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3488
3489         /* Don't start the schedule until PSS is 0 */
3490         fotg210_poll_PSS(fotg210);
3491         turn_on_io_watchdog(fotg210);
3492 }
3493
3494 static void disable_periodic(struct fotg210_hcd *fotg210)
3495 {
3496         if (--fotg210->periodic_count)
3497                 return;
3498
3499         /* Don't turn off the schedule until PSS is 1 */
3500         fotg210_poll_PSS(fotg210);
3501 }
3502
3503 /* periodic schedule slots have iso tds (normal or split) first, then a
3504  * sparse tree for active interrupt transfers.
3505  *
3506  * this just links in a qh; caller guarantees uframe masks are set right.
3507  * no FSTN support (yet; fotg210 0.96+)
3508  */
3509 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3510 {
3511         unsigned i;
3512         unsigned period = qh->period;
3513
3514         dev_dbg(&qh->dev->dev,
3515                         "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3516                         hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3517                         (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3518                         qh->c_usecs);
3519
3520         /* high bandwidth, or otherwise every microframe */
3521         if (period == 0)
3522                 period = 1;
3523
3524         for (i = qh->start; i < fotg210->periodic_size; i += period) {
3525                 union fotg210_shadow *prev = &fotg210->pshadow[i];
3526                 __hc32 *hw_p = &fotg210->periodic[i];
3527                 union fotg210_shadow here = *prev;
3528                 __hc32 type = 0;
3529
3530                 /* skip the iso nodes at list head */
3531                 while (here.ptr) {
3532                         type = Q_NEXT_TYPE(fotg210, *hw_p);
3533                         if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3534                                 break;
3535                         prev = periodic_next_shadow(fotg210, prev, type);
3536                         hw_p = shadow_next_periodic(fotg210, &here, type);
3537                         here = *prev;
3538                 }
3539
3540                 /* sorting each branch by period (slow-->fast)
3541                  * enables sharing interior tree nodes
3542                  */
3543                 while (here.ptr && qh != here.qh) {
3544                         if (qh->period > here.qh->period)
3545                                 break;
3546                         prev = &here.qh->qh_next;
3547                         hw_p = &here.qh->hw->hw_next;
3548                         here = *prev;
3549                 }
3550                 /* link in this qh, unless some earlier pass did that */
3551                 if (qh != here.qh) {
3552                         qh->qh_next = here;
3553                         if (here.qh)
3554                                 qh->hw->hw_next = *hw_p;
3555                         wmb();
3556                         prev->qh = qh;
3557                         *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3558                 }
3559         }
3560         qh->qh_state = QH_STATE_LINKED;
3561         qh->xacterrs = 0;
3562
3563         /* update per-qh bandwidth for usbfs */
3564         fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3565                 ? ((qh->usecs + qh->c_usecs) / qh->period)
3566                 : (qh->usecs * 8);
3567
3568         list_add(&qh->intr_node, &fotg210->intr_qh_list);
3569
3570         /* maybe enable periodic schedule processing */
3571         ++fotg210->intr_count;
3572         enable_periodic(fotg210);
3573 }
3574
3575 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3576                 struct fotg210_qh *qh)
3577 {
3578         unsigned i;
3579         unsigned period;
3580
3581         /*
3582          * If qh is for a low/full-speed device, simply unlinking it
3583          * could interfere with an ongoing split transaction.  To unlink
3584          * it safely would require setting the QH_INACTIVATE bit and
3585          * waiting at least one frame, as described in EHCI 4.12.2.5.
3586          *
3587          * We won't bother with any of this.  Instead, we assume that the
3588          * only reason for unlinking an interrupt QH while the current URB
3589          * is still active is to dequeue all the URBs (flush the whole
3590          * endpoint queue).
3591          *
3592          * If rebalancing the periodic schedule is ever implemented, this
3593          * approach will no longer be valid.
3594          */
3595
3596         /* high bandwidth, or otherwise part of every microframe */
3597         period = qh->period;
3598         if (!period)
3599                 period = 1;
3600
3601         for (i = qh->start; i < fotg210->periodic_size; i += period)
3602                 periodic_unlink(fotg210, i, qh);
3603
3604         /* update per-qh bandwidth for usbfs */
3605         fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3606                 ? ((qh->usecs + qh->c_usecs) / qh->period)
3607                 : (qh->usecs * 8);
3608
3609         dev_dbg(&qh->dev->dev,
3610                         "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3611                         qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3612                         (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3613                         qh->c_usecs);
3614
3615         /* qh->qh_next still "live" to HC */
3616         qh->qh_state = QH_STATE_UNLINK;
3617         qh->qh_next.ptr = NULL;
3618
3619         if (fotg210->qh_scan_next == qh)
3620                 fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3621                                 struct fotg210_qh, intr_node);
3622         list_del(&qh->intr_node);
3623 }
3624
3625 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3626                 struct fotg210_qh *qh)
3627 {
3628         /* If the QH isn't linked then there's nothing we can do
3629          * unless we were called during a giveback, in which case
3630          * qh_completions() has to deal with it.
3631          */
3632         if (qh->qh_state != QH_STATE_LINKED) {
3633                 if (qh->qh_state == QH_STATE_COMPLETING)
3634                         qh->needs_rescan = 1;
3635                 return;
3636         }
3637
3638         qh_unlink_periodic(fotg210, qh);
3639
3640         /* Make sure the unlinks are visible before starting the timer */
3641         wmb();
3642
3643         /*
3644          * The EHCI spec doesn't say how long it takes the controller to
3645          * stop accessing an unlinked interrupt QH.  The timer delay is
3646          * 9 uframes; presumably that will be long enough.
3647          */
3648         qh->unlink_cycle = fotg210->intr_unlink_cycle;
3649
3650         /* New entries go at the end of the intr_unlink list */
3651         if (fotg210->intr_unlink)
3652                 fotg210->intr_unlink_last->unlink_next = qh;
3653         else
3654                 fotg210->intr_unlink = qh;
3655         fotg210->intr_unlink_last = qh;
3656
3657         if (fotg210->intr_unlinking)
3658                 ;       /* Avoid recursive calls */
3659         else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3660                 fotg210_handle_intr_unlinks(fotg210);
3661         else if (fotg210->intr_unlink == qh) {
3662                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3663                                 true);
3664                 ++fotg210->intr_unlink_cycle;
3665         }
3666 }
3667
3668 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3669 {
3670         struct fotg210_qh_hw *hw = qh->hw;
3671         int rc;
3672
3673         qh->qh_state = QH_STATE_IDLE;
3674         hw->hw_next = FOTG210_LIST_END(fotg210);
3675
3676         qh_completions(fotg210, qh);
3677
3678         /* reschedule QH iff another request is queued */
3679         if (!list_empty(&qh->qtd_list) &&
3680                         fotg210->rh_state == FOTG210_RH_RUNNING) {
3681                 rc = qh_schedule(fotg210, qh);
3682
3683                 /* An error here likely indicates handshake failure
3684                  * or no space left in the schedule.  Neither fault
3685                  * should happen often ...
3686                  *
3687                  * FIXME kill the now-dysfunctional queued urbs
3688                  */
3689                 if (rc != 0)
3690                         fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3691                                         qh, rc);
3692         }
3693
3694         /* maybe turn off periodic schedule */
3695         --fotg210->intr_count;
3696         disable_periodic(fotg210);
3697 }
3698
3699 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3700                 unsigned uframe, unsigned period, unsigned usecs)
3701 {
3702         int claimed;
3703
3704         /* complete split running into next frame?
3705          * given FSTN support, we could sometimes check...
3706          */
3707         if (uframe >= 8)
3708                 return 0;
3709
3710         /* convert "usecs we need" to "max already claimed" */
3711         usecs = fotg210->uframe_periodic_max - usecs;
3712
3713         /* we "know" 2 and 4 uframe intervals were rejected; so
3714          * for period 0, check _every_ microframe in the schedule.
3715          */
3716         if (unlikely(period == 0)) {
3717                 do {
3718                         for (uframe = 0; uframe < 7; uframe++) {
3719                                 claimed = periodic_usecs(fotg210, frame,
3720                                                 uframe);
3721                                 if (claimed > usecs)
3722                                         return 0;
3723                         }
3724                 } while ((frame += 1) < fotg210->periodic_size);
3725
3726         /* just check the specified uframe, at that period */
3727         } else {
3728                 do {
3729                         claimed = periodic_usecs(fotg210, frame, uframe);
3730                         if (claimed > usecs)
3731                                 return 0;
3732                 } while ((frame += period) < fotg210->periodic_size);
3733         }
3734
3735         /* success! */
3736         return 1;
3737 }
3738
3739 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3740                 unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3741 {
3742         int retval = -ENOSPC;
3743         u8 mask = 0;
3744
3745         if (qh->c_usecs && uframe >= 6)         /* FSTN territory? */
3746                 goto done;
3747
3748         if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3749                 goto done;
3750         if (!qh->c_usecs) {
3751                 retval = 0;
3752                 *c_maskp = 0;
3753                 goto done;
3754         }
3755
3756         /* Make sure this tt's buffer is also available for CSPLITs.
3757          * We pessimize a bit; probably the typical full speed case
3758          * doesn't need the second CSPLIT.
3759          *
3760          * NOTE:  both SPLIT and CSPLIT could be checked in just
3761          * one smart pass...
