USB: serial: fix stringify operator in usb-serial-simple
[firefly-linux-kernel-4.4.55.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30
31 #include "xhci.h"
32 #include "xhci-trace.h"
33
34 #define DRIVER_AUTHOR "Sarah Sharp"
35 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
36
37 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
38 static int link_quirk;
39 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
40 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
41
42 /* TODO: copied from ehci-hcd.c - can this be refactored? */
43 /*
44  * xhci_handshake - spin reading hc until handshake completes or fails
45  * @ptr: address of hc register to be read
46  * @mask: bits to look at in result of read
47  * @done: value of those bits when handshake succeeds
48  * @usec: timeout in microseconds
49  *
50  * Returns negative errno, or zero on success
51  *
52  * Success happens when the "mask" bits have the specified value (hardware
53  * handshake done).  There are two failure modes:  "usec" have passed (major
54  * hardware flakeout), or the register reads as all-ones (hardware removed).
55  */
56 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
57                       u32 mask, u32 done, int usec)
58 {
59         u32     result;
60
61         do {
62                 result = xhci_readl(xhci, ptr);
63                 if (result == ~(u32)0)          /* card removed */
64                         return -ENODEV;
65                 result &= mask;
66                 if (result == done)
67                         return 0;
68                 udelay(1);
69                 usec--;
70         } while (usec > 0);
71         return -ETIMEDOUT;
72 }
73
74 /*
75  * Disable interrupts and begin the xHCI halting process.
76  */
77 void xhci_quiesce(struct xhci_hcd *xhci)
78 {
79         u32 halted;
80         u32 cmd;
81         u32 mask;
82
83         mask = ~(XHCI_IRQS);
84         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
85         if (!halted)
86                 mask &= ~CMD_RUN;
87
88         cmd = xhci_readl(xhci, &xhci->op_regs->command);
89         cmd &= mask;
90         xhci_writel(xhci, cmd, &xhci->op_regs->command);
91 }
92
93 /*
94  * Force HC into halt state.
95  *
96  * Disable any IRQs and clear the run/stop bit.
97  * HC will complete any current and actively pipelined transactions, and
98  * should halt within 16 ms of the run/stop bit being cleared.
99  * Read HC Halted bit in the status register to see when the HC is finished.
100  */
101 int xhci_halt(struct xhci_hcd *xhci)
102 {
103         int ret;
104         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
105         xhci_quiesce(xhci);
106
107         ret = xhci_handshake(xhci, &xhci->op_regs->status,
108                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
109         if (!ret) {
110                 xhci->xhc_state |= XHCI_STATE_HALTED;
111                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
112         } else
113                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
114                                 XHCI_MAX_HALT_USEC);
115         return ret;
116 }
117
118 /*
119  * Set the run bit and wait for the host to be running.
120  */
121 static int xhci_start(struct xhci_hcd *xhci)
122 {
123         u32 temp;
124         int ret;
125
126         temp = xhci_readl(xhci, &xhci->op_regs->command);
127         temp |= (CMD_RUN);
128         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
129                         temp);
130         xhci_writel(xhci, temp, &xhci->op_regs->command);
131
132         /*
133          * Wait for the HCHalted Status bit to be 0 to indicate the host is
134          * running.
135          */
136         ret = xhci_handshake(xhci, &xhci->op_regs->status,
137                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
138         if (ret == -ETIMEDOUT)
139                 xhci_err(xhci, "Host took too long to start, "
140                                 "waited %u microseconds.\n",
141                                 XHCI_MAX_HALT_USEC);
142         if (!ret)
143                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
144         return ret;
145 }
146
147 /*
148  * Reset a halted HC.
149  *
150  * This resets pipelines, timers, counters, state machines, etc.
151  * Transactions will be terminated immediately, and operational registers
152  * will be set to their defaults.
153  */
154 int xhci_reset(struct xhci_hcd *xhci)
155 {
156         u32 command;
157         u32 state;
158         int ret, i;
159
160         state = xhci_readl(xhci, &xhci->op_regs->status);
161         if ((state & STS_HALT) == 0) {
162                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
163                 return 0;
164         }
165
166         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
167         command = xhci_readl(xhci, &xhci->op_regs->command);
168         command |= CMD_RESET;
169         xhci_writel(xhci, command, &xhci->op_regs->command);
170
171         ret = xhci_handshake(xhci, &xhci->op_regs->command,
172                         CMD_RESET, 0, 10 * 1000 * 1000);
173         if (ret)
174                 return ret;
175
176         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
177                          "Wait for controller to be ready for doorbell rings");
178         /*
179          * xHCI cannot write to any doorbells or operational registers other
180          * than status until the "Controller Not Ready" flag is cleared.
181          */
182         ret = xhci_handshake(xhci, &xhci->op_regs->status,
183                         STS_CNR, 0, 10 * 1000 * 1000);
184
185         for (i = 0; i < 2; ++i) {
186                 xhci->bus_state[i].port_c_suspend = 0;
187                 xhci->bus_state[i].suspended_ports = 0;
188                 xhci->bus_state[i].resuming_ports = 0;
189         }
190
191         return ret;
192 }
193
194 #ifdef CONFIG_PCI
195 static int xhci_free_msi(struct xhci_hcd *xhci)
196 {
197         int i;
198
199         if (!xhci->msix_entries)
200                 return -EINVAL;
201
202         for (i = 0; i < xhci->msix_count; i++)
203                 if (xhci->msix_entries[i].vector)
204                         free_irq(xhci->msix_entries[i].vector,
205                                         xhci_to_hcd(xhci));
206         return 0;
207 }
208
209 /*
210  * Set up MSI
211  */
212 static int xhci_setup_msi(struct xhci_hcd *xhci)
213 {
214         int ret;
215         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
216
217         ret = pci_enable_msi(pdev);
218         if (ret) {
219                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
220                                 "failed to allocate MSI entry");
221                 return ret;
222         }
223
224         ret = request_irq(pdev->irq, xhci_msi_irq,
225                                 0, "xhci_hcd", xhci_to_hcd(xhci));
226         if (ret) {
227                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
228                                 "disable MSI interrupt");
229                 pci_disable_msi(pdev);
230         }
231
232         return ret;
233 }
234
235 /*
236  * Free IRQs
237  * free all IRQs request
238  */
239 static void xhci_free_irq(struct xhci_hcd *xhci)
240 {
241         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
242         int ret;
243
244         /* return if using legacy interrupt */
245         if (xhci_to_hcd(xhci)->irq > 0)
246                 return;
247
248         ret = xhci_free_msi(xhci);
249         if (!ret)
250                 return;
251         if (pdev->irq > 0)
252                 free_irq(pdev->irq, xhci_to_hcd(xhci));
253
254         return;
255 }
256
257 /*
258  * Set up MSI-X
259  */
260 static int xhci_setup_msix(struct xhci_hcd *xhci)
261 {
262         int i, ret = 0;
263         struct usb_hcd *hcd = xhci_to_hcd(xhci);
264         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
265
266         /*
267          * calculate number of msi-x vectors supported.
268          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
269          *   with max number of interrupters based on the xhci HCSPARAMS1.
270          * - num_online_cpus: maximum msi-x vectors per CPUs core.
271          *   Add additional 1 vector to ensure always available interrupt.
272          */
273         xhci->msix_count = min(num_online_cpus() + 1,
274                                 HCS_MAX_INTRS(xhci->hcs_params1));
275
276         xhci->msix_entries =
277                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
278                                 GFP_KERNEL);
279         if (!xhci->msix_entries) {
280                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
281                 return -ENOMEM;
282         }
283
284         for (i = 0; i < xhci->msix_count; i++) {
285                 xhci->msix_entries[i].entry = i;
286                 xhci->msix_entries[i].vector = 0;
287         }
288
289         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
290         if (ret) {
291                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
292                                 "Failed to enable MSI-X");
293                 goto free_entries;
294         }
295
296         for (i = 0; i < xhci->msix_count; i++) {
297                 ret = request_irq(xhci->msix_entries[i].vector,
298                                 xhci_msi_irq,
299                                 0, "xhci_hcd", xhci_to_hcd(xhci));
300                 if (ret)
301                         goto disable_msix;
302         }
303
304         hcd->msix_enabled = 1;
305         return ret;
306
307 disable_msix:
308         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
309         xhci_free_irq(xhci);
310         pci_disable_msix(pdev);
311 free_entries:
312         kfree(xhci->msix_entries);
313         xhci->msix_entries = NULL;
314         return ret;
315 }
316
317 /* Free any IRQs and disable MSI-X */
318 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
319 {
320         struct usb_hcd *hcd = xhci_to_hcd(xhci);
321         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
322
323         xhci_free_irq(xhci);
324
325         if (xhci->msix_entries) {
326                 pci_disable_msix(pdev);
327                 kfree(xhci->msix_entries);
328                 xhci->msix_entries = NULL;
329         } else {
330                 pci_disable_msi(pdev);
331         }
332
333         hcd->msix_enabled = 0;
334         return;
335 }
336
337 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
338 {
339         int i;
340
341         if (xhci->msix_entries) {
342                 for (i = 0; i < xhci->msix_count; i++)
343                         synchronize_irq(xhci->msix_entries[i].vector);
344         }
345 }
346
347 static int xhci_try_enable_msi(struct usb_hcd *hcd)
348 {
349         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
350         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
351         int ret;
352
353         /*
354          * Some Fresco Logic host controllers advertise MSI, but fail to
355          * generate interrupts.  Don't even try to enable MSI.
356          */
357         if (xhci->quirks & XHCI_BROKEN_MSI)
358                 goto legacy_irq;
359
360         /* unregister the legacy interrupt */
361         if (hcd->irq)
362                 free_irq(hcd->irq, hcd);
363         hcd->irq = 0;
364
365         ret = xhci_setup_msix(xhci);
366         if (ret)
367                 /* fall back to msi*/
368                 ret = xhci_setup_msi(xhci);
369
370         if (!ret)
371                 /* hcd->irq is 0, we have MSI */
372                 return 0;
373
374         if (!pdev->irq) {
375                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
376                 return -EINVAL;
377         }
378
379  legacy_irq:
380         /* fall back to legacy interrupt*/
381         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
382                         hcd->irq_descr, hcd);
383         if (ret) {
384                 xhci_err(xhci, "request interrupt %d failed\n",
385                                 pdev->irq);
386                 return ret;
387         }
388         hcd->irq = pdev->irq;
389         return 0;
390 }
391
392 #else
393
394 static int xhci_try_enable_msi(struct usb_hcd *hcd)
395 {
396         return 0;
397 }
398
399 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
400 {
401 }
402
403 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
404 {
405 }
406
407 #endif
408
409 static void compliance_mode_recovery(unsigned long arg)
410 {
411         struct xhci_hcd *xhci;
412         struct usb_hcd *hcd;
413         u32 temp;
414         int i;
415
416         xhci = (struct xhci_hcd *)arg;
417
418         for (i = 0; i < xhci->num_usb3_ports; i++) {
419                 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
420                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
421                         /*
422                          * Compliance Mode Detected. Letting USB Core
423                          * handle the Warm Reset
424                          */
425                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
426                                         "Compliance mode detected->port %d",
427                                         i + 1);
428                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
429                                         "Attempting compliance mode recovery");
430                         hcd = xhci->shared_hcd;
431
432                         if (hcd->state == HC_STATE_SUSPENDED)
433                                 usb_hcd_resume_root_hub(hcd);
434
435                         usb_hcd_poll_rh_status(hcd);
436                 }
437         }
438
439         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
440                 mod_timer(&xhci->comp_mode_recovery_timer,
441                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
442 }
443
444 /*
445  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
446  * that causes ports behind that hardware to enter compliance mode sometimes.
447  * The quirk creates a timer that polls every 2 seconds the link state of
448  * each host controller's port and recovers it by issuing a Warm reset
449  * if Compliance mode is detected, otherwise the port will become "dead" (no
450  * device connections or disconnections will be detected anymore). Becasue no
451  * status event is generated when entering compliance mode (per xhci spec),
452  * this quirk is needed on systems that have the failing hardware installed.
453  */
454 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
455 {
456         xhci->port_status_u0 = 0;
457         init_timer(&xhci->comp_mode_recovery_timer);
458
459         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
460         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
461         xhci->comp_mode_recovery_timer.expires = jiffies +
462                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
463
464         set_timer_slack(&xhci->comp_mode_recovery_timer,
465                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
466         add_timer(&xhci->comp_mode_recovery_timer);
467         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
468                         "Compliance mode recovery timer initialized");
469 }
470
471 /*
472  * This function identifies the systems that have installed the SN65LVPE502CP
473  * USB3.0 re-driver and that need the Compliance Mode Quirk.
474  * Systems:
475  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
476  */
477 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
478 {
479         const char *dmi_product_name, *dmi_sys_vendor;
480
481         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
482         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
483         if (!dmi_product_name || !dmi_sys_vendor)
484                 return false;
485
486         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
487                 return false;
488
489         if (strstr(dmi_product_name, "Z420") ||
490                         strstr(dmi_product_name, "Z620") ||
491                         strstr(dmi_product_name, "Z820") ||
492                         strstr(dmi_product_name, "Z1 Workstation"))
493                 return true;
494
495         return false;
496 }
497
498 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
499 {
500         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
501 }
502
503
504 /*
505  * Initialize memory for HCD and xHC (one-time init).
506  *
507  * Program the PAGESIZE register, initialize the device context array, create
508  * device contexts (?), set up a command ring segment (or two?), create event
509  * ring (one for now).
510  */
511 int xhci_init(struct usb_hcd *hcd)
512 {
513         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
514         int retval = 0;
515
516         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
517         spin_lock_init(&xhci->lock);
518         if (xhci->hci_version == 0x95 && link_quirk) {
519                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
520                                 "QUIRK: Not clearing Link TRB chain bits.");
521                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
522         } else {
523                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
524                                 "xHCI doesn't need link TRB QUIRK");
525         }
526         retval = xhci_mem_init(xhci, GFP_KERNEL);
527         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
528
529         /* Initializing Compliance Mode Recovery Data If Needed */
530         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
531                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
532                 compliance_mode_recovery_timer_init(xhci);
533         }
534
535         return retval;
536 }
537
538 /*-------------------------------------------------------------------------*/
539
540
541 static int xhci_run_finished(struct xhci_hcd *xhci)
542 {
543         if (xhci_start(xhci)) {
544                 xhci_halt(xhci);
545                 return -ENODEV;
546         }
547         xhci->shared_hcd->state = HC_STATE_RUNNING;
548         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
549
550         if (xhci->quirks & XHCI_NEC_HOST)
551                 xhci_ring_cmd_db(xhci);
552
553         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
554                         "Finished xhci_run for USB3 roothub");
555         return 0;
556 }
557
558 /*
559  * Start the HC after it was halted.
560  *
561  * This function is called by the USB core when the HC driver is added.
562  * Its opposite is xhci_stop().
563  *
564  * xhci_init() must be called once before this function can be called.
565  * Reset the HC, enable device slot contexts, program DCBAAP, and
566  * set command ring pointer and event ring pointer.
567  *
568  * Setup MSI-X vectors and enable interrupts.
569  */
570 int xhci_run(struct usb_hcd *hcd)
571 {
572         u32 temp;
573         u64 temp_64;
574         int ret;
575         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
576
577         /* Start the xHCI host controller running only after the USB 2.0 roothub
578          * is setup.
579          */
580
581         hcd->uses_new_polling = 1;
582         if (!usb_hcd_is_primary_hcd(hcd))
583                 return xhci_run_finished(xhci);
584
585         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
586
587         ret = xhci_try_enable_msi(hcd);
588         if (ret)
589                 return ret;
590
591         xhci_dbg(xhci, "Command ring memory map follows:\n");
592         xhci_debug_ring(xhci, xhci->cmd_ring);
593         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
594         xhci_dbg_cmd_ptrs(xhci);
595
596         xhci_dbg(xhci, "ERST memory map follows:\n");
597         xhci_dbg_erst(xhci, &xhci->erst);
598         xhci_dbg(xhci, "Event ring:\n");
599         xhci_debug_ring(xhci, xhci->event_ring);
600         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
601         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
602         temp_64 &= ~ERST_PTR_MASK;
603         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
604                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
605
606         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
607                         "// Set the interrupt modulation register");
608         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
609         temp &= ~ER_IRQ_INTERVAL_MASK;
610         temp |= (u32) 160;
611         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
612
613         /* Set the HCD state before we enable the irqs */
614         temp = xhci_readl(xhci, &xhci->op_regs->command);
615         temp |= (CMD_EIE);
616         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
617                         "// Enable interrupts, cmd = 0x%x.", temp);
618         xhci_writel(xhci, temp, &xhci->op_regs->command);
619
620         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
621         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
622                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
623                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
624         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
625                         &xhci->ir_set->irq_pending);
626         xhci_print_ir_set(xhci, 0);
627
628         if (xhci->quirks & XHCI_NEC_HOST)
629                 xhci_queue_vendor_command(xhci, 0, 0, 0,
630                                 TRB_TYPE(TRB_NEC_GET_FW));
631
632         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
633                         "Finished xhci_run for USB2 roothub");
634         return 0;
635 }
636
637 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
638 {
639         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640
641         spin_lock_irq(&xhci->lock);
642         xhci_halt(xhci);
643
644         /* The shared_hcd is going to be deallocated shortly (the USB core only
645          * calls this function when allocation fails in usb_add_hcd(), or
646          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
647          */
648         xhci->shared_hcd = NULL;
649         spin_unlock_irq(&xhci->lock);
650 }
651
652 /*
653  * Stop xHCI driver.
654  *
655  * This function is called by the USB core when the HC driver is removed.
656  * Its opposite is xhci_run().
657  *
658  * Disable device contexts, disable IRQs, and quiesce the HC.
659  * Reset the HC, finish any completed transactions, and cleanup memory.
660  */
661 void xhci_stop(struct usb_hcd *hcd)
662 {
663         u32 temp;
664         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
665
666         if (!usb_hcd_is_primary_hcd(hcd)) {
667                 xhci_only_stop_hcd(xhci->shared_hcd);
668                 return;
669         }
670
671         spin_lock_irq(&xhci->lock);
672         /* Make sure the xHC is halted for a USB3 roothub
673          * (xhci_stop() could be called as part of failed init).
674          */
675         xhci_halt(xhci);
676         xhci_reset(xhci);
677         spin_unlock_irq(&xhci->lock);
678
679         xhci_cleanup_msix(xhci);
680
681         /* Deleting Compliance Mode Recovery Timer */
682         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
683                         (!(xhci_all_ports_seen_u0(xhci)))) {
684                 del_timer_sync(&xhci->comp_mode_recovery_timer);
685                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
686                                 "%s: compliance mode recovery timer deleted",
687                                 __func__);
688         }
689
690         if (xhci->quirks & XHCI_AMD_PLL_FIX)
691                 usb_amd_dev_put();
692
693         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
694                         "// Disabling event ring interrupts");
695         temp = xhci_readl(xhci, &xhci->op_regs->status);
696         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
697         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
698         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
699                         &xhci->ir_set->irq_pending);
700         xhci_print_ir_set(xhci, 0);
701
702         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
703         xhci_mem_cleanup(xhci);
704         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
705                         "xhci_stop completed - status = %x",
706                         xhci_readl(xhci, &xhci->op_regs->status));
707 }
708
709 /*
710  * Shutdown HC (not bus-specific)
711  *
712  * This is called when the machine is rebooting or halting.  We assume that the
713  * machine will be powered off, and the HC's internal state will be reset.
