Merge 3.11-rc6 into usb-next
[firefly-linux-kernel-4.4.55.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42
43 /* TODO: copied from ehci-hcd.c - can this be refactored? */
44 /*
45  * xhci_handshake - spin reading hc until handshake completes or fails
46  * @ptr: address of hc register to be read
47  * @mask: bits to look at in result of read
48  * @done: value of those bits when handshake succeeds
49  * @usec: timeout in microseconds
50  *
51  * Returns negative errno, or zero on success
52  *
53  * Success happens when the "mask" bits have the specified value (hardware
54  * handshake done).  There are two failure modes:  "usec" have passed (major
55  * hardware flakeout), or the register reads as all-ones (hardware removed).
56  */
57 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
58                       u32 mask, u32 done, int usec)
59 {
60         u32     result;
61
62         do {
63                 result = xhci_readl(xhci, ptr);
64                 if (result == ~(u32)0)          /* card removed */
65                         return -ENODEV;
66                 result &= mask;
67                 if (result == done)
68                         return 0;
69                 udelay(1);
70                 usec--;
71         } while (usec > 0);
72         return -ETIMEDOUT;
73 }
74
75 /*
76  * Disable interrupts and begin the xHCI halting process.
77  */
78 void xhci_quiesce(struct xhci_hcd *xhci)
79 {
80         u32 halted;
81         u32 cmd;
82         u32 mask;
83
84         mask = ~(XHCI_IRQS);
85         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
86         if (!halted)
87                 mask &= ~CMD_RUN;
88
89         cmd = xhci_readl(xhci, &xhci->op_regs->command);
90         cmd &= mask;
91         xhci_writel(xhci, cmd, &xhci->op_regs->command);
92 }
93
94 /*
95  * Force HC into halt state.
96  *
97  * Disable any IRQs and clear the run/stop bit.
98  * HC will complete any current and actively pipelined transactions, and
99  * should halt within 16 ms of the run/stop bit being cleared.
100  * Read HC Halted bit in the status register to see when the HC is finished.
101  */
102 int xhci_halt(struct xhci_hcd *xhci)
103 {
104         int ret;
105         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
106         xhci_quiesce(xhci);
107
108         ret = xhci_handshake(xhci, &xhci->op_regs->status,
109                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
110         if (!ret) {
111                 xhci->xhc_state |= XHCI_STATE_HALTED;
112                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
113         } else
114                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
115                                 XHCI_MAX_HALT_USEC);
116         return ret;
117 }
118
119 /*
120  * Set the run bit and wait for the host to be running.
121  */
122 static int xhci_start(struct xhci_hcd *xhci)
123 {
124         u32 temp;
125         int ret;
126
127         temp = xhci_readl(xhci, &xhci->op_regs->command);
128         temp |= (CMD_RUN);
129         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
130                         temp);
131         xhci_writel(xhci, temp, &xhci->op_regs->command);
132
133         /*
134          * Wait for the HCHalted Status bit to be 0 to indicate the host is
135          * running.
136          */
137         ret = xhci_handshake(xhci, &xhci->op_regs->status,
138                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
139         if (ret == -ETIMEDOUT)
140                 xhci_err(xhci, "Host took too long to start, "
141                                 "waited %u microseconds.\n",
142                                 XHCI_MAX_HALT_USEC);
143         if (!ret)
144                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
145         return ret;
146 }
147
148 /*
149  * Reset a halted HC.
150  *
151  * This resets pipelines, timers, counters, state machines, etc.
152  * Transactions will be terminated immediately, and operational registers
153  * will be set to their defaults.
154  */
155 int xhci_reset(struct xhci_hcd *xhci)
156 {
157         u32 command;
158         u32 state;
159         int ret, i;
160
161         state = xhci_readl(xhci, &xhci->op_regs->status);
162         if ((state & STS_HALT) == 0) {
163                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
164                 return 0;
165         }
166
167         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
168         command = xhci_readl(xhci, &xhci->op_regs->command);
169         command |= CMD_RESET;
170         xhci_writel(xhci, command, &xhci->op_regs->command);
171
172         ret = xhci_handshake(xhci, &xhci->op_regs->command,
173                         CMD_RESET, 0, 10 * 1000 * 1000);
174         if (ret)
175                 return ret;
176
177         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
178                          "Wait for controller to be ready for doorbell rings");
179         /*
180          * xHCI cannot write to any doorbells or operational registers other
181          * than status until the "Controller Not Ready" flag is cleared.
