ARM: OMAP2+: Make sure files with omap initcalls include soc.h
[firefly-linux-kernel-4.4.55.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30
31 #include "xhci.h"
32
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43  * xhci_handshake - spin reading hc until handshake completes or fails
44  * @ptr: address of hc register to be read
45  * @mask: bits to look at in result of read
46  * @done: value of those bits when handshake succeeds
47  * @usec: timeout in microseconds
48  *
49  * Returns negative errno, or zero on success
50  *
51  * Success happens when the "mask" bits have the specified value (hardware
52  * handshake done).  There are two failure modes:  "usec" have passed (major
53  * hardware flakeout), or the register reads as all-ones (hardware removed).
54  */
55 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56                       u32 mask, u32 done, int usec)
57 {
58         u32     result;
59
60         do {
61                 result = xhci_readl(xhci, ptr);
62                 if (result == ~(u32)0)          /* card removed */
63                         return -ENODEV;
64                 result &= mask;
65                 if (result == done)
66                         return 0;
67                 udelay(1);
68                 usec--;
69         } while (usec > 0);
70         return -ETIMEDOUT;
71 }
72
73 /*
74  * Disable interrupts and begin the xHCI halting process.
75  */
76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78         u32 halted;
79         u32 cmd;
80         u32 mask;
81
82         mask = ~(XHCI_IRQS);
83         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84         if (!halted)
85                 mask &= ~CMD_RUN;
86
87         cmd = xhci_readl(xhci, &xhci->op_regs->command);
88         cmd &= mask;
89         xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91
92 /*
93  * Force HC into halt state.
94  *
95  * Disable any IRQs and clear the run/stop bit.
96  * HC will complete any current and actively pipelined transactions, and
97  * should halt within 16 ms of the run/stop bit being cleared.
98  * Read HC Halted bit in the status register to see when the HC is finished.
99  */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102         int ret;
103         xhci_dbg(xhci, "// Halt the HC\n");
104         xhci_quiesce(xhci);
105
106         ret = xhci_handshake(xhci, &xhci->op_regs->status,
107                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108         if (!ret) {
109                 xhci->xhc_state |= XHCI_STATE_HALTED;
110                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111         } else
112                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
113                                 XHCI_MAX_HALT_USEC);
114         return ret;
115 }
116
117 /*
118  * Set the run bit and wait for the host to be running.
119  */
120 static int xhci_start(struct xhci_hcd *xhci)
121 {
122         u32 temp;
123         int ret;
124
125         temp = xhci_readl(xhci, &xhci->op_regs->command);
126         temp |= (CMD_RUN);
127         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128                         temp);
129         xhci_writel(xhci, temp, &xhci->op_regs->command);
130
131         /*
132          * Wait for the HCHalted Status bit to be 0 to indicate the host is
133          * running.
134          */
135         ret = xhci_handshake(xhci, &xhci->op_regs->status,
136                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
137         if (ret == -ETIMEDOUT)
138                 xhci_err(xhci, "Host took too long to start, "
139                                 "waited %u microseconds.\n",
140                                 XHCI_MAX_HALT_USEC);
141         if (!ret)
142                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
143         return ret;
144 }
145
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155         u32 command;
156         u32 state;
157         int ret, i;
158
159         state = xhci_readl(xhci, &xhci->op_regs->status);
160         if ((state & STS_HALT) == 0) {
161                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162                 return 0;
163         }
164
165         xhci_dbg(xhci, "// Reset the HC\n");
166         command = xhci_readl(xhci, &xhci->op_regs->command);
167         command |= CMD_RESET;
168         xhci_writel(xhci, command, &xhci->op_regs->command);
169
170         ret = xhci_handshake(xhci, &xhci->op_regs->command,
171                         CMD_RESET, 0, 10 * 1000 * 1000);
172         if (ret)
173                 return ret;
174
175         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176         /*
177          * xHCI cannot write to any doorbells or operational registers other
178          * than status until the "Controller Not Ready" flag is cleared.
179          */
180         ret = xhci_handshake(xhci, &xhci->op_regs->status,
181                         STS_CNR, 0, 10 * 1000 * 1000);
182
183         for (i = 0; i < 2; ++i) {
184                 xhci->bus_state[i].port_c_suspend = 0;
185                 xhci->bus_state[i].suspended_ports = 0;
186                 xhci->bus_state[i].resuming_ports = 0;
187         }
188
189         return ret;
190 }
191
192 #ifdef CONFIG_PCI
193 static int xhci_free_msi(struct xhci_hcd *xhci)
194 {
195         int i;
196
197         if (!xhci->msix_entries)
198                 return -EINVAL;
199
200         for (i = 0; i < xhci->msix_count; i++)
201                 if (xhci->msix_entries[i].vector)
202                         free_irq(xhci->msix_entries[i].vector,
203                                         xhci_to_hcd(xhci));
204         return 0;
205 }
206
207 /*
208  * Set up MSI
209  */
210 static int xhci_setup_msi(struct xhci_hcd *xhci)
211 {
212         int ret;
213         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
214
215         ret = pci_enable_msi(pdev);
216         if (ret) {
217                 xhci_dbg(xhci, "failed to allocate MSI entry\n");
218                 return ret;
219         }
220
221         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
222                                 0, "xhci_hcd", xhci_to_hcd(xhci));
223         if (ret) {
224                 xhci_dbg(xhci, "disable MSI interrupt\n");
225                 pci_disable_msi(pdev);
226         }
227
228         return ret;
229 }
230
231 /*
232  * Free IRQs
233  * free all IRQs request
234  */
235 static void xhci_free_irq(struct xhci_hcd *xhci)
236 {
237         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
238         int ret;
239
240         /* return if using legacy interrupt */
241         if (xhci_to_hcd(xhci)->irq > 0)
242                 return;
243
244         ret = xhci_free_msi(xhci);
245         if (!ret)
246                 return;
247         if (pdev->irq > 0)
248                 free_irq(pdev->irq, xhci_to_hcd(xhci));
249
250         return;
251 }
252
253 /*
254  * Set up MSI-X
255  */
256 static int xhci_setup_msix(struct xhci_hcd *xhci)
257 {
258         int i, ret = 0;
259         struct usb_hcd *hcd = xhci_to_hcd(xhci);
260         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
261
262         /*
263          * calculate number of msi-x vectors supported.
264          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265          *   with max number of interrupters based on the xhci HCSPARAMS1.
266          * - num_online_cpus: maximum msi-x vectors per CPUs core.
267          *   Add additional 1 vector to ensure always available interrupt.
268          */
269         xhci->msix_count = min(num_online_cpus() + 1,
270                                 HCS_MAX_INTRS(xhci->hcs_params1));
271
272         xhci->msix_entries =
273                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
274                                 GFP_KERNEL);
275         if (!xhci->msix_entries) {
276                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
277                 return -ENOMEM;
278         }
279
280         for (i = 0; i < xhci->msix_count; i++) {
281                 xhci->msix_entries[i].entry = i;
282                 xhci->msix_entries[i].vector = 0;
283         }
284
285         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
286         if (ret) {
287                 xhci_dbg(xhci, "Failed to enable MSI-X\n");
288                 goto free_entries;
289         }
290
291         for (i = 0; i < xhci->msix_count; i++) {
292                 ret = request_irq(xhci->msix_entries[i].vector,
293                                 (irq_handler_t)xhci_msi_irq,
294                                 0, "xhci_hcd", xhci_to_hcd(xhci));
295                 if (ret)
296                         goto disable_msix;
297         }
298
299         hcd->msix_enabled = 1;
300         return ret;
301
302 disable_msix:
303         xhci_dbg(xhci, "disable MSI-X interrupt\n");
304         xhci_free_irq(xhci);
305         pci_disable_msix(pdev);
306 free_entries:
307         kfree(xhci->msix_entries);
308         xhci->msix_entries = NULL;
309         return ret;
310 }
311
312 /* Free any IRQs and disable MSI-X */
313 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
314 {
315         struct usb_hcd *hcd = xhci_to_hcd(xhci);
316         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
317
318         xhci_free_irq(xhci);
319
320         if (xhci->msix_entries) {
321                 pci_disable_msix(pdev);
322                 kfree(xhci->msix_entries);
323                 xhci->msix_entries = NULL;
324         } else {
325                 pci_disable_msi(pdev);
326         }
327
328         hcd->msix_enabled = 0;
329         return;
330 }
331
332 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
333 {
334         int i;
335
336         if (xhci->msix_entries) {
337                 for (i = 0; i < xhci->msix_count; i++)
338                         synchronize_irq(xhci->msix_entries[i].vector);
339         }
340 }
341
342 static int xhci_try_enable_msi(struct usb_hcd *hcd)
343 {
344         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
345         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
346         int ret;
347
348         /*
349          * Some Fresco Logic host controllers advertise MSI, but fail to
350          * generate interrupts.  Don't even try to enable MSI.
351          */
352         if (xhci->quirks & XHCI_BROKEN_MSI)
353                 return 0;
354
355         /* unregister the legacy interrupt */
356         if (hcd->irq)
357                 free_irq(hcd->irq, hcd);
358         hcd->irq = 0;
359
360         ret = xhci_setup_msix(xhci);
361         if (ret)
362                 /* fall back to msi*/
363                 ret = xhci_setup_msi(xhci);
364
365         if (!ret)
366                 /* hcd->irq is 0, we have MSI */
367                 return 0;
368
369         if (!pdev->irq) {
370                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
371                 return -EINVAL;
372         }
373
374         /* fall back to legacy interrupt*/
375         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
376                         hcd->irq_descr, hcd);
377         if (ret) {
378                 xhci_err(xhci, "request interrupt %d failed\n",
379                                 pdev->irq);
380                 return ret;
381         }
382         hcd->irq = pdev->irq;
383         return 0;
384 }
385
386 #else
387
388 static int xhci_try_enable_msi(struct usb_hcd *hcd)
389 {
390         return 0;
391 }
392
393 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
394 {
395 }
396
397 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
398 {
399 }
400
401 #endif
402
403 static void compliance_mode_recovery(unsigned long arg)
404 {
405         struct xhci_hcd *xhci;
406         struct usb_hcd *hcd;
407         u32 temp;
408         int i;
409
410         xhci = (struct xhci_hcd *)arg;
411
412         for (i = 0; i < xhci->num_usb3_ports; i++) {
413                 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
414                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
415                         /*
416                          * Compliance Mode Detected. Letting USB Core
417                          * handle the Warm Reset
418                          */
419                         xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
420                                         i + 1);
421                         xhci_dbg(xhci, "Attempting Recovery routine!\n");
422                         hcd = xhci->shared_hcd;
423
424                         if (hcd->state == HC_STATE_SUSPENDED)
425                                 usb_hcd_resume_root_hub(hcd);
426
427                         usb_hcd_poll_rh_status(hcd);
428                 }
429         }
430
431         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
432                 mod_timer(&xhci->comp_mode_recovery_timer,
433                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
434 }
435
436 /*
437  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
438  * that causes ports behind that hardware to enter compliance mode sometimes.
439  * The quirk creates a timer that polls every 2 seconds the link state of
440  * each host controller's port and recovers it by issuing a Warm reset
441  * if Compliance mode is detected, otherwise the port will become "dead" (no
442  * device connections or disconnections will be detected anymore). Becasue no
443  * status event is generated when entering compliance mode (per xhci spec),
444  * this quirk is needed on systems that have the failing hardware installed.
445  */
446 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
447 {
448         xhci->port_status_u0 = 0;
449         init_timer(&xhci->comp_mode_recovery_timer);
450
451         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
452         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
453         xhci->comp_mode_recovery_timer.expires = jiffies +
454                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
455
456         set_timer_slack(&xhci->comp_mode_recovery_timer,
457                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
458         add_timer(&xhci->comp_mode_recovery_timer);
459         xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
460 }
461
462 /*
463  * This function identifies the systems that have installed the SN65LVPE502CP
464  * USB3.0 re-driver and that need the Compliance Mode Quirk.
465  * Systems:
466  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
467  */
468 static bool compliance_mode_recovery_timer_quirk_check(void)
469 {
470         const char *dmi_product_name, *dmi_sys_vendor;
471
472         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
473         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
474         if (!dmi_product_name || !dmi_sys_vendor)
475                 return false;
476
477         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
478                 return false;
479
480         if (strstr(dmi_product_name, "Z420") ||
481                         strstr(dmi_product_name, "Z620") ||
482                         strstr(dmi_product_name, "Z820") ||
483                         strstr(dmi_product_name, "Z1 Workstation"))
484                 return true;
485
486         return false;
487 }
488
489 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
490 {
491         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
492 }
493
494
495 /*
496  * Initialize memory for HCD and xHC (one-time init).
497  *
498  * Program the PAGESIZE register, initialize the device context array, create
499  * device contexts (?), set up a command ring segment (or two?), create event
500  * ring (one for now).
501  */
502 int xhci_init(struct usb_hcd *hcd)
503 {
504         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
505         int retval = 0;
506
507         xhci_dbg(xhci, "xhci_init\n");
508         spin_lock_init(&xhci->lock);
509         if (xhci->hci_version == 0x95 && link_quirk) {
510                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
511                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
512         } else {
513                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
514         }
515         retval = xhci_mem_init(xhci, GFP_KERNEL);
516         xhci_dbg(xhci, "Finished xhci_init\n");
517
518         /* Initializing Compliance Mode Recovery Data If Needed */
519         if (compliance_mode_recovery_timer_quirk_check()) {
520                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
521                 compliance_mode_recovery_timer_init(xhci);
522         }
523
524         return retval;
525 }
526
527 /*-------------------------------------------------------------------------*/
528
529
530 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
531 static void xhci_event_ring_work(unsigned long arg)
532 {
533         unsigned long flags;
534         int temp;
535         u64 temp_64;
536         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
537         int i, j;
538
539         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
540
541         spin_lock_irqsave(&xhci->lock, flags);
542         temp = xhci_readl(xhci, &xhci->op_regs->status);
543         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
544         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
545                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
546                 xhci_dbg(xhci, "HW died, polling stopped.\n");
547                 spin_unlock_irqrestore(&xhci->lock, flags);
548                 return;
549         }
550
551         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
552         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
553         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
554         xhci->error_bitmask = 0;
555         xhci_dbg(xhci, "Event ring:\n");
556         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
557         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
558         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
559         temp_64 &= ~ERST_PTR_MASK;
560         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
561         xhci_dbg(xhci, "Command ring:\n");
562         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
563         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
564         xhci_dbg_cmd_ptrs(xhci);
565         for (i = 0; i < MAX_HC_SLOTS; ++i) {
566                 if (!xhci->devs[i])
567                         continue;
568                 for (j = 0; j < 31; ++j) {
569                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
570                 }
571         }
572         spin_unlock_irqrestore(&xhci->lock, flags);
573
574         if (!xhci->zombie)
575                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
576         else
577                 xhci_dbg(xhci, "Quit polling the event ring.\n");
578 }
579 #endif
580
581 static int xhci_run_finished(struct xhci_hcd *xhci)
582 {
583         if (xhci_start(xhci)) {
584                 xhci_halt(xhci);
585                 return -ENODEV;
586         }
587         xhci->shared_hcd->state = HC_STATE_RUNNING;
588         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
589
590         if (xhci->quirks & XHCI_NEC_HOST)
591                 xhci_ring_cmd_db(xhci);
592
593         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
594         return 0;
595 }
596
597 /*
598  * Start the HC after it was halted.
599  *
600  * This function is called by the USB core when the HC driver is added.
601  * Its opposite is xhci_stop().
602  *
603  * xhci_init() must be called once before this function can be called.
604  * Reset the HC, enable device slot contexts, program DCBAAP, and
605  * set command ring pointer and event ring pointer.
606  *
607  * Setup MSI-X vectors and enable interrupts.
608  */
609 int xhci_run(struct usb_hcd *hcd)
610 {
611         u32 temp;
612         u64 temp_64;
613         int ret;
614         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
615
616         /* Start the xHCI host controller running only after the USB 2.0 roothub
617          * is setup.
618          */
619
620         hcd->uses_new_polling = 1;
621         if (!usb_hcd_is_primary_hcd(hcd))
622                 return xhci_run_finished(xhci);
623
624         xhci_dbg(xhci, "xhci_run\n");
625
626         ret = xhci_try_enable_msi(hcd);
627         if (ret)
628                 return ret;
629
630 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
631         init_timer(&xhci->event_ring_timer);
632         xhci->event_ring_timer.data = (unsigned long) xhci;
633         xhci->event_ring_timer.function = xhci_event_ring_work;
634         /* Poll the event ring */
635         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
636         xhci->zombie = 0;
637         xhci_dbg(xhci, "Setting event ring polling timer\n");
638         add_timer(&xhci->event_ring_timer);
639 #endif
640
641         xhci_dbg(xhci, "Command ring memory map follows:\n");
642         xhci_debug_ring(xhci, xhci->cmd_ring);
643         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
644         xhci_dbg_cmd_ptrs(xhci);
645
646         xhci_dbg(xhci, "ERST memory map follows:\n");
647         xhci_dbg_erst(xhci, &xhci->erst);
648         xhci_dbg(xhci, "Event ring:\n");
649         xhci_debug_ring(xhci, xhci->event_ring);
650         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
651         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
652         temp_64 &= ~ERST_PTR_MASK;
653         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
654
655         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
656         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
657         temp &= ~ER_IRQ_INTERVAL_MASK;
658         temp |= (u32) 160;
659         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
660
661         /* Set the HCD state before we enable the irqs */
662         temp = xhci_readl(xhci, &xhci->op_regs->command);
663         temp |= (CMD_EIE);
664         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
665                         temp);
666         xhci_writel(xhci, temp, &xhci->op_regs->command);
667
668         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
669         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
670                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
671         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
672                         &xhci->ir_set->irq_pending);
673         xhci_print_ir_set(xhci, 0);
674
675         if (xhci->quirks & XHCI_NEC_HOST)
676                 xhci_queue_vendor_command(xhci, 0, 0, 0,
677                                 TRB_TYPE(TRB_NEC_GET_FW));
678
679         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
680         return 0;
681 }
682
683 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
684 {
685         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
686
687         spin_lock_irq(&xhci->lock);
688         xhci_halt(xhci);
689
690         /* The shared_hcd is going to be deallocated shortly (the USB core only
691          * calls this function when allocation fails in usb_add_hcd(), or
692          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
693          */
694         xhci->shared_hcd = NULL;
695         spin_unlock_irq(&xhci->lock);
696 }
697
698 /*
699  * Stop xHCI driver.
