xhci: add trace for debug messages related to endpoint reset
[firefly-linux-kernel-4.4.55.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30
31 #include "xhci.h"
32 #include "xhci-trace.h"
33
34 #define DRIVER_AUTHOR "Sarah Sharp"
35 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
36
37 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
38 static int link_quirk;
39 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
40 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
41
42 /* TODO: copied from ehci-hcd.c - can this be refactored? */
43 /*
44  * xhci_handshake - spin reading hc until handshake completes or fails
45  * @ptr: address of hc register to be read
46  * @mask: bits to look at in result of read
47  * @done: value of those bits when handshake succeeds
48  * @usec: timeout in microseconds
49  *
50  * Returns negative errno, or zero on success
51  *
52  * Success happens when the "mask" bits have the specified value (hardware
53  * handshake done).  There are two failure modes:  "usec" have passed (major
54  * hardware flakeout), or the register reads as all-ones (hardware removed).
55  */
56 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
57                       u32 mask, u32 done, int usec)
58 {
59         u32     result;
60
61         do {
62                 result = xhci_readl(xhci, ptr);
63                 if (result == ~(u32)0)          /* card removed */
64                         return -ENODEV;
65                 result &= mask;
66                 if (result == done)
67                         return 0;
68                 udelay(1);
69                 usec--;
70         } while (usec > 0);
71         return -ETIMEDOUT;
72 }
73
74 /*
75  * Disable interrupts and begin the xHCI halting process.
76  */
77 void xhci_quiesce(struct xhci_hcd *xhci)
78 {
79         u32 halted;
80         u32 cmd;
81         u32 mask;
82
83         mask = ~(XHCI_IRQS);
84         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
85         if (!halted)
86                 mask &= ~CMD_RUN;
87
88         cmd = xhci_readl(xhci, &xhci->op_regs->command);
89         cmd &= mask;
90         xhci_writel(xhci, cmd, &xhci->op_regs->command);
91 }
92
93 /*
94  * Force HC into halt state.
95  *
96  * Disable any IRQs and clear the run/stop bit.
97  * HC will complete any current and actively pipelined transactions, and
98  * should halt within 16 ms of the run/stop bit being cleared.
99  * Read HC Halted bit in the status register to see when the HC is finished.
100  */
101 int xhci_halt(struct xhci_hcd *xhci)
102 {
103         int ret;
104         xhci_dbg(xhci, "// Halt the HC\n");
105         xhci_quiesce(xhci);
106
107         ret = xhci_handshake(xhci, &xhci->op_regs->status,
108                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
109         if (!ret) {
110                 xhci->xhc_state |= XHCI_STATE_HALTED;
111                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
112         } else
113                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
114                                 XHCI_MAX_HALT_USEC);
115         return ret;
116 }
117
118 /*
119  * Set the run bit and wait for the host to be running.
120  */
121 static int xhci_start(struct xhci_hcd *xhci)
122 {
123         u32 temp;
124         int ret;
125
126         temp = xhci_readl(xhci, &xhci->op_regs->command);
127         temp |= (CMD_RUN);
128         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
129                         temp);
130         xhci_writel(xhci, temp, &xhci->op_regs->command);
131
132         /*
133          * Wait for the HCHalted Status bit to be 0 to indicate the host is
134          * running.
135          */
136         ret = xhci_handshake(xhci, &xhci->op_regs->status,
137                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
138         if (ret == -ETIMEDOUT)
139                 xhci_err(xhci, "Host took too long to start, "
140                                 "waited %u microseconds.\n",
141                                 XHCI_MAX_HALT_USEC);
142         if (!ret)
143                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
144         return ret;
145 }
146
147 /*
148  * Reset a halted HC.
149  *
150  * This resets pipelines, timers, counters, state machines, etc.
151  * Transactions will be terminated immediately, and operational registers
152  * will be set to their defaults.
153  */
154 int xhci_reset(struct xhci_hcd *xhci)
155 {
156         u32 command;
157         u32 state;
158         int ret, i;
159
160         state = xhci_readl(xhci, &xhci->op_regs->status);
161         if ((state & STS_HALT) == 0) {
162                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
163                 return 0;
164         }
165
166         xhci_dbg(xhci, "// Reset the HC\n");
167         command = xhci_readl(xhci, &xhci->op_regs->command);
168         command |= CMD_RESET;
169         xhci_writel(xhci, command, &xhci->op_regs->command);
170
171         ret = xhci_handshake(xhci, &xhci->op_regs->command,
172                         CMD_RESET, 0, 10 * 1000 * 1000);
173         if (ret)
174                 return ret;
175
176         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
177         /*
178          * xHCI cannot write to any doorbells or operational registers other
179          * than status until the "Controller Not Ready" flag is cleared.
180          */
181         ret = xhci_handshake(xhci, &xhci->op_regs->status,
182                         STS_CNR, 0, 10 * 1000 * 1000);
183
184         for (i = 0; i < 2; ++i) {
185                 xhci->bus_state[i].port_c_suspend = 0;
186                 xhci->bus_state[i].suspended_ports = 0;
187                 xhci->bus_state[i].resuming_ports = 0;
188         }
189
190         return ret;
191 }
192
193 #ifdef CONFIG_PCI
194 static int xhci_free_msi(struct xhci_hcd *xhci)
195 {
196         int i;
197
198         if (!xhci->msix_entries)
199                 return -EINVAL;
200
201         for (i = 0; i < xhci->msix_count; i++)
202                 if (xhci->msix_entries[i].vector)
203                         free_irq(xhci->msix_entries[i].vector,
204                                         xhci_to_hcd(xhci));
205         return 0;
206 }
207
208 /*
209  * Set up MSI
210  */
211 static int xhci_setup_msi(struct xhci_hcd *xhci)
212 {
213         int ret;
214         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
215
216         ret = pci_enable_msi(pdev);
217         if (ret) {
218                 xhci_dbg(xhci, "failed to allocate MSI entry\n");
219                 return ret;
220         }
221
222         ret = request_irq(pdev->irq, xhci_msi_irq,
223                                 0, "xhci_hcd", xhci_to_hcd(xhci));
224         if (ret) {
225                 xhci_dbg(xhci, "disable MSI interrupt\n");
226                 pci_disable_msi(pdev);
227         }
228
229         return ret;
230 }
231
232 /*
233  * Free IRQs
234  * free all IRQs request
235  */
236 static void xhci_free_irq(struct xhci_hcd *xhci)
237 {
238         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
239         int ret;
240
241         /* return if using legacy interrupt */
242         if (xhci_to_hcd(xhci)->irq > 0)
243                 return;
244
245         ret = xhci_free_msi(xhci);
246         if (!ret)
247                 return;
248         if (pdev->irq > 0)
249                 free_irq(pdev->irq, xhci_to_hcd(xhci));
250
251         return;
252 }
253
254 /*
255  * Set up MSI-X
256  */
257 static int xhci_setup_msix(struct xhci_hcd *xhci)
258 {
259         int i, ret = 0;
260         struct usb_hcd *hcd = xhci_to_hcd(xhci);
261         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
262
263         /*
264          * calculate number of msi-x vectors supported.
265          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
266          *   with max number of interrupters based on the xhci HCSPARAMS1.
267          * - num_online_cpus: maximum msi-x vectors per CPUs core.
268          *   Add additional 1 vector to ensure always available interrupt.
269          */
270         xhci->msix_count = min(num_online_cpus() + 1,
271                                 HCS_MAX_INTRS(xhci->hcs_params1));
272
273         xhci->msix_entries =
274                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
275                                 GFP_KERNEL);
276         if (!xhci->msix_entries) {
277                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
278                 return -ENOMEM;
279         }
280
281         for (i = 0; i < xhci->msix_count; i++) {
282                 xhci->msix_entries[i].entry = i;
283                 xhci->msix_entries[i].vector = 0;
284         }
285
286         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
287         if (ret) {
288                 xhci_dbg(xhci, "Failed to enable MSI-X\n");
289                 goto free_entries;
290         }
291
292         for (i = 0; i < xhci->msix_count; i++) {
293                 ret = request_irq(xhci->msix_entries[i].vector,
294                                 xhci_msi_irq,
295                                 0, "xhci_hcd", xhci_to_hcd(xhci));
296                 if (ret)
297                         goto disable_msix;
298         }
299
300         hcd->msix_enabled = 1;
301         return ret;
302
303 disable_msix:
304         xhci_dbg(xhci, "disable MSI-X interrupt\n");
305         xhci_free_irq(xhci);
306         pci_disable_msix(pdev);
307 free_entries:
308         kfree(xhci->msix_entries);
309         xhci->msix_entries = NULL;
310         return ret;
311 }
312
313 /* Free any IRQs and disable MSI-X */
314 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
315 {
316         struct usb_hcd *hcd = xhci_to_hcd(xhci);
317         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
318
319         xhci_free_irq(xhci);
320
321         if (xhci->msix_entries) {
322                 pci_disable_msix(pdev);
323                 kfree(xhci->msix_entries);
324                 xhci->msix_entries = NULL;
325         } else {
326                 pci_disable_msi(pdev);
327         }
328
329         hcd->msix_enabled = 0;
330         return;
331 }
332
333 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
334 {
335         int i;
336
337         if (xhci->msix_entries) {
338                 for (i = 0; i < xhci->msix_count; i++)
339                         synchronize_irq(xhci->msix_entries[i].vector);
340         }
341 }
342
343 static int xhci_try_enable_msi(struct usb_hcd *hcd)
344 {
345         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
346         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
347         int ret;
348
349         /*
350          * Some Fresco Logic host controllers advertise MSI, but fail to
351          * generate interrupts.  Don't even try to enable MSI.
352          */
353         if (xhci->quirks & XHCI_BROKEN_MSI)
354                 goto legacy_irq;
355
356         /* unregister the legacy interrupt */
357         if (hcd->irq)
358                 free_irq(hcd->irq, hcd);
359         hcd->irq = 0;
360
361         ret = xhci_setup_msix(xhci);
362         if (ret)
363                 /* fall back to msi*/
364                 ret = xhci_setup_msi(xhci);
365
366         if (!ret)
367                 /* hcd->irq is 0, we have MSI */
368                 return 0;
369
370         if (!pdev->irq) {
371                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
372                 return -EINVAL;
373         }
374
375  legacy_irq:
376         /* fall back to legacy interrupt*/
377         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
378                         hcd->irq_descr, hcd);
379         if (ret) {
380                 xhci_err(xhci, "request interrupt %d failed\n",
381                                 pdev->irq);
382                 return ret;
383         }
384         hcd->irq = pdev->irq;
385         return 0;
386 }
387
388 #else
389
390 static int xhci_try_enable_msi(struct usb_hcd *hcd)
391 {
392         return 0;
393 }
394
395 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
396 {
397 }
398
399 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
400 {
401 }
402
403 #endif
404
405 static void compliance_mode_recovery(unsigned long arg)
406 {
407         struct xhci_hcd *xhci;
408         struct usb_hcd *hcd;
409         u32 temp;
410         int i;
411
412         xhci = (struct xhci_hcd *)arg;
413
414         for (i = 0; i < xhci->num_usb3_ports; i++) {
415                 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
416                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
417                         /*
418                          * Compliance Mode Detected. Letting USB Core
419                          * handle the Warm Reset
420                          */
421                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
422                                         "Compliance mode detected->port %d",
423                                         i + 1);
424                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
425                                         "Attempting compliance mode recovery");
426                         hcd = xhci->shared_hcd;
427
428                         if (hcd->state == HC_STATE_SUSPENDED)
429                                 usb_hcd_resume_root_hub(hcd);
430
431                         usb_hcd_poll_rh_status(hcd);
432                 }
433         }
434
435         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
436                 mod_timer(&xhci->comp_mode_recovery_timer,
437                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
438 }
439
440 /*
441  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
442  * that causes ports behind that hardware to enter compliance mode sometimes.
443  * The quirk creates a timer that polls every 2 seconds the link state of
444  * each host controller's port and recovers it by issuing a Warm reset
445  * if Compliance mode is detected, otherwise the port will become "dead" (no
446  * device connections or disconnections will be detected anymore). Becasue no
447  * status event is generated when entering compliance mode (per xhci spec),
448  * this quirk is needed on systems that have the failing hardware installed.
449  */
450 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
451 {
452         xhci->port_status_u0 = 0;
453         init_timer(&xhci->comp_mode_recovery_timer);
454
455         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
456         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
457         xhci->comp_mode_recovery_timer.expires = jiffies +
458                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
459
460         set_timer_slack(&xhci->comp_mode_recovery_timer,
461                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
462         add_timer(&xhci->comp_mode_recovery_timer);
463         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
464                         "Compliance mode recovery timer initialized");
465 }
466
467 /*
468  * This function identifies the systems that have installed the SN65LVPE502CP
469  * USB3.0 re-driver and that need the Compliance Mode Quirk.
470  * Systems:
471  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
472  */
473 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
474 {
475         const char *dmi_product_name, *dmi_sys_vendor;
476
477         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
478         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
479         if (!dmi_product_name || !dmi_sys_vendor)
480                 return false;
481
482         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
483                 return false;
484
485         if (strstr(dmi_product_name, "Z420") ||
486                         strstr(dmi_product_name, "Z620") ||
487                         strstr(dmi_product_name, "Z820") ||
488                         strstr(dmi_product_name, "Z1 Workstation"))
489                 return true;
490
491         return false;
492 }
493
494 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
495 {
496         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
497 }
498
499
500 /*
501  * Initialize memory for HCD and xHC (one-time init).
502  *
503  * Program the PAGESIZE register, initialize the device context array, create
504  * device contexts (?), set up a command ring segment (or two?), create event
505  * ring (one for now).
506  */
507 int xhci_init(struct usb_hcd *hcd)
508 {
509         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
510         int retval = 0;
511
512         xhci_dbg(xhci, "xhci_init\n");
513         spin_lock_init(&xhci->lock);
514         if (xhci->hci_version == 0x95 && link_quirk) {
515                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
516                                 "QUIRK: Not clearing Link TRB chain bits.");
517                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
518         } else {
519                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
520         }
521         retval = xhci_mem_init(xhci, GFP_KERNEL);
522         xhci_dbg(xhci, "Finished xhci_init\n");
523
524         /* Initializing Compliance Mode Recovery Data If Needed */
525         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
526                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
527                 compliance_mode_recovery_timer_init(xhci);
528         }
529
530         return retval;
531 }
532
533 /*-------------------------------------------------------------------------*/
534
535
536 static int xhci_run_finished(struct xhci_hcd *xhci)
537 {
538         if (xhci_start(xhci)) {
539                 xhci_halt(xhci);
540                 return -ENODEV;
541         }
542         xhci->shared_hcd->state = HC_STATE_RUNNING;
543         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
544
545         if (xhci->quirks & XHCI_NEC_HOST)
546                 xhci_ring_cmd_db(xhci);
547
548         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
549         return 0;
550 }
551
552 /*
553  * Start the HC after it was halted.
554  *
555  * This function is called by the USB core when the HC driver is added.
556  * Its opposite is xhci_stop().
557  *
558  * xhci_init() must be called once before this function can be called.
559  * Reset the HC, enable device slot contexts, program DCBAAP, and
560  * set command ring pointer and event ring pointer.
561  *
562  * Setup MSI-X vectors and enable interrupts.
563  */
564 int xhci_run(struct usb_hcd *hcd)
565 {
566         u32 temp;
567         u64 temp_64;
568         int ret;
569         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
570
571         /* Start the xHCI host controller running only after the USB 2.0 roothub
572          * is setup.
573          */
574
575         hcd->uses_new_polling = 1;
576         if (!usb_hcd_is_primary_hcd(hcd))
577                 return xhci_run_finished(xhci);
578
579         xhci_dbg(xhci, "xhci_run\n");
580
581         ret = xhci_try_enable_msi(hcd);
582         if (ret)
583                 return ret;
584
585         xhci_dbg(xhci, "Command ring memory map follows:\n");
586         xhci_debug_ring(xhci, xhci->cmd_ring);
587         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
588         xhci_dbg_cmd_ptrs(xhci);
589
590         xhci_dbg(xhci, "ERST memory map follows:\n");
591         xhci_dbg_erst(xhci, &xhci->erst);
592         xhci_dbg(xhci, "Event ring:\n");
593         xhci_debug_ring(xhci, xhci->event_ring);
594         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
595         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
596         temp_64 &= ~ERST_PTR_MASK;
597         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
598
599         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
600         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
601         temp &= ~ER_IRQ_INTERVAL_MASK;
602         temp |= (u32) 160;
603         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
604
605         /* Set the HCD state before we enable the irqs */
606         temp = xhci_readl(xhci, &xhci->op_regs->command);
607         temp |= (CMD_EIE);
608         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
609                         temp);
610         xhci_writel(xhci, temp, &xhci->op_regs->command);
611
612         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
613         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
614                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
615         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
616                         &xhci->ir_set->irq_pending);
617         xhci_print_ir_set(xhci, 0);
618
619         if (xhci->quirks & XHCI_NEC_HOST)
620                 xhci_queue_vendor_command(xhci, 0, 0, 0,
621                                 TRB_TYPE(TRB_NEC_GET_FW));
622
623         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
624         return 0;
625 }
626
627 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
628 {
629         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
630
631         spin_lock_irq(&xhci->lock);
632         xhci_halt(xhci);
633
634         /* The shared_hcd is going to be deallocated shortly (the USB core only
635          * calls this function when allocation fails in usb_add_hcd(), or
636          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
637          */
638         xhci->shared_hcd = NULL;
639         spin_unlock_irq(&xhci->lock);
640 }
641
642 /*
643  * Stop xHCI driver.
644  *
645  * This function is called by the USB core when the HC driver is removed.
646  * Its opposite is xhci_run().
647  *
648  * Disable device contexts, disable IRQs, and quiesce the HC.
649  * Reset the HC, finish any completed transactions, and cleanup memory.
650  */
651 void xhci_stop(struct usb_hcd *hcd)
652 {
653         u32 temp;
654         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
655
656         if (!usb_hcd_is_primary_hcd(hcd)) {
657                 xhci_only_stop_hcd(xhci->shared_hcd);
658                 return;
659         }
660
661         spin_lock_irq(&xhci->lock);
662         /* Make sure the xHC is halted for a USB3 roothub
663          * (xhci_stop() could be called as part of failed init).
664          */
665         xhci_halt(xhci);
666         xhci_reset(xhci);
667         spin_unlock_irq(&xhci->lock);
668
669         xhci_cleanup_msix(xhci);
670
671         /* Deleting Compliance Mode Recovery Timer */
672         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
673                         (!(xhci_all_ports_seen_u0(xhci)))) {
674                 del_timer_sync(&xhci->comp_mode_recovery_timer);
675                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
676                                 "%s: compliance mode recovery timer deleted",
677                                 __func__);
678         }
679
680         if (xhci->quirks & XHCI_AMD_PLL_FIX)
681                 usb_amd_dev_put();
682
683         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
684         temp = xhci_readl(xhci, &xhci->op_regs->status);
685         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
686         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
687         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
688                         &xhci->ir_set->irq_pending);
689         xhci_print_ir_set(xhci, 0);
690
691         xhci_dbg(xhci, "cleaning up memory\n");
692         xhci_mem_cleanup(xhci);
693         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
694                     xhci_readl(xhci, &xhci->op_regs->status));
695 }
696
697 /*
698  * Shutdown HC (not bus-specific)
699  *
700  * This is called when the machine is rebooting or halting.  We assume that the
701  * machine will be powered off, and the HC's internal state will be reset.
