USB: serial: fix stringify operator in usb-serial-simple
[firefly-linux-kernel-4.4.55.git] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27
28 #include "xhci.h"
29 #include "xhci-trace.h"
30
31 /*
32  * Allocates a generic ring segment from the ring pool, sets the dma address,
33  * initializes the segment to zero, and sets the private next pointer to NULL.
34  *
35  * Section 4.11.1.1:
36  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
37  */
38 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
39                                         unsigned int cycle_state, gfp_t flags)
40 {
41         struct xhci_segment *seg;
42         dma_addr_t      dma;
43         int             i;
44
45         seg = kzalloc(sizeof *seg, flags);
46         if (!seg)
47                 return NULL;
48
49         seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
50         if (!seg->trbs) {
51                 kfree(seg);
52                 return NULL;
53         }
54
55         memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
56         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
57         if (cycle_state == 0) {
58                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
59                         seg->trbs[i].link.control |= TRB_CYCLE;
60         }
61         seg->dma = dma;
62         seg->next = NULL;
63
64         return seg;
65 }
66
67 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
68 {
69         if (seg->trbs) {
70                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
71                 seg->trbs = NULL;
72         }
73         kfree(seg);
74 }
75
76 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
77                                 struct xhci_segment *first)
78 {
79         struct xhci_segment *seg;
80
81         seg = first->next;
82         while (seg != first) {
83                 struct xhci_segment *next = seg->next;
84                 xhci_segment_free(xhci, seg);
85                 seg = next;
86         }
87         xhci_segment_free(xhci, first);
88 }
89
90 /*
91  * Make the prev segment point to the next segment.
92  *
93  * Change the last TRB in the prev segment to be a Link TRB which points to the
94  * DMA address of the next segment.  The caller needs to set any Link TRB
95  * related flags, such as End TRB, Toggle Cycle, and no snoop.
96  */
97 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
98                 struct xhci_segment *next, enum xhci_ring_type type)
99 {
100         u32 val;
101
102         if (!prev || !next)
103                 return;
104         prev->next = next;
105         if (type != TYPE_EVENT) {
106                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
107                         cpu_to_le64(next->dma);
108
109                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
110                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
111                 val &= ~TRB_TYPE_BITMASK;
112                 val |= TRB_TYPE(TRB_LINK);
113                 /* Always set the chain bit with 0.95 hardware */
114                 /* Set chain bit for isoc rings on AMD 0.96 host */
115                 if (xhci_link_trb_quirk(xhci) ||
116                                 (type == TYPE_ISOC &&
117                                  (xhci->quirks & XHCI_AMD_0x96_HOST)))
118                         val |= TRB_CHAIN;
119                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
120         }
121 }
122
123 /*
124  * Link the ring to the new segments.
125  * Set Toggle Cycle for the new ring if needed.
126  */
127 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
128                 struct xhci_segment *first, struct xhci_segment *last,
129                 unsigned int num_segs)
130 {
131         struct xhci_segment *next;
132
133         if (!ring || !first || !last)
134                 return;
135
136         next = ring->enq_seg->next;
137         xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
138         xhci_link_segments(xhci, last, next, ring->type);
139         ring->num_segs += num_segs;
140         ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
141
142         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
143                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
144                         &= ~cpu_to_le32(LINK_TOGGLE);
145                 last->trbs[TRBS_PER_SEGMENT-1].link.control
146                         |= cpu_to_le32(LINK_TOGGLE);
147                 ring->last_seg = last;
148         }
149 }
150
151 /* XXX: Do we need the hcd structure in all these functions? */
152 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
153 {
154         if (!ring)
155                 return;
156
157         if (ring->first_seg)
158                 xhci_free_segments_for_ring(xhci, ring->first_seg);
159
160         kfree(ring);
161 }
162
163 static void xhci_initialize_ring_info(struct xhci_ring *ring,
164                                         unsigned int cycle_state)
165 {
166         /* The ring is empty, so the enqueue pointer == dequeue pointer */
167         ring->enqueue = ring->first_seg->trbs;
168         ring->enq_seg = ring->first_seg;
169         ring->dequeue = ring->enqueue;
170         ring->deq_seg = ring->first_seg;
171         /* The ring is initialized to 0. The producer must write 1 to the cycle
172          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
173          * compare CCS to the cycle bit to check ownership, so CCS = 1.
174          *
175          * New rings are initialized with cycle state equal to 1; if we are
176          * handling ring expansion, set the cycle state equal to the old ring.
177          */
178         ring->cycle_state = cycle_state;
179         /* Not necessary for new rings, but needed for re-initialized rings */
180         ring->enq_updates = 0;
181         ring->deq_updates = 0;
182
183         /*
184          * Each segment has a link TRB, and leave an extra TRB for SW
185          * accounting purpose
186          */
187         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
188 }
189
190 /* Allocate segments and link them for a ring */
191 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
192                 struct xhci_segment **first, struct xhci_segment **last,
193                 unsigned int num_segs, unsigned int cycle_state,
194                 enum xhci_ring_type type, gfp_t flags)
195 {
196         struct xhci_segment *prev;
197
198         prev = xhci_segment_alloc(xhci, cycle_state, flags);
199         if (!prev)
200                 return -ENOMEM;
201         num_segs--;
202
203         *first = prev;
204         while (num_segs > 0) {
205                 struct xhci_segment     *next;
206
207                 next = xhci_segment_alloc(xhci, cycle_state, flags);
208                 if (!next) {
209                         prev = *first;
210                         while (prev) {
211                                 next = prev->next;
212                                 xhci_segment_free(xhci, prev);
213                                 prev = next;
214                         }
215                         return -ENOMEM;
216                 }
217                 xhci_link_segments(xhci, prev, next, type);
218
219                 prev = next;
220                 num_segs--;
221         }
222         xhci_link_segments(xhci, prev, *first, type);
223         *last = prev;
224
225         return 0;
226 }
227
228 /**
229  * Create a new ring with zero or more segments.
230  *
231  * Link each segment together into a ring.
232  * Set the end flag and the cycle toggle bit on the last segment.
233  * See section 4.9.1 and figures 15 and 16.
234  */
235 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
236                 unsigned int num_segs, unsigned int cycle_state,
237                 enum xhci_ring_type type, gfp_t flags)
238 {
239         struct xhci_ring        *ring;
240         int ret;
241
242         ring = kzalloc(sizeof *(ring), flags);
243         if (!ring)
244                 return NULL;
245
246         ring->num_segs = num_segs;
247         INIT_LIST_HEAD(&ring->td_list);
248         ring->type = type;
249         if (num_segs == 0)
250                 return ring;
251
252         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
253                         &ring->last_seg, num_segs, cycle_state, type, flags);
254         if (ret)
255                 goto fail;
256
257         /* Only event ring does not use link TRB */
258         if (type != TYPE_EVENT) {
259                 /* See section 4.9.2.1 and 6.4.4.1 */
260                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
261                         cpu_to_le32(LINK_TOGGLE);
262         }
263         xhci_initialize_ring_info(ring, cycle_state);
264         return ring;
265
266 fail:
267         kfree(ring);
268         return NULL;
269 }
270
271 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
272                 struct xhci_virt_device *virt_dev,
273                 unsigned int ep_index)
274 {
275         int rings_cached;
276
277         rings_cached = virt_dev->num_rings_cached;
278         if (rings_cached < XHCI_MAX_RINGS_CACHED) {
279                 virt_dev->ring_cache[rings_cached] =
280                         virt_dev->eps[ep_index].ring;
281                 virt_dev->num_rings_cached++;
282                 xhci_dbg(xhci, "Cached old ring, "
283                                 "%d ring%s cached\n",
284                                 virt_dev->num_rings_cached,
285                                 (virt_dev->num_rings_cached > 1) ? "s" : "");
286         } else {
287                 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
288                 xhci_dbg(xhci, "Ring cache full (%d rings), "
289                                 "freeing ring\n",
290                                 virt_dev->num_rings_cached);
291         }
292         virt_dev->eps[ep_index].ring = NULL;
293 }
294
295 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
296  * pointers to the beginning of the ring.
297  */
298 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
299                         struct xhci_ring *ring, unsigned int cycle_state,
300                         enum xhci_ring_type type)
301 {
302         struct xhci_segment     *seg = ring->first_seg;
303         int i;
304
305         do {
306                 memset(seg->trbs, 0,
307                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
308                 if (cycle_state == 0) {
309                         for (i = 0; i < TRBS_PER_SEGMENT; i++)
310                                 seg->trbs[i].link.control |= TRB_CYCLE;
311                 }
312                 /* All endpoint rings have link TRBs */
313                 xhci_link_segments(xhci, seg, seg->next, type);
314                 seg = seg->next;
315         } while (seg != ring->first_seg);
316         ring->type = type;
317         xhci_initialize_ring_info(ring, cycle_state);
318         /* td list should be empty since all URBs have been cancelled,
319          * but just in case...
320          */
321         INIT_LIST_HEAD(&ring->td_list);
322 }
323
324 /*
325  * Expand an existing ring.
326  * Look for a cached ring or allocate a new ring which has same segment numbers
327  * and link the two rings.
328  */
329 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
330                                 unsigned int num_trbs, gfp_t flags)
331 {
332         struct xhci_segment     *first;
333         struct xhci_segment     *last;
334         unsigned int            num_segs;
335         unsigned int            num_segs_needed;
336         int                     ret;
337
338         num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
339                                 (TRBS_PER_SEGMENT - 1);
340
341         /* Allocate number of segments we needed, or double the ring size */
342         num_segs = ring->num_segs > num_segs_needed ?