700  *
701  * This function is called by the USB core when the HC driver is removed.
702  * Its opposite is xhci_run().
703  *
704  * Disable device contexts, disable IRQs, and quiesce the HC.
705  * Reset the HC, finish any completed transactions, and cleanup memory.
706  */
707 void xhci_stop(struct usb_hcd *hcd)
708 {
709         u32 temp;
710         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
711
712         if (!usb_hcd_is_primary_hcd(hcd)) {
713                 xhci_only_stop_hcd(xhci->shared_hcd);
714                 return;
715         }
716
717         spin_lock_irq(&xhci->lock);
718         /* Make sure the xHC is halted for a USB3 roothub
719          * (xhci_stop() could be called as part of failed init).
720          */
721         xhci_halt(xhci);
722         xhci_reset(xhci);
723         spin_unlock_irq(&xhci->lock);
724
725         xhci_cleanup_msix(xhci);
726
727 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
728         /* Tell the event ring poll function not to reschedule */
729         xhci->zombie = 1;
730         del_timer_sync(&xhci->event_ring_timer);
731 #endif
732
733         /* Deleting Compliance Mode Recovery Timer */
734         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
735                         (!(xhci_all_ports_seen_u0(xhci))))
736                 del_timer_sync(&xhci->comp_mode_recovery_timer);
737
738         if (xhci->quirks & XHCI_AMD_PLL_FIX)
739                 usb_amd_dev_put();
740
741         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
742         temp = xhci_readl(xhci, &xhci->op_regs->status);
743         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
744         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
745         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
746                         &xhci->ir_set->irq_pending);
747         xhci_print_ir_set(xhci, 0);
748
749         xhci_dbg(xhci, "cleaning up memory\n");
750         xhci_mem_cleanup(xhci);
751         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
752                     xhci_readl(xhci, &xhci->op_regs->status));
753 }
754
755 /*
756  * Shutdown HC (not bus-specific)
757  *
758  * This is called when the machine is rebooting or halting.  We assume that the
759  * machine will be powered off, and the HC's internal state will be reset.
760  * Don't bother to free memory.
761  *
762  * This will only ever be called with the main usb_hcd (the USB3 roothub).
763  */
764 void xhci_shutdown(struct usb_hcd *hcd)
765 {
766         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
767
768         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
769                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
770
771         spin_lock_irq(&xhci->lock);
772         xhci_halt(xhci);
773         spin_unlock_irq(&xhci->lock);
774
775         xhci_cleanup_msix(xhci);
776
777         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
778                     xhci_readl(xhci, &xhci->op_regs->status));
779 }
780
781 #ifdef CONFIG_PM
782 static void xhci_save_registers(struct xhci_hcd *xhci)
783 {
784         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
785         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
786         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
787         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
788         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
789         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
790         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
791         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
792         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
793 }
794
795 static void xhci_restore_registers(struct xhci_hcd *xhci)
796 {
797         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
798         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
799         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
800         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
801         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
802         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
803         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
804         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
805         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
806 }
807
808 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
809 {
810         u64     val_64;
811
812         /* step 2: initialize command ring buffer */
813         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
814         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
815                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
816                                       xhci->cmd_ring->dequeue) &
817                  (u64) ~CMD_RING_RSVD_BITS) |
818                 xhci->cmd_ring->cycle_state;
819         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
820                         (long unsigned long) val_64);
821         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
822 }
823
824 /*
825  * The whole command ring must be cleared to zero when we suspend the host.
826  *
827  * The host doesn't save the command ring pointer in the suspend well, so we
828  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
829  * aligned, because of the reserved bits in the command ring dequeue pointer
830  * register.  Therefore, we can't just set the dequeue pointer back in the
831  * middle of the ring (TRBs are 16-byte aligned).
832  */
833 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
834 {
835         struct xhci_ring *ring;
836         struct xhci_segment *seg;
837
838         ring = xhci->cmd_ring;
839         seg = ring->deq_seg;
840         do {
841                 memset(seg->trbs, 0,
842                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
843                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
844                         cpu_to_le32(~TRB_CYCLE);
845                 seg = seg->next;
846         } while (seg != ring->deq_seg);
847
848         /* Reset the software enqueue and dequeue pointers */
849         ring->deq_seg = ring->first_seg;
850         ring->dequeue = ring->first_seg->trbs;
851         ring->enq_seg = ring->deq_seg;
852         ring->enqueue = ring->dequeue;
853
854         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
855         /*
856          * Ring is now zeroed, so the HW should look for change of ownership
857          * when the cycle bit is set to 1.
858          */
859         ring->cycle_state = 1;
860
861         /*
862          * Reset the hardware dequeue pointer.
863          * Yes, this will need to be re-written after resume, but we're paranoid
864          * and want to make sure the hardware doesn't access bogus memory
865          * because, say, the BIOS or an SMI started the host without changing
866          * the command ring pointers.
867          */
868         xhci_set_cmd_ring_deq(xhci);
869 }
870
871 /*
872  * Stop HC (not bus-specific)
873  *
874  * This is called when the machine transition into S3/S4 mode.
875  *
876  */
877 int xhci_suspend(struct xhci_hcd *xhci)
878 {
879         int                     rc = 0;
880         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
881         u32                     command;
882
883         if (hcd->state != HC_STATE_SUSPENDED ||
884                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
885                 return -EINVAL;
886
887         spin_lock_irq(&xhci->lock);
888         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
889         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
890         /* step 1: stop endpoint */
891         /* skipped assuming that port suspend has done */
892
893         /* step 2: clear Run/Stop bit */
894         command = xhci_readl(xhci, &xhci->op_regs->command);
895         command &= ~CMD_RUN;
896         xhci_writel(xhci, command, &xhci->op_regs->command);
897         if (xhci_handshake(xhci, &xhci->op_regs->status,
898                       STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
899                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
900                 spin_unlock_irq(&xhci->lock);
901                 return -ETIMEDOUT;
902         }
903         xhci_clear_command_ring(xhci);
904
905         /* step 3: save registers */
906         xhci_save_registers(xhci);
907
908         /* step 4: set CSS flag */
909         command = xhci_readl(xhci, &xhci->op_regs->command);
910         command |= CMD_CSS;
911         xhci_writel(xhci, command, &xhci->op_regs->command);
912         if (xhci_handshake(xhci, &xhci->op_regs->status,
913                                 STS_SAVE, 0, 10 * 1000)) {
914                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
915                 spin_unlock_irq(&xhci->lock);
916                 return -ETIMEDOUT;
917         }
918         spin_unlock_irq(&xhci->lock);
919
920         /*
921          * Deleting Compliance Mode Recovery Timer because the xHCI Host
922          * is about to be suspended.
923          */
924         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
925                         (!(xhci_all_ports_seen_u0(xhci)))) {
926                 del_timer_sync(&xhci->comp_mode_recovery_timer);
927                 xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
928         }
929
930         /* step 5: remove core well power */
931         /* synchronize irq when using MSI-X */
932         xhci_msix_sync_irqs(xhci);
933
934         return rc;
935 }
936
937 /*
938  * start xHC (not bus-specific)
939  *
940  * This is called when the machine transition from S3/S4 mode.
941  *
942  */
943 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
944 {
945         u32                     command, temp = 0;
946         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
947         struct usb_hcd          *secondary_hcd;
948         int                     retval = 0;
949
950         /* Wait a bit if either of the roothubs need to settle from the
951          * transition into bus suspend.
952          */
953         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
954                         time_before(jiffies,
955                                 xhci->bus_state[1].next_statechange))
956                 msleep(100);
957
958         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
959         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
960
961         spin_lock_irq(&xhci->lock);
962         if (xhci->quirks & XHCI_RESET_ON_RESUME)
963                 hibernated = true;
964
965         if (!hibernated) {
966                 /* step 1: restore register */
967                 xhci_restore_registers(xhci);
968                 /* step 2: initialize command ring buffer */
969                 xhci_set_cmd_ring_deq(xhci);
970                 /* step 3: restore state and start state*/
971                 /* step 3: set CRS flag */
972                 command = xhci_readl(xhci, &xhci->op_regs->command);
973                 command |= CMD_CRS;
974                 xhci_writel(xhci, command, &xhci->op_regs->command);
975                 if (xhci_handshake(xhci, &xhci->op_regs->status,
976                               STS_RESTORE, 0, 10 * 1000)) {
977                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
978                         spin_unlock_irq(&xhci->lock);
979                         return -ETIMEDOUT;
980                 }
981                 temp = xhci_readl(xhci, &xhci->op_regs->status);
982         }
983
984         /* If restore operation fails, re-initialize the HC during resume */
985         if ((temp & STS_SRE) || hibernated) {
986                 /* Let the USB core know _both_ roothubs lost power. */
987                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
988                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
989
990                 xhci_dbg(xhci, "Stop HCD\n");
991                 xhci_halt(xhci);
992                 xhci_reset(xhci);
993                 spin_unlock_irq(&xhci->lock);
994                 xhci_cleanup_msix(xhci);
995
996 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
997                 /* Tell the event ring poll function not to reschedule */
998                 xhci->zombie = 1;
999                 del_timer_sync(&xhci->event_ring_timer);
1000 #endif
1001
1002                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1003                 temp = xhci_readl(xhci, &xhci->op_regs->status);
1004                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1005                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1006                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1007                                 &xhci->ir_set->irq_pending);
1008                 xhci_print_ir_set(xhci, 0);
1009
1010                 xhci_dbg(xhci, "cleaning up memory\n");
1011                 xhci_mem_cleanup(xhci);
1012                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1013                             xhci_readl(xhci, &xhci->op_regs->status));
1014
1015                 /* USB core calls the PCI reinit and start functions twice:
1016                  * first with the primary HCD, and then with the secondary HCD.
1017                  * If we don't do the same, the host will never be started.
1018                  */
1019                 if (!usb_hcd_is_primary_hcd(hcd))
1020                         secondary_hcd = hcd;
1021                 else
1022                         secondary_hcd = xhci->shared_hcd;
1023
1024                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1025                 retval = xhci_init(hcd->primary_hcd);
1026                 if (retval)
1027                         return retval;
1028                 xhci_dbg(xhci, "Start the primary HCD\n");
1029                 retval = xhci_run(hcd->primary_hcd);
1030                 if (!retval) {
1031                         xhci_dbg(xhci, "Start the secondary HCD\n");
1032                         retval = xhci_run(secondary_hcd);
1033                 }
1034                 hcd->state = HC_STATE_SUSPENDED;
1035                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1036                 goto done;
1037         }
1038
1039         /* step 4: set Run/Stop bit */
1040         command = xhci_readl(xhci, &xhci->op_regs->command);
1041         command |= CMD_RUN;
1042         xhci_writel(xhci, command, &xhci->op_regs->command);
1043         xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1044                   0, 250 * 1000);
1045
1046         /* step 5: walk topology and initialize portsc,
1047          * portpmsc and portli
1048          */
1049         /* this is done in bus_resume */
1050
1051         /* step 6: restart each of the previously
1052          * Running endpoints by ringing their doorbells
1053          */
1054
1055         spin_unlock_irq(&xhci->lock);
1056
1057  done:
1058         if (retval == 0) {
1059                 usb_hcd_resume_root_hub(hcd);
1060                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1061         }
1062
1063         /*
1064          * If system is subject to the Quirk, Compliance Mode Timer needs to
1065          * be re-initialized Always after a system resume. Ports are subject
1066          * to suffer the Compliance Mode issue again. It doesn't matter if
1067          * ports have entered previously to U0 before system's suspension.
1068          */
1069         if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1070                 compliance_mode_recovery_timer_init(xhci);
1071
1072         return retval;
1073 }
1074 #endif  /* CONFIG_PM */
1075
1076 /*-------------------------------------------------------------------------*/
1077
1078 /**
1079  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1080  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1081  * value to right shift 1 for the bitmask.
1082  *
1083  * Index  = (epnum * 2) + direction - 1,
1084  * where direction = 0 for OUT, 1 for IN.
1085  * For control endpoints, the IN index is used (OUT index is unused), so
1086  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1087  */
1088 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1089 {
1090         unsigned int index;
1091         if (usb_endpoint_xfer_control(desc))
1092                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1093         else
1094                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1095                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1096         return index;
1097 }
1098
1099 /* Find the flag for this endpoint (for use in the control context).  Use the
1100  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1101  * bit 1, etc.
1102  */
1103 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1104 {
1105         return 1 << (xhci_get_endpoint_index(desc) + 1);
1106 }
1107
1108 /* Find the flag for this endpoint (for use in the control context).  Use the
1109  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1110  * bit 1, etc.
1111  */
1112 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1113 {
1114         return 1 << (ep_index + 1);
1115 }
1116
1117 /* Compute the last valid endpoint context index.  Basically, this is the
1118  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1119  * we find the most significant bit set in the added contexts flags.
1120  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1121  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1122  */
1123 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1124 {
1125         return fls(added_ctxs) - 1;
1126 }
1127
1128 /* Returns 1 if the arguments are OK;
1129  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1130  */
1131 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1132                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1133                 const char *func) {
1134         struct xhci_hcd *xhci;
1135         struct xhci_virt_device *virt_dev;
1136
1137         if (!hcd || (check_ep && !ep) || !udev) {
1138                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1139                                 func);
1140                 return -EINVAL;
1141         }
1142         if (!udev->parent) {
1143                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1144                                 func);
1145                 return 0;
1146         }
1147
1148         xhci = hcd_to_xhci(hcd);
1149         if (xhci->xhc_state & XHCI_STATE_HALTED)
1150                 return -ENODEV;
1151
1152         if (check_virt_dev) {
1153                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1154                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
1155                                                 "device\n", func);
1156                         return -EINVAL;
1157                 }
1158
1159                 virt_dev = xhci->devs[udev->slot_id];
1160                 if (virt_dev->udev != udev) {
1161                         printk(KERN_DEBUG "xHCI %s called with udev and "
1162                                           "virt_dev does not match\n", func);
1163                         return -EINVAL;
1164                 }
1165         }
1166
1167         return 1;
1168 }
1169
1170 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1171                 struct usb_device *udev, struct xhci_command *command,
1172                 bool ctx_change, bool must_succeed);
1173
1174 /*
1175  * Full speed devices may have a max packet size greater than 8 bytes, but the
1176  * USB core doesn't know that until it reads the first 8 bytes of the
1177  * descriptor.  If the usb_device's max packet size changes after that point,
1178  * we need to issue an evaluate context command and wait on it.
1179  */
1180 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1181                 unsigned int ep_index, struct urb *urb)
1182 {
1183         struct xhci_container_ctx *in_ctx;
1184         struct xhci_container_ctx *out_ctx;
1185         struct xhci_input_control_ctx *ctrl_ctx;
1186         struct xhci_ep_ctx *ep_ctx;
1187         int max_packet_size;
1188         int hw_max_packet_size;
1189         int ret = 0;
1190
1191         out_ctx = xhci->devs[slot_id]->out_ctx;
1192         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1193         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1194         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1195         if (hw_max_packet_size != max_packet_size) {
1196                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1197                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1198                                 max_packet_size);
1199                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1200                                 hw_max_packet_size);
1201                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1202
1203                 /* Set up the modified control endpoint 0 */
1204                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1205                                 xhci->devs[slot_id]->out_ctx, ep_index);
1206                 in_ctx = xhci->devs[slot_id]->in_ctx;
1207                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1208                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1209                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1210
1211                 /* Set up the input context flags for the command */
1212                 /* FIXME: This won't work if a non-default control endpoint
1213                  * changes max packet sizes.
1214                  */
1215                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1216                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1217                 ctrl_ctx->drop_flags = 0;
1218
1219                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1220                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1221                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1222                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1223
1224                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1225                                 true, false);
1226
1227                 /* Clean up the input context for later use by bandwidth
1228                  * functions.
1229                  */
1230                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1231         }
1232         return ret;
1233 }
1234
1235 /*
1236  * non-error returns are a promise to giveback() the urb later
1237  * we drop ownership so next owner (or urb unlink) can get it
1238  */
1239 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1240 {
1241         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1242         struct xhci_td *buffer;
1243         unsigned long flags;
1244         int ret = 0;
1245         unsigned int slot_id, ep_index;
1246         struct urb_priv *urb_priv;
1247         int size, i;
1248
1249         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1250                                         true, true, __func__) <= 0)
1251                 return -EINVAL;
1252
1253         slot_id = urb->dev->slot_id;
1254         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1255
1256         if (!HCD_HW_ACCESSIBLE(hcd)) {
1257                 if (!in_interrupt())
1258                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1259                 ret = -ESHUTDOWN;
1260                 goto exit;
1261         }
1262
1263         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1264                 size = urb->number_of_packets;
1265         else
1266                 size = 1;
1267
1268         urb_priv = kzalloc(sizeof(struct urb_priv) +
1269                                   size * sizeof(struct xhci_td *), mem_flags);
1270         if (!urb_priv)
1271                 return -ENOMEM;
1272
1273         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1274         if (!buffer) {
1275                 kfree(urb_priv);
1276                 return -ENOMEM;
1277         }
1278
1279         for (i = 0; i < size; i++) {
1280                 urb_priv->td[i] = buffer;
1281                 buffer++;
1282         }
1283
1284         urb_priv->length = size;
1285         urb_priv->td_cnt = 0;
1286         urb->hcpriv = urb_priv;
1287
1288         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1289                 /* Check to see if the max packet size for the default control
1290                  * endpoint changed during FS device enumeration
1291                  */
1292                 if (urb->dev->speed == USB_SPEED_FULL) {
1293                         ret = xhci_check_maxpacket(xhci, slot_id,
1294                                         ep_index, urb);
1295                         if (ret < 0) {
1296                                 xhci_urb_free_priv(xhci, urb_priv);
1297                                 urb->hcpriv = NULL;
1298                                 return ret;
1299                         }
1300                 }
1301
1302                 /* We have a spinlock and interrupts disabled, so we must pass
1303                  * atomic context to this function, which may allocate memory.