702  * Don't bother to free memory.
703  *
704  * This will only ever be called with the main usb_hcd (the USB3 roothub).
705  */
706 void xhci_shutdown(struct usb_hcd *hcd)
707 {
708         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
709
710         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
711                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
712
713         spin_lock_irq(&xhci->lock);
714         xhci_halt(xhci);
715         spin_unlock_irq(&xhci->lock);
716
717         xhci_cleanup_msix(xhci);
718
719         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
720                     xhci_readl(xhci, &xhci->op_regs->status));
721 }
722
723 #ifdef CONFIG_PM
724 static void xhci_save_registers(struct xhci_hcd *xhci)
725 {
726         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
727         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
728         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
729         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
730         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
731         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
732         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
733         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
734         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
735 }
736
737 static void xhci_restore_registers(struct xhci_hcd *xhci)
738 {
739         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
740         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
741         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
742         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
743         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
744         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
745         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
746         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
747         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
748 }
749
750 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
751 {
752         u64     val_64;
753
754         /* step 2: initialize command ring buffer */
755         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
756         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
757                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
758                                       xhci->cmd_ring->dequeue) &
759                  (u64) ~CMD_RING_RSVD_BITS) |
760                 xhci->cmd_ring->cycle_state;
761         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
762                         (long unsigned long) val_64);
763         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
764 }
765
766 /*
767  * The whole command ring must be cleared to zero when we suspend the host.
768  *
769  * The host doesn't save the command ring pointer in the suspend well, so we
770  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
771  * aligned, because of the reserved bits in the command ring dequeue pointer
772  * register.  Therefore, we can't just set the dequeue pointer back in the
773  * middle of the ring (TRBs are 16-byte aligned).
774  */
775 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
776 {
777         struct xhci_ring *ring;
778         struct xhci_segment *seg;
779
780         ring = xhci->cmd_ring;
781         seg = ring->deq_seg;
782         do {
783                 memset(seg->trbs, 0,
784                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
785                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
786                         cpu_to_le32(~TRB_CYCLE);
787                 seg = seg->next;
788         } while (seg != ring->deq_seg);
789
790         /* Reset the software enqueue and dequeue pointers */
791         ring->deq_seg = ring->first_seg;
792         ring->dequeue = ring->first_seg->trbs;
793         ring->enq_seg = ring->deq_seg;
794         ring->enqueue = ring->dequeue;
795
796         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
797         /*
798          * Ring is now zeroed, so the HW should look for change of ownership
799          * when the cycle bit is set to 1.
800          */
801         ring->cycle_state = 1;
802
803         /*
804          * Reset the hardware dequeue pointer.
805          * Yes, this will need to be re-written after resume, but we're paranoid
806          * and want to make sure the hardware doesn't access bogus memory
807          * because, say, the BIOS or an SMI started the host without changing
808          * the command ring pointers.
809          */
810         xhci_set_cmd_ring_deq(xhci);
811 }
812
813 /*
814  * Stop HC (not bus-specific)
815  *
816  * This is called when the machine transition into S3/S4 mode.
817  *
818  */
819 int xhci_suspend(struct xhci_hcd *xhci)
820 {
821         int                     rc = 0;
822         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
823         u32                     command;
824
825         if (hcd->state != HC_STATE_SUSPENDED ||
826                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
827                 return -EINVAL;
828
829         /* Don't poll the roothubs on bus suspend. */
830         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
831         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
832         del_timer_sync(&hcd->rh_timer);
833
834         spin_lock_irq(&xhci->lock);
835         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
836         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
837         /* step 1: stop endpoint */
838         /* skipped assuming that port suspend has done */
839
840         /* step 2: clear Run/Stop bit */
841         command = xhci_readl(xhci, &xhci->op_regs->command);
842         command &= ~CMD_RUN;
843         xhci_writel(xhci, command, &xhci->op_regs->command);
844         if (xhci_handshake(xhci, &xhci->op_regs->status,
845                       STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
846                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
847                 spin_unlock_irq(&xhci->lock);
848                 return -ETIMEDOUT;
849         }
850         xhci_clear_command_ring(xhci);
851
852         /* step 3: save registers */
853         xhci_save_registers(xhci);
854
855         /* step 4: set CSS flag */
856         command = xhci_readl(xhci, &xhci->op_regs->command);
857         command |= CMD_CSS;
858         xhci_writel(xhci, command, &xhci->op_regs->command);
859         if (xhci_handshake(xhci, &xhci->op_regs->status,
860                                 STS_SAVE, 0, 10 * 1000)) {
861                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
862                 spin_unlock_irq(&xhci->lock);
863                 return -ETIMEDOUT;
864         }
865         spin_unlock_irq(&xhci->lock);
866
867         /*
868          * Deleting Compliance Mode Recovery Timer because the xHCI Host
869          * is about to be suspended.
870          */
871         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
872                         (!(xhci_all_ports_seen_u0(xhci)))) {
873                 del_timer_sync(&xhci->comp_mode_recovery_timer);
874                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
875                                 "%s: compliance mode recovery timer deleted",
876                                 __func__);
877         }
878
879         /* step 5: remove core well power */
880         /* synchronize irq when using MSI-X */
881         xhci_msix_sync_irqs(xhci);
882
883         return rc;
884 }
885
886 /*
887  * start xHC (not bus-specific)
888  *
889  * This is called when the machine transition from S3/S4 mode.
890  *
891  */
892 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
893 {
894         u32                     command, temp = 0;
895         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
896         struct usb_hcd          *secondary_hcd;
897         int                     retval = 0;
898         bool                    comp_timer_running = false;
899
900         /* Wait a bit if either of the roothubs need to settle from the
901          * transition into bus suspend.
902          */
903         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
904                         time_before(jiffies,
905                                 xhci->bus_state[1].next_statechange))
906                 msleep(100);
907
908         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
909         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
910
911         spin_lock_irq(&xhci->lock);
912         if (xhci->quirks & XHCI_RESET_ON_RESUME)
913                 hibernated = true;
914
915         if (!hibernated) {
916                 /* step 1: restore register */
917                 xhci_restore_registers(xhci);
918                 /* step 2: initialize command ring buffer */
919                 xhci_set_cmd_ring_deq(xhci);
920                 /* step 3: restore state and start state*/
921                 /* step 3: set CRS flag */
922                 command = xhci_readl(xhci, &xhci->op_regs->command);
923                 command |= CMD_CRS;
924                 xhci_writel(xhci, command, &xhci->op_regs->command);
925                 if (xhci_handshake(xhci, &xhci->op_regs->status,
926                               STS_RESTORE, 0, 10 * 1000)) {
927                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
928                         spin_unlock_irq(&xhci->lock);
929                         return -ETIMEDOUT;
930                 }
931                 temp = xhci_readl(xhci, &xhci->op_regs->status);
932         }
933
934         /* If restore operation fails, re-initialize the HC during resume */
935         if ((temp & STS_SRE) || hibernated) {
936
937                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
938                                 !(xhci_all_ports_seen_u0(xhci))) {
939                         del_timer_sync(&xhci->comp_mode_recovery_timer);
940                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
941                                 "Compliance Mode Recovery Timer deleted!");
942                 }
943
944                 /* Let the USB core know _both_ roothubs lost power. */
945                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
946                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
947
948                 xhci_dbg(xhci, "Stop HCD\n");
949                 xhci_halt(xhci);
950                 xhci_reset(xhci);
951                 spin_unlock_irq(&xhci->lock);
952                 xhci_cleanup_msix(xhci);
953
954                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
955                 temp = xhci_readl(xhci, &xhci->op_regs->status);
956                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
957                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
958                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
959                                 &xhci->ir_set->irq_pending);
960                 xhci_print_ir_set(xhci, 0);
961
962                 xhci_dbg(xhci, "cleaning up memory\n");
963                 xhci_mem_cleanup(xhci);
964                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
965                             xhci_readl(xhci, &xhci->op_regs->status));
966
967                 /* USB core calls the PCI reinit and start functions twice:
968                  * first with the primary HCD, and then with the secondary HCD.
969                  * If we don't do the same, the host will never be started.
970                  */
971                 if (!usb_hcd_is_primary_hcd(hcd))
972                         secondary_hcd = hcd;
973                 else
974                         secondary_hcd = xhci->shared_hcd;
975
976                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
977                 retval = xhci_init(hcd->primary_hcd);
978                 if (retval)
979                         return retval;
980                 comp_timer_running = true;
981
982                 xhci_dbg(xhci, "Start the primary HCD\n");
983                 retval = xhci_run(hcd->primary_hcd);
984                 if (!retval) {
985                         xhci_dbg(xhci, "Start the secondary HCD\n");
986                         retval = xhci_run(secondary_hcd);
987                 }
988                 hcd->state = HC_STATE_SUSPENDED;
989                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
990                 goto done;
991         }
992
993         /* step 4: set Run/Stop bit */
994         command = xhci_readl(xhci, &xhci->op_regs->command);
995         command |= CMD_RUN;
996         xhci_writel(xhci, command, &xhci->op_regs->command);
997         xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
998                   0, 250 * 1000);
999
1000         /* step 5: walk topology and initialize portsc,
1001          * portpmsc and portli
1002          */
1003         /* this is done in bus_resume */
1004
1005         /* step 6: restart each of the previously
1006          * Running endpoints by ringing their doorbells
1007          */
1008
1009         spin_unlock_irq(&xhci->lock);
1010
1011  done:
1012         if (retval == 0) {
1013                 usb_hcd_resume_root_hub(hcd);
1014                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1015         }
1016
1017         /*
1018          * If system is subject to the Quirk, Compliance Mode Timer needs to
1019          * be re-initialized Always after a system resume. Ports are subject
1020          * to suffer the Compliance Mode issue again. It doesn't matter if
1021          * ports have entered previously to U0 before system's suspension.
1022          */
1023         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1024                 compliance_mode_recovery_timer_init(xhci);
1025
1026         /* Re-enable port polling. */
1027         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1028         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1029         usb_hcd_poll_rh_status(hcd);
1030
1031         return retval;
1032 }
1033 #endif  /* CONFIG_PM */
1034
1035 /*-------------------------------------------------------------------------*/
1036
1037 /**
1038  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1039  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1040  * value to right shift 1 for the bitmask.
1041  *
1042  * Index  = (epnum * 2) + direction - 1,
1043  * where direction = 0 for OUT, 1 for IN.
1044  * For control endpoints, the IN index is used (OUT index is unused), so
1045  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1046  */
1047 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1048 {
1049         unsigned int index;
1050         if (usb_endpoint_xfer_control(desc))
1051                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1052         else
1053                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1054                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1055         return index;
1056 }
1057
1058 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1059  * address from the XHCI endpoint index.
1060  */
1061 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1062 {
1063         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1064         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1065         return direction | number;
1066 }
1067
1068 /* Find the flag for this endpoint (for use in the control context).  Use the
1069  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1070  * bit 1, etc.
1071  */
1072 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1073 {
1074         return 1 << (xhci_get_endpoint_index(desc) + 1);
1075 }
1076
1077 /* Find the flag for this endpoint (for use in the control context).  Use the
1078  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1079  * bit 1, etc.
1080  */
1081 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1082 {
1083         return 1 << (ep_index + 1);
1084 }
1085
1086 /* Compute the last valid endpoint context index.  Basically, this is the
1087  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1088  * we find the most significant bit set in the added contexts flags.
1089  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1090  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1091  */
1092 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1093 {
1094         return fls(added_ctxs) - 1;
1095 }
1096
1097 /* Returns 1 if the arguments are OK;
1098  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1099  */
1100 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1101                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1102                 const char *func) {
1103         struct xhci_hcd *xhci;
1104         struct xhci_virt_device *virt_dev;
1105
1106         if (!hcd || (check_ep && !ep) || !udev) {
1107                 pr_debug("xHCI %s called with invalid args\n", func);
1108                 return -EINVAL;
1109         }
1110         if (!udev->parent) {
1111                 pr_debug("xHCI %s called for root hub\n", func);
1112                 return 0;
1113         }
1114
1115         xhci = hcd_to_xhci(hcd);
1116         if (check_virt_dev) {
1117                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1118                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1119                                         func);
1120                         return -EINVAL;
1121                 }
1122
1123                 virt_dev = xhci->devs[udev->slot_id];
1124                 if (virt_dev->udev != udev) {
1125                         xhci_dbg(xhci, "xHCI %s called with udev and "
1126                                           "virt_dev does not match\n", func);
1127                         return -EINVAL;
1128                 }
1129         }
1130
1131         if (xhci->xhc_state & XHCI_STATE_HALTED)
1132                 return -ENODEV;
1133
1134         return 1;
1135 }
1136
1137 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1138                 struct usb_device *udev, struct xhci_command *command,
1139                 bool ctx_change, bool must_succeed);
1140
1141 /*
1142  * Full speed devices may have a max packet size greater than 8 bytes, but the
1143  * USB core doesn't know that until it reads the first 8 bytes of the
1144  * descriptor.  If the usb_device's max packet size changes after that point,
1145  * we need to issue an evaluate context command and wait on it.
1146  */
1147 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1148                 unsigned int ep_index, struct urb *urb)
1149 {
1150         struct xhci_container_ctx *in_ctx;
1151         struct xhci_container_ctx *out_ctx;
1152         struct xhci_input_control_ctx *ctrl_ctx;
1153         struct xhci_ep_ctx *ep_ctx;
1154         int max_packet_size;
1155         int hw_max_packet_size;
1156         int ret = 0;
1157
1158         out_ctx = xhci->devs[slot_id]->out_ctx;
1159         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1160         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1161         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1162         if (hw_max_packet_size != max_packet_size) {
1163                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1164                                 "Max Packet Size for ep 0 changed.");
1165                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1166                                 "Max packet size in usb_device = %d",
1167                                 max_packet_size);
1168                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1169                                 "Max packet size in xHCI HW = %d",
1170                                 hw_max_packet_size);
1171                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1172                                 "Issuing evaluate context command.");
1173
1174                 /* Set up the input context flags for the command */
1175                 /* FIXME: This won't work if a non-default control endpoint
1176                  * changes max packet sizes.
1177                  */
1178                 in_ctx = xhci->devs[slot_id]->in_ctx;
1179                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1180                 if (!ctrl_ctx) {
1181                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1182                                         __func__);
1183                         return -ENOMEM;
1184                 }
1185                 /* Set up the modified control endpoint 0 */
1186                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1187                                 xhci->devs[slot_id]->out_ctx, ep_index);
1188
1189                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1190                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1191                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1192
1193                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1194                 ctrl_ctx->drop_flags = 0;
1195
1196                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1197                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1198                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1199                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1200
1201                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1202                                 true, false);
1203
1204                 /* Clean up the input context for later use by bandwidth
1205                  * functions.
1206                  */
1207                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1208         }
1209         return ret;
1210 }
1211
1212 /*
1213  * non-error returns are a promise to giveback() the urb later
1214  * we drop ownership so next owner (or urb unlink) can get it
1215  */
1216 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1217 {
1218         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1219         struct xhci_td *buffer;
1220         unsigned long flags;
1221         int ret = 0;
1222         unsigned int slot_id, ep_index;
1223         struct urb_priv *urb_priv;
1224         int size, i;
1225
1226         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1227                                         true, true, __func__) <= 0)
1228                 return -EINVAL;
1229
1230         slot_id = urb->dev->slot_id;
1231         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1232
1233         if (!HCD_HW_ACCESSIBLE(hcd)) {
1234                 if (!in_interrupt())
1235                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1236                 ret = -ESHUTDOWN;
1237                 goto exit;
1238         }
1239
1240         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1241                 size = urb->number_of_packets;
1242         else
1243                 size = 1;
1244
1245         urb_priv = kzalloc(sizeof(struct urb_priv) +
1246                                   size * sizeof(struct xhci_td *), mem_flags);
1247         if (!urb_priv)
1248                 return -ENOMEM;
1249
1250         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1251         if (!buffer) {
1252                 kfree(urb_priv);
1253                 return -ENOMEM;
1254         }
1255
1256         for (i = 0; i < size; i++) {
1257                 urb_priv->td[i] = buffer;
1258                 buffer++;
1259         }
1260
1261         urb_priv->length = size;
1262         urb_priv->td_cnt = 0;
1263         urb->hcpriv = urb_priv;
1264
1265         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1266                 /* Check to see if the max packet size for the default control
1267                  * endpoint changed during FS device enumeration
1268                  */
1269                 if (urb->dev->speed == USB_SPEED_FULL) {
1270                         ret = xhci_check_maxpacket(xhci, slot_id,
1271                                         ep_index, urb);
1272                         if (ret < 0) {
1273                                 xhci_urb_free_priv(xhci, urb_priv);
1274                                 urb->hcpriv = NULL;
1275                                 return ret;
1276                         }
1277                 }
1278
1279                 /* We have a spinlock and interrupts disabled, so we must pass
1280                  * atomic context to this function, which may allocate memory.
1281                  */
1282                 spin_lock_irqsave(&xhci->lock, flags);
1283                 if (xhci->xhc_state & XHCI_STATE_DYING)
1284                         goto dying;
1285                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1286                                 slot_id, ep_index);
1287                 if (ret)
1288                         goto free_priv;
1289                 spin_unlock_irqrestore(&xhci->lock, flags);
1290         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1291                 spin_lock_irqsave(&xhci->lock, flags);
1292                 if (xhci->xhc_state & XHCI_STATE_DYING)
1293                         goto dying;
1294                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1295                                 EP_GETTING_STREAMS) {
1296                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1297                                         "is transitioning to using streams.\n");
1298                         ret = -EINVAL;
1299                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1300                                 EP_GETTING_NO_STREAMS) {
1301                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1302                                         "is transitioning to "
1303                                         "not having streams.\n");
1304                         ret = -EINVAL;
1305                 } else {
1306                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1307                                         slot_id, ep_index);
1308                 }
1309                 if (ret)
1310                         goto free_priv;
1311                 spin_unlock_irqrestore(&xhci->lock, flags);
1312         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1313                 spin_lock_irqsave(&xhci->lock, flags);
1314                 if (xhci->xhc_state & XHCI_STATE_DYING)
1315                         goto dying;
1316                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1317                                 slot_id, ep_index);
1318                 if (ret)
1319                         goto free_priv;
1320                 spin_unlock_irqrestore(&xhci->lock, flags);
1321         } else {
1322                 spin_lock_irqsave(&xhci->lock, flags);
1323                 if (xhci->xhc_state & XHCI_STATE_DYING)
1324                         goto dying;
1325                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1326                                 slot_id, ep_index);
1327                 if (ret)
1328                         goto free_priv;
1329                 spin_unlock_irqrestore(&xhci->lock, flags);
1330         }
1331 exit:
1332         return ret;
1333 dying:
1334         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1335                         "non-responsive xHCI host.\n",
1336                         urb->ep->desc.bEndpointAddress, urb);
1337         ret = -ESHUTDOWN;
1338 free_priv:
1339         xhci_urb_free_priv(xhci, urb_priv);
1340         urb->hcpriv = NULL;
1341         spin_unlock_irqrestore(&xhci->lock, flags);
1342         return ret;
1343 }
1344
1345 /* Get the right ring for the given URB.