343                         ring->num_segs : num_segs_needed;
344
345         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
346                         num_segs, ring->cycle_state, ring->type, flags);
347         if (ret)
348                 return -ENOMEM;
349
350         xhci_link_rings(xhci, ring, first, last, num_segs);
351         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
352                         "ring expansion succeed, now has %d segments",
353                         ring->num_segs);
354
355         return 0;
356 }
357
358 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
359
360 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
361                                                     int type, gfp_t flags)
362 {
363         struct xhci_container_ctx *ctx;
364
365         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
366                 return NULL;
367
368         ctx = kzalloc(sizeof(*ctx), flags);
369         if (!ctx)
370                 return NULL;
371
372         ctx->type = type;
373         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
374         if (type == XHCI_CTX_TYPE_INPUT)
375                 ctx->size += CTX_SIZE(xhci->hcc_params);
376
377         ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
378         if (!ctx->bytes) {
379                 kfree(ctx);
380                 return NULL;
381         }
382         memset(ctx->bytes, 0, ctx->size);
383         return ctx;
384 }
385
386 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
387                              struct xhci_container_ctx *ctx)
388 {
389         if (!ctx)
390                 return;
391         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
392         kfree(ctx);
393 }
394
395 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
396                                               struct xhci_container_ctx *ctx)
397 {
398         if (ctx->type != XHCI_CTX_TYPE_INPUT)
399                 return NULL;
400
401         return (struct xhci_input_control_ctx *)ctx->bytes;
402 }
403
404 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
405                                         struct xhci_container_ctx *ctx)
406 {
407         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
408                 return (struct xhci_slot_ctx *)ctx->bytes;
409
410         return (struct xhci_slot_ctx *)
411                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
412 }
413
414 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
415                                     struct xhci_container_ctx *ctx,
416                                     unsigned int ep_index)
417 {
418         /* increment ep index by offset of start of ep ctx array */
419         ep_index++;
420         if (ctx->type == XHCI_CTX_TYPE_INPUT)
421                 ep_index++;
422
423         return (struct xhci_ep_ctx *)
424                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
425 }
426
427
428 /***************** Streams structures manipulation *************************/
429
430 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
431                 unsigned int num_stream_ctxs,
432                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
433 {
434         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
435
436         if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
437                 dma_free_coherent(&pdev->dev,
438                                 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
439                                 stream_ctx, dma);
440         else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
441                 return dma_pool_free(xhci->small_streams_pool,
442                                 stream_ctx, dma);
443         else
444                 return dma_pool_free(xhci->medium_streams_pool,
445                                 stream_ctx, dma);
446 }
447
448 /*
449  * The stream context array for each endpoint with bulk streams enabled can
450  * vary in size, based on:
451  *  - how many streams the endpoint supports,
452  *  - the maximum primary stream array size the host controller supports,
453  *  - and how many streams the device driver asks for.
454  *
455  * The stream context array must be a power of 2, and can be as small as
456  * 64 bytes or as large as 1MB.
457  */
458 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
459                 unsigned int num_stream_ctxs, dma_addr_t *dma,
460                 gfp_t mem_flags)
461 {
462         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
463
464         if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
465                 return dma_alloc_coherent(&pdev->dev,
466                                 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
467                                 dma, mem_flags);
468         else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
469                 return dma_pool_alloc(xhci->small_streams_pool,
470                                 mem_flags, dma);
471         else
472                 return dma_pool_alloc(xhci->medium_streams_pool,
473                                 mem_flags, dma);
474 }
475
476 struct xhci_ring *xhci_dma_to_transfer_ring(
477                 struct xhci_virt_ep *ep,
478                 u64 address)
479 {
480         if (ep->ep_state & EP_HAS_STREAMS)
481                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
482                                 address >> TRB_SEGMENT_SHIFT);
483         return ep->ring;
484 }
485
486 struct xhci_ring *xhci_stream_id_to_ring(
487                 struct xhci_virt_device *dev,
488                 unsigned int ep_index,
489                 unsigned int stream_id)
490 {
491         struct xhci_virt_ep *ep = &dev->eps[ep_index];
492
493         if (stream_id == 0)
494                 return ep->ring;
495         if (!ep->stream_info)
496                 return NULL;
497
498         if (stream_id > ep->stream_info->num_streams)
499                 return NULL;
500         return ep->stream_info->stream_rings[stream_id];
501 }
502
503 /*
504  * Change an endpoint's internal structure so it supports stream IDs.  The
505  * number of requested streams includes stream 0, which cannot be used by device
506  * drivers.
507  *
508  * The number of stream contexts in the stream context array may be bigger than
509  * the number of streams the driver wants to use.  This is because the number of
510  * stream context array entries must be a power of two.
511  *
512  * We need a radix tree for mapping physical addresses of TRBs to which stream
513  * ID they belong to.  We need to do this because the host controller won't tell
514  * us which stream ring the TRB came from.  We could store the stream ID in an
515  * event data TRB, but that doesn't help us for the cancellation case, since the
516  * endpoint may stop before it reaches that event data TRB.
517  *
518  * The radix tree maps the upper portion of the TRB DMA address to a ring
519  * segment that has the same upper portion of DMA addresses.  For example, say I
520  * have segments of size 1KB, that are always 64-byte aligned.  A segment may
521  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
522  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
523  * pass the radix tree a key to get the right stream ID:
524  *
525  *      0x10c90fff >> 10 = 0x43243
526  *      0x10c912c0 >> 10 = 0x43244
527  *      0x10c91400 >> 10 = 0x43245
528  *
529  * Obviously, only those TRBs with DMA addresses that are within the segment
530  * will make the radix tree return the stream ID for that ring.
531  *
532  * Caveats for the radix tree:
533  *
534  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
535  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
536  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
537  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
538  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
539  * extended systems (where the DMA address can be bigger than 32-bits),
540  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
541  */
542 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
543                 unsigned int num_stream_ctxs,
544                 unsigned int num_streams, gfp_t mem_flags)
545 {
546         struct xhci_stream_info *stream_info;
547         u32 cur_stream;
548         struct xhci_ring *cur_ring;
549         unsigned long key;
550         u64 addr;
551         int ret;
552
553         xhci_dbg(xhci, "Allocating %u streams and %u "
554                         "stream context array entries.\n",
555                         num_streams, num_stream_ctxs);
556         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
557                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
558                 return NULL;
559         }
560         xhci->cmd_ring_reserved_trbs++;
561
562         stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
563         if (!stream_info)
564                 goto cleanup_trbs;
565
566         stream_info->num_streams = num_streams;
567         stream_info->num_stream_ctxs = num_stream_ctxs;
568
569         /* Initialize the array of virtual pointers to stream rings. */
570         stream_info->stream_rings = kzalloc(
571                         sizeof(struct xhci_ring *)*num_streams,
572                         mem_flags);
573         if (!stream_info->stream_rings)
574                 goto cleanup_info;
575
576         /* Initialize the array of DMA addresses for stream rings for the HW. */
577         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
578                         num_stream_ctxs, &stream_info->ctx_array_dma,
579                         mem_flags);
580         if (!stream_info->stream_ctx_array)
581                 goto cleanup_ctx;
582         memset(stream_info->stream_ctx_array, 0,
583                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
584
585         /* Allocate everything needed to free the stream rings later */
586         stream_info->free_streams_command =
587                 xhci_alloc_command(xhci, true, true, mem_flags);
588         if (!stream_info->free_streams_command)
589                 goto cleanup_ctx;
590
591         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
592
593         /* Allocate rings for all the streams that the driver will use,
594          * and add their segment DMA addresses to the radix tree.
595          * Stream 0 is reserved.
596          */
597         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
598                 stream_info->stream_rings[cur_stream] =
599                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
600                 cur_ring = stream_info->stream_rings[cur_stream];
601                 if (!cur_ring)
602                         goto cleanup_rings;
603                 cur_ring->stream_id = cur_stream;
604                 /* Set deq ptr, cycle bit, and stream context type */
605                 addr = cur_ring->first_seg->dma |
606                         SCT_FOR_CTX(SCT_PRI_TR) |
607                         cur_ring->cycle_state;
608                 stream_info->stream_ctx_array[cur_stream].stream_ring =
609                         cpu_to_le64(addr);
610                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
611                                 cur_stream, (unsigned long long) addr);
612
613                 key = (unsigned long)
614                         (cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT);
615                 ret = radix_tree_insert(&stream_info->trb_address_map,
616                                 key, cur_ring);
617                 if (ret) {
618                         xhci_ring_free(xhci, cur_ring);
619                         stream_info->stream_rings[cur_stream] = NULL;
620                         goto cleanup_rings;
621                 }
622         }
623         /* Leave the other unused stream ring pointers in the stream context
624          * array initialized to zero.  This will cause the xHC to give us an
625          * error if the device asks for a stream ID we don't have setup (if it
626          * was any other way, the host controller would assume the ring is
627          * "empty" and wait forever for data to be queued to that stream ID).
628          */
629
630         return stream_info;
631
632 cleanup_rings:
633         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
634                 cur_ring = stream_info->stream_rings[cur_stream];
635                 if (cur_ring) {
636                         addr = cur_ring->first_seg->dma;
637                         radix_tree_delete(&stream_info->trb_address_map,
638                                         addr >> TRB_SEGMENT_SHIFT);
639                         xhci_ring_free(xhci, cur_ring);
640                         stream_info->stream_rings[cur_stream] = NULL;
641                 }
642         }
643         xhci_free_command(xhci, stream_info->free_streams_command);
644 cleanup_ctx:
645         kfree(stream_info->stream_rings);
646 cleanup_info:
647         kfree(stream_info);
648 cleanup_trbs:
649         xhci->cmd_ring_reserved_trbs--;
650         return NULL;
651 }
652 /*
653  * Sets the MaxPStreams field and the Linear Stream Array field.