1304                  */
1305                 spin_lock_irqsave(&xhci->lock, flags);
1306                 if (xhci->xhc_state & XHCI_STATE_DYING)
1307                         goto dying;
1308                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1309                                 slot_id, ep_index);
1310                 if (ret)
1311                         goto free_priv;
1312                 spin_unlock_irqrestore(&xhci->lock, flags);
1313         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1314                 spin_lock_irqsave(&xhci->lock, flags);
1315                 if (xhci->xhc_state & XHCI_STATE_DYING)
1316                         goto dying;
1317                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1318                                 EP_GETTING_STREAMS) {
1319                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1320                                         "is transitioning to using streams.\n");
1321                         ret = -EINVAL;
1322                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1323                                 EP_GETTING_NO_STREAMS) {
1324                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1325                                         "is transitioning to "
1326                                         "not having streams.\n");
1327                         ret = -EINVAL;
1328                 } else {
1329                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1330                                         slot_id, ep_index);
1331                 }
1332                 if (ret)
1333                         goto free_priv;
1334                 spin_unlock_irqrestore(&xhci->lock, flags);
1335         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1336                 spin_lock_irqsave(&xhci->lock, flags);
1337                 if (xhci->xhc_state & XHCI_STATE_DYING)
1338                         goto dying;
1339                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1340                                 slot_id, ep_index);
1341                 if (ret)
1342                         goto free_priv;
1343                 spin_unlock_irqrestore(&xhci->lock, flags);
1344         } else {
1345                 spin_lock_irqsave(&xhci->lock, flags);
1346                 if (xhci->xhc_state & XHCI_STATE_DYING)
1347                         goto dying;
1348                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1349                                 slot_id, ep_index);
1350                 if (ret)
1351                         goto free_priv;
1352                 spin_unlock_irqrestore(&xhci->lock, flags);
1353         }
1354 exit:
1355         return ret;
1356 dying:
1357         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1358                         "non-responsive xHCI host.\n",
1359                         urb->ep->desc.bEndpointAddress, urb);
1360         ret = -ESHUTDOWN;
1361 free_priv:
1362         xhci_urb_free_priv(xhci, urb_priv);
1363         urb->hcpriv = NULL;
1364         spin_unlock_irqrestore(&xhci->lock, flags);
1365         return ret;
1366 }
1367
1368 /* Get the right ring for the given URB.
1369  * If the endpoint supports streams, boundary check the URB's stream ID.
1370  * If the endpoint doesn't support streams, return the singular endpoint ring.
1371  */
1372 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1373                 struct urb *urb)
1374 {
1375         unsigned int slot_id;
1376         unsigned int ep_index;
1377         unsigned int stream_id;
1378         struct xhci_virt_ep *ep;
1379
1380         slot_id = urb->dev->slot_id;
1381         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1382         stream_id = urb->stream_id;
1383         ep = &xhci->devs[slot_id]->eps[ep_index];
1384         /* Common case: no streams */
1385         if (!(ep->ep_state & EP_HAS_STREAMS))
1386                 return ep->ring;
1387
1388         if (stream_id == 0) {
1389                 xhci_warn(xhci,
1390                                 "WARN: Slot ID %u, ep index %u has streams, "
1391                                 "but URB has no stream ID.\n",
1392                                 slot_id, ep_index);
1393                 return NULL;
1394         }
1395
1396         if (stream_id < ep->stream_info->num_streams)
1397                 return ep->stream_info->stream_rings[stream_id];
1398
1399         xhci_warn(xhci,
1400                         "WARN: Slot ID %u, ep index %u has "
1401                         "stream IDs 1 to %u allocated, "
1402                         "but stream ID %u is requested.\n",
1403                         slot_id, ep_index,
1404                         ep->stream_info->num_streams - 1,
1405                         stream_id);
1406         return NULL;
1407 }
1408
1409 /*
1410  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1411  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1412  * should pick up where it left off in the TD, unless a Set Transfer Ring
1413  * Dequeue Pointer is issued.
1414  *
1415  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1416  * the ring.  Since the ring is a contiguous structure, they can't be physically
1417  * removed.  Instead, there are two options:
1418  *
1419  *  1) If the HC is in the middle of processing the URB to be canceled, we
1420  *     simply move the ring's dequeue pointer past those TRBs using the Set
1421  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1422  *     when drivers timeout on the last submitted URB and attempt to cancel.
1423  *
1424  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1425  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1426  *     HC will need to invalidate the any TRBs it has cached after the stop
1427  *     endpoint command, as noted in the xHCI 0.95 errata.
1428  *
1429  *  3) The TD may have completed by the time the Stop Endpoint Command
1430  *     completes, so software needs to handle that case too.
1431  *
1432  * This function should protect against the TD enqueueing code ringing the
1433  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1434  * It also needs to account for multiple cancellations on happening at the same
1435  * time for the same endpoint.
1436  *
1437  * Note that this function can be called in any context, or so says
1438  * usb_hcd_unlink_urb()
1439  */
1440 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1441 {
1442         unsigned long flags;
1443         int ret, i;
1444         u32 temp;
1445         struct xhci_hcd *xhci;
1446         struct urb_priv *urb_priv;
1447         struct xhci_td *td;
1448         unsigned int ep_index;
1449         struct xhci_ring *ep_ring;
1450         struct xhci_virt_ep *ep;
1451
1452         xhci = hcd_to_xhci(hcd);
1453         spin_lock_irqsave(&xhci->lock, flags);
1454         /* Make sure the URB hasn't completed or been unlinked already */
1455         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1456         if (ret || !urb->hcpriv)
1457                 goto done;
1458         temp = xhci_readl(xhci, &xhci->op_regs->status);
1459         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1460                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1461                 urb_priv = urb->hcpriv;
1462                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1463                         td = urb_priv->td[i];
1464                         if (!list_empty(&td->td_list))
1465                                 list_del_init(&td->td_list);
1466                         if (!list_empty(&td->cancelled_td_list))
1467                                 list_del_init(&td->cancelled_td_list);
1468                 }
1469
1470                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1471                 spin_unlock_irqrestore(&xhci->lock, flags);
1472                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1473                 xhci_urb_free_priv(xhci, urb_priv);
1474                 return ret;
1475         }
1476         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1477                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1478                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1479                                 "non-responsive xHCI host.\n",
1480                                 urb->ep->desc.bEndpointAddress, urb);
1481                 /* Let the stop endpoint command watchdog timer (which set this
1482                  * state) finish cleaning up the endpoint TD lists.  We must
1483                  * have caught it in the middle of dropping a lock and giving
1484                  * back an URB.
1485                  */
1486                 goto done;
1487         }
1488
1489         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1490         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1491         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1492         if (!ep_ring) {
1493                 ret = -EINVAL;
1494                 goto done;
1495         }
1496
1497         urb_priv = urb->hcpriv;
1498         i = urb_priv->td_cnt;
1499         if (i < urb_priv->length)
1500                 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1501                                 "starting at offset 0x%llx\n",
1502                                 urb, urb->dev->devpath,
1503                                 urb->ep->desc.bEndpointAddress,
1504                                 (unsigned long long) xhci_trb_virt_to_dma(
1505                                         urb_priv->td[i]->start_seg,
1506                                         urb_priv->td[i]->first_trb));
1507
1508         for (; i < urb_priv->length; i++) {
1509                 td = urb_priv->td[i];
1510                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1511         }
1512
1513         /* Queue a stop endpoint command, but only if this is
1514          * the first cancellation to be handled.
1515          */
1516         if (!(ep->ep_state & EP_HALT_PENDING)) {
1517                 ep->ep_state |= EP_HALT_PENDING;
1518                 ep->stop_cmds_pending++;
1519                 ep->stop_cmd_timer.expires = jiffies +
1520                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1521                 add_timer(&ep->stop_cmd_timer);
1522                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1523                 xhci_ring_cmd_db(xhci);
1524         }
1525 done:
1526         spin_unlock_irqrestore(&xhci->lock, flags);
1527         return ret;
1528 }
1529
1530 /* Drop an endpoint from a new bandwidth configuration for this device.
1531  * Only one call to this function is allowed per endpoint before
1532  * check_bandwidth() or reset_bandwidth() must be called.
1533  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1534  * add the endpoint to the schedule with possibly new parameters denoted by a
1535  * different endpoint descriptor in usb_host_endpoint.
1536  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1537  * not allowed.
1538  *
1539  * The USB core will not allow URBs to be queued to an endpoint that is being
1540  * disabled, so there's no need for mutual exclusion to protect
1541  * the xhci->devs[slot_id] structure.
1542  */
1543 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1544                 struct usb_host_endpoint *ep)
1545 {
1546         struct xhci_hcd *xhci;
1547         struct xhci_container_ctx *in_ctx, *out_ctx;
1548         struct xhci_input_control_ctx *ctrl_ctx;
1549         struct xhci_slot_ctx *slot_ctx;
1550         unsigned int last_ctx;
1551         unsigned int ep_index;
1552         struct xhci_ep_ctx *ep_ctx;
1553         u32 drop_flag;
1554         u32 new_add_flags, new_drop_flags, new_slot_info;
1555         int ret;
1556
1557         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1558         if (ret <= 0)
1559                 return ret;
1560         xhci = hcd_to_xhci(hcd);
1561         if (xhci->xhc_state & XHCI_STATE_DYING)
1562                 return -ENODEV;
1563
1564         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1565         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1566         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1567                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1568                                 __func__, drop_flag);
1569                 return 0;
1570         }
1571
1572         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1573         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1574         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1575         ep_index = xhci_get_endpoint_index(&ep->desc);
1576         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1577         /* If the HC already knows the endpoint is disabled,
1578          * or the HCD has noted it is disabled, ignore this request
1579          */
1580         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1581              cpu_to_le32(EP_STATE_DISABLED)) ||
1582             le32_to_cpu(ctrl_ctx->drop_flags) &
1583             xhci_get_endpoint_flag(&ep->desc)) {
1584                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1585                                 __func__, ep);
1586                 return 0;
1587         }
1588
1589         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1590         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1591
1592         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1593         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1594
1595         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1596         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1597         /* Update the last valid endpoint context, if we deleted the last one */
1598         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1599             LAST_CTX(last_ctx)) {
1600                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1601                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1602         }
1603         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1604
1605         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1606
1607         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1608                         (unsigned int) ep->desc.bEndpointAddress,
1609                         udev->slot_id,
1610                         (unsigned int) new_drop_flags,
1611                         (unsigned int) new_add_flags,
1612                         (unsigned int) new_slot_info);
1613         return 0;
1614 }
1615
1616 /* Add an endpoint to a new possible bandwidth configuration for this device.
1617  * Only one call to this function is allowed per endpoint before
1618  * check_bandwidth() or reset_bandwidth() must be called.
1619  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1620  * add the endpoint to the schedule with possibly new parameters denoted by a
1621  * different endpoint descriptor in usb_host_endpoint.
1622  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1623  * not allowed.
1624  *
1625  * The USB core will not allow URBs to be queued to an endpoint until the
1626  * configuration or alt setting is installed in the device, so there's no need
1627  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1628  */
1629 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1630                 struct usb_host_endpoint *ep)
1631 {
1632         struct xhci_hcd *xhci;
1633         struct xhci_container_ctx *in_ctx, *out_ctx;
1634         unsigned int ep_index;
1635         struct xhci_slot_ctx *slot_ctx;
1636         struct xhci_input_control_ctx *ctrl_ctx;
1637         u32 added_ctxs;
1638         unsigned int last_ctx;
1639         u32 new_add_flags, new_drop_flags, new_slot_info;
1640         struct xhci_virt_device *virt_dev;
1641         int ret = 0;
1642
1643         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1644         if (ret <= 0) {
1645                 /* So we won't queue a reset ep command for a root hub */
1646                 ep->hcpriv = NULL;
1647                 return ret;
1648         }
1649         xhci = hcd_to_xhci(hcd);
1650         if (xhci->xhc_state & XHCI_STATE_DYING)
1651                 return -ENODEV;
1652
1653         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1654         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1655         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1656                 /* FIXME when we have to issue an evaluate endpoint command to
1657                  * deal with ep0 max packet size changing once we get the
1658                  * descriptors
1659                  */
1660                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1661                                 __func__, added_ctxs);
1662                 return 0;
1663         }
1664
1665         virt_dev = xhci->devs[udev->slot_id];
1666         in_ctx = virt_dev->in_ctx;
1667         out_ctx = virt_dev->out_ctx;
1668         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1669         ep_index = xhci_get_endpoint_index(&ep->desc);
1670
1671         /* If this endpoint is already in use, and the upper layers are trying
1672          * to add it again without dropping it, reject the addition.
1673          */
1674         if (virt_dev->eps[ep_index].ring &&
1675                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1676                                 xhci_get_endpoint_flag(&ep->desc))) {
1677                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1678                                 "without dropping it.\n",
1679                                 (unsigned int) ep->desc.bEndpointAddress);
1680                 return -EINVAL;
1681         }
1682
1683         /* If the HCD has already noted the endpoint is enabled,
1684          * ignore this request.
1685          */
1686         if (le32_to_cpu(ctrl_ctx->add_flags) &
1687             xhci_get_endpoint_flag(&ep->desc)) {
1688                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1689                                 __func__, ep);
1690                 return 0;
1691         }
1692
1693         /*
1694          * Configuration and alternate setting changes must be done in
1695          * process context, not interrupt context (or so documenation
1696          * for usb_set_interface() and usb_set_configuration() claim).
1697          */
1698         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1699                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1700                                 __func__, ep->desc.bEndpointAddress);
1701                 return -ENOMEM;
1702         }
1703
1704         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1705         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1706
1707         /* If xhci_endpoint_disable() was called for this endpoint, but the
1708          * xHC hasn't been notified yet through the check_bandwidth() call,
1709          * this re-adds a new state for the endpoint from the new endpoint
1710          * descriptors.  We must drop and re-add this endpoint, so we leave the
1711          * drop flags alone.
1712          */
1713         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1714
1715         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1716         /* Update the last valid endpoint context, if we just added one past */
1717         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1718             LAST_CTX(last_ctx)) {
1719                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1720                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1721         }
1722         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1723
1724         /* Store the usb_device pointer for later use */
1725         ep->hcpriv = udev;
1726
1727         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1728                         (unsigned int) ep->desc.bEndpointAddress,
1729                         udev->slot_id,
1730                         (unsigned int) new_drop_flags,
1731                         (unsigned int) new_add_flags,
1732                         (unsigned int) new_slot_info);
1733         return 0;
1734 }
1735
1736 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1737 {
1738         struct xhci_input_control_ctx *ctrl_ctx;
1739         struct xhci_ep_ctx *ep_ctx;
1740         struct xhci_slot_ctx *slot_ctx;
1741         int i;
1742
1743         /* When a device's add flag and drop flag are zero, any subsequent
1744          * configure endpoint command will leave that endpoint's state
1745          * untouched.  Make sure we don't leave any old state in the input
1746          * endpoint contexts.
1747          */
1748         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1749         ctrl_ctx->drop_flags = 0;
1750         ctrl_ctx->add_flags = 0;
1751         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1752         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1753         /* Endpoint 0 is always valid */
1754         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1755         for (i = 1; i < 31; ++i) {
1756                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1757                 ep_ctx->ep_info = 0;
1758                 ep_ctx->ep_info2 = 0;
1759                 ep_ctx->deq = 0;
1760                 ep_ctx->tx_info = 0;
1761         }
1762 }
1763
1764 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1765                 struct usb_device *udev, u32 *cmd_status)
1766 {
1767         int ret;
1768
1769         switch (*cmd_status) {
1770         case COMP_ENOMEM:
1771                 dev_warn(&udev->dev, "Not enough host controller resources "
1772                                 "for new device state.\n");
1773                 ret = -ENOMEM;
1774                 /* FIXME: can we allocate more resources for the HC? */
1775                 break;
1776         case COMP_BW_ERR:
1777         case COMP_2ND_BW_ERR:
1778                 dev_warn(&udev->dev, "Not enough bandwidth "
1779                                 "for new device state.\n");
1780                 ret = -ENOSPC;
1781                 /* FIXME: can we go back to the old state? */
1782                 break;
1783         case COMP_TRB_ERR:
1784                 /* the HCD set up something wrong */
1785                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1786                                 "add flag = 1, "
1787                                 "and endpoint is not disabled.\n");
1788                 ret = -EINVAL;
1789                 break;
1790         case COMP_DEV_ERR:
1791                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1792                                 "configure command.\n");
1793                 ret = -ENODEV;
1794                 break;
1795         case COMP_SUCCESS:
1796                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1797                 ret = 0;
1798                 break;
1799         default:
1800                 xhci_err(xhci, "ERROR: unexpected command completion "
1801                                 "code 0x%x.\n", *cmd_status);
1802                 ret = -EINVAL;
1803                 break;
1804         }
1805         return ret;
1806 }
1807
1808 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1809                 struct usb_device *udev, u32 *cmd_status)
1810 {
1811         int ret;
1812         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1813
1814         switch (*cmd_status) {
1815         case COMP_EINVAL:
1816                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1817                                 "context command.\n");
1818                 ret = -EINVAL;
1819                 break;
1820         case COMP_EBADSLT:
1821                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1822                                 "evaluate context command.\n");
1823                 ret = -EINVAL;
1824                 break;
1825         case COMP_CTX_STATE:
1826                 dev_warn(&udev->dev, "WARN: invalid context state for "
1827                                 "evaluate context command.\n");
1828                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1829                 ret = -EINVAL;
1830                 break;
1831         case COMP_DEV_ERR:
1832                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1833                                 "context command.\n");
1834                 ret = -ENODEV;
1835                 break;
1836         case COMP_MEL_ERR:
1837                 /* Max Exit Latency too large error */
1838                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1839                 ret = -EINVAL;
1840                 break;
1841         case COMP_SUCCESS:
1842                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1843                 ret = 0;
1844                 break;
1845         default:
1846                 xhci_err(xhci, "ERROR: unexpected command completion "
1847                                 "code 0x%x.\n", *cmd_status);
1848                 ret = -EINVAL;
1849                 break;
1850         }
1851         return ret;
1852 }
1853
1854 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1855                 struct xhci_container_ctx *in_ctx)
1856 {
1857         struct xhci_input_control_ctx *ctrl_ctx;
1858         u32 valid_add_flags;
1859         u32 valid_drop_flags;
1860
1861         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1862         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1863          * (bit 1).  The default control endpoint is added during the Address
1864          * Device command and is never removed until the slot is disabled.