714  * Don't bother to free memory.
715  *
716  * This will only ever be called with the main usb_hcd (the USB3 roothub).
717  */
718 void xhci_shutdown(struct usb_hcd *hcd)
719 {
720         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
721
722         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
723                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
724
725         spin_lock_irq(&xhci->lock);
726         xhci_halt(xhci);
727         spin_unlock_irq(&xhci->lock);
728
729         xhci_cleanup_msix(xhci);
730
731         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
732                         "xhci_shutdown completed - status = %x",
733                         xhci_readl(xhci, &xhci->op_regs->status));
734 }
735
736 #ifdef CONFIG_PM
737 static void xhci_save_registers(struct xhci_hcd *xhci)
738 {
739         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
740         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
741         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
742         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
743         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
744         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
745         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
746         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
747         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
748 }
749
750 static void xhci_restore_registers(struct xhci_hcd *xhci)
751 {
752         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
753         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
754         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
755         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
756         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
757         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
758         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
759         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
760         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
761 }
762
763 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
764 {
765         u64     val_64;
766
767         /* step 2: initialize command ring buffer */
768         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
769         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
770                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
771                                       xhci->cmd_ring->dequeue) &
772                  (u64) ~CMD_RING_RSVD_BITS) |
773                 xhci->cmd_ring->cycle_state;
774         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
775                         "// Setting command ring address to 0x%llx",
776                         (long unsigned long) val_64);
777         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
778 }
779
780 /*
781  * The whole command ring must be cleared to zero when we suspend the host.
782  *
783  * The host doesn't save the command ring pointer in the suspend well, so we
784  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
785  * aligned, because of the reserved bits in the command ring dequeue pointer
786  * register.  Therefore, we can't just set the dequeue pointer back in the
787  * middle of the ring (TRBs are 16-byte aligned).
788  */
789 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
790 {
791         struct xhci_ring *ring;
792         struct xhci_segment *seg;
793
794         ring = xhci->cmd_ring;
795         seg = ring->deq_seg;
796         do {
797                 memset(seg->trbs, 0,
798                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
799                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
800                         cpu_to_le32(~TRB_CYCLE);
801                 seg = seg->next;
802         } while (seg != ring->deq_seg);
803
804         /* Reset the software enqueue and dequeue pointers */
805         ring->deq_seg = ring->first_seg;
806         ring->dequeue = ring->first_seg->trbs;
807         ring->enq_seg = ring->deq_seg;
808         ring->enqueue = ring->dequeue;
809
810         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
811         /*
812          * Ring is now zeroed, so the HW should look for change of ownership
813          * when the cycle bit is set to 1.
814          */
815         ring->cycle_state = 1;
816
817         /*
818          * Reset the hardware dequeue pointer.
819          * Yes, this will need to be re-written after resume, but we're paranoid
820          * and want to make sure the hardware doesn't access bogus memory
821          * because, say, the BIOS or an SMI started the host without changing
822          * the command ring pointers.
823          */
824         xhci_set_cmd_ring_deq(xhci);
825 }
826
827 /*
828  * Stop HC (not bus-specific)
829  *
830  * This is called when the machine transition into S3/S4 mode.
831  *
832  */
833 int xhci_suspend(struct xhci_hcd *xhci)
834 {
835         int                     rc = 0;
836         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
837         u32                     command;
838
839         if (hcd->state != HC_STATE_SUSPENDED ||
840                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
841                 return -EINVAL;
842
843         /* Don't poll the roothubs on bus suspend. */
844         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
845         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
846         del_timer_sync(&hcd->rh_timer);
847
848         spin_lock_irq(&xhci->lock);
849         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
850         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
851         /* step 1: stop endpoint */
852         /* skipped assuming that port suspend has done */
853
854         /* step 2: clear Run/Stop bit */
855         command = xhci_readl(xhci, &xhci->op_regs->command);
856         command &= ~CMD_RUN;
857         xhci_writel(xhci, command, &xhci->op_regs->command);
858         if (xhci_handshake(xhci, &xhci->op_regs->status,
859                       STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
860                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
861                 spin_unlock_irq(&xhci->lock);
862                 return -ETIMEDOUT;
863         }
864         xhci_clear_command_ring(xhci);
865
866         /* step 3: save registers */
867         xhci_save_registers(xhci);
868
869         /* step 4: set CSS flag */
870         command = xhci_readl(xhci, &xhci->op_regs->command);
871         command |= CMD_CSS;
872         xhci_writel(xhci, command, &xhci->op_regs->command);
873         if (xhci_handshake(xhci, &xhci->op_regs->status,
874                                 STS_SAVE, 0, 10 * 1000)) {
875                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
876                 spin_unlock_irq(&xhci->lock);
877                 return -ETIMEDOUT;
878         }
879         spin_unlock_irq(&xhci->lock);
880
881         /*
882          * Deleting Compliance Mode Recovery Timer because the xHCI Host
883          * is about to be suspended.
884          */
885         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
886                         (!(xhci_all_ports_seen_u0(xhci)))) {
887                 del_timer_sync(&xhci->comp_mode_recovery_timer);
888                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
889                                 "%s: compliance mode recovery timer deleted",
890                                 __func__);
891         }
892
893         /* step 5: remove core well power */
894         /* synchronize irq when using MSI-X */
895         xhci_msix_sync_irqs(xhci);
896
897         return rc;
898 }
899
900 /*
901  * start xHC (not bus-specific)
902  *
903  * This is called when the machine transition from S3/S4 mode.
904  *
905  */
906 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
907 {
908         u32                     command, temp = 0;
909         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
910         struct usb_hcd          *secondary_hcd;
911         int                     retval = 0;
912         bool                    comp_timer_running = false;
913
914         /* Wait a bit if either of the roothubs need to settle from the
915          * transition into bus suspend.
916          */
917         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
918                         time_before(jiffies,
919                                 xhci->bus_state[1].next_statechange))
920                 msleep(100);
921
922         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
923         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
924
925         spin_lock_irq(&xhci->lock);
926         if (xhci->quirks & XHCI_RESET_ON_RESUME)
927                 hibernated = true;
928
929         if (!hibernated) {
930                 /* step 1: restore register */
931                 xhci_restore_registers(xhci);
932                 /* step 2: initialize command ring buffer */
933                 xhci_set_cmd_ring_deq(xhci);
934                 /* step 3: restore state and start state*/
935                 /* step 3: set CRS flag */
936                 command = xhci_readl(xhci, &xhci->op_regs->command);
937                 command |= CMD_CRS;
938                 xhci_writel(xhci, command, &xhci->op_regs->command);
939                 if (xhci_handshake(xhci, &xhci->op_regs->status,
940                               STS_RESTORE, 0, 10 * 1000)) {
941                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
942                         spin_unlock_irq(&xhci->lock);
943                         return -ETIMEDOUT;
944                 }
945                 temp = xhci_readl(xhci, &xhci->op_regs->status);
946         }
947
948         /* If restore operation fails, re-initialize the HC during resume */
949         if ((temp & STS_SRE) || hibernated) {
950
951                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
952                                 !(xhci_all_ports_seen_u0(xhci))) {
953                         del_timer_sync(&xhci->comp_mode_recovery_timer);
954                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
955                                 "Compliance Mode Recovery Timer deleted!");
956                 }
957
958                 /* Let the USB core know _both_ roothubs lost power. */
959                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
960                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
961
962                 xhci_dbg(xhci, "Stop HCD\n");
963                 xhci_halt(xhci);
964                 xhci_reset(xhci);
965                 spin_unlock_irq(&xhci->lock);
966                 xhci_cleanup_msix(xhci);
967
968                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
969                 temp = xhci_readl(xhci, &xhci->op_regs->status);
970                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
971                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
972                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
973                                 &xhci->ir_set->irq_pending);
974                 xhci_print_ir_set(xhci, 0);
975
976                 xhci_dbg(xhci, "cleaning up memory\n");
977                 xhci_mem_cleanup(xhci);
978                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
979                             xhci_readl(xhci, &xhci->op_regs->status));
980
981                 /* USB core calls the PCI reinit and start functions twice:
982                  * first with the primary HCD, and then with the secondary HCD.
983                  * If we don't do the same, the host will never be started.
984                  */
985                 if (!usb_hcd_is_primary_hcd(hcd))
986                         secondary_hcd = hcd;
987                 else
988                         secondary_hcd = xhci->shared_hcd;
989
990                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
991                 retval = xhci_init(hcd->primary_hcd);
992                 if (retval)
993                         return retval;
994                 comp_timer_running = true;
995
996                 xhci_dbg(xhci, "Start the primary HCD\n");
997                 retval = xhci_run(hcd->primary_hcd);
998                 if (!retval) {
999                         xhci_dbg(xhci, "Start the secondary HCD\n");
1000                         retval = xhci_run(secondary_hcd);
1001                 }
1002                 hcd->state = HC_STATE_SUSPENDED;
1003                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1004                 goto done;
1005         }
1006
1007         /* step 4: set Run/Stop bit */
1008         command = xhci_readl(xhci, &xhci->op_regs->command);
1009         command |= CMD_RUN;
1010         xhci_writel(xhci, command, &xhci->op_regs->command);
1011         xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1012                   0, 250 * 1000);
1013
1014         /* step 5: walk topology and initialize portsc,
1015          * portpmsc and portli
1016          */
1017         /* this is done in bus_resume */
1018
1019         /* step 6: restart each of the previously
1020          * Running endpoints by ringing their doorbells
1021          */
1022
1023         spin_unlock_irq(&xhci->lock);
1024
1025  done:
1026         if (retval == 0) {
1027                 usb_hcd_resume_root_hub(hcd);
1028                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1029         }
1030
1031         /*
1032          * If system is subject to the Quirk, Compliance Mode Timer needs to
1033          * be re-initialized Always after a system resume. Ports are subject
1034          * to suffer the Compliance Mode issue again. It doesn't matter if
1035          * ports have entered previously to U0 before system's suspension.
1036          */
1037         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1038                 compliance_mode_recovery_timer_init(xhci);
1039
1040         /* Re-enable port polling. */
1041         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1042         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1043         usb_hcd_poll_rh_status(hcd);
1044
1045         return retval;
1046 }
1047 #endif  /* CONFIG_PM */
1048
1049 /*-------------------------------------------------------------------------*/
1050
1051 /**
1052  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1053  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1054  * value to right shift 1 for the bitmask.
1055  *
1056  * Index  = (epnum * 2) + direction - 1,
1057  * where direction = 0 for OUT, 1 for IN.
1058  * For control endpoints, the IN index is used (OUT index is unused), so
1059  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1060  */
1061 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1062 {
1063         unsigned int index;
1064         if (usb_endpoint_xfer_control(desc))
1065                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1066         else
1067                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1068                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1069         return index;
1070 }
1071
1072 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1073  * address from the XHCI endpoint index.
1074  */
1075 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1076 {
1077         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1078         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1079         return direction | number;
1080 }
1081
1082 /* Find the flag for this endpoint (for use in the control context).  Use the
1083  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1084  * bit 1, etc.
1085  */
1086 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1087 {
1088         return 1 << (xhci_get_endpoint_index(desc) + 1);
1089 }
1090
1091 /* Find the flag for this endpoint (for use in the control context).  Use the
1092  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1093  * bit 1, etc.
1094  */
1095 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1096 {
1097         return 1 << (ep_index + 1);
1098 }
1099
1100 /* Compute the last valid endpoint context index.  Basically, this is the
1101  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1102  * we find the most significant bit set in the added contexts flags.
1103  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1104  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1105  */
1106 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1107 {
1108         return fls(added_ctxs) - 1;
1109 }
1110
1111 /* Returns 1 if the arguments are OK;
1112  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1113  */
1114 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1115                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1116                 const char *func) {
1117         struct xhci_hcd *xhci;
1118         struct xhci_virt_device *virt_dev;
1119
1120         if (!hcd || (check_ep && !ep) || !udev) {
1121                 pr_debug("xHCI %s called with invalid args\n", func);
1122                 return -EINVAL;
1123         }
1124         if (!udev->parent) {
1125                 pr_debug("xHCI %s called for root hub\n", func);
1126                 return 0;
1127         }
1128
1129         xhci = hcd_to_xhci(hcd);
1130         if (check_virt_dev) {
1131                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1132                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1133                                         func);
1134                         return -EINVAL;
1135                 }
1136
1137                 virt_dev = xhci->devs[udev->slot_id];
1138                 if (virt_dev->udev != udev) {
1139                         xhci_dbg(xhci, "xHCI %s called with udev and "
1140                                           "virt_dev does not match\n", func);
1141                         return -EINVAL;
1142                 }
1143         }
1144
1145         if (xhci->xhc_state & XHCI_STATE_HALTED)
1146                 return -ENODEV;
1147
1148         return 1;
1149 }
1150
1151 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1152                 struct usb_device *udev, struct xhci_command *command,
1153                 bool ctx_change, bool must_succeed);
1154
1155 /*
1156  * Full speed devices may have a max packet size greater than 8 bytes, but the
1157  * USB core doesn't know that until it reads the first 8 bytes of the
1158  * descriptor.  If the usb_device's max packet size changes after that point,
1159  * we need to issue an evaluate context command and wait on it.
1160  */
1161 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1162                 unsigned int ep_index, struct urb *urb)
1163 {
1164         struct xhci_container_ctx *in_ctx;
1165         struct xhci_container_ctx *out_ctx;
1166         struct xhci_input_control_ctx *ctrl_ctx;
1167         struct xhci_ep_ctx *ep_ctx;
1168         int max_packet_size;
1169         int hw_max_packet_size;
1170         int ret = 0;
1171
1172         out_ctx = xhci->devs[slot_id]->out_ctx;
1173         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1174         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1175         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1176         if (hw_max_packet_size != max_packet_size) {
1177                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1178                                 "Max Packet Size for ep 0 changed.");
1179                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1180                                 "Max packet size in usb_device = %d",
1181                                 max_packet_size);
1182                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1183                                 "Max packet size in xHCI HW = %d",
1184                                 hw_max_packet_size);
1185                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1186                                 "Issuing evaluate context command.");
1187
1188                 /* Set up the input context flags for the command */
1189                 /* FIXME: This won't work if a non-default control endpoint
1190                  * changes max packet sizes.
1191                  */
1192                 in_ctx = xhci->devs[slot_id]->in_ctx;
1193                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1194                 if (!ctrl_ctx) {
1195                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1196                                         __func__);
1197                         return -ENOMEM;
1198                 }
1199                 /* Set up the modified control endpoint 0 */
1200                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1201                                 xhci->devs[slot_id]->out_ctx, ep_index);
1202
1203                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1204                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1205                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1206
1207                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1208                 ctrl_ctx->drop_flags = 0;
1209
1210                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1211                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1212                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1213                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1214
1215                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1216                                 true, false);
1217
1218                 /* Clean up the input context for later use by bandwidth
1219                  * functions.
1220                  */
1221                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1222         }
1223         return ret;
1224 }
1225
1226 /*
1227  * non-error returns are a promise to giveback() the urb later
1228  * we drop ownership so next owner (or urb unlink) can get it
1229  */
1230 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1231 {
1232         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1233         struct xhci_td *buffer;
1234         unsigned long flags;
1235         int ret = 0;
1236         unsigned int slot_id, ep_index;
1237         struct urb_priv *urb_priv;
1238         int size, i;
1239
1240         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1241                                         true, true, __func__) <= 0)
1242                 return -EINVAL;
1243
1244         slot_id = urb->dev->slot_id;
1245         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1246
1247         if (!HCD_HW_ACCESSIBLE(hcd)) {
1248                 if (!in_interrupt())
1249                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1250                 ret = -ESHUTDOWN;
1251                 goto exit;
1252         }
1253
1254         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1255                 size = urb->number_of_packets;
1256         else
1257                 size = 1;
1258
1259         urb_priv = kzalloc(sizeof(struct urb_priv) +
1260                                   size * sizeof(struct xhci_td *), mem_flags);
1261         if (!urb_priv)
1262                 return -ENOMEM;
1263
1264         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1265         if (!buffer) {
1266                 kfree(urb_priv);
1267                 return -ENOMEM;
1268         }
1269
1270         for (i = 0; i < size; i++) {
1271                 urb_priv->td[i] = buffer;
1272                 buffer++;
1273         }
1274
1275         urb_priv->length = size;
1276         urb_priv->td_cnt = 0;
1277         urb->hcpriv = urb_priv;
1278
1279         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1280                 /* Check to see if the max packet size for the default control
1281                  * endpoint changed during FS device enumeration
1282                  */
1283                 if (urb->dev->speed == USB_SPEED_FULL) {
1284                         ret = xhci_check_maxpacket(xhci, slot_id,
1285                                         ep_index, urb);
1286                         if (ret < 0) {
1287                                 xhci_urb_free_priv(xhci, urb_priv);
1288                                 urb->hcpriv = NULL;
1289                                 return ret;
1290                         }
1291                 }
1292
1293                 /* We have a spinlock and interrupts disabled, so we must pass
1294                  * atomic context to this function, which may allocate memory.
1295                  */
1296                 spin_lock_irqsave(&xhci->lock, flags);
1297                 if (xhci->xhc_state & XHCI_STATE_DYING)
1298                         goto dying;
1299                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1300                                 slot_id, ep_index);
1301                 if (ret)
1302                         goto free_priv;
1303                 spin_unlock_irqrestore(&xhci->lock, flags);
1304         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1305                 spin_lock_irqsave(&xhci->lock, flags);
1306                 if (xhci->xhc_state & XHCI_STATE_DYING)
1307                         goto dying;
1308                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1309                                 EP_GETTING_STREAMS) {
1310                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1311                                         "is transitioning to using streams.\n");
1312                         ret = -EINVAL;
1313                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1314                                 EP_GETTING_NO_STREAMS) {
1315                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1316                                         "is transitioning to "
1317                                         "not having streams.\n");
1318                         ret = -EINVAL;
1319                 } else {
1320                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1321                                         slot_id, ep_index);
1322                 }
1323                 if (ret)
1324                         goto free_priv;
1325                 spin_unlock_irqrestore(&xhci->lock, flags);
1326         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1327                 spin_lock_irqsave(&xhci->lock, flags);
1328                 if (xhci->xhc_state & XHCI_STATE_DYING)
1329                         goto dying;
1330                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1331                                 slot_id, ep_index);
1332                 if (ret)
1333                         goto free_priv;
1334                 spin_unlock_irqrestore(&xhci->lock, flags);
1335         } else {
1336                 spin_lock_irqsave(&xhci->lock, flags);
1337                 if (xhci->xhc_state & XHCI_STATE_DYING)
1338                         goto dying;
1339                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1340                                 slot_id, ep_index);
1341                 if (ret)
1342                         goto free_priv;
1343                 spin_unlock_irqrestore(&xhci->lock, flags);
1344         }
1345 exit:
1346         return ret;
1347 dying:
1348         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1349                         "non-responsive xHCI host.\n",
1350                         urb->ep->desc.bEndpointAddress, urb);
1351         ret = -ESHUTDOWN;
1352 free_priv:
1353         xhci_urb_free_priv(xhci, urb_priv);
1354         urb->hcpriv = NULL;
1355         spin_unlock_irqrestore(&xhci->lock, flags);
1356         return ret;
1357 }
1358
1359 /* Get the right ring for the given URB.