1346  * If the endpoint supports streams, boundary check the URB's stream ID.
1347  * If the endpoint doesn't support streams, return the singular endpoint ring.
1348  */
1349 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1350                 struct urb *urb)
1351 {
1352         unsigned int slot_id;
1353         unsigned int ep_index;
1354         unsigned int stream_id;
1355         struct xhci_virt_ep *ep;
1356
1357         slot_id = urb->dev->slot_id;
1358         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1359         stream_id = urb->stream_id;
1360         ep = &xhci->devs[slot_id]->eps[ep_index];
1361         /* Common case: no streams */
1362         if (!(ep->ep_state & EP_HAS_STREAMS))
1363                 return ep->ring;
1364
1365         if (stream_id == 0) {
1366                 xhci_warn(xhci,
1367                                 "WARN: Slot ID %u, ep index %u has streams, "
1368                                 "but URB has no stream ID.\n",
1369                                 slot_id, ep_index);
1370                 return NULL;
1371         }
1372
1373         if (stream_id < ep->stream_info->num_streams)
1374                 return ep->stream_info->stream_rings[stream_id];
1375
1376         xhci_warn(xhci,
1377                         "WARN: Slot ID %u, ep index %u has "
1378                         "stream IDs 1 to %u allocated, "
1379                         "but stream ID %u is requested.\n",
1380                         slot_id, ep_index,
1381                         ep->stream_info->num_streams - 1,
1382                         stream_id);
1383         return NULL;
1384 }
1385
1386 /*
1387  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1388  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1389  * should pick up where it left off in the TD, unless a Set Transfer Ring
1390  * Dequeue Pointer is issued.
1391  *
1392  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1393  * the ring.  Since the ring is a contiguous structure, they can't be physically
1394  * removed.  Instead, there are two options:
1395  *
1396  *  1) If the HC is in the middle of processing the URB to be canceled, we
1397  *     simply move the ring's dequeue pointer past those TRBs using the Set
1398  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1399  *     when drivers timeout on the last submitted URB and attempt to cancel.
1400  *
1401  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1402  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1403  *     HC will need to invalidate the any TRBs it has cached after the stop
1404  *     endpoint command, as noted in the xHCI 0.95 errata.
1405  *
1406  *  3) The TD may have completed by the time the Stop Endpoint Command
1407  *     completes, so software needs to handle that case too.
1408  *
1409  * This function should protect against the TD enqueueing code ringing the
1410  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1411  * It also needs to account for multiple cancellations on happening at the same
1412  * time for the same endpoint.
1413  *
1414  * Note that this function can be called in any context, or so says
1415  * usb_hcd_unlink_urb()
1416  */
1417 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1418 {
1419         unsigned long flags;
1420         int ret, i;
1421         u32 temp;
1422         struct xhci_hcd *xhci;
1423         struct urb_priv *urb_priv;
1424         struct xhci_td *td;
1425         unsigned int ep_index;
1426         struct xhci_ring *ep_ring;
1427         struct xhci_virt_ep *ep;
1428
1429         xhci = hcd_to_xhci(hcd);
1430         spin_lock_irqsave(&xhci->lock, flags);
1431         /* Make sure the URB hasn't completed or been unlinked already */
1432         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1433         if (ret || !urb->hcpriv)
1434                 goto done;
1435         temp = xhci_readl(xhci, &xhci->op_regs->status);
1436         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1437                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1438                 urb_priv = urb->hcpriv;
1439                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1440                         td = urb_priv->td[i];
1441                         if (!list_empty(&td->td_list))
1442                                 list_del_init(&td->td_list);
1443                         if (!list_empty(&td->cancelled_td_list))
1444                                 list_del_init(&td->cancelled_td_list);
1445                 }
1446
1447                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1448                 spin_unlock_irqrestore(&xhci->lock, flags);
1449                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1450                 xhci_urb_free_priv(xhci, urb_priv);
1451                 return ret;
1452         }
1453         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1454                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1455                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1456                                 "non-responsive xHCI host.\n",
1457                                 urb->ep->desc.bEndpointAddress, urb);
1458                 /* Let the stop endpoint command watchdog timer (which set this
1459                  * state) finish cleaning up the endpoint TD lists.  We must
1460                  * have caught it in the middle of dropping a lock and giving
1461                  * back an URB.
1462                  */
1463                 goto done;
1464         }
1465
1466         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1467         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1468         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1469         if (!ep_ring) {
1470                 ret = -EINVAL;
1471                 goto done;
1472         }
1473
1474         urb_priv = urb->hcpriv;
1475         i = urb_priv->td_cnt;
1476         if (i < urb_priv->length)
1477                 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1478                                 "starting at offset 0x%llx\n",
1479                                 urb, urb->dev->devpath,
1480                                 urb->ep->desc.bEndpointAddress,
1481                                 (unsigned long long) xhci_trb_virt_to_dma(
1482                                         urb_priv->td[i]->start_seg,
1483                                         urb_priv->td[i]->first_trb));
1484
1485         for (; i < urb_priv->length; i++) {
1486                 td = urb_priv->td[i];
1487                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1488         }
1489
1490         /* Queue a stop endpoint command, but only if this is
1491          * the first cancellation to be handled.
1492          */
1493         if (!(ep->ep_state & EP_HALT_PENDING)) {
1494                 ep->ep_state |= EP_HALT_PENDING;
1495                 ep->stop_cmds_pending++;
1496                 ep->stop_cmd_timer.expires = jiffies +
1497                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1498                 add_timer(&ep->stop_cmd_timer);
1499                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1500                 xhci_ring_cmd_db(xhci);
1501         }
1502 done:
1503         spin_unlock_irqrestore(&xhci->lock, flags);
1504         return ret;
1505 }
1506
1507 /* Drop an endpoint from a new bandwidth configuration for this device.
1508  * Only one call to this function is allowed per endpoint before
1509  * check_bandwidth() or reset_bandwidth() must be called.
1510  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1511  * add the endpoint to the schedule with possibly new parameters denoted by a
1512  * different endpoint descriptor in usb_host_endpoint.
1513  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1514  * not allowed.
1515  *
1516  * The USB core will not allow URBs to be queued to an endpoint that is being
1517  * disabled, so there's no need for mutual exclusion to protect
1518  * the xhci->devs[slot_id] structure.
1519  */
1520 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1521                 struct usb_host_endpoint *ep)
1522 {
1523         struct xhci_hcd *xhci;
1524         struct xhci_container_ctx *in_ctx, *out_ctx;
1525         struct xhci_input_control_ctx *ctrl_ctx;
1526         struct xhci_slot_ctx *slot_ctx;
1527         unsigned int last_ctx;
1528         unsigned int ep_index;
1529         struct xhci_ep_ctx *ep_ctx;
1530         u32 drop_flag;
1531         u32 new_add_flags, new_drop_flags, new_slot_info;
1532         int ret;
1533
1534         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1535         if (ret <= 0)
1536                 return ret;
1537         xhci = hcd_to_xhci(hcd);
1538         if (xhci->xhc_state & XHCI_STATE_DYING)
1539                 return -ENODEV;
1540
1541         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1542         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1543         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1544                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1545                                 __func__, drop_flag);
1546                 return 0;
1547         }
1548
1549         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1550         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1551         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1552         if (!ctrl_ctx) {
1553                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1554                                 __func__);
1555                 return 0;
1556         }
1557
1558         ep_index = xhci_get_endpoint_index(&ep->desc);
1559         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1560         /* If the HC already knows the endpoint is disabled,
1561          * or the HCD has noted it is disabled, ignore this request
1562          */
1563         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1564              cpu_to_le32(EP_STATE_DISABLED)) ||
1565             le32_to_cpu(ctrl_ctx->drop_flags) &
1566             xhci_get_endpoint_flag(&ep->desc)) {
1567                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1568                                 __func__, ep);
1569                 return 0;
1570         }
1571
1572         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1573         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1574
1575         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1576         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1577
1578         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1579         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1580         /* Update the last valid endpoint context, if we deleted the last one */
1581         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1582             LAST_CTX(last_ctx)) {
1583                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1584                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1585         }
1586         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1587
1588         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1589
1590         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1591                         (unsigned int) ep->desc.bEndpointAddress,
1592                         udev->slot_id,
1593                         (unsigned int) new_drop_flags,
1594                         (unsigned int) new_add_flags,
1595                         (unsigned int) new_slot_info);
1596         return 0;
1597 }
1598
1599 /* Add an endpoint to a new possible bandwidth configuration for this device.
1600  * Only one call to this function is allowed per endpoint before
1601  * check_bandwidth() or reset_bandwidth() must be called.
1602  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1603  * add the endpoint to the schedule with possibly new parameters denoted by a
1604  * different endpoint descriptor in usb_host_endpoint.
1605  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1606  * not allowed.
1607  *
1608  * The USB core will not allow URBs to be queued to an endpoint until the
1609  * configuration or alt setting is installed in the device, so there's no need
1610  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1611  */
1612 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1613                 struct usb_host_endpoint *ep)
1614 {
1615         struct xhci_hcd *xhci;
1616         struct xhci_container_ctx *in_ctx, *out_ctx;
1617         unsigned int ep_index;
1618         struct xhci_slot_ctx *slot_ctx;
1619         struct xhci_input_control_ctx *ctrl_ctx;
1620         u32 added_ctxs;
1621         unsigned int last_ctx;
1622         u32 new_add_flags, new_drop_flags, new_slot_info;
1623         struct xhci_virt_device *virt_dev;
1624         int ret = 0;
1625
1626         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1627         if (ret <= 0) {
1628                 /* So we won't queue a reset ep command for a root hub */
1629                 ep->hcpriv = NULL;
1630                 return ret;
1631         }
1632         xhci = hcd_to_xhci(hcd);
1633         if (xhci->xhc_state & XHCI_STATE_DYING)
1634                 return -ENODEV;
1635
1636         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1637         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1638         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1639                 /* FIXME when we have to issue an evaluate endpoint command to
1640                  * deal with ep0 max packet size changing once we get the
1641                  * descriptors
1642                  */
1643                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1644                                 __func__, added_ctxs);
1645                 return 0;
1646         }
1647
1648         virt_dev = xhci->devs[udev->slot_id];
1649         in_ctx = virt_dev->in_ctx;
1650         out_ctx = virt_dev->out_ctx;
1651         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1652         if (!ctrl_ctx) {
1653                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1654                                 __func__);
1655                 return 0;
1656         }
1657
1658         ep_index = xhci_get_endpoint_index(&ep->desc);
1659         /* If this endpoint is already in use, and the upper layers are trying
1660          * to add it again without dropping it, reject the addition.
1661          */
1662         if (virt_dev->eps[ep_index].ring &&
1663                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1664                                 xhci_get_endpoint_flag(&ep->desc))) {
1665                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1666                                 "without dropping it.\n",
1667                                 (unsigned int) ep->desc.bEndpointAddress);
1668                 return -EINVAL;
1669         }
1670
1671         /* If the HCD has already noted the endpoint is enabled,
1672          * ignore this request.
1673          */
1674         if (le32_to_cpu(ctrl_ctx->add_flags) &
1675             xhci_get_endpoint_flag(&ep->desc)) {
1676                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1677                                 __func__, ep);
1678                 return 0;
1679         }
1680
1681         /*
1682          * Configuration and alternate setting changes must be done in
1683          * process context, not interrupt context (or so documenation
1684          * for usb_set_interface() and usb_set_configuration() claim).
1685          */
1686         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1687                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1688                                 __func__, ep->desc.bEndpointAddress);
1689                 return -ENOMEM;
1690         }
1691
1692         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1693         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1694
1695         /* If xhci_endpoint_disable() was called for this endpoint, but the
1696          * xHC hasn't been notified yet through the check_bandwidth() call,
1697          * this re-adds a new state for the endpoint from the new endpoint
1698          * descriptors.  We must drop and re-add this endpoint, so we leave the
1699          * drop flags alone.
1700          */
1701         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1702
1703         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1704         /* Update the last valid endpoint context, if we just added one past */
1705         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1706             LAST_CTX(last_ctx)) {
1707                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1708                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1709         }
1710         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1711
1712         /* Store the usb_device pointer for later use */
1713         ep->hcpriv = udev;
1714
1715         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1716                         (unsigned int) ep->desc.bEndpointAddress,
1717                         udev->slot_id,
1718                         (unsigned int) new_drop_flags,
1719                         (unsigned int) new_add_flags,
1720                         (unsigned int) new_slot_info);
1721         return 0;
1722 }
1723
1724 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1725 {
1726         struct xhci_input_control_ctx *ctrl_ctx;
1727         struct xhci_ep_ctx *ep_ctx;
1728         struct xhci_slot_ctx *slot_ctx;
1729         int i;
1730
1731         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1732         if (!ctrl_ctx) {
1733                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1734                                 __func__);
1735                 return;
1736         }
1737
1738         /* When a device's add flag and drop flag are zero, any subsequent
1739          * configure endpoint command will leave that endpoint's state
1740          * untouched.  Make sure we don't leave any old state in the input
1741          * endpoint contexts.
1742          */
1743         ctrl_ctx->drop_flags = 0;
1744         ctrl_ctx->add_flags = 0;
1745         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1746         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1747         /* Endpoint 0 is always valid */
1748         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1749         for (i = 1; i < 31; ++i) {
1750                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1751                 ep_ctx->ep_info = 0;
1752                 ep_ctx->ep_info2 = 0;
1753                 ep_ctx->deq = 0;
1754                 ep_ctx->tx_info = 0;
1755         }
1756 }
1757
1758 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1759                 struct usb_device *udev, u32 *cmd_status)
1760 {
1761         int ret;
1762
1763         switch (*cmd_status) {
1764         case COMP_ENOMEM:
1765                 dev_warn(&udev->dev, "Not enough host controller resources "
1766                                 "for new device state.\n");
1767                 ret = -ENOMEM;
1768                 /* FIXME: can we allocate more resources for the HC? */
1769                 break;
1770         case COMP_BW_ERR:
1771         case COMP_2ND_BW_ERR:
1772                 dev_warn(&udev->dev, "Not enough bandwidth "
1773                                 "for new device state.\n");
1774                 ret = -ENOSPC;
1775                 /* FIXME: can we go back to the old state? */
1776                 break;
1777         case COMP_TRB_ERR:
1778                 /* the HCD set up something wrong */
1779                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1780                                 "add flag = 1, "
1781                                 "and endpoint is not disabled.\n");
1782                 ret = -EINVAL;
1783                 break;
1784         case COMP_DEV_ERR:
1785                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1786                                 "configure command.\n");
1787                 ret = -ENODEV;
1788                 break;
1789         case COMP_SUCCESS:
1790                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1791                                 "Successful Endpoint Configure command");
1792                 ret = 0;
1793                 break;
1794         default:
1795                 xhci_err(xhci, "ERROR: unexpected command completion "
1796                                 "code 0x%x.\n", *cmd_status);
1797                 ret = -EINVAL;
1798                 break;
1799         }
1800         return ret;
1801 }
1802
1803 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1804                 struct usb_device *udev, u32 *cmd_status)
1805 {
1806         int ret;
1807         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1808
1809         switch (*cmd_status) {
1810         case COMP_EINVAL:
1811                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1812                                 "context command.\n");
1813                 ret = -EINVAL;
1814                 break;
1815         case COMP_EBADSLT:
1816                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1817                                 "evaluate context command.\n");
1818                 ret = -EINVAL;
1819                 break;
1820         case COMP_CTX_STATE:
1821                 dev_warn(&udev->dev, "WARN: invalid context state for "
1822                                 "evaluate context command.\n");
1823                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1824                 ret = -EINVAL;
1825                 break;
1826         case COMP_DEV_ERR:
1827                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1828                                 "context command.\n");
1829                 ret = -ENODEV;
1830                 break;
1831         case COMP_MEL_ERR:
1832                 /* Max Exit Latency too large error */
1833                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1834                 ret = -EINVAL;
1835                 break;
1836         case COMP_SUCCESS:
1837                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1838                                 "Successful evaluate context command");
1839                 ret = 0;
1840                 break;
1841         default:
1842                 xhci_err(xhci, "ERROR: unexpected command completion "
1843                                 "code 0x%x.\n", *cmd_status);
1844                 ret = -EINVAL;
1845                 break;
1846         }
1847         return ret;
1848 }
1849
1850 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1851                 struct xhci_input_control_ctx *ctrl_ctx)
1852 {
1853         u32 valid_add_flags;
1854         u32 valid_drop_flags;
1855
1856         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1857          * (bit 1).  The default control endpoint is added during the Address
1858          * Device command and is never removed until the slot is disabled.
1859          */
1860         valid_add_flags = ctrl_ctx->add_flags >> 2;
1861         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1862
1863         /* Use hweight32 to count the number of ones in the add flags, or
1864          * number of endpoints added.  Don't count endpoints that are changed
1865          * (both added and dropped).
1866          */
1867         return hweight32(valid_add_flags) -
1868                 hweight32(valid_add_flags & valid_drop_flags);
1869 }
1870
1871 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1872                 struct xhci_input_control_ctx *ctrl_ctx)
1873 {
1874         u32 valid_add_flags;
1875         u32 valid_drop_flags;
1876
1877         valid_add_flags = ctrl_ctx->add_flags >> 2;
1878         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1879
1880         return hweight32(valid_drop_flags) -
1881                 hweight32(valid_add_flags & valid_drop_flags);
1882 }
1883
1884 /*
1885  * We need to reserve the new number of endpoints before the configure endpoint
1886  * command completes.  We can't subtract the dropped endpoints from the number
1887  * of active endpoints until the command completes because we can oversubscribe
1888  * the host in this case:
1889  *
1890  *  - the first configure endpoint command drops more endpoints than it adds
1891  *  - a second configure endpoint command that adds more endpoints is queued
1892  *  - the first configure endpoint command fails, so the config is unchanged
1893  *  - the second command may succeed, even though there isn't enough resources
1894  *
1895  * Must be called with xhci->lock held.
1896  */
1897 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1898                 struct xhci_input_control_ctx *ctrl_ctx)
1899 {
1900         u32 added_eps;
1901
1902         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1903         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1904                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1905                                 "Not enough ep ctxs: "
1906                                 "%u active, need to add %u, limit is %u.",
1907                                 xhci->num_active_eps, added_eps,
1908                                 xhci->limit_active_eps);
1909                 return -ENOMEM;
1910         }
1911         xhci->num_active_eps += added_eps;
1912         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1913                         "Adding %u ep ctxs, %u now active.", added_eps,
1914                         xhci->num_active_eps);
1915         return 0;
1916 }
1917
1918 /*
1919  * The configure endpoint was failed by the xHC for some other reason, so we
1920  * need to revert the resources that failed configuration would have used.
1921  *
1922  * Must be called with xhci->lock held.