1865          */
1866         valid_add_flags = ctrl_ctx->add_flags >> 2;
1867         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1868
1869         /* Use hweight32 to count the number of ones in the add flags, or
1870          * number of endpoints added.  Don't count endpoints that are changed
1871          * (both added and dropped).
1872          */
1873         return hweight32(valid_add_flags) -
1874                 hweight32(valid_add_flags & valid_drop_flags);
1875 }
1876
1877 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1878                 struct xhci_container_ctx *in_ctx)
1879 {
1880         struct xhci_input_control_ctx *ctrl_ctx;
1881         u32 valid_add_flags;
1882         u32 valid_drop_flags;
1883
1884         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1885         valid_add_flags = ctrl_ctx->add_flags >> 2;
1886         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1887
1888         return hweight32(valid_drop_flags) -
1889                 hweight32(valid_add_flags & valid_drop_flags);
1890 }
1891
1892 /*
1893  * We need to reserve the new number of endpoints before the configure endpoint
1894  * command completes.  We can't subtract the dropped endpoints from the number
1895  * of active endpoints until the command completes because we can oversubscribe
1896  * the host in this case:
1897  *
1898  *  - the first configure endpoint command drops more endpoints than it adds
1899  *  - a second configure endpoint command that adds more endpoints is queued
1900  *  - the first configure endpoint command fails, so the config is unchanged
1901  *  - the second command may succeed, even though there isn't enough resources
1902  *
1903  * Must be called with xhci->lock held.
1904  */
1905 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1906                 struct xhci_container_ctx *in_ctx)
1907 {
1908         u32 added_eps;
1909
1910         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1911         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1912                 xhci_dbg(xhci, "Not enough ep ctxs: "
1913                                 "%u active, need to add %u, limit is %u.\n",
1914                                 xhci->num_active_eps, added_eps,
1915                                 xhci->limit_active_eps);
1916                 return -ENOMEM;
1917         }
1918         xhci->num_active_eps += added_eps;
1919         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1920                         xhci->num_active_eps);
1921         return 0;
1922 }
1923
1924 /*
1925  * The configure endpoint was failed by the xHC for some other reason, so we
1926  * need to revert the resources that failed configuration would have used.
1927  *
1928  * Must be called with xhci->lock held.
1929  */
1930 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1931                 struct xhci_container_ctx *in_ctx)
1932 {
1933         u32 num_failed_eps;
1934
1935         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1936         xhci->num_active_eps -= num_failed_eps;
1937         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1938                         num_failed_eps,
1939                         xhci->num_active_eps);
1940 }
1941
1942 /*
1943  * Now that the command has completed, clean up the active endpoint count by
1944  * subtracting out the endpoints that were dropped (but not changed).
1945  *
1946  * Must be called with xhci->lock held.
1947  */
1948 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1949                 struct xhci_container_ctx *in_ctx)
1950 {
1951         u32 num_dropped_eps;
1952
1953         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1954         xhci->num_active_eps -= num_dropped_eps;
1955         if (num_dropped_eps)
1956                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1957                                 num_dropped_eps,
1958                                 xhci->num_active_eps);
1959 }
1960
1961 static unsigned int xhci_get_block_size(struct usb_device *udev)
1962 {
1963         switch (udev->speed) {
1964         case USB_SPEED_LOW:
1965         case USB_SPEED_FULL:
1966                 return FS_BLOCK;
1967         case USB_SPEED_HIGH:
1968                 return HS_BLOCK;
1969         case USB_SPEED_SUPER:
1970                 return SS_BLOCK;
1971         case USB_SPEED_UNKNOWN:
1972         case USB_SPEED_WIRELESS:
1973         default:
1974                 /* Should never happen */
1975                 return 1;
1976         }
1977 }
1978
1979 static unsigned int
1980 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1981 {
1982         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1983                 return LS_OVERHEAD;
1984         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1985                 return FS_OVERHEAD;
1986         return HS_OVERHEAD;
1987 }
1988
1989 /* If we are changing a LS/FS device under a HS hub,
1990  * make sure (if we are activating a new TT) that the HS bus has enough
1991  * bandwidth for this new TT.
1992  */
1993 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1994                 struct xhci_virt_device *virt_dev,
1995                 int old_active_eps)
1996 {
1997         struct xhci_interval_bw_table *bw_table;
1998         struct xhci_tt_bw_info *tt_info;
1999
2000         /* Find the bandwidth table for the root port this TT is attached to. */
2001         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2002         tt_info = virt_dev->tt_info;
2003         /* If this TT already had active endpoints, the bandwidth for this TT
2004          * has already been added.  Removing all periodic endpoints (and thus
2005          * making the TT enactive) will only decrease the bandwidth used.
2006          */
2007         if (old_active_eps)
2008                 return 0;
2009         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2010                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2011                         return -ENOMEM;
2012                 return 0;
2013         }
2014         /* Not sure why we would have no new active endpoints...
2015          *
2016          * Maybe because of an Evaluate Context change for a hub update or a
2017          * control endpoint 0 max packet size change?
2018          * FIXME: skip the bandwidth calculation in that case.
2019          */
2020         return 0;
2021 }
2022
2023 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2024                 struct xhci_virt_device *virt_dev)
2025 {
2026         unsigned int bw_reserved;
2027
2028         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2029         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2030                 return -ENOMEM;
2031
2032         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2033         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2034                 return -ENOMEM;
2035
2036         return 0;
2037 }
2038
2039 /*
2040  * This algorithm is a very conservative estimate of the worst-case scheduling
2041  * scenario for any one interval.  The hardware dynamically schedules the
2042  * packets, so we can't tell which microframe could be the limiting factor in
2043  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2044  *
2045  * Obviously, we can't solve an NP complete problem to find the minimum worst
2046  * case scenario.  Instead, we come up with an estimate that is no less than
2047  * the worst case bandwidth used for any one microframe, but may be an
2048  * over-estimate.
2049  *
2050  * We walk the requirements for each endpoint by interval, starting with the
2051  * smallest interval, and place packets in the schedule where there is only one
2052  * possible way to schedule packets for that interval.  In order to simplify
2053  * this algorithm, we record the largest max packet size for each interval, and
2054  * assume all packets will be that size.
2055  *
2056  * For interval 0, we obviously must schedule all packets for each interval.
2057  * The bandwidth for interval 0 is just the amount of data to be transmitted
2058  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2059  * the number of packets).
2060  *
2061  * For interval 1, we have two possible microframes to schedule those packets
2062  * in.  For this algorithm, if we can schedule the same number of packets for
2063  * each possible scheduling opportunity (each microframe), we will do so.  The
2064  * remaining number of packets will be saved to be transmitted in the gaps in
2065  * the next interval's scheduling sequence.
2066  *
2067  * As we move those remaining packets to be scheduled with interval 2 packets,
2068  * we have to double the number of remaining packets to transmit.  This is
2069  * because the intervals are actually powers of 2, and we would be transmitting
2070  * the previous interval's packets twice in this interval.  We also have to be
2071  * sure that when we look at the largest max packet size for this interval, we
2072  * also look at the largest max packet size for the remaining packets and take
2073  * the greater of the two.
2074  *
2075  * The algorithm continues to evenly distribute packets in each scheduling
2076  * opportunity, and push the remaining packets out, until we get to the last
2077  * interval.  Then those packets and their associated overhead are just added
2078  * to the bandwidth used.
2079  */
2080 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2081                 struct xhci_virt_device *virt_dev,
2082                 int old_active_eps)
2083 {
2084         unsigned int bw_reserved;
2085         unsigned int max_bandwidth;
2086         unsigned int bw_used;
2087         unsigned int block_size;
2088         struct xhci_interval_bw_table *bw_table;
2089         unsigned int packet_size = 0;
2090         unsigned int overhead = 0;
2091         unsigned int packets_transmitted = 0;
2092         unsigned int packets_remaining = 0;
2093         unsigned int i;
2094
2095         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2096                 return xhci_check_ss_bw(xhci, virt_dev);
2097
2098         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2099                 max_bandwidth = HS_BW_LIMIT;
2100                 /* Convert percent of bus BW reserved to blocks reserved */
2101                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2102         } else {
2103                 max_bandwidth = FS_BW_LIMIT;
2104                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2105         }
2106
2107         bw_table = virt_dev->bw_table;
2108         /* We need to translate the max packet size and max ESIT payloads into
2109          * the units the hardware uses.
2110          */
2111         block_size = xhci_get_block_size(virt_dev->udev);
2112
2113         /* If we are manipulating a LS/FS device under a HS hub, double check
2114          * that the HS bus has enough bandwidth if we are activing a new TT.
2115          */
2116         if (virt_dev->tt_info) {
2117                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2118                                 virt_dev->real_port);
2119                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2120                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2121                                         "newly activated TT.\n");
2122                         return -ENOMEM;
2123                 }
2124                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2125                                 virt_dev->tt_info->slot_id,
2126                                 virt_dev->tt_info->ttport);
2127         } else {
2128                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2129                                 virt_dev->real_port);
2130         }
2131
2132         /* Add in how much bandwidth will be used for interval zero, or the
2133          * rounded max ESIT payload + number of packets * largest overhead.
2134          */
2135         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2136                 bw_table->interval_bw[0].num_packets *
2137                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2138
2139         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2140                 unsigned int bw_added;
2141                 unsigned int largest_mps;
2142                 unsigned int interval_overhead;
2143
2144                 /*
2145                  * How many packets could we transmit in this interval?
2146                  * If packets didn't fit in the previous interval, we will need
2147                  * to transmit that many packets twice within this interval.
2148                  */
2149                 packets_remaining = 2 * packets_remaining +
2150                         bw_table->interval_bw[i].num_packets;
2151
2152                 /* Find the largest max packet size of this or the previous
2153                  * interval.
2154                  */
2155                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2156                         largest_mps = 0;
2157                 else {
2158                         struct xhci_virt_ep *virt_ep;
2159                         struct list_head *ep_entry;
2160
2161                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2162                         virt_ep = list_entry(ep_entry,
2163                                         struct xhci_virt_ep, bw_endpoint_list);
2164                         /* Convert to blocks, rounding up */
2165                         largest_mps = DIV_ROUND_UP(
2166                                         virt_ep->bw_info.max_packet_size,
2167                                         block_size);
2168                 }
2169                 if (largest_mps > packet_size)
2170                         packet_size = largest_mps;
2171
2172                 /* Use the larger overhead of this or the previous interval. */
2173                 interval_overhead = xhci_get_largest_overhead(
2174                                 &bw_table->interval_bw[i]);
2175                 if (interval_overhead > overhead)
2176                         overhead = interval_overhead;
2177
2178                 /* How many packets can we evenly distribute across
2179                  * (1 << (i + 1)) possible scheduling opportunities?
2180                  */
2181                 packets_transmitted = packets_remaining >> (i + 1);
2182
2183                 /* Add in the bandwidth used for those scheduled packets */
2184                 bw_added = packets_transmitted * (overhead + packet_size);
2185
2186                 /* How many packets do we have remaining to transmit? */
2187                 packets_remaining = packets_remaining % (1 << (i + 1));
2188
2189                 /* What largest max packet size should those packets have? */
2190                 /* If we've transmitted all packets, don't carry over the
2191                  * largest packet size.
2192                  */
2193                 if (packets_remaining == 0) {
2194                         packet_size = 0;
2195                         overhead = 0;
2196                 } else if (packets_transmitted > 0) {
2197                         /* Otherwise if we do have remaining packets, and we've
2198                          * scheduled some packets in this interval, take the
2199                          * largest max packet size from endpoints with this
2200                          * interval.
2201                          */
2202                         packet_size = largest_mps;
2203                         overhead = interval_overhead;
2204                 }
2205                 /* Otherwise carry over packet_size and overhead from the last
2206                  * time we had a remainder.
2207                  */
2208                 bw_used += bw_added;
2209                 if (bw_used > max_bandwidth) {
2210                         xhci_warn(xhci, "Not enough bandwidth. "
2211                                         "Proposed: %u, Max: %u\n",
2212                                 bw_used, max_bandwidth);
2213                         return -ENOMEM;
2214                 }
2215         }
2216         /*
2217          * Ok, we know we have some packets left over after even-handedly
2218          * scheduling interval 15.  We don't know which microframes they will
2219          * fit into, so we over-schedule and say they will be scheduled every
2220          * microframe.
2221          */
2222         if (packets_remaining > 0)
2223                 bw_used += overhead + packet_size;
2224
2225         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2226                 unsigned int port_index = virt_dev->real_port - 1;
2227
2228                 /* OK, we're manipulating a HS device attached to a
2229                  * root port bandwidth domain.  Include the number of active TTs
2230                  * in the bandwidth used.
2231                  */
2232                 bw_used += TT_HS_OVERHEAD *
2233                         xhci->rh_bw[port_index].num_active_tts;
2234         }
2235
2236         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2237                 "Available: %u " "percent\n",
2238                 bw_used, max_bandwidth, bw_reserved,
2239                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2240                 max_bandwidth);
2241
2242         bw_used += bw_reserved;
2243         if (bw_used > max_bandwidth) {
2244                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2245                                 bw_used, max_bandwidth);
2246                 return -ENOMEM;
2247         }
2248
2249         bw_table->bw_used = bw_used;
2250         return 0;
2251 }
2252
2253 static bool xhci_is_async_ep(unsigned int ep_type)
2254 {
2255         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2256                                         ep_type != ISOC_IN_EP &&
2257                                         ep_type != INT_IN_EP);
2258 }
2259
2260 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2261 {
2262         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2263 }
2264
2265 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2266 {
2267         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2268
2269         if (ep_bw->ep_interval == 0)
2270                 return SS_OVERHEAD_BURST +
2271                         (ep_bw->mult * ep_bw->num_packets *
2272                                         (SS_OVERHEAD + mps));
2273         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2274                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2275                                 1 << ep_bw->ep_interval);
2276
2277 }
2278
2279 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2280                 struct xhci_bw_info *ep_bw,
2281                 struct xhci_interval_bw_table *bw_table,
2282                 struct usb_device *udev,
2283                 struct xhci_virt_ep *virt_ep,
2284                 struct xhci_tt_bw_info *tt_info)
2285 {
2286         struct xhci_interval_bw *interval_bw;
2287         int normalized_interval;
2288
2289         if (xhci_is_async_ep(ep_bw->type))
2290                 return;
2291
2292         if (udev->speed == USB_SPEED_SUPER) {
2293                 if (xhci_is_sync_in_ep(ep_bw->type))
2294                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2295                                 xhci_get_ss_bw_consumed(ep_bw);
2296                 else
2297                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2298                                 xhci_get_ss_bw_consumed(ep_bw);
2299                 return;
2300         }
2301
2302         /* SuperSpeed endpoints never get added to intervals in the table, so
2303          * this check is only valid for HS/FS/LS devices.
2304          */
2305         if (list_empty(&virt_ep->bw_endpoint_list))
2306                 return;
2307         /* For LS/FS devices, we need to translate the interval expressed in
2308          * microframes to frames.
2309          */
2310         if (udev->speed == USB_SPEED_HIGH)
2311                 normalized_interval = ep_bw->ep_interval;
2312         else
2313                 normalized_interval = ep_bw->ep_interval - 3;
2314
2315         if (normalized_interval == 0)
2316                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2317         interval_bw = &bw_table->interval_bw[normalized_interval];
2318         interval_bw->num_packets -= ep_bw->num_packets;
2319         switch (udev->speed) {
2320         case USB_SPEED_LOW:
2321                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2322                 break;
2323         case USB_SPEED_FULL:
2324                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2325                 break;
2326         case USB_SPEED_HIGH:
2327                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2328                 break;
2329         case USB_SPEED_SUPER:
2330         case USB_SPEED_UNKNOWN:
2331         case USB_SPEED_WIRELESS:
2332                 /* Should never happen because only LS/FS/HS endpoints will get
2333                  * added to the endpoint list.
2334                  */
2335                 return;
2336         }
2337         if (tt_info)
2338                 tt_info->active_eps -= 1;
2339         list_del_init(&virt_ep->bw_endpoint_list);
2340 }
2341
2342 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2343                 struct xhci_bw_info *ep_bw,
2344                 struct xhci_interval_bw_table *bw_table,
2345                 struct usb_device *udev,
2346                 struct xhci_virt_ep *virt_ep,
2347                 struct xhci_tt_bw_info *tt_info)
2348 {
2349         struct xhci_interval_bw *interval_bw;
2350         struct xhci_virt_ep *smaller_ep;
2351         int normalized_interval;
2352
2353         if (xhci_is_async_ep(ep_bw->type))
2354                 return;
2355
2356         if (udev->speed == USB_SPEED_SUPER) {
2357                 if (xhci_is_sync_in_ep(ep_bw->type))
2358                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2359                                 xhci_get_ss_bw_consumed(ep_bw);
2360                 else
2361                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2362                                 xhci_get_ss_bw_consumed(ep_bw);
2363                 return;
2364         }
2365
2366         /* For LS/FS devices, we need to translate the interval expressed in
2367          * microframes to frames.
2368          */
2369         if (udev->speed == USB_SPEED_HIGH)
2370                 normalized_interval = ep_bw->ep_interval;
2371         else
2372                 normalized_interval = ep_bw->ep_interval - 3;
2373
2374         if (normalized_interval == 0)
2375                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2376         interval_bw = &bw_table->interval_bw[normalized_interval];
2377         interval_bw->num_packets += ep_bw->num_packets;
2378         switch (udev->speed) {
2379         case USB_SPEED_LOW:
2380                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2381                 break;
2382         case USB_SPEED_FULL:
2383                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2384                 break;
2385         case USB_SPEED_HIGH:
2386                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2387                 break;
2388         case USB_SPEED_SUPER:
2389         case USB_SPEED_UNKNOWN:
2390         case USB_SPEED_WIRELESS:
2391                 /* Should never happen because only LS/FS/HS endpoints will get
2392                  * added to the endpoint list.