182          */
183         ret = xhci_handshake(xhci, &xhci->op_regs->status,
184                         STS_CNR, 0, 10 * 1000 * 1000);
185
186         for (i = 0; i < 2; ++i) {
187                 xhci->bus_state[i].port_c_suspend = 0;
188                 xhci->bus_state[i].suspended_ports = 0;
189                 xhci->bus_state[i].resuming_ports = 0;
190         }
191
192         return ret;
193 }
194
195 #ifdef CONFIG_PCI
196 static int xhci_free_msi(struct xhci_hcd *xhci)
197 {
198         int i;
199
200         if (!xhci->msix_entries)
201                 return -EINVAL;
202
203         for (i = 0; i < xhci->msix_count; i++)
204                 if (xhci->msix_entries[i].vector)
205                         free_irq(xhci->msix_entries[i].vector,
206                                         xhci_to_hcd(xhci));
207         return 0;
208 }
209
210 /*
211  * Set up MSI
212  */
213 static int xhci_setup_msi(struct xhci_hcd *xhci)
214 {
215         int ret;
216         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
217
218         ret = pci_enable_msi(pdev);
219         if (ret) {
220                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
221                                 "failed to allocate MSI entry");
222                 return ret;
223         }
224
225         ret = request_irq(pdev->irq, xhci_msi_irq,
226                                 0, "xhci_hcd", xhci_to_hcd(xhci));
227         if (ret) {
228                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
229                                 "disable MSI interrupt");
230                 pci_disable_msi(pdev);
231         }
232
233         return ret;
234 }
235
236 /*
237  * Free IRQs
238  * free all IRQs request
239  */
240 static void xhci_free_irq(struct xhci_hcd *xhci)
241 {
242         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
243         int ret;
244
245         /* return if using legacy interrupt */
246         if (xhci_to_hcd(xhci)->irq > 0)
247                 return;
248
249         ret = xhci_free_msi(xhci);
250         if (!ret)
251                 return;
252         if (pdev->irq > 0)
253                 free_irq(pdev->irq, xhci_to_hcd(xhci));
254
255         return;
256 }
257
258 /*
259  * Set up MSI-X
260  */
261 static int xhci_setup_msix(struct xhci_hcd *xhci)
262 {
263         int i, ret = 0;
264         struct usb_hcd *hcd = xhci_to_hcd(xhci);
265         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
266
267         /*
268          * calculate number of msi-x vectors supported.
269          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
270          *   with max number of interrupters based on the xhci HCSPARAMS1.
271          * - num_online_cpus: maximum msi-x vectors per CPUs core.
272          *   Add additional 1 vector to ensure always available interrupt.
273          */
274         xhci->msix_count = min(num_online_cpus() + 1,
275                                 HCS_MAX_INTRS(xhci->hcs_params1));
276
277         xhci->msix_entries =
278                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
279                                 GFP_KERNEL);
280         if (!xhci->msix_entries) {
281                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
282                 return -ENOMEM;
283         }
284
285         for (i = 0; i < xhci->msix_count; i++) {
286                 xhci->msix_entries[i].entry = i;
287                 xhci->msix_entries[i].vector = 0;
288         }
289
290         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
291         if (ret) {
292                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
293                                 "Failed to enable MSI-X");
294                 goto free_entries;
295         }
296
297         for (i = 0; i < xhci->msix_count; i++) {
298                 ret = request_irq(xhci->msix_entries[i].vector,
299                                 xhci_msi_irq,
300                                 0, "xhci_hcd", xhci_to_hcd(xhci));
301                 if (ret)
302                         goto disable_msix;
303         }
304
305         hcd->msix_enabled = 1;
306         return ret;
307
308 disable_msix:
309         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
310         xhci_free_irq(xhci);
311         pci_disable_msix(pdev);
312 free_entries:
313         kfree(xhci->msix_entries);
314         xhci->msix_entries = NULL;
315         return ret;
316 }
317
318 /* Free any IRQs and disable MSI-X */
319 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
320 {
321         struct usb_hcd *hcd = xhci_to_hcd(xhci);
322         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
323
324         xhci_free_irq(xhci);
325
326         if (xhci->msix_entries) {
327                 pci_disable_msix(pdev);
328                 kfree(xhci->msix_entries);
329                 xhci->msix_entries = NULL;
330         } else {
331                 pci_disable_msi(pdev);
332         }
333
334         hcd->msix_enabled = 0;
335         return;
336 }
337
338 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
339 {
340         int i;
341
342         if (xhci->msix_entries) {
343                 for (i = 0; i < xhci->msix_count; i++)
344                         synchronize_irq(xhci->msix_entries[i].vector);
345         }
346 }
347
348 static int xhci_try_enable_msi(struct usb_hcd *hcd)
349 {
350         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
351         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
352         int ret;
353
354         /*
355          * Some Fresco Logic host controllers advertise MSI, but fail to
356          * generate interrupts.  Don't even try to enable MSI.