3762          */
3763         mask = 0x03 << (uframe + qh->gap_uf);
3764         *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3765
3766         mask |= 1 << uframe;
3767         if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3768                 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3769                                 qh->period, qh->c_usecs))
3770                         goto done;
3771                 if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3772                                 qh->period, qh->c_usecs))
3773                         goto done;
3774                 retval = 0;
3775         }
3776 done:
3777         return retval;
3778 }
3779
3780 /* "first fit" scheduling policy used the first time through,
3781  * or when the previous schedule slot can't be re-used.
3782  */
3783 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3784 {
3785         int status;
3786         unsigned uframe;
3787         __hc32 c_mask;
3788         unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3789         struct fotg210_qh_hw *hw = qh->hw;
3790
3791         qh_refresh(fotg210, qh);
3792         hw->hw_next = FOTG210_LIST_END(fotg210);
3793         frame = qh->start;
3794
3795         /* reuse the previous schedule slots, if we can */
3796         if (frame < qh->period) {
3797                 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3798                 status = check_intr_schedule(fotg210, frame, --uframe,
3799                                 qh, &c_mask);
3800         } else {
3801                 uframe = 0;
3802                 c_mask = 0;
3803                 status = -ENOSPC;
3804         }
3805
3806         /* else scan the schedule to find a group of slots such that all
3807          * uframes have enough periodic bandwidth available.
3808          */
3809         if (status) {
3810                 /* "normal" case, uframing flexible except with splits */
3811                 if (qh->period) {
3812                         int i;
3813
3814                         for (i = qh->period; status && i > 0; --i) {
3815                                 frame = ++fotg210->random_frame % qh->period;
3816                                 for (uframe = 0; uframe < 8; uframe++) {
3817                                         status = check_intr_schedule(fotg210,
3818                                                         frame, uframe, qh,
3819                                                         &c_mask);
3820                                         if (status == 0)
3821                                                 break;
3822                                 }
3823                         }
3824
3825                 /* qh->period == 0 means every uframe */
3826                 } else {
3827                         frame = 0;
3828                         status = check_intr_schedule(fotg210, 0, 0, qh,
3829                                         &c_mask);
3830                 }
3831                 if (status)
3832                         goto done;
3833                 qh->start = frame;
3834
3835                 /* reset S-frame and (maybe) C-frame masks */
3836                 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3837                 hw->hw_info2 |= qh->period
3838                         ? cpu_to_hc32(fotg210, 1 << uframe)
3839                         : cpu_to_hc32(fotg210, QH_SMASK);
3840                 hw->hw_info2 |= c_mask;
3841         } else
3842                 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3843
3844         /* stuff into the periodic schedule */
3845         qh_link_periodic(fotg210, qh);
3846 done:
3847         return status;
3848 }
3849
3850 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3851                 struct list_head *qtd_list, gfp_t mem_flags)
3852 {
3853         unsigned epnum;
3854         unsigned long flags;
3855         struct fotg210_qh *qh;
3856         int status;
3857         struct list_head empty;
3858
3859         /* get endpoint and transfer/schedule data */
3860         epnum = urb->ep->desc.bEndpointAddress;
3861
3862         spin_lock_irqsave(&fotg210->lock, flags);
3863
3864         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3865                 status = -ESHUTDOWN;
3866                 goto done_not_linked;
3867         }
3868         status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3869         if (unlikely(status))
3870                 goto done_not_linked;
3871
3872         /* get qh and force any scheduling errors */
3873         INIT_LIST_HEAD(&empty);
3874         qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3875         if (qh == NULL) {
3876                 status = -ENOMEM;
3877                 goto done;
3878         }
3879         if (qh->qh_state == QH_STATE_IDLE) {
3880                 status = qh_schedule(fotg210, qh);
3881                 if (status)
3882                         goto done;
3883         }
3884
3885         /* then queue the urb's tds to the qh */
3886         qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3887         BUG_ON(qh == NULL);
3888
3889         /* ... update usbfs periodic stats */
3890         fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3891
3892 done:
3893         if (unlikely(status))
3894                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3895 done_not_linked:
3896         spin_unlock_irqrestore(&fotg210->lock, flags);
3897         if (status)
3898                 qtd_list_free(fotg210, urb, qtd_list);
3899
3900         return status;
3901 }
3902
3903 static void scan_intr(struct fotg210_hcd *fotg210)
3904 {
3905         struct fotg210_qh *qh;
3906
3907         list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3908                         &fotg210->intr_qh_list, intr_node) {
3909 rescan:
3910                 /* clean any finished work for this qh */
3911                 if (!list_empty(&qh->qtd_list)) {
3912                         int temp;
3913
3914                         /*
3915                          * Unlinks could happen here; completion reporting
3916                          * drops the lock.  That's why fotg210->qh_scan_next
3917                          * always holds the next qh to scan; if the next qh
3918                          * gets unlinked then fotg210->qh_scan_next is adjusted
3919                          * in qh_unlink_periodic().
3920                          */
3921                         temp = qh_completions(fotg210, qh);
3922                         if (unlikely(qh->needs_rescan ||
3923                                         (list_empty(&qh->qtd_list) &&
3924                                         qh->qh_state == QH_STATE_LINKED)))
3925                                 start_unlink_intr(fotg210, qh);
3926                         else if (temp != 0)
3927                                 goto rescan;
3928                 }
3929         }
3930 }
3931
3932 /* fotg210_iso_stream ops work with both ITD and SITD */
3933
3934 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3935 {
3936         struct fotg210_iso_stream *stream;
3937
3938         stream = kzalloc(sizeof(*stream), mem_flags);
3939         if (likely(stream != NULL)) {
3940                 INIT_LIST_HEAD(&stream->td_list);
3941                 INIT_LIST_HEAD(&stream->free_list);
3942                 stream->next_uframe = -1;
3943         }
3944         return stream;
3945 }
3946
3947 static void iso_stream_init(struct fotg210_hcd *fotg210,
3948                 struct fotg210_iso_stream *stream, struct usb_device *dev,
3949                 int pipe, unsigned interval)
3950 {
3951         u32 buf1;
3952         unsigned epnum, maxp;
3953         int is_input;
3954         long bandwidth;
3955         unsigned multi;
3956
3957         /*
3958          * this might be a "high bandwidth" highspeed endpoint,
3959          * as encoded in the ep descriptor's wMaxPacket field
3960          */
3961         epnum = usb_pipeendpoint(pipe);
3962         is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3963         maxp = usb_maxpacket(dev, pipe, !is_input);
3964         if (is_input)
3965                 buf1 = (1 << 11);
3966         else
3967                 buf1 = 0;
3968
3969         maxp = max_packet(maxp);
3970         multi = hb_mult(maxp);
3971         buf1 |= maxp;
3972         maxp *= multi;
3973
3974         stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3975         stream->buf1 = cpu_to_hc32(fotg210, buf1);
3976         stream->buf2 = cpu_to_hc32(fotg210, multi);
3977
3978         /* usbfs wants to report the average usecs per frame tied up
3979          * when transfers on this endpoint are scheduled ...
3980          */
3981         if (dev->speed == USB_SPEED_FULL) {
3982                 interval <<= 3;
3983                 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3984                                 is_input, 1, maxp));
3985                 stream->usecs /= 8;
3986         } else {
3987                 stream->highspeed = 1;
3988                 stream->usecs = HS_USECS_ISO(maxp);
3989         }
3990         bandwidth = stream->usecs * 8;
3991         bandwidth /= interval;
3992
3993         stream->bandwidth = bandwidth;
3994         stream->udev = dev;
3995         stream->bEndpointAddress = is_input | epnum;
3996         stream->interval = interval;
3997         stream->maxp = maxp;
3998 }
3999
4000 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
4001                 struct urb *urb)
4002 {
4003         unsigned epnum;
4004         struct fotg210_iso_stream *stream;
4005         struct usb_host_endpoint *ep;
4006         unsigned long flags;
4007
4008         epnum = usb_pipeendpoint(urb->pipe);
4009         if (usb_pipein(urb->pipe))
4010                 ep = urb->dev->ep_in[epnum];
4011         else
4012                 ep = urb->dev->ep_out[epnum];
4013
4014         spin_lock_irqsave(&fotg210->lock, flags);
4015         stream = ep->hcpriv;
4016
4017         if (unlikely(stream == NULL)) {
4018                 stream = iso_stream_alloc(GFP_ATOMIC);
4019                 if (likely(stream != NULL)) {
4020                         ep->hcpriv = stream;
4021                         stream->ep = ep;
4022                         iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
4023                                         urb->interval);
4024                 }
4025
4026         /* if dev->ep[epnum] is a QH, hw is set */
4027         } else if (unlikely(stream->hw != NULL)) {
4028                 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4029                                 urb->dev->devpath, epnum,
4030                                 usb_pipein(urb->pipe) ? "in" : "out");
4031                 stream = NULL;
4032         }
4033
4034         spin_unlock_irqrestore(&fotg210->lock, flags);
4035         return stream;
4036 }
4037
4038 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4039
4040 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4041                 gfp_t mem_flags)
4042 {
4043         struct fotg210_iso_sched *iso_sched;
4044         int size = sizeof(*iso_sched);
4045
4046         size += packets * sizeof(struct fotg210_iso_packet);
4047         iso_sched = kzalloc(size, mem_flags);
4048         if (likely(iso_sched != NULL))
4049                 INIT_LIST_HEAD(&iso_sched->td_list);
4050
4051         return iso_sched;
4052 }
4053
4054 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4055                 struct fotg210_iso_sched *iso_sched,
4056                 struct fotg210_iso_stream *stream, struct urb *urb)
4057 {
4058         unsigned i;
4059         dma_addr_t dma = urb->transfer_dma;
4060
4061         /* how many uframes are needed for these transfers */
4062         iso_sched->span = urb->number_of_packets * stream->interval;
4063
4064         /* figure out per-uframe itd fields that we'll need later
4065          * when we fit new itds into the schedule.