2393                  */
2394                 return;
2395         }
2396
2397         if (tt_info)
2398                 tt_info->active_eps += 1;
2399         /* Insert the endpoint into the list, largest max packet size first. */
2400         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2401                         bw_endpoint_list) {
2402                 if (ep_bw->max_packet_size >=
2403                                 smaller_ep->bw_info.max_packet_size) {
2404                         /* Add the new ep before the smaller endpoint */
2405                         list_add_tail(&virt_ep->bw_endpoint_list,
2406                                         &smaller_ep->bw_endpoint_list);
2407                         return;
2408                 }
2409         }
2410         /* Add the new endpoint at the end of the list. */
2411         list_add_tail(&virt_ep->bw_endpoint_list,
2412                         &interval_bw->endpoints);
2413 }
2414
2415 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2416                 struct xhci_virt_device *virt_dev,
2417                 int old_active_eps)
2418 {
2419         struct xhci_root_port_bw_info *rh_bw_info;
2420         if (!virt_dev->tt_info)
2421                 return;
2422
2423         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2424         if (old_active_eps == 0 &&
2425                                 virt_dev->tt_info->active_eps != 0) {
2426                 rh_bw_info->num_active_tts += 1;
2427                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2428         } else if (old_active_eps != 0 &&
2429                                 virt_dev->tt_info->active_eps == 0) {
2430                 rh_bw_info->num_active_tts -= 1;
2431                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2432         }
2433 }
2434
2435 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2436                 struct xhci_virt_device *virt_dev,
2437                 struct xhci_container_ctx *in_ctx)
2438 {
2439         struct xhci_bw_info ep_bw_info[31];
2440         int i;
2441         struct xhci_input_control_ctx *ctrl_ctx;
2442         int old_active_eps = 0;
2443
2444         if (virt_dev->tt_info)
2445                 old_active_eps = virt_dev->tt_info->active_eps;
2446
2447         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2448
2449         for (i = 0; i < 31; i++) {
2450                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2451                         continue;
2452
2453                 /* Make a copy of the BW info in case we need to revert this */
2454                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2455                                 sizeof(ep_bw_info[i]));
2456                 /* Drop the endpoint from the interval table if the endpoint is
2457                  * being dropped or changed.
2458                  */
2459                 if (EP_IS_DROPPED(ctrl_ctx, i))
2460                         xhci_drop_ep_from_interval_table(xhci,
2461                                         &virt_dev->eps[i].bw_info,
2462                                         virt_dev->bw_table,
2463                                         virt_dev->udev,
2464                                         &virt_dev->eps[i],
2465                                         virt_dev->tt_info);
2466         }
2467         /* Overwrite the information stored in the endpoints' bw_info */
2468         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2469         for (i = 0; i < 31; i++) {
2470                 /* Add any changed or added endpoints to the interval table */
2471                 if (EP_IS_ADDED(ctrl_ctx, i))
2472                         xhci_add_ep_to_interval_table(xhci,
2473                                         &virt_dev->eps[i].bw_info,
2474                                         virt_dev->bw_table,
2475                                         virt_dev->udev,
2476                                         &virt_dev->eps[i],
2477                                         virt_dev->tt_info);
2478         }
2479
2480         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2481                 /* Ok, this fits in the bandwidth we have.
2482                  * Update the number of active TTs.
2483                  */
2484                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2485                 return 0;
2486         }
2487
2488         /* We don't have enough bandwidth for this, revert the stored info. */
2489         for (i = 0; i < 31; i++) {
2490                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2491                         continue;
2492
2493                 /* Drop the new copies of any added or changed endpoints from
2494                  * the interval table.
2495                  */
2496                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2497                         xhci_drop_ep_from_interval_table(xhci,
2498                                         &virt_dev->eps[i].bw_info,
2499                                         virt_dev->bw_table,
2500                                         virt_dev->udev,
2501                                         &virt_dev->eps[i],
2502                                         virt_dev->tt_info);
2503                 }
2504                 /* Revert the endpoint back to its old information */
2505                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2506                                 sizeof(ep_bw_info[i]));
2507                 /* Add any changed or dropped endpoints back into the table */
2508                 if (EP_IS_DROPPED(ctrl_ctx, i))
2509                         xhci_add_ep_to_interval_table(xhci,
2510                                         &virt_dev->eps[i].bw_info,
2511                                         virt_dev->bw_table,
2512                                         virt_dev->udev,
2513                                         &virt_dev->eps[i],
2514                                         virt_dev->tt_info);
2515         }
2516         return -ENOMEM;
2517 }
2518
2519
2520 /* Issue a configure endpoint command or evaluate context command
2521  * and wait for it to finish.
2522  */
2523 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2524                 struct usb_device *udev,
2525                 struct xhci_command *command,
2526                 bool ctx_change, bool must_succeed)
2527 {
2528         int ret;
2529         int timeleft;
2530         unsigned long flags;
2531         struct xhci_container_ctx *in_ctx;
2532         struct completion *cmd_completion;
2533         u32 *cmd_status;
2534         struct xhci_virt_device *virt_dev;
2535         union xhci_trb *cmd_trb;
2536
2537         spin_lock_irqsave(&xhci->lock, flags);
2538         virt_dev = xhci->devs[udev->slot_id];
2539
2540         if (command)
2541                 in_ctx = command->in_ctx;
2542         else
2543                 in_ctx = virt_dev->in_ctx;
2544
2545         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2546                         xhci_reserve_host_resources(xhci, in_ctx)) {
2547                 spin_unlock_irqrestore(&xhci->lock, flags);
2548                 xhci_warn(xhci, "Not enough host resources, "
2549                                 "active endpoint contexts = %u\n",
2550                                 xhci->num_active_eps);
2551                 return -ENOMEM;
2552         }
2553         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2554                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2555                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2556                         xhci_free_host_resources(xhci, in_ctx);
2557                 spin_unlock_irqrestore(&xhci->lock, flags);
2558                 xhci_warn(xhci, "Not enough bandwidth\n");
2559                 return -ENOMEM;
2560         }
2561
2562         if (command) {
2563                 cmd_completion = command->completion;
2564                 cmd_status = &command->status;
2565                 command->command_trb = xhci->cmd_ring->enqueue;
2566
2567                 /* Enqueue pointer can be left pointing to the link TRB,
2568                  * we must handle that
2569                  */
2570                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2571                         command->command_trb =
2572                                 xhci->cmd_ring->enq_seg->next->trbs;
2573
2574                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2575         } else {
2576                 cmd_completion = &virt_dev->cmd_completion;
2577                 cmd_status = &virt_dev->cmd_status;
2578         }
2579         init_completion(cmd_completion);
2580
2581         cmd_trb = xhci->cmd_ring->dequeue;
2582         if (!ctx_change)
2583                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2584                                 udev->slot_id, must_succeed);
2585         else
2586                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2587                                 udev->slot_id, must_succeed);
2588         if (ret < 0) {
2589                 if (command)
2590                         list_del(&command->cmd_list);
2591                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2592                         xhci_free_host_resources(xhci, in_ctx);
2593                 spin_unlock_irqrestore(&xhci->lock, flags);
2594                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2595                 return -ENOMEM;
2596         }
2597         xhci_ring_cmd_db(xhci);
2598         spin_unlock_irqrestore(&xhci->lock, flags);
2599
2600         /* Wait for the configure endpoint command to complete */
2601         timeleft = wait_for_completion_interruptible_timeout(
2602                         cmd_completion,
2603                         XHCI_CMD_DEFAULT_TIMEOUT);
2604         if (timeleft <= 0) {
2605                 xhci_warn(xhci, "%s while waiting for %s command\n",
2606                                 timeleft == 0 ? "Timeout" : "Signal",
2607                                 ctx_change == 0 ?
2608                                         "configure endpoint" :
2609                                         "evaluate context");
2610                 /* cancel the configure endpoint command */
2611                 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2612                 if (ret < 0)
2613                         return ret;
2614                 return -ETIME;
2615         }
2616
2617         if (!ctx_change)
2618                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2619         else
2620                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2621
2622         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2623                 spin_lock_irqsave(&xhci->lock, flags);
2624                 /* If the command failed, remove the reserved resources.
2625                  * Otherwise, clean up the estimate to include dropped eps.
2626                  */
2627                 if (ret)
2628                         xhci_free_host_resources(xhci, in_ctx);
2629                 else
2630                         xhci_finish_resource_reservation(xhci, in_ctx);
2631                 spin_unlock_irqrestore(&xhci->lock, flags);
2632         }
2633         return ret;
2634 }
2635
2636 /* Called after one or more calls to xhci_add_endpoint() or
2637  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2638  * to call xhci_reset_bandwidth().
2639  *
2640  * Since we are in the middle of changing either configuration or
2641  * installing a new alt setting, the USB core won't allow URBs to be
2642  * enqueued for any endpoint on the old config or interface.  Nothing
2643  * else should be touching the xhci->devs[slot_id] structure, so we
2644  * don't need to take the xhci->lock for manipulating that.
2645  */
2646 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2647 {
2648         int i;
2649         int ret = 0;
2650         struct xhci_hcd *xhci;
2651         struct xhci_virt_device *virt_dev;
2652         struct xhci_input_control_ctx *ctrl_ctx;
2653         struct xhci_slot_ctx *slot_ctx;
2654
2655         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2656         if (ret <= 0)
2657                 return ret;
2658         xhci = hcd_to_xhci(hcd);
2659         if (xhci->xhc_state & XHCI_STATE_DYING)
2660                 return -ENODEV;
2661
2662         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2663         virt_dev = xhci->devs[udev->slot_id];
2664
2665         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2666         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2667         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2668         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2669         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2670
2671         /* Don't issue the command if there's no endpoints to update. */
2672         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2673                         ctrl_ctx->drop_flags == 0)
2674                 return 0;
2675
2676         xhci_dbg(xhci, "New Input Control Context:\n");
2677         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2678         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2679                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2680
2681         ret = xhci_configure_endpoint(xhci, udev, NULL,
2682                         false, false);
2683         if (ret) {
2684                 /* Callee should call reset_bandwidth() */
2685                 return ret;
2686         }
2687
2688         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2689         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2690                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2691
2692         /* Free any rings that were dropped, but not changed. */
2693         for (i = 1; i < 31; ++i) {
2694                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2695                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2696                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2697         }
2698         xhci_zero_in_ctx(xhci, virt_dev);
2699         /*
2700          * Install any rings for completely new endpoints or changed endpoints,
2701          * and free or cache any old rings from changed endpoints.
2702          */
2703         for (i = 1; i < 31; ++i) {
2704                 if (!virt_dev->eps[i].new_ring)
2705                         continue;
2706                 /* Only cache or free the old ring if it exists.
2707                  * It may not if this is the first add of an endpoint.
2708                  */
2709                 if (virt_dev->eps[i].ring) {
2710                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2711                 }
2712                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2713                 virt_dev->eps[i].new_ring = NULL;
2714         }
2715
2716         return ret;
2717 }
2718
2719 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2720 {
2721         struct xhci_hcd *xhci;
2722         struct xhci_virt_device *virt_dev;
2723         int i, ret;
2724
2725         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2726         if (ret <= 0)
2727                 return;
2728         xhci = hcd_to_xhci(hcd);
2729
2730         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2731         virt_dev = xhci->devs[udev->slot_id];
2732         /* Free any rings allocated for added endpoints */
2733         for (i = 0; i < 31; ++i) {
2734                 if (virt_dev->eps[i].new_ring) {
2735                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2736                         virt_dev->eps[i].new_ring = NULL;
2737                 }
2738         }
2739         xhci_zero_in_ctx(xhci, virt_dev);
2740 }
2741
2742 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2743                 struct xhci_container_ctx *in_ctx,
2744                 struct xhci_container_ctx *out_ctx,
2745                 u32 add_flags, u32 drop_flags)
2746 {
2747         struct xhci_input_control_ctx *ctrl_ctx;
2748         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2749         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2750         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2751         xhci_slot_copy(xhci, in_ctx, out_ctx);
2752         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2753
2754         xhci_dbg(xhci, "Input Context:\n");
2755         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2756 }
2757
2758 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2759                 unsigned int slot_id, unsigned int ep_index,
2760                 struct xhci_dequeue_state *deq_state)
2761 {
2762         struct xhci_container_ctx *in_ctx;
2763         struct xhci_ep_ctx *ep_ctx;
2764         u32 added_ctxs;
2765         dma_addr_t addr;
2766
2767         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2768                         xhci->devs[slot_id]->out_ctx, ep_index);
2769         in_ctx = xhci->devs[slot_id]->in_ctx;
2770         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2771         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2772                         deq_state->new_deq_ptr);
2773         if (addr == 0) {
2774                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2775                                 "reset ep command\n");
2776                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2777                                 deq_state->new_deq_seg,
2778                                 deq_state->new_deq_ptr);
2779                 return;
2780         }
2781         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2782
2783         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2784         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2785                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2786 }
2787
2788 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2789                 struct usb_device *udev, unsigned int ep_index)
2790 {
2791         struct xhci_dequeue_state deq_state;
2792         struct xhci_virt_ep *ep;
2793
2794         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2795         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2796         /* We need to move the HW's dequeue pointer past this TD,
2797          * or it will attempt to resend it on the next doorbell ring.
2798          */
2799         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2800                         ep_index, ep->stopped_stream, ep->stopped_td,
2801                         &deq_state);
2802
2803         /* HW with the reset endpoint quirk will use the saved dequeue state to
2804          * issue a configure endpoint command later.
2805          */
2806         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2807                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2808                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2809                                 ep_index, ep->stopped_stream, &deq_state);
2810         } else {
2811                 /* Better hope no one uses the input context between now and the
2812                  * reset endpoint completion!
2813                  * XXX: No idea how this hardware will react when stream rings
2814                  * are enabled.
2815                  */
2816                 xhci_dbg(xhci, "Setting up input context for "
2817                                 "configure endpoint command\n");
2818                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2819                                 ep_index, &deq_state);
2820         }
2821 }
2822
2823 /* Deal with stalled endpoints.  The core should have sent the control message
2824  * to clear the halt condition.  However, we need to make the xHCI hardware
2825  * reset its sequence number, since a device will expect a sequence number of
2826  * zero after the halt condition is cleared.
2827  * Context: in_interrupt
2828  */
2829 void xhci_endpoint_reset(struct usb_hcd *hcd,
2830                 struct usb_host_endpoint *ep)
2831 {
2832         struct xhci_hcd *xhci;
2833         struct usb_device *udev;
2834         unsigned int ep_index;
2835         unsigned long flags;
2836         int ret;
2837         struct xhci_virt_ep *virt_ep;
2838
2839         xhci = hcd_to_xhci(hcd);
2840         udev = (struct usb_device *) ep->hcpriv;
2841         /* Called with a root hub endpoint (or an endpoint that wasn't added
2842          * with xhci_add_endpoint()
2843          */
2844         if (!ep->hcpriv)
2845                 return;
2846         ep_index = xhci_get_endpoint_index(&ep->desc);
2847         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2848         if (!virt_ep->stopped_td) {
2849                 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2850                                 ep->desc.bEndpointAddress);
2851                 return;
2852         }
2853         if (usb_endpoint_xfer_control(&ep->desc)) {
2854                 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2855                 return;
2856         }
2857
2858         xhci_dbg(xhci, "Queueing reset endpoint command\n");
2859         spin_lock_irqsave(&xhci->lock, flags);
2860         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2861         /*
2862          * Can't change the ring dequeue pointer until it's transitioned to the
2863          * stopped state, which is only upon a successful reset endpoint
2864          * command.  Better hope that last command worked!
2865          */
2866         if (!ret) {
2867                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2868                 kfree(virt_ep->stopped_td);
2869                 xhci_ring_cmd_db(xhci);
2870         }
2871         virt_ep->stopped_td = NULL;
2872         virt_ep->stopped_trb = NULL;
2873         virt_ep->stopped_stream = 0;
2874         spin_unlock_irqrestore(&xhci->lock, flags);
2875
2876         if (ret)
2877                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2878 }
2879
2880 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2881                 struct usb_device *udev, struct usb_host_endpoint *ep,
2882                 unsigned int slot_id)
2883 {
2884         int ret;
2885         unsigned int ep_index;
2886         unsigned int ep_state;
2887
2888         if (!ep)
2889                 return -EINVAL;
2890         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2891         if (ret <= 0)
2892                 return -EINVAL;
2893         if (ep->ss_ep_comp.bmAttributes == 0) {
2894                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2895                                 " descriptor for ep 0x%x does not support streams\n",
2896                                 ep->desc.bEndpointAddress);
2897                 return -EINVAL;
2898         }
2899
2900         ep_index = xhci_get_endpoint_index(&ep->desc);
2901         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2902         if (ep_state & EP_HAS_STREAMS ||
2903                         ep_state & EP_GETTING_STREAMS) {
2904                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2905                                 "already has streams set up.\n",
2906                                 ep->desc.bEndpointAddress);
2907                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2908                                 "dynamic stream context array reallocation.\n");
2909                 return -EINVAL;
2910         }
2911         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2912                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2913                                 "endpoint 0x%x; URBs are pending.\n",
2914                                 ep->desc.bEndpointAddress);
2915                 return -EINVAL;
2916         }
2917         return 0;
2918 }
2919
2920 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2921                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2922 {
2923         unsigned int max_streams;
2924
2925         /* The stream context array size must be a power of two */
2926         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2927         /*
2928          * Find out how many primary stream array entries the host controller
2929          * supports.  Later we may use secondary stream arrays (similar to 2nd
2930          * level page entries), but that's an optional feature for xHCI host
2931          * controllers. xHCs must support at least 4 stream IDs.
2932          */
2933         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2934         if (*num_stream_ctxs > max_streams) {
2935                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2936                                 max_streams);
2937                 *num_stream_ctxs = max_streams;
2938                 *num_streams = max_streams;
2939         }
2940 }
2941
2942 /* Returns an error code if one of the endpoint already has streams.
2943  * This does not change any data structures, it only checks and gathers
2944  * information.