654  * Sets the dequeue pointer to the stream context array.
655  */
656 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
657                 struct xhci_ep_ctx *ep_ctx,
658                 struct xhci_stream_info *stream_info)
659 {
660         u32 max_primary_streams;
661         /* MaxPStreams is the number of stream context array entries, not the
662          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
663          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
664          */
665         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
666         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
667                         "Setting number of stream ctx array entries to %u",
668                         1 << (max_primary_streams + 1));
669         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
670         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
671                                        | EP_HAS_LSA);
672         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
673 }
674
675 /*
676  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
677  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
678  * not at the beginning of the ring).
679  */
680 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
681                 struct xhci_ep_ctx *ep_ctx,
682                 struct xhci_virt_ep *ep)
683 {
684         dma_addr_t addr;
685         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
686         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
687         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
688 }
689
690 /* Frees all stream contexts associated with the endpoint,
691  *
692  * Caller should fix the endpoint context streams fields.
693  */
694 void xhci_free_stream_info(struct xhci_hcd *xhci,
695                 struct xhci_stream_info *stream_info)
696 {
697         int cur_stream;
698         struct xhci_ring *cur_ring;
699         dma_addr_t addr;
700
701         if (!stream_info)
702                 return;
703
704         for (cur_stream = 1; cur_stream < stream_info->num_streams;
705                         cur_stream++) {
706                 cur_ring = stream_info->stream_rings[cur_stream];
707                 if (cur_ring) {
708                         addr = cur_ring->first_seg->dma;
709                         radix_tree_delete(&stream_info->trb_address_map,
710                                         addr >> TRB_SEGMENT_SHIFT);
711                         xhci_ring_free(xhci, cur_ring);
712                         stream_info->stream_rings[cur_stream] = NULL;
713                 }
714         }
715         xhci_free_command(xhci, stream_info->free_streams_command);
716         xhci->cmd_ring_reserved_trbs--;
717         if (stream_info->stream_ctx_array)
718                 xhci_free_stream_ctx(xhci,
719                                 stream_info->num_stream_ctxs,
720                                 stream_info->stream_ctx_array,
721                                 stream_info->ctx_array_dma);
722
723         if (stream_info)
724                 kfree(stream_info->stream_rings);
725         kfree(stream_info);
726 }
727
728
729 /***************** Device context manipulation *************************/
730
731 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
732                 struct xhci_virt_ep *ep)
733 {
734         init_timer(&ep->stop_cmd_timer);
735         ep->stop_cmd_timer.data = (unsigned long) ep;
736         ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
737         ep->xhci = xhci;
738 }
739
740 static void xhci_free_tt_info(struct xhci_hcd *xhci,
741                 struct xhci_virt_device *virt_dev,
742                 int slot_id)
743 {
744         struct list_head *tt_list_head;
745         struct xhci_tt_bw_info *tt_info, *next;
746         bool slot_found = false;
747
748         /* If the device never made it past the Set Address stage,
749          * it may not have the real_port set correctly.
750          */
751         if (virt_dev->real_port == 0 ||
752                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
753                 xhci_dbg(xhci, "Bad real port.\n");
754                 return;
755         }
756
757         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
758         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
759                 /* Multi-TT hubs will have more than one entry */
760                 if (tt_info->slot_id == slot_id) {
761                         slot_found = true;
762                         list_del(&tt_info->tt_list);
763                         kfree(tt_info);
764                 } else if (slot_found) {
765                         break;
766                 }
767         }
768 }
769
770 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
771                 struct xhci_virt_device *virt_dev,
772                 struct usb_device *hdev,
773                 struct usb_tt *tt, gfp_t mem_flags)
774 {
775         struct xhci_tt_bw_info          *tt_info;
776         unsigned int                    num_ports;
777         int                             i, j;
778
779         if (!tt->multi)
780                 num_ports = 1;
781         else
782                 num_ports = hdev->maxchild;
783
784         for (i = 0; i < num_ports; i++, tt_info++) {
785                 struct xhci_interval_bw_table *bw_table;
786
787                 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
788                 if (!tt_info)
789                         goto free_tts;
790                 INIT_LIST_HEAD(&tt_info->tt_list);
791                 list_add(&tt_info->tt_list,
792                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
793                 tt_info->slot_id = virt_dev->udev->slot_id;
794                 if (tt->multi)
795                         tt_info->ttport = i+1;
796                 bw_table = &tt_info->bw_table;
797                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
798                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
799         }
800         return 0;
801
802 free_tts:
803         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
804         return -ENOMEM;
805 }
806
807
808 /* All the xhci_tds in the ring's TD list should be freed at this point.
809  * Should be called with xhci->lock held if there is any chance the TT lists
810  * will be manipulated by the configure endpoint, allocate device, or update
811  * hub functions while this function is removing the TT entries from the list.
812  */
813 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
814 {
815         struct xhci_virt_device *dev;
816         int i;
817         int old_active_eps = 0;
818
819         /* Slot ID 0 is reserved */
820         if (slot_id == 0 || !xhci->devs[slot_id])
821                 return;
822
823         dev = xhci->devs[slot_id];
824         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
825         if (!dev)
826                 return;
827
828         if (dev->tt_info)
829                 old_active_eps = dev->tt_info->active_eps;
830
831         for (i = 0; i < 31; ++i) {
832                 if (dev->eps[i].ring)
833                         xhci_ring_free(xhci, dev->eps[i].ring);
834                 if (dev->eps[i].stream_info)
835                         xhci_free_stream_info(xhci,
836                                         dev->eps[i].stream_info);
837                 /* Endpoints on the TT/root port lists should have been removed
838                  * when usb_disable_device() was called for the device.
839                  * We can't drop them anyway, because the udev might have gone
840                  * away by this point, and we can't tell what speed it was.
841                  */
842                 if (!list_empty(&dev->eps[i].bw_endpoint_list))
843                         xhci_warn(xhci, "Slot %u endpoint %u "
844                                         "not removed from BW list!\n",
845                                         slot_id, i);
846         }
847         /* If this is a hub, free the TT(s) from the TT list */
848         xhci_free_tt_info(xhci, dev, slot_id);
849         /* If necessary, update the number of active TTs on this root port */
850         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
851
852         if (dev->ring_cache) {
853                 for (i = 0; i < dev->num_rings_cached; i++)
854                         xhci_ring_free(xhci, dev->ring_cache[i]);
855                 kfree(dev->ring_cache);
856         }
857
858         if (dev->in_ctx)
859                 xhci_free_container_ctx(xhci, dev->in_ctx);
860         if (dev->out_ctx)
861                 xhci_free_container_ctx(xhci, dev->out_ctx);
862
863         kfree(xhci->devs[slot_id]);
864         xhci->devs[slot_id] = NULL;
865 }
866
867 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
868                 struct usb_device *udev, gfp_t flags)
869 {
870         struct xhci_virt_device *dev;
871         int i;
872
873         /* Slot ID 0 is reserved */
874         if (slot_id == 0 || xhci->devs[slot_id]) {
875                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
876                 return 0;
877         }
878
879         xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
880         if (!xhci->devs[slot_id])
881                 return 0;
882         dev = xhci->devs[slot_id];
883
884         /* Allocate the (output) device context that will be used in the HC. */
885         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
886         if (!dev->out_ctx)
887                 goto fail;
888
889         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
890                         (unsigned long long)dev->out_ctx->dma);
891
892         /* Allocate the (input) device context for address device command */
893         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
894         if (!dev->in_ctx)
895                 goto fail;
896
897         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
898                         (unsigned long long)dev->in_ctx->dma);
899
900         /* Initialize the cancellation list and watchdog timers for each ep */
901         for (i = 0; i < 31; i++) {
902                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
903                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
904                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
905         }
906
907         /* Allocate endpoint 0 ring */
908         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
909         if (!dev->eps[0].ring)
910                 goto fail;
911
912         /* Allocate pointers to the ring cache */
913         dev->ring_cache = kzalloc(
914                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
915                         flags);
916         if (!dev->ring_cache)
917                 goto fail;
918         dev->num_rings_cached = 0;
919
920         init_completion(&dev->cmd_completion);
921         INIT_LIST_HEAD(&dev->cmd_list);
922         dev->udev = udev;
923
924         /* Point to output device context in dcbaa. */
925         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
926         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
927                  slot_id,
928                  &xhci->dcbaa->dev_context_ptrs[slot_id],
929                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
930
931         return 1;
932 fail:
933         xhci_free_virt_device(xhci, slot_id);
934         return 0;
935 }
936
937 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
938                 struct usb_device *udev)
939 {
940         struct xhci_virt_device *virt_dev;
941         struct xhci_ep_ctx      *ep0_ctx;
942         struct xhci_ring        *ep_ring;
943
944         virt_dev = xhci->devs[udev->slot_id];
945         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
946         ep_ring = virt_dev->eps[0].ring;
947         /*
948          * FIXME we don't keep track of the dequeue pointer very well after a
949          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
950          * host to our enqueue pointer.  This should only be called after a
951          * configured device has reset, so all control transfers should have
952          * been completed or cancelled before the reset.
953          */
954         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
955                                                         ep_ring->enqueue)
956                                    | ep_ring->cycle_state);
957 }
958
959 /*
960  * The xHCI roothub may have ports of differing speeds in any order in the port
961  * status registers.  xhci->port_array provides an array of the port speed for
962  * each offset into the port status registers.
963  *
964  * The xHCI hardware wants to know the roothub port number that the USB device
965  * is attached to (or the roothub port its ancestor hub is attached to).  All we
966  * know is the index of that port under either the USB 2.0 or the USB 3.0
967  * roothub, but that doesn't give us the real index into the HW port status
968  * registers. Call xhci_find_raw_port_number() to get real index.