4066          */
4067         for (i = 0; i < urb->number_of_packets; i++) {
4068                 struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4069                 unsigned length;
4070                 dma_addr_t buf;
4071                 u32 trans;
4072
4073                 length = urb->iso_frame_desc[i].length;
4074                 buf = dma + urb->iso_frame_desc[i].offset;
4075
4076                 trans = FOTG210_ISOC_ACTIVE;
4077                 trans |= buf & 0x0fff;
4078                 if (unlikely(((i + 1) == urb->number_of_packets))
4079                                 && !(urb->transfer_flags & URB_NO_INTERRUPT))
4080                         trans |= FOTG210_ITD_IOC;
4081                 trans |= length << 16;
4082                 uframe->transaction = cpu_to_hc32(fotg210, trans);
4083
4084                 /* might need to cross a buffer page within a uframe */
4085                 uframe->bufp = (buf & ~(u64)0x0fff);
4086                 buf += length;
4087                 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4088                         uframe->cross = 1;
4089         }
4090 }
4091
4092 static void iso_sched_free(struct fotg210_iso_stream *stream,
4093                 struct fotg210_iso_sched *iso_sched)
4094 {
4095         if (!iso_sched)
4096                 return;
4097         /* caller must hold fotg210->lock!*/
4098         list_splice(&iso_sched->td_list, &stream->free_list);
4099         kfree(iso_sched);
4100 }
4101
4102 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4103                 struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4104 {
4105         struct fotg210_itd *itd;
4106         dma_addr_t itd_dma;
4107         int i;
4108         unsigned num_itds;
4109         struct fotg210_iso_sched *sched;
4110         unsigned long flags;
4111
4112         sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4113         if (unlikely(sched == NULL))
4114                 return -ENOMEM;
4115
4116         itd_sched_init(fotg210, sched, stream, urb);
4117
4118         if (urb->interval < 8)
4119                 num_itds = 1 + (sched->span + 7) / 8;
4120         else
4121                 num_itds = urb->number_of_packets;
4122
4123         /* allocate/init ITDs */
4124         spin_lock_irqsave(&fotg210->lock, flags);
4125         for (i = 0; i < num_itds; i++) {
4126
4127                 /*
4128                  * Use iTDs from the free list, but not iTDs that may
4129                  * still be in use by the hardware.
4130                  */
4131                 if (likely(!list_empty(&stream->free_list))) {
4132                         itd = list_first_entry(&stream->free_list,
4133                                         struct fotg210_itd, itd_list);
4134                         if (itd->frame == fotg210->now_frame)
4135                                 goto alloc_itd;
4136                         list_del(&itd->itd_list);
4137                         itd_dma = itd->itd_dma;
4138                 } else {
4139 alloc_itd:
4140                         spin_unlock_irqrestore(&fotg210->lock, flags);
4141                         itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4142                                         &itd_dma);
4143                         spin_lock_irqsave(&fotg210->lock, flags);
4144                         if (!itd) {
4145                                 iso_sched_free(stream, sched);
4146                                 spin_unlock_irqrestore(&fotg210->lock, flags);
4147                                 return -ENOMEM;
4148                         }
4149                 }
4150
4151                 memset(itd, 0, sizeof(*itd));
4152                 itd->itd_dma = itd_dma;
4153                 list_add(&itd->itd_list, &sched->td_list);
4154         }
4155         spin_unlock_irqrestore(&fotg210->lock, flags);
4156
4157         /* temporarily store schedule info in hcpriv */
4158         urb->hcpriv = sched;
4159         urb->error_count = 0;
4160         return 0;
4161 }
4162
4163 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4164                 u8 usecs, u32 period)
4165 {
4166         uframe %= period;
4167         do {
4168                 /* can't commit more than uframe_periodic_max usec */
4169                 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4170                                 > (fotg210->uframe_periodic_max - usecs))
4171                         return 0;
4172
4173                 /* we know urb->interval is 2^N uframes */
4174                 uframe += period;
4175         } while (uframe < mod);
4176         return 1;
4177 }
4178
4179 /* This scheduler plans almost as far into the future as it has actual
4180  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4181  * "as small as possible" to be cache-friendlier.)  That limits the size
4182  * transfers you can stream reliably; avoid more than 64 msec per urb.
4183  * Also avoid queue depths of less than fotg210's worst irq latency (affected
4184  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4185  * and other factors); or more than about 230 msec total (for portability,
4186  * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4187  */
4188
4189 #define SCHEDULE_SLOP 80 /* microframes */
4190
4191 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4192                 struct fotg210_iso_stream *stream)
4193 {
4194         u32 now, next, start, period, span;
4195         int status;
4196         unsigned mod = fotg210->periodic_size << 3;
4197         struct fotg210_iso_sched *sched = urb->hcpriv;
4198
4199         period = urb->interval;
4200         span = sched->span;
4201
4202         if (span > mod - SCHEDULE_SLOP) {
4203                 fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4204                 status = -EFBIG;
4205                 goto fail;
4206         }
4207
4208         now = fotg210_read_frame_index(fotg210) & (mod - 1);
4209
4210         /* Typical case: reuse current schedule, stream is still active.
4211          * Hopefully there are no gaps from the host falling behind
4212          * (irq delays etc), but if there are we'll take the next
4213          * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4214          */
4215         if (likely(!list_empty(&stream->td_list))) {
4216                 u32 excess;
4217
4218                 /* For high speed devices, allow scheduling within the
4219                  * isochronous scheduling threshold.  For full speed devices
4220                  * and Intel PCI-based controllers, don't (work around for
4221                  * Intel ICH9 bug).
4222                  */
4223                 if (!stream->highspeed && fotg210->fs_i_thresh)
4224                         next = now + fotg210->i_thresh;
4225                 else
4226                         next = now;
4227
4228                 /* Fell behind (by up to twice the slop amount)?
4229                  * We decide based on the time of the last currently-scheduled
4230                  * slot, not the time of the next available slot.
4231                  */
4232                 excess = (stream->next_uframe - period - next) & (mod - 1);
4233                 if (excess >= mod - 2 * SCHEDULE_SLOP)
4234                         start = next + excess - mod + period *
4235                                         DIV_ROUND_UP(mod - excess, period);
4236                 else
4237                         start = next + excess + period;
4238                 if (start - now >= mod) {
4239                         fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4240                                         urb, start - now - period, period,
4241                                         mod);
4242                         status = -EFBIG;
4243                         goto fail;
4244                 }
4245         }
4246
4247         /* need to schedule; when's the next (u)frame we could start?
4248          * this is bigger than fotg210->i_thresh allows; scheduling itself
4249          * isn't free, the slop should handle reasonably slow cpus.  it
4250          * can also help high bandwidth if the dma and irq loads don't
4251          * jump until after the queue is primed.
4252          */
4253         else {
4254                 int done = 0;
4255
4256                 start = SCHEDULE_SLOP + (now & ~0x07);
4257
4258                 /* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4259
4260                 /* find a uframe slot with enough bandwidth.
4261                  * Early uframes are more precious because full-speed
4262                  * iso IN transfers can't use late uframes,
4263                  * and therefore they should be allocated last.