2945  */
2946 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2947                 struct usb_device *udev,
2948                 struct usb_host_endpoint **eps, unsigned int num_eps,
2949                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2950 {
2951         unsigned int max_streams;
2952         unsigned int endpoint_flag;
2953         int i;
2954         int ret;
2955
2956         for (i = 0; i < num_eps; i++) {
2957                 ret = xhci_check_streams_endpoint(xhci, udev,
2958                                 eps[i], udev->slot_id);
2959                 if (ret < 0)
2960                         return ret;
2961
2962                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2963                 if (max_streams < (*num_streams - 1)) {
2964                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2965                                         eps[i]->desc.bEndpointAddress,
2966                                         max_streams);
2967                         *num_streams = max_streams+1;
2968                 }
2969
2970                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2971                 if (*changed_ep_bitmask & endpoint_flag)
2972                         return -EINVAL;
2973                 *changed_ep_bitmask |= endpoint_flag;
2974         }
2975         return 0;
2976 }
2977
2978 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2979                 struct usb_device *udev,
2980                 struct usb_host_endpoint **eps, unsigned int num_eps)
2981 {
2982         u32 changed_ep_bitmask = 0;
2983         unsigned int slot_id;
2984         unsigned int ep_index;
2985         unsigned int ep_state;
2986         int i;
2987
2988         slot_id = udev->slot_id;
2989         if (!xhci->devs[slot_id])
2990                 return 0;
2991
2992         for (i = 0; i < num_eps; i++) {
2993                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2994                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2995                 /* Are streams already being freed for the endpoint? */
2996                 if (ep_state & EP_GETTING_NO_STREAMS) {
2997                         xhci_warn(xhci, "WARN Can't disable streams for "
2998                                         "endpoint 0x%x\n, "
2999                                         "streams are being disabled already.",
3000                                         eps[i]->desc.bEndpointAddress);
3001                         return 0;
3002                 }
3003                 /* Are there actually any streams to free? */
3004                 if (!(ep_state & EP_HAS_STREAMS) &&
3005                                 !(ep_state & EP_GETTING_STREAMS)) {
3006                         xhci_warn(xhci, "WARN Can't disable streams for "
3007                                         "endpoint 0x%x\n, "
3008                                         "streams are already disabled!",
3009                                         eps[i]->desc.bEndpointAddress);
3010                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3011                                         "with non-streams endpoint\n");
3012                         return 0;
3013                 }
3014                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3015         }
3016         return changed_ep_bitmask;
3017 }
3018
3019 /*
3020  * The USB device drivers use this function (though the HCD interface in USB
3021  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3022  * coordinate mass storage command queueing across multiple endpoints (basically
3023  * a stream ID == a task ID).
3024  *
3025  * Setting up streams involves allocating the same size stream context array
3026  * for each endpoint and issuing a configure endpoint command for all endpoints.
3027  *
3028  * Don't allow the call to succeed if one endpoint only supports one stream
3029  * (which means it doesn't support streams at all).
3030  *
3031  * Drivers may get less stream IDs than they asked for, if the host controller
3032  * hardware or endpoints claim they can't support the number of requested
3033  * stream IDs.
3034  */
3035 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3036                 struct usb_host_endpoint **eps, unsigned int num_eps,
3037                 unsigned int num_streams, gfp_t mem_flags)
3038 {
3039         int i, ret;
3040         struct xhci_hcd *xhci;
3041         struct xhci_virt_device *vdev;
3042         struct xhci_command *config_cmd;
3043         unsigned int ep_index;
3044         unsigned int num_stream_ctxs;
3045         unsigned long flags;
3046         u32 changed_ep_bitmask = 0;
3047
3048         if (!eps)
3049                 return -EINVAL;
3050
3051         /* Add one to the number of streams requested to account for
3052          * stream 0 that is reserved for xHCI usage.
3053          */
3054         num_streams += 1;
3055         xhci = hcd_to_xhci(hcd);
3056         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3057                         num_streams);
3058
3059         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3060         if (!config_cmd) {
3061                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3062                 return -ENOMEM;
3063         }
3064
3065         /* Check to make sure all endpoints are not already configured for
3066          * streams.  While we're at it, find the maximum number of streams that
3067          * all the endpoints will support and check for duplicate endpoints.
3068          */
3069         spin_lock_irqsave(&xhci->lock, flags);
3070         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3071                         num_eps, &num_streams, &changed_ep_bitmask);
3072         if (ret < 0) {
3073                 xhci_free_command(xhci, config_cmd);
3074                 spin_unlock_irqrestore(&xhci->lock, flags);
3075                 return ret;
3076         }
3077         if (num_streams <= 1) {
3078                 xhci_warn(xhci, "WARN: endpoints can't handle "
3079                                 "more than one stream.\n");
3080                 xhci_free_command(xhci, config_cmd);
3081                 spin_unlock_irqrestore(&xhci->lock, flags);
3082                 return -EINVAL;
3083         }
3084         vdev = xhci->devs[udev->slot_id];
3085         /* Mark each endpoint as being in transition, so
3086          * xhci_urb_enqueue() will reject all URBs.
3087          */
3088         for (i = 0; i < num_eps; i++) {
3089                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3090                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3091         }
3092         spin_unlock_irqrestore(&xhci->lock, flags);
3093
3094         /* Setup internal data structures and allocate HW data structures for
3095          * streams (but don't install the HW structures in the input context
3096          * until we're sure all memory allocation succeeded).
3097          */
3098         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3099         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3100                         num_stream_ctxs, num_streams);
3101
3102         for (i = 0; i < num_eps; i++) {
3103                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3104                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3105                                 num_stream_ctxs,
3106                                 num_streams, mem_flags);
3107                 if (!vdev->eps[ep_index].stream_info)
3108                         goto cleanup;
3109                 /* Set maxPstreams in endpoint context and update deq ptr to
3110                  * point to stream context array. FIXME
3111                  */
3112         }
3113
3114         /* Set up the input context for a configure endpoint command. */
3115         for (i = 0; i < num_eps; i++) {
3116                 struct xhci_ep_ctx *ep_ctx;
3117
3118                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3119                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3120
3121                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3122                                 vdev->out_ctx, ep_index);
3123                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3124                                 vdev->eps[ep_index].stream_info);
3125         }
3126         /* Tell the HW to drop its old copy of the endpoint context info
3127          * and add the updated copy from the input context.
3128          */
3129         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3130                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3131
3132         /* Issue and wait for the configure endpoint command */
3133         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3134                         false, false);
3135
3136         /* xHC rejected the configure endpoint command for some reason, so we
3137          * leave the old ring intact and free our internal streams data
3138          * structure.
3139          */
3140         if (ret < 0)
3141                 goto cleanup;
3142
3143         spin_lock_irqsave(&xhci->lock, flags);
3144         for (i = 0; i < num_eps; i++) {
3145                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3146                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3147                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3148                          udev->slot_id, ep_index);
3149                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3150         }
3151         xhci_free_command(xhci, config_cmd);
3152         spin_unlock_irqrestore(&xhci->lock, flags);
3153
3154         /* Subtract 1 for stream 0, which drivers can't use */
3155         return num_streams - 1;
3156
3157 cleanup:
3158         /* If it didn't work, free the streams! */
3159         for (i = 0; i < num_eps; i++) {
3160                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3161                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3162                 vdev->eps[ep_index].stream_info = NULL;
3163                 /* FIXME Unset maxPstreams in endpoint context and
3164                  * update deq ptr to point to normal string ring.
3165                  */
3166                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3167                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3168                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3169         }
3170         xhci_free_command(xhci, config_cmd);
3171         return -ENOMEM;
3172 }
3173
3174 /* Transition the endpoint from using streams to being a "normal" endpoint
3175  * without streams.
3176  *
3177  * Modify the endpoint context state, submit a configure endpoint command,
3178  * and free all endpoint rings for streams if that completes successfully.
3179  */
3180 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3181                 struct usb_host_endpoint **eps, unsigned int num_eps,
3182                 gfp_t mem_flags)
3183 {
3184         int i, ret;
3185         struct xhci_hcd *xhci;
3186         struct xhci_virt_device *vdev;
3187         struct xhci_command *command;
3188         unsigned int ep_index;
3189         unsigned long flags;
3190         u32 changed_ep_bitmask;
3191
3192         xhci = hcd_to_xhci(hcd);
3193         vdev = xhci->devs[udev->slot_id];
3194
3195         /* Set up a configure endpoint command to remove the streams rings */
3196         spin_lock_irqsave(&xhci->lock, flags);
3197         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3198                         udev, eps, num_eps);
3199         if (changed_ep_bitmask == 0) {
3200                 spin_unlock_irqrestore(&xhci->lock, flags);
3201                 return -EINVAL;
3202         }
3203
3204         /* Use the xhci_command structure from the first endpoint.  We may have
3205          * allocated too many, but the driver may call xhci_free_streams() for
3206          * each endpoint it grouped into one call to xhci_alloc_streams().
3207          */
3208         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3209         command = vdev->eps[ep_index].stream_info->free_streams_command;
3210         for (i = 0; i < num_eps; i++) {
3211                 struct xhci_ep_ctx *ep_ctx;
3212
3213                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3214                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3215                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3216                         EP_GETTING_NO_STREAMS;
3217
3218                 xhci_endpoint_copy(xhci, command->in_ctx,
3219                                 vdev->out_ctx, ep_index);
3220                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3221                                 &vdev->eps[ep_index]);
3222         }
3223         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3224                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3225         spin_unlock_irqrestore(&xhci->lock, flags);
3226
3227         /* Issue and wait for the configure endpoint command,
3228          * which must succeed.
3229          */
3230         ret = xhci_configure_endpoint(xhci, udev, command,
3231                         false, true);
3232
3233         /* xHC rejected the configure endpoint command for some reason, so we
3234          * leave the streams rings intact.
3235          */
3236         if (ret < 0)
3237                 return ret;
3238
3239         spin_lock_irqsave(&xhci->lock, flags);
3240         for (i = 0; i < num_eps; i++) {
3241                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3242                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3243                 vdev->eps[ep_index].stream_info = NULL;
3244                 /* FIXME Unset maxPstreams in endpoint context and
3245                  * update deq ptr to point to normal string ring.
3246                  */
3247                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3248                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3249         }
3250         spin_unlock_irqrestore(&xhci->lock, flags);
3251
3252         return 0;
3253 }
3254
3255 /*
3256  * Deletes endpoint resources for endpoints that were active before a Reset
3257  * Device command, or a Disable Slot command.  The Reset Device command leaves
3258  * the control endpoint intact, whereas the Disable Slot command deletes it.
3259  *
3260  * Must be called with xhci->lock held.
3261  */
3262 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3263         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3264 {
3265         int i;
3266         unsigned int num_dropped_eps = 0;
3267         unsigned int drop_flags = 0;
3268
3269         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3270                 if (virt_dev->eps[i].ring) {
3271                         drop_flags |= 1 << i;
3272                         num_dropped_eps++;
3273                 }
3274         }
3275         xhci->num_active_eps -= num_dropped_eps;
3276         if (num_dropped_eps)
3277                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3278                                 "%u now active.\n",
3279                                 num_dropped_eps, drop_flags,
3280                                 xhci->num_active_eps);
3281 }
3282
3283 /*
3284  * This submits a Reset Device Command, which will set the device state to 0,
3285  * set the device address to 0, and disable all the endpoints except the default
3286  * control endpoint.  The USB core should come back and call
3287  * xhci_address_device(), and then re-set up the configuration.  If this is
3288  * called because of a usb_reset_and_verify_device(), then the old alternate
3289  * settings will be re-installed through the normal bandwidth allocation
3290  * functions.
3291  *
3292  * Wait for the Reset Device command to finish.  Remove all structures
3293  * associated with the endpoints that were disabled.  Clear the input device
3294  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3295  *
3296  * If the virt_dev to be reset does not exist or does not match the udev,
3297  * it means the device is lost, possibly due to the xHC restore error and
3298  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3299  * re-allocate the device.
3300  */
3301 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3302 {
3303         int ret, i;
3304         unsigned long flags;
3305         struct xhci_hcd *xhci;
3306         unsigned int slot_id;
3307         struct xhci_virt_device *virt_dev;
3308         struct xhci_command *reset_device_cmd;
3309         int timeleft;
3310         int last_freed_endpoint;
3311         struct xhci_slot_ctx *slot_ctx;
3312         int old_active_eps = 0;
3313
3314         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3315         if (ret <= 0)
3316                 return ret;
3317         xhci = hcd_to_xhci(hcd);
3318         slot_id = udev->slot_id;
3319         virt_dev = xhci->devs[slot_id];
3320         if (!virt_dev) {
3321                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3322                                 "not exist. Re-allocate the device\n", slot_id);
3323                 ret = xhci_alloc_dev(hcd, udev);
3324                 if (ret == 1)
3325                         return 0;
3326                 else
3327                         return -EINVAL;
3328         }
3329
3330         if (virt_dev->udev != udev) {
3331                 /* If the virt_dev and the udev does not match, this virt_dev
3332                  * may belong to another udev.
3333                  * Re-allocate the device.
3334                  */
3335                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3336                                 "not match the udev. Re-allocate the device\n",
3337                                 slot_id);
3338                 ret = xhci_alloc_dev(hcd, udev);
3339                 if (ret == 1)
3340                         return 0;
3341                 else
3342                         return -EINVAL;
3343         }
3344
3345         /* If device is not setup, there is no point in resetting it */
3346         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3347         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3348                                                 SLOT_STATE_DISABLED)
3349                 return 0;
3350
3351         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3352         /* Allocate the command structure that holds the struct completion.
3353          * Assume we're in process context, since the normal device reset
3354          * process has to wait for the device anyway.  Storage devices are
3355          * reset as part of error handling, so use GFP_NOIO instead of
3356          * GFP_KERNEL.
3357          */
3358         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3359         if (!reset_device_cmd) {
3360                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3361                 return -ENOMEM;
3362         }
3363
3364         /* Attempt to submit the Reset Device command to the command ring */
3365         spin_lock_irqsave(&xhci->lock, flags);
3366         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3367
3368         /* Enqueue pointer can be left pointing to the link TRB,
3369          * we must handle that
3370          */
3371         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3372                 reset_device_cmd->command_trb =
3373                         xhci->cmd_ring->enq_seg->next->trbs;
3374
3375         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3376         ret = xhci_queue_reset_device(xhci, slot_id);
3377         if (ret) {
3378                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3379                 list_del(&reset_device_cmd->cmd_list);
3380                 spin_unlock_irqrestore(&xhci->lock, flags);
3381                 goto command_cleanup;
3382         }
3383         xhci_ring_cmd_db(xhci);
3384         spin_unlock_irqrestore(&xhci->lock, flags);
3385
3386         /* Wait for the Reset Device command to finish */
3387         timeleft = wait_for_completion_interruptible_timeout(
3388                         reset_device_cmd->completion,
3389                         USB_CTRL_SET_TIMEOUT);
3390         if (timeleft <= 0) {
3391                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3392                                 timeleft == 0 ? "Timeout" : "Signal");
3393                 spin_lock_irqsave(&xhci->lock, flags);
3394                 /* The timeout might have raced with the event ring handler, so
3395                  * only delete from the list if the item isn't poisoned.
3396                  */
3397                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3398                         list_del(&reset_device_cmd->cmd_list);
3399                 spin_unlock_irqrestore(&xhci->lock, flags);
3400                 ret = -ETIME;
3401                 goto command_cleanup;
3402         }
3403
3404         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3405          * unless we tried to reset a slot ID that wasn't enabled,
3406          * or the device wasn't in the addressed or configured state.
3407          */
3408         ret = reset_device_cmd->status;
3409         switch (ret) {
3410         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3411         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3412                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3413                                 slot_id,
3414                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3415                 xhci_info(xhci, "Not freeing device rings.\n");
3416                 /* Don't treat this as an error.  May change my mind later. */
3417                 ret = 0;
3418                 goto command_cleanup;
3419         case COMP_SUCCESS:
3420                 xhci_dbg(xhci, "Successful reset device command.\n");
3421                 break;
3422         default:
3423                 if (xhci_is_vendor_info_code(xhci, ret))
3424                         break;
3425                 xhci_warn(xhci, "Unknown completion code %u for "
3426                                 "reset device command.\n", ret);
3427                 ret = -EINVAL;
3428                 goto command_cleanup;
3429         }
3430
3431         /* Free up host controller endpoint resources */
3432         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3433                 spin_lock_irqsave(&xhci->lock, flags);
3434                 /* Don't delete the default control endpoint resources */
3435                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3436                 spin_unlock_irqrestore(&xhci->lock, flags);
3437         }
3438
3439         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3440         last_freed_endpoint = 1;
3441         for (i = 1; i < 31; ++i) {
3442                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3443
3444                 if (ep->ep_state & EP_HAS_STREAMS) {
3445                         xhci_free_stream_info(xhci, ep->stream_info);
3446                         ep->stream_info = NULL;
3447                         ep->ep_state &= ~EP_HAS_STREAMS;
3448                 }
3449
3450                 if (ep->ring) {
3451                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3452                         last_freed_endpoint = i;
3453                 }
3454                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3455                         xhci_drop_ep_from_interval_table(xhci,
3456                                         &virt_dev->eps[i].bw_info,
3457                                         virt_dev->bw_table,
3458                                         udev,
3459                                         &virt_dev->eps[i],
3460                                         virt_dev->tt_info);
3461                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3462         }
3463         /* If necessary, update the number of active TTs on this root port */
3464         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3465
3466         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3467         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3468         ret = 0;
3469
3470 command_cleanup:
3471         xhci_free_command(xhci, reset_device_cmd);
3472         return ret;
3473 }
3474
3475 /*
3476  * At this point, the struct usb_device is about to go away, the device has
3477  * disconnected, and all traffic has been stopped and the endpoints have been
3478  * disabled.  Free any HC data structures associated with that device.
3479  */
3480 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3481 {
3482         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3483         struct xhci_virt_device *virt_dev;
3484         unsigned long flags;
3485         u32 state;
3486         int i, ret;
3487
3488         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3489         /* If the host is halted due to driver unload, we still need to free the
3490          * device.