1360  * If the endpoint supports streams, boundary check the URB's stream ID.
1361  * If the endpoint doesn't support streams, return the singular endpoint ring.
1362  */
1363 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1364                 struct urb *urb)
1365 {
1366         unsigned int slot_id;
1367         unsigned int ep_index;
1368         unsigned int stream_id;
1369         struct xhci_virt_ep *ep;
1370
1371         slot_id = urb->dev->slot_id;
1372         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1373         stream_id = urb->stream_id;
1374         ep = &xhci->devs[slot_id]->eps[ep_index];
1375         /* Common case: no streams */
1376         if (!(ep->ep_state & EP_HAS_STREAMS))
1377                 return ep->ring;
1378
1379         if (stream_id == 0) {
1380                 xhci_warn(xhci,
1381                                 "WARN: Slot ID %u, ep index %u has streams, "
1382                                 "but URB has no stream ID.\n",
1383                                 slot_id, ep_index);
1384                 return NULL;
1385         }
1386
1387         if (stream_id < ep->stream_info->num_streams)
1388                 return ep->stream_info->stream_rings[stream_id];
1389
1390         xhci_warn(xhci,
1391                         "WARN: Slot ID %u, ep index %u has "
1392                         "stream IDs 1 to %u allocated, "
1393                         "but stream ID %u is requested.\n",
1394                         slot_id, ep_index,
1395                         ep->stream_info->num_streams - 1,
1396                         stream_id);
1397         return NULL;
1398 }
1399
1400 /*
1401  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1402  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1403  * should pick up where it left off in the TD, unless a Set Transfer Ring
1404  * Dequeue Pointer is issued.
1405  *
1406  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1407  * the ring.  Since the ring is a contiguous structure, they can't be physically
1408  * removed.  Instead, there are two options:
1409  *
1410  *  1) If the HC is in the middle of processing the URB to be canceled, we
1411  *     simply move the ring's dequeue pointer past those TRBs using the Set
1412  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1413  *     when drivers timeout on the last submitted URB and attempt to cancel.
1414  *
1415  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1416  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1417  *     HC will need to invalidate the any TRBs it has cached after the stop
1418  *     endpoint command, as noted in the xHCI 0.95 errata.
1419  *
1420  *  3) The TD may have completed by the time the Stop Endpoint Command
1421  *     completes, so software needs to handle that case too.
1422  *
1423  * This function should protect against the TD enqueueing code ringing the
1424  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1425  * It also needs to account for multiple cancellations on happening at the same
1426  * time for the same endpoint.
1427  *
1428  * Note that this function can be called in any context, or so says
1429  * usb_hcd_unlink_urb()
1430  */
1431 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1432 {
1433         unsigned long flags;
1434         int ret, i;
1435         u32 temp;
1436         struct xhci_hcd *xhci;
1437         struct urb_priv *urb_priv;
1438         struct xhci_td *td;
1439         unsigned int ep_index;
1440         struct xhci_ring *ep_ring;
1441         struct xhci_virt_ep *ep;
1442
1443         xhci = hcd_to_xhci(hcd);
1444         spin_lock_irqsave(&xhci->lock, flags);
1445         /* Make sure the URB hasn't completed or been unlinked already */
1446         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1447         if (ret || !urb->hcpriv)
1448                 goto done;
1449         temp = xhci_readl(xhci, &xhci->op_regs->status);
1450         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1451                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1452                                 "HW died, freeing TD.");
1453                 urb_priv = urb->hcpriv;
1454                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1455                         td = urb_priv->td[i];
1456                         if (!list_empty(&td->td_list))
1457                                 list_del_init(&td->td_list);
1458                         if (!list_empty(&td->cancelled_td_list))
1459                                 list_del_init(&td->cancelled_td_list);
1460                 }
1461
1462                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1463                 spin_unlock_irqrestore(&xhci->lock, flags);
1464                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1465                 xhci_urb_free_priv(xhci, urb_priv);
1466                 return ret;
1467         }
1468         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1469                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1470                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1471                                 "Ep 0x%x: URB %p to be canceled on "
1472                                 "non-responsive xHCI host.",
1473                                 urb->ep->desc.bEndpointAddress, urb);
1474                 /* Let the stop endpoint command watchdog timer (which set this
1475                  * state) finish cleaning up the endpoint TD lists.  We must
1476                  * have caught it in the middle of dropping a lock and giving
1477                  * back an URB.
1478                  */
1479                 goto done;
1480         }
1481
1482         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1483         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1484         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1485         if (!ep_ring) {
1486                 ret = -EINVAL;
1487                 goto done;
1488         }
1489
1490         urb_priv = urb->hcpriv;
1491         i = urb_priv->td_cnt;
1492         if (i < urb_priv->length)
1493                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1494                                 "Cancel URB %p, dev %s, ep 0x%x, "
1495                                 "starting at offset 0x%llx",
1496                                 urb, urb->dev->devpath,
1497                                 urb->ep->desc.bEndpointAddress,
1498                                 (unsigned long long) xhci_trb_virt_to_dma(
1499                                         urb_priv->td[i]->start_seg,
1500                                         urb_priv->td[i]->first_trb));
1501
1502         for (; i < urb_priv->length; i++) {
1503                 td = urb_priv->td[i];
1504                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1505         }
1506
1507         /* Queue a stop endpoint command, but only if this is
1508          * the first cancellation to be handled.
1509          */
1510         if (!(ep->ep_state & EP_HALT_PENDING)) {
1511                 ep->ep_state |= EP_HALT_PENDING;
1512                 ep->stop_cmds_pending++;
1513                 ep->stop_cmd_timer.expires = jiffies +
1514                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1515                 add_timer(&ep->stop_cmd_timer);
1516                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1517                 xhci_ring_cmd_db(xhci);
1518         }
1519 done:
1520         spin_unlock_irqrestore(&xhci->lock, flags);
1521         return ret;
1522 }
1523
1524 /* Drop an endpoint from a new bandwidth configuration for this device.
1525  * Only one call to this function is allowed per endpoint before
1526  * check_bandwidth() or reset_bandwidth() must be called.
1527  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1528  * add the endpoint to the schedule with possibly new parameters denoted by a
1529  * different endpoint descriptor in usb_host_endpoint.
1530  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1531  * not allowed.
1532  *
1533  * The USB core will not allow URBs to be queued to an endpoint that is being
1534  * disabled, so there's no need for mutual exclusion to protect
1535  * the xhci->devs[slot_id] structure.
1536  */
1537 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1538                 struct usb_host_endpoint *ep)
1539 {
1540         struct xhci_hcd *xhci;
1541         struct xhci_container_ctx *in_ctx, *out_ctx;
1542         struct xhci_input_control_ctx *ctrl_ctx;
1543         struct xhci_slot_ctx *slot_ctx;
1544         unsigned int last_ctx;
1545         unsigned int ep_index;
1546         struct xhci_ep_ctx *ep_ctx;
1547         u32 drop_flag;
1548         u32 new_add_flags, new_drop_flags, new_slot_info;
1549         int ret;
1550
1551         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1552         if (ret <= 0)
1553                 return ret;
1554         xhci = hcd_to_xhci(hcd);
1555         if (xhci->xhc_state & XHCI_STATE_DYING)
1556                 return -ENODEV;
1557
1558         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1559         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1560         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1561                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1562                                 __func__, drop_flag);
1563                 return 0;
1564         }
1565
1566         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1567         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1568         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1569         if (!ctrl_ctx) {
1570                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1571                                 __func__);
1572                 return 0;
1573         }
1574
1575         ep_index = xhci_get_endpoint_index(&ep->desc);
1576         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1577         /* If the HC already knows the endpoint is disabled,
1578          * or the HCD has noted it is disabled, ignore this request
1579          */
1580         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1581              cpu_to_le32(EP_STATE_DISABLED)) ||
1582             le32_to_cpu(ctrl_ctx->drop_flags) &
1583             xhci_get_endpoint_flag(&ep->desc)) {
1584                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1585                                 __func__, ep);
1586                 return 0;
1587         }
1588
1589         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1590         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1591
1592         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1593         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1594
1595         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1596         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1597         /* Update the last valid endpoint context, if we deleted the last one */
1598         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1599             LAST_CTX(last_ctx)) {
1600                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1601                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1602         }
1603         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1604
1605         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1606
1607         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1608                         (unsigned int) ep->desc.bEndpointAddress,
1609                         udev->slot_id,
1610                         (unsigned int) new_drop_flags,
1611                         (unsigned int) new_add_flags,
1612                         (unsigned int) new_slot_info);
1613         return 0;
1614 }
1615
1616 /* Add an endpoint to a new possible bandwidth configuration for this device.
1617  * Only one call to this function is allowed per endpoint before
1618  * check_bandwidth() or reset_bandwidth() must be called.
1619  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1620  * add the endpoint to the schedule with possibly new parameters denoted by a
1621  * different endpoint descriptor in usb_host_endpoint.
1622  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1623  * not allowed.
1624  *
1625  * The USB core will not allow URBs to be queued to an endpoint until the
1626  * configuration or alt setting is installed in the device, so there's no need
1627  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1628  */
1629 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1630                 struct usb_host_endpoint *ep)
1631 {
1632         struct xhci_hcd *xhci;
1633         struct xhci_container_ctx *in_ctx, *out_ctx;
1634         unsigned int ep_index;
1635         struct xhci_slot_ctx *slot_ctx;
1636         struct xhci_input_control_ctx *ctrl_ctx;
1637         u32 added_ctxs;
1638         unsigned int last_ctx;
1639         u32 new_add_flags, new_drop_flags, new_slot_info;
1640         struct xhci_virt_device *virt_dev;
1641         int ret = 0;
1642
1643         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1644         if (ret <= 0) {
1645                 /* So we won't queue a reset ep command for a root hub */
1646                 ep->hcpriv = NULL;
1647                 return ret;
1648         }
1649         xhci = hcd_to_xhci(hcd);
1650         if (xhci->xhc_state & XHCI_STATE_DYING)
1651                 return -ENODEV;
1652
1653         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1654         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1655         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1656                 /* FIXME when we have to issue an evaluate endpoint command to
1657                  * deal with ep0 max packet size changing once we get the
1658                  * descriptors
1659                  */
1660                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1661                                 __func__, added_ctxs);
1662                 return 0;
1663         }
1664
1665         virt_dev = xhci->devs[udev->slot_id];
1666         in_ctx = virt_dev->in_ctx;
1667         out_ctx = virt_dev->out_ctx;
1668         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1669         if (!ctrl_ctx) {
1670                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1671                                 __func__);
1672                 return 0;
1673         }
1674
1675         ep_index = xhci_get_endpoint_index(&ep->desc);
1676         /* If this endpoint is already in use, and the upper layers are trying
1677          * to add it again without dropping it, reject the addition.
1678          */
1679         if (virt_dev->eps[ep_index].ring &&
1680                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1681                                 xhci_get_endpoint_flag(&ep->desc))) {
1682                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1683                                 "without dropping it.\n",
1684                                 (unsigned int) ep->desc.bEndpointAddress);
1685                 return -EINVAL;
1686         }
1687
1688         /* If the HCD has already noted the endpoint is enabled,
1689          * ignore this request.
1690          */
1691         if (le32_to_cpu(ctrl_ctx->add_flags) &
1692             xhci_get_endpoint_flag(&ep->desc)) {
1693                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1694                                 __func__, ep);
1695                 return 0;
1696         }
1697
1698         /*
1699          * Configuration and alternate setting changes must be done in
1700          * process context, not interrupt context (or so documenation
1701          * for usb_set_interface() and usb_set_configuration() claim).
1702          */
1703         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1704                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1705                                 __func__, ep->desc.bEndpointAddress);
1706                 return -ENOMEM;
1707         }
1708
1709         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1710         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1711
1712         /* If xhci_endpoint_disable() was called for this endpoint, but the
1713          * xHC hasn't been notified yet through the check_bandwidth() call,
1714          * this re-adds a new state for the endpoint from the new endpoint
1715          * descriptors.  We must drop and re-add this endpoint, so we leave the
1716          * drop flags alone.
1717          */
1718         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1719
1720         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1721         /* Update the last valid endpoint context, if we just added one past */
1722         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1723             LAST_CTX(last_ctx)) {
1724                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1725                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1726         }
1727         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1728
1729         /* Store the usb_device pointer for later use */
1730         ep->hcpriv = udev;
1731
1732         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1733                         (unsigned int) ep->desc.bEndpointAddress,
1734                         udev->slot_id,
1735                         (unsigned int) new_drop_flags,
1736                         (unsigned int) new_add_flags,
1737                         (unsigned int) new_slot_info);
1738         return 0;
1739 }
1740
1741 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1742 {
1743         struct xhci_input_control_ctx *ctrl_ctx;
1744         struct xhci_ep_ctx *ep_ctx;
1745         struct xhci_slot_ctx *slot_ctx;
1746         int i;
1747
1748         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1749         if (!ctrl_ctx) {
1750                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1751                                 __func__);
1752                 return;
1753         }
1754
1755         /* When a device's add flag and drop flag are zero, any subsequent
1756          * configure endpoint command will leave that endpoint's state
1757          * untouched.  Make sure we don't leave any old state in the input
1758          * endpoint contexts.
1759          */
1760         ctrl_ctx->drop_flags = 0;
1761         ctrl_ctx->add_flags = 0;
1762         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1763         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1764         /* Endpoint 0 is always valid */
1765         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1766         for (i = 1; i < 31; ++i) {
1767                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1768                 ep_ctx->ep_info = 0;
1769                 ep_ctx->ep_info2 = 0;
1770                 ep_ctx->deq = 0;
1771                 ep_ctx->tx_info = 0;
1772         }
1773 }
1774
1775 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1776                 struct usb_device *udev, u32 *cmd_status)
1777 {
1778         int ret;
1779
1780         switch (*cmd_status) {
1781         case COMP_ENOMEM:
1782                 dev_warn(&udev->dev, "Not enough host controller resources "
1783                                 "for new device state.\n");
1784                 ret = -ENOMEM;
1785                 /* FIXME: can we allocate more resources for the HC? */
1786                 break;
1787         case COMP_BW_ERR:
1788         case COMP_2ND_BW_ERR:
1789                 dev_warn(&udev->dev, "Not enough bandwidth "
1790                                 "for new device state.\n");
1791                 ret = -ENOSPC;
1792                 /* FIXME: can we go back to the old state? */
1793                 break;
1794         case COMP_TRB_ERR:
1795                 /* the HCD set up something wrong */
1796                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1797                                 "add flag = 1, "
1798                                 "and endpoint is not disabled.\n");
1799                 ret = -EINVAL;
1800                 break;
1801         case COMP_DEV_ERR:
1802                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1803                                 "configure command.\n");
1804                 ret = -ENODEV;
1805                 break;
1806         case COMP_SUCCESS:
1807                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1808                                 "Successful Endpoint Configure command");
1809                 ret = 0;
1810                 break;
1811         default:
1812                 xhci_err(xhci, "ERROR: unexpected command completion "
1813                                 "code 0x%x.\n", *cmd_status);
1814                 ret = -EINVAL;
1815                 break;
1816         }
1817         return ret;
1818 }
1819
1820 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1821                 struct usb_device *udev, u32 *cmd_status)
1822 {
1823         int ret;
1824         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1825
1826         switch (*cmd_status) {
1827         case COMP_EINVAL:
1828                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1829                                 "context command.\n");
1830                 ret = -EINVAL;
1831                 break;
1832         case COMP_EBADSLT:
1833                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1834                                 "evaluate context command.\n");
1835                 ret = -EINVAL;
1836                 break;
1837         case COMP_CTX_STATE:
1838                 dev_warn(&udev->dev, "WARN: invalid context state for "
1839                                 "evaluate context command.\n");
1840                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1841                 ret = -EINVAL;
1842                 break;
1843         case COMP_DEV_ERR:
1844                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1845                                 "context command.\n");
1846                 ret = -ENODEV;
1847                 break;
1848         case COMP_MEL_ERR:
1849                 /* Max Exit Latency too large error */
1850                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1851                 ret = -EINVAL;
1852                 break;
1853         case COMP_SUCCESS:
1854                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1855                                 "Successful evaluate context command");
1856                 ret = 0;
1857                 break;
1858         default:
1859                 xhci_err(xhci, "ERROR: unexpected command completion "
1860                                 "code 0x%x.\n", *cmd_status);
1861                 ret = -EINVAL;
1862                 break;
1863         }
1864         return ret;
1865 }
1866
1867 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1868                 struct xhci_input_control_ctx *ctrl_ctx)
1869 {
1870         u32 valid_add_flags;
1871         u32 valid_drop_flags;
1872
1873         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1874          * (bit 1).  The default control endpoint is added during the Address
1875          * Device command and is never removed until the slot is disabled.
1876          */
1877         valid_add_flags = ctrl_ctx->add_flags >> 2;
1878         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1879
1880         /* Use hweight32 to count the number of ones in the add flags, or
1881          * number of endpoints added.  Don't count endpoints that are changed
1882          * (both added and dropped).
1883          */
1884         return hweight32(valid_add_flags) -
1885                 hweight32(valid_add_flags & valid_drop_flags);
1886 }
1887
1888 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1889                 struct xhci_input_control_ctx *ctrl_ctx)
1890 {
1891         u32 valid_add_flags;
1892         u32 valid_drop_flags;
1893
1894         valid_add_flags = ctrl_ctx->add_flags >> 2;
1895         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1896
1897         return hweight32(valid_drop_flags) -
1898                 hweight32(valid_add_flags & valid_drop_flags);
1899 }
1900
1901 /*
1902  * We need to reserve the new number of endpoints before the configure endpoint
1903  * command completes.  We can't subtract the dropped endpoints from the number
1904  * of active endpoints until the command completes because we can oversubscribe
1905  * the host in this case:
1906  *
1907  *  - the first configure endpoint command drops more endpoints than it adds
1908  *  - a second configure endpoint command that adds more endpoints is queued
1909  *  - the first configure endpoint command fails, so the config is unchanged
1910  *  - the second command may succeed, even though there isn't enough resources
1911  *
1912  * Must be called with xhci->lock held.
1913  */
1914 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1915                 struct xhci_input_control_ctx *ctrl_ctx)
1916 {
1917         u32 added_eps;
1918
1919         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1920         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1921                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1922                                 "Not enough ep ctxs: "
1923                                 "%u active, need to add %u, limit is %u.",
1924                                 xhci->num_active_eps, added_eps,
1925                                 xhci->limit_active_eps);
1926                 return -ENOMEM;
1927         }
1928         xhci->num_active_eps += added_eps;
1929         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1930                         "Adding %u ep ctxs, %u now active.", added_eps,
1931                         xhci->num_active_eps);
1932         return 0;
1933 }
1934
1935 /*
1936  * The configure endpoint was failed by the xHC for some other reason, so we
1937  * need to revert the resources that failed configuration would have used.
1938  *
1939  * Must be called with xhci->lock held.