357          */
358         if (xhci->quirks & XHCI_BROKEN_MSI)
359                 goto legacy_irq;
360
361         /* unregister the legacy interrupt */
362         if (hcd->irq)
363                 free_irq(hcd->irq, hcd);
364         hcd->irq = 0;
365
366         ret = xhci_setup_msix(xhci);
367         if (ret)
368                 /* fall back to msi*/
369                 ret = xhci_setup_msi(xhci);
370
371         if (!ret)
372                 /* hcd->irq is 0, we have MSI */
373                 return 0;
374
375         if (!pdev->irq) {
376                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
377                 return -EINVAL;
378         }
379
380  legacy_irq:
381         /* fall back to legacy interrupt*/
382         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
383                         hcd->irq_descr, hcd);
384         if (ret) {
385                 xhci_err(xhci, "request interrupt %d failed\n",
386                                 pdev->irq);
387                 return ret;
388         }
389         hcd->irq = pdev->irq;
390         return 0;
391 }
392
393 #else
394
395 static int xhci_try_enable_msi(struct usb_hcd *hcd)
396 {
397         return 0;
398 }
399
400 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
401 {
402 }
403
404 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
405 {
406 }
407
408 #endif
409
410 static void compliance_mode_recovery(unsigned long arg)
411 {
412         struct xhci_hcd *xhci;
413         struct usb_hcd *hcd;
414         u32 temp;
415         int i;
416
417         xhci = (struct xhci_hcd *)arg;
418
419         for (i = 0; i < xhci->num_usb3_ports; i++) {
420                 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
421                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
422                         /*
423                          * Compliance Mode Detected. Letting USB Core
424                          * handle the Warm Reset
425                          */
426                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
427                                         "Compliance mode detected->port %d",
428                                         i + 1);
429                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
430                                         "Attempting compliance mode recovery");
431                         hcd = xhci->shared_hcd;
432
433                         if (hcd->state == HC_STATE_SUSPENDED)
434                                 usb_hcd_resume_root_hub(hcd);
435
436                         usb_hcd_poll_rh_status(hcd);
437                 }
438         }
439
440         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
441                 mod_timer(&xhci->comp_mode_recovery_timer,
442                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
443 }
444
445 /*
446  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
447  * that causes ports behind that hardware to enter compliance mode sometimes.
448  * The quirk creates a timer that polls every 2 seconds the link state of
449  * each host controller's port and recovers it by issuing a Warm reset
450  * if Compliance mode is detected, otherwise the port will become "dead" (no
451  * device connections or disconnections will be detected anymore). Becasue no
452  * status event is generated when entering compliance mode (per xhci spec),
453  * this quirk is needed on systems that have the failing hardware installed.
454  */
455 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
456 {
457         xhci->port_status_u0 = 0;
458         init_timer(&xhci->comp_mode_recovery_timer);
459
460         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
461         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
462         xhci->comp_mode_recovery_timer.expires = jiffies +
463                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
464
465         set_timer_slack(&xhci->comp_mode_recovery_timer,
466                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
467         add_timer(&xhci->comp_mode_recovery_timer);
468         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
469                         "Compliance mode recovery timer initialized");
470 }
471
472 /*
473  * This function identifies the systems that have installed the SN65LVPE502CP
474  * USB3.0 re-driver and that need the Compliance Mode Quirk.
475  * Systems:
476  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
477  */
478 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
479 {
480         const char *dmi_product_name, *dmi_sys_vendor;
481
482         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
483         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
484         if (!dmi_product_name || !dmi_sys_vendor)
485                 return false;
486
487         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
488                 return false;
489
490         if (strstr(dmi_product_name, "Z420") ||
491                         strstr(dmi_product_name, "Z620") ||
492                         strstr(dmi_product_name, "Z820") ||
493                         strstr(dmi_product_name, "Z1 Workstation"))
494                 return true;
495
496         return false;
497 }
498
499 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
500 {
501         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
502 }
503
504
505 /*
506  * Initialize memory for HCD and xHC (one-time init).
507  *
508  * Program the PAGESIZE register, initialize the device context array, create
509  * device contexts (?), set up a command ring segment (or two?), create event
510  * ring (one for now).