1923  */
1924 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1925                 struct xhci_input_control_ctx *ctrl_ctx)
1926 {
1927         u32 num_failed_eps;
1928
1929         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1930         xhci->num_active_eps -= num_failed_eps;
1931         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1932                         "Removing %u failed ep ctxs, %u now active.",
1933                         num_failed_eps,
1934                         xhci->num_active_eps);
1935 }
1936
1937 /*
1938  * Now that the command has completed, clean up the active endpoint count by
1939  * subtracting out the endpoints that were dropped (but not changed).
1940  *
1941  * Must be called with xhci->lock held.
1942  */
1943 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1944                 struct xhci_input_control_ctx *ctrl_ctx)
1945 {
1946         u32 num_dropped_eps;
1947
1948         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1949         xhci->num_active_eps -= num_dropped_eps;
1950         if (num_dropped_eps)
1951                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1952                                 "Removing %u dropped ep ctxs, %u now active.",
1953                                 num_dropped_eps,
1954                                 xhci->num_active_eps);
1955 }
1956
1957 static unsigned int xhci_get_block_size(struct usb_device *udev)
1958 {
1959         switch (udev->speed) {
1960         case USB_SPEED_LOW:
1961         case USB_SPEED_FULL:
1962                 return FS_BLOCK;
1963         case USB_SPEED_HIGH:
1964                 return HS_BLOCK;
1965         case USB_SPEED_SUPER:
1966                 return SS_BLOCK;
1967         case USB_SPEED_UNKNOWN:
1968         case USB_SPEED_WIRELESS:
1969         default:
1970                 /* Should never happen */
1971                 return 1;
1972         }
1973 }
1974
1975 static unsigned int
1976 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1977 {
1978         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1979                 return LS_OVERHEAD;
1980         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1981                 return FS_OVERHEAD;
1982         return HS_OVERHEAD;
1983 }
1984
1985 /* If we are changing a LS/FS device under a HS hub,
1986  * make sure (if we are activating a new TT) that the HS bus has enough
1987  * bandwidth for this new TT.
1988  */
1989 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1990                 struct xhci_virt_device *virt_dev,
1991                 int old_active_eps)
1992 {
1993         struct xhci_interval_bw_table *bw_table;
1994         struct xhci_tt_bw_info *tt_info;
1995
1996         /* Find the bandwidth table for the root port this TT is attached to. */
1997         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1998         tt_info = virt_dev->tt_info;
1999         /* If this TT already had active endpoints, the bandwidth for this TT
2000          * has already been added.  Removing all periodic endpoints (and thus
2001          * making the TT enactive) will only decrease the bandwidth used.
2002          */
2003         if (old_active_eps)
2004                 return 0;
2005         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2006                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2007                         return -ENOMEM;
2008                 return 0;
2009         }
2010         /* Not sure why we would have no new active endpoints...
2011          *
2012          * Maybe because of an Evaluate Context change for a hub update or a
2013          * control endpoint 0 max packet size change?
2014          * FIXME: skip the bandwidth calculation in that case.
2015          */
2016         return 0;
2017 }
2018
2019 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2020                 struct xhci_virt_device *virt_dev)
2021 {
2022         unsigned int bw_reserved;
2023
2024         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2025         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2026                 return -ENOMEM;
2027
2028         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2029         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2030                 return -ENOMEM;
2031
2032         return 0;
2033 }
2034
2035 /*
2036  * This algorithm is a very conservative estimate of the worst-case scheduling
2037  * scenario for any one interval.  The hardware dynamically schedules the
2038  * packets, so we can't tell which microframe could be the limiting factor in
2039  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2040  *
2041  * Obviously, we can't solve an NP complete problem to find the minimum worst
2042  * case scenario.  Instead, we come up with an estimate that is no less than
2043  * the worst case bandwidth used for any one microframe, but may be an
2044  * over-estimate.
2045  *
2046  * We walk the requirements for each endpoint by interval, starting with the
2047  * smallest interval, and place packets in the schedule where there is only one
2048  * possible way to schedule packets for that interval.  In order to simplify
2049  * this algorithm, we record the largest max packet size for each interval, and
2050  * assume all packets will be that size.
2051  *
2052  * For interval 0, we obviously must schedule all packets for each interval.
2053  * The bandwidth for interval 0 is just the amount of data to be transmitted
2054  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2055  * the number of packets).
2056  *
2057  * For interval 1, we have two possible microframes to schedule those packets
2058  * in.  For this algorithm, if we can schedule the same number of packets for
2059  * each possible scheduling opportunity (each microframe), we will do so.  The
2060  * remaining number of packets will be saved to be transmitted in the gaps in
2061  * the next interval's scheduling sequence.
2062  *
2063  * As we move those remaining packets to be scheduled with interval 2 packets,
2064  * we have to double the number of remaining packets to transmit.  This is
2065  * because the intervals are actually powers of 2, and we would be transmitting
2066  * the previous interval's packets twice in this interval.  We also have to be
2067  * sure that when we look at the largest max packet size for this interval, we
2068  * also look at the largest max packet size for the remaining packets and take
2069  * the greater of the two.
2070  *
2071  * The algorithm continues to evenly distribute packets in each scheduling
2072  * opportunity, and push the remaining packets out, until we get to the last
2073  * interval.  Then those packets and their associated overhead are just added
2074  * to the bandwidth used.
2075  */
2076 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2077                 struct xhci_virt_device *virt_dev,
2078                 int old_active_eps)
2079 {
2080         unsigned int bw_reserved;
2081         unsigned int max_bandwidth;
2082         unsigned int bw_used;
2083         unsigned int block_size;
2084         struct xhci_interval_bw_table *bw_table;
2085         unsigned int packet_size = 0;
2086         unsigned int overhead = 0;
2087         unsigned int packets_transmitted = 0;
2088         unsigned int packets_remaining = 0;
2089         unsigned int i;
2090
2091         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2092                 return xhci_check_ss_bw(xhci, virt_dev);
2093
2094         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2095                 max_bandwidth = HS_BW_LIMIT;
2096                 /* Convert percent of bus BW reserved to blocks reserved */
2097                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2098         } else {
2099                 max_bandwidth = FS_BW_LIMIT;
2100                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2101         }
2102
2103         bw_table = virt_dev->bw_table;
2104         /* We need to translate the max packet size and max ESIT payloads into
2105          * the units the hardware uses.
2106          */
2107         block_size = xhci_get_block_size(virt_dev->udev);
2108
2109         /* If we are manipulating a LS/FS device under a HS hub, double check
2110          * that the HS bus has enough bandwidth if we are activing a new TT.
2111          */
2112         if (virt_dev->tt_info) {
2113                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2114                                 "Recalculating BW for rootport %u",
2115                                 virt_dev->real_port);
2116                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2117                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2118                                         "newly activated TT.\n");
2119                         return -ENOMEM;
2120                 }
2121                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2122                                 "Recalculating BW for TT slot %u port %u",
2123                                 virt_dev->tt_info->slot_id,
2124                                 virt_dev->tt_info->ttport);
2125         } else {
2126                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2127                                 "Recalculating BW for rootport %u",
2128                                 virt_dev->real_port);
2129         }
2130
2131         /* Add in how much bandwidth will be used for interval zero, or the
2132          * rounded max ESIT payload + number of packets * largest overhead.
2133          */
2134         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2135                 bw_table->interval_bw[0].num_packets *
2136                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2137
2138         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2139                 unsigned int bw_added;
2140                 unsigned int largest_mps;
2141                 unsigned int interval_overhead;
2142
2143                 /*
2144                  * How many packets could we transmit in this interval?
2145                  * If packets didn't fit in the previous interval, we will need
2146                  * to transmit that many packets twice within this interval.
2147                  */
2148                 packets_remaining = 2 * packets_remaining +
2149                         bw_table->interval_bw[i].num_packets;
2150
2151                 /* Find the largest max packet size of this or the previous
2152                  * interval.
2153                  */
2154                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2155                         largest_mps = 0;
2156                 else {
2157                         struct xhci_virt_ep *virt_ep;
2158                         struct list_head *ep_entry;
2159
2160                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2161                         virt_ep = list_entry(ep_entry,
2162                                         struct xhci_virt_ep, bw_endpoint_list);
2163                         /* Convert to blocks, rounding up */
2164                         largest_mps = DIV_ROUND_UP(
2165                                         virt_ep->bw_info.max_packet_size,
2166                                         block_size);
2167                 }
2168                 if (largest_mps > packet_size)
2169                         packet_size = largest_mps;
2170
2171                 /* Use the larger overhead of this or the previous interval. */
2172                 interval_overhead = xhci_get_largest_overhead(
2173                                 &bw_table->interval_bw[i]);
2174                 if (interval_overhead > overhead)
2175                         overhead = interval_overhead;
2176
2177                 /* How many packets can we evenly distribute across
2178                  * (1 << (i + 1)) possible scheduling opportunities?
2179                  */
2180                 packets_transmitted = packets_remaining >> (i + 1);
2181
2182                 /* Add in the bandwidth used for those scheduled packets */
2183                 bw_added = packets_transmitted * (overhead + packet_size);
2184
2185                 /* How many packets do we have remaining to transmit? */
2186                 packets_remaining = packets_remaining % (1 << (i + 1));
2187
2188                 /* What largest max packet size should those packets have? */
2189                 /* If we've transmitted all packets, don't carry over the
2190                  * largest packet size.
2191                  */
2192                 if (packets_remaining == 0) {
2193                         packet_size = 0;
2194                         overhead = 0;
2195                 } else if (packets_transmitted > 0) {
2196                         /* Otherwise if we do have remaining packets, and we've
2197                          * scheduled some packets in this interval, take the
2198                          * largest max packet size from endpoints with this
2199                          * interval.
2200                          */
2201                         packet_size = largest_mps;
2202                         overhead = interval_overhead;
2203                 }
2204                 /* Otherwise carry over packet_size and overhead from the last
2205                  * time we had a remainder.
2206                  */
2207                 bw_used += bw_added;
2208                 if (bw_used > max_bandwidth) {
2209                         xhci_warn(xhci, "Not enough bandwidth. "
2210                                         "Proposed: %u, Max: %u\n",
2211                                 bw_used, max_bandwidth);
2212                         return -ENOMEM;
2213                 }
2214         }
2215         /*
2216          * Ok, we know we have some packets left over after even-handedly
2217          * scheduling interval 15.  We don't know which microframes they will
2218          * fit into, so we over-schedule and say they will be scheduled every
2219          * microframe.
2220          */
2221         if (packets_remaining > 0)
2222                 bw_used += overhead + packet_size;
2223
2224         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2225                 unsigned int port_index = virt_dev->real_port - 1;
2226
2227                 /* OK, we're manipulating a HS device attached to a
2228                  * root port bandwidth domain.  Include the number of active TTs
2229                  * in the bandwidth used.
2230                  */
2231                 bw_used += TT_HS_OVERHEAD *
2232                         xhci->rh_bw[port_index].num_active_tts;
2233         }
2234
2235         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2236                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2237                 "Available: %u " "percent",
2238                 bw_used, max_bandwidth, bw_reserved,
2239                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2240                 max_bandwidth);
2241
2242         bw_used += bw_reserved;
2243         if (bw_used > max_bandwidth) {
2244                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2245                                 bw_used, max_bandwidth);
2246                 return -ENOMEM;
2247         }
2248
2249         bw_table->bw_used = bw_used;
2250         return 0;
2251 }
2252
2253 static bool xhci_is_async_ep(unsigned int ep_type)
2254 {
2255         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2256                                         ep_type != ISOC_IN_EP &&
2257                                         ep_type != INT_IN_EP);
2258 }
2259
2260 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2261 {
2262         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2263 }
2264
2265 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2266 {
2267         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2268
2269         if (ep_bw->ep_interval == 0)
2270                 return SS_OVERHEAD_BURST +
2271                         (ep_bw->mult * ep_bw->num_packets *
2272                                         (SS_OVERHEAD + mps));
2273         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2274                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2275                                 1 << ep_bw->ep_interval);
2276
2277 }
2278
2279 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2280                 struct xhci_bw_info *ep_bw,
2281                 struct xhci_interval_bw_table *bw_table,
2282                 struct usb_device *udev,
2283                 struct xhci_virt_ep *virt_ep,
2284                 struct xhci_tt_bw_info *tt_info)
2285 {
2286         struct xhci_interval_bw *interval_bw;
2287         int normalized_interval;
2288
2289         if (xhci_is_async_ep(ep_bw->type))
2290                 return;
2291
2292         if (udev->speed == USB_SPEED_SUPER) {
2293                 if (xhci_is_sync_in_ep(ep_bw->type))
2294                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2295                                 xhci_get_ss_bw_consumed(ep_bw);
2296                 else
2297                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2298                                 xhci_get_ss_bw_consumed(ep_bw);
2299                 return;
2300         }
2301
2302         /* SuperSpeed endpoints never get added to intervals in the table, so
2303          * this check is only valid for HS/FS/LS devices.
2304          */
2305         if (list_empty(&virt_ep->bw_endpoint_list))
2306                 return;
2307         /* For LS/FS devices, we need to translate the interval expressed in
2308          * microframes to frames.
2309          */
2310         if (udev->speed == USB_SPEED_HIGH)
2311                 normalized_interval = ep_bw->ep_interval;
2312         else
2313                 normalized_interval = ep_bw->ep_interval - 3;
2314
2315         if (normalized_interval == 0)
2316                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2317         interval_bw = &bw_table->interval_bw[normalized_interval];
2318         interval_bw->num_packets -= ep_bw->num_packets;
2319         switch (udev->speed) {
2320         case USB_SPEED_LOW:
2321                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2322                 break;
2323         case USB_SPEED_FULL:
2324                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2325                 break;
2326         case USB_SPEED_HIGH:
2327                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2328                 break;
2329         case USB_SPEED_SUPER:
2330         case USB_SPEED_UNKNOWN:
2331         case USB_SPEED_WIRELESS:
2332                 /* Should never happen because only LS/FS/HS endpoints will get
2333                  * added to the endpoint list.
2334                  */
2335                 return;
2336         }
2337         if (tt_info)
2338                 tt_info->active_eps -= 1;
2339         list_del_init(&virt_ep->bw_endpoint_list);
2340 }
2341
2342 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2343                 struct xhci_bw_info *ep_bw,
2344                 struct xhci_interval_bw_table *bw_table,
2345                 struct usb_device *udev,
2346                 struct xhci_virt_ep *virt_ep,
2347                 struct xhci_tt_bw_info *tt_info)
2348 {
2349         struct xhci_interval_bw *interval_bw;
2350         struct xhci_virt_ep *smaller_ep;
2351         int normalized_interval;
2352
2353         if (xhci_is_async_ep(ep_bw->type))
2354                 return;
2355
2356         if (udev->speed == USB_SPEED_SUPER) {
2357                 if (xhci_is_sync_in_ep(ep_bw->type))
2358                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2359                                 xhci_get_ss_bw_consumed(ep_bw);
2360                 else
2361                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2362                                 xhci_get_ss_bw_consumed(ep_bw);
2363                 return;
2364         }
2365
2366         /* For LS/FS devices, we need to translate the interval expressed in
2367          * microframes to frames.
2368          */
2369         if (udev->speed == USB_SPEED_HIGH)
2370                 normalized_interval = ep_bw->ep_interval;
2371         else
2372                 normalized_interval = ep_bw->ep_interval - 3;
2373
2374         if (normalized_interval == 0)
2375                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2376         interval_bw = &bw_table->interval_bw[normalized_interval];
2377         interval_bw->num_packets += ep_bw->num_packets;
2378         switch (udev->speed) {
2379         case USB_SPEED_LOW:
2380                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2381                 break;
2382         case USB_SPEED_FULL:
2383                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2384                 break;
2385         case USB_SPEED_HIGH:
2386                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2387                 break;
2388         case USB_SPEED_SUPER:
2389         case USB_SPEED_UNKNOWN:
2390         case USB_SPEED_WIRELESS:
2391                 /* Should never happen because only LS/FS/HS endpoints will get
2392                  * added to the endpoint list.
2393                  */
2394                 return;
2395         }
2396
2397         if (tt_info)
2398                 tt_info->active_eps += 1;
2399         /* Insert the endpoint into the list, largest max packet size first. */
2400         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2401                         bw_endpoint_list) {
2402                 if (ep_bw->max_packet_size >=
2403                                 smaller_ep->bw_info.max_packet_size) {
2404                         /* Add the new ep before the smaller endpoint */
2405                         list_add_tail(&virt_ep->bw_endpoint_list,
2406                                         &smaller_ep->bw_endpoint_list);
2407                         return;
2408                 }
2409         }
2410         /* Add the new endpoint at the end of the list. */
2411         list_add_tail(&virt_ep->bw_endpoint_list,
2412                         &interval_bw->endpoints);
2413 }
2414
2415 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2416                 struct xhci_virt_device *virt_dev,
2417                 int old_active_eps)
2418 {
2419         struct xhci_root_port_bw_info *rh_bw_info;
2420         if (!virt_dev->tt_info)
2421                 return;
2422
2423         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2424         if (old_active_eps == 0 &&
2425                                 virt_dev->tt_info->active_eps != 0) {
2426                 rh_bw_info->num_active_tts += 1;
2427                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2428         } else if (old_active_eps != 0 &&
2429                                 virt_dev->tt_info->active_eps == 0) {
2430                 rh_bw_info->num_active_tts -= 1;
2431                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2432         }
2433 }
2434
2435 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2436                 struct xhci_virt_device *virt_dev,
2437                 struct xhci_container_ctx *in_ctx)
2438 {
2439         struct xhci_bw_info ep_bw_info[31];
2440         int i;
2441         struct xhci_input_control_ctx *ctrl_ctx;
2442         int old_active_eps = 0;
2443
2444         if (virt_dev->tt_info)
2445                 old_active_eps = virt_dev->tt_info->active_eps;
2446
2447         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2448         if (!ctrl_ctx) {
2449                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2450                                 __func__);
2451                 return -ENOMEM;
2452         }
2453
2454         for (i = 0; i < 31; i++) {
2455                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2456                         continue;
2457
2458                 /* Make a copy of the BW info in case we need to revert this */
2459                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2460                                 sizeof(ep_bw_info[i]));
2461                 /* Drop the endpoint from the interval table if the endpoint is
2462                  * being dropped or changed.
2463                  */
2464                 if (EP_IS_DROPPED(ctrl_ctx, i))
2465                         xhci_drop_ep_from_interval_table(xhci,
2466                                         &virt_dev->eps[i].bw_info,
2467                                         virt_dev->bw_table,
2468                                         virt_dev->udev,
2469                                         &virt_dev->eps[i],
2470                                         virt_dev->tt_info);
2471         }
2472         /* Overwrite the information stored in the endpoints' bw_info */
2473         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2474         for (i = 0; i < 31; i++) {
2475                 /* Add any changed or added endpoints to the interval table */
2476                 if (EP_IS_ADDED(ctrl_ctx, i))
2477                         xhci_add_ep_to_interval_table(xhci,
2478                                         &virt_dev->eps[i].bw_info,
2479                                         virt_dev->bw_table,
2480                                         virt_dev->udev,
2481                                         &virt_dev->eps[i],
2482                                         virt_dev->tt_info);
2483         }
2484
2485         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2486                 /* Ok, this fits in the bandwidth we have.