1940  */
1941 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1942                 struct xhci_input_control_ctx *ctrl_ctx)
1943 {
1944         u32 num_failed_eps;
1945
1946         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1947         xhci->num_active_eps -= num_failed_eps;
1948         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1949                         "Removing %u failed ep ctxs, %u now active.",
1950                         num_failed_eps,
1951                         xhci->num_active_eps);
1952 }
1953
1954 /*
1955  * Now that the command has completed, clean up the active endpoint count by
1956  * subtracting out the endpoints that were dropped (but not changed).
1957  *
1958  * Must be called with xhci->lock held.
1959  */
1960 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1961                 struct xhci_input_control_ctx *ctrl_ctx)
1962 {
1963         u32 num_dropped_eps;
1964
1965         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1966         xhci->num_active_eps -= num_dropped_eps;
1967         if (num_dropped_eps)
1968                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1969                                 "Removing %u dropped ep ctxs, %u now active.",
1970                                 num_dropped_eps,
1971                                 xhci->num_active_eps);
1972 }
1973
1974 static unsigned int xhci_get_block_size(struct usb_device *udev)
1975 {
1976         switch (udev->speed) {
1977         case USB_SPEED_LOW:
1978         case USB_SPEED_FULL:
1979                 return FS_BLOCK;
1980         case USB_SPEED_HIGH:
1981                 return HS_BLOCK;
1982         case USB_SPEED_SUPER:
1983                 return SS_BLOCK;
1984         case USB_SPEED_UNKNOWN:
1985         case USB_SPEED_WIRELESS:
1986         default:
1987                 /* Should never happen */
1988                 return 1;
1989         }
1990 }
1991
1992 static unsigned int
1993 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1994 {
1995         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1996                 return LS_OVERHEAD;
1997         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1998                 return FS_OVERHEAD;
1999         return HS_OVERHEAD;
2000 }
2001
2002 /* If we are changing a LS/FS device under a HS hub,
2003  * make sure (if we are activating a new TT) that the HS bus has enough
2004  * bandwidth for this new TT.
2005  */
2006 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2007                 struct xhci_virt_device *virt_dev,
2008                 int old_active_eps)
2009 {
2010         struct xhci_interval_bw_table *bw_table;
2011         struct xhci_tt_bw_info *tt_info;
2012
2013         /* Find the bandwidth table for the root port this TT is attached to. */
2014         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2015         tt_info = virt_dev->tt_info;
2016         /* If this TT already had active endpoints, the bandwidth for this TT
2017          * has already been added.  Removing all periodic endpoints (and thus
2018          * making the TT enactive) will only decrease the bandwidth used.
2019          */
2020         if (old_active_eps)
2021                 return 0;
2022         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2023                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2024                         return -ENOMEM;
2025                 return 0;
2026         }
2027         /* Not sure why we would have no new active endpoints...
2028          *
2029          * Maybe because of an Evaluate Context change for a hub update or a
2030          * control endpoint 0 max packet size change?
2031          * FIXME: skip the bandwidth calculation in that case.
2032          */
2033         return 0;
2034 }
2035
2036 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2037                 struct xhci_virt_device *virt_dev)
2038 {
2039         unsigned int bw_reserved;
2040
2041         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2042         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2043                 return -ENOMEM;
2044
2045         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2046         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2047                 return -ENOMEM;
2048
2049         return 0;
2050 }
2051
2052 /*
2053  * This algorithm is a very conservative estimate of the worst-case scheduling
2054  * scenario for any one interval.  The hardware dynamically schedules the
2055  * packets, so we can't tell which microframe could be the limiting factor in
2056  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2057  *
2058  * Obviously, we can't solve an NP complete problem to find the minimum worst
2059  * case scenario.  Instead, we come up with an estimate that is no less than
2060  * the worst case bandwidth used for any one microframe, but may be an
2061  * over-estimate.
2062  *
2063  * We walk the requirements for each endpoint by interval, starting with the
2064  * smallest interval, and place packets in the schedule where there is only one
2065  * possible way to schedule packets for that interval.  In order to simplify
2066  * this algorithm, we record the largest max packet size for each interval, and
2067  * assume all packets will be that size.
2068  *
2069  * For interval 0, we obviously must schedule all packets for each interval.
2070  * The bandwidth for interval 0 is just the amount of data to be transmitted
2071  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2072  * the number of packets).
2073  *
2074  * For interval 1, we have two possible microframes to schedule those packets
2075  * in.  For this algorithm, if we can schedule the same number of packets for
2076  * each possible scheduling opportunity (each microframe), we will do so.  The
2077  * remaining number of packets will be saved to be transmitted in the gaps in
2078  * the next interval's scheduling sequence.
2079  *
2080  * As we move those remaining packets to be scheduled with interval 2 packets,
2081  * we have to double the number of remaining packets to transmit.  This is
2082  * because the intervals are actually powers of 2, and we would be transmitting
2083  * the previous interval's packets twice in this interval.  We also have to be
2084  * sure that when we look at the largest max packet size for this interval, we
2085  * also look at the largest max packet size for the remaining packets and take
2086  * the greater of the two.
2087  *
2088  * The algorithm continues to evenly distribute packets in each scheduling
2089  * opportunity, and push the remaining packets out, until we get to the last
2090  * interval.  Then those packets and their associated overhead are just added
2091  * to the bandwidth used.
2092  */
2093 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2094                 struct xhci_virt_device *virt_dev,
2095                 int old_active_eps)
2096 {
2097         unsigned int bw_reserved;
2098         unsigned int max_bandwidth;
2099         unsigned int bw_used;
2100         unsigned int block_size;
2101         struct xhci_interval_bw_table *bw_table;
2102         unsigned int packet_size = 0;
2103         unsigned int overhead = 0;
2104         unsigned int packets_transmitted = 0;
2105         unsigned int packets_remaining = 0;
2106         unsigned int i;
2107
2108         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2109                 return xhci_check_ss_bw(xhci, virt_dev);
2110
2111         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2112                 max_bandwidth = HS_BW_LIMIT;
2113                 /* Convert percent of bus BW reserved to blocks reserved */
2114                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2115         } else {
2116                 max_bandwidth = FS_BW_LIMIT;
2117                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2118         }
2119
2120         bw_table = virt_dev->bw_table;
2121         /* We need to translate the max packet size and max ESIT payloads into
2122          * the units the hardware uses.
2123          */
2124         block_size = xhci_get_block_size(virt_dev->udev);
2125
2126         /* If we are manipulating a LS/FS device under a HS hub, double check
2127          * that the HS bus has enough bandwidth if we are activing a new TT.
2128          */
2129         if (virt_dev->tt_info) {
2130                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2131                                 "Recalculating BW for rootport %u",
2132                                 virt_dev->real_port);
2133                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2134                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2135                                         "newly activated TT.\n");
2136                         return -ENOMEM;
2137                 }
2138                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2139                                 "Recalculating BW for TT slot %u port %u",
2140                                 virt_dev->tt_info->slot_id,
2141                                 virt_dev->tt_info->ttport);
2142         } else {
2143                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2144                                 "Recalculating BW for rootport %u",
2145                                 virt_dev->real_port);
2146         }
2147
2148         /* Add in how much bandwidth will be used for interval zero, or the
2149          * rounded max ESIT payload + number of packets * largest overhead.
2150          */
2151         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2152                 bw_table->interval_bw[0].num_packets *
2153                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2154
2155         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2156                 unsigned int bw_added;
2157                 unsigned int largest_mps;
2158                 unsigned int interval_overhead;
2159
2160                 /*
2161                  * How many packets could we transmit in this interval?
2162                  * If packets didn't fit in the previous interval, we will need
2163                  * to transmit that many packets twice within this interval.
2164                  */
2165                 packets_remaining = 2 * packets_remaining +
2166                         bw_table->interval_bw[i].num_packets;
2167
2168                 /* Find the largest max packet size of this or the previous
2169                  * interval.
2170                  */
2171                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2172                         largest_mps = 0;
2173                 else {
2174                         struct xhci_virt_ep *virt_ep;
2175                         struct list_head *ep_entry;
2176
2177                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2178                         virt_ep = list_entry(ep_entry,
2179                                         struct xhci_virt_ep, bw_endpoint_list);
2180                         /* Convert to blocks, rounding up */
2181                         largest_mps = DIV_ROUND_UP(
2182                                         virt_ep->bw_info.max_packet_size,
2183                                         block_size);
2184                 }
2185                 if (largest_mps > packet_size)
2186                         packet_size = largest_mps;
2187
2188                 /* Use the larger overhead of this or the previous interval. */
2189                 interval_overhead = xhci_get_largest_overhead(
2190                                 &bw_table->interval_bw[i]);
2191                 if (interval_overhead > overhead)
2192                         overhead = interval_overhead;
2193
2194                 /* How many packets can we evenly distribute across
2195                  * (1 << (i + 1)) possible scheduling opportunities?
2196                  */
2197                 packets_transmitted = packets_remaining >> (i + 1);
2198
2199                 /* Add in the bandwidth used for those scheduled packets */
2200                 bw_added = packets_transmitted * (overhead + packet_size);
2201
2202                 /* How many packets do we have remaining to transmit? */
2203                 packets_remaining = packets_remaining % (1 << (i + 1));
2204
2205                 /* What largest max packet size should those packets have? */
2206                 /* If we've transmitted all packets, don't carry over the
2207                  * largest packet size.
2208                  */
2209                 if (packets_remaining == 0) {
2210                         packet_size = 0;
2211                         overhead = 0;
2212                 } else if (packets_transmitted > 0) {
2213                         /* Otherwise if we do have remaining packets, and we've
2214                          * scheduled some packets in this interval, take the
2215                          * largest max packet size from endpoints with this
2216                          * interval.
2217                          */
2218                         packet_size = largest_mps;
2219                         overhead = interval_overhead;
2220                 }
2221                 /* Otherwise carry over packet_size and overhead from the last
2222                  * time we had a remainder.
2223                  */
2224                 bw_used += bw_added;
2225                 if (bw_used > max_bandwidth) {
2226                         xhci_warn(xhci, "Not enough bandwidth. "
2227                                         "Proposed: %u, Max: %u\n",
2228                                 bw_used, max_bandwidth);
2229                         return -ENOMEM;
2230                 }
2231         }
2232         /*
2233          * Ok, we know we have some packets left over after even-handedly
2234          * scheduling interval 15.  We don't know which microframes they will
2235          * fit into, so we over-schedule and say they will be scheduled every
2236          * microframe.
2237          */
2238         if (packets_remaining > 0)
2239                 bw_used += overhead + packet_size;
2240
2241         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2242                 unsigned int port_index = virt_dev->real_port - 1;
2243
2244                 /* OK, we're manipulating a HS device attached to a
2245                  * root port bandwidth domain.  Include the number of active TTs
2246                  * in the bandwidth used.
2247                  */
2248                 bw_used += TT_HS_OVERHEAD *
2249                         xhci->rh_bw[port_index].num_active_tts;
2250         }
2251
2252         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2253                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2254                 "Available: %u " "percent",
2255                 bw_used, max_bandwidth, bw_reserved,
2256                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2257                 max_bandwidth);
2258
2259         bw_used += bw_reserved;
2260         if (bw_used > max_bandwidth) {
2261                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2262                                 bw_used, max_bandwidth);
2263                 return -ENOMEM;
2264         }
2265
2266         bw_table->bw_used = bw_used;
2267         return 0;
2268 }
2269
2270 static bool xhci_is_async_ep(unsigned int ep_type)
2271 {
2272         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2273                                         ep_type != ISOC_IN_EP &&
2274                                         ep_type != INT_IN_EP);
2275 }
2276
2277 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2278 {
2279         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2280 }
2281
2282 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2283 {
2284         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2285
2286         if (ep_bw->ep_interval == 0)
2287                 return SS_OVERHEAD_BURST +
2288                         (ep_bw->mult * ep_bw->num_packets *
2289                                         (SS_OVERHEAD + mps));
2290         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2291                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2292                                 1 << ep_bw->ep_interval);
2293
2294 }
2295
2296 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2297                 struct xhci_bw_info *ep_bw,
2298                 struct xhci_interval_bw_table *bw_table,
2299                 struct usb_device *udev,
2300                 struct xhci_virt_ep *virt_ep,
2301                 struct xhci_tt_bw_info *tt_info)
2302 {
2303         struct xhci_interval_bw *interval_bw;
2304         int normalized_interval;
2305
2306         if (xhci_is_async_ep(ep_bw->type))
2307                 return;
2308
2309         if (udev->speed == USB_SPEED_SUPER) {
2310                 if (xhci_is_sync_in_ep(ep_bw->type))
2311                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2312                                 xhci_get_ss_bw_consumed(ep_bw);
2313                 else
2314                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2315                                 xhci_get_ss_bw_consumed(ep_bw);
2316                 return;
2317         }
2318
2319         /* SuperSpeed endpoints never get added to intervals in the table, so
2320          * this check is only valid for HS/FS/LS devices.
2321          */
2322         if (list_empty(&virt_ep->bw_endpoint_list))
2323                 return;
2324         /* For LS/FS devices, we need to translate the interval expressed in
2325          * microframes to frames.
2326          */
2327         if (udev->speed == USB_SPEED_HIGH)
2328                 normalized_interval = ep_bw->ep_interval;
2329         else
2330                 normalized_interval = ep_bw->ep_interval - 3;
2331
2332         if (normalized_interval == 0)
2333                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2334         interval_bw = &bw_table->interval_bw[normalized_interval];
2335         interval_bw->num_packets -= ep_bw->num_packets;
2336         switch (udev->speed) {
2337         case USB_SPEED_LOW:
2338                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2339                 break;
2340         case USB_SPEED_FULL:
2341                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2342                 break;
2343         case USB_SPEED_HIGH:
2344                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2345                 break;
2346         case USB_SPEED_SUPER:
2347         case USB_SPEED_UNKNOWN:
2348         case USB_SPEED_WIRELESS:
2349                 /* Should never happen because only LS/FS/HS endpoints will get
2350                  * added to the endpoint list.
2351                  */
2352                 return;
2353         }
2354         if (tt_info)
2355                 tt_info->active_eps -= 1;
2356         list_del_init(&virt_ep->bw_endpoint_list);
2357 }
2358
2359 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2360                 struct xhci_bw_info *ep_bw,
2361                 struct xhci_interval_bw_table *bw_table,
2362                 struct usb_device *udev,
2363                 struct xhci_virt_ep *virt_ep,
2364                 struct xhci_tt_bw_info *tt_info)
2365 {
2366         struct xhci_interval_bw *interval_bw;
2367         struct xhci_virt_ep *smaller_ep;
2368         int normalized_interval;
2369
2370         if (xhci_is_async_ep(ep_bw->type))
2371                 return;
2372
2373         if (udev->speed == USB_SPEED_SUPER) {
2374                 if (xhci_is_sync_in_ep(ep_bw->type))
2375                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2376                                 xhci_get_ss_bw_consumed(ep_bw);
2377                 else
2378                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2379                                 xhci_get_ss_bw_consumed(ep_bw);
2380                 return;
2381         }
2382
2383         /* For LS/FS devices, we need to translate the interval expressed in
2384          * microframes to frames.
2385          */
2386         if (udev->speed == USB_SPEED_HIGH)
2387                 normalized_interval = ep_bw->ep_interval;
2388         else
2389                 normalized_interval = ep_bw->ep_interval - 3;
2390
2391         if (normalized_interval == 0)
2392                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2393         interval_bw = &bw_table->interval_bw[normalized_interval];
2394         interval_bw->num_packets += ep_bw->num_packets;
2395         switch (udev->speed) {
2396         case USB_SPEED_LOW:
2397                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2398                 break;
2399         case USB_SPEED_FULL:
2400                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2401                 break;
2402         case USB_SPEED_HIGH:
2403                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2404                 break;
2405         case USB_SPEED_SUPER:
2406         case USB_SPEED_UNKNOWN:
2407         case USB_SPEED_WIRELESS:
2408                 /* Should never happen because only LS/FS/HS endpoints will get
2409                  * added to the endpoint list.
2410                  */
2411                 return;
2412         }
2413
2414         if (tt_info)
2415                 tt_info->active_eps += 1;
2416         /* Insert the endpoint into the list, largest max packet size first. */
2417         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2418                         bw_endpoint_list) {
2419                 if (ep_bw->max_packet_size >=
2420                                 smaller_ep->bw_info.max_packet_size) {
2421                         /* Add the new ep before the smaller endpoint */
2422                         list_add_tail(&virt_ep->bw_endpoint_list,
2423                                         &smaller_ep->bw_endpoint_list);
2424                         return;
2425                 }
2426         }
2427         /* Add the new endpoint at the end of the list. */
2428         list_add_tail(&virt_ep->bw_endpoint_list,
2429                         &interval_bw->endpoints);
2430 }
2431
2432 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2433                 struct xhci_virt_device *virt_dev,
2434                 int old_active_eps)
2435 {
2436         struct xhci_root_port_bw_info *rh_bw_info;
2437         if (!virt_dev->tt_info)
2438                 return;
2439
2440         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2441         if (old_active_eps == 0 &&
2442                                 virt_dev->tt_info->active_eps != 0) {
2443                 rh_bw_info->num_active_tts += 1;
2444                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2445         } else if (old_active_eps != 0 &&
2446                                 virt_dev->tt_info->active_eps == 0) {
2447                 rh_bw_info->num_active_tts -= 1;
2448                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2449         }
2450 }
2451
2452 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2453                 struct xhci_virt_device *virt_dev,
2454                 struct xhci_container_ctx *in_ctx)
2455 {
2456         struct xhci_bw_info ep_bw_info[31];
2457         int i;
2458         struct xhci_input_control_ctx *ctrl_ctx;
2459         int old_active_eps = 0;
2460
2461         if (virt_dev->tt_info)
2462                 old_active_eps = virt_dev->tt_info->active_eps;
2463
2464         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2465         if (!ctrl_ctx) {
2466                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2467                                 __func__);
2468                 return -ENOMEM;
2469         }
2470
2471         for (i = 0; i < 31; i++) {
2472                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2473                         continue;
2474
2475                 /* Make a copy of the BW info in case we need to revert this */
2476                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2477                                 sizeof(ep_bw_info[i]));
2478                 /* Drop the endpoint from the interval table if the endpoint is
2479                  * being dropped or changed.
2480                  */
2481                 if (EP_IS_DROPPED(ctrl_ctx, i))
2482                         xhci_drop_ep_from_interval_table(xhci,
2483                                         &virt_dev->eps[i].bw_info,
2484                                         virt_dev->bw_table,
2485                                         virt_dev->udev,
2486                                         &virt_dev->eps[i],
2487                                         virt_dev->tt_info);
2488         }
2489         /* Overwrite the information stored in the endpoints' bw_info */
2490         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2491         for (i = 0; i < 31; i++) {
2492                 /* Add any changed or added endpoints to the interval table */
2493                 if (EP_IS_ADDED(ctrl_ctx, i))
2494                         xhci_add_ep_to_interval_table(xhci,
2495                                         &virt_dev->eps[i].bw_info,
2496                                         virt_dev->bw_table,
2497                                         virt_dev->udev,
2498                                         &virt_dev->eps[i],
2499                                         virt_dev->tt_info);
2500         }
2501
2502         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2503                 /* Ok, this fits in the bandwidth we have.