511  */
512 int xhci_init(struct usb_hcd *hcd)
513 {
514         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
515         int retval = 0;
516
517         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
518         spin_lock_init(&xhci->lock);
519         if (xhci->hci_version == 0x95 && link_quirk) {
520                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
521                                 "QUIRK: Not clearing Link TRB chain bits.");
522                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
523         } else {
524                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
525                                 "xHCI doesn't need link TRB QUIRK");
526         }
527         retval = xhci_mem_init(xhci, GFP_KERNEL);
528         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
529
530         /* Initializing Compliance Mode Recovery Data If Needed */
531         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
532                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
533                 compliance_mode_recovery_timer_init(xhci);
534         }
535
536         return retval;
537 }
538
539 /*-------------------------------------------------------------------------*/
540
541
542 static int xhci_run_finished(struct xhci_hcd *xhci)
543 {
544         if (xhci_start(xhci)) {
545                 xhci_halt(xhci);
546                 return -ENODEV;
547         }
548         xhci->shared_hcd->state = HC_STATE_RUNNING;
549         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
550
551         if (xhci->quirks & XHCI_NEC_HOST)
552                 xhci_ring_cmd_db(xhci);
553
554         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
555                         "Finished xhci_run for USB3 roothub");
556         return 0;
557 }
558
559 /*
560  * Start the HC after it was halted.
561  *
562  * This function is called by the USB core when the HC driver is added.
563  * Its opposite is xhci_stop().
564  *
565  * xhci_init() must be called once before this function can be called.
566  * Reset the HC, enable device slot contexts, program DCBAAP, and
567  * set command ring pointer and event ring pointer.
568  *
569  * Setup MSI-X vectors and enable interrupts.
570  */
571 int xhci_run(struct usb_hcd *hcd)
572 {
573         u32 temp;
574         u64 temp_64;
575         int ret;
576         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
577
578         /* Start the xHCI host controller running only after the USB 2.0 roothub
579          * is setup.
580          */
581
582         hcd->uses_new_polling = 1;
583         if (!usb_hcd_is_primary_hcd(hcd))
584                 return xhci_run_finished(xhci);
585
586         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
587
588         ret = xhci_try_enable_msi(hcd);
589         if (ret)
590                 return ret;
591
592         xhci_dbg(xhci, "Command ring memory map follows:\n");
593         xhci_debug_ring(xhci, xhci->cmd_ring);
594         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
595         xhci_dbg_cmd_ptrs(xhci);
596
597         xhci_dbg(xhci, "ERST memory map follows:\n");
598         xhci_dbg_erst(xhci, &xhci->erst);
599         xhci_dbg(xhci, "Event ring:\n");
600         xhci_debug_ring(xhci, xhci->event_ring);
601         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
602         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
603         temp_64 &= ~ERST_PTR_MASK;
604         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
605                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
606
607         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
608                         "// Set the interrupt modulation register");
609         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
610         temp &= ~ER_IRQ_INTERVAL_MASK;
611         temp |= (u32) 160;
612         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
613
614         /* Set the HCD state before we enable the irqs */
615         temp = xhci_readl(xhci, &xhci->op_regs->command);
616         temp |= (CMD_EIE);
617         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618                         "// Enable interrupts, cmd = 0x%x.", temp);
619         xhci_writel(xhci, temp, &xhci->op_regs->command);
620
621         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
622         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
623                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
624                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
625         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
626                         &xhci->ir_set->irq_pending);
627         xhci_print_ir_set(xhci, 0);
628
629         if (xhci->quirks & XHCI_NEC_HOST)
630                 xhci_queue_vendor_command(xhci, 0, 0, 0,
631                                 TRB_TYPE(TRB_NEC_GET_FW));
632
633         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634                         "Finished xhci_run for USB2 roothub");
635         return 0;
636 }
637
638 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
639 {
640         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
641
642         spin_lock_irq(&xhci->lock);
643         xhci_halt(xhci);
644
645         /* The shared_hcd is going to be deallocated shortly (the USB core only
646          * calls this function when allocation fails in usb_add_hcd(), or
647          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
648          */
649         xhci->shared_hcd = NULL;
650         spin_unlock_irq(&xhci->lock);
651 }
652
653 /*
654  * Stop xHCI driver.
655  *
656  * This function is called by the USB core when the HC driver is removed.
657  * Its opposite is xhci_run().
658  *
659  * Disable device contexts, disable IRQs, and quiesce the HC.
660  * Reset the HC, finish any completed transactions, and cleanup memory.
661  */
662 void xhci_stop(struct usb_hcd *hcd)
663 {
664         u32 temp;
665         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
666
667         if (!usb_hcd_is_primary_hcd(hcd)) {
668                 xhci_only_stop_hcd(xhci->shared_hcd);
669                 return;
670         }
671
672         spin_lock_irq(&xhci->lock);
673         /* Make sure the xHC is halted for a USB3 roothub
674          * (xhci_stop() could be called as part of failed init).