2487                  * Update the number of active TTs.
2488                  */
2489                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2490                 return 0;
2491         }
2492
2493         /* We don't have enough bandwidth for this, revert the stored info. */
2494         for (i = 0; i < 31; i++) {
2495                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2496                         continue;
2497
2498                 /* Drop the new copies of any added or changed endpoints from
2499                  * the interval table.
2500                  */
2501                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2502                         xhci_drop_ep_from_interval_table(xhci,
2503                                         &virt_dev->eps[i].bw_info,
2504                                         virt_dev->bw_table,
2505                                         virt_dev->udev,
2506                                         &virt_dev->eps[i],
2507                                         virt_dev->tt_info);
2508                 }
2509                 /* Revert the endpoint back to its old information */
2510                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2511                                 sizeof(ep_bw_info[i]));
2512                 /* Add any changed or dropped endpoints back into the table */
2513                 if (EP_IS_DROPPED(ctrl_ctx, i))
2514                         xhci_add_ep_to_interval_table(xhci,
2515                                         &virt_dev->eps[i].bw_info,
2516                                         virt_dev->bw_table,
2517                                         virt_dev->udev,
2518                                         &virt_dev->eps[i],
2519                                         virt_dev->tt_info);
2520         }
2521         return -ENOMEM;
2522 }
2523
2524
2525 /* Issue a configure endpoint command or evaluate context command
2526  * and wait for it to finish.
2527  */
2528 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2529                 struct usb_device *udev,
2530                 struct xhci_command *command,
2531                 bool ctx_change, bool must_succeed)
2532 {
2533         int ret;
2534         int timeleft;
2535         unsigned long flags;
2536         struct xhci_container_ctx *in_ctx;
2537         struct xhci_input_control_ctx *ctrl_ctx;
2538         struct completion *cmd_completion;
2539         u32 *cmd_status;
2540         struct xhci_virt_device *virt_dev;
2541         union xhci_trb *cmd_trb;
2542
2543         spin_lock_irqsave(&xhci->lock, flags);
2544         virt_dev = xhci->devs[udev->slot_id];
2545
2546         if (command)
2547                 in_ctx = command->in_ctx;
2548         else
2549                 in_ctx = virt_dev->in_ctx;
2550         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2551         if (!ctrl_ctx) {
2552                 spin_unlock_irqrestore(&xhci->lock, flags);
2553                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2554                                 __func__);
2555                 return -ENOMEM;
2556         }
2557
2558         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2559                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2560                 spin_unlock_irqrestore(&xhci->lock, flags);
2561                 xhci_warn(xhci, "Not enough host resources, "
2562                                 "active endpoint contexts = %u\n",
2563                                 xhci->num_active_eps);
2564                 return -ENOMEM;
2565         }
2566         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2567                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2568                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2569                         xhci_free_host_resources(xhci, ctrl_ctx);
2570                 spin_unlock_irqrestore(&xhci->lock, flags);
2571                 xhci_warn(xhci, "Not enough bandwidth\n");
2572                 return -ENOMEM;
2573         }
2574
2575         if (command) {
2576                 cmd_completion = command->completion;
2577                 cmd_status = &command->status;
2578                 command->command_trb = xhci->cmd_ring->enqueue;
2579
2580                 /* Enqueue pointer can be left pointing to the link TRB,
2581                  * we must handle that
2582                  */
2583                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2584                         command->command_trb =
2585                                 xhci->cmd_ring->enq_seg->next->trbs;
2586
2587                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2588         } else {
2589                 cmd_completion = &virt_dev->cmd_completion;
2590                 cmd_status = &virt_dev->cmd_status;
2591         }
2592         init_completion(cmd_completion);
2593
2594         cmd_trb = xhci->cmd_ring->dequeue;
2595         if (!ctx_change)
2596                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2597                                 udev->slot_id, must_succeed);
2598         else
2599                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2600                                 udev->slot_id, must_succeed);
2601         if (ret < 0) {
2602                 if (command)
2603                         list_del(&command->cmd_list);
2604                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2605                         xhci_free_host_resources(xhci, ctrl_ctx);
2606                 spin_unlock_irqrestore(&xhci->lock, flags);
2607                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2608                                 "FIXME allocate a new ring segment");
2609                 return -ENOMEM;
2610         }
2611         xhci_ring_cmd_db(xhci);
2612         spin_unlock_irqrestore(&xhci->lock, flags);
2613
2614         /* Wait for the configure endpoint command to complete */
2615         timeleft = wait_for_completion_interruptible_timeout(
2616                         cmd_completion,
2617                         XHCI_CMD_DEFAULT_TIMEOUT);
2618         if (timeleft <= 0) {
2619                 xhci_warn(xhci, "%s while waiting for %s command\n",
2620                                 timeleft == 0 ? "Timeout" : "Signal",
2621                                 ctx_change == 0 ?
2622                                         "configure endpoint" :
2623                                         "evaluate context");
2624                 /* cancel the configure endpoint command */
2625                 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2626                 if (ret < 0)
2627                         return ret;
2628                 return -ETIME;
2629         }
2630
2631         if (!ctx_change)
2632                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2633         else
2634                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2635
2636         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2637                 spin_lock_irqsave(&xhci->lock, flags);
2638                 /* If the command failed, remove the reserved resources.
2639                  * Otherwise, clean up the estimate to include dropped eps.
2640                  */
2641                 if (ret)
2642                         xhci_free_host_resources(xhci, ctrl_ctx);
2643                 else
2644                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2645                 spin_unlock_irqrestore(&xhci->lock, flags);
2646         }
2647         return ret;
2648 }
2649
2650 /* Called after one or more calls to xhci_add_endpoint() or
2651  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2652  * to call xhci_reset_bandwidth().
2653  *
2654  * Since we are in the middle of changing either configuration or
2655  * installing a new alt setting, the USB core won't allow URBs to be
2656  * enqueued for any endpoint on the old config or interface.  Nothing
2657  * else should be touching the xhci->devs[slot_id] structure, so we
2658  * don't need to take the xhci->lock for manipulating that.
2659  */
2660 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2661 {
2662         int i;
2663         int ret = 0;
2664         struct xhci_hcd *xhci;
2665         struct xhci_virt_device *virt_dev;
2666         struct xhci_input_control_ctx *ctrl_ctx;
2667         struct xhci_slot_ctx *slot_ctx;
2668
2669         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2670         if (ret <= 0)
2671                 return ret;
2672         xhci = hcd_to_xhci(hcd);
2673         if (xhci->xhc_state & XHCI_STATE_DYING)
2674                 return -ENODEV;
2675
2676         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2677         virt_dev = xhci->devs[udev->slot_id];
2678
2679         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2680         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2681         if (!ctrl_ctx) {
2682                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2683                                 __func__);
2684                 return -ENOMEM;
2685         }
2686         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2687         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2688         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2689
2690         /* Don't issue the command if there's no endpoints to update. */
2691         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2692                         ctrl_ctx->drop_flags == 0)
2693                 return 0;
2694
2695         xhci_dbg(xhci, "New Input Control Context:\n");
2696         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2697         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2698                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2699
2700         ret = xhci_configure_endpoint(xhci, udev, NULL,
2701                         false, false);
2702         if (ret) {
2703                 /* Callee should call reset_bandwidth() */
2704                 return ret;
2705         }
2706
2707         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2708         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2709                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2710
2711         /* Free any rings that were dropped, but not changed. */
2712         for (i = 1; i < 31; ++i) {
2713                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2714                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2715                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2716         }
2717         xhci_zero_in_ctx(xhci, virt_dev);
2718         /*
2719          * Install any rings for completely new endpoints or changed endpoints,
2720          * and free or cache any old rings from changed endpoints.
2721          */
2722         for (i = 1; i < 31; ++i) {
2723                 if (!virt_dev->eps[i].new_ring)
2724                         continue;
2725                 /* Only cache or free the old ring if it exists.
2726                  * It may not if this is the first add of an endpoint.
2727                  */
2728                 if (virt_dev->eps[i].ring) {
2729                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2730                 }
2731                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2732                 virt_dev->eps[i].new_ring = NULL;
2733         }
2734
2735         return ret;
2736 }
2737
2738 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2739 {
2740         struct xhci_hcd *xhci;
2741         struct xhci_virt_device *virt_dev;
2742         int i, ret;
2743
2744         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2745         if (ret <= 0)
2746                 return;
2747         xhci = hcd_to_xhci(hcd);
2748
2749         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2750         virt_dev = xhci->devs[udev->slot_id];
2751         /* Free any rings allocated for added endpoints */
2752         for (i = 0; i < 31; ++i) {
2753                 if (virt_dev->eps[i].new_ring) {
2754                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2755                         virt_dev->eps[i].new_ring = NULL;
2756                 }
2757         }
2758         xhci_zero_in_ctx(xhci, virt_dev);
2759 }
2760
2761 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2762                 struct xhci_container_ctx *in_ctx,
2763                 struct xhci_container_ctx *out_ctx,
2764                 struct xhci_input_control_ctx *ctrl_ctx,
2765                 u32 add_flags, u32 drop_flags)
2766 {
2767         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2768         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2769         xhci_slot_copy(xhci, in_ctx, out_ctx);
2770         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2771
2772         xhci_dbg(xhci, "Input Context:\n");
2773         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2774 }
2775
2776 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2777                 unsigned int slot_id, unsigned int ep_index,
2778                 struct xhci_dequeue_state *deq_state)
2779 {
2780         struct xhci_input_control_ctx *ctrl_ctx;
2781         struct xhci_container_ctx *in_ctx;
2782         struct xhci_ep_ctx *ep_ctx;
2783         u32 added_ctxs;
2784         dma_addr_t addr;
2785
2786         in_ctx = xhci->devs[slot_id]->in_ctx;
2787         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2788         if (!ctrl_ctx) {
2789                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2790                                 __func__);
2791                 return;
2792         }
2793
2794         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2795                         xhci->devs[slot_id]->out_ctx, ep_index);
2796         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2797         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2798                         deq_state->new_deq_ptr);
2799         if (addr == 0) {
2800                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2801                                 "reset ep command\n");
2802                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2803                                 deq_state->new_deq_seg,
2804                                 deq_state->new_deq_ptr);
2805                 return;
2806         }
2807         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2808
2809         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2810         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2811                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2812                         added_ctxs, added_ctxs);
2813 }
2814
2815 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2816                 struct usb_device *udev, unsigned int ep_index)
2817 {
2818         struct xhci_dequeue_state deq_state;
2819         struct xhci_virt_ep *ep;
2820
2821         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2822                         "Cleaning up stalled endpoint ring");
2823         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2824         /* We need to move the HW's dequeue pointer past this TD,
2825          * or it will attempt to resend it on the next doorbell ring.
2826          */
2827         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2828                         ep_index, ep->stopped_stream, ep->stopped_td,
2829                         &deq_state);
2830
2831         /* HW with the reset endpoint quirk will use the saved dequeue state to
2832          * issue a configure endpoint command later.
2833          */
2834         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2835                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2836                                 "Queueing new dequeue state");
2837                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2838                                 ep_index, ep->stopped_stream, &deq_state);
2839         } else {
2840                 /* Better hope no one uses the input context between now and the
2841                  * reset endpoint completion!
2842                  * XXX: No idea how this hardware will react when stream rings
2843                  * are enabled.
2844                  */
2845                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2846                                 "Setting up input context for "
2847                                 "configure endpoint command");
2848                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2849                                 ep_index, &deq_state);
2850         }
2851 }
2852
2853 /* Deal with stalled endpoints.  The core should have sent the control message
2854  * to clear the halt condition.  However, we need to make the xHCI hardware
2855  * reset its sequence number, since a device will expect a sequence number of
2856  * zero after the halt condition is cleared.
2857  * Context: in_interrupt
2858  */
2859 void xhci_endpoint_reset(struct usb_hcd *hcd,
2860                 struct usb_host_endpoint *ep)
2861 {
2862         struct xhci_hcd *xhci;
2863         struct usb_device *udev;
2864         unsigned int ep_index;
2865         unsigned long flags;
2866         int ret;
2867         struct xhci_virt_ep *virt_ep;
2868
2869         xhci = hcd_to_xhci(hcd);
2870         udev = (struct usb_device *) ep->hcpriv;
2871         /* Called with a root hub endpoint (or an endpoint that wasn't added
2872          * with xhci_add_endpoint()
2873          */
2874         if (!ep->hcpriv)
2875                 return;
2876         ep_index = xhci_get_endpoint_index(&ep->desc);
2877         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2878         if (!virt_ep->stopped_td) {
2879                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2880                         "Endpoint 0x%x not halted, refusing to reset.",
2881                         ep->desc.bEndpointAddress);
2882                 return;
2883         }
2884         if (usb_endpoint_xfer_control(&ep->desc)) {
2885                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2886                                 "Control endpoint stall already handled.");
2887                 return;
2888         }
2889
2890         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2891                         "Queueing reset endpoint command");
2892         spin_lock_irqsave(&xhci->lock, flags);
2893         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2894         /*
2895          * Can't change the ring dequeue pointer until it's transitioned to the
2896          * stopped state, which is only upon a successful reset endpoint
2897          * command.  Better hope that last command worked!
2898          */
2899         if (!ret) {
2900                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2901                 kfree(virt_ep->stopped_td);
2902                 xhci_ring_cmd_db(xhci);
2903         }
2904         virt_ep->stopped_td = NULL;
2905         virt_ep->stopped_trb = NULL;
2906         virt_ep->stopped_stream = 0;
2907         spin_unlock_irqrestore(&xhci->lock, flags);
2908
2909         if (ret)
2910                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2911 }
2912
2913 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2914                 struct usb_device *udev, struct usb_host_endpoint *ep,
2915                 unsigned int slot_id)
2916 {
2917         int ret;
2918         unsigned int ep_index;
2919         unsigned int ep_state;
2920
2921         if (!ep)
2922                 return -EINVAL;
2923         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2924         if (ret <= 0)
2925                 return -EINVAL;
2926         if (ep->ss_ep_comp.bmAttributes == 0) {
2927                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2928                                 " descriptor for ep 0x%x does not support streams\n",
2929                                 ep->desc.bEndpointAddress);
2930                 return -EINVAL;
2931         }
2932
2933         ep_index = xhci_get_endpoint_index(&ep->desc);
2934         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2935         if (ep_state & EP_HAS_STREAMS ||
2936                         ep_state & EP_GETTING_STREAMS) {
2937                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2938                                 "already has streams set up.\n",
2939                                 ep->desc.bEndpointAddress);
2940                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2941                                 "dynamic stream context array reallocation.\n");
2942                 return -EINVAL;
2943         }
2944         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2945                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2946                                 "endpoint 0x%x; URBs are pending.\n",
2947                                 ep->desc.bEndpointAddress);
2948                 return -EINVAL;
2949         }
2950         return 0;
2951 }
2952
2953 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2954                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2955 {
2956         unsigned int max_streams;
2957
2958         /* The stream context array size must be a power of two */
2959         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2960         /*
2961          * Find out how many primary stream array entries the host controller
2962          * supports.  Later we may use secondary stream arrays (similar to 2nd
2963          * level page entries), but that's an optional feature for xHCI host
2964          * controllers. xHCs must support at least 4 stream IDs.
2965          */
2966         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2967         if (*num_stream_ctxs > max_streams) {
2968                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2969                                 max_streams);
2970                 *num_stream_ctxs = max_streams;
2971                 *num_streams = max_streams;
2972         }
2973 }
2974
2975 /* Returns an error code if one of the endpoint already has streams.
2976  * This does not change any data structures, it only checks and gathers
2977  * information.
2978  */
2979 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2980                 struct usb_device *udev,
2981                 struct usb_host_endpoint **eps, unsigned int num_eps,
2982                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2983 {
2984         unsigned int max_streams;
2985         unsigned int endpoint_flag;
2986         int i;
2987         int ret;
2988
2989         for (i = 0; i < num_eps; i++) {
2990                 ret = xhci_check_streams_endpoint(xhci, udev,
2991                                 eps[i], udev->slot_id);
2992                 if (ret < 0)
2993                         return ret;
2994
2995                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2996                 if (max_streams < (*num_streams - 1)) {
2997                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2998                                         eps[i]->desc.bEndpointAddress,
2999                                         max_streams);
3000                         *num_streams = max_streams+1;
3001                 }
3002
3003                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3004                 if (*changed_ep_bitmask & endpoint_flag)
3005                         return -EINVAL;
3006                 *changed_ep_bitmask |= endpoint_flag;
3007         }
3008         return 0;
3009 }
3010
3011 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3012                 struct usb_device *udev,
3013                 struct usb_host_endpoint **eps, unsigned int num_eps)
3014 {
3015         u32 changed_ep_bitmask = 0;
3016         unsigned int slot_id;
3017         unsigned int ep_index;
3018         unsigned int ep_state;
3019         int i;
3020
3021         slot_id = udev->slot_id;
3022         if (!xhci->devs[slot_id])
3023                 return 0;
3024
3025         for (i = 0; i < num_eps; i++) {
3026                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3027                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3028                 /* Are streams already being freed for the endpoint? */
3029                 if (ep_state & EP_GETTING_NO_STREAMS) {
3030                         xhci_warn(xhci, "WARN Can't disable streams for "
3031                                         "endpoint 0x%x, "
3032                                         "streams are being disabled already\n",
3033                                         eps[i]->desc.bEndpointAddress);
3034                         return 0;
3035                 }
3036                 /* Are there actually any streams to free? */
3037                 if (!(ep_state & EP_HAS_STREAMS) &&
3038                                 !(ep_state & EP_GETTING_STREAMS)) {
3039                         xhci_warn(xhci, "WARN Can't disable streams for "
3040                                         "endpoint 0x%x, "
3041                                         "streams are already disabled!\n",
3042                                         eps[i]->desc.bEndpointAddress);
3043                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3044                                         "with non-streams endpoint\n");
3045                         return 0;
3046                 }
3047                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3048         }
3049         return changed_ep_bitmask;
3050 }
3051
3052 /*
3053  * The USB device drivers use this function (though the HCD interface in USB
3054  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3055  * coordinate mass storage command queueing across multiple endpoints (basically
3056  * a stream ID == a task ID).
3057  *
3058  * Setting up streams involves allocating the same size stream context array
3059  * for each endpoint and issuing a configure endpoint command for all endpoints.
3060  *
3061  * Don't allow the call to succeed if one endpoint only supports one stream
3062  * (which means it doesn't support streams at all).
3063  *
3064  * Drivers may get less stream IDs than they asked for, if the host controller
3065  * hardware or endpoints claim they can't support the number of requested
3066  * stream IDs.
3067  */
3068 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3069                 struct usb_host_endpoint **eps, unsigned int num_eps,
3070                 unsigned int num_streams, gfp_t mem_flags)
3071 {
3072         int i, ret;
3073         struct xhci_hcd *xhci;
3074         struct xhci_virt_device *vdev;
3075         struct xhci_command *config_cmd;
3076         struct xhci_input_control_ctx *ctrl_ctx;
3077         unsigned int ep_index;
3078         unsigned int num_stream_ctxs;
3079         unsigned long flags;
3080         u32 changed_ep_bitmask = 0;
3081
3082         if (!eps)
3083                 return -EINVAL;
3084
3085         /* Add one to the number of streams requested to account for
3086          * stream 0 that is reserved for xHCI usage.