4264                  */
4265                 next = start;
4266                 start += period;
4267                 do {
4268                         start--;
4269                         /* check schedule: enough space? */
4270                         if (itd_slot_ok(fotg210, mod, start,
4271                                         stream->usecs, period))
4272                                 done = 1;
4273                 } while (start > next && !done);
4274
4275                 /* no room in the schedule */
4276                 if (!done) {
4277                         fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4278                                         urb, now, now + mod);
4279                         status = -ENOSPC;
4280                         goto fail;
4281                 }
4282         }
4283
4284         /* Tried to schedule too far into the future? */
4285         if (unlikely(start - now + span - period >=
4286                         mod - 2 * SCHEDULE_SLOP)) {
4287                 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4288                                 urb, start - now, span - period,
4289                                 mod - 2 * SCHEDULE_SLOP);
4290                 status = -EFBIG;
4291                 goto fail;
4292         }
4293
4294         stream->next_uframe = start & (mod - 1);
4295
4296         /* report high speed start in uframes; full speed, in frames */
4297         urb->start_frame = stream->next_uframe;
4298         if (!stream->highspeed)
4299                 urb->start_frame >>= 3;
4300
4301         /* Make sure scan_isoc() sees these */
4302         if (fotg210->isoc_count == 0)
4303                 fotg210->next_frame = now >> 3;
4304         return 0;
4305
4306 fail:
4307         iso_sched_free(stream, sched);
4308         urb->hcpriv = NULL;
4309         return status;
4310 }
4311
4312 static inline void itd_init(struct fotg210_hcd *fotg210,
4313                 struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4314 {
4315         int i;
4316
4317         /* it's been recently zeroed */
4318         itd->hw_next = FOTG210_LIST_END(fotg210);
4319         itd->hw_bufp[0] = stream->buf0;
4320         itd->hw_bufp[1] = stream->buf1;
4321         itd->hw_bufp[2] = stream->buf2;
4322
4323         for (i = 0; i < 8; i++)
4324                 itd->index[i] = -1;
4325
4326         /* All other fields are filled when scheduling */
4327 }
4328
4329 static inline void itd_patch(struct fotg210_hcd *fotg210,
4330                 struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4331                 unsigned index, u16 uframe)
4332 {
4333         struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4334         unsigned pg = itd->pg;
4335
4336         uframe &= 0x07;
4337         itd->index[uframe] = index;
4338
4339         itd->hw_transaction[uframe] = uf->transaction;
4340         itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4341         itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4342         itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4343
4344         /* iso_frame_desc[].offset must be strictly increasing */
4345         if (unlikely(uf->cross)) {
4346                 u64 bufp = uf->bufp + 4096;
4347
4348                 itd->pg = ++pg;
4349                 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4350                 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4351         }
4352 }
4353
4354 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4355                 struct fotg210_itd *itd)
4356 {
4357         union fotg210_shadow *prev = &fotg210->pshadow[frame];
4358         __hc32 *hw_p = &fotg210->periodic[frame];
4359         union fotg210_shadow here = *prev;
4360         __hc32 type = 0;
4361
4362         /* skip any iso nodes which might belong to previous microframes */
4363         while (here.ptr) {
4364                 type = Q_NEXT_TYPE(fotg210, *hw_p);
4365                 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4366                         break;
4367                 prev = periodic_next_shadow(fotg210, prev, type);
4368                 hw_p = shadow_next_periodic(fotg210, &here, type);
4369                 here = *prev;
4370         }
4371
4372         itd->itd_next = here;
4373         itd->hw_next = *hw_p;
4374         prev->itd = itd;
4375         itd->frame = frame;
4376         wmb();
4377         *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4378 }
4379
4380 /* fit urb's itds into the selected schedule slot; activate as needed */
4381 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4382                 unsigned mod, struct fotg210_iso_stream *stream)
4383 {
4384         int packet;
4385         unsigned next_uframe, uframe, frame;
4386         struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4387         struct fotg210_itd *itd;
4388
4389         next_uframe = stream->next_uframe & (mod - 1);
4390
4391         if (unlikely(list_empty(&stream->td_list))) {
4392                 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4393                                 += stream->bandwidth;
4394                 fotg210_dbg(fotg210,
4395                         "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4396                         urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4397                         (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4398                         urb->interval,
4399                         next_uframe >> 3, next_uframe & 0x7);
4400         }
4401
4402         /* fill iTDs uframe by uframe */
4403         for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4404                 if (itd == NULL) {
4405                         /* ASSERT:  we have all necessary itds */
4406
4407                         /* ASSERT:  no itds for this endpoint in this uframe */
4408
4409                         itd = list_entry(iso_sched->td_list.next,
4410                                         struct fotg210_itd, itd_list);
4411                         list_move_tail(&itd->itd_list, &stream->td_list);
4412                         itd->stream = stream;
4413                         itd->urb = urb;
4414                         itd_init(fotg210, stream, itd);
4415                 }
4416
4417                 uframe = next_uframe & 0x07;
4418                 frame = next_uframe >> 3;
4419
4420                 itd_patch(fotg210, itd, iso_sched, packet, uframe);
4421
4422                 next_uframe += stream->interval;
4423                 next_uframe &= mod - 1;
4424                 packet++;
4425
4426                 /* link completed itds into the schedule */
4427                 if (((next_uframe >> 3) != frame)
4428                                 || packet == urb->number_of_packets) {
4429                         itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4430                                         itd);
4431                         itd = NULL;
4432                 }
4433         }
4434         stream->next_uframe = next_uframe;
4435
4436         /* don't need that schedule data any more */
4437         iso_sched_free(stream, iso_sched);
4438         urb->hcpriv = NULL;
4439
4440         ++fotg210->isoc_count;
4441         enable_periodic(fotg210);
4442 }
4443
4444 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4445                 FOTG210_ISOC_XACTERR)
4446
4447 /* Process and recycle a completed ITD.  Return true iff its urb completed,
4448  * and hence its completion callback probably added things to the hardware
4449  * schedule.
4450  *
4451  * Note that we carefully avoid recycling this descriptor until after any
4452  * completion callback runs, so that it won't be reused quickly.  That is,
4453  * assuming (a) no more than two urbs per frame on this endpoint, and also
4454  * (b) only this endpoint's completions submit URBs.  It seems some silicon
4455  * corrupts things if you reuse completed descriptors very quickly...
4456  */
4457 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4458 {
4459         struct urb *urb = itd->urb;
4460         struct usb_iso_packet_descriptor *desc;
4461         u32 t;
4462         unsigned uframe;
4463         int urb_index = -1;
4464         struct fotg210_iso_stream *stream = itd->stream;
4465         struct usb_device *dev;
4466         bool retval = false;
4467
4468         /* for each uframe with a packet */
4469         for (uframe = 0; uframe < 8; uframe++) {
4470                 if (likely(itd->index[uframe] == -1))
4471                         continue;
4472                 urb_index = itd->index[uframe];
4473                 desc = &urb->iso_frame_desc[urb_index];
4474
4475                 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4476                 itd->hw_transaction[uframe] = 0;
4477
4478                 /* report transfer status */
4479                 if (unlikely(t & ISO_ERRS)) {
4480                         urb->error_count++;
4481                         if (t & FOTG210_ISOC_BUF_ERR)
4482                                 desc->status = usb_pipein(urb->pipe)
4483                                         ? -ENOSR  /* hc couldn't read */
4484                                         : -ECOMM; /* hc couldn't write */
4485                         else if (t & FOTG210_ISOC_BABBLE)
4486                                 desc->status = -EOVERFLOW;
4487                         else /* (t & FOTG210_ISOC_XACTERR) */
4488                                 desc->status = -EPROTO;
4489
4490                         /* HC need not update length with this error */
4491                         if (!(t & FOTG210_ISOC_BABBLE)) {
4492                                 desc->actual_length =
4493                                         fotg210_itdlen(urb, desc, t);
4494                                 urb->actual_length += desc->actual_length;
4495                         }
4496                 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4497                         desc->status = 0;
4498                         desc->actual_length = fotg210_itdlen(urb, desc, t);
4499                         urb->actual_length += desc->actual_length;
4500                 } else {
4501                         /* URB was too late */
4502                         desc->status = -EXDEV;
4503                 }
4504         }
4505
4506         /* handle completion now? */
4507         if (likely((urb_index + 1) != urb->number_of_packets))
4508                 goto done;
4509
4510         /* ASSERT: it's really the last itd for this urb
4511          * list_for_each_entry (itd, &stream->td_list, itd_list)
4512          *      BUG_ON (itd->urb == urb);
4513          */
4514
4515         /* give urb back to the driver; completion often (re)submits */
4516         dev = urb->dev;
4517         fotg210_urb_done(fotg210, urb, 0);
4518         retval = true;
4519         urb = NULL;
4520
4521         --fotg210->isoc_count;
4522         disable_periodic(fotg210);
4523
4524         if (unlikely(list_is_singular(&stream->td_list))) {
4525                 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4526                                 -= stream->bandwidth;
4527                 fotg210_dbg(fotg210,
4528                         "deschedule devp %s ep%d%s-iso\n",
4529                         dev->devpath, stream->bEndpointAddress & 0x0f,
4530                         (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4531         }
4532
4533 done:
4534         itd->urb = NULL;
4535
4536         /* Add to the end of the free list for later reuse */
4537         list_move_tail(&itd->itd_list, &stream->free_list);
4538
4539         /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4540         if (list_empty(&stream->td_list)) {
4541                 list_splice_tail_init(&stream->free_list,
4542                                 &fotg210->cached_itd_list);
4543                 start_free_itds(fotg210);
4544         }
4545
4546         return retval;
4547 }
4548
4549 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4550                 gfp_t mem_flags)
4551 {
4552         int status = -EINVAL;
4553         unsigned long flags;
4554         struct fotg210_iso_stream *stream;
4555
4556         /* Get iso_stream head */
4557         stream = iso_stream_find(fotg210, urb);
4558         if (unlikely(stream == NULL)) {
4559                 fotg210_dbg(fotg210, "can't get iso stream\n");
4560                 return -ENOMEM;
4561         }
4562         if (unlikely(urb->interval != stream->interval &&
4563                         fotg210_port_speed(fotg210, 0) ==
4564                         USB_PORT_STAT_HIGH_SPEED)) {
4565                 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4566                                 stream->interval, urb->interval);
4567                 goto done;
4568         }
4569
4570 #ifdef FOTG210_URB_TRACE
4571         fotg210_dbg(fotg210,
4572                         "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4573                         __func__, urb->dev->devpath, urb,
4574                         usb_pipeendpoint(urb->pipe),
4575                         usb_pipein(urb->pipe) ? "in" : "out",
4576                         urb->transfer_buffer_length,
4577                         urb->number_of_packets, urb->interval,
4578                         stream);
4579 #endif
4580
4581         /* allocate ITDs w/o locking anything */
4582         status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4583         if (unlikely(status < 0)) {
4584                 fotg210_dbg(fotg210, "can't init itds\n");
4585                 goto done;
4586         }
4587
4588         /* schedule ... need to lock */
4589         spin_lock_irqsave(&fotg210->lock, flags);
4590         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4591                 status = -ESHUTDOWN;
4592                 goto done_not_linked;
4593         }
4594         status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4595         if (unlikely(status))
4596                 goto done_not_linked;
4597         status = iso_stream_schedule(fotg210, urb, stream);
4598         if (likely(status == 0))
4599                 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4600         else
4601                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4602 done_not_linked:
4603         spin_unlock_irqrestore(&fotg210->lock, flags);
4604 done:
4605         return status;
4606 }
4607
4608 /*-------------------------------------------------------------------------*/
4609
4610 static void scan_isoc(struct fotg210_hcd *fotg210)
4611 {
4612         unsigned        uf, now_frame, frame;
4613         unsigned        fmask = fotg210->periodic_size - 1;
4614         bool            modified, live;
4615
4616         /*
4617          * When running, scan from last scan point up to "now"
4618          * else clean up by scanning everything that's left.