675          */
676         xhci_halt(xhci);
677         xhci_reset(xhci);
678         spin_unlock_irq(&xhci->lock);
679
680         xhci_cleanup_msix(xhci);
681
682         /* Deleting Compliance Mode Recovery Timer */
683         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
684                         (!(xhci_all_ports_seen_u0(xhci)))) {
685                 del_timer_sync(&xhci->comp_mode_recovery_timer);
686                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
687                                 "%s: compliance mode recovery timer deleted",
688                                 __func__);
689         }
690
691         if (xhci->quirks & XHCI_AMD_PLL_FIX)
692                 usb_amd_dev_put();
693
694         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
695                         "// Disabling event ring interrupts");
696         temp = xhci_readl(xhci, &xhci->op_regs->status);
697         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
698         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
699         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
700                         &xhci->ir_set->irq_pending);
701         xhci_print_ir_set(xhci, 0);
702
703         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
704         xhci_mem_cleanup(xhci);
705         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
706                         "xhci_stop completed - status = %x",
707                         xhci_readl(xhci, &xhci->op_regs->status));
708 }
709
710 /*
711  * Shutdown HC (not bus-specific)
712  *
713  * This is called when the machine is rebooting or halting.  We assume that the
714  * machine will be powered off, and the HC's internal state will be reset.
715  * Don't bother to free memory.
716  *
717  * This will only ever be called with the main usb_hcd (the USB3 roothub).
718  */
719 void xhci_shutdown(struct usb_hcd *hcd)
720 {
721         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
722
723         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
724                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
725
726         spin_lock_irq(&xhci->lock);
727         xhci_halt(xhci);
728         spin_unlock_irq(&xhci->lock);
729
730         xhci_cleanup_msix(xhci);
731
732         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
733                         "xhci_shutdown completed - status = %x",
734                         xhci_readl(xhci, &xhci->op_regs->status));
735 }
736
737 #ifdef CONFIG_PM
738 static void xhci_save_registers(struct xhci_hcd *xhci)
739 {
740         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
741         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
742         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
743         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
744         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
745         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
746         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
747         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
748         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
749 }
750
751 static void xhci_restore_registers(struct xhci_hcd *xhci)
752 {
753         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
754         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
755         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
756         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
757         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
758         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
759         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
760         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
761         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
762 }
763
764 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
765 {
766         u64     val_64;
767
768         /* step 2: initialize command ring buffer */
769         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
770         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
771                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
772                                       xhci->cmd_ring->dequeue) &
773                  (u64) ~CMD_RING_RSVD_BITS) |
774                 xhci->cmd_ring->cycle_state;
775         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
776                         "// Setting command ring address to 0x%llx",
777                         (long unsigned long) val_64);
778         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
779 }
780
781 /*
782  * The whole command ring must be cleared to zero when we suspend the host.
783  *
784  * The host doesn't save the command ring pointer in the suspend well, so we
785  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
786  * aligned, because of the reserved bits in the command ring dequeue pointer
787  * register.  Therefore, we can't just set the dequeue pointer back in the
788  * middle of the ring (TRBs are 16-byte aligned).
789  */
790 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
791 {
792         struct xhci_ring *ring;
793         struct xhci_segment *seg;
794
795         ring = xhci->cmd_ring;
796         seg = ring->deq_seg;
797         do {
798                 memset(seg->trbs, 0,
799                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
800                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
801                         cpu_to_le32(~TRB_CYCLE);
802                 seg = seg->next;
803         } while (seg != ring->deq_seg);
804
805         /* Reset the software enqueue and dequeue pointers */
806         ring->deq_seg = ring->first_seg;
807         ring->dequeue = ring->first_seg->trbs;
808         ring->enq_seg = ring->deq_seg;
809         ring->enqueue = ring->dequeue;
810
811         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
812         /*
813          * Ring is now zeroed, so the HW should look for change of ownership
814          * when the cycle bit is set to 1.
815          */
816         ring->cycle_state = 1;
817
818         /*
819          * Reset the hardware dequeue pointer.
820          * Yes, this will need to be re-written after resume, but we're paranoid
821          * and want to make sure the hardware doesn't access bogus memory
822          * because, say, the BIOS or an SMI started the host without changing
823          * the command ring pointers.
824          */
825         xhci_set_cmd_ring_deq(xhci);
826 }
827
828 /*
829  * Stop HC (not bus-specific)
830  *
831  * This is called when the machine transition into S3/S4 mode.