2504                  * Update the number of active TTs.
2505                  */
2506                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2507                 return 0;
2508         }
2509
2510         /* We don't have enough bandwidth for this, revert the stored info. */
2511         for (i = 0; i < 31; i++) {
2512                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2513                         continue;
2514
2515                 /* Drop the new copies of any added or changed endpoints from
2516                  * the interval table.
2517                  */
2518                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2519                         xhci_drop_ep_from_interval_table(xhci,
2520                                         &virt_dev->eps[i].bw_info,
2521                                         virt_dev->bw_table,
2522                                         virt_dev->udev,
2523                                         &virt_dev->eps[i],
2524                                         virt_dev->tt_info);
2525                 }
2526                 /* Revert the endpoint back to its old information */
2527                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2528                                 sizeof(ep_bw_info[i]));
2529                 /* Add any changed or dropped endpoints back into the table */
2530                 if (EP_IS_DROPPED(ctrl_ctx, i))
2531                         xhci_add_ep_to_interval_table(xhci,
2532                                         &virt_dev->eps[i].bw_info,
2533                                         virt_dev->bw_table,
2534                                         virt_dev->udev,
2535                                         &virt_dev->eps[i],
2536                                         virt_dev->tt_info);
2537         }
2538         return -ENOMEM;
2539 }
2540
2541
2542 /* Issue a configure endpoint command or evaluate context command
2543  * and wait for it to finish.
2544  */
2545 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2546                 struct usb_device *udev,
2547                 struct xhci_command *command,
2548                 bool ctx_change, bool must_succeed)
2549 {
2550         int ret;
2551         int timeleft;
2552         unsigned long flags;
2553         struct xhci_container_ctx *in_ctx;
2554         struct xhci_input_control_ctx *ctrl_ctx;
2555         struct completion *cmd_completion;
2556         u32 *cmd_status;
2557         struct xhci_virt_device *virt_dev;
2558         union xhci_trb *cmd_trb;
2559
2560         spin_lock_irqsave(&xhci->lock, flags);
2561         virt_dev = xhci->devs[udev->slot_id];
2562
2563         if (command)
2564                 in_ctx = command->in_ctx;
2565         else
2566                 in_ctx = virt_dev->in_ctx;
2567         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2568         if (!ctrl_ctx) {
2569                 spin_unlock_irqrestore(&xhci->lock, flags);
2570                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2571                                 __func__);
2572                 return -ENOMEM;
2573         }
2574
2575         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2576                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2577                 spin_unlock_irqrestore(&xhci->lock, flags);
2578                 xhci_warn(xhci, "Not enough host resources, "
2579                                 "active endpoint contexts = %u\n",
2580                                 xhci->num_active_eps);
2581                 return -ENOMEM;
2582         }
2583         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2584                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2585                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2586                         xhci_free_host_resources(xhci, ctrl_ctx);
2587                 spin_unlock_irqrestore(&xhci->lock, flags);
2588                 xhci_warn(xhci, "Not enough bandwidth\n");
2589                 return -ENOMEM;
2590         }
2591
2592         if (command) {
2593                 cmd_completion = command->completion;
2594                 cmd_status = &command->status;
2595                 command->command_trb = xhci->cmd_ring->enqueue;
2596
2597                 /* Enqueue pointer can be left pointing to the link TRB,
2598                  * we must handle that
2599                  */
2600                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2601                         command->command_trb =
2602                                 xhci->cmd_ring->enq_seg->next->trbs;
2603
2604                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2605         } else {
2606                 cmd_completion = &virt_dev->cmd_completion;
2607                 cmd_status = &virt_dev->cmd_status;
2608         }
2609         init_completion(cmd_completion);
2610
2611         cmd_trb = xhci->cmd_ring->dequeue;
2612         if (!ctx_change)
2613                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2614                                 udev->slot_id, must_succeed);
2615         else
2616                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2617                                 udev->slot_id, must_succeed);
2618         if (ret < 0) {
2619                 if (command)
2620                         list_del(&command->cmd_list);
2621                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2622                         xhci_free_host_resources(xhci, ctrl_ctx);
2623                 spin_unlock_irqrestore(&xhci->lock, flags);
2624                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2625                                 "FIXME allocate a new ring segment");
2626                 return -ENOMEM;
2627         }
2628         xhci_ring_cmd_db(xhci);
2629         spin_unlock_irqrestore(&xhci->lock, flags);
2630
2631         /* Wait for the configure endpoint command to complete */
2632         timeleft = wait_for_completion_interruptible_timeout(
2633                         cmd_completion,
2634                         XHCI_CMD_DEFAULT_TIMEOUT);
2635         if (timeleft <= 0) {
2636                 xhci_warn(xhci, "%s while waiting for %s command\n",
2637                                 timeleft == 0 ? "Timeout" : "Signal",
2638                                 ctx_change == 0 ?
2639                                         "configure endpoint" :
2640                                         "evaluate context");
2641                 /* cancel the configure endpoint command */
2642                 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2643                 if (ret < 0)
2644                         return ret;
2645                 return -ETIME;
2646         }
2647
2648         if (!ctx_change)
2649                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2650         else
2651                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2652
2653         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2654                 spin_lock_irqsave(&xhci->lock, flags);
2655                 /* If the command failed, remove the reserved resources.
2656                  * Otherwise, clean up the estimate to include dropped eps.
2657                  */
2658                 if (ret)
2659                         xhci_free_host_resources(xhci, ctrl_ctx);
2660                 else
2661                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2662                 spin_unlock_irqrestore(&xhci->lock, flags);
2663         }
2664         return ret;
2665 }
2666
2667 /* Called after one or more calls to xhci_add_endpoint() or
2668  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2669  * to call xhci_reset_bandwidth().
2670  *
2671  * Since we are in the middle of changing either configuration or
2672  * installing a new alt setting, the USB core won't allow URBs to be
2673  * enqueued for any endpoint on the old config or interface.  Nothing
2674  * else should be touching the xhci->devs[slot_id] structure, so we
2675  * don't need to take the xhci->lock for manipulating that.
2676  */
2677 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2678 {
2679         int i;
2680         int ret = 0;
2681         struct xhci_hcd *xhci;
2682         struct xhci_virt_device *virt_dev;
2683         struct xhci_input_control_ctx *ctrl_ctx;
2684         struct xhci_slot_ctx *slot_ctx;
2685
2686         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2687         if (ret <= 0)
2688                 return ret;
2689         xhci = hcd_to_xhci(hcd);
2690         if (xhci->xhc_state & XHCI_STATE_DYING)
2691                 return -ENODEV;
2692
2693         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2694         virt_dev = xhci->devs[udev->slot_id];
2695
2696         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2697         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2698         if (!ctrl_ctx) {
2699                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2700                                 __func__);
2701                 return -ENOMEM;
2702         }
2703         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2704         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2705         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2706
2707         /* Don't issue the command if there's no endpoints to update. */
2708         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2709                         ctrl_ctx->drop_flags == 0)
2710                 return 0;
2711
2712         xhci_dbg(xhci, "New Input Control Context:\n");
2713         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2714         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2715                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2716
2717         ret = xhci_configure_endpoint(xhci, udev, NULL,
2718                         false, false);
2719         if (ret) {
2720                 /* Callee should call reset_bandwidth() */
2721                 return ret;
2722         }
2723
2724         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2725         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2726                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2727
2728         /* Free any rings that were dropped, but not changed. */
2729         for (i = 1; i < 31; ++i) {
2730                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2731                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2732                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2733         }
2734         xhci_zero_in_ctx(xhci, virt_dev);
2735         /*
2736          * Install any rings for completely new endpoints or changed endpoints,
2737          * and free or cache any old rings from changed endpoints.
2738          */
2739         for (i = 1; i < 31; ++i) {
2740                 if (!virt_dev->eps[i].new_ring)
2741                         continue;
2742                 /* Only cache or free the old ring if it exists.
2743                  * It may not if this is the first add of an endpoint.
2744                  */
2745                 if (virt_dev->eps[i].ring) {
2746                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2747                 }
2748                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2749                 virt_dev->eps[i].new_ring = NULL;
2750         }
2751
2752         return ret;
2753 }
2754
2755 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2756 {
2757         struct xhci_hcd *xhci;
2758         struct xhci_virt_device *virt_dev;
2759         int i, ret;
2760
2761         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2762         if (ret <= 0)
2763                 return;
2764         xhci = hcd_to_xhci(hcd);
2765
2766         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2767         virt_dev = xhci->devs[udev->slot_id];
2768         /* Free any rings allocated for added endpoints */
2769         for (i = 0; i < 31; ++i) {
2770                 if (virt_dev->eps[i].new_ring) {
2771                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2772                         virt_dev->eps[i].new_ring = NULL;
2773                 }
2774         }
2775         xhci_zero_in_ctx(xhci, virt_dev);
2776 }
2777
2778 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2779                 struct xhci_container_ctx *in_ctx,
2780                 struct xhci_container_ctx *out_ctx,
2781                 struct xhci_input_control_ctx *ctrl_ctx,
2782                 u32 add_flags, u32 drop_flags)
2783 {
2784         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2785         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2786         xhci_slot_copy(xhci, in_ctx, out_ctx);
2787         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2788
2789         xhci_dbg(xhci, "Input Context:\n");
2790         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2791 }
2792
2793 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2794                 unsigned int slot_id, unsigned int ep_index,
2795                 struct xhci_dequeue_state *deq_state)
2796 {
2797         struct xhci_input_control_ctx *ctrl_ctx;
2798         struct xhci_container_ctx *in_ctx;
2799         struct xhci_ep_ctx *ep_ctx;
2800         u32 added_ctxs;
2801         dma_addr_t addr;
2802
2803         in_ctx = xhci->devs[slot_id]->in_ctx;
2804         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2805         if (!ctrl_ctx) {
2806                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2807                                 __func__);
2808                 return;
2809         }
2810
2811         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2812                         xhci->devs[slot_id]->out_ctx, ep_index);
2813         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2814         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2815                         deq_state->new_deq_ptr);
2816         if (addr == 0) {
2817                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2818                                 "reset ep command\n");
2819                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2820                                 deq_state->new_deq_seg,
2821                                 deq_state->new_deq_ptr);
2822                 return;
2823         }
2824         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2825
2826         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2827         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2828                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2829                         added_ctxs, added_ctxs);
2830 }
2831
2832 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2833                 struct usb_device *udev, unsigned int ep_index)
2834 {
2835         struct xhci_dequeue_state deq_state;
2836         struct xhci_virt_ep *ep;
2837
2838         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2839                         "Cleaning up stalled endpoint ring");
2840         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2841         /* We need to move the HW's dequeue pointer past this TD,
2842          * or it will attempt to resend it on the next doorbell ring.
2843          */
2844         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2845                         ep_index, ep->stopped_stream, ep->stopped_td,
2846                         &deq_state);
2847
2848         /* HW with the reset endpoint quirk will use the saved dequeue state to
2849          * issue a configure endpoint command later.
2850          */
2851         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2852                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2853                                 "Queueing new dequeue state");
2854                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2855                                 ep_index, ep->stopped_stream, &deq_state);
2856         } else {
2857                 /* Better hope no one uses the input context between now and the
2858                  * reset endpoint completion!
2859                  * XXX: No idea how this hardware will react when stream rings
2860                  * are enabled.
2861                  */
2862                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2863                                 "Setting up input context for "
2864                                 "configure endpoint command");
2865                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2866                                 ep_index, &deq_state);
2867         }
2868 }
2869
2870 /* Deal with stalled endpoints.  The core should have sent the control message
2871  * to clear the halt condition.  However, we need to make the xHCI hardware
2872  * reset its sequence number, since a device will expect a sequence number of
2873  * zero after the halt condition is cleared.
2874  * Context: in_interrupt
2875  */
2876 void xhci_endpoint_reset(struct usb_hcd *hcd,
2877                 struct usb_host_endpoint *ep)
2878 {
2879         struct xhci_hcd *xhci;
2880         struct usb_device *udev;
2881         unsigned int ep_index;
2882         unsigned long flags;
2883         int ret;
2884         struct xhci_virt_ep *virt_ep;
2885
2886         xhci = hcd_to_xhci(hcd);
2887         udev = (struct usb_device *) ep->hcpriv;
2888         /* Called with a root hub endpoint (or an endpoint that wasn't added
2889          * with xhci_add_endpoint()
2890          */
2891         if (!ep->hcpriv)
2892                 return;
2893         ep_index = xhci_get_endpoint_index(&ep->desc);
2894         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2895         if (!virt_ep->stopped_td) {
2896                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2897                         "Endpoint 0x%x not halted, refusing to reset.",
2898                         ep->desc.bEndpointAddress);
2899                 return;
2900         }
2901         if (usb_endpoint_xfer_control(&ep->desc)) {
2902                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2903                                 "Control endpoint stall already handled.");
2904                 return;
2905         }
2906
2907         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2908                         "Queueing reset endpoint command");
2909         spin_lock_irqsave(&xhci->lock, flags);
2910         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2911         /*
2912          * Can't change the ring dequeue pointer until it's transitioned to the
2913          * stopped state, which is only upon a successful reset endpoint
2914          * command.  Better hope that last command worked!
2915          */
2916         if (!ret) {
2917                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2918                 kfree(virt_ep->stopped_td);
2919                 xhci_ring_cmd_db(xhci);
2920         }
2921         virt_ep->stopped_td = NULL;
2922         virt_ep->stopped_trb = NULL;
2923         virt_ep->stopped_stream = 0;
2924         spin_unlock_irqrestore(&xhci->lock, flags);
2925
2926         if (ret)
2927                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2928 }
2929
2930 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2931                 struct usb_device *udev, struct usb_host_endpoint *ep,
2932                 unsigned int slot_id)
2933 {
2934         int ret;
2935         unsigned int ep_index;
2936         unsigned int ep_state;
2937
2938         if (!ep)
2939                 return -EINVAL;
2940         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2941         if (ret <= 0)
2942                 return -EINVAL;
2943         if (ep->ss_ep_comp.bmAttributes == 0) {
2944                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2945                                 " descriptor for ep 0x%x does not support streams\n",
2946                                 ep->desc.bEndpointAddress);
2947                 return -EINVAL;
2948         }
2949
2950         ep_index = xhci_get_endpoint_index(&ep->desc);
2951         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2952         if (ep_state & EP_HAS_STREAMS ||
2953                         ep_state & EP_GETTING_STREAMS) {
2954                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2955                                 "already has streams set up.\n",
2956                                 ep->desc.bEndpointAddress);
2957                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2958                                 "dynamic stream context array reallocation.\n");
2959                 return -EINVAL;
2960         }
2961         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2962                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2963                                 "endpoint 0x%x; URBs are pending.\n",
2964                                 ep->desc.bEndpointAddress);
2965                 return -EINVAL;
2966         }
2967         return 0;
2968 }
2969
2970 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2971                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2972 {
2973         unsigned int max_streams;
2974
2975         /* The stream context array size must be a power of two */
2976         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2977         /*
2978          * Find out how many primary stream array entries the host controller
2979          * supports.  Later we may use secondary stream arrays (similar to 2nd
2980          * level page entries), but that's an optional feature for xHCI host
2981          * controllers. xHCs must support at least 4 stream IDs.
2982          */
2983         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2984         if (*num_stream_ctxs > max_streams) {
2985                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2986                                 max_streams);
2987                 *num_stream_ctxs = max_streams;
2988                 *num_streams = max_streams;
2989         }
2990 }
2991
2992 /* Returns an error code if one of the endpoint already has streams.
2993  * This does not change any data structures, it only checks and gathers
2994  * information.
2995  */
2996 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2997                 struct usb_device *udev,
2998                 struct usb_host_endpoint **eps, unsigned int num_eps,
2999                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3000 {
3001         unsigned int max_streams;
3002         unsigned int endpoint_flag;
3003         int i;
3004         int ret;
3005
3006         for (i = 0; i < num_eps; i++) {
3007                 ret = xhci_check_streams_endpoint(xhci, udev,
3008                                 eps[i], udev->slot_id);
3009                 if (ret < 0)
3010                         return ret;
3011
3012                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3013                 if (max_streams < (*num_streams - 1)) {
3014                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3015                                         eps[i]->desc.bEndpointAddress,
3016                                         max_streams);
3017                         *num_streams = max_streams+1;
3018                 }
3019
3020                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3021                 if (*changed_ep_bitmask & endpoint_flag)
3022                         return -EINVAL;
3023                 *changed_ep_bitmask |= endpoint_flag;
3024         }
3025         return 0;
3026 }
3027
3028 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3029                 struct usb_device *udev,
3030                 struct usb_host_endpoint **eps, unsigned int num_eps)
3031 {
3032         u32 changed_ep_bitmask = 0;
3033         unsigned int slot_id;
3034         unsigned int ep_index;
3035         unsigned int ep_state;
3036         int i;
3037
3038         slot_id = udev->slot_id;
3039         if (!xhci->devs[slot_id])
3040                 return 0;
3041
3042         for (i = 0; i < num_eps; i++) {
3043                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3044                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3045                 /* Are streams already being freed for the endpoint? */
3046                 if (ep_state & EP_GETTING_NO_STREAMS) {
3047                         xhci_warn(xhci, "WARN Can't disable streams for "
3048                                         "endpoint 0x%x, "
3049                                         "streams are being disabled already\n",
3050                                         eps[i]->desc.bEndpointAddress);
3051                         return 0;
3052                 }
3053                 /* Are there actually any streams to free? */
3054                 if (!(ep_state & EP_HAS_STREAMS) &&
3055                                 !(ep_state & EP_GETTING_STREAMS)) {
3056                         xhci_warn(xhci, "WARN Can't disable streams for "
3057                                         "endpoint 0x%x, "
3058                                         "streams are already disabled!\n",
3059                                         eps[i]->desc.bEndpointAddress);
3060                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3061                                         "with non-streams endpoint\n");
3062                         return 0;
3063                 }
3064                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3065         }
3066         return changed_ep_bitmask;
3067 }
3068
3069 /*
3070  * The USB device drivers use this function (though the HCD interface in USB
3071  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3072  * coordinate mass storage command queueing across multiple endpoints (basically
3073  * a stream ID == a task ID).
3074  *
3075  * Setting up streams involves allocating the same size stream context array
3076  * for each endpoint and issuing a configure endpoint command for all endpoints.
3077  *
3078  * Don't allow the call to succeed if one endpoint only supports one stream
3079  * (which means it doesn't support streams at all).
3080  *
3081  * Drivers may get less stream IDs than they asked for, if the host controller
3082  * hardware or endpoints claim they can't support the number of requested
3083  * stream IDs.
3084  */
3085 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3086                 struct usb_host_endpoint **eps, unsigned int num_eps,
3087                 unsigned int num_streams, gfp_t mem_flags)
3088 {
3089         int i, ret;
3090         struct xhci_hcd *xhci;
3091         struct xhci_virt_device *vdev;
3092         struct xhci_command *config_cmd;
3093         struct xhci_input_control_ctx *ctrl_ctx;
3094         unsigned int ep_index;
3095         unsigned int num_stream_ctxs;
3096         unsigned long flags;
3097         u32 changed_ep_bitmask = 0;
3098
3099         if (!eps)
3100                 return -EINVAL;
3101
3102         /* Add one to the number of streams requested to account for
3103          * stream 0 that is reserved for xHCI usage.