4619          * Touches as few pages as possible:  cache-friendly.
4620          */
4621         if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4622                 uf = fotg210_read_frame_index(fotg210);
4623                 now_frame = (uf >> 3) & fmask;
4624                 live = true;
4625         } else  {
4626                 now_frame = (fotg210->next_frame - 1) & fmask;
4627                 live = false;
4628         }
4629         fotg210->now_frame = now_frame;
4630
4631         frame = fotg210->next_frame;
4632         for (;;) {
4633                 union fotg210_shadow    q, *q_p;
4634                 __hc32                  type, *hw_p;
4635
4636 restart:
4637                 /* scan each element in frame's queue for completions */
4638                 q_p = &fotg210->pshadow[frame];
4639                 hw_p = &fotg210->periodic[frame];
4640                 q.ptr = q_p->ptr;
4641                 type = Q_NEXT_TYPE(fotg210, *hw_p);
4642                 modified = false;
4643
4644                 while (q.ptr != NULL) {
4645                         switch (hc32_to_cpu(fotg210, type)) {
4646                         case Q_TYPE_ITD:
4647                                 /* If this ITD is still active, leave it for
4648                                  * later processing ... check the next entry.
4649                                  * No need to check for activity unless the
4650                                  * frame is current.
4651                                  */
4652                                 if (frame == now_frame && live) {
4653                                         rmb();
4654                                         for (uf = 0; uf < 8; uf++) {
4655                                                 if (q.itd->hw_transaction[uf] &
4656                                                             ITD_ACTIVE(fotg210))
4657                                                         break;
4658                                         }
4659                                         if (uf < 8) {
4660                                                 q_p = &q.itd->itd_next;
4661                                                 hw_p = &q.itd->hw_next;
4662                                                 type = Q_NEXT_TYPE(fotg210,
4663                                                         q.itd->hw_next);
4664                                                 q = *q_p;
4665                                                 break;
4666                                         }
4667                                 }
4668
4669                                 /* Take finished ITDs out of the schedule
4670                                  * and process them:  recycle, maybe report
4671                                  * URB completion.  HC won't cache the
4672                                  * pointer for much longer, if at all.
4673                                  */
4674                                 *q_p = q.itd->itd_next;
4675                                 *hw_p = q.itd->hw_next;
4676                                 type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4677                                 wmb();
4678                                 modified = itd_complete(fotg210, q.itd);
4679                                 q = *q_p;
4680                                 break;
4681                         default:
4682                                 fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4683                                                 type, frame, q.ptr);
4684                                 /* FALL THROUGH */
4685                         case Q_TYPE_QH:
4686                         case Q_TYPE_FSTN:
4687                                 /* End of the iTDs and siTDs */
4688                                 q.ptr = NULL;
4689                                 break;
4690                         }
4691
4692                         /* assume completion callbacks modify the queue */
4693                         if (unlikely(modified && fotg210->isoc_count > 0))
4694                                 goto restart;
4695                 }
4696
4697                 /* Stop when we have reached the current frame */
4698                 if (frame == now_frame)
4699                         break;
4700                 frame = (frame + 1) & fmask;
4701         }
4702         fotg210->next_frame = now_frame;
4703 }
4704
4705 /* Display / Set uframe_periodic_max
4706  */
4707 static ssize_t show_uframe_periodic_max(struct device *dev,
4708                 struct device_attribute *attr, char *buf)
4709 {
4710         struct fotg210_hcd *fotg210;
4711         int n;
4712
4713         fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4714         n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4715         return n;
4716 }
4717
4718
4719 static ssize_t store_uframe_periodic_max(struct device *dev,
4720                 struct device_attribute *attr, const char *buf, size_t count)
4721 {
4722         struct fotg210_hcd *fotg210;
4723         unsigned uframe_periodic_max;
4724         unsigned frame, uframe;
4725         unsigned short allocated_max;
4726         unsigned long flags;
4727         ssize_t ret;
4728
4729         fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4730         if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4731                 return -EINVAL;
4732
4733         if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4734                 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4735                                 uframe_periodic_max);
4736                 return -EINVAL;
4737         }
4738
4739         ret = -EINVAL;
4740
4741         /*
4742          * lock, so that our checking does not race with possible periodic
4743          * bandwidth allocation through submitting new urbs.
4744          */
4745         spin_lock_irqsave(&fotg210->lock, flags);
4746
4747         /*
4748          * for request to decrease max periodic bandwidth, we have to check
4749          * every microframe in the schedule to see whether the decrease is
4750          * possible.
4751          */
4752         if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4753                 allocated_max = 0;
4754
4755                 for (frame = 0; frame < fotg210->periodic_size; ++frame)
4756                         for (uframe = 0; uframe < 7; ++uframe)
4757                                 allocated_max = max(allocated_max,
4758                                                 periodic_usecs(fotg210, frame,
4759                                                 uframe));
4760
4761                 if (allocated_max > uframe_periodic_max) {
4762                         fotg210_info(fotg210,
4763                                         "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4764                                         allocated_max, uframe_periodic_max);
4765                         goto out_unlock;
4766                 }
4767         }
4768
4769         /* increasing is always ok */
4770
4771         fotg210_info(fotg210,
4772                         "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4773                         100 * uframe_periodic_max/125, uframe_periodic_max);
4774
4775         if (uframe_periodic_max != 100)
4776                 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4777
4778         fotg210->uframe_periodic_max = uframe_periodic_max;
4779         ret = count;
4780
4781 out_unlock:
4782         spin_unlock_irqrestore(&fotg210->lock, flags);
4783         return ret;
4784 }
4785
4786 static DEVICE_ATTR(uframe_periodic_max, 0644, show_uframe_periodic_max,
4787                    store_uframe_periodic_max);
4788
4789 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4790 {
4791         struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4792         int i = 0;
4793
4794         if (i)
4795                 goto out;
4796
4797         i = device_create_file(controller, &dev_attr_uframe_periodic_max);
4798 out:
4799         return i;
4800 }
4801
4802 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4803 {
4804         struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4805
4806         device_remove_file(controller, &dev_attr_uframe_periodic_max);
4807 }
4808 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4809  * The firmware seems to think that powering off is a wakeup event!
4810  * This routine turns off remote wakeup and everything else, on all ports.
4811  */
4812 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4813 {
4814         u32 __iomem *status_reg = &fotg210->regs->port_status;
4815
4816         fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4817 }
4818
4819 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4820  * Must be called with interrupts enabled and the lock not held.
4821  */
4822 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4823 {
4824         fotg210_halt(fotg210);
4825
4826         spin_lock_irq(&fotg210->lock);
4827         fotg210->rh_state = FOTG210_RH_HALTED;
4828         fotg210_turn_off_all_ports(fotg210);
4829         spin_unlock_irq(&fotg210->lock);
4830 }
4831
4832 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4833  * This forcibly disables dma and IRQs, helping kexec and other cases
4834  * where the next system software may expect clean state.
4835  */
4836 static void fotg210_shutdown(struct usb_hcd *hcd)
4837 {
4838         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4839
4840         spin_lock_irq(&fotg210->lock);
4841         fotg210->shutdown = true;
4842         fotg210->rh_state = FOTG210_RH_STOPPING;
4843         fotg210->enabled_hrtimer_events = 0;
4844         spin_unlock_irq(&fotg210->lock);
4845
4846         fotg210_silence_controller(fotg210);
4847
4848         hrtimer_cancel(&fotg210->hrtimer);
4849 }
4850
4851 /* fotg210_work is called from some interrupts, timers, and so on.
4852  * it calls driver completion functions, after dropping fotg210->lock.
4853  */
4854 static void fotg210_work(struct fotg210_hcd *fotg210)
4855 {
4856         /* another CPU may drop fotg210->lock during a schedule scan while
4857          * it reports urb completions.  this flag guards against bogus
4858          * attempts at re-entrant schedule scanning.
4859          */
4860         if (fotg210->scanning) {
4861                 fotg210->need_rescan = true;
4862                 return;
4863         }
4864         fotg210->scanning = true;
4865
4866 rescan:
4867         fotg210->need_rescan = false;
4868         if (fotg210->async_count)
4869                 scan_async(fotg210);
4870         if (fotg210->intr_count > 0)
4871                 scan_intr(fotg210);
4872         if (fotg210->isoc_count > 0)
4873                 scan_isoc(fotg210);
4874         if (fotg210->need_rescan)
4875                 goto rescan;
4876         fotg210->scanning = false;
4877
4878         /* the IO watchdog guards against hardware or driver bugs that
4879          * misplace IRQs, and should let us run completely without IRQs.
4880          * such lossage has been observed on both VT6202 and VT8235.
4881          */
4882         turn_on_io_watchdog(fotg210);
4883 }
4884
4885 /* Called when the fotg210_hcd module is removed.