969  */
970 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
971                 struct usb_device *udev)
972 {
973         struct usb_device *top_dev;
974         struct usb_hcd *hcd;
975
976         if (udev->speed == USB_SPEED_SUPER)
977                 hcd = xhci->shared_hcd;
978         else
979                 hcd = xhci->main_hcd;
980
981         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
982                         top_dev = top_dev->parent)
983                 /* Found device below root hub */;
984
985         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
986 }
987
988 /* Setup an xHCI virtual device for a Set Address command */
989 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
990 {
991         struct xhci_virt_device *dev;
992         struct xhci_ep_ctx      *ep0_ctx;
993         struct xhci_slot_ctx    *slot_ctx;
994         u32                     port_num;
995         u32                     max_packets;
996         struct usb_device *top_dev;
997
998         dev = xhci->devs[udev->slot_id];
999         /* Slot ID 0 is reserved */
1000         if (udev->slot_id == 0 || !dev) {
1001                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1002                                 udev->slot_id);
1003                 return -EINVAL;
1004         }
1005         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1006         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1007
1008         /* 3) Only the control endpoint is valid - one endpoint context */
1009         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1010         switch (udev->speed) {
1011         case USB_SPEED_SUPER:
1012                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1013                 max_packets = MAX_PACKET(512);
1014                 break;
1015         case USB_SPEED_HIGH:
1016                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1017                 max_packets = MAX_PACKET(64);
1018                 break;
1019         /* USB core guesses at a 64-byte max packet first for FS devices */
1020         case USB_SPEED_FULL:
1021                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1022                 max_packets = MAX_PACKET(64);
1023                 break;
1024         case USB_SPEED_LOW:
1025                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1026                 max_packets = MAX_PACKET(8);
1027                 break;
1028         case USB_SPEED_WIRELESS:
1029                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1030                 return -EINVAL;
1031                 break;
1032         default:
1033                 /* Speed was set earlier, this shouldn't happen. */
1034                 return -EINVAL;
1035         }
1036         /* Find the root hub port this device is under */
1037         port_num = xhci_find_real_port_number(xhci, udev);
1038         if (!port_num)
1039                 return -EINVAL;
1040         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1041         /* Set the port number in the virtual_device to the faked port number */
1042         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1043                         top_dev = top_dev->parent)
1044                 /* Found device below root hub */;
1045         dev->fake_port = top_dev->portnum;
1046         dev->real_port = port_num;
1047         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1048         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1049
1050         /* Find the right bandwidth table that this device will be a part of.
1051          * If this is a full speed device attached directly to a root port (or a
1052          * decendent of one), it counts as a primary bandwidth domain, not a
1053          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1054          * will never be created for the HS root hub.
1055          */
1056         if (!udev->tt || !udev->tt->hub->parent) {
1057                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1058         } else {
1059                 struct xhci_root_port_bw_info *rh_bw;
1060                 struct xhci_tt_bw_info *tt_bw;
1061
1062                 rh_bw = &xhci->rh_bw[port_num - 1];
1063                 /* Find the right TT. */
1064                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1065                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1066                                 continue;
1067
1068                         if (!dev->udev->tt->multi ||
1069                                         (udev->tt->multi &&
1070                                          tt_bw->ttport == dev->udev->ttport)) {
1071                                 dev->bw_table = &tt_bw->bw_table;
1072                                 dev->tt_info = tt_bw;
1073                                 break;
1074                         }
1075                 }
1076                 if (!dev->tt_info)
1077                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1078         }
1079
1080         /* Is this a LS/FS device under an external HS hub? */
1081         if (udev->tt && udev->tt->hub->parent) {
1082                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1083                                                 (udev->ttport << 8));
1084                 if (udev->tt->multi)
1085                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1086         }
1087         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1088         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1089
1090         /* Step 4 - ring already allocated */
1091         /* Step 5 */
1092         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1093
1094         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1095         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1096                                          max_packets);
1097
1098         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1099                                    dev->eps[0].ring->cycle_state);
1100
1101         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1102
1103         return 0;
1104 }
1105
1106 /*
1107  * Convert interval expressed as 2^(bInterval - 1) == interval into
1108  * straight exponent value 2^n == interval.
1109  *
1110  */
1111 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1112                 struct usb_host_endpoint *ep)
1113 {
1114         unsigned int interval;
1115
1116         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1117         if (interval != ep->desc.bInterval - 1)
1118                 dev_warn(&udev->dev,
1119                          "ep %#x - rounding interval to %d %sframes\n",
1120                          ep->desc.bEndpointAddress,
1121                          1 << interval,
1122                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1123
1124         if (udev->speed == USB_SPEED_FULL) {
1125                 /*
1126                  * Full speed isoc endpoints specify interval in frames,
1127                  * not microframes. We are using microframes everywhere,
1128                  * so adjust accordingly.
1129                  */
1130                 interval += 3;  /* 1 frame = 2^3 uframes */
1131         }
1132
1133         return interval;
1134 }
1135
1136 /*
1137  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1138  * microframes, rounded down to nearest power of 2.
1139  */
1140 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1141                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1142                 unsigned int min_exponent, unsigned int max_exponent)
1143 {
1144         unsigned int interval;
1145
1146         interval = fls(desc_interval) - 1;
1147         interval = clamp_val(interval, min_exponent, max_exponent);
1148         if ((1 << interval) != desc_interval)
1149                 dev_warn(&udev->dev,
1150                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1151                          ep->desc.bEndpointAddress,
1152                          1 << interval,
1153                          desc_interval);
1154
1155         return interval;
1156 }
1157
1158 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1159                 struct usb_host_endpoint *ep)
1160 {
1161         if (ep->desc.bInterval == 0)
1162                 return 0;
1163         return xhci_microframes_to_exponent(udev, ep,
1164                         ep->desc.bInterval, 0, 15);
1165 }
1166
1167
1168 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1169                 struct usb_host_endpoint *ep)
1170 {
1171         return xhci_microframes_to_exponent(udev, ep,
1172                         ep->desc.bInterval * 8, 3, 10);
1173 }
1174
1175 /* Return the polling or NAK interval.
1176  *
1177  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1178  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1179  *
1180  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1181  * is set to 0.
1182  */
1183 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1184                 struct usb_host_endpoint *ep)
1185 {
1186         unsigned int interval = 0;
1187
1188         switch (udev->speed) {
1189         case USB_SPEED_HIGH:
1190                 /* Max NAK rate */
1191                 if (usb_endpoint_xfer_control(&ep->desc) ||
1192                     usb_endpoint_xfer_bulk(&ep->desc)) {
1193                         interval = xhci_parse_microframe_interval(udev, ep);
1194                         break;
1195                 }
1196                 /* Fall through - SS and HS isoc/int have same decoding */
1197
1198         case USB_SPEED_SUPER:
1199                 if (usb_endpoint_xfer_int(&ep->desc) ||
1200                     usb_endpoint_xfer_isoc(&ep->desc)) {
1201                         interval = xhci_parse_exponent_interval(udev, ep);
1202                 }
1203                 break;
1204
1205         case USB_SPEED_FULL:
1206                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1207                         interval = xhci_parse_exponent_interval(udev, ep);
1208                         break;
1209                 }
1210                 /*
1211                  * Fall through for interrupt endpoint interval decoding
1212                  * since it uses the same rules as low speed interrupt
1213                  * endpoints.
1214                  */
1215
1216         case USB_SPEED_LOW:
1217                 if (usb_endpoint_xfer_int(&ep->desc) ||
1218                     usb_endpoint_xfer_isoc(&ep->desc)) {
1219
1220                         interval = xhci_parse_frame_interval(udev, ep);
1221                 }
1222                 break;
1223
1224         default:
1225                 BUG();
1226         }
1227         return EP_INTERVAL(interval);
1228 }
1229
1230 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1231  * High speed endpoint descriptors can define "the number of additional
1232  * transaction opportunities per microframe", but that goes in the Max Burst
1233  * endpoint context field.
1234  */
1235 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1236                 struct usb_host_endpoint *ep)
1237 {
1238         if (udev->speed != USB_SPEED_SUPER ||
1239                         !usb_endpoint_xfer_isoc(&ep->desc))
1240                 return 0;
1241         return ep->ss_ep_comp.bmAttributes;
1242 }
1243
1244 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1245                 struct usb_host_endpoint *ep)
1246 {
1247         int in;
1248         u32 type;
1249
1250         in = usb_endpoint_dir_in(&ep->desc);
1251         if (usb_endpoint_xfer_control(&ep->desc)) {
1252                 type = EP_TYPE(CTRL_EP);
1253         } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1254                 if (in)
1255                         type = EP_TYPE(BULK_IN_EP);
1256                 else
1257                         type = EP_TYPE(BULK_OUT_EP);
1258         } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1259                 if (in)
1260                         type = EP_TYPE(ISOC_IN_EP);
1261                 else
1262                         type = EP_TYPE(ISOC_OUT_EP);
1263         } else if (usb_endpoint_xfer_int(&ep->desc)) {
1264                 if (in)
1265                         type = EP_TYPE(INT_IN_EP);
1266                 else
1267                         type = EP_TYPE(INT_OUT_EP);
1268         } else {
1269                 type = 0;
1270         }
1271         return type;
1272 }
1273
1274 /* Return the maximum endpoint service interval time (ESIT) payload.
1275  * Basically, this is the maxpacket size, multiplied by the burst size
1276  * and mult size.