3104          */
3105         num_streams += 1;
3106         xhci = hcd_to_xhci(hcd);
3107         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3108                         num_streams);
3109
3110         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3111         if (!config_cmd) {
3112                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3113                 return -ENOMEM;
3114         }
3115         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3116         if (!ctrl_ctx) {
3117                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3118                                 __func__);
3119                 xhci_free_command(xhci, config_cmd);
3120                 return -ENOMEM;
3121         }
3122
3123         /* Check to make sure all endpoints are not already configured for
3124          * streams.  While we're at it, find the maximum number of streams that
3125          * all the endpoints will support and check for duplicate endpoints.
3126          */
3127         spin_lock_irqsave(&xhci->lock, flags);
3128         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3129                         num_eps, &num_streams, &changed_ep_bitmask);
3130         if (ret < 0) {
3131                 xhci_free_command(xhci, config_cmd);
3132                 spin_unlock_irqrestore(&xhci->lock, flags);
3133                 return ret;
3134         }
3135         if (num_streams <= 1) {
3136                 xhci_warn(xhci, "WARN: endpoints can't handle "
3137                                 "more than one stream.\n");
3138                 xhci_free_command(xhci, config_cmd);
3139                 spin_unlock_irqrestore(&xhci->lock, flags);
3140                 return -EINVAL;
3141         }
3142         vdev = xhci->devs[udev->slot_id];
3143         /* Mark each endpoint as being in transition, so
3144          * xhci_urb_enqueue() will reject all URBs.
3145          */
3146         for (i = 0; i < num_eps; i++) {
3147                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3148                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3149         }
3150         spin_unlock_irqrestore(&xhci->lock, flags);
3151
3152         /* Setup internal data structures and allocate HW data structures for
3153          * streams (but don't install the HW structures in the input context
3154          * until we're sure all memory allocation succeeded).
3155          */
3156         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3157         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3158                         num_stream_ctxs, num_streams);
3159
3160         for (i = 0; i < num_eps; i++) {
3161                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3162                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3163                                 num_stream_ctxs,
3164                                 num_streams, mem_flags);
3165                 if (!vdev->eps[ep_index].stream_info)
3166                         goto cleanup;
3167                 /* Set maxPstreams in endpoint context and update deq ptr to
3168                  * point to stream context array. FIXME
3169                  */
3170         }
3171
3172         /* Set up the input context for a configure endpoint command. */
3173         for (i = 0; i < num_eps; i++) {
3174                 struct xhci_ep_ctx *ep_ctx;
3175
3176                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3177                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3178
3179                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3180                                 vdev->out_ctx, ep_index);
3181                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3182                                 vdev->eps[ep_index].stream_info);
3183         }
3184         /* Tell the HW to drop its old copy of the endpoint context info
3185          * and add the updated copy from the input context.
3186          */
3187         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3188                         vdev->out_ctx, ctrl_ctx,
3189                         changed_ep_bitmask, changed_ep_bitmask);
3190
3191         /* Issue and wait for the configure endpoint command */
3192         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3193                         false, false);
3194
3195         /* xHC rejected the configure endpoint command for some reason, so we
3196          * leave the old ring intact and free our internal streams data
3197          * structure.
3198          */
3199         if (ret < 0)
3200                 goto cleanup;
3201
3202         spin_lock_irqsave(&xhci->lock, flags);
3203         for (i = 0; i < num_eps; i++) {
3204                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3205                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3206                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3207                          udev->slot_id, ep_index);
3208                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3209         }
3210         xhci_free_command(xhci, config_cmd);
3211         spin_unlock_irqrestore(&xhci->lock, flags);
3212
3213         /* Subtract 1 for stream 0, which drivers can't use */
3214         return num_streams - 1;
3215
3216 cleanup:
3217         /* If it didn't work, free the streams! */
3218         for (i = 0; i < num_eps; i++) {
3219                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3220                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3221                 vdev->eps[ep_index].stream_info = NULL;
3222                 /* FIXME Unset maxPstreams in endpoint context and
3223                  * update deq ptr to point to normal string ring.
3224                  */
3225                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3226                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3227                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3228         }
3229         xhci_free_command(xhci, config_cmd);
3230         return -ENOMEM;
3231 }
3232
3233 /* Transition the endpoint from using streams to being a "normal" endpoint
3234  * without streams.
3235  *
3236  * Modify the endpoint context state, submit a configure endpoint command,
3237  * and free all endpoint rings for streams if that completes successfully.
3238  */
3239 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3240                 struct usb_host_endpoint **eps, unsigned int num_eps,
3241                 gfp_t mem_flags)
3242 {
3243         int i, ret;
3244         struct xhci_hcd *xhci;
3245         struct xhci_virt_device *vdev;
3246         struct xhci_command *command;
3247         struct xhci_input_control_ctx *ctrl_ctx;
3248         unsigned int ep_index;
3249         unsigned long flags;
3250         u32 changed_ep_bitmask;
3251
3252         xhci = hcd_to_xhci(hcd);
3253         vdev = xhci->devs[udev->slot_id];
3254
3255         /* Set up a configure endpoint command to remove the streams rings */
3256         spin_lock_irqsave(&xhci->lock, flags);
3257         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3258                         udev, eps, num_eps);
3259         if (changed_ep_bitmask == 0) {
3260                 spin_unlock_irqrestore(&xhci->lock, flags);
3261                 return -EINVAL;
3262         }
3263
3264         /* Use the xhci_command structure from the first endpoint.  We may have
3265          * allocated too many, but the driver may call xhci_free_streams() for
3266          * each endpoint it grouped into one call to xhci_alloc_streams().
3267          */
3268         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3269         command = vdev->eps[ep_index].stream_info->free_streams_command;
3270         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3271         if (!ctrl_ctx) {
3272                 spin_unlock_irqrestore(&xhci->lock, flags);
3273                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3274                                 __func__);
3275                 return -EINVAL;
3276         }
3277
3278         for (i = 0; i < num_eps; i++) {
3279                 struct xhci_ep_ctx *ep_ctx;
3280
3281                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3282                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3283                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3284                         EP_GETTING_NO_STREAMS;
3285
3286                 xhci_endpoint_copy(xhci, command->in_ctx,
3287                                 vdev->out_ctx, ep_index);
3288                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3289                                 &vdev->eps[ep_index]);
3290         }
3291         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3292                         vdev->out_ctx, ctrl_ctx,
3293                         changed_ep_bitmask, changed_ep_bitmask);
3294         spin_unlock_irqrestore(&xhci->lock, flags);
3295
3296         /* Issue and wait for the configure endpoint command,
3297          * which must succeed.
3298          */
3299         ret = xhci_configure_endpoint(xhci, udev, command,
3300                         false, true);
3301
3302         /* xHC rejected the configure endpoint command for some reason, so we
3303          * leave the streams rings intact.
3304          */
3305         if (ret < 0)
3306                 return ret;
3307
3308         spin_lock_irqsave(&xhci->lock, flags);
3309         for (i = 0; i < num_eps; i++) {
3310                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3311                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3312                 vdev->eps[ep_index].stream_info = NULL;
3313                 /* FIXME Unset maxPstreams in endpoint context and
3314                  * update deq ptr to point to normal string ring.
3315                  */
3316                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3317                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3318         }
3319         spin_unlock_irqrestore(&xhci->lock, flags);
3320
3321         return 0;
3322 }
3323
3324 /*
3325  * Deletes endpoint resources for endpoints that were active before a Reset
3326  * Device command, or a Disable Slot command.  The Reset Device command leaves
3327  * the control endpoint intact, whereas the Disable Slot command deletes it.
3328  *
3329  * Must be called with xhci->lock held.
3330  */
3331 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3332         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3333 {
3334         int i;
3335         unsigned int num_dropped_eps = 0;
3336         unsigned int drop_flags = 0;
3337
3338         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3339                 if (virt_dev->eps[i].ring) {
3340                         drop_flags |= 1 << i;
3341                         num_dropped_eps++;
3342                 }
3343         }
3344         xhci->num_active_eps -= num_dropped_eps;
3345         if (num_dropped_eps)
3346                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3347                                 "Dropped %u ep ctxs, flags = 0x%x, "
3348                                 "%u now active.",
3349                                 num_dropped_eps, drop_flags,
3350                                 xhci->num_active_eps);
3351 }
3352
3353 /*
3354  * This submits a Reset Device Command, which will set the device state to 0,
3355  * set the device address to 0, and disable all the endpoints except the default
3356  * control endpoint.  The USB core should come back and call
3357  * xhci_address_device(), and then re-set up the configuration.  If this is
3358  * called because of a usb_reset_and_verify_device(), then the old alternate
3359  * settings will be re-installed through the normal bandwidth allocation
3360  * functions.
3361  *
3362  * Wait for the Reset Device command to finish.  Remove all structures
3363  * associated with the endpoints that were disabled.  Clear the input device
3364  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3365  *
3366  * If the virt_dev to be reset does not exist or does not match the udev,
3367  * it means the device is lost, possibly due to the xHC restore error and
3368  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3369  * re-allocate the device.
3370  */
3371 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3372 {
3373         int ret, i;
3374         unsigned long flags;
3375         struct xhci_hcd *xhci;
3376         unsigned int slot_id;
3377         struct xhci_virt_device *virt_dev;
3378         struct xhci_command *reset_device_cmd;
3379         int timeleft;
3380         int last_freed_endpoint;
3381         struct xhci_slot_ctx *slot_ctx;
3382         int old_active_eps = 0;
3383
3384         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3385         if (ret <= 0)
3386                 return ret;
3387         xhci = hcd_to_xhci(hcd);
3388         slot_id = udev->slot_id;
3389         virt_dev = xhci->devs[slot_id];
3390         if (!virt_dev) {
3391                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3392                                 "not exist. Re-allocate the device\n", slot_id);
3393                 ret = xhci_alloc_dev(hcd, udev);
3394                 if (ret == 1)
3395                         return 0;
3396                 else
3397                         return -EINVAL;
3398         }
3399
3400         if (virt_dev->udev != udev) {
3401                 /* If the virt_dev and the udev does not match, this virt_dev
3402                  * may belong to another udev.
3403                  * Re-allocate the device.
3404                  */
3405                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3406                                 "not match the udev. Re-allocate the device\n",
3407                                 slot_id);
3408                 ret = xhci_alloc_dev(hcd, udev);
3409                 if (ret == 1)
3410                         return 0;
3411                 else
3412                         return -EINVAL;
3413         }
3414
3415         /* If device is not setup, there is no point in resetting it */
3416         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3417         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3418                                                 SLOT_STATE_DISABLED)
3419                 return 0;
3420
3421         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3422         /* Allocate the command structure that holds the struct completion.
3423          * Assume we're in process context, since the normal device reset
3424          * process has to wait for the device anyway.  Storage devices are
3425          * reset as part of error handling, so use GFP_NOIO instead of
3426          * GFP_KERNEL.
3427          */
3428         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3429         if (!reset_device_cmd) {
3430                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3431                 return -ENOMEM;
3432         }
3433
3434         /* Attempt to submit the Reset Device command to the command ring */
3435         spin_lock_irqsave(&xhci->lock, flags);
3436         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3437
3438         /* Enqueue pointer can be left pointing to the link TRB,
3439          * we must handle that
3440          */
3441         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3442                 reset_device_cmd->command_trb =
3443                         xhci->cmd_ring->enq_seg->next->trbs;
3444
3445         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3446         ret = xhci_queue_reset_device(xhci, slot_id);
3447         if (ret) {
3448                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3449                 list_del(&reset_device_cmd->cmd_list);
3450                 spin_unlock_irqrestore(&xhci->lock, flags);
3451                 goto command_cleanup;
3452         }
3453         xhci_ring_cmd_db(xhci);
3454         spin_unlock_irqrestore(&xhci->lock, flags);
3455
3456         /* Wait for the Reset Device command to finish */
3457         timeleft = wait_for_completion_interruptible_timeout(
3458                         reset_device_cmd->completion,
3459                         USB_CTRL_SET_TIMEOUT);
3460         if (timeleft <= 0) {
3461                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3462                                 timeleft == 0 ? "Timeout" : "Signal");
3463                 spin_lock_irqsave(&xhci->lock, flags);
3464                 /* The timeout might have raced with the event ring handler, so
3465                  * only delete from the list if the item isn't poisoned.
3466                  */
3467                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3468                         list_del(&reset_device_cmd->cmd_list);
3469                 spin_unlock_irqrestore(&xhci->lock, flags);
3470                 ret = -ETIME;
3471                 goto command_cleanup;
3472         }
3473
3474         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3475          * unless we tried to reset a slot ID that wasn't enabled,
3476          * or the device wasn't in the addressed or configured state.
3477          */
3478         ret = reset_device_cmd->status;
3479         switch (ret) {
3480         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3481         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3482                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3483                                 slot_id,
3484                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3485                 xhci_dbg(xhci, "Not freeing device rings.\n");
3486                 /* Don't treat this as an error.  May change my mind later. */
3487                 ret = 0;
3488                 goto command_cleanup;
3489         case COMP_SUCCESS:
3490                 xhci_dbg(xhci, "Successful reset device command.\n");
3491                 break;
3492         default:
3493                 if (xhci_is_vendor_info_code(xhci, ret))
3494                         break;
3495                 xhci_warn(xhci, "Unknown completion code %u for "
3496                                 "reset device command.\n", ret);
3497                 ret = -EINVAL;
3498                 goto command_cleanup;
3499         }
3500
3501         /* Free up host controller endpoint resources */
3502         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3503                 spin_lock_irqsave(&xhci->lock, flags);
3504                 /* Don't delete the default control endpoint resources */
3505                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3506                 spin_unlock_irqrestore(&xhci->lock, flags);
3507         }
3508
3509         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3510         last_freed_endpoint = 1;
3511         for (i = 1; i < 31; ++i) {
3512                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3513
3514                 if (ep->ep_state & EP_HAS_STREAMS) {
3515                         xhci_free_stream_info(xhci, ep->stream_info);
3516                         ep->stream_info = NULL;
3517                         ep->ep_state &= ~EP_HAS_STREAMS;
3518                 }
3519
3520                 if (ep->ring) {
3521                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3522                         last_freed_endpoint = i;
3523                 }
3524                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3525                         xhci_drop_ep_from_interval_table(xhci,
3526                                         &virt_dev->eps[i].bw_info,
3527                                         virt_dev->bw_table,
3528                                         udev,
3529                                         &virt_dev->eps[i],
3530                                         virt_dev->tt_info);
3531                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3532         }
3533         /* If necessary, update the number of active TTs on this root port */
3534         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3535
3536         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3537         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3538         ret = 0;
3539
3540 command_cleanup:
3541         xhci_free_command(xhci, reset_device_cmd);
3542         return ret;
3543 }
3544
3545 /*
3546  * At this point, the struct usb_device is about to go away, the device has
3547  * disconnected, and all traffic has been stopped and the endpoints have been
3548  * disabled.  Free any HC data structures associated with that device.
3549  */
3550 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3551 {
3552         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3553         struct xhci_virt_device *virt_dev;
3554         unsigned long flags;
3555         u32 state;
3556         int i, ret;
3557
3558         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3559         /* If the host is halted due to driver unload, we still need to free the
3560          * device.
3561          */
3562         if (ret <= 0 && ret != -ENODEV)
3563                 return;
3564
3565         virt_dev = xhci->devs[udev->slot_id];
3566
3567         /* Stop any wayward timer functions (which may grab the lock) */
3568         for (i = 0; i < 31; ++i) {
3569                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3570                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3571         }
3572
3573         if (udev->usb2_hw_lpm_enabled) {
3574                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3575                 udev->usb2_hw_lpm_enabled = 0;
3576         }
3577
3578         spin_lock_irqsave(&xhci->lock, flags);
3579         /* Don't disable the slot if the host controller is dead. */
3580         state = xhci_readl(xhci, &xhci->op_regs->status);
3581         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3582                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3583                 xhci_free_virt_device(xhci, udev->slot_id);
3584                 spin_unlock_irqrestore(&xhci->lock, flags);
3585                 return;
3586         }
3587
3588         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3589                 spin_unlock_irqrestore(&xhci->lock, flags);
3590                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3591                 return;
3592         }
3593         xhci_ring_cmd_db(xhci);
3594         spin_unlock_irqrestore(&xhci->lock, flags);
3595         /*
3596          * Event command completion handler will free any data structures
3597          * associated with the slot.  XXX Can free sleep?
3598          */
3599 }
3600
3601 /*
3602  * Checks if we have enough host controller resources for the default control
3603  * endpoint.
3604  *
3605  * Must be called with xhci->lock held.
3606  */
3607 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3608 {
3609         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3610                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3611                                 "Not enough ep ctxs: "
3612                                 "%u active, need to add 1, limit is %u.",
3613                                 xhci->num_active_eps, xhci->limit_active_eps);
3614                 return -ENOMEM;
3615         }
3616         xhci->num_active_eps += 1;
3617         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3618                         "Adding 1 ep ctx, %u now active.",
3619                         xhci->num_active_eps);
3620         return 0;
3621 }
3622
3623
3624 /*
3625  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3626  * timed out, or allocating memory failed.  Returns 1 on success.
3627  */
3628 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3629 {
3630         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3631         unsigned long flags;
3632         int timeleft;
3633         int ret;
3634         union xhci_trb *cmd_trb;
3635
3636         spin_lock_irqsave(&xhci->lock, flags);
3637         cmd_trb = xhci->cmd_ring->dequeue;
3638         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3639         if (ret) {
3640                 spin_unlock_irqrestore(&xhci->lock, flags);
3641                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3642                 return 0;
3643         }
3644         xhci_ring_cmd_db(xhci);
3645         spin_unlock_irqrestore(&xhci->lock, flags);
3646
3647         /* XXX: how much time for xHC slot assignment? */
3648         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3649                         XHCI_CMD_DEFAULT_TIMEOUT);
3650         if (timeleft <= 0) {
3651                 xhci_warn(xhci, "%s while waiting for a slot\n",
3652                                 timeleft == 0 ? "Timeout" : "Signal");
3653                 /* cancel the enable slot request */
3654                 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3655         }
3656
3657         if (!xhci->slot_id) {
3658                 xhci_err(xhci, "Error while assigning device slot ID\n");
3659                 return 0;
3660         }
3661
3662         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3663                 spin_lock_irqsave(&xhci->lock, flags);
3664                 ret = xhci_reserve_host_control_ep_resources(xhci);
3665                 if (ret) {
3666                         spin_unlock_irqrestore(&xhci->lock, flags);
3667                         xhci_warn(xhci, "Not enough host resources, "
3668                                         "active endpoint contexts = %u\n",
3669                                         xhci->num_active_eps);
3670                         goto disable_slot;
3671                 }
3672                 spin_unlock_irqrestore(&xhci->lock, flags);
3673         }
3674         /* Use GFP_NOIO, since this function can be called from
3675          * xhci_discover_or_reset_device(), which may be called as part of
3676          * mass storage driver error handling.