832  *
833  */
834 int xhci_suspend(struct xhci_hcd *xhci)
835 {
836         int                     rc = 0;
837         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
838         u32                     command;
839
840         if (hcd->state != HC_STATE_SUSPENDED ||
841                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
842                 return -EINVAL;
843
844         /* Don't poll the roothubs on bus suspend. */
845         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
846         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
847         del_timer_sync(&hcd->rh_timer);
848
849         spin_lock_irq(&xhci->lock);
850         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
851         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
852         /* step 1: stop endpoint */
853         /* skipped assuming that port suspend has done */
854
855         /* step 2: clear Run/Stop bit */
856         command = xhci_readl(xhci, &xhci->op_regs->command);
857         command &= ~CMD_RUN;
858         xhci_writel(xhci, command, &xhci->op_regs->command);
859         if (xhci_handshake(xhci, &xhci->op_regs->status,
860                       STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
861                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
862                 spin_unlock_irq(&xhci->lock);
863                 return -ETIMEDOUT;
864         }
865         xhci_clear_command_ring(xhci);
866
867         /* step 3: save registers */
868         xhci_save_registers(xhci);
869
870         /* step 4: set CSS flag */
871         command = xhci_readl(xhci, &xhci->op_regs->command);
872         command |= CMD_CSS;
873         xhci_writel(xhci, command, &xhci->op_regs->command);
874         if (xhci_handshake(xhci, &xhci->op_regs->status,
875                                 STS_SAVE, 0, 10 * 1000)) {
876                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
877                 spin_unlock_irq(&xhci->lock);
878                 return -ETIMEDOUT;
879         }
880         spin_unlock_irq(&xhci->lock);
881
882         /*
883          * Deleting Compliance Mode Recovery Timer because the xHCI Host
884          * is about to be suspended.
885          */
886         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
887                         (!(xhci_all_ports_seen_u0(xhci)))) {
888                 del_timer_sync(&xhci->comp_mode_recovery_timer);
889                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
890                                 "%s: compliance mode recovery timer deleted",
891                                 __func__);
892         }
893
894         /* step 5: remove core well power */
895         /* synchronize irq when using MSI-X */
896         xhci_msix_sync_irqs(xhci);
897
898         return rc;
899 }
900
901 /*
902  * start xHC (not bus-specific)
903  *
904  * This is called when the machine transition from S3/S4 mode.
905  *
906  */
907 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
908 {
909         u32                     command, temp = 0;
910         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
911         struct usb_hcd          *secondary_hcd;
912         int                     retval = 0;
913         bool                    comp_timer_running = false;
914
915         /* Wait a bit if either of the roothubs need to settle from the
916          * transition into bus suspend.
917          */
918         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
919                         time_before(jiffies,
920                                 xhci->bus_state[1].next_statechange))
921                 msleep(100);
922
923         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
924         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
925
926         spin_lock_irq(&xhci->lock);
927         if (xhci->quirks & XHCI_RESET_ON_RESUME)
928                 hibernated = true;
929
930         if (!hibernated) {
931                 /* step 1: restore register */
932                 xhci_restore_registers(xhci);
933                 /* step 2: initialize command ring buffer */
934                 xhci_set_cmd_ring_deq(xhci);
935                 /* step 3: restore state and start state*/
936                 /* step 3: set CRS flag */
937                 command = xhci_readl(xhci, &xhci->op_regs->command);
938                 command |= CMD_CRS;
939                 xhci_writel(xhci, command, &xhci->op_regs->command);
940                 if (xhci_handshake(xhci, &xhci->op_regs->status,
941                               STS_RESTORE, 0, 10 * 1000)) {
942                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
943                         spin_unlock_irq(&xhci->lock);
944                         return -ETIMEDOUT;
945                 }
946                 temp = xhci_readl(xhci, &xhci->op_regs->status);
947         }
948
949         /* If restore operation fails, re-initialize the HC during resume */
950         if ((temp & STS_SRE) || hibernated) {
951
952                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
953                                 !(xhci_all_ports_seen_u0(xhci))) {
954                         del_timer_sync(&xhci->comp_mode_recovery_timer);
955                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
956                                 "Compliance Mode Recovery Timer deleted!");
957                 }
958
959                 /* Let the USB core know _both_ roothubs lost power. */
960                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
961                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
962
963                 xhci_dbg(xhci, "Stop HCD\n");
964                 xhci_halt(xhci);
965                 xhci_reset(xhci);
966                 spin_unlock_irq(&xhci->lock);
967                 xhci_cleanup_msix(xhci);
968
969                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
970                 temp = xhci_readl(xhci, &xhci->op_regs->status);
971                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
972                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
973                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
974                                 &xhci->ir_set->irq_pending);
975                 xhci_print_ir_set(xhci, 0);
976
977                 xhci_dbg(xhci, "cleaning up memory\n");
978                 xhci_mem_cleanup(xhci);
979                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
980                             xhci_readl(xhci, &xhci->op_regs->status));
981
982                 /* USB core calls the PCI reinit and start functions twice:
983                  * first with the primary HCD, and then with the secondary HCD.