3087          */
3088         num_streams += 1;
3089         xhci = hcd_to_xhci(hcd);
3090         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3091                         num_streams);
3092
3093         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3094         if (!config_cmd) {
3095                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3096                 return -ENOMEM;
3097         }
3098         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3099         if (!ctrl_ctx) {
3100                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3101                                 __func__);
3102                 xhci_free_command(xhci, config_cmd);
3103                 return -ENOMEM;
3104         }
3105
3106         /* Check to make sure all endpoints are not already configured for
3107          * streams.  While we're at it, find the maximum number of streams that
3108          * all the endpoints will support and check for duplicate endpoints.
3109          */
3110         spin_lock_irqsave(&xhci->lock, flags);
3111         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3112                         num_eps, &num_streams, &changed_ep_bitmask);
3113         if (ret < 0) {
3114                 xhci_free_command(xhci, config_cmd);
3115                 spin_unlock_irqrestore(&xhci->lock, flags);
3116                 return ret;
3117         }
3118         if (num_streams <= 1) {
3119                 xhci_warn(xhci, "WARN: endpoints can't handle "
3120                                 "more than one stream.\n");
3121                 xhci_free_command(xhci, config_cmd);
3122                 spin_unlock_irqrestore(&xhci->lock, flags);
3123                 return -EINVAL;
3124         }
3125         vdev = xhci->devs[udev->slot_id];
3126         /* Mark each endpoint as being in transition, so
3127          * xhci_urb_enqueue() will reject all URBs.
3128          */
3129         for (i = 0; i < num_eps; i++) {
3130                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3131                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3132         }
3133         spin_unlock_irqrestore(&xhci->lock, flags);
3134
3135         /* Setup internal data structures and allocate HW data structures for
3136          * streams (but don't install the HW structures in the input context
3137          * until we're sure all memory allocation succeeded).
3138          */
3139         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3140         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3141                         num_stream_ctxs, num_streams);
3142
3143         for (i = 0; i < num_eps; i++) {
3144                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3145                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3146                                 num_stream_ctxs,
3147                                 num_streams, mem_flags);
3148                 if (!vdev->eps[ep_index].stream_info)
3149                         goto cleanup;
3150                 /* Set maxPstreams in endpoint context and update deq ptr to
3151                  * point to stream context array. FIXME
3152                  */
3153         }
3154
3155         /* Set up the input context for a configure endpoint command. */
3156         for (i = 0; i < num_eps; i++) {
3157                 struct xhci_ep_ctx *ep_ctx;
3158
3159                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3160                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3161
3162                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3163                                 vdev->out_ctx, ep_index);
3164                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3165                                 vdev->eps[ep_index].stream_info);
3166         }
3167         /* Tell the HW to drop its old copy of the endpoint context info
3168          * and add the updated copy from the input context.
3169          */
3170         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3171                         vdev->out_ctx, ctrl_ctx,
3172                         changed_ep_bitmask, changed_ep_bitmask);
3173
3174         /* Issue and wait for the configure endpoint command */
3175         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3176                         false, false);
3177
3178         /* xHC rejected the configure endpoint command for some reason, so we
3179          * leave the old ring intact and free our internal streams data
3180          * structure.
3181          */
3182         if (ret < 0)
3183                 goto cleanup;
3184
3185         spin_lock_irqsave(&xhci->lock, flags);
3186         for (i = 0; i < num_eps; i++) {
3187                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3188                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3189                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3190                          udev->slot_id, ep_index);
3191                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3192         }
3193         xhci_free_command(xhci, config_cmd);
3194         spin_unlock_irqrestore(&xhci->lock, flags);
3195
3196         /* Subtract 1 for stream 0, which drivers can't use */
3197         return num_streams - 1;
3198
3199 cleanup:
3200         /* If it didn't work, free the streams! */
3201         for (i = 0; i < num_eps; i++) {
3202                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3203                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3204                 vdev->eps[ep_index].stream_info = NULL;
3205                 /* FIXME Unset maxPstreams in endpoint context and
3206                  * update deq ptr to point to normal string ring.
3207                  */
3208                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3209                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3210                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3211         }
3212         xhci_free_command(xhci, config_cmd);
3213         return -ENOMEM;
3214 }
3215
3216 /* Transition the endpoint from using streams to being a "normal" endpoint
3217  * without streams.
3218  *
3219  * Modify the endpoint context state, submit a configure endpoint command,
3220  * and free all endpoint rings for streams if that completes successfully.
3221  */
3222 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3223                 struct usb_host_endpoint **eps, unsigned int num_eps,
3224                 gfp_t mem_flags)
3225 {
3226         int i, ret;
3227         struct xhci_hcd *xhci;
3228         struct xhci_virt_device *vdev;
3229         struct xhci_command *command;
3230         struct xhci_input_control_ctx *ctrl_ctx;
3231         unsigned int ep_index;
3232         unsigned long flags;
3233         u32 changed_ep_bitmask;
3234
3235         xhci = hcd_to_xhci(hcd);
3236         vdev = xhci->devs[udev->slot_id];
3237
3238         /* Set up a configure endpoint command to remove the streams rings */
3239         spin_lock_irqsave(&xhci->lock, flags);
3240         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3241                         udev, eps, num_eps);
3242         if (changed_ep_bitmask == 0) {
3243                 spin_unlock_irqrestore(&xhci->lock, flags);
3244                 return -EINVAL;
3245         }
3246
3247         /* Use the xhci_command structure from the first endpoint.  We may have
3248          * allocated too many, but the driver may call xhci_free_streams() for
3249          * each endpoint it grouped into one call to xhci_alloc_streams().
3250          */
3251         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3252         command = vdev->eps[ep_index].stream_info->free_streams_command;
3253         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3254         if (!ctrl_ctx) {
3255                 spin_unlock_irqrestore(&xhci->lock, flags);
3256                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3257                                 __func__);
3258                 return -EINVAL;
3259         }
3260
3261         for (i = 0; i < num_eps; i++) {
3262                 struct xhci_ep_ctx *ep_ctx;
3263
3264                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3265                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3266                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3267                         EP_GETTING_NO_STREAMS;
3268
3269                 xhci_endpoint_copy(xhci, command->in_ctx,
3270                                 vdev->out_ctx, ep_index);
3271                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3272                                 &vdev->eps[ep_index]);
3273         }
3274         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3275                         vdev->out_ctx, ctrl_ctx,
3276                         changed_ep_bitmask, changed_ep_bitmask);
3277         spin_unlock_irqrestore(&xhci->lock, flags);
3278
3279         /* Issue and wait for the configure endpoint command,
3280          * which must succeed.
3281          */
3282         ret = xhci_configure_endpoint(xhci, udev, command,
3283                         false, true);
3284
3285         /* xHC rejected the configure endpoint command for some reason, so we
3286          * leave the streams rings intact.
3287          */
3288         if (ret < 0)
3289                 return ret;
3290
3291         spin_lock_irqsave(&xhci->lock, flags);
3292         for (i = 0; i < num_eps; i++) {
3293                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3294                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3295                 vdev->eps[ep_index].stream_info = NULL;
3296                 /* FIXME Unset maxPstreams in endpoint context and
3297                  * update deq ptr to point to normal string ring.
3298                  */
3299                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3300                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3301         }
3302         spin_unlock_irqrestore(&xhci->lock, flags);
3303
3304         return 0;
3305 }
3306
3307 /*
3308  * Deletes endpoint resources for endpoints that were active before a Reset
3309  * Device command, or a Disable Slot command.  The Reset Device command leaves
3310  * the control endpoint intact, whereas the Disable Slot command deletes it.
3311  *
3312  * Must be called with xhci->lock held.
3313  */
3314 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3315         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3316 {
3317         int i;
3318         unsigned int num_dropped_eps = 0;
3319         unsigned int drop_flags = 0;
3320
3321         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3322                 if (virt_dev->eps[i].ring) {
3323                         drop_flags |= 1 << i;
3324                         num_dropped_eps++;
3325                 }
3326         }
3327         xhci->num_active_eps -= num_dropped_eps;
3328         if (num_dropped_eps)
3329                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3330                                 "Dropped %u ep ctxs, flags = 0x%x, "
3331                                 "%u now active.",
3332                                 num_dropped_eps, drop_flags,
3333                                 xhci->num_active_eps);
3334 }
3335
3336 /*
3337  * This submits a Reset Device Command, which will set the device state to 0,
3338  * set the device address to 0, and disable all the endpoints except the default
3339  * control endpoint.  The USB core should come back and call
3340  * xhci_address_device(), and then re-set up the configuration.  If this is
3341  * called because of a usb_reset_and_verify_device(), then the old alternate
3342  * settings will be re-installed through the normal bandwidth allocation
3343  * functions.
3344  *
3345  * Wait for the Reset Device command to finish.  Remove all structures
3346  * associated with the endpoints that were disabled.  Clear the input device
3347  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3348  *
3349  * If the virt_dev to be reset does not exist or does not match the udev,
3350  * it means the device is lost, possibly due to the xHC restore error and
3351  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3352  * re-allocate the device.
3353  */
3354 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3355 {
3356         int ret, i;
3357         unsigned long flags;
3358         struct xhci_hcd *xhci;
3359         unsigned int slot_id;
3360         struct xhci_virt_device *virt_dev;
3361         struct xhci_command *reset_device_cmd;
3362         int timeleft;
3363         int last_freed_endpoint;
3364         struct xhci_slot_ctx *slot_ctx;
3365         int old_active_eps = 0;
3366
3367         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3368         if (ret <= 0)
3369                 return ret;
3370         xhci = hcd_to_xhci(hcd);
3371         slot_id = udev->slot_id;
3372         virt_dev = xhci->devs[slot_id];
3373         if (!virt_dev) {
3374                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3375                                 "not exist. Re-allocate the device\n", slot_id);
3376                 ret = xhci_alloc_dev(hcd, udev);
3377                 if (ret == 1)
3378                         return 0;
3379                 else
3380                         return -EINVAL;
3381         }
3382
3383         if (virt_dev->udev != udev) {
3384                 /* If the virt_dev and the udev does not match, this virt_dev
3385                  * may belong to another udev.
3386                  * Re-allocate the device.
3387                  */
3388                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3389                                 "not match the udev. Re-allocate the device\n",
3390                                 slot_id);
3391                 ret = xhci_alloc_dev(hcd, udev);
3392                 if (ret == 1)
3393                         return 0;
3394                 else
3395                         return -EINVAL;
3396         }
3397
3398         /* If device is not setup, there is no point in resetting it */
3399         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3400         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3401                                                 SLOT_STATE_DISABLED)
3402                 return 0;
3403
3404         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3405         /* Allocate the command structure that holds the struct completion.
3406          * Assume we're in process context, since the normal device reset
3407          * process has to wait for the device anyway.  Storage devices are
3408          * reset as part of error handling, so use GFP_NOIO instead of
3409          * GFP_KERNEL.
3410          */
3411         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3412         if (!reset_device_cmd) {
3413                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3414                 return -ENOMEM;
3415         }
3416
3417         /* Attempt to submit the Reset Device command to the command ring */
3418         spin_lock_irqsave(&xhci->lock, flags);
3419         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3420
3421         /* Enqueue pointer can be left pointing to the link TRB,
3422          * we must handle that
3423          */
3424         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3425                 reset_device_cmd->command_trb =
3426                         xhci->cmd_ring->enq_seg->next->trbs;
3427
3428         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3429         ret = xhci_queue_reset_device(xhci, slot_id);
3430         if (ret) {
3431                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3432                 list_del(&reset_device_cmd->cmd_list);
3433                 spin_unlock_irqrestore(&xhci->lock, flags);
3434                 goto command_cleanup;
3435         }
3436         xhci_ring_cmd_db(xhci);
3437         spin_unlock_irqrestore(&xhci->lock, flags);
3438
3439         /* Wait for the Reset Device command to finish */
3440         timeleft = wait_for_completion_interruptible_timeout(
3441                         reset_device_cmd->completion,
3442                         USB_CTRL_SET_TIMEOUT);
3443         if (timeleft <= 0) {
3444                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3445                                 timeleft == 0 ? "Timeout" : "Signal");
3446                 spin_lock_irqsave(&xhci->lock, flags);
3447                 /* The timeout might have raced with the event ring handler, so
3448                  * only delete from the list if the item isn't poisoned.
3449                  */
3450                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3451                         list_del(&reset_device_cmd->cmd_list);
3452                 spin_unlock_irqrestore(&xhci->lock, flags);
3453                 ret = -ETIME;
3454                 goto command_cleanup;
3455         }
3456
3457         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3458          * unless we tried to reset a slot ID that wasn't enabled,
3459          * or the device wasn't in the addressed or configured state.
3460          */
3461         ret = reset_device_cmd->status;
3462         switch (ret) {
3463         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3464         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3465                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3466                                 slot_id,
3467                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3468                 xhci_dbg(xhci, "Not freeing device rings.\n");
3469                 /* Don't treat this as an error.  May change my mind later. */
3470                 ret = 0;
3471                 goto command_cleanup;
3472         case COMP_SUCCESS:
3473                 xhci_dbg(xhci, "Successful reset device command.\n");
3474                 break;
3475         default:
3476                 if (xhci_is_vendor_info_code(xhci, ret))
3477                         break;
3478                 xhci_warn(xhci, "Unknown completion code %u for "
3479                                 "reset device command.\n", ret);
3480                 ret = -EINVAL;
3481                 goto command_cleanup;
3482         }
3483
3484         /* Free up host controller endpoint resources */
3485         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3486                 spin_lock_irqsave(&xhci->lock, flags);
3487                 /* Don't delete the default control endpoint resources */
3488                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3489                 spin_unlock_irqrestore(&xhci->lock, flags);
3490         }
3491
3492         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3493         last_freed_endpoint = 1;
3494         for (i = 1; i < 31; ++i) {
3495                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3496
3497                 if (ep->ep_state & EP_HAS_STREAMS) {
3498                         xhci_free_stream_info(xhci, ep->stream_info);
3499                         ep->stream_info = NULL;
3500                         ep->ep_state &= ~EP_HAS_STREAMS;
3501                 }
3502
3503                 if (ep->ring) {
3504                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3505                         last_freed_endpoint = i;
3506                 }
3507                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3508                         xhci_drop_ep_from_interval_table(xhci,
3509                                         &virt_dev->eps[i].bw_info,
3510                                         virt_dev->bw_table,
3511                                         udev,
3512                                         &virt_dev->eps[i],
3513                                         virt_dev->tt_info);
3514                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3515         }
3516         /* If necessary, update the number of active TTs on this root port */
3517         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3518
3519         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3520         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3521         ret = 0;
3522
3523 command_cleanup:
3524         xhci_free_command(xhci, reset_device_cmd);
3525         return ret;
3526 }
3527
3528 /*
3529  * At this point, the struct usb_device is about to go away, the device has
3530  * disconnected, and all traffic has been stopped and the endpoints have been
3531  * disabled.  Free any HC data structures associated with that device.
3532  */
3533 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3534 {
3535         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3536         struct xhci_virt_device *virt_dev;
3537         unsigned long flags;
3538         u32 state;
3539         int i, ret;
3540
3541         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3542         /* If the host is halted due to driver unload, we still need to free the
3543          * device.
3544          */
3545         if (ret <= 0 && ret != -ENODEV)
3546                 return;
3547
3548         virt_dev = xhci->devs[udev->slot_id];
3549
3550         /* Stop any wayward timer functions (which may grab the lock) */
3551         for (i = 0; i < 31; ++i) {
3552                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3553                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3554         }
3555
3556         if (udev->usb2_hw_lpm_enabled) {
3557                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3558                 udev->usb2_hw_lpm_enabled = 0;
3559         }
3560
3561         spin_lock_irqsave(&xhci->lock, flags);
3562         /* Don't disable the slot if the host controller is dead. */
3563         state = xhci_readl(xhci, &xhci->op_regs->status);
3564         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3565                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3566                 xhci_free_virt_device(xhci, udev->slot_id);
3567                 spin_unlock_irqrestore(&xhci->lock, flags);
3568                 return;
3569         }
3570
3571         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3572                 spin_unlock_irqrestore(&xhci->lock, flags);
3573                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3574                 return;
3575         }
3576         xhci_ring_cmd_db(xhci);
3577         spin_unlock_irqrestore(&xhci->lock, flags);
3578         /*
3579          * Event command completion handler will free any data structures
3580          * associated with the slot.  XXX Can free sleep?
3581          */
3582 }
3583
3584 /*
3585  * Checks if we have enough host controller resources for the default control
3586  * endpoint.
3587  *
3588  * Must be called with xhci->lock held.
3589  */
3590 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3591 {
3592         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3593                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3594                                 "Not enough ep ctxs: "
3595                                 "%u active, need to add 1, limit is %u.",
3596                                 xhci->num_active_eps, xhci->limit_active_eps);
3597                 return -ENOMEM;
3598         }
3599         xhci->num_active_eps += 1;
3600         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3601                         "Adding 1 ep ctx, %u now active.",
3602                         xhci->num_active_eps);
3603         return 0;
3604 }
3605
3606
3607 /*
3608  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3609  * timed out, or allocating memory failed.  Returns 1 on success.
3610  */
3611 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3612 {
3613         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3614         unsigned long flags;
3615         int timeleft;
3616         int ret;
3617         union xhci_trb *cmd_trb;
3618
3619         spin_lock_irqsave(&xhci->lock, flags);
3620         cmd_trb = xhci->cmd_ring->dequeue;
3621         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3622         if (ret) {
3623                 spin_unlock_irqrestore(&xhci->lock, flags);
3624                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3625                 return 0;
3626         }
3627         xhci_ring_cmd_db(xhci);
3628         spin_unlock_irqrestore(&xhci->lock, flags);
3629
3630         /* XXX: how much time for xHC slot assignment? */
3631         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3632                         XHCI_CMD_DEFAULT_TIMEOUT);
3633         if (timeleft <= 0) {
3634                 xhci_warn(xhci, "%s while waiting for a slot\n",
3635                                 timeleft == 0 ? "Timeout" : "Signal");
3636                 /* cancel the enable slot request */
3637                 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3638         }
3639
3640         if (!xhci->slot_id) {
3641                 xhci_err(xhci, "Error while assigning device slot ID\n");
3642                 return 0;
3643         }
3644
3645         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3646                 spin_lock_irqsave(&xhci->lock, flags);
3647                 ret = xhci_reserve_host_control_ep_resources(xhci);
3648                 if (ret) {
3649                         spin_unlock_irqrestore(&xhci->lock, flags);
3650                         xhci_warn(xhci, "Not enough host resources, "
3651                                         "active endpoint contexts = %u\n",
3652                                         xhci->num_active_eps);
3653                         goto disable_slot;
3654                 }
3655                 spin_unlock_irqrestore(&xhci->lock, flags);
3656         }
3657         /* Use GFP_NOIO, since this function can be called from
3658          * xhci_discover_or_reset_device(), which may be called as part of
3659          * mass storage driver error handling.