3677          */
3678         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3679                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3680                 goto disable_slot;
3681         }
3682         udev->slot_id = xhci->slot_id;
3683         /* Is this a LS or FS device under a HS hub? */
3684         /* Hub or peripherial? */
3685         return 1;
3686
3687 disable_slot:
3688         /* Disable slot, if we can do it without mem alloc */
3689         spin_lock_irqsave(&xhci->lock, flags);
3690         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3691                 xhci_ring_cmd_db(xhci);
3692         spin_unlock_irqrestore(&xhci->lock, flags);
3693         return 0;
3694 }
3695
3696 /*
3697  * Issue an Address Device command (which will issue a SetAddress request to
3698  * the device).
3699  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3700  * we should only issue and wait on one address command at the same time.
3701  *
3702  * We add one to the device address issued by the hardware because the USB core
3703  * uses address 1 for the root hubs (even though they're not really devices).
3704  */
3705 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3706 {
3707         unsigned long flags;
3708         int timeleft;
3709         struct xhci_virt_device *virt_dev;
3710         int ret = 0;
3711         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3712         struct xhci_slot_ctx *slot_ctx;
3713         struct xhci_input_control_ctx *ctrl_ctx;
3714         u64 temp_64;
3715         union xhci_trb *cmd_trb;
3716
3717         if (!udev->slot_id) {
3718                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3719                                 "Bad Slot ID %d", udev->slot_id);
3720                 return -EINVAL;
3721         }
3722
3723         virt_dev = xhci->devs[udev->slot_id];
3724
3725         if (WARN_ON(!virt_dev)) {
3726                 /*
3727                  * In plug/unplug torture test with an NEC controller,
3728                  * a zero-dereference was observed once due to virt_dev = 0.
3729                  * Print useful debug rather than crash if it is observed again!
3730                  */
3731                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3732                         udev->slot_id);
3733                 return -EINVAL;
3734         }
3735
3736         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3737         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3738         if (!ctrl_ctx) {
3739                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3740                                 __func__);
3741                 return -EINVAL;
3742         }
3743         /*
3744          * If this is the first Set Address since device plug-in or
3745          * virt_device realloaction after a resume with an xHCI power loss,
3746          * then set up the slot context.
3747          */
3748         if (!slot_ctx->dev_info)
3749                 xhci_setup_addressable_virt_dev(xhci, udev);
3750         /* Otherwise, update the control endpoint ring enqueue pointer. */
3751         else
3752                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3753         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3754         ctrl_ctx->drop_flags = 0;
3755
3756         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3757         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3758         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3759                                 slot_ctx->dev_info >> 27);
3760
3761         spin_lock_irqsave(&xhci->lock, flags);
3762         cmd_trb = xhci->cmd_ring->dequeue;
3763         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3764                                         udev->slot_id);
3765         if (ret) {
3766                 spin_unlock_irqrestore(&xhci->lock, flags);
3767                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3768                                 "FIXME: allocate a command ring segment");
3769                 return ret;
3770         }
3771         xhci_ring_cmd_db(xhci);
3772         spin_unlock_irqrestore(&xhci->lock, flags);
3773
3774         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3775         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3776                         XHCI_CMD_DEFAULT_TIMEOUT);
3777         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3778          * the SetAddress() "recovery interval" required by USB and aborting the
3779          * command on a timeout.
3780          */
3781         if (timeleft <= 0) {
3782                 xhci_warn(xhci, "%s while waiting for address device command\n",
3783                                 timeleft == 0 ? "Timeout" : "Signal");
3784                 /* cancel the address device command */
3785                 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3786                 if (ret < 0)
3787                         return ret;
3788                 return -ETIME;
3789         }
3790
3791         switch (virt_dev->cmd_status) {
3792         case COMP_CTX_STATE:
3793         case COMP_EBADSLT:
3794                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3795                                 udev->slot_id);
3796                 ret = -EINVAL;
3797                 break;
3798         case COMP_TX_ERR:
3799                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3800                 ret = -EPROTO;
3801                 break;
3802         case COMP_DEV_ERR:
3803                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3804                                 "device command.\n");
3805                 ret = -ENODEV;
3806                 break;
3807         case COMP_SUCCESS:
3808                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3809                                 "Successful Address Device command");
3810                 break;
3811         default:
3812                 xhci_err(xhci, "ERROR: unexpected command completion "
3813                                 "code 0x%x.\n", virt_dev->cmd_status);
3814                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3815                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3816                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3817                 ret = -EINVAL;
3818                 break;
3819         }
3820         if (ret) {
3821                 return ret;
3822         }
3823         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3824         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3825                         "Op regs DCBAA ptr = %#016llx", temp_64);
3826         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3827                 "Slot ID %d dcbaa entry @%p = %#016llx",
3828                 udev->slot_id,
3829                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3830                 (unsigned long long)
3831                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3832         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3833                         "Output Context DMA address = %#08llx",
3834                         (unsigned long long)virt_dev->out_ctx->dma);
3835         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3836         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3837         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3838                                 slot_ctx->dev_info >> 27);
3839         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3840         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3841         /*
3842          * USB core uses address 1 for the roothubs, so we add one to the
3843          * address given back to us by the HC.
3844          */
3845         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3846         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3847                                 slot_ctx->dev_info >> 27);
3848         /* Use kernel assigned address for devices; store xHC assigned
3849          * address locally. */
3850         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3851                 + 1;
3852         /* Zero the input context control for later use */
3853         ctrl_ctx->add_flags = 0;
3854         ctrl_ctx->drop_flags = 0;
3855
3856         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3857                         "Internal device address = %d", virt_dev->address);
3858
3859         return 0;
3860 }
3861
3862 /*
3863  * Transfer the port index into real index in the HW port status
3864  * registers. Caculate offset between the port's PORTSC register
3865  * and port status base. Divide the number of per port register
3866  * to get the real index. The raw port number bases 1.
3867  */
3868 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3869 {
3870         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3871         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3872         __le32 __iomem *addr;
3873         int raw_port;
3874
3875         if (hcd->speed != HCD_USB3)
3876                 addr = xhci->usb2_ports[port1 - 1];
3877         else
3878                 addr = xhci->usb3_ports[port1 - 1];
3879
3880         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3881         return raw_port;
3882 }
3883
3884 /*
3885  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3886  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3887  */
3888 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3889                         struct usb_device *udev, u16 max_exit_latency)
3890 {
3891         struct xhci_virt_device *virt_dev;
3892         struct xhci_command *command;
3893         struct xhci_input_control_ctx *ctrl_ctx;
3894         struct xhci_slot_ctx *slot_ctx;
3895         unsigned long flags;
3896         int ret;
3897
3898         spin_lock_irqsave(&xhci->lock, flags);
3899         if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3900                 spin_unlock_irqrestore(&xhci->lock, flags);
3901                 return 0;
3902         }
3903
3904         /* Attempt to issue an Evaluate Context command to change the MEL. */
3905         virt_dev = xhci->devs[udev->slot_id];
3906         command = xhci->lpm_command;
3907         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3908         if (!ctrl_ctx) {
3909                 spin_unlock_irqrestore(&xhci->lock, flags);
3910                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3911                                 __func__);
3912                 return -ENOMEM;
3913         }
3914
3915         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3916         spin_unlock_irqrestore(&xhci->lock, flags);
3917
3918         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3919         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3920         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3921         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3922
3923         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3924                         "Set up evaluate context for LPM MEL change.");
3925         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3926         xhci_dbg_ctx(xhci, command->in_ctx, 0);
3927
3928         /* Issue and wait for the evaluate context command. */
3929         ret = xhci_configure_endpoint(xhci, udev, command,
3930                         true, true);
3931         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3932         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3933
3934         if (!ret) {
3935                 spin_lock_irqsave(&xhci->lock, flags);
3936                 virt_dev->current_mel = max_exit_latency;
3937                 spin_unlock_irqrestore(&xhci->lock, flags);
3938         }
3939         return ret;
3940 }
3941
3942 #ifdef CONFIG_PM_RUNTIME
3943
3944 /* BESL to HIRD Encoding array for USB2 LPM */
3945 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3946         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3947
3948 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3949 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3950                                         struct usb_device *udev)
3951 {
3952         int u2del, besl, besl_host;
3953         int besl_device = 0;
3954         u32 field;
3955
3956         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3957         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3958
3959         if (field & USB_BESL_SUPPORT) {
3960                 for (besl_host = 0; besl_host < 16; besl_host++) {
3961                         if (xhci_besl_encoding[besl_host] >= u2del)
3962                                 break;
3963                 }
3964                 /* Use baseline BESL value as default */
3965                 if (field & USB_BESL_BASELINE_VALID)
3966                         besl_device = USB_GET_BESL_BASELINE(field);
3967                 else if (field & USB_BESL_DEEP_VALID)
3968                         besl_device = USB_GET_BESL_DEEP(field);
3969         } else {
3970                 if (u2del <= 50)
3971                         besl_host = 0;
3972                 else
3973                         besl_host = (u2del - 51) / 75 + 1;
3974         }
3975
3976         besl = besl_host + besl_device;
3977         if (besl > 15)
3978                 besl = 15;
3979
3980         return besl;
3981 }
3982
3983 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
3984 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
3985 {
3986         u32 field;
3987         int l1;
3988         int besld = 0;
3989         int hirdm = 0;
3990
3991         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3992
3993         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
3994         l1 = udev->l1_params.timeout / 256;
3995
3996         /* device has preferred BESLD */
3997         if (field & USB_BESL_DEEP_VALID) {
3998                 besld = USB_GET_BESL_DEEP(field);
3999                 hirdm = 1;
4000         }
4001
4002         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4003 }
4004
4005 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
4006                                         struct usb_device *udev)
4007 {
4008         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4009         struct dev_info *dev_info;
4010         __le32 __iomem  **port_array;
4011         __le32 __iomem  *addr, *pm_addr;
4012         u32             temp, dev_id;
4013         unsigned int    port_num;
4014         unsigned long   flags;
4015         int             hird;
4016         int             ret;
4017
4018         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4019                         !udev->lpm_capable)
4020                 return -EINVAL;
4021
4022         /* we only support lpm for non-hub device connected to root hub yet */
4023         if (!udev->parent || udev->parent->parent ||
4024                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4025                 return -EINVAL;
4026
4027         spin_lock_irqsave(&xhci->lock, flags);
4028
4029         /* Look for devices in lpm_failed_devs list */
4030         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
4031                         le16_to_cpu(udev->descriptor.idProduct);
4032         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
4033                 if (dev_info->dev_id == dev_id) {
4034                         ret = -EINVAL;
4035                         goto finish;
4036                 }
4037         }
4038
4039         port_array = xhci->usb2_ports;
4040         port_num = udev->portnum - 1;
4041
4042         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
4043                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
4044                 ret = -EINVAL;
4045                 goto finish;
4046         }
4047
4048         /*
4049          * Test USB 2.0 software LPM.
4050          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
4051          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
4052          * in the June 2011 errata release.
4053          */
4054         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
4055         /*
4056          * Set L1 Device Slot and HIRD/BESL.
4057          * Check device's USB 2.0 extension descriptor to determine whether
4058          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
4059          */
4060         pm_addr = port_array[port_num] + PORTPMSC;
4061         hird = xhci_calculate_hird_besl(xhci, udev);
4062         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
4063         xhci_writel(xhci, temp, pm_addr);
4064
4065         /* Set port link state to U2(L1) */
4066         addr = port_array[port_num];
4067         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
4068
4069         /* wait for ACK */
4070         spin_unlock_irqrestore(&xhci->lock, flags);
4071         msleep(10);
4072         spin_lock_irqsave(&xhci->lock, flags);
4073
4074         /* Check L1 Status */
4075         ret = xhci_handshake(xhci, pm_addr,
4076                         PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
4077         if (ret != -ETIMEDOUT) {
4078                 /* enter L1 successfully */
4079                 temp = xhci_readl(xhci, addr);
4080                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
4081                                 port_num, temp);
4082                 ret = 0;
4083         } else {
4084                 temp = xhci_readl(xhci, pm_addr);
4085                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
4086                                 port_num, temp & PORT_L1S_MASK);
4087                 ret = -EINVAL;
4088         }
4089
4090         /* Resume the port */
4091         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
4092
4093         spin_unlock_irqrestore(&xhci->lock, flags);
4094         msleep(10);
4095         spin_lock_irqsave(&xhci->lock, flags);
4096
4097         /* Clear PLC */
4098         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
4099
4100         /* Check PORTSC to make sure the device is in the right state */
4101         if (!ret) {
4102                 temp = xhci_readl(xhci, addr);
4103                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
4104                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
4105                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
4106                         xhci_dbg(xhci, "port L1 resume fail\n");
4107                         ret = -EINVAL;
4108                 }
4109         }
4110
4111         if (ret) {
4112                 /* Insert dev to lpm_failed_devs list */
4113                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
4114                                 "re-enumerate\n");
4115                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
4116                 if (!dev_info) {
4117                         ret = -ENOMEM;
4118                         goto finish;
4119                 }
4120                 dev_info->dev_id = dev_id;
4121                 INIT_LIST_HEAD(&dev_info->list);
4122                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
4123         } else {
4124                 xhci_ring_device(xhci, udev->slot_id);
4125         }
4126
4127 finish:
4128         spin_unlock_irqrestore(&xhci->lock, flags);
4129         return ret;
4130 }
4131
4132 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4133                         struct usb_device *udev, int enable)
4134 {
4135         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4136         __le32 __iomem  **port_array;
4137         __le32 __iomem  *pm_addr, *hlpm_addr;
4138         u32             pm_val, hlpm_val, field;
4139         unsigned int    port_num;
4140         unsigned long   flags;
4141         int             hird, exit_latency;
4142         int             ret;
4143
4144         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4145                         !udev->lpm_capable)
4146                 return -EPERM;
4147
4148         if (!udev->parent || udev->parent->parent ||
4149                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4150                 return -EPERM;
4151
4152         if (udev->usb2_hw_lpm_capable != 1)
4153                 return -EPERM;
4154
4155         spin_lock_irqsave(&xhci->lock, flags);
4156
4157         port_array = xhci->usb2_ports;
4158         port_num = udev->portnum - 1;
4159         pm_addr = port_array[port_num] + PORTPMSC;
4160         pm_val = xhci_readl(xhci, pm_addr);
4161         hlpm_addr = port_array[port_num] + PORTHLPMC;
4162         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4163
4164         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4165                         enable ? "enable" : "disable", port_num);
4166
4167         if (enable) {
4168                 /* Host supports BESL timeout instead of HIRD */
4169                 if (udev->usb2_hw_lpm_besl_capable) {
4170                         /* if device doesn't have a preferred BESL value use a
4171                          * default one which works with mixed HIRD and BESL
4172                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4173                          */
4174                         if ((field & USB_BESL_SUPPORT) &&
4175                             (field & USB_BESL_BASELINE_VALID))
4176                                 hird = USB_GET_BESL_BASELINE(field);
4177                         else
4178                                 hird = udev->l1_params.besl;
4179
4180                         exit_latency = xhci_besl_encoding[hird];
4181                         spin_unlock_irqrestore(&xhci->lock, flags);
4182
4183                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4184                          * input context for link powermanagement evaluate
4185                          * context commands. It is protected by hcd->bandwidth
4186                          * mutex and is shared by all devices. We need to set
4187                          * the max ext latency in USB 2 BESL LPM as well, so
4188                          * use the same mutex and xhci_change_max_exit_latency()
4189                          */
4190                         mutex_lock(hcd->bandwidth_mutex);
4191                         ret = xhci_change_max_exit_latency(xhci, udev,
4192                                                            exit_latency);
4193                         mutex_unlock(hcd->bandwidth_mutex);
4194
4195                         if (ret < 0)
4196                                 return ret;
4197                         spin_lock_irqsave(&xhci->lock, flags);
4198
4199                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4200                         xhci_writel(xhci, hlpm_val, hlpm_addr);
4201                         /* flush write */
4202                         xhci_readl(xhci, hlpm_addr);
4203                 } else {
4204                         hird = xhci_calculate_hird_besl(xhci, udev);
4205                 }
4206
4207                 pm_val &= ~PORT_HIRD_MASK;
4208                 pm_val |= PORT_HIRD(hird) | PORT_RWE;
4209                 xhci_writel(xhci, pm_val, pm_addr);
4210                 pm_val = xhci_readl(xhci, pm_addr);
4211                 pm_val |= PORT_HLE;
4212                 xhci_writel(xhci, pm_val, pm_addr);
4213                 /* flush write */
4214                 xhci_readl(xhci, pm_addr);
4215         } else {
4216                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4217                 xhci_writel(xhci, pm_val, pm_addr);
4218                 /* flush write */
4219                 xhci_readl(xhci, pm_addr);
4220                 if (udev->usb2_hw_lpm_besl_capable) {
4221                         spin_unlock_irqrestore(&xhci->lock, flags);
4222                         mutex_lock(hcd->bandwidth_mutex);
4223                         xhci_change_max_exit_latency(xhci, udev, 0);
4224                         mutex_unlock(hcd->bandwidth_mutex);
4225                         return 0;
4226                 }
4227         }
4228
4229         spin_unlock_irqrestore(&xhci->lock, flags);
4230         return 0;
4231 }
4232
4233 /* check if a usb2 port supports a given extened capability protocol
4234  * only USB2 ports extended protocol capability values are cached.
4235  * Return 1 if capability is supported
4236  */
4237 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4238                                            unsigned capability)
4239 {
4240         u32 port_offset, port_count;
4241         int i;
4242
4243         for (i = 0; i < xhci->num_ext_caps; i++) {
4244                 if (xhci->ext_caps[i] & capability) {
4245                         /* port offsets starts at 1 */
4246                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4247                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4248                         if (port >= port_offset &&
4249                             port < port_offset + port_count)
4250                                 return 1;
4251                 }
4252         }
4253         return 0;
4254 }
4255
4256 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4257 {
4258         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4259         int             ret;
4260         int             portnum = udev->portnum - 1;
4261
4262         ret = xhci_usb2_software_lpm_test(hcd, udev);
4263         if (!ret) {
4264                 xhci_dbg(xhci, "software LPM test succeed\n");
4265                 if (xhci->hw_lpm_support == 1 &&
4266                     xhci_check_usb2_port_capability(xhci, portnum, XHCI_HLC)) {
4267                         udev->usb2_hw_lpm_capable = 1;
4268                         udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4269                         udev->l1_params.besl = XHCI_DEFAULT_BESL;
4270                         if (xhci_check_usb2_port_capability(xhci, portnum,
4271                                                             XHCI_BLC))
4272                                 udev->usb2_hw_lpm_besl_capable = 1;
4273                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4274                         if (!ret)
4275                                 udev->usb2_hw_lpm_enabled = 1;
4276                 }
4277         }
4278
4279         return 0;
4280 }
4281
4282 #else
4283
4284 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4285                                 struct usb_device *udev, int enable)
4286 {
4287         return 0;
4288 }
4289
4290 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4291 {
4292         return 0;
4293 }
4294
4295 #endif /* CONFIG_PM_RUNTIME */
4296
4297 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4298
4299 #ifdef CONFIG_PM
4300 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4301 static unsigned long long xhci_service_interval_to_ns(
4302                 struct usb_endpoint_descriptor *desc)
4303 {
4304         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4305 }
4306
4307 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4308                 enum usb3_link_state state)
4309 {
4310         unsigned long long sel;
4311         unsigned long long pel;
4312         unsigned int max_sel_pel;
4313         char *state_name;
4314
4315         switch (state) {
4316         case USB3_LPM_U1:
4317                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4318                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4319                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4320                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4321                 state_name = "U1";
4322                 break;
4323         case USB3_LPM_U2:
4324                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4325                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4326                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4327                 state_name = "U2";
4328                 break;
4329         default:
4330                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4331                                 __func__);
4332                 return USB3_LPM_DISABLED;
4333         }
4334
4335         if (sel <= max_sel_pel && pel <= max_sel_pel)
4336                 return USB3_LPM_DEVICE_INITIATED;
4337
4338         if (sel > max_sel_pel)
4339                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4340                                 "due to long SEL %llu ms\n",
4341                                 state_name, sel);
4342         else
4343                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4344                                 "due to long PEL %llu ms\n",
4345                                 state_name, pel);
4346         return USB3_LPM_DISABLED;
4347 }
4348
4349 /* Returns the hub-encoded U1 timeout value.