4886  */
4887 static void fotg210_stop(struct usb_hcd *hcd)
4888 {
4889         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4890
4891         fotg210_dbg(fotg210, "stop\n");
4892
4893         /* no more interrupts ... */
4894
4895         spin_lock_irq(&fotg210->lock);
4896         fotg210->enabled_hrtimer_events = 0;
4897         spin_unlock_irq(&fotg210->lock);
4898
4899         fotg210_quiesce(fotg210);
4900         fotg210_silence_controller(fotg210);
4901         fotg210_reset(fotg210);
4902
4903         hrtimer_cancel(&fotg210->hrtimer);
4904         remove_sysfs_files(fotg210);
4905         remove_debug_files(fotg210);
4906
4907         /* root hub is shut down separately (first, when possible) */
4908         spin_lock_irq(&fotg210->lock);
4909         end_free_itds(fotg210);
4910         spin_unlock_irq(&fotg210->lock);
4911         fotg210_mem_cleanup(fotg210);
4912
4913 #ifdef FOTG210_STATS
4914         fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4915                         fotg210->stats.normal, fotg210->stats.error,
4916                         fotg210->stats.iaa, fotg210->stats.lost_iaa);
4917         fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4918                         fotg210->stats.complete, fotg210->stats.unlink);
4919 #endif
4920
4921         dbg_status(fotg210, "fotg210_stop completed",
4922                         fotg210_readl(fotg210, &fotg210->regs->status));
4923 }
4924
4925 /* one-time init, only for memory state */
4926 static int hcd_fotg210_init(struct usb_hcd *hcd)
4927 {
4928         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4929         u32 temp;
4930         int retval;
4931         u32 hcc_params;
4932         struct fotg210_qh_hw *hw;
4933
4934         spin_lock_init(&fotg210->lock);
4935
4936         /*
4937          * keep io watchdog by default, those good HCDs could turn off it later
4938          */
4939         fotg210->need_io_watchdog = 1;
4940
4941         hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4942         fotg210->hrtimer.function = fotg210_hrtimer_func;
4943         fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4944
4945         hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4946
4947         /*
4948          * by default set standard 80% (== 100 usec/uframe) max periodic
4949          * bandwidth as required by USB 2.0
4950          */
4951         fotg210->uframe_periodic_max = 100;
4952
4953         /*
4954          * hw default: 1K periodic list heads, one per frame.
4955          * periodic_size can shrink by USBCMD update if hcc_params allows.
4956          */
4957         fotg210->periodic_size = DEFAULT_I_TDPS;
4958         INIT_LIST_HEAD(&fotg210->intr_qh_list);
4959         INIT_LIST_HEAD(&fotg210->cached_itd_list);
4960
4961         if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4962                 /* periodic schedule size can be smaller than default */
4963                 switch (FOTG210_TUNE_FLS) {
4964                 case 0:
4965                         fotg210->periodic_size = 1024;
4966                         break;
4967                 case 1:
4968                         fotg210->periodic_size = 512;
4969                         break;
4970                 case 2:
4971                         fotg210->periodic_size = 256;
4972                         break;
4973                 default:
4974                         BUG();
4975                 }
4976         }
4977         retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4978         if (retval < 0)
4979                 return retval;
4980
4981         /* controllers may cache some of the periodic schedule ... */
4982         fotg210->i_thresh = 2;
4983
4984         /*
4985          * dedicate a qh for the async ring head, since we couldn't unlink
4986          * a 'real' qh without stopping the async schedule [4.8].  use it
4987          * as the 'reclamation list head' too.
4988          * its dummy is used in hw_alt_next of many tds, to prevent the qh
4989          * from automatically advancing to the next td after short reads.
4990          */
4991         fotg210->async->qh_next.qh = NULL;
4992         hw = fotg210->async->hw;
4993         hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4994         hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4995         hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4996         hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4997         fotg210->async->qh_state = QH_STATE_LINKED;
4998         hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4999
5000         /* clear interrupt enables, set irq latency */
5001         if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
5002                 log2_irq_thresh = 0;
5003         temp = 1 << (16 + log2_irq_thresh);
5004         if (HCC_CANPARK(hcc_params)) {
5005                 /* HW default park == 3, on hardware that supports it (like
5006                  * NVidia and ALI silicon), maximizes throughput on the async
5007                  * schedule by avoiding QH fetches between transfers.
5008                  *
5009                  * With fast usb storage devices and NForce2, "park" seems to
5010                  * make problems:  throughput reduction (!), data errors...
5011                  */
5012                 if (park) {
5013                         park = min_t(unsigned, park, 3);
5014                         temp |= CMD_PARK;
5015                         temp |= park << 8;
5016                 }
5017                 fotg210_dbg(fotg210, "park %d\n", park);
5018         }
5019         if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5020                 /* periodic schedule size can be smaller than default */
5021                 temp &= ~(3 << 2);
5022                 temp |= (FOTG210_TUNE_FLS << 2);
5023         }
5024         fotg210->command = temp;
5025
5026         /* Accept arbitrarily long scatter-gather lists */
5027         if (!(hcd->driver->flags & HCD_LOCAL_MEM))
5028                 hcd->self.sg_tablesize = ~0;
5029         return 0;
5030 }
5031
5032 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5033 static int fotg210_run(struct usb_hcd *hcd)
5034 {
5035         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5036         u32 temp;
5037         u32 hcc_params;
5038
5039         hcd->uses_new_polling = 1;
5040
5041         /* EHCI spec section 4.1 */
5042
5043         fotg210_writel(fotg210, fotg210->periodic_dma,
5044                         &fotg210->regs->frame_list);
5045         fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5046                         &fotg210->regs->async_next);
5047
5048         /*
5049          * hcc_params controls whether fotg210->regs->segment must (!!!)
5050          * be used; it constrains QH/ITD/SITD and QTD locations.
5051          * pci_pool consistent memory always uses segment zero.
5052          * streaming mappings for I/O buffers, like pci_map_single(),
5053          * can return segments above 4GB, if the device allows.
5054          *
5055          * NOTE:  the dma mask is visible through dma_supported(), so
5056          * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5057          * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5058          * host side drivers though.
5059          */
5060         hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5061
5062         /*
5063          * Philips, Intel, and maybe others need CMD_RUN before the
5064          * root hub will detect new devices (why?); NEC doesn't
5065          */
5066         fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5067         fotg210->command |= CMD_RUN;
5068         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5069         dbg_cmd(fotg210, "init", fotg210->command);
5070
5071         /*
5072          * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5073          * are explicitly handed to companion controller(s), so no TT is
5074          * involved with the root hub.  (Except where one is integrated,
5075          * and there's no companion controller unless maybe for USB OTG.)
5076          *
5077          * Turning on the CF flag will transfer ownership of all ports
5078          * from the companions to the EHCI controller.  If any of the
5079          * companions are in the middle of a port reset at the time, it
5080          * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5081          * guarantees that no resets are in progress.  After we set CF,
5082          * a short delay lets the hardware catch up; new resets shouldn't
5083          * be started before the port switching actions could complete.
5084          */
5085         down_write(&ehci_cf_port_reset_rwsem);
5086         fotg210->rh_state = FOTG210_RH_RUNNING;
5087         /* unblock posted writes */
5088         fotg210_readl(fotg210, &fotg210->regs->command);
5089         msleep(5);
5090         up_write(&ehci_cf_port_reset_rwsem);
5091         fotg210->last_periodic_enable = ktime_get_real();
5092
5093         temp = HC_VERSION(fotg210,
5094                         fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5095         fotg210_info(fotg210,
5096                         "USB %x.%x started, EHCI %x.%02x\n",
5097                         ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5098                         temp >> 8, temp & 0xff);
5099
5100         fotg210_writel(fotg210, INTR_MASK,
5101                         &fotg210->regs->intr_enable); /* Turn On Interrupts */
5102
5103         /* GRR this is run-once init(), being done every time the HC starts.
5104          * So long as they're part of class devices, we can't do it init()
5105          * since the class device isn't created that early.
5106          */
5107         create_debug_files(fotg210);
5108         create_sysfs_files(fotg210);
5109
5110         return 0;
5111 }
5112
5113 static int fotg210_setup(struct usb_hcd *hcd)
5114 {
5115         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5116         int retval;
5117
5118         fotg210->regs = (void __iomem *)fotg210->caps +
5119                         HC_LENGTH(fotg210,
5120                         fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5121         dbg_hcs_params(fotg210, "reset");
5122         dbg_hcc_params(fotg210, "reset");
5123
5124         /* cache this readonly data; minimize chip reads */
5125         fotg210->hcs_params = fotg210_readl(fotg210,
5126                         &fotg210->caps->hcs_params);
5127
5128         fotg210->sbrn = HCD_USB2;
5129
5130         /* data structure init */
5131         retval = hcd_fotg210_init(hcd);
5132         if (retval)
5133                 return retval;
5134
5135         retval = fotg210_halt(fotg210);
5136         if (retval)
5137                 return retval;
5138
5139         fotg210_reset(fotg210);
5140
5141         return 0;
5142 }
5143
5144 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5145 {
5146         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5147         u32 status, masked_status, pcd_status = 0, cmd;
5148         int bh;
5149
5150         spin_lock(&fotg210->lock);
5151
5152         status = fotg210_readl(fotg210, &fotg210->regs->status);
5153
5154         /* e.g. cardbus physical eject */
5155         if (status == ~(u32) 0) {
5156                 fotg210_dbg(fotg210, "device removed\n");
5157                 goto dead;
5158         }
5159
5160         /*
5161          * We don't use STS_FLR, but some controllers don't like it to
5162          * remain on, so mask it out along with the other status bits.