3660          */
3661         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3662                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3663                 goto disable_slot;
3664         }
3665         udev->slot_id = xhci->slot_id;
3666         /* Is this a LS or FS device under a HS hub? */
3667         /* Hub or peripherial? */
3668         return 1;
3669
3670 disable_slot:
3671         /* Disable slot, if we can do it without mem alloc */
3672         spin_lock_irqsave(&xhci->lock, flags);
3673         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3674                 xhci_ring_cmd_db(xhci);
3675         spin_unlock_irqrestore(&xhci->lock, flags);
3676         return 0;
3677 }
3678
3679 /*
3680  * Issue an Address Device command (which will issue a SetAddress request to
3681  * the device).
3682  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3683  * we should only issue and wait on one address command at the same time.
3684  *
3685  * We add one to the device address issued by the hardware because the USB core
3686  * uses address 1 for the root hubs (even though they're not really devices).
3687  */
3688 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3689 {
3690         unsigned long flags;
3691         int timeleft;
3692         struct xhci_virt_device *virt_dev;
3693         int ret = 0;
3694         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3695         struct xhci_slot_ctx *slot_ctx;
3696         struct xhci_input_control_ctx *ctrl_ctx;
3697         u64 temp_64;
3698         union xhci_trb *cmd_trb;
3699
3700         if (!udev->slot_id) {
3701                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3702                                 "Bad Slot ID %d", udev->slot_id);
3703                 return -EINVAL;
3704         }
3705
3706         virt_dev = xhci->devs[udev->slot_id];
3707
3708         if (WARN_ON(!virt_dev)) {
3709                 /*
3710                  * In plug/unplug torture test with an NEC controller,
3711                  * a zero-dereference was observed once due to virt_dev = 0.
3712                  * Print useful debug rather than crash if it is observed again!
3713                  */
3714                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3715                         udev->slot_id);
3716                 return -EINVAL;
3717         }
3718
3719         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3720         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3721         if (!ctrl_ctx) {
3722                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3723                                 __func__);
3724                 return -EINVAL;
3725         }
3726         /*
3727          * If this is the first Set Address since device plug-in or
3728          * virt_device realloaction after a resume with an xHCI power loss,
3729          * then set up the slot context.
3730          */
3731         if (!slot_ctx->dev_info)
3732                 xhci_setup_addressable_virt_dev(xhci, udev);
3733         /* Otherwise, update the control endpoint ring enqueue pointer. */
3734         else
3735                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3736         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3737         ctrl_ctx->drop_flags = 0;
3738
3739         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3740         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3741
3742         spin_lock_irqsave(&xhci->lock, flags);
3743         cmd_trb = xhci->cmd_ring->dequeue;
3744         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3745                                         udev->slot_id);
3746         if (ret) {
3747                 spin_unlock_irqrestore(&xhci->lock, flags);
3748                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3749                                 "FIXME: allocate a command ring segment");
3750                 return ret;
3751         }
3752         xhci_ring_cmd_db(xhci);
3753         spin_unlock_irqrestore(&xhci->lock, flags);
3754
3755         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3756         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3757                         XHCI_CMD_DEFAULT_TIMEOUT);
3758         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3759          * the SetAddress() "recovery interval" required by USB and aborting the
3760          * command on a timeout.
3761          */
3762         if (timeleft <= 0) {
3763                 xhci_warn(xhci, "%s while waiting for address device command\n",
3764                                 timeleft == 0 ? "Timeout" : "Signal");
3765                 /* cancel the address device command */
3766                 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3767                 if (ret < 0)
3768                         return ret;
3769                 return -ETIME;
3770         }
3771
3772         switch (virt_dev->cmd_status) {
3773         case COMP_CTX_STATE:
3774         case COMP_EBADSLT:
3775                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3776                                 udev->slot_id);
3777                 ret = -EINVAL;
3778                 break;
3779         case COMP_TX_ERR:
3780                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3781                 ret = -EPROTO;
3782                 break;
3783         case COMP_DEV_ERR:
3784                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3785                                 "device command.\n");
3786                 ret = -ENODEV;
3787                 break;
3788         case COMP_SUCCESS:
3789                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3790                                 "Successful Address Device command");
3791                 break;
3792         default:
3793                 xhci_err(xhci, "ERROR: unexpected command completion "
3794                                 "code 0x%x.\n", virt_dev->cmd_status);
3795                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3796                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3797                 ret = -EINVAL;
3798                 break;
3799         }
3800         if (ret) {
3801                 return ret;
3802         }
3803         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3804         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3805                         "Op regs DCBAA ptr = %#016llx", temp_64);
3806         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3807                 "Slot ID %d dcbaa entry @%p = %#016llx",
3808                 udev->slot_id,
3809                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3810                 (unsigned long long)
3811                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3812         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3813                         "Output Context DMA address = %#08llx",
3814                         (unsigned long long)virt_dev->out_ctx->dma);
3815         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3816         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3817         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3818         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3819         /*
3820          * USB core uses address 1 for the roothubs, so we add one to the
3821          * address given back to us by the HC.
3822          */
3823         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3824         /* Use kernel assigned address for devices; store xHC assigned
3825          * address locally. */
3826         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3827                 + 1;
3828         /* Zero the input context control for later use */
3829         ctrl_ctx->add_flags = 0;
3830         ctrl_ctx->drop_flags = 0;
3831
3832         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3833                         "Internal device address = %d", virt_dev->address);
3834
3835         return 0;
3836 }
3837
3838 /*
3839  * Transfer the port index into real index in the HW port status
3840  * registers. Caculate offset between the port's PORTSC register
3841  * and port status base. Divide the number of per port register
3842  * to get the real index. The raw port number bases 1.
3843  */
3844 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3845 {
3846         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3847         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3848         __le32 __iomem *addr;
3849         int raw_port;
3850
3851         if (hcd->speed != HCD_USB3)
3852                 addr = xhci->usb2_ports[port1 - 1];
3853         else
3854                 addr = xhci->usb3_ports[port1 - 1];
3855
3856         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3857         return raw_port;
3858 }
3859
3860 /*
3861  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3862  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3863  */
3864 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3865                         struct usb_device *udev, u16 max_exit_latency)
3866 {
3867         struct xhci_virt_device *virt_dev;
3868         struct xhci_command *command;
3869         struct xhci_input_control_ctx *ctrl_ctx;
3870         struct xhci_slot_ctx *slot_ctx;
3871         unsigned long flags;
3872         int ret;
3873
3874         spin_lock_irqsave(&xhci->lock, flags);
3875         if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3876                 spin_unlock_irqrestore(&xhci->lock, flags);
3877                 return 0;
3878         }
3879
3880         /* Attempt to issue an Evaluate Context command to change the MEL. */
3881         virt_dev = xhci->devs[udev->slot_id];
3882         command = xhci->lpm_command;
3883         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3884         if (!ctrl_ctx) {
3885                 spin_unlock_irqrestore(&xhci->lock, flags);
3886                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3887                                 __func__);
3888                 return -ENOMEM;
3889         }
3890
3891         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3892         spin_unlock_irqrestore(&xhci->lock, flags);
3893
3894         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3895         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3896         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3897         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3898
3899         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3900                         "Set up evaluate context for LPM MEL change.");
3901         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3902         xhci_dbg_ctx(xhci, command->in_ctx, 0);
3903
3904         /* Issue and wait for the evaluate context command. */
3905         ret = xhci_configure_endpoint(xhci, udev, command,
3906                         true, true);
3907         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3908         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3909
3910         if (!ret) {
3911                 spin_lock_irqsave(&xhci->lock, flags);
3912                 virt_dev->current_mel = max_exit_latency;
3913                 spin_unlock_irqrestore(&xhci->lock, flags);
3914         }
3915         return ret;
3916 }
3917
3918 #ifdef CONFIG_PM_RUNTIME
3919
3920 /* BESL to HIRD Encoding array for USB2 LPM */
3921 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3922         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3923
3924 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3925 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3926                                         struct usb_device *udev)
3927 {
3928         int u2del, besl, besl_host;
3929         int besl_device = 0;
3930         u32 field;
3931
3932         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3933         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3934
3935         if (field & USB_BESL_SUPPORT) {
3936                 for (besl_host = 0; besl_host < 16; besl_host++) {
3937                         if (xhci_besl_encoding[besl_host] >= u2del)
3938                                 break;
3939                 }
3940                 /* Use baseline BESL value as default */
3941                 if (field & USB_BESL_BASELINE_VALID)
3942                         besl_device = USB_GET_BESL_BASELINE(field);
3943                 else if (field & USB_BESL_DEEP_VALID)
3944                         besl_device = USB_GET_BESL_DEEP(field);
3945         } else {
3946                 if (u2del <= 50)
3947                         besl_host = 0;
3948                 else
3949                         besl_host = (u2del - 51) / 75 + 1;
3950         }
3951
3952         besl = besl_host + besl_device;
3953         if (besl > 15)
3954                 besl = 15;
3955
3956         return besl;
3957 }
3958
3959 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
3960 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
3961 {
3962         u32 field;
3963         int l1;
3964         int besld = 0;
3965         int hirdm = 0;
3966
3967         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3968
3969         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
3970         l1 = udev->l1_params.timeout / 256;
3971
3972         /* device has preferred BESLD */
3973         if (field & USB_BESL_DEEP_VALID) {
3974                 besld = USB_GET_BESL_DEEP(field);
3975                 hirdm = 1;
3976         }
3977
3978         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
3979 }
3980
3981 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3982                                         struct usb_device *udev)
3983 {
3984         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3985         struct dev_info *dev_info;
3986         __le32 __iomem  **port_array;
3987         __le32 __iomem  *addr, *pm_addr;
3988         u32             temp, dev_id;
3989         unsigned int    port_num;
3990         unsigned long   flags;
3991         int             hird;
3992         int             ret;
3993
3994         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3995                         !udev->lpm_capable)
3996                 return -EINVAL;
3997
3998         /* we only support lpm for non-hub device connected to root hub yet */
3999         if (!udev->parent || udev->parent->parent ||
4000                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4001                 return -EINVAL;
4002
4003         spin_lock_irqsave(&xhci->lock, flags);
4004
4005         /* Look for devices in lpm_failed_devs list */
4006         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
4007                         le16_to_cpu(udev->descriptor.idProduct);
4008         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
4009                 if (dev_info->dev_id == dev_id) {
4010                         ret = -EINVAL;
4011                         goto finish;
4012                 }
4013         }
4014
4015         port_array = xhci->usb2_ports;
4016         port_num = udev->portnum - 1;
4017
4018         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
4019                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
4020                 ret = -EINVAL;
4021                 goto finish;
4022         }
4023
4024         /*
4025          * Test USB 2.0 software LPM.
4026          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
4027          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
4028          * in the June 2011 errata release.
4029          */
4030         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
4031         /*
4032          * Set L1 Device Slot and HIRD/BESL.
4033          * Check device's USB 2.0 extension descriptor to determine whether
4034          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
4035          */
4036         pm_addr = port_array[port_num] + PORTPMSC;
4037         hird = xhci_calculate_hird_besl(xhci, udev);
4038         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
4039         xhci_writel(xhci, temp, pm_addr);
4040
4041         /* Set port link state to U2(L1) */
4042         addr = port_array[port_num];
4043         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
4044
4045         /* wait for ACK */
4046         spin_unlock_irqrestore(&xhci->lock, flags);
4047         msleep(10);
4048         spin_lock_irqsave(&xhci->lock, flags);
4049
4050         /* Check L1 Status */
4051         ret = xhci_handshake(xhci, pm_addr,
4052                         PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
4053         if (ret != -ETIMEDOUT) {
4054                 /* enter L1 successfully */
4055                 temp = xhci_readl(xhci, addr);
4056                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
4057                                 port_num, temp);
4058                 ret = 0;
4059         } else {
4060                 temp = xhci_readl(xhci, pm_addr);
4061                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
4062                                 port_num, temp & PORT_L1S_MASK);
4063                 ret = -EINVAL;
4064         }
4065
4066         /* Resume the port */
4067         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
4068
4069         spin_unlock_irqrestore(&xhci->lock, flags);
4070         msleep(10);
4071         spin_lock_irqsave(&xhci->lock, flags);
4072
4073         /* Clear PLC */
4074         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
4075
4076         /* Check PORTSC to make sure the device is in the right state */
4077         if (!ret) {
4078                 temp = xhci_readl(xhci, addr);
4079                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
4080                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
4081                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
4082                         xhci_dbg(xhci, "port L1 resume fail\n");
4083                         ret = -EINVAL;
4084                 }
4085         }
4086
4087         if (ret) {
4088                 /* Insert dev to lpm_failed_devs list */
4089                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
4090                                 "re-enumerate\n");
4091                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
4092                 if (!dev_info) {
4093                         ret = -ENOMEM;
4094                         goto finish;
4095                 }
4096                 dev_info->dev_id = dev_id;
4097                 INIT_LIST_HEAD(&dev_info->list);
4098                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
4099         } else {
4100                 xhci_ring_device(xhci, udev->slot_id);
4101         }
4102
4103 finish:
4104         spin_unlock_irqrestore(&xhci->lock, flags);
4105         return ret;
4106 }
4107
4108 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4109                         struct usb_device *udev, int enable)
4110 {
4111         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4112         __le32 __iomem  **port_array;
4113         __le32 __iomem  *pm_addr, *hlpm_addr;
4114         u32             pm_val, hlpm_val, field;
4115         unsigned int    port_num;
4116         unsigned long   flags;
4117         int             hird, exit_latency;
4118         int             ret;
4119
4120         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4121                         !udev->lpm_capable)
4122                 return -EPERM;
4123
4124         if (!udev->parent || udev->parent->parent ||
4125                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4126                 return -EPERM;
4127
4128         if (udev->usb2_hw_lpm_capable != 1)
4129                 return -EPERM;
4130
4131         spin_lock_irqsave(&xhci->lock, flags);
4132
4133         port_array = xhci->usb2_ports;
4134         port_num = udev->portnum - 1;
4135         pm_addr = port_array[port_num] + PORTPMSC;
4136         pm_val = xhci_readl(xhci, pm_addr);
4137         hlpm_addr = port_array[port_num] + PORTHLPMC;
4138         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4139
4140         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4141                         enable ? "enable" : "disable", port_num);
4142
4143         if (enable) {
4144                 /* Host supports BESL timeout instead of HIRD */
4145                 if (udev->usb2_hw_lpm_besl_capable) {
4146                         /* if device doesn't have a preferred BESL value use a
4147                          * default one which works with mixed HIRD and BESL
4148                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4149                          */
4150                         if ((field & USB_BESL_SUPPORT) &&
4151                             (field & USB_BESL_BASELINE_VALID))
4152                                 hird = USB_GET_BESL_BASELINE(field);
4153                         else
4154                                 hird = udev->l1_params.besl;
4155
4156                         exit_latency = xhci_besl_encoding[hird];
4157                         spin_unlock_irqrestore(&xhci->lock, flags);
4158
4159                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4160                          * input context for link powermanagement evaluate
4161                          * context commands. It is protected by hcd->bandwidth
4162                          * mutex and is shared by all devices. We need to set
4163                          * the max ext latency in USB 2 BESL LPM as well, so
4164                          * use the same mutex and xhci_change_max_exit_latency()
4165                          */
4166                         mutex_lock(hcd->bandwidth_mutex);
4167                         ret = xhci_change_max_exit_latency(xhci, udev,
4168                                                            exit_latency);
4169                         mutex_unlock(hcd->bandwidth_mutex);
4170
4171                         if (ret < 0)
4172                                 return ret;
4173                         spin_lock_irqsave(&xhci->lock, flags);
4174
4175                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4176                         xhci_writel(xhci, hlpm_val, hlpm_addr);
4177                         /* flush write */
4178                         xhci_readl(xhci, hlpm_addr);
4179                 } else {
4180                         hird = xhci_calculate_hird_besl(xhci, udev);
4181                 }
4182
4183                 pm_val &= ~PORT_HIRD_MASK;
4184                 pm_val |= PORT_HIRD(hird) | PORT_RWE;
4185                 xhci_writel(xhci, pm_val, pm_addr);
4186                 pm_val = xhci_readl(xhci, pm_addr);
4187                 pm_val |= PORT_HLE;
4188                 xhci_writel(xhci, pm_val, pm_addr);
4189                 /* flush write */
4190                 xhci_readl(xhci, pm_addr);
4191         } else {
4192                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4193                 xhci_writel(xhci, pm_val, pm_addr);
4194                 /* flush write */
4195                 xhci_readl(xhci, pm_addr);
4196                 if (udev->usb2_hw_lpm_besl_capable) {
4197                         spin_unlock_irqrestore(&xhci->lock, flags);
4198                         mutex_lock(hcd->bandwidth_mutex);
4199                         xhci_change_max_exit_latency(xhci, udev, 0);
4200                         mutex_unlock(hcd->bandwidth_mutex);
4201                         return 0;
4202                 }
4203         }
4204
4205         spin_unlock_irqrestore(&xhci->lock, flags);
4206         return 0;
4207 }
4208
4209 /* check if a usb2 port supports a given extened capability protocol
4210  * only USB2 ports extended protocol capability values are cached.
4211  * Return 1 if capability is supported
4212  */
4213 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4214                                            unsigned capability)
4215 {
4216         u32 port_offset, port_count;
4217         int i;
4218
4219         for (i = 0; i < xhci->num_ext_caps; i++) {
4220                 if (xhci->ext_caps[i] & capability) {
4221                         /* port offsets starts at 1 */
4222                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4223                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4224                         if (port >= port_offset &&
4225                             port < port_offset + port_count)
4226                                 return 1;
4227                 }
4228         }
4229         return 0;
4230 }
4231
4232 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4233 {
4234         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4235         int             ret;
4236         int             portnum = udev->portnum - 1;
4237
4238         ret = xhci_usb2_software_lpm_test(hcd, udev);
4239         if (!ret) {
4240                 xhci_dbg(xhci, "software LPM test succeed\n");
4241                 if (xhci->hw_lpm_support == 1 &&
4242                     xhci_check_usb2_port_capability(xhci, portnum, XHCI_HLC)) {
4243                         udev->usb2_hw_lpm_capable = 1;
4244                         udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4245                         udev->l1_params.besl = XHCI_DEFAULT_BESL;
4246                         if (xhci_check_usb2_port_capability(xhci, portnum,
4247                                                             XHCI_BLC))
4248                                 udev->usb2_hw_lpm_besl_capable = 1;
4249                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4250                         if (!ret)
4251                                 udev->usb2_hw_lpm_enabled = 1;
4252                 }
4253         }
4254
4255         return 0;
4256 }
4257
4258 #else
4259
4260 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4261                                 struct usb_device *udev, int enable)
4262 {
4263         return 0;
4264 }
4265
4266 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4267 {
4268         return 0;
4269 }
4270
4271 #endif /* CONFIG_PM_RUNTIME */
4272
4273 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4274
4275 #ifdef CONFIG_PM
4276 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4277 static unsigned long long xhci_service_interval_to_ns(
4278                 struct usb_endpoint_descriptor *desc)
4279 {
4280         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4281 }
4282
4283 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4284                 enum usb3_link_state state)
4285 {
4286         unsigned long long sel;
4287         unsigned long long pel;
4288         unsigned int max_sel_pel;
4289         char *state_name;
4290
4291         switch (state) {
4292         case USB3_LPM_U1:
4293                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4294                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4295                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4296                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4297                 state_name = "U1";
4298                 break;
4299         case USB3_LPM_U2:
4300                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4301                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4302                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4303                 state_name = "U2";
4304                 break;
4305         default:
4306                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4307                                 __func__);
4308                 return USB3_LPM_DISABLED;
4309         }
4310
4311         if (sel <= max_sel_pel && pel <= max_sel_pel)
4312                 return USB3_LPM_DEVICE_INITIATED;
4313
4314         if (sel > max_sel_pel)
4315                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4316                                 "due to long SEL %llu ms\n",
4317                                 state_name, sel);
4318         else
4319                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4320                                 "due to long PEL %llu ms\n",
4321                                 state_name, pel);
4322         return USB3_LPM_DISABLED;
4323 }
4324
4325 /* Returns the hub-encoded U1 timeout value.