1277  */
1278 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1279                 struct usb_device *udev,
1280                 struct usb_host_endpoint *ep)
1281 {
1282         int max_burst;
1283         int max_packet;
1284
1285         /* Only applies for interrupt or isochronous endpoints */
1286         if (usb_endpoint_xfer_control(&ep->desc) ||
1287                         usb_endpoint_xfer_bulk(&ep->desc))
1288                 return 0;
1289
1290         if (udev->speed == USB_SPEED_SUPER)
1291                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1292
1293         max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1294         max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1295         /* A 0 in max burst means 1 transfer per ESIT */
1296         return max_packet * (max_burst + 1);
1297 }
1298
1299 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1300  * Drivers will have to call usb_alloc_streams() to do that.
1301  */
1302 int xhci_endpoint_init(struct xhci_hcd *xhci,
1303                 struct xhci_virt_device *virt_dev,
1304                 struct usb_device *udev,
1305                 struct usb_host_endpoint *ep,
1306                 gfp_t mem_flags)
1307 {
1308         unsigned int ep_index;
1309         struct xhci_ep_ctx *ep_ctx;
1310         struct xhci_ring *ep_ring;
1311         unsigned int max_packet;
1312         unsigned int max_burst;
1313         enum xhci_ring_type type;
1314         u32 max_esit_payload;
1315         u32 endpoint_type;
1316
1317         ep_index = xhci_get_endpoint_index(&ep->desc);
1318         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1319
1320         endpoint_type = xhci_get_endpoint_type(udev, ep);
1321         if (!endpoint_type)
1322                 return -EINVAL;
1323         ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1324
1325         type = usb_endpoint_type(&ep->desc);
1326         /* Set up the endpoint ring */
1327         virt_dev->eps[ep_index].new_ring =
1328                 xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1329         if (!virt_dev->eps[ep_index].new_ring) {
1330                 /* Attempt to use the ring cache */
1331                 if (virt_dev->num_rings_cached == 0)
1332                         return -ENOMEM;
1333                 virt_dev->eps[ep_index].new_ring =
1334                         virt_dev->ring_cache[virt_dev->num_rings_cached];
1335                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1336                 virt_dev->num_rings_cached--;
1337                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1338                                         1, type);
1339         }
1340         virt_dev->eps[ep_index].skip = false;
1341         ep_ring = virt_dev->eps[ep_index].new_ring;
1342         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1343
1344         ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1345                                       | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1346
1347         /* FIXME dig Mult and streams info out of ep companion desc */
1348
1349         /* Allow 3 retries for everything but isoc;
1350          * CErr shall be set to 0 for Isoch endpoints.
1351          */
1352         if (!usb_endpoint_xfer_isoc(&ep->desc))
1353                 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1354         else
1355                 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1356
1357         /* Set the max packet size and max burst */
1358         max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1359         max_burst = 0;
1360         switch (udev->speed) {
1361         case USB_SPEED_SUPER:
1362                 /* dig out max burst from ep companion desc */
1363                 max_burst = ep->ss_ep_comp.bMaxBurst;
1364                 break;
1365         case USB_SPEED_HIGH:
1366                 /* Some devices get this wrong */
1367                 if (usb_endpoint_xfer_bulk(&ep->desc))
1368                         max_packet = 512;
1369                 /* bits 11:12 specify the number of additional transaction
1370                  * opportunities per microframe (USB 2.0, section 9.6.6)
1371                  */
1372                 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1373                                 usb_endpoint_xfer_int(&ep->desc)) {
1374                         max_burst = (usb_endpoint_maxp(&ep->desc)
1375                                      & 0x1800) >> 11;
1376                 }
1377                 break;
1378         case USB_SPEED_FULL:
1379         case USB_SPEED_LOW:
1380                 break;
1381         default:
1382                 BUG();
1383         }
1384         ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1385                         MAX_BURST(max_burst));
1386         max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1387         ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1388
1389         /*
1390          * XXX no idea how to calculate the average TRB buffer length for bulk
1391          * endpoints, as the driver gives us no clue how big each scatter gather
1392          * list entry (or buffer) is going to be.
1393          *
1394          * For isochronous and interrupt endpoints, we set it to the max
1395          * available, until we have new API in the USB core to allow drivers to
1396          * declare how much bandwidth they actually need.
1397          *
1398          * Normally, it would be calculated by taking the total of the buffer
1399          * lengths in the TD and then dividing by the number of TRBs in a TD,
1400          * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1401          * use Event Data TRBs, and we don't chain in a link TRB on short
1402          * transfers, we're basically dividing by 1.
1403          *
1404          * xHCI 1.0 specification indicates that the Average TRB Length should
1405          * be set to 8 for control endpoints.
1406          */
1407         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1408                 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1409         else
1410                 ep_ctx->tx_info |=
1411                          cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1412
1413         /* FIXME Debug endpoint context */
1414         return 0;
1415 }
1416
1417 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1418                 struct xhci_virt_device *virt_dev,
1419                 struct usb_host_endpoint *ep)
1420 {
1421         unsigned int ep_index;
1422         struct xhci_ep_ctx *ep_ctx;
1423
1424         ep_index = xhci_get_endpoint_index(&ep->desc);
1425         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1426
1427         ep_ctx->ep_info = 0;
1428         ep_ctx->ep_info2 = 0;
1429         ep_ctx->deq = 0;
1430         ep_ctx->tx_info = 0;
1431         /* Don't free the endpoint ring until the set interface or configuration
1432          * request succeeds.
1433          */
1434 }
1435
1436 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1437 {
1438         bw_info->ep_interval = 0;
1439         bw_info->mult = 0;
1440         bw_info->num_packets = 0;
1441         bw_info->max_packet_size = 0;
1442         bw_info->type = 0;
1443         bw_info->max_esit_payload = 0;
1444 }
1445
1446 void xhci_update_bw_info(struct xhci_hcd *xhci,
1447                 struct xhci_container_ctx *in_ctx,
1448                 struct xhci_input_control_ctx *ctrl_ctx,
1449                 struct xhci_virt_device *virt_dev)
1450 {
1451         struct xhci_bw_info *bw_info;
1452         struct xhci_ep_ctx *ep_ctx;
1453         unsigned int ep_type;
1454         int i;
1455
1456         for (i = 1; i < 31; ++i) {
1457                 bw_info = &virt_dev->eps[i].bw_info;
1458
1459                 /* We can't tell what endpoint type is being dropped, but
1460                  * unconditionally clearing the bandwidth info for non-periodic
1461                  * endpoints should be harmless because the info will never be
1462                  * set in the first place.
1463                  */
1464                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1465                         /* Dropped endpoint */
1466                         xhci_clear_endpoint_bw_info(bw_info);
1467                         continue;
1468                 }
1469
1470                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1471                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1472                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1473
1474                         /* Ignore non-periodic endpoints */
1475                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1476                                         ep_type != ISOC_IN_EP &&
1477                                         ep_type != INT_IN_EP)
1478                                 continue;
1479
1480                         /* Added or changed endpoint */
1481                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1482                                         le32_to_cpu(ep_ctx->ep_info));
1483                         /* Number of packets and mult are zero-based in the
1484                          * input context, but we want one-based for the
1485                          * interval table.
1486                          */
1487                         bw_info->mult = CTX_TO_EP_MULT(
1488                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1489                         bw_info->num_packets = CTX_TO_MAX_BURST(
1490                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1491                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1492                                         le32_to_cpu(ep_ctx->ep_info2));
1493                         bw_info->type = ep_type;
1494                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1495                                         le32_to_cpu(ep_ctx->tx_info));
1496                 }
1497         }
1498 }
1499
1500 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1501  * Useful when you want to change one particular aspect of the endpoint and then
1502  * issue a configure endpoint command.
1503  */
1504 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1505                 struct xhci_container_ctx *in_ctx,
1506                 struct xhci_container_ctx *out_ctx,
1507                 unsigned int ep_index)
1508 {
1509         struct xhci_ep_ctx *out_ep_ctx;
1510         struct xhci_ep_ctx *in_ep_ctx;
1511
1512         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1513         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1514
1515         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1516         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1517         in_ep_ctx->deq = out_ep_ctx->deq;
1518         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1519 }
1520
1521 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1522  * Useful when you want to change one particular aspect of the endpoint and then
1523  * issue a configure endpoint command.  Only the context entries field matters,
1524  * but we'll copy the whole thing anyway.