5163          */
5164         masked_status = status & (INTR_MASK | STS_FLR);
5165
5166         /* Shared IRQ? */
5167         if (!masked_status ||
5168                         unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5169                 spin_unlock(&fotg210->lock);
5170                 return IRQ_NONE;
5171         }
5172
5173         /* clear (just) interrupts */
5174         fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5175         cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5176         bh = 0;
5177
5178         /* unrequested/ignored: Frame List Rollover */
5179         dbg_status(fotg210, "irq", status);
5180
5181         /* INT, ERR, and IAA interrupt rates can be throttled */
5182
5183         /* normal [4.15.1.2] or error [4.15.1.1] completion */
5184         if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5185                 if (likely((status & STS_ERR) == 0))
5186                         COUNT(fotg210->stats.normal);
5187                 else
5188                         COUNT(fotg210->stats.error);
5189                 bh = 1;
5190         }
5191
5192         /* complete the unlinking of some qh [4.15.2.3] */
5193         if (status & STS_IAA) {
5194
5195                 /* Turn off the IAA watchdog */
5196                 fotg210->enabled_hrtimer_events &=
5197                         ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5198
5199                 /*
5200                  * Mild optimization: Allow another IAAD to reset the
5201                  * hrtimer, if one occurs before the next expiration.
5202                  * In theory we could always cancel the hrtimer, but
5203                  * tests show that about half the time it will be reset
5204                  * for some other event anyway.
5205                  */
5206                 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5207                         ++fotg210->next_hrtimer_event;
5208
5209                 /* guard against (alleged) silicon errata */
5210                 if (cmd & CMD_IAAD)
5211                         fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5212                 if (fotg210->async_iaa) {
5213                         COUNT(fotg210->stats.iaa);
5214                         end_unlink_async(fotg210);
5215                 } else
5216                         fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5217         }
5218
5219         /* remote wakeup [4.3.1] */
5220         if (status & STS_PCD) {
5221                 int pstatus;
5222                 u32 __iomem *status_reg = &fotg210->regs->port_status;
5223
5224                 /* kick root hub later */
5225                 pcd_status = status;
5226
5227                 /* resume root hub? */
5228                 if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5229                         usb_hcd_resume_root_hub(hcd);
5230
5231                 pstatus = fotg210_readl(fotg210, status_reg);
5232
5233                 if (test_bit(0, &fotg210->suspended_ports) &&
5234                                 ((pstatus & PORT_RESUME) ||
5235                                 !(pstatus & PORT_SUSPEND)) &&
5236                                 (pstatus & PORT_PE) &&
5237                                 fotg210->reset_done[0] == 0) {
5238
5239                         /* start 20 msec resume signaling from this port,
5240                          * and make hub_wq collect PORT_STAT_C_SUSPEND to
5241                          * stop that signaling.  Use 5 ms extra for safety,
5242                          * like usb_port_resume() does.
5243                          */
5244                         fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5245                         set_bit(0, &fotg210->resuming_ports);
5246                         fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5247                         mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5248                 }
5249         }
5250
5251         /* PCI errors [4.15.2.4] */
5252         if (unlikely((status & STS_FATAL) != 0)) {
5253                 fotg210_err(fotg210, "fatal error\n");
5254                 dbg_cmd(fotg210, "fatal", cmd);
5255                 dbg_status(fotg210, "fatal", status);
5256 dead:
5257                 usb_hc_died(hcd);
5258
5259                 /* Don't let the controller do anything more */
5260                 fotg210->shutdown = true;
5261                 fotg210->rh_state = FOTG210_RH_STOPPING;
5262                 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5263                 fotg210_writel(fotg210, fotg210->command,
5264                                 &fotg210->regs->command);
5265                 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5266                 fotg210_handle_controller_death(fotg210);
5267
5268                 /* Handle completions when the controller stops */
5269                 bh = 0;
5270         }
5271
5272         if (bh)
5273                 fotg210_work(fotg210);
5274         spin_unlock(&fotg210->lock);
5275         if (pcd_status)
5276                 usb_hcd_poll_rh_status(hcd);
5277         return IRQ_HANDLED;
5278 }
5279
5280 /* non-error returns are a promise to giveback() the urb later
5281  * we drop ownership so next owner (or urb unlink) can get it
5282  *
5283  * urb + dev is in hcd.self.controller.urb_list
5284  * we're queueing TDs onto software and hardware lists
5285  *
5286  * hcd-specific init for hcpriv hasn't been done yet
5287  *
5288  * NOTE:  control, bulk, and interrupt share the same code to append TDs
5289  * to a (possibly active) QH, and the same QH scanning code.
5290  */
5291 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5292                 gfp_t mem_flags)
5293 {
5294         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5295         struct list_head qtd_list;
5296
5297         INIT_LIST_HEAD(&qtd_list);
5298
5299         switch (usb_pipetype(urb->pipe)) {
5300         case PIPE_CONTROL:
5301                 /* qh_completions() code doesn't handle all the fault cases
5302                  * in multi-TD control transfers.  Even 1KB is rare anyway.
5303                  */
5304                 if (urb->transfer_buffer_length > (16 * 1024))
5305                         return -EMSGSIZE;
5306                 /* FALLTHROUGH */
5307         /* case PIPE_BULK: */
5308         default:
5309                 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5310                         return -ENOMEM;
5311                 return submit_async(fotg210, urb, &qtd_list, mem_flags);
5312
5313         case PIPE_INTERRUPT:
5314                 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5315                         return -ENOMEM;
5316                 return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5317
5318         case PIPE_ISOCHRONOUS:
5319                 return itd_submit(fotg210, urb, mem_flags);
5320         }
5321 }
5322
5323 /* remove from hardware lists
5324  * completions normally happen asynchronously
5325  */
5326
5327 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5328 {
5329         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5330         struct fotg210_qh *qh;
5331         unsigned long flags;
5332         int rc;
5333
5334         spin_lock_irqsave(&fotg210->lock, flags);
5335         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5336         if (rc)
5337                 goto done;
5338
5339         switch (usb_pipetype(urb->pipe)) {
5340         /* case PIPE_CONTROL: */
5341         /* case PIPE_BULK:*/
5342         default:
5343                 qh = (struct fotg210_qh *) urb->hcpriv;
5344                 if (!qh)
5345                         break;
5346                 switch (qh->qh_state) {
5347                 case QH_STATE_LINKED:
5348                 case QH_STATE_COMPLETING:
5349                         start_unlink_async(fotg210, qh);
5350                         break;
5351                 case QH_STATE_UNLINK:
5352                 case QH_STATE_UNLINK_WAIT:
5353                         /* already started */
5354                         break;
5355                 case QH_STATE_IDLE:
5356                         /* QH might be waiting for a Clear-TT-Buffer */
5357                         qh_completions(fotg210, qh);
5358                         break;
5359                 }
5360                 break;
5361
5362         case PIPE_INTERRUPT:
5363                 qh = (struct fotg210_qh *) urb->hcpriv;
5364                 if (!qh)
5365                         break;
5366                 switch (qh->qh_state) {
5367                 case QH_STATE_LINKED:
5368                 case QH_STATE_COMPLETING:
5369                         start_unlink_intr(fotg210, qh);
5370                         break;
5371                 case QH_STATE_IDLE:
5372                         qh_completions(fotg210, qh);
5373                         break;
5374                 default:
5375                         fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5376                                         qh, qh->qh_state);
5377                         goto done;
5378                 }
5379                 break;
5380
5381         case PIPE_ISOCHRONOUS:
5382                 /* itd... */
5383
5384                 /* wait till next completion, do it then. */
5385                 /* completion irqs can wait up to 1024 msec, */
5386                 break;
5387         }
5388 done:
5389         spin_unlock_irqrestore(&fotg210->lock, flags);
5390         return rc;
5391 }
5392
5393 /* bulk qh holds the data toggle */
5394
5395 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5396                 struct usb_host_endpoint *ep)
5397 {
5398         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5399         unsigned long flags;
5400         struct fotg210_qh *qh, *tmp;
5401
5402         /* ASSERT:  any requests/urbs are being unlinked */
5403         /* ASSERT:  nobody can be submitting urbs for this any more */
5404
5405 rescan:
5406         spin_lock_irqsave(&fotg210->lock, flags);
5407         qh = ep->hcpriv;
5408         if (!qh)
5409                 goto done;
5410
5411         /* endpoints can be iso streams.  for now, we don't
5412          * accelerate iso completions ... so spin a while.
5413          */
5414         if (qh->hw == NULL) {
5415                 struct fotg210_iso_stream *stream = ep->hcpriv;
5416
5417                 if (!list_empty(&stream->td_list))
5418                         goto idle_timeout;
5419
5420                 /* BUG_ON(!list_empty(&stream->free_list)); */
5421                 kfree(stream);
5422                 goto done;
5423         }
5424
5425         if (fotg210->rh_state < FOTG210_RH_RUNNING)
5426                 qh->qh_state = QH_STATE_IDLE;
5427         switch (qh->qh_state) {
5428         case QH_STATE_LINKED:
5429         case QH_STATE_COMPLETING:
5430                 for (tmp = fotg210->async->qh_next.qh;
5431                                 tmp && tmp != qh;
5432                                 tmp = tmp->qh_next.qh)
5433                         continue;
5434                 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5435                  * may already be unlinked.