984                  * If we don't do the same, the host will never be started.
985                  */
986                 if (!usb_hcd_is_primary_hcd(hcd))
987                         secondary_hcd = hcd;
988                 else
989                         secondary_hcd = xhci->shared_hcd;
990
991                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
992                 retval = xhci_init(hcd->primary_hcd);
993                 if (retval)
994                         return retval;
995                 comp_timer_running = true;
996
997                 xhci_dbg(xhci, "Start the primary HCD\n");
998                 retval = xhci_run(hcd->primary_hcd);
999                 if (!retval) {
1000                         xhci_dbg(xhci, "Start the secondary HCD\n");
1001                         retval = xhci_run(secondary_hcd);
1002                 }
1003                 hcd->state = HC_STATE_SUSPENDED;
1004                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1005                 goto done;
1006         }
1007
1008         /* step 4: set Run/Stop bit */
1009         command = xhci_readl(xhci, &xhci->op_regs->command);
1010         command |= CMD_RUN;
1011         xhci_writel(xhci, command, &xhci->op_regs->command);
1012         xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1013                   0, 250 * 1000);
1014
1015         /* step 5: walk topology and initialize portsc,
1016          * portpmsc and portli
1017          */
1018         /* this is done in bus_resume */
1019
1020         /* step 6: restart each of the previously
1021          * Running endpoints by ringing their doorbells
1022          */
1023
1024         spin_unlock_irq(&xhci->lock);
1025
1026  done:
1027         if (retval == 0) {
1028                 usb_hcd_resume_root_hub(hcd);
1029                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1030         }
1031
1032         /*
1033          * If system is subject to the Quirk, Compliance Mode Timer needs to
1034          * be re-initialized Always after a system resume. Ports are subject
1035          * to suffer the Compliance Mode issue again. It doesn't matter if
1036          * ports have entered previously to U0 before system's suspension.
1037          */
1038         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1039                 compliance_mode_recovery_timer_init(xhci);
1040
1041         /* Re-enable port polling. */
1042         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1043         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1044         usb_hcd_poll_rh_status(hcd);
1045
1046         return retval;
1047 }
1048 #endif  /* CONFIG_PM */
1049
1050 /*-------------------------------------------------------------------------*/
1051
1052 /**
1053  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1054  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1055  * value to right shift 1 for the bitmask.
1056  *
1057  * Index  = (epnum * 2) + direction - 1,
1058  * where direction = 0 for OUT, 1 for IN.
1059  * For control endpoints, the IN index is used (OUT index is unused), so
1060  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1061  */
1062 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1063 {
1064         unsigned int index;
1065         if (usb_endpoint_xfer_control(desc))
1066                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1067         else
1068                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1069                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1070         return index;
1071 }
1072
1073 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1074  * address from the XHCI endpoint index.
1075  */
1076 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1077 {
1078         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1079         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1080         return direction | number;
1081 }
1082
1083 /* Find the flag for this endpoint (for use in the control context).  Use the
1084  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1085  * bit 1, etc.
1086  */
1087 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1088 {
1089         return 1 << (xhci_get_endpoint_index(desc) + 1);
1090 }
1091
1092 /* Find the flag for this endpoint (for use in the control context).  Use the
1093  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1094  * bit 1, etc.
1095  */
1096 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1097 {
1098         return 1 << (ep_index + 1);
1099 }
1100
1101 /* Compute the last valid endpoint context index.  Basically, this is the
1102  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1103  * we find the most significant bit set in the added contexts flags.