3491          */
3492         if (ret <= 0 && ret != -ENODEV)
3493                 return;
3494
3495         virt_dev = xhci->devs[udev->slot_id];
3496
3497         /* Stop any wayward timer functions (which may grab the lock) */
3498         for (i = 0; i < 31; ++i) {
3499                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3500                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3501         }
3502
3503         if (udev->usb2_hw_lpm_enabled) {
3504                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3505                 udev->usb2_hw_lpm_enabled = 0;
3506         }
3507
3508         spin_lock_irqsave(&xhci->lock, flags);
3509         /* Don't disable the slot if the host controller is dead. */
3510         state = xhci_readl(xhci, &xhci->op_regs->status);
3511         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3512                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3513                 xhci_free_virt_device(xhci, udev->slot_id);
3514                 spin_unlock_irqrestore(&xhci->lock, flags);
3515                 return;
3516         }
3517
3518         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3519                 spin_unlock_irqrestore(&xhci->lock, flags);
3520                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3521                 return;
3522         }
3523         xhci_ring_cmd_db(xhci);
3524         spin_unlock_irqrestore(&xhci->lock, flags);
3525         /*
3526          * Event command completion handler will free any data structures
3527          * associated with the slot.  XXX Can free sleep?
3528          */
3529 }
3530
3531 /*
3532  * Checks if we have enough host controller resources for the default control
3533  * endpoint.
3534  *
3535  * Must be called with xhci->lock held.
3536  */
3537 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3538 {
3539         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3540                 xhci_dbg(xhci, "Not enough ep ctxs: "
3541                                 "%u active, need to add 1, limit is %u.\n",
3542                                 xhci->num_active_eps, xhci->limit_active_eps);
3543                 return -ENOMEM;
3544         }
3545         xhci->num_active_eps += 1;
3546         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3547                         xhci->num_active_eps);
3548         return 0;
3549 }
3550
3551
3552 /*
3553  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3554  * timed out, or allocating memory failed.  Returns 1 on success.
3555  */
3556 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3557 {
3558         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3559         unsigned long flags;
3560         int timeleft;
3561         int ret;
3562         union xhci_trb *cmd_trb;
3563
3564         spin_lock_irqsave(&xhci->lock, flags);
3565         cmd_trb = xhci->cmd_ring->dequeue;
3566         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3567         if (ret) {
3568                 spin_unlock_irqrestore(&xhci->lock, flags);
3569                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3570                 return 0;
3571         }
3572         xhci_ring_cmd_db(xhci);
3573         spin_unlock_irqrestore(&xhci->lock, flags);
3574
3575         /* XXX: how much time for xHC slot assignment? */
3576         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3577                         XHCI_CMD_DEFAULT_TIMEOUT);
3578         if (timeleft <= 0) {
3579                 xhci_warn(xhci, "%s while waiting for a slot\n",
3580                                 timeleft == 0 ? "Timeout" : "Signal");
3581                 /* cancel the enable slot request */
3582                 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3583         }
3584
3585         if (!xhci->slot_id) {
3586                 xhci_err(xhci, "Error while assigning device slot ID\n");
3587                 return 0;
3588         }
3589
3590         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3591                 spin_lock_irqsave(&xhci->lock, flags);
3592                 ret = xhci_reserve_host_control_ep_resources(xhci);
3593                 if (ret) {
3594                         spin_unlock_irqrestore(&xhci->lock, flags);
3595                         xhci_warn(xhci, "Not enough host resources, "
3596                                         "active endpoint contexts = %u\n",
3597                                         xhci->num_active_eps);
3598                         goto disable_slot;
3599                 }
3600                 spin_unlock_irqrestore(&xhci->lock, flags);
3601         }
3602         /* Use GFP_NOIO, since this function can be called from
3603          * xhci_discover_or_reset_device(), which may be called as part of
3604          * mass storage driver error handling.
3605          */
3606         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3607                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3608                 goto disable_slot;
3609         }
3610         udev->slot_id = xhci->slot_id;
3611         /* Is this a LS or FS device under a HS hub? */
3612         /* Hub or peripherial? */
3613         return 1;
3614
3615 disable_slot:
3616         /* Disable slot, if we can do it without mem alloc */
3617         spin_lock_irqsave(&xhci->lock, flags);
3618         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3619                 xhci_ring_cmd_db(xhci);
3620         spin_unlock_irqrestore(&xhci->lock, flags);
3621         return 0;
3622 }
3623
3624 /*
3625  * Issue an Address Device command (which will issue a SetAddress request to
3626  * the device).
3627  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3628  * we should only issue and wait on one address command at the same time.
3629  *
3630  * We add one to the device address issued by the hardware because the USB core
3631  * uses address 1 for the root hubs (even though they're not really devices).
3632  */
3633 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3634 {
3635         unsigned long flags;
3636         int timeleft;
3637         struct xhci_virt_device *virt_dev;
3638         int ret = 0;
3639         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3640         struct xhci_slot_ctx *slot_ctx;
3641         struct xhci_input_control_ctx *ctrl_ctx;
3642         u64 temp_64;
3643         union xhci_trb *cmd_trb;
3644
3645         if (!udev->slot_id) {
3646                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3647                 return -EINVAL;
3648         }
3649
3650         virt_dev = xhci->devs[udev->slot_id];
3651
3652         if (WARN_ON(!virt_dev)) {
3653                 /*
3654                  * In plug/unplug torture test with an NEC controller,
3655                  * a zero-dereference was observed once due to virt_dev = 0.
3656                  * Print useful debug rather than crash if it is observed again!
3657                  */
3658                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3659                         udev->slot_id);
3660                 return -EINVAL;
3661         }
3662
3663         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3664         /*
3665          * If this is the first Set Address since device plug-in or
3666          * virt_device realloaction after a resume with an xHCI power loss,
3667          * then set up the slot context.
3668          */
3669         if (!slot_ctx->dev_info)
3670                 xhci_setup_addressable_virt_dev(xhci, udev);
3671         /* Otherwise, update the control endpoint ring enqueue pointer. */
3672         else
3673                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3674         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3675         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3676         ctrl_ctx->drop_flags = 0;
3677
3678         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3679         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3680
3681         spin_lock_irqsave(&xhci->lock, flags);
3682         cmd_trb = xhci->cmd_ring->dequeue;
3683         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3684                                         udev->slot_id);
3685         if (ret) {
3686                 spin_unlock_irqrestore(&xhci->lock, flags);
3687                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3688                 return ret;
3689         }
3690         xhci_ring_cmd_db(xhci);
3691         spin_unlock_irqrestore(&xhci->lock, flags);
3692
3693         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3694         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3695                         XHCI_CMD_DEFAULT_TIMEOUT);
3696         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3697          * the SetAddress() "recovery interval" required by USB and aborting the
3698          * command on a timeout.
3699          */
3700         if (timeleft <= 0) {
3701                 xhci_warn(xhci, "%s while waiting for address device command\n",
3702                                 timeleft == 0 ? "Timeout" : "Signal");
3703                 /* cancel the address device command */
3704                 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3705                 if (ret < 0)
3706                         return ret;
3707                 return -ETIME;
3708         }
3709
3710         switch (virt_dev->cmd_status) {
3711         case COMP_CTX_STATE:
3712         case COMP_EBADSLT:
3713                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3714                                 udev->slot_id);
3715                 ret = -EINVAL;
3716                 break;
3717         case COMP_TX_ERR:
3718                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3719                 ret = -EPROTO;
3720                 break;
3721         case COMP_DEV_ERR:
3722                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3723                                 "device command.\n");
3724                 ret = -ENODEV;
3725                 break;
3726         case COMP_SUCCESS:
3727                 xhci_dbg(xhci, "Successful Address Device command\n");
3728                 break;
3729         default:
3730                 xhci_err(xhci, "ERROR: unexpected command completion "
3731                                 "code 0x%x.\n", virt_dev->cmd_status);
3732                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3733                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3734                 ret = -EINVAL;
3735                 break;
3736         }
3737         if (ret) {
3738                 return ret;
3739         }
3740         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3741         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3742         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3743                  udev->slot_id,
3744                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3745                  (unsigned long long)
3746                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3747         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3748                         (unsigned long long)virt_dev->out_ctx->dma);
3749         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3750         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3751         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3752         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3753         /*
3754          * USB core uses address 1 for the roothubs, so we add one to the
3755          * address given back to us by the HC.
3756          */
3757         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3758         /* Use kernel assigned address for devices; store xHC assigned
3759          * address locally. */
3760         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3761                 + 1;
3762         /* Zero the input context control for later use */
3763         ctrl_ctx->add_flags = 0;
3764         ctrl_ctx->drop_flags = 0;
3765
3766         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3767
3768         return 0;
3769 }
3770
3771 #ifdef CONFIG_USB_SUSPEND
3772
3773 /* BESL to HIRD Encoding array for USB2 LPM */
3774 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3775         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3776
3777 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3778 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3779                                         struct usb_device *udev)
3780 {
3781         int u2del, besl, besl_host;
3782         int besl_device = 0;
3783         u32 field;
3784
3785         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3786         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3787
3788         if (field & USB_BESL_SUPPORT) {
3789                 for (besl_host = 0; besl_host < 16; besl_host++) {
3790                         if (xhci_besl_encoding[besl_host] >= u2del)
3791                                 break;
3792                 }
3793                 /* Use baseline BESL value as default */
3794                 if (field & USB_BESL_BASELINE_VALID)
3795                         besl_device = USB_GET_BESL_BASELINE(field);
3796                 else if (field & USB_BESL_DEEP_VALID)
3797                         besl_device = USB_GET_BESL_DEEP(field);
3798         } else {
3799                 if (u2del <= 50)
3800                         besl_host = 0;
3801                 else
3802                         besl_host = (u2del - 51) / 75 + 1;
3803         }
3804
3805         besl = besl_host + besl_device;
3806         if (besl > 15)
3807                 besl = 15;
3808
3809         return besl;
3810 }
3811
3812 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3813                                         struct usb_device *udev)
3814 {
3815         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3816         struct dev_info *dev_info;
3817         __le32 __iomem  **port_array;
3818         __le32 __iomem  *addr, *pm_addr;
3819         u32             temp, dev_id;
3820         unsigned int    port_num;
3821         unsigned long   flags;
3822         int             hird;
3823         int             ret;
3824
3825         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3826                         !udev->lpm_capable)
3827                 return -EINVAL;
3828
3829         /* we only support lpm for non-hub device connected to root hub yet */
3830         if (!udev->parent || udev->parent->parent ||
3831                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3832                 return -EINVAL;
3833
3834         spin_lock_irqsave(&xhci->lock, flags);
3835
3836         /* Look for devices in lpm_failed_devs list */
3837         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3838                         le16_to_cpu(udev->descriptor.idProduct);
3839         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3840                 if (dev_info->dev_id == dev_id) {
3841                         ret = -EINVAL;
3842                         goto finish;
3843                 }
3844         }
3845
3846         port_array = xhci->usb2_ports;
3847         port_num = udev->portnum - 1;
3848
3849         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3850                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3851                 ret = -EINVAL;
3852                 goto finish;
3853         }
3854
3855         /*
3856          * Test USB 2.0 software LPM.
3857          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3858          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3859          * in the June 2011 errata release.
3860          */
3861         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3862         /*
3863          * Set L1 Device Slot and HIRD/BESL.
3864          * Check device's USB 2.0 extension descriptor to determine whether
3865          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3866          */
3867         pm_addr = port_array[port_num] + 1;
3868         hird = xhci_calculate_hird_besl(xhci, udev);
3869         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3870         xhci_writel(xhci, temp, pm_addr);
3871
3872         /* Set port link state to U2(L1) */
3873         addr = port_array[port_num];
3874         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3875
3876         /* wait for ACK */
3877         spin_unlock_irqrestore(&xhci->lock, flags);
3878         msleep(10);
3879         spin_lock_irqsave(&xhci->lock, flags);
3880
3881         /* Check L1 Status */
3882         ret = xhci_handshake(xhci, pm_addr,
3883                         PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3884         if (ret != -ETIMEDOUT) {
3885                 /* enter L1 successfully */
3886                 temp = xhci_readl(xhci, addr);
3887                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3888                                 port_num, temp);
3889                 ret = 0;
3890         } else {
3891                 temp = xhci_readl(xhci, pm_addr);
3892                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3893                                 port_num, temp & PORT_L1S_MASK);
3894                 ret = -EINVAL;
3895         }
3896
3897         /* Resume the port */
3898         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3899
3900         spin_unlock_irqrestore(&xhci->lock, flags);
3901         msleep(10);
3902         spin_lock_irqsave(&xhci->lock, flags);
3903
3904         /* Clear PLC */
3905         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3906
3907         /* Check PORTSC to make sure the device is in the right state */
3908         if (!ret) {
3909                 temp = xhci_readl(xhci, addr);
3910                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3911                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3912                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
3913                         xhci_dbg(xhci, "port L1 resume fail\n");
3914                         ret = -EINVAL;
3915                 }
3916         }
3917
3918         if (ret) {
3919                 /* Insert dev to lpm_failed_devs list */
3920                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3921                                 "re-enumerate\n");
3922                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3923                 if (!dev_info) {
3924                         ret = -ENOMEM;
3925                         goto finish;
3926                 }
3927                 dev_info->dev_id = dev_id;
3928                 INIT_LIST_HEAD(&dev_info->list);
3929                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3930         } else {
3931                 xhci_ring_device(xhci, udev->slot_id);
3932         }
3933
3934 finish:
3935         spin_unlock_irqrestore(&xhci->lock, flags);
3936         return ret;
3937 }
3938
3939 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3940                         struct usb_device *udev, int enable)
3941 {
3942         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3943         __le32 __iomem  **port_array;
3944         __le32 __iomem  *pm_addr;
3945         u32             temp;
3946         unsigned int    port_num;
3947         unsigned long   flags;
3948         int             hird;
3949
3950         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3951                         !udev->lpm_capable)
3952                 return -EPERM;
3953
3954         if (!udev->parent || udev->parent->parent ||
3955                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3956                 return -EPERM;
3957
3958         if (udev->usb2_hw_lpm_capable != 1)
3959                 return -EPERM;
3960
3961         spin_lock_irqsave(&xhci->lock, flags);
3962
3963         port_array = xhci->usb2_ports;
3964         port_num = udev->portnum - 1;
3965         pm_addr = port_array[port_num] + 1;
3966         temp = xhci_readl(xhci, pm_addr);
3967
3968         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3969                         enable ? "enable" : "disable", port_num);
3970
3971         hird = xhci_calculate_hird_besl(xhci, udev);
3972
3973         if (enable) {
3974                 temp &= ~PORT_HIRD_MASK;
3975                 temp |= PORT_HIRD(hird) | PORT_RWE;
3976                 xhci_writel(xhci, temp, pm_addr);
3977                 temp = xhci_readl(xhci, pm_addr);
3978                 temp |= PORT_HLE;
3979                 xhci_writel(xhci, temp, pm_addr);
3980         } else {
3981                 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3982                 xhci_writel(xhci, temp, pm_addr);
3983         }
3984
3985         spin_unlock_irqrestore(&xhci->lock, flags);
3986         return 0;
3987 }
3988
3989 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3990 {
3991         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3992         int             ret;
3993
3994         ret = xhci_usb2_software_lpm_test(hcd, udev);
3995         if (!ret) {
3996                 xhci_dbg(xhci, "software LPM test succeed\n");
3997                 if (xhci->hw_lpm_support == 1) {
3998                         udev->usb2_hw_lpm_capable = 1;
3999                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4000                         if (!ret)
4001                                 udev->usb2_hw_lpm_enabled = 1;
4002                 }
4003         }
4004
4005         return 0;
4006 }
4007
4008 #else
4009
4010 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4011                                 struct usb_device *udev, int enable)
4012 {
4013         return 0;
4014 }
4015
4016 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4017 {
4018         return 0;
4019 }
4020
4021 #endif /* CONFIG_USB_SUSPEND */
4022
4023 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4024
4025 #ifdef CONFIG_PM
4026 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4027 static unsigned long long xhci_service_interval_to_ns(
4028                 struct usb_endpoint_descriptor *desc)
4029 {
4030         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4031 }
4032
4033 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4034                 enum usb3_link_state state)
4035 {
4036         unsigned long long sel;
4037         unsigned long long pel;
4038         unsigned int max_sel_pel;
4039         char *state_name;
4040
4041         switch (state) {
4042         case USB3_LPM_U1:
4043                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4044                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4045                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4046                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4047                 state_name = "U1";
4048                 break;
4049         case USB3_LPM_U2:
4050                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4051                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4052                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4053                 state_name = "U2";
4054                 break;
4055         default:
4056                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4057                                 __func__);
4058                 return USB3_LPM_DISABLED;
4059         }
4060
4061         if (sel <= max_sel_pel && pel <= max_sel_pel)
4062                 return USB3_LPM_DEVICE_INITIATED;
4063
4064         if (sel > max_sel_pel)
4065                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4066                                 "due to long SEL %llu ms\n",
4067                                 state_name, sel);
4068         else
4069                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4070                                 "due to long PEL %llu\n ms",
4071                                 state_name, pel);
4072         return USB3_LPM_DISABLED;
4073 }
4074
4075 /* Returns the hub-encoded U1 timeout value.
4076  * The U1 timeout should be the maximum of the following values:
4077  *  - For control endpoints, U1 system exit latency (SEL) * 3
4078  *  - For bulk endpoints, U1 SEL * 5
4079  *  - For interrupt endpoints:
4080  *    - Notification EPs, U1 SEL * 3
4081  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4082  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4083  */
4084 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4085                 struct usb_endpoint_descriptor *desc)
4086 {
4087         unsigned long long timeout_ns;
4088         int ep_type;
4089         int intr_type;
4090
4091         ep_type = usb_endpoint_type(desc);
4092         switch (ep_type) {
4093         case USB_ENDPOINT_XFER_CONTROL:
4094                 timeout_ns = udev->u1_params.sel * 3;
4095                 break;
4096         case USB_ENDPOINT_XFER_BULK:
4097                 timeout_ns = udev->u1_params.sel * 5;
4098                 break;
4099         case USB_ENDPOINT_XFER_INT:
4100                 intr_type = usb_endpoint_interrupt_type(desc);
4101                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4102                         timeout_ns = udev->u1_params.sel * 3;
4103                         break;
4104                 }
4105                 /* Otherwise the calculation is the same as isoc eps */
4106         case USB_ENDPOINT_XFER_ISOC:
4107                 timeout_ns = xhci_service_interval_to_ns(desc);
4108                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4109                 if (timeout_ns < udev->u1_params.sel * 2)
4110                         timeout_ns = udev->u1_params.sel * 2;
4111                 break;
4112         default:
4113                 return 0;
4114         }
4115
4116         /* The U1 timeout is encoded in 1us intervals. */
4117         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4118         /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4119         if (timeout_ns == USB3_LPM_DISABLED)
4120                 timeout_ns++;
4121
4122         /* If the necessary timeout value is bigger than what we can set in the
4123          * USB 3.0 hub, we have to disable hub-initiated U1.