4350  * The U1 timeout should be the maximum of the following values:
4351  *  - For control endpoints, U1 system exit latency (SEL) * 3
4352  *  - For bulk endpoints, U1 SEL * 5
4353  *  - For interrupt endpoints:
4354  *    - Notification EPs, U1 SEL * 3
4355  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4356  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4357  */
4358 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4359                 struct usb_endpoint_descriptor *desc)
4360 {
4361         unsigned long long timeout_ns;
4362         int ep_type;
4363         int intr_type;
4364
4365         ep_type = usb_endpoint_type(desc);
4366         switch (ep_type) {
4367         case USB_ENDPOINT_XFER_CONTROL:
4368                 timeout_ns = udev->u1_params.sel * 3;
4369                 break;
4370         case USB_ENDPOINT_XFER_BULK:
4371                 timeout_ns = udev->u1_params.sel * 5;
4372                 break;
4373         case USB_ENDPOINT_XFER_INT:
4374                 intr_type = usb_endpoint_interrupt_type(desc);
4375                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4376                         timeout_ns = udev->u1_params.sel * 3;
4377                         break;
4378                 }
4379                 /* Otherwise the calculation is the same as isoc eps */
4380         case USB_ENDPOINT_XFER_ISOC:
4381                 timeout_ns = xhci_service_interval_to_ns(desc);
4382                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4383                 if (timeout_ns < udev->u1_params.sel * 2)
4384                         timeout_ns = udev->u1_params.sel * 2;
4385                 break;
4386         default:
4387                 return 0;
4388         }
4389
4390         /* The U1 timeout is encoded in 1us intervals. */
4391         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4392         /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4393         if (timeout_ns == USB3_LPM_DISABLED)
4394                 timeout_ns++;
4395
4396         /* If the necessary timeout value is bigger than what we can set in the
4397          * USB 3.0 hub, we have to disable hub-initiated U1.
4398          */
4399         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4400                 return timeout_ns;
4401         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4402                         "due to long timeout %llu ms\n", timeout_ns);
4403         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4404 }
4405
4406 /* Returns the hub-encoded U2 timeout value.
4407  * The U2 timeout should be the maximum of:
4408  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4409  *  - largest bInterval of any active periodic endpoint (to avoid going
4410  *    into lower power link states between intervals).
4411  *  - the U2 Exit Latency of the device
4412  */
4413 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4414                 struct usb_endpoint_descriptor *desc)
4415 {
4416         unsigned long long timeout_ns;
4417         unsigned long long u2_del_ns;
4418
4419         timeout_ns = 10 * 1000 * 1000;
4420
4421         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4422                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4423                 timeout_ns = xhci_service_interval_to_ns(desc);
4424
4425         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4426         if (u2_del_ns > timeout_ns)
4427                 timeout_ns = u2_del_ns;
4428
4429         /* The U2 timeout is encoded in 256us intervals */
4430         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4431         /* If the necessary timeout value is bigger than what we can set in the
4432          * USB 3.0 hub, we have to disable hub-initiated U2.
4433          */
4434         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4435                 return timeout_ns;
4436         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4437                         "due to long timeout %llu ms\n", timeout_ns);
4438         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4439 }
4440
4441 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4442                 struct usb_device *udev,
4443                 struct usb_endpoint_descriptor *desc,
4444                 enum usb3_link_state state,
4445                 u16 *timeout)
4446 {
4447         if (state == USB3_LPM_U1) {
4448                 if (xhci->quirks & XHCI_INTEL_HOST)
4449                         return xhci_calculate_intel_u1_timeout(udev, desc);
4450         } else {
4451                 if (xhci->quirks & XHCI_INTEL_HOST)
4452                         return xhci_calculate_intel_u2_timeout(udev, desc);
4453         }
4454
4455         return USB3_LPM_DISABLED;
4456 }
4457
4458 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4459                 struct usb_device *udev,
4460                 struct usb_endpoint_descriptor *desc,
4461                 enum usb3_link_state state,
4462                 u16 *timeout)
4463 {
4464         u16 alt_timeout;
4465
4466         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4467                 desc, state, timeout);
4468
4469         /* If we found we can't enable hub-initiated LPM, or
4470          * the U1 or U2 exit latency was too high to allow
4471          * device-initiated LPM as well, just stop searching.
4472          */
4473         if (alt_timeout == USB3_LPM_DISABLED ||
4474                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4475                 *timeout = alt_timeout;
4476                 return -E2BIG;
4477         }
4478         if (alt_timeout > *timeout)
4479                 *timeout = alt_timeout;
4480         return 0;
4481 }
4482
4483 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4484                 struct usb_device *udev,
4485                 struct usb_host_interface *alt,
4486                 enum usb3_link_state state,
4487                 u16 *timeout)
4488 {
4489         int j;
4490
4491         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4492                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4493                                         &alt->endpoint[j].desc, state, timeout))
4494                         return -E2BIG;
4495                 continue;
4496         }
4497         return 0;
4498 }
4499
4500 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4501                 enum usb3_link_state state)
4502 {
4503         struct usb_device *parent;
4504         unsigned int num_hubs;
4505
4506         if (state == USB3_LPM_U2)
4507                 return 0;
4508
4509         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4510         for (parent = udev->parent, num_hubs = 0; parent->parent;
4511                         parent = parent->parent)
4512                 num_hubs++;
4513
4514         if (num_hubs < 2)
4515                 return 0;
4516
4517         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4518                         " below second-tier hub.\n");
4519         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4520                         "to decrease power consumption.\n");
4521         return -E2BIG;
4522 }
4523
4524 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4525                 struct usb_device *udev,
4526                 enum usb3_link_state state)
4527 {
4528         if (xhci->quirks & XHCI_INTEL_HOST)
4529                 return xhci_check_intel_tier_policy(udev, state);
4530         return -EINVAL;
4531 }
4532
4533 /* Returns the U1 or U2 timeout that should be enabled.
4534  * If the tier check or timeout setting functions return with a non-zero exit
4535  * code, that means the timeout value has been finalized and we shouldn't look
4536  * at any more endpoints.
4537  */
4538 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4539                         struct usb_device *udev, enum usb3_link_state state)
4540 {
4541         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4542         struct usb_host_config *config;
4543         char *state_name;
4544         int i;
4545         u16 timeout = USB3_LPM_DISABLED;
4546
4547         if (state == USB3_LPM_U1)
4548                 state_name = "U1";
4549         else if (state == USB3_LPM_U2)
4550                 state_name = "U2";
4551         else {
4552                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4553                                 state);
4554                 return timeout;
4555         }
4556
4557         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4558                 return timeout;
4559
4560         /* Gather some information about the currently installed configuration
4561          * and alternate interface settings.
4562          */
4563         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4564                         state, &timeout))
4565                 return timeout;
4566
4567         config = udev->actconfig;
4568         if (!config)
4569                 return timeout;
4570
4571         for (i = 0; i < USB_MAXINTERFACES; i++) {
4572                 struct usb_driver *driver;
4573                 struct usb_interface *intf = config->interface[i];
4574
4575                 if (!intf)
4576                         continue;
4577
4578                 /* Check if any currently bound drivers want hub-initiated LPM
4579                  * disabled.
4580                  */
4581                 if (intf->dev.driver) {
4582                         driver = to_usb_driver(intf->dev.driver);
4583                         if (driver && driver->disable_hub_initiated_lpm) {
4584                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4585                                                 "at request of driver %s\n",
4586                                                 state_name, driver->name);
4587                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4588                         }
4589                 }
4590
4591                 /* Not sure how this could happen... */
4592                 if (!intf->cur_altsetting)
4593                         continue;
4594
4595                 if (xhci_update_timeout_for_interface(xhci, udev,
4596                                         intf->cur_altsetting,
4597                                         state, &timeout))
4598                         return timeout;
4599         }
4600         return timeout;
4601 }
4602
4603 static int calculate_max_exit_latency(struct usb_device *udev,
4604                 enum usb3_link_state state_changed,
4605                 u16 hub_encoded_timeout)
4606 {
4607         unsigned long long u1_mel_us = 0;
4608         unsigned long long u2_mel_us = 0;
4609         unsigned long long mel_us = 0;
4610         bool disabling_u1;
4611         bool disabling_u2;
4612         bool enabling_u1;
4613         bool enabling_u2;
4614
4615         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4616                         hub_encoded_timeout == USB3_LPM_DISABLED);
4617         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4618                         hub_encoded_timeout == USB3_LPM_DISABLED);
4619
4620         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4621                         hub_encoded_timeout != USB3_LPM_DISABLED);
4622         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4623                         hub_encoded_timeout != USB3_LPM_DISABLED);
4624
4625         /* If U1 was already enabled and we're not disabling it,
4626          * or we're going to enable U1, account for the U1 max exit latency.
4627          */
4628         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4629                         enabling_u1)
4630                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4631         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4632                         enabling_u2)
4633                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4634
4635         if (u1_mel_us > u2_mel_us)
4636                 mel_us = u1_mel_us;
4637         else
4638                 mel_us = u2_mel_us;
4639         /* xHCI host controller max exit latency field is only 16 bits wide. */
4640         if (mel_us > MAX_EXIT) {
4641                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4642                                 "is too big.\n", mel_us);
4643                 return -E2BIG;
4644         }
4645         return mel_us;
4646 }
4647
4648 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4649 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4650                         struct usb_device *udev, enum usb3_link_state state)
4651 {
4652         struct xhci_hcd *xhci;
4653         u16 hub_encoded_timeout;
4654         int mel;
4655         int ret;
4656
4657         xhci = hcd_to_xhci(hcd);
4658         /* The LPM timeout values are pretty host-controller specific, so don't
4659          * enable hub-initiated timeouts unless the vendor has provided
4660          * information about their timeout algorithm.
4661          */
4662         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4663                         !xhci->devs[udev->slot_id])
4664                 return USB3_LPM_DISABLED;
4665
4666         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4667         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4668         if (mel < 0) {
4669                 /* Max Exit Latency is too big, disable LPM. */
4670                 hub_encoded_timeout = USB3_LPM_DISABLED;
4671                 mel = 0;
4672         }
4673
4674         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4675         if (ret)
4676                 return ret;
4677         return hub_encoded_timeout;
4678 }
4679
4680 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4681                         struct usb_device *udev, enum usb3_link_state state)
4682 {
4683         struct xhci_hcd *xhci;
4684         u16 mel;
4685         int ret;
4686
4687         xhci = hcd_to_xhci(hcd);
4688         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4689                         !xhci->devs[udev->slot_id])
4690                 return 0;
4691
4692         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4693         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4694         if (ret)
4695                 return ret;
4696         return 0;
4697 }
4698 #else /* CONFIG_PM */
4699
4700 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4701                         struct usb_device *udev, enum usb3_link_state state)
4702 {
4703         return USB3_LPM_DISABLED;
4704 }
4705
4706 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4707                         struct usb_device *udev, enum usb3_link_state state)
4708 {
4709         return 0;
4710 }
4711 #endif  /* CONFIG_PM */
4712
4713 /*-------------------------------------------------------------------------*/
4714
4715 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4716  * internal data structures for the device.
4717  */
4718 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4719                         struct usb_tt *tt, gfp_t mem_flags)
4720 {
4721         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4722         struct xhci_virt_device *vdev;
4723         struct xhci_command *config_cmd;
4724         struct xhci_input_control_ctx *ctrl_ctx;
4725         struct xhci_slot_ctx *slot_ctx;
4726         unsigned long flags;
4727         unsigned think_time;
4728         int ret;
4729
4730         /* Ignore root hubs */
4731         if (!hdev->parent)
4732                 return 0;
4733
4734         vdev = xhci->devs[hdev->slot_id];
4735         if (!vdev) {
4736                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4737                 return -EINVAL;
4738         }
4739         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4740         if (!config_cmd) {
4741                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4742                 return -ENOMEM;
4743         }
4744         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4745         if (!ctrl_ctx) {
4746                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4747                                 __func__);
4748                 xhci_free_command(xhci, config_cmd);
4749                 return -ENOMEM;
4750         }
4751
4752         spin_lock_irqsave(&xhci->lock, flags);
4753         if (hdev->speed == USB_SPEED_HIGH &&
4754                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4755                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4756                 xhci_free_command(xhci, config_cmd);
4757                 spin_unlock_irqrestore(&xhci->lock, flags);
4758                 return -ENOMEM;
4759         }
4760
4761         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4762         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4763         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4764         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4765         if (tt->multi)
4766                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4767         if (xhci->hci_version > 0x95) {
4768                 xhci_dbg(xhci, "xHCI version %x needs hub "
4769                                 "TT think time and number of ports\n",
4770                                 (unsigned int) xhci->hci_version);
4771                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4772                 /* Set TT think time - convert from ns to FS bit times.
4773                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4774                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4775                  *
4776                  * xHCI 1.0: this field shall be 0 if the device is not a
4777                  * High-spped hub.
4778                  */
4779                 think_time = tt->think_time;
4780                 if (think_time != 0)
4781                         think_time = (think_time / 666) - 1;
4782                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4783                         slot_ctx->tt_info |=
4784                                 cpu_to_le32(TT_THINK_TIME(think_time));
4785         } else {
4786                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4787                                 "TT think time or number of ports\n",
4788                                 (unsigned int) xhci->hci_version);
4789         }
4790         slot_ctx->dev_state = 0;
4791         spin_unlock_irqrestore(&xhci->lock, flags);
4792
4793         xhci_dbg(xhci, "Set up %s for hub device.\n",
4794                         (xhci->hci_version > 0x95) ?
4795                         "configure endpoint" : "evaluate context");
4796         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4797         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4798
4799         /* Issue and wait for the configure endpoint or
4800          * evaluate context command.
4801          */
4802         if (xhci->hci_version > 0x95)
4803                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4804                                 false, false);
4805         else
4806                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4807                                 true, false);
4808
4809         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4810         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4811
4812         xhci_free_command(xhci, config_cmd);
4813         return ret;
4814 }
4815
4816 int xhci_get_frame(struct usb_hcd *hcd)
4817 {
4818         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4819         /* EHCI mods by the periodic size.  Why? */
4820         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4821 }
4822
4823 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4824 {
4825         struct xhci_hcd         *xhci;
4826         struct device           *dev = hcd->self.controller;
4827         int                     retval;
4828
4829         /* Accept arbitrarily long scatter-gather lists */
4830         hcd->self.sg_tablesize = ~0;
4831
4832         /* support to build packet from discontinuous buffers */
4833         hcd->self.no_sg_constraint = 1;
4834
4835         /* XHCI controllers don't stop the ep queue on short packets :| */
4836         hcd->self.no_stop_on_short = 1;
4837
4838         if (usb_hcd_is_primary_hcd(hcd)) {
4839                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4840                 if (!xhci)
4841                         return -ENOMEM;
4842                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4843                 xhci->main_hcd = hcd;
4844                 /* Mark the first roothub as being USB 2.0.
4845                  * The xHCI driver will register the USB 3.0 roothub.
4846                  */
4847                 hcd->speed = HCD_USB2;
4848                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4849                 /*
4850                  * USB 2.0 roothub under xHCI has an integrated TT,
4851                  * (rate matching hub) as opposed to having an OHCI/UHCI
4852                  * companion controller.
4853                  */
4854                 hcd->has_tt = 1;
4855         } else {
4856                 /* xHCI private pointer was set in xhci_pci_probe for the second
4857                  * registered roothub.
4858                  */
4859                 return 0;
4860         }
4861
4862         xhci->cap_regs = hcd->regs;
4863         xhci->op_regs = hcd->regs +
4864                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4865         xhci->run_regs = hcd->regs +
4866                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4867         /* Cache read-only capability registers */
4868         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4869         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4870         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4871         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4872         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4873         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4874         xhci_print_registers(xhci);
4875
4876         get_quirks(dev, xhci);
4877
4878         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4879          * success event after a short transfer. This quirk will ignore such
4880          * spurious event.
4881          */
4882         if (xhci->hci_version > 0x96)
4883                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4884
4885         /* Make sure the HC is halted. */
4886         retval = xhci_halt(xhci);
4887         if (retval)
4888                 goto error;
4889
4890         xhci_dbg(xhci, "Resetting HCD\n");
4891         /* Reset the internal HC memory state and registers. */
4892         retval = xhci_reset(xhci);
4893         if (retval)
4894                 goto error;
4895         xhci_dbg(xhci, "Reset complete\n");
4896
4897         /* Set dma_mask and coherent_dma_mask to 64-bits,
4898          * if xHC supports 64-bit addressing */
4899         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4900                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4901                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4902                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4903         }
4904
4905         xhci_dbg(xhci, "Calling HCD init\n");
4906         /* Initialize HCD and host controller data structures. */
4907         retval = xhci_init(hcd);
4908         if (retval)
4909                 goto error;
4910         xhci_dbg(xhci, "Called HCD init\n");
4911         return 0;
4912 error:
4913         kfree(xhci);
4914         return retval;
4915 }
4916
4917 MODULE_DESCRIPTION(DRIVER_DESC);
4918 MODULE_AUTHOR(DRIVER_AUTHOR);
4919 MODULE_LICENSE("GPL");
4920
4921 static int __init xhci_hcd_init(void)
4922 {
4923         int retval;
4924
4925         retval = xhci_register_pci();
4926         if (retval < 0) {
4927                 pr_debug("Problem registering PCI driver.\n");
4928                 return retval;
4929         }
4930         retval = xhci_register_plat();
4931         if (retval < 0) {
4932                 pr_debug("Problem registering platform driver.\n");
4933                 goto unreg_pci;
4934         }
4935         /*
4936          * Check the compiler generated sizes of structures that must be laid
4937          * out in specific ways for hardware access.
4938          */
4939         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4940         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4941         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4942         /* xhci_device_control has eight fields, and also
4943          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4944          */
4945         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4946         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4947         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4948         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4949         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4950         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4951         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4952         return 0;
4953 unreg_pci:
4954         xhci_unregister_pci();
4955         return retval;
4956 }
4957 module_init(xhci_hcd_init);
4958
4959 static void __exit xhci_hcd_cleanup(void)
4960 {
4961         xhci_unregister_pci();
4962         xhci_unregister_plat();
4963 }
4964 module_exit(xhci_hcd_cleanup);