1104  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1105  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1106  */
1107 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1108 {
1109         return fls(added_ctxs) - 1;
1110 }
1111
1112 /* Returns 1 if the arguments are OK;
1113  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1114  */
1115 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1116                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1117                 const char *func) {
1118         struct xhci_hcd *xhci;
1119         struct xhci_virt_device *virt_dev;
1120
1121         if (!hcd || (check_ep && !ep) || !udev) {
1122                 pr_debug("xHCI %s called with invalid args\n", func);
1123                 return -EINVAL;
1124         }
1125         if (!udev->parent) {
1126                 pr_debug("xHCI %s called for root hub\n", func);
1127                 return 0;
1128         }
1129
1130         xhci = hcd_to_xhci(hcd);
1131         if (check_virt_dev) {
1132                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1133                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1134                                         func);
1135                         return -EINVAL;
1136                 }
1137
1138                 virt_dev = xhci->devs[udev->slot_id];
1139                 if (virt_dev->udev != udev) {
1140                         xhci_dbg(xhci, "xHCI %s called with udev and "
1141                                           "virt_dev does not match\n", func);
1142                         return -EINVAL;
1143                 }
1144         }
1145
1146         if (xhci->xhc_state & XHCI_STATE_HALTED)
1147                 return -ENODEV;
1148
1149         return 1;
1150 }
1151
1152 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1153                 struct usb_device *udev, struct xhci_command *command,
1154                 bool ctx_change, bool must_succeed);
1155
1156 /*
1157  * Full speed devices may have a max packet size greater than 8 bytes, but the
1158  * USB core doesn't know that until it reads the first 8 bytes of the
1159  * descriptor.  If the usb_device's max packet size changes after that point,
1160  * we need to issue an evaluate context command and wait on it.
1161  */
1162 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1163                 unsigned int ep_index, struct urb *urb)
1164 {
1165         struct xhci_container_ctx *in_ctx;
1166         struct xhci_container_ctx *out_ctx;
1167         struct xhci_input_control_ctx *ctrl_ctx;
1168         struct xhci_ep_ctx *ep_ctx;
1169         int max_packet_size;
1170         int hw_max_packet_size;
1171         int ret = 0;
1172
1173         out_ctx = xhci->devs[slot_id]->out_ctx;
1174         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1175         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1176         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1177         if (hw_max_packet_size != max_packet_size) {
1178                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1179                                 "Max Packet Size for ep 0 changed.");
1180                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1181                                 "Max packet size in usb_device = %d",
1182                                 max_packet_size);
1183                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1184                                 "Max packet size in xHCI HW = %d",
1185                                 hw_max_packet_size);
1186                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1187                                 "Issuing evaluate context command.");
1188
1189                 /* Set up the input context flags for the command */
1190                 /* FIXME: This won't work if a non-default control endpoint
1191                  * changes max packet sizes.
1192                  */
1193                 in_ctx = xhci->devs[slot_id]->in_ctx;
1194                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1195                 if (!ctrl_ctx) {
1196                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1197                                         __func__);
1198                         return -ENOMEM;
1199                 }
1200                 /* Set up the modified control endpoint 0 */
1201                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1202                                 xhci->devs[slot_id]->out_ctx, ep_index);
1203
1204                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1205                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1206                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1207
1208                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1209                 ctrl_ctx->drop_flags = 0;
1210
1211                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1212                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1213                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1214                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1215
1216                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1217                                 true, false);
1218
1219                 /* Clean up the input context for later use by bandwidth
1220                  * functions.
1221                  */
1222                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1223         }
1224         return ret;
1225 }
1226
1227 /*
1228  * non-error returns are a promise to giveback() the urb later
1229  * we drop ownership so next owner (or urb unlink) can get it
1230  */
1231 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1232 {
1233         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1234         struct xhci_td *buffer;
1235         unsigned long flags;
1236         int ret = 0;
1237         unsigned int slot_id, ep_index;
1238         struct urb_priv *urb_priv;
1239         int size, i;
1240
1241         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1242                                         true, true, __func__) <= 0)
1243                 return -EINVAL;
1244
1245         slot_id = urb->dev->slot_id;
1246         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1247
1248         if (!HCD_HW_ACCESSIBLE(hcd)) {
1249                 if (!in_interrupt())
1250                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1251                 ret = -ESHUTDOWN;
1252                 goto exit;
1253         }
1254
1255         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1256                 size = urb->number_of_packets;
1257         else
1258                 size = 1;
1259
1260         urb_priv = kzalloc(sizeof(struct urb_priv) +
1261                                   size * sizeof(struct xhci_td *), mem_flags);
1262         if (!urb_priv)
1263                 return -ENOMEM;
1264
1265         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1266         if (!buffer) {
1267                 kfree(urb_priv);
1268                 return -ENOMEM;
1269         }
1270
1271         for (i = 0; i < size; i++) {
1272                 urb_priv->td[i] = buffer;
1273                 buffer++;
1274         }
1275
1276         urb_priv->length = size;
1277         urb_priv->td_cnt = 0;
1278         urb->hcpriv = urb_priv;
1279
1280         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1281                 /* Check to see if the max packet size for the default control
1282                  * endpoint changed during FS device enumeration
1283                  */
1284                 if (urb->dev->speed == USB_SPEED_FULL) {
1285                         ret = xhci_check_maxpacket(xhci, slot_id,