1525  */
1526 void xhci_slot_copy(struct xhci_hcd *xhci,
1527                 struct xhci_container_ctx *in_ctx,
1528                 struct xhci_container_ctx *out_ctx)
1529 {
1530         struct xhci_slot_ctx *in_slot_ctx;
1531         struct xhci_slot_ctx *out_slot_ctx;
1532
1533         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1534         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1535
1536         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1537         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1538         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1539         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1540 }
1541
1542 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1543 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1544 {
1545         int i;
1546         struct device *dev = xhci_to_hcd(xhci)->self.controller;
1547         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1548
1549         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1550                         "Allocating %d scratchpad buffers", num_sp);
1551
1552         if (!num_sp)
1553                 return 0;
1554
1555         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1556         if (!xhci->scratchpad)
1557                 goto fail_sp;
1558
1559         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1560                                      num_sp * sizeof(u64),
1561                                      &xhci->scratchpad->sp_dma, flags);
1562         if (!xhci->scratchpad->sp_array)
1563                 goto fail_sp2;
1564
1565         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1566         if (!xhci->scratchpad->sp_buffers)
1567                 goto fail_sp3;
1568
1569         xhci->scratchpad->sp_dma_buffers =
1570                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1571
1572         if (!xhci->scratchpad->sp_dma_buffers)
1573                 goto fail_sp4;
1574
1575         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1576         for (i = 0; i < num_sp; i++) {
1577                 dma_addr_t dma;
1578                 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1579                                 flags);
1580                 if (!buf)
1581                         goto fail_sp5;
1582
1583                 xhci->scratchpad->sp_array[i] = dma;
1584                 xhci->scratchpad->sp_buffers[i] = buf;
1585                 xhci->scratchpad->sp_dma_buffers[i] = dma;
1586         }
1587
1588         return 0;
1589
1590  fail_sp5:
1591         for (i = i - 1; i >= 0; i--) {
1592                 dma_free_coherent(dev, xhci->page_size,
1593                                     xhci->scratchpad->sp_buffers[i],
1594                                     xhci->scratchpad->sp_dma_buffers[i]);
1595         }
1596         kfree(xhci->scratchpad->sp_dma_buffers);
1597
1598  fail_sp4:
1599         kfree(xhci->scratchpad->sp_buffers);
1600
1601  fail_sp3:
1602         dma_free_coherent(dev, num_sp * sizeof(u64),
1603                             xhci->scratchpad->sp_array,
1604                             xhci->scratchpad->sp_dma);
1605
1606  fail_sp2:
1607         kfree(xhci->scratchpad);
1608         xhci->scratchpad = NULL;
1609
1610  fail_sp:
1611         return -ENOMEM;
1612 }
1613
1614 static void scratchpad_free(struct xhci_hcd *xhci)
1615 {
1616         int num_sp;
1617         int i;
1618         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1619
1620         if (!xhci->scratchpad)
1621                 return;
1622
1623         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1624
1625         for (i = 0; i < num_sp; i++) {
1626                 dma_free_coherent(&pdev->dev, xhci->page_size,
1627                                     xhci->scratchpad->sp_buffers[i],
1628                                     xhci->scratchpad->sp_dma_buffers[i]);
1629         }
1630         kfree(xhci->scratchpad->sp_dma_buffers);
1631         kfree(xhci->scratchpad->sp_buffers);
1632         dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1633                             xhci->scratchpad->sp_array,
1634                             xhci->scratchpad->sp_dma);
1635         kfree(xhci->scratchpad);
1636         xhci->scratchpad = NULL;
1637 }
1638
1639 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1640                 bool allocate_in_ctx, bool allocate_completion,
1641                 gfp_t mem_flags)
1642 {
1643         struct xhci_command *command;
1644
1645         command = kzalloc(sizeof(*command), mem_flags);
1646         if (!command)
1647                 return NULL;
1648
1649         if (allocate_in_ctx) {
1650                 command->in_ctx =
1651                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1652                                         mem_flags);
1653                 if (!command->in_ctx) {
1654                         kfree(command);
1655                         return NULL;
1656                 }
1657         }
1658
1659         if (allocate_completion) {
1660                 command->completion =
1661                         kzalloc(sizeof(struct completion), mem_flags);
1662                 if (!command->completion) {
1663                         xhci_free_container_ctx(xhci, command->in_ctx);
1664                         kfree(command);
1665                         return NULL;
1666                 }
1667                 init_completion(command->completion);
1668         }
1669
1670         command->status = 0;
1671         INIT_LIST_HEAD(&command->cmd_list);
1672         return command;
1673 }
1674
1675 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1676 {
1677         if (urb_priv) {
1678                 kfree(urb_priv->td[0]);
1679                 kfree(urb_priv);
1680         }
1681 }
1682
1683 void xhci_free_command(struct xhci_hcd *xhci,
1684                 struct xhci_command *command)
1685 {
1686         xhci_free_container_ctx(xhci,
1687                         command->in_ctx);
1688         kfree(command->completion);
1689         kfree(command);
1690 }
1691
1692 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1693 {
1694         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1695         struct dev_info *dev_info, *next;
1696         struct xhci_cd  *cur_cd, *next_cd;
1697         unsigned long   flags;
1698         int size;
1699         int i, j, num_ports;
1700
1701         /* Free the Event Ring Segment Table and the actual Event Ring */
1702         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1703         if (xhci->erst.entries)
1704                 dma_free_coherent(&pdev->dev, size,
1705                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
1706         xhci->erst.entries = NULL;
1707         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1708         if (xhci->event_ring)
1709                 xhci_ring_free(xhci, xhci->event_ring);
1710         xhci->event_ring = NULL;
1711         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1712
1713         if (xhci->lpm_command)
1714                 xhci_free_command(xhci, xhci->lpm_command);
1715         xhci->cmd_ring_reserved_trbs = 0;
1716         if (xhci->cmd_ring)
1717                 xhci_ring_free(xhci, xhci->cmd_ring);
1718         xhci->cmd_ring = NULL;
1719         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1720         list_for_each_entry_safe(cur_cd, next_cd,
1721                         &xhci->cancel_cmd_list, cancel_cmd_list) {
1722                 list_del(&cur_cd->cancel_cmd_list);
1723                 kfree(cur_cd);
1724         }
1725
1726         for (i = 1; i < MAX_HC_SLOTS; ++i)
1727                 xhci_free_virt_device(xhci, i);
1728
1729         if (xhci->segment_pool)
1730                 dma_pool_destroy(xhci->segment_pool);
1731         xhci->segment_pool = NULL;
1732         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1733
1734         if (xhci->device_pool)
1735                 dma_pool_destroy(xhci->device_pool);
1736         xhci->device_pool = NULL;
1737         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1738
1739         if (xhci->small_streams_pool)
1740                 dma_pool_destroy(xhci->small_streams_pool);
1741         xhci->small_streams_pool = NULL;
1742         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1743                         "Freed small stream array pool");
1744
1745         if (xhci->medium_streams_pool)
1746                 dma_pool_destroy(xhci->medium_streams_pool);
1747         xhci->medium_streams_pool = NULL;
1748         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1749                         "Freed medium stream array pool");
1750
1751         if (xhci->dcbaa)
1752                 dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1753                                 xhci->dcbaa, xhci->dcbaa->dma);
1754         xhci->dcbaa = NULL;
1755
1756         scratchpad_free(xhci);
1757
1758         spin_lock_irqsave(&xhci->lock, flags);
1759         list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1760                 list_del(&dev_info->list);
1761                 kfree(dev_info);
1762         }
1763         spin_unlock_irqrestore(&xhci->lock, flags);
1764
1765         if (!xhci->rh_bw)
1766                 goto no_bw;
1767
1768         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1769         for (i = 0; i < num_ports; i++) {
1770                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1771                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1772                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1773                         while (!list_empty(ep))
1774                                 list_del_init(ep->next);
1775                 }
1776         }
1777
1778         for (i = 0; i < num_ports; i++) {
1779                 struct xhci_tt_bw_info *tt, *n;
1780                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1781                         list_del(&tt->tt_list);
1782                         kfree(tt);
1783                 }
1784         }
1785
1786 no_bw:
1787         xhci->num_usb2_ports = 0;
1788         xhci->num_usb3_ports = 0;
1789         xhci->num_active_eps = 0;
1790         kfree(xhci->usb2_ports);
1791         kfree(xhci->usb3_ports);
1792         kfree(xhci->port_array);
1793         kfree(xhci->rh_bw);
1794         kfree(xhci->ext_caps);
1795
1796         xhci->page_size = 0;
1797         xhci->page_shift = 0;
1798         xhci->bus_state[0].bus_suspended = 0;
1799         xhci->bus_state[1].bus_suspended = 0;
1800 }
1801
1802 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1803                 struct xhci_segment *input_seg,
1804                 union xhci_trb *start_trb,
1805                 union xhci_trb *end_trb,
1806                 dma_addr_t input_dma,
1807                 struct xhci_segment *result_seg,
1808                 char *test_name, int test_number)
1809 {
1810         unsigned long long start_dma;
1811         unsigned long long end_dma;
1812         struct xhci_segment *seg;
1813
1814         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1815         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1816
1817         seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1818         if (seg != result_seg) {
1819                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1820                                 test_name, test_number);
1821                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1822                                 "input DMA 0x%llx\n",
1823                                 input_seg,
1824                                 (unsigned long long) input_dma);
1825                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1826                                 "ending TRB %p (0x%llx DMA)\n",
1827                                 start_trb, start_dma,
1828                                 end_trb, end_dma);
1829                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1830                                 result_seg, seg);
1831                 return -1;
1832         }
1833         return 0;
1834 }
1835
1836 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1837 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1838 {
1839         struct {
1840                 dma_addr_t              input_dma;
1841                 struct xhci_segment     *result_seg;
1842         } simple_test_vector [] = {
1843                 /* A zeroed DMA field should fail */
1844                 { 0, NULL },
1845                 /* One TRB before the ring start should fail */
1846                 { xhci->event_ring->first_seg->dma - 16, NULL },
1847                 /* One byte before the ring start should fail */
1848                 { xhci->event_ring->first_seg->dma - 1, NULL },
1849                 /* Starting TRB should succeed */
1850                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1851                 /* Ending TRB should succeed */
1852                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1853                         xhci->event_ring->first_seg },
1854                 /* One byte after the ring end should fail */
1855                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1856                 /* One TRB after the ring end should fail */
1857                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1858                 /* An address of all ones should fail */
1859                 { (dma_addr_t) (~0), NULL },
1860         };
1861         struct {
1862                 struct xhci_segment     *input_seg;
1863                 union xhci_trb          *start_trb;
1864                 union xhci_trb          *end_trb;
1865                 dma_addr_t              input_dma;
1866                 struct xhci_segment     *result_seg;
1867         } complex_test_vector [] = {
1868                 /* Test feeding a valid DMA address from a different ring */
1869                 {       .input_seg = xhci->event_ring->first_seg,
1870                         .start_trb = xhci->event_ring->first_seg->trbs,