5436                  */
5437                 if (tmp)
5438                         start_unlink_async(fotg210, qh);
5439                 /* FALL THROUGH */
5440         case QH_STATE_UNLINK:           /* wait for hw to finish? */
5441         case QH_STATE_UNLINK_WAIT:
5442 idle_timeout:
5443                 spin_unlock_irqrestore(&fotg210->lock, flags);
5444                 schedule_timeout_uninterruptible(1);
5445                 goto rescan;
5446         case QH_STATE_IDLE:             /* fully unlinked */
5447                 if (qh->clearing_tt)
5448                         goto idle_timeout;
5449                 if (list_empty(&qh->qtd_list)) {
5450                         qh_destroy(fotg210, qh);
5451                         break;
5452                 }
5453                 /* else FALL THROUGH */
5454         default:
5455                 /* caller was supposed to have unlinked any requests;
5456                  * that's not our job.  just leak this memory.
5457                  */
5458                 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5459                                 qh, ep->desc.bEndpointAddress, qh->qh_state,
5460                                 list_empty(&qh->qtd_list) ? "" : "(has tds)");
5461                 break;
5462         }
5463 done:
5464         ep->hcpriv = NULL;
5465         spin_unlock_irqrestore(&fotg210->lock, flags);
5466 }
5467
5468 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5469                 struct usb_host_endpoint *ep)
5470 {
5471         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5472         struct fotg210_qh *qh;
5473         int eptype = usb_endpoint_type(&ep->desc);
5474         int epnum = usb_endpoint_num(&ep->desc);
5475         int is_out = usb_endpoint_dir_out(&ep->desc);
5476         unsigned long flags;
5477
5478         if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5479                 return;
5480
5481         spin_lock_irqsave(&fotg210->lock, flags);
5482         qh = ep->hcpriv;
5483
5484         /* For Bulk and Interrupt endpoints we maintain the toggle state
5485          * in the hardware; the toggle bits in udev aren't used at all.
5486          * When an endpoint is reset by usb_clear_halt() we must reset
5487          * the toggle bit in the QH.
5488          */
5489         if (qh) {
5490                 usb_settoggle(qh->dev, epnum, is_out, 0);
5491                 if (!list_empty(&qh->qtd_list)) {
5492                         WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5493                 } else if (qh->qh_state == QH_STATE_LINKED ||
5494                                 qh->qh_state == QH_STATE_COMPLETING) {
5495
5496                         /* The toggle value in the QH can't be updated
5497                          * while the QH is active.  Unlink it now;
5498                          * re-linking will call qh_refresh().
5499                          */
5500                         if (eptype == USB_ENDPOINT_XFER_BULK)
5501                                 start_unlink_async(fotg210, qh);
5502                         else
5503                                 start_unlink_intr(fotg210, qh);
5504                 }
5505         }
5506         spin_unlock_irqrestore(&fotg210->lock, flags);
5507 }
5508
5509 static int fotg210_get_frame(struct usb_hcd *hcd)
5510 {
5511         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5512
5513         return (fotg210_read_frame_index(fotg210) >> 3) %
5514                 fotg210->periodic_size;
5515 }
5516
5517 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5518  * because its registers (and irq) are shared between host/gadget/otg
5519  * functions  and in order to facilitate role switching we cannot
5520  * give the fotg210 driver exclusive access to those.
5521  */
5522 MODULE_DESCRIPTION(DRIVER_DESC);
5523 MODULE_AUTHOR(DRIVER_AUTHOR);
5524 MODULE_LICENSE("GPL");
5525
5526 static const struct hc_driver fotg210_fotg210_hc_driver = {
5527         .description            = hcd_name,
5528         .product_desc           = "Faraday USB2.0 Host Controller",
5529         .hcd_priv_size          = sizeof(struct fotg210_hcd),
5530
5531         /*
5532          * generic hardware linkage
5533          */
5534         .irq                    = fotg210_irq,
5535         .flags                  = HCD_MEMORY | HCD_USB2,
5536
5537         /*
5538          * basic lifecycle operations
5539          */
5540         .reset                  = hcd_fotg210_init,
5541         .start                  = fotg210_run,
5542         .stop                   = fotg210_stop,
5543         .shutdown               = fotg210_shutdown,
5544
5545         /*
5546          * managing i/o requests and associated device resources
5547          */
5548         .urb_enqueue            = fotg210_urb_enqueue,
5549         .urb_dequeue            = fotg210_urb_dequeue,
5550         .endpoint_disable       = fotg210_endpoint_disable,
5551         .endpoint_reset         = fotg210_endpoint_reset,
5552
5553         /*
5554          * scheduling support
5555          */
5556         .get_frame_number       = fotg210_get_frame,
5557
5558         /*
5559          * root hub support
5560          */
5561         .hub_status_data        = fotg210_hub_status_data,
5562         .hub_control            = fotg210_hub_control,
5563         .bus_suspend            = fotg210_bus_suspend,
5564         .bus_resume             = fotg210_bus_resume,
5565
5566         .relinquish_port        = fotg210_relinquish_port,
5567         .port_handed_over       = fotg210_port_handed_over,
5568
5569         .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5570 };
5571
5572 static void fotg210_init(struct fotg210_hcd *fotg210)
5573 {
5574         u32 value;
5575
5576         iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5577                         &fotg210->regs->gmir);
5578
5579         value = ioread32(&fotg210->regs->otgcsr);
5580         value &= ~OTGCSR_A_BUS_DROP;
5581         value |= OTGCSR_A_BUS_REQ;
5582         iowrite32(value, &fotg210->regs->otgcsr);
5583 }
5584
5585 /**
5586  * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5587  *
5588  * Allocates basic resources for this USB host controller, and
5589  * then invokes the start() method for the HCD associated with it
5590  * through the hotplug entry's driver_data.
5591  */
5592 static int fotg210_hcd_probe(struct platform_device *pdev)
5593 {
5594         struct device *dev = &pdev->dev;
5595         struct usb_hcd *hcd;
5596         struct resource *res;
5597         int irq;
5598         int retval = -ENODEV;
5599         struct fotg210_hcd *fotg210;
5600
5601         if (usb_disabled())
5602                 return -ENODEV;
5603
5604         pdev->dev.power.power_state = PMSG_ON;
5605
5606         res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5607         if (!res) {
5608                 dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5609                                 dev_name(dev));
5610                 return -ENODEV;
5611         }
5612
5613         irq = res->start;
5614
5615         hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5616                         dev_name(dev));
5617         if (!hcd) {
5618                 dev_err(dev, "failed to create hcd with err %d\n", retval);
5619                 retval = -ENOMEM;
5620                 goto fail_create_hcd;
5621         }
5622
5623         hcd->has_tt = 1;
5624
5625         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5626         hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5627         if (IS_ERR(hcd->regs)) {
5628                 retval = PTR_ERR(hcd->regs);
5629                 goto failed;
5630         }
5631
5632         hcd->rsrc_start = res->start;
5633         hcd->rsrc_len = resource_size(res);
5634
5635         fotg210 = hcd_to_fotg210(hcd);
5636
5637         fotg210->caps = hcd->regs;
5638
5639         retval = fotg210_setup(hcd);
5640         if (retval)
5641                 goto failed;
5642
5643         fotg210_init(fotg210);
5644
5645         retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5646         if (retval) {
5647                 dev_err(dev, "failed to add hcd with err %d\n", retval);
5648                 goto failed;
5649         }
5650         device_wakeup_enable(hcd->self.controller);
5651
5652         return retval;
5653
5654 failed:
5655         usb_put_hcd(hcd);
5656 fail_create_hcd:
5657         dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5658         return retval;
5659 }
5660
5661 /**
5662  * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5663  * @dev: USB Host Controller being removed
5664  *
5665  */
5666 static int fotg210_hcd_remove(struct platform_device *pdev)
5667 {
5668         struct device *dev = &pdev->dev;
5669         struct usb_hcd *hcd = dev_get_drvdata(dev);
5670
5671         if (!hcd)
5672                 return 0;
5673
5674         usb_remove_hcd(hcd);
5675         usb_put_hcd(hcd);
5676
5677         return 0;
5678 }
5679
5680 static struct platform_driver fotg210_hcd_driver = {
5681         .driver = {
5682                 .name   = "fotg210-hcd",
5683         },
5684         .probe  = fotg210_hcd_probe,
5685         .remove = fotg210_hcd_remove,
5686 };
5687
5688 static int __init fotg210_hcd_init(void)
5689 {
5690         int retval = 0;
5691
5692         if (usb_disabled())
5693                 return -ENODEV;
5694
5695         pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5696         set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5697         if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5698                         test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5699                 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5700
5701         pr_debug("%s: block sizes: qh %Zd qtd %Zd itd %Zd\n",
5702                         hcd_name, sizeof(struct fotg210_qh),
5703                         sizeof(struct fotg210_qtd),
5704                         sizeof(struct fotg210_itd));
5705
5706         fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5707         if (!fotg210_debug_root) {
5708                 retval = -ENOENT;
5709                 goto err_debug;
5710         }
5711
5712         retval = platform_driver_register(&fotg210_hcd_driver);
5713         if (retval < 0)
5714                 goto clean;
5715         return retval;
5716
5717 clean:
5718         debugfs_remove(fotg210_debug_root);
5719         fotg210_debug_root = NULL;
5720 err_debug:
5721         clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5722         return retval;
5723 }
5724 module_init(fotg210_hcd_init);
5725
5726 static void __exit fotg210_hcd_cleanup(void)
5727 {
5728         platform_driver_unregister(&fotg210_hcd_driver);
5729         debugfs_remove(fotg210_debug_root);
5730         clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5731 }
5732 module_exit(fotg210_hcd_cleanup);