4124          */
4125         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4126                 return timeout_ns;
4127         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4128                         "due to long timeout %llu ms\n", timeout_ns);
4129         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4130 }
4131
4132 /* Returns the hub-encoded U2 timeout value.
4133  * The U2 timeout should be the maximum of:
4134  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4135  *  - largest bInterval of any active periodic endpoint (to avoid going
4136  *    into lower power link states between intervals).
4137  *  - the U2 Exit Latency of the device
4138  */
4139 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4140                 struct usb_endpoint_descriptor *desc)
4141 {
4142         unsigned long long timeout_ns;
4143         unsigned long long u2_del_ns;
4144
4145         timeout_ns = 10 * 1000 * 1000;
4146
4147         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4148                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4149                 timeout_ns = xhci_service_interval_to_ns(desc);
4150
4151         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4152         if (u2_del_ns > timeout_ns)
4153                 timeout_ns = u2_del_ns;
4154
4155         /* The U2 timeout is encoded in 256us intervals */
4156         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4157         /* If the necessary timeout value is bigger than what we can set in the
4158          * USB 3.0 hub, we have to disable hub-initiated U2.
4159          */
4160         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4161                 return timeout_ns;
4162         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4163                         "due to long timeout %llu ms\n", timeout_ns);
4164         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4165 }
4166
4167 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4168                 struct usb_device *udev,
4169                 struct usb_endpoint_descriptor *desc,
4170                 enum usb3_link_state state,
4171                 u16 *timeout)
4172 {
4173         if (state == USB3_LPM_U1) {
4174                 if (xhci->quirks & XHCI_INTEL_HOST)
4175                         return xhci_calculate_intel_u1_timeout(udev, desc);
4176         } else {
4177                 if (xhci->quirks & XHCI_INTEL_HOST)
4178                         return xhci_calculate_intel_u2_timeout(udev, desc);
4179         }
4180
4181         return USB3_LPM_DISABLED;
4182 }
4183
4184 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4185                 struct usb_device *udev,
4186                 struct usb_endpoint_descriptor *desc,
4187                 enum usb3_link_state state,
4188                 u16 *timeout)
4189 {
4190         u16 alt_timeout;
4191
4192         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4193                 desc, state, timeout);
4194
4195         /* If we found we can't enable hub-initiated LPM, or
4196          * the U1 or U2 exit latency was too high to allow
4197          * device-initiated LPM as well, just stop searching.
4198          */
4199         if (alt_timeout == USB3_LPM_DISABLED ||
4200                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4201                 *timeout = alt_timeout;
4202                 return -E2BIG;
4203         }
4204         if (alt_timeout > *timeout)
4205                 *timeout = alt_timeout;
4206         return 0;
4207 }
4208
4209 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4210                 struct usb_device *udev,
4211                 struct usb_host_interface *alt,
4212                 enum usb3_link_state state,
4213                 u16 *timeout)
4214 {
4215         int j;
4216
4217         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4218                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4219                                         &alt->endpoint[j].desc, state, timeout))
4220                         return -E2BIG;
4221                 continue;
4222         }
4223         return 0;
4224 }
4225
4226 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4227                 enum usb3_link_state state)
4228 {
4229         struct usb_device *parent;
4230         unsigned int num_hubs;
4231
4232         if (state == USB3_LPM_U2)
4233                 return 0;
4234
4235         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4236         for (parent = udev->parent, num_hubs = 0; parent->parent;
4237                         parent = parent->parent)
4238                 num_hubs++;
4239
4240         if (num_hubs < 2)
4241                 return 0;
4242
4243         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4244                         " below second-tier hub.\n");
4245         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4246                         "to decrease power consumption.\n");
4247         return -E2BIG;
4248 }
4249
4250 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4251                 struct usb_device *udev,
4252                 enum usb3_link_state state)
4253 {
4254         if (xhci->quirks & XHCI_INTEL_HOST)
4255                 return xhci_check_intel_tier_policy(udev, state);
4256         return -EINVAL;
4257 }
4258
4259 /* Returns the U1 or U2 timeout that should be enabled.
4260  * If the tier check or timeout setting functions return with a non-zero exit
4261  * code, that means the timeout value has been finalized and we shouldn't look
4262  * at any more endpoints.
4263  */
4264 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4265                         struct usb_device *udev, enum usb3_link_state state)
4266 {
4267         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4268         struct usb_host_config *config;
4269         char *state_name;
4270         int i;
4271         u16 timeout = USB3_LPM_DISABLED;
4272
4273         if (state == USB3_LPM_U1)
4274                 state_name = "U1";
4275         else if (state == USB3_LPM_U2)
4276                 state_name = "U2";
4277         else {
4278                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4279                                 state);
4280                 return timeout;
4281         }
4282
4283         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4284                 return timeout;
4285
4286         /* Gather some information about the currently installed configuration
4287          * and alternate interface settings.
4288          */
4289         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4290                         state, &timeout))
4291                 return timeout;
4292
4293         config = udev->actconfig;
4294         if (!config)
4295                 return timeout;
4296
4297         for (i = 0; i < USB_MAXINTERFACES; i++) {
4298                 struct usb_driver *driver;
4299                 struct usb_interface *intf = config->interface[i];
4300
4301                 if (!intf)
4302                         continue;
4303
4304                 /* Check if any currently bound drivers want hub-initiated LPM
4305                  * disabled.
4306                  */
4307                 if (intf->dev.driver) {
4308                         driver = to_usb_driver(intf->dev.driver);
4309                         if (driver && driver->disable_hub_initiated_lpm) {
4310                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4311                                                 "at request of driver %s\n",
4312                                                 state_name, driver->name);
4313                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4314                         }
4315                 }
4316
4317                 /* Not sure how this could happen... */
4318                 if (!intf->cur_altsetting)
4319                         continue;
4320
4321                 if (xhci_update_timeout_for_interface(xhci, udev,
4322                                         intf->cur_altsetting,
4323                                         state, &timeout))
4324                         return timeout;
4325         }
4326         return timeout;
4327 }
4328
4329 /*
4330  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4331  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4332  */
4333 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4334                         struct usb_device *udev, u16 max_exit_latency)
4335 {
4336         struct xhci_virt_device *virt_dev;
4337         struct xhci_command *command;
4338         struct xhci_input_control_ctx *ctrl_ctx;
4339         struct xhci_slot_ctx *slot_ctx;
4340         unsigned long flags;
4341         int ret;
4342
4343         spin_lock_irqsave(&xhci->lock, flags);
4344         if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4345                 spin_unlock_irqrestore(&xhci->lock, flags);
4346                 return 0;
4347         }
4348
4349         /* Attempt to issue an Evaluate Context command to change the MEL. */
4350         virt_dev = xhci->devs[udev->slot_id];
4351         command = xhci->lpm_command;
4352         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4353         spin_unlock_irqrestore(&xhci->lock, flags);
4354
4355         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4356         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4357         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4358         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4359         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4360
4361         xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4362         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4363         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4364
4365         /* Issue and wait for the evaluate context command. */
4366         ret = xhci_configure_endpoint(xhci, udev, command,
4367                         true, true);
4368         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4369         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4370
4371         if (!ret) {
4372                 spin_lock_irqsave(&xhci->lock, flags);
4373                 virt_dev->current_mel = max_exit_latency;
4374                 spin_unlock_irqrestore(&xhci->lock, flags);
4375         }
4376         return ret;
4377 }
4378
4379 static int calculate_max_exit_latency(struct usb_device *udev,
4380                 enum usb3_link_state state_changed,
4381                 u16 hub_encoded_timeout)
4382 {
4383         unsigned long long u1_mel_us = 0;
4384         unsigned long long u2_mel_us = 0;
4385         unsigned long long mel_us = 0;
4386         bool disabling_u1;
4387         bool disabling_u2;
4388         bool enabling_u1;
4389         bool enabling_u2;
4390
4391         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4392                         hub_encoded_timeout == USB3_LPM_DISABLED);
4393         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4394                         hub_encoded_timeout == USB3_LPM_DISABLED);
4395
4396         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4397                         hub_encoded_timeout != USB3_LPM_DISABLED);
4398         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4399                         hub_encoded_timeout != USB3_LPM_DISABLED);
4400
4401         /* If U1 was already enabled and we're not disabling it,
4402          * or we're going to enable U1, account for the U1 max exit latency.
4403          */
4404         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4405                         enabling_u1)
4406                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4407         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4408                         enabling_u2)
4409                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4410
4411         if (u1_mel_us > u2_mel_us)
4412                 mel_us = u1_mel_us;
4413         else
4414                 mel_us = u2_mel_us;
4415         /* xHCI host controller max exit latency field is only 16 bits wide. */
4416         if (mel_us > MAX_EXIT) {
4417                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4418                                 "is too big.\n", mel_us);
4419                 return -E2BIG;
4420         }
4421         return mel_us;
4422 }
4423
4424 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4425 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4426                         struct usb_device *udev, enum usb3_link_state state)
4427 {
4428         struct xhci_hcd *xhci;
4429         u16 hub_encoded_timeout;
4430         int mel;
4431         int ret;
4432
4433         xhci = hcd_to_xhci(hcd);
4434         /* The LPM timeout values are pretty host-controller specific, so don't
4435          * enable hub-initiated timeouts unless the vendor has provided
4436          * information about their timeout algorithm.
4437          */
4438         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4439                         !xhci->devs[udev->slot_id])
4440                 return USB3_LPM_DISABLED;
4441
4442         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4443         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4444         if (mel < 0) {
4445                 /* Max Exit Latency is too big, disable LPM. */
4446                 hub_encoded_timeout = USB3_LPM_DISABLED;
4447                 mel = 0;
4448         }
4449
4450         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4451         if (ret)
4452                 return ret;
4453         return hub_encoded_timeout;
4454 }
4455
4456 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4457                         struct usb_device *udev, enum usb3_link_state state)
4458 {
4459         struct xhci_hcd *xhci;
4460         u16 mel;
4461         int ret;
4462
4463         xhci = hcd_to_xhci(hcd);
4464         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4465                         !xhci->devs[udev->slot_id])
4466                 return 0;
4467
4468         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4469         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4470         if (ret)
4471                 return ret;
4472         return 0;
4473 }
4474 #else /* CONFIG_PM */
4475
4476 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4477                         struct usb_device *udev, enum usb3_link_state state)
4478 {
4479         return USB3_LPM_DISABLED;
4480 }
4481
4482 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4483                         struct usb_device *udev, enum usb3_link_state state)
4484 {
4485         return 0;
4486 }
4487 #endif  /* CONFIG_PM */
4488
4489 /*-------------------------------------------------------------------------*/
4490
4491 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4492  * internal data structures for the device.
4493  */
4494 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4495                         struct usb_tt *tt, gfp_t mem_flags)
4496 {
4497         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4498         struct xhci_virt_device *vdev;
4499         struct xhci_command *config_cmd;
4500         struct xhci_input_control_ctx *ctrl_ctx;
4501         struct xhci_slot_ctx *slot_ctx;
4502         unsigned long flags;
4503         unsigned think_time;
4504         int ret;
4505
4506         /* Ignore root hubs */
4507         if (!hdev->parent)
4508                 return 0;
4509
4510         vdev = xhci->devs[hdev->slot_id];
4511         if (!vdev) {
4512                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4513                 return -EINVAL;
4514         }
4515         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4516         if (!config_cmd) {
4517                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4518                 return -ENOMEM;
4519         }
4520
4521         spin_lock_irqsave(&xhci->lock, flags);
4522         if (hdev->speed == USB_SPEED_HIGH &&
4523                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4524                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4525                 xhci_free_command(xhci, config_cmd);
4526                 spin_unlock_irqrestore(&xhci->lock, flags);
4527                 return -ENOMEM;
4528         }
4529
4530         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4531         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4532         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4533         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4534         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4535         if (tt->multi)
4536                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4537         if (xhci->hci_version > 0x95) {
4538                 xhci_dbg(xhci, "xHCI version %x needs hub "
4539                                 "TT think time and number of ports\n",
4540                                 (unsigned int) xhci->hci_version);
4541                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4542                 /* Set TT think time - convert from ns to FS bit times.
4543                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4544                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4545                  *
4546                  * xHCI 1.0: this field shall be 0 if the device is not a
4547                  * High-spped hub.
4548                  */
4549                 think_time = tt->think_time;
4550                 if (think_time != 0)
4551                         think_time = (think_time / 666) - 1;
4552                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4553                         slot_ctx->tt_info |=
4554                                 cpu_to_le32(TT_THINK_TIME(think_time));
4555         } else {
4556                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4557                                 "TT think time or number of ports\n",
4558                                 (unsigned int) xhci->hci_version);
4559         }
4560         slot_ctx->dev_state = 0;
4561         spin_unlock_irqrestore(&xhci->lock, flags);
4562
4563         xhci_dbg(xhci, "Set up %s for hub device.\n",
4564                         (xhci->hci_version > 0x95) ?
4565                         "configure endpoint" : "evaluate context");
4566         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4567         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4568
4569         /* Issue and wait for the configure endpoint or
4570          * evaluate context command.
4571          */
4572         if (xhci->hci_version > 0x95)
4573                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4574                                 false, false);
4575         else
4576                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4577                                 true, false);
4578
4579         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4580         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4581
4582         xhci_free_command(xhci, config_cmd);
4583         return ret;
4584 }
4585
4586 int xhci_get_frame(struct usb_hcd *hcd)
4587 {
4588         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4589         /* EHCI mods by the periodic size.  Why? */
4590         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4591 }
4592
4593 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4594 {
4595         struct xhci_hcd         *xhci;
4596         struct device           *dev = hcd->self.controller;
4597         int                     retval;
4598         u32                     temp;
4599
4600         /* Accept arbitrarily long scatter-gather lists */
4601         hcd->self.sg_tablesize = ~0;
4602         /* XHCI controllers don't stop the ep queue on short packets :| */
4603         hcd->self.no_stop_on_short = 1;
4604
4605         if (usb_hcd_is_primary_hcd(hcd)) {
4606                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4607                 if (!xhci)
4608                         return -ENOMEM;
4609                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4610                 xhci->main_hcd = hcd;
4611                 /* Mark the first roothub as being USB 2.0.
4612                  * The xHCI driver will register the USB 3.0 roothub.
4613                  */
4614                 hcd->speed = HCD_USB2;
4615                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4616                 /*
4617                  * USB 2.0 roothub under xHCI has an integrated TT,
4618                  * (rate matching hub) as opposed to having an OHCI/UHCI
4619                  * companion controller.
4620                  */
4621                 hcd->has_tt = 1;
4622         } else {
4623                 /* xHCI private pointer was set in xhci_pci_probe for the second
4624                  * registered roothub.
4625                  */
4626                 xhci = hcd_to_xhci(hcd);
4627                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4628                 if (HCC_64BIT_ADDR(temp)) {
4629                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4630                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4631                 } else {
4632                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4633                 }
4634                 return 0;
4635         }
4636
4637         xhci->cap_regs = hcd->regs;
4638         xhci->op_regs = hcd->regs +
4639                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4640         xhci->run_regs = hcd->regs +
4641                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4642         /* Cache read-only capability registers */
4643         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4644         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4645         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4646         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4647         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4648         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4649         xhci_print_registers(xhci);
4650
4651         get_quirks(dev, xhci);
4652
4653         /* Make sure the HC is halted. */
4654         retval = xhci_halt(xhci);
4655         if (retval)
4656                 goto error;
4657
4658         xhci_dbg(xhci, "Resetting HCD\n");
4659         /* Reset the internal HC memory state and registers. */
4660         retval = xhci_reset(xhci);
4661         if (retval)
4662                 goto error;
4663         xhci_dbg(xhci, "Reset complete\n");
4664
4665         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4666         if (HCC_64BIT_ADDR(temp)) {
4667                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4668                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4669         } else {
4670                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4671         }
4672
4673         xhci_dbg(xhci, "Calling HCD init\n");
4674         /* Initialize HCD and host controller data structures. */
4675         retval = xhci_init(hcd);
4676         if (retval)
4677                 goto error;
4678         xhci_dbg(xhci, "Called HCD init\n");
4679         return 0;
4680 error:
4681         kfree(xhci);
4682         return retval;
4683 }
4684
4685 MODULE_DESCRIPTION(DRIVER_DESC);
4686 MODULE_AUTHOR(DRIVER_AUTHOR);
4687 MODULE_LICENSE("GPL");
4688
4689 static int __init xhci_hcd_init(void)
4690 {
4691         int retval;
4692
4693         retval = xhci_register_pci();
4694         if (retval < 0) {
4695                 printk(KERN_DEBUG "Problem registering PCI driver.");
4696                 return retval;
4697         }
4698         retval = xhci_register_plat();
4699         if (retval < 0) {
4700                 printk(KERN_DEBUG "Problem registering platform driver.");
4701                 goto unreg_pci;
4702         }
4703         /*
4704          * Check the compiler generated sizes of structures that must be laid
4705          * out in specific ways for hardware access.
4706          */
4707         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4708         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4709         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4710         /* xhci_device_control has eight fields, and also
4711          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4712          */
4713         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4714         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4715         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4716         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4717         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4718         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4719         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4720         return 0;
4721 unreg_pci:
4722         xhci_unregister_pci();
4723         return retval;
4724 }
4725 module_init(xhci_hcd_init);
4726
4727 static void __exit xhci_hcd_cleanup(void)
4728 {
4729         xhci_unregister_pci();
4730         xhci_unregister_plat();
4731 }
4732 module_exit(xhci_hcd_cleanup);