1871                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1872                         .input_dma = xhci->cmd_ring->first_seg->dma,
1873                         .result_seg = NULL,
1874                 },
1875                 /* Test feeding a valid end TRB from a different ring */
1876                 {       .input_seg = xhci->event_ring->first_seg,
1877                         .start_trb = xhci->event_ring->first_seg->trbs,
1878                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1879                         .input_dma = xhci->cmd_ring->first_seg->dma,
1880                         .result_seg = NULL,
1881                 },
1882                 /* Test feeding a valid start and end TRB from a different ring */
1883                 {       .input_seg = xhci->event_ring->first_seg,
1884                         .start_trb = xhci->cmd_ring->first_seg->trbs,
1885                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1886                         .input_dma = xhci->cmd_ring->first_seg->dma,
1887                         .result_seg = NULL,
1888                 },
1889                 /* TRB in this ring, but after this TD */
1890                 {       .input_seg = xhci->event_ring->first_seg,
1891                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
1892                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
1893                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1894                         .result_seg = NULL,
1895                 },
1896                 /* TRB in this ring, but before this TD */
1897                 {       .input_seg = xhci->event_ring->first_seg,
1898                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
1899                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
1900                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1901                         .result_seg = NULL,
1902                 },
1903                 /* TRB in this ring, but after this wrapped TD */
1904                 {       .input_seg = xhci->event_ring->first_seg,
1905                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1906                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1907                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1908                         .result_seg = NULL,
1909                 },
1910                 /* TRB in this ring, but before this wrapped TD */
1911                 {       .input_seg = xhci->event_ring->first_seg,
1912                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1913                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1914                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1915                         .result_seg = NULL,
1916                 },
1917                 /* TRB not in this ring, and we have a wrapped TD */
1918                 {       .input_seg = xhci->event_ring->first_seg,
1919                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1920                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1921                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1922                         .result_seg = NULL,
1923                 },
1924         };
1925
1926         unsigned int num_tests;
1927         int i, ret;
1928
1929         num_tests = ARRAY_SIZE(simple_test_vector);
1930         for (i = 0; i < num_tests; i++) {
1931                 ret = xhci_test_trb_in_td(xhci,
1932                                 xhci->event_ring->first_seg,
1933                                 xhci->event_ring->first_seg->trbs,
1934                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1935                                 simple_test_vector[i].input_dma,
1936                                 simple_test_vector[i].result_seg,
1937                                 "Simple", i);
1938                 if (ret < 0)
1939                         return ret;
1940         }
1941
1942         num_tests = ARRAY_SIZE(complex_test_vector);
1943         for (i = 0; i < num_tests; i++) {
1944                 ret = xhci_test_trb_in_td(xhci,
1945                                 complex_test_vector[i].input_seg,
1946                                 complex_test_vector[i].start_trb,
1947                                 complex_test_vector[i].end_trb,
1948                                 complex_test_vector[i].input_dma,
1949                                 complex_test_vector[i].result_seg,
1950                                 "Complex", i);
1951                 if (ret < 0)
1952                         return ret;
1953         }
1954         xhci_dbg(xhci, "TRB math tests passed.\n");
1955         return 0;
1956 }
1957
1958 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1959 {
1960         u64 temp;
1961         dma_addr_t deq;
1962
1963         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1964                         xhci->event_ring->dequeue);
1965         if (deq == 0 && !in_interrupt())
1966                 xhci_warn(xhci, "WARN something wrong with SW event ring "
1967                                 "dequeue ptr.\n");
1968         /* Update HC event ring dequeue pointer */
1969         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1970         temp &= ERST_PTR_MASK;
1971         /* Don't clear the EHB bit (which is RW1C) because
1972          * there might be more events to service.
1973          */
1974         temp &= ~ERST_EHB;
1975         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1976                         "// Write event ring dequeue pointer, "
1977                         "preserving EHB bit");
1978         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1979                         &xhci->ir_set->erst_dequeue);
1980 }
1981
1982 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1983                 __le32 __iomem *addr, u8 major_revision, int max_caps)
1984 {
1985         u32 temp, port_offset, port_count;
1986         int i;
1987
1988         if (major_revision > 0x03) {
1989                 xhci_warn(xhci, "Ignoring unknown port speed, "
1990                                 "Ext Cap %p, revision = 0x%x\n",
1991                                 addr, major_revision);
1992                 /* Ignoring port protocol we can't understand. FIXME */
1993                 return;
1994         }
1995
1996         /* Port offset and count in the third dword, see section 7.2 */
1997         temp = xhci_readl(xhci, addr + 2);
1998         port_offset = XHCI_EXT_PORT_OFF(temp);
1999         port_count = XHCI_EXT_PORT_COUNT(temp);
2000         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2001                         "Ext Cap %p, port offset = %u, "
2002                         "count = %u, revision = 0x%x",
2003                         addr, port_offset, port_count, major_revision);
2004         /* Port count includes the current port offset */
2005         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2006                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2007                 return;
2008
2009         /* cache usb2 port capabilities */
2010         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2011                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2012
2013         /* Check the host's USB2 LPM capability */
2014         if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2015                         (temp & XHCI_L1C)) {
2016                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2017                                 "xHCI 0.96: support USB2 software lpm");
2018                 xhci->sw_lpm_support = 1;
2019         }
2020
2021         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2022                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2023                                 "xHCI 1.0: support USB2 software lpm");
2024                 xhci->sw_lpm_support = 1;
2025                 if (temp & XHCI_HLC) {
2026                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2027                                         "xHCI 1.0: support USB2 hardware lpm");
2028                         xhci->hw_lpm_support = 1;
2029                 }
2030         }
2031
2032         port_offset--;
2033         for (i = port_offset; i < (port_offset + port_count); i++) {
2034                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2035                 if (xhci->port_array[i] != 0) {
2036                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2037                                         " port %u\n", addr, i);
2038                         xhci_warn(xhci, "Port was marked as USB %u, "
2039                                         "duplicated as USB %u\n",
2040                                         xhci->port_array[i], major_revision);
2041                         /* Only adjust the roothub port counts if we haven't
2042                          * found a similar duplicate.
2043                          */
2044                         if (xhci->port_array[i] != major_revision &&
2045                                 xhci->port_array[i] != DUPLICATE_ENTRY) {
2046                                 if (xhci->port_array[i] == 0x03)
2047                                         xhci->num_usb3_ports--;
2048                                 else
2049                                         xhci->num_usb2_ports--;
2050                                 xhci->port_array[i] = DUPLICATE_ENTRY;
2051                         }
2052                         /* FIXME: Should we disable the port? */
2053                         continue;
2054                 }
2055                 xhci->port_array[i] = major_revision;
2056                 if (major_revision == 0x03)
2057                         xhci->num_usb3_ports++;
2058                 else
2059                         xhci->num_usb2_ports++;
2060         }
2061         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2062 }
2063
2064 /*
2065  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2066  * specify what speeds each port is supposed to be.  We can't count on the port
2067  * speed bits in the PORTSC register being correct until a device is connected,
2068  * but we need to set up the two fake roothubs with the correct number of USB
2069  * 3.0 and USB 2.0 ports at host controller initialization time.
2070  */
2071 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2072 {
2073         __le32 __iomem *addr, *tmp_addr;
2074         u32 offset, tmp_offset;
2075         unsigned int num_ports;
2076         int i, j, port_index;
2077         int cap_count = 0;
2078
2079         addr = &xhci->cap_regs->hcc_params;
2080         offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2081         if (offset == 0) {
2082                 xhci_err(xhci, "No Extended Capability registers, "
2083                                 "unable to set up roothub.\n");
2084                 return -ENODEV;
2085         }
2086
2087         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2088         xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2089         if (!xhci->port_array)
2090                 return -ENOMEM;
2091
2092         xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2093         if (!xhci->rh_bw)
2094                 return -ENOMEM;
2095         for (i = 0; i < num_ports; i++) {
2096                 struct xhci_interval_bw_table *bw_table;
2097
2098                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2099                 bw_table = &xhci->rh_bw[i].bw_table;
2100                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2101                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2102         }
2103
2104         /*
2105          * For whatever reason, the first capability offset is from the
2106          * capability register base, not from the HCCPARAMS register.
2107          * See section 5.3.6 for offset calculation.
2108          */
2109         addr = &xhci->cap_regs->hc_capbase + offset;
2110
2111         tmp_addr = addr;
2112         tmp_offset = offset;
2113
2114         /* count extended protocol capability entries for later caching */
2115         do {
2116                 u32 cap_id;
2117                 cap_id = xhci_readl(xhci, tmp_addr);
2118                 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2119                         cap_count++;
2120                 tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2121                 tmp_addr += tmp_offset;
2122         } while (tmp_offset);
2123
2124         xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2125         if (!xhci->ext_caps)
2126                 return -ENOMEM;
2127
2128         while (1) {
2129                 u32 cap_id;
2130
2131                 cap_id = xhci_readl(xhci, addr);
2132                 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2133                         xhci_add_in_port(xhci, num_ports, addr,
2134                                         (u8) XHCI_EXT_PORT_MAJOR(cap_id),
2135                                         cap_count);
2136                 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2137                 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2138                                 == num_ports)
2139                         break;
2140                 /*
2141                  * Once you're into the Extended Capabilities, the offset is
2142                  * always relative to the register holding the offset.
2143                  */
2144                 addr += offset;
2145         }
2146
2147         if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2148                 xhci_warn(xhci, "No ports on the roothubs?\n");
2149                 return -ENODEV;
2150         }
2151         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2152                         "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2153                         xhci->num_usb2_ports, xhci->num_usb3_ports);
2154
2155         /* Place limits on the number of roothub ports so that the hub
2156          * descriptors aren't longer than the USB core will allocate.