4326  * The U1 timeout should be the maximum of the following values:
4327  *  - For control endpoints, U1 system exit latency (SEL) * 3
4328  *  - For bulk endpoints, U1 SEL * 5
4329  *  - For interrupt endpoints:
4330  *    - Notification EPs, U1 SEL * 3
4331  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4332  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4333  */
4334 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4335                 struct usb_endpoint_descriptor *desc)
4336 {
4337         unsigned long long timeout_ns;
4338         int ep_type;
4339         int intr_type;
4340
4341         ep_type = usb_endpoint_type(desc);
4342         switch (ep_type) {
4343         case USB_ENDPOINT_XFER_CONTROL:
4344                 timeout_ns = udev->u1_params.sel * 3;
4345                 break;
4346         case USB_ENDPOINT_XFER_BULK:
4347                 timeout_ns = udev->u1_params.sel * 5;
4348                 break;
4349         case USB_ENDPOINT_XFER_INT:
4350                 intr_type = usb_endpoint_interrupt_type(desc);
4351                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4352                         timeout_ns = udev->u1_params.sel * 3;
4353                         break;
4354                 }
4355                 /* Otherwise the calculation is the same as isoc eps */
4356         case USB_ENDPOINT_XFER_ISOC:
4357                 timeout_ns = xhci_service_interval_to_ns(desc);
4358                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4359                 if (timeout_ns < udev->u1_params.sel * 2)
4360                         timeout_ns = udev->u1_params.sel * 2;
4361                 break;
4362         default:
4363                 return 0;
4364         }
4365
4366         /* The U1 timeout is encoded in 1us intervals. */
4367         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4368         /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4369         if (timeout_ns == USB3_LPM_DISABLED)
4370                 timeout_ns++;
4371
4372         /* If the necessary timeout value is bigger than what we can set in the
4373          * USB 3.0 hub, we have to disable hub-initiated U1.
4374          */
4375         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4376                 return timeout_ns;
4377         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4378                         "due to long timeout %llu ms\n", timeout_ns);
4379         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4380 }
4381
4382 /* Returns the hub-encoded U2 timeout value.
4383  * The U2 timeout should be the maximum of:
4384  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4385  *  - largest bInterval of any active periodic endpoint (to avoid going
4386  *    into lower power link states between intervals).
4387  *  - the U2 Exit Latency of the device
4388  */
4389 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4390                 struct usb_endpoint_descriptor *desc)
4391 {
4392         unsigned long long timeout_ns;
4393         unsigned long long u2_del_ns;
4394
4395         timeout_ns = 10 * 1000 * 1000;
4396
4397         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4398                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4399                 timeout_ns = xhci_service_interval_to_ns(desc);
4400
4401         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4402         if (u2_del_ns > timeout_ns)
4403                 timeout_ns = u2_del_ns;
4404
4405         /* The U2 timeout is encoded in 256us intervals */
4406         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4407         /* If the necessary timeout value is bigger than what we can set in the
4408          * USB 3.0 hub, we have to disable hub-initiated U2.
4409          */
4410         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4411                 return timeout_ns;
4412         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4413                         "due to long timeout %llu ms\n", timeout_ns);
4414         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4415 }
4416
4417 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4418                 struct usb_device *udev,
4419                 struct usb_endpoint_descriptor *desc,
4420                 enum usb3_link_state state,
4421                 u16 *timeout)
4422 {
4423         if (state == USB3_LPM_U1) {
4424                 if (xhci->quirks & XHCI_INTEL_HOST)
4425                         return xhci_calculate_intel_u1_timeout(udev, desc);
4426         } else {
4427                 if (xhci->quirks & XHCI_INTEL_HOST)
4428                         return xhci_calculate_intel_u2_timeout(udev, desc);
4429         }
4430
4431         return USB3_LPM_DISABLED;
4432 }
4433
4434 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4435                 struct usb_device *udev,
4436                 struct usb_endpoint_descriptor *desc,
4437                 enum usb3_link_state state,
4438                 u16 *timeout)
4439 {
4440         u16 alt_timeout;
4441
4442         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4443                 desc, state, timeout);
4444
4445         /* If we found we can't enable hub-initiated LPM, or
4446          * the U1 or U2 exit latency was too high to allow
4447          * device-initiated LPM as well, just stop searching.
4448          */
4449         if (alt_timeout == USB3_LPM_DISABLED ||
4450                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4451                 *timeout = alt_timeout;
4452                 return -E2BIG;
4453         }
4454         if (alt_timeout > *timeout)
4455                 *timeout = alt_timeout;
4456         return 0;
4457 }
4458
4459 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4460                 struct usb_device *udev,
4461                 struct usb_host_interface *alt,
4462                 enum usb3_link_state state,
4463                 u16 *timeout)
4464 {
4465         int j;
4466
4467         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4468                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4469                                         &alt->endpoint[j].desc, state, timeout))
4470                         return -E2BIG;
4471                 continue;
4472         }
4473         return 0;
4474 }
4475
4476 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4477                 enum usb3_link_state state)
4478 {
4479         struct usb_device *parent;
4480         unsigned int num_hubs;
4481
4482         if (state == USB3_LPM_U2)
4483                 return 0;
4484
4485         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4486         for (parent = udev->parent, num_hubs = 0; parent->parent;
4487                         parent = parent->parent)
4488                 num_hubs++;
4489
4490         if (num_hubs < 2)
4491                 return 0;
4492
4493         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4494                         " below second-tier hub.\n");
4495         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4496                         "to decrease power consumption.\n");
4497         return -E2BIG;
4498 }
4499
4500 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4501                 struct usb_device *udev,
4502                 enum usb3_link_state state)
4503 {
4504         if (xhci->quirks & XHCI_INTEL_HOST)
4505                 return xhci_check_intel_tier_policy(udev, state);
4506         return -EINVAL;
4507 }
4508
4509 /* Returns the U1 or U2 timeout that should be enabled.
4510  * If the tier check or timeout setting functions return with a non-zero exit
4511  * code, that means the timeout value has been finalized and we shouldn't look
4512  * at any more endpoints.
4513  */
4514 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4515                         struct usb_device *udev, enum usb3_link_state state)
4516 {
4517         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4518         struct usb_host_config *config;
4519         char *state_name;
4520         int i;
4521         u16 timeout = USB3_LPM_DISABLED;
4522
4523         if (state == USB3_LPM_U1)
4524                 state_name = "U1";
4525         else if (state == USB3_LPM_U2)
4526                 state_name = "U2";
4527         else {
4528                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4529                                 state);
4530                 return timeout;
4531         }
4532
4533         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4534                 return timeout;
4535
4536         /* Gather some information about the currently installed configuration
4537          * and alternate interface settings.
4538          */
4539         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4540                         state, &timeout))
4541                 return timeout;
4542
4543         config = udev->actconfig;
4544         if (!config)
4545                 return timeout;
4546
4547         for (i = 0; i < USB_MAXINTERFACES; i++) {
4548                 struct usb_driver *driver;
4549                 struct usb_interface *intf = config->interface[i];
4550
4551                 if (!intf)
4552                         continue;
4553
4554                 /* Check if any currently bound drivers want hub-initiated LPM
4555                  * disabled.
4556                  */
4557                 if (intf->dev.driver) {
4558                         driver = to_usb_driver(intf->dev.driver);
4559                         if (driver && driver->disable_hub_initiated_lpm) {
4560                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4561                                                 "at request of driver %s\n",
4562                                                 state_name, driver->name);
4563                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4564                         }
4565                 }
4566
4567                 /* Not sure how this could happen... */
4568                 if (!intf->cur_altsetting)
4569                         continue;
4570
4571                 if (xhci_update_timeout_for_interface(xhci, udev,
4572                                         intf->cur_altsetting,
4573                                         state, &timeout))
4574                         return timeout;
4575         }
4576         return timeout;
4577 }
4578
4579 static int calculate_max_exit_latency(struct usb_device *udev,
4580                 enum usb3_link_state state_changed,
4581                 u16 hub_encoded_timeout)
4582 {
4583         unsigned long long u1_mel_us = 0;
4584         unsigned long long u2_mel_us = 0;
4585         unsigned long long mel_us = 0;
4586         bool disabling_u1;
4587         bool disabling_u2;
4588         bool enabling_u1;
4589         bool enabling_u2;
4590
4591         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4592                         hub_encoded_timeout == USB3_LPM_DISABLED);
4593         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4594                         hub_encoded_timeout == USB3_LPM_DISABLED);
4595
4596         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4597                         hub_encoded_timeout != USB3_LPM_DISABLED);
4598         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4599                         hub_encoded_timeout != USB3_LPM_DISABLED);
4600
4601         /* If U1 was already enabled and we're not disabling it,
4602          * or we're going to enable U1, account for the U1 max exit latency.
4603          */
4604         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4605                         enabling_u1)
4606                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4607         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4608                         enabling_u2)
4609                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4610
4611         if (u1_mel_us > u2_mel_us)
4612                 mel_us = u1_mel_us;
4613         else
4614                 mel_us = u2_mel_us;
4615         /* xHCI host controller max exit latency field is only 16 bits wide. */
4616         if (mel_us > MAX_EXIT) {
4617                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4618                                 "is too big.\n", mel_us);
4619                 return -E2BIG;
4620         }
4621         return mel_us;
4622 }
4623
4624 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4625 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4626                         struct usb_device *udev, enum usb3_link_state state)
4627 {
4628         struct xhci_hcd *xhci;
4629         u16 hub_encoded_timeout;
4630         int mel;
4631         int ret;
4632
4633         xhci = hcd_to_xhci(hcd);
4634         /* The LPM timeout values are pretty host-controller specific, so don't
4635          * enable hub-initiated timeouts unless the vendor has provided
4636          * information about their timeout algorithm.
4637          */
4638         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4639                         !xhci->devs[udev->slot_id])
4640                 return USB3_LPM_DISABLED;
4641
4642         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4643         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4644         if (mel < 0) {
4645                 /* Max Exit Latency is too big, disable LPM. */
4646                 hub_encoded_timeout = USB3_LPM_DISABLED;
4647                 mel = 0;
4648         }
4649
4650         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4651         if (ret)
4652                 return ret;
4653         return hub_encoded_timeout;
4654 }
4655
4656 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4657                         struct usb_device *udev, enum usb3_link_state state)
4658 {
4659         struct xhci_hcd *xhci;
4660         u16 mel;
4661         int ret;
4662
4663         xhci = hcd_to_xhci(hcd);
4664         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4665                         !xhci->devs[udev->slot_id])
4666                 return 0;
4667
4668         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4669         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4670         if (ret)
4671                 return ret;
4672         return 0;
4673 }
4674 #else /* CONFIG_PM */
4675
4676 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4677                         struct usb_device *udev, enum usb3_link_state state)
4678 {
4679         return USB3_LPM_DISABLED;
4680 }
4681
4682 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4683                         struct usb_device *udev, enum usb3_link_state state)
4684 {
4685         return 0;
4686 }
4687 #endif  /* CONFIG_PM */
4688
4689 /*-------------------------------------------------------------------------*/
4690
4691 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4692  * internal data structures for the device.
4693  */
4694 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4695                         struct usb_tt *tt, gfp_t mem_flags)
4696 {
4697         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4698         struct xhci_virt_device *vdev;
4699         struct xhci_command *config_cmd;
4700         struct xhci_input_control_ctx *ctrl_ctx;
4701         struct xhci_slot_ctx *slot_ctx;
4702         unsigned long flags;
4703         unsigned think_time;
4704         int ret;
4705
4706         /* Ignore root hubs */
4707         if (!hdev->parent)
4708                 return 0;
4709
4710         vdev = xhci->devs[hdev->slot_id];
4711         if (!vdev) {
4712                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4713                 return -EINVAL;
4714         }
4715         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4716         if (!config_cmd) {
4717                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4718                 return -ENOMEM;
4719         }
4720         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4721         if (!ctrl_ctx) {
4722                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4723                                 __func__);
4724                 xhci_free_command(xhci, config_cmd);
4725                 return -ENOMEM;
4726         }
4727
4728         spin_lock_irqsave(&xhci->lock, flags);
4729         if (hdev->speed == USB_SPEED_HIGH &&
4730                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4731                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4732                 xhci_free_command(xhci, config_cmd);
4733                 spin_unlock_irqrestore(&xhci->lock, flags);
4734                 return -ENOMEM;
4735         }
4736
4737         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4738         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4739         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4740         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4741         if (tt->multi)
4742                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4743         if (xhci->hci_version > 0x95) {
4744                 xhci_dbg(xhci, "xHCI version %x needs hub "
4745                                 "TT think time and number of ports\n",
4746                                 (unsigned int) xhci->hci_version);
4747                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4748                 /* Set TT think time - convert from ns to FS bit times.
4749                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4750                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4751                  *
4752                  * xHCI 1.0: this field shall be 0 if the device is not a
4753                  * High-spped hub.
4754                  */
4755                 think_time = tt->think_time;
4756                 if (think_time != 0)
4757                         think_time = (think_time / 666) - 1;
4758                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4759                         slot_ctx->tt_info |=
4760                                 cpu_to_le32(TT_THINK_TIME(think_time));
4761         } else {
4762                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4763                                 "TT think time or number of ports\n",
4764                                 (unsigned int) xhci->hci_version);
4765         }
4766         slot_ctx->dev_state = 0;
4767         spin_unlock_irqrestore(&xhci->lock, flags);
4768
4769         xhci_dbg(xhci, "Set up %s for hub device.\n",
4770                         (xhci->hci_version > 0x95) ?
4771                         "configure endpoint" : "evaluate context");
4772         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4773         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4774
4775         /* Issue and wait for the configure endpoint or
4776          * evaluate context command.
4777          */
4778         if (xhci->hci_version > 0x95)
4779                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4780                                 false, false);
4781         else
4782                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4783                                 true, false);
4784
4785         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4786         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4787
4788         xhci_free_command(xhci, config_cmd);
4789         return ret;
4790 }
4791
4792 int xhci_get_frame(struct usb_hcd *hcd)
4793 {
4794         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4795         /* EHCI mods by the periodic size.  Why? */
4796         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4797 }
4798
4799 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4800 {
4801         struct xhci_hcd         *xhci;
4802         struct device           *dev = hcd->self.controller;
4803         int                     retval;
4804         u32                     temp;
4805
4806         /* Accept arbitrarily long scatter-gather lists */
4807         hcd->self.sg_tablesize = ~0;
4808         /* XHCI controllers don't stop the ep queue on short packets :| */
4809         hcd->self.no_stop_on_short = 1;
4810
4811         if (usb_hcd_is_primary_hcd(hcd)) {
4812                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4813                 if (!xhci)
4814                         return -ENOMEM;
4815                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4816                 xhci->main_hcd = hcd;
4817                 /* Mark the first roothub as being USB 2.0.
4818                  * The xHCI driver will register the USB 3.0 roothub.
4819                  */
4820                 hcd->speed = HCD_USB2;
4821                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4822                 /*
4823                  * USB 2.0 roothub under xHCI has an integrated TT,
4824                  * (rate matching hub) as opposed to having an OHCI/UHCI
4825                  * companion controller.
4826                  */
4827                 hcd->has_tt = 1;
4828         } else {
4829                 /* xHCI private pointer was set in xhci_pci_probe for the second
4830                  * registered roothub.
4831                  */
4832                 xhci = hcd_to_xhci(hcd);
4833                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4834                 if (HCC_64BIT_ADDR(temp)) {
4835                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4836                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4837                 } else {
4838                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4839                 }
4840                 return 0;
4841         }
4842
4843         xhci->cap_regs = hcd->regs;
4844         xhci->op_regs = hcd->regs +
4845                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4846         xhci->run_regs = hcd->regs +
4847                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4848         /* Cache read-only capability registers */
4849         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4850         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4851         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4852         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4853         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4854         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4855         xhci_print_registers(xhci);
4856
4857         get_quirks(dev, xhci);
4858
4859         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4860          * success event after a short transfer. This quirk will ignore such
4861          * spurious event.
4862          */
4863         if (xhci->hci_version > 0x96)
4864                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4865
4866         /* Make sure the HC is halted. */
4867         retval = xhci_halt(xhci);
4868         if (retval)
4869                 goto error;
4870
4871         xhci_dbg(xhci, "Resetting HCD\n");
4872         /* Reset the internal HC memory state and registers. */
4873         retval = xhci_reset(xhci);
4874         if (retval)
4875                 goto error;
4876         xhci_dbg(xhci, "Reset complete\n");
4877
4878         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4879         if (HCC_64BIT_ADDR(temp)) {
4880                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4881                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4882         } else {
4883                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4884         }
4885
4886         xhci_dbg(xhci, "Calling HCD init\n");
4887         /* Initialize HCD and host controller data structures. */
4888         retval = xhci_init(hcd);
4889         if (retval)
4890                 goto error;
4891         xhci_dbg(xhci, "Called HCD init\n");
4892         return 0;
4893 error:
4894         kfree(xhci);
4895         return retval;
4896 }
4897
4898 MODULE_DESCRIPTION(DRIVER_DESC);
4899 MODULE_AUTHOR(DRIVER_AUTHOR);
4900 MODULE_LICENSE("GPL");
4901
4902 static int __init xhci_hcd_init(void)
4903 {
4904         int retval;
4905
4906         retval = xhci_register_pci();
4907         if (retval < 0) {
4908                 pr_debug("Problem registering PCI driver.\n");
4909                 return retval;
4910         }
4911         retval = xhci_register_plat();
4912         if (retval < 0) {
4913                 pr_debug("Problem registering platform driver.\n");
4914                 goto unreg_pci;
4915         }
4916         /*
4917          * Check the compiler generated sizes of structures that must be laid
4918          * out in specific ways for hardware access.
4919          */
4920         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4921         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4922         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4923         /* xhci_device_control has eight fields, and also
4924          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4925          */
4926         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4927         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4928         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4929         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4930         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4931         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4932         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4933         return 0;
4934 unreg_pci:
4935         xhci_unregister_pci();
4936         return retval;
4937 }
4938 module_init(xhci_hcd_init);
4939
4940 static void __exit xhci_hcd_cleanup(void)
4941 {
4942         xhci_unregister_pci();
4943         xhci_unregister_plat();
4944 }
4945 module_exit(xhci_hcd_cleanup);