2157          */
2158         if (xhci->num_usb3_ports > 15) {
2159                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2160                                 "Limiting USB 3.0 roothub ports to 15.");
2161                 xhci->num_usb3_ports = 15;
2162         }
2163         if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2164                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2165                                 "Limiting USB 2.0 roothub ports to %u.",
2166                                 USB_MAXCHILDREN);
2167                 xhci->num_usb2_ports = USB_MAXCHILDREN;
2168         }
2169
2170         /*
2171          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2172          * Not sure how the USB core will handle a hub with no ports...
2173          */
2174         if (xhci->num_usb2_ports) {
2175                 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2176                                 xhci->num_usb2_ports, flags);
2177                 if (!xhci->usb2_ports)
2178                         return -ENOMEM;
2179
2180                 port_index = 0;
2181                 for (i = 0; i < num_ports; i++) {
2182                         if (xhci->port_array[i] == 0x03 ||
2183                                         xhci->port_array[i] == 0 ||
2184                                         xhci->port_array[i] == DUPLICATE_ENTRY)
2185                                 continue;
2186
2187                         xhci->usb2_ports[port_index] =
2188                                 &xhci->op_regs->port_status_base +
2189                                 NUM_PORT_REGS*i;
2190                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2191                                         "USB 2.0 port at index %u, "
2192                                         "addr = %p", i,
2193                                         xhci->usb2_ports[port_index]);
2194                         port_index++;
2195                         if (port_index == xhci->num_usb2_ports)
2196                                 break;
2197                 }
2198         }
2199         if (xhci->num_usb3_ports) {
2200                 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2201                                 xhci->num_usb3_ports, flags);
2202                 if (!xhci->usb3_ports)
2203                         return -ENOMEM;
2204
2205                 port_index = 0;
2206                 for (i = 0; i < num_ports; i++)
2207                         if (xhci->port_array[i] == 0x03) {
2208                                 xhci->usb3_ports[port_index] =
2209                                         &xhci->op_regs->port_status_base +
2210                                         NUM_PORT_REGS*i;
2211                                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2212                                                 "USB 3.0 port at index %u, "
2213                                                 "addr = %p", i,
2214                                                 xhci->usb3_ports[port_index]);
2215                                 port_index++;
2216                                 if (port_index == xhci->num_usb3_ports)
2217                                         break;
2218                         }
2219         }
2220         return 0;
2221 }
2222
2223 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2224 {
2225         dma_addr_t      dma;
2226         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
2227         unsigned int    val, val2;
2228         u64             val_64;
2229         struct xhci_segment     *seg;
2230         u32 page_size, temp;
2231         int i;
2232
2233         INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2234         INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2235
2236         page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2237         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2238                         "Supported page size register = 0x%x", page_size);
2239         for (i = 0; i < 16; i++) {
2240                 if ((0x1 & page_size) != 0)
2241                         break;
2242                 page_size = page_size >> 1;
2243         }
2244         if (i < 16)
2245                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2246                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2247         else
2248                 xhci_warn(xhci, "WARN: no supported page size\n");
2249         /* Use 4K pages, since that's common and the minimum the HC supports */
2250         xhci->page_shift = 12;
2251         xhci->page_size = 1 << xhci->page_shift;
2252         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2253                         "HCD page size set to %iK", xhci->page_size / 1024);
2254
2255         /*
2256          * Program the Number of Device Slots Enabled field in the CONFIG
2257          * register with the max value of slots the HC can handle.
2258          */
2259         val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2260         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2261                         "// xHC can handle at most %d device slots.", val);
2262         val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2263         val |= (val2 & ~HCS_SLOTS_MASK);
2264         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2265                         "// Setting Max device slots reg = 0x%x.", val);
2266         xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2267
2268         /*
2269          * Section 5.4.8 - doorbell array must be
2270          * "physically contiguous and 64-byte (cache line) aligned".
2271          */
2272         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2273                         GFP_KERNEL);
2274         if (!xhci->dcbaa)
2275                 goto fail;
2276         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2277         xhci->dcbaa->dma = dma;
2278         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2279                         "// Device context base array address = 0x%llx (DMA), %p (virt)",
2280                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2281         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2282
2283         /*
2284          * Initialize the ring segment pool.  The ring must be a contiguous
2285          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2286          * however, the command ring segment needs 64-byte aligned segments,
2287          * so we pick the greater alignment need.
2288          */
2289         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2290                         TRB_SEGMENT_SIZE, 64, xhci->page_size);
2291
2292         /* See Table 46 and Note on Figure 55 */
2293         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2294                         2112, 64, xhci->page_size);
2295         if (!xhci->segment_pool || !xhci->device_pool)
2296                 goto fail;
2297
2298         /* Linear stream context arrays don't have any boundary restrictions,
2299          * and only need to be 16-byte aligned.
2300          */
2301         xhci->small_streams_pool =
2302                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2303                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2304         xhci->medium_streams_pool =
2305                 dma_pool_create("xHCI 1KB stream ctx arrays",
2306                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2307         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2308          * will be allocated with dma_alloc_coherent()
2309          */
2310
2311         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2312                 goto fail;
2313
2314         /* Set up the command ring to have one segments for now. */
2315         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2316         if (!xhci->cmd_ring)
2317                 goto fail;
2318         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2319                         "Allocated command ring at %p", xhci->cmd_ring);
2320         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2321                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2322
2323         /* Set the address in the Command Ring Control register */
2324         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2325         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2326                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2327                 xhci->cmd_ring->cycle_state;
2328         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2329                         "// Setting command ring address to 0x%x", val);
2330         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2331         xhci_dbg_cmd_ptrs(xhci);
2332
2333         xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2334         if (!xhci->lpm_command)
2335                 goto fail;
2336
2337         /* Reserve one command ring TRB for disabling LPM.
2338          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2339          * disabling LPM, we only need to reserve one TRB for all devices.
2340          */
2341         xhci->cmd_ring_reserved_trbs++;
2342
2343         val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2344         val &= DBOFF_MASK;
2345         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2346                         "// Doorbell array is located at offset 0x%x"
2347                         " from cap regs base addr", val);
2348         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2349         xhci_dbg_regs(xhci);
2350         xhci_print_run_regs(xhci);
2351         /* Set ir_set to interrupt register set 0 */
2352         xhci->ir_set = &xhci->run_regs->ir_set[0];
2353
2354         /*
2355          * Event ring setup: Allocate a normal ring, but also setup
2356          * the event ring segment table (ERST).  Section 4.9.3.
2357          */
2358         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2359         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2360                                                 flags);
2361         if (!xhci->event_ring)
2362                 goto fail;
2363         if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2364                 goto fail;
2365
2366         xhci->erst.entries = dma_alloc_coherent(dev,
2367                         sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2368                         GFP_KERNEL);
2369         if (!xhci->erst.entries)
2370                 goto fail;
2371         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2372                         "// Allocated event ring segment table at 0x%llx",
2373                         (unsigned long long)dma);
2374
2375         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2376         xhci->erst.num_entries = ERST_NUM_SEGS;
2377         xhci->erst.erst_dma_addr = dma;
2378         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2379                         "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2380                         xhci->erst.num_entries,
2381                         xhci->erst.entries,
2382                         (unsigned long long)xhci->erst.erst_dma_addr);
2383
2384         /* set ring base address and size for each segment table entry */
2385         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2386                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2387                 entry->seg_addr = cpu_to_le64(seg->dma);
2388                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2389                 entry->rsvd = 0;
2390                 seg = seg->next;
2391         }
2392
2393         /* set ERST count with the number of entries in the segment table */
2394         val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2395         val &= ERST_SIZE_MASK;
2396         val |= ERST_NUM_SEGS;
2397         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2398                         "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2399                         val);
2400         xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2401
2402         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2403                         "// Set ERST entries to point to event ring.");
2404         /* set the segment table base address */
2405         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2406                         "// Set ERST base address for ir_set 0 = 0x%llx",
2407                         (unsigned long long)xhci->erst.erst_dma_addr);
2408         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2409         val_64 &= ERST_PTR_MASK;
2410         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2411         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2412
2413         /* Set the event ring dequeue address */
2414         xhci_set_hc_event_deq(xhci);
2415         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416                         "Wrote ERST address to ir_set 0.");
2417         xhci_print_ir_set(xhci, 0);
2418
2419         /*
2420          * XXX: Might need to set the Interrupter Moderation Register to
2421          * something other than the default (~1ms minimum between interrupts).
2422          * See section 5.5.1.2.
2423          */
2424         init_completion(&xhci->addr_dev);
2425         for (i = 0; i < MAX_HC_SLOTS; ++i)
2426                 xhci->devs[i] = NULL;
2427         for (i = 0; i < USB_MAXCHILDREN; ++i) {
2428                 xhci->bus_state[0].resume_done[i] = 0;
2429                 xhci->bus_state[1].resume_done[i] = 0;
2430         }
2431
2432         if (scratchpad_alloc(xhci, flags))
2433                 goto fail;
2434         if (xhci_setup_port_arrays(xhci, flags))
2435                 goto fail;
2436
2437         /* Enable USB 3.0 device notifications for function remote wake, which
2438          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2439          * U3 (device suspend).
2440          */
2441         temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2442         temp &= ~DEV_NOTE_MASK;
2443         temp |= DEV_NOTE_FWAKE;
2444         xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2445
2446         return 0;
2447
2448 fail:
2449         xhci_warn(xhci, "Couldn't initialize memory\n");
2450         xhci_halt(xhci);
2451         xhci_reset(xhci);
2452         xhci_mem_cleanup(xhci);
2453         return -ENOMEM;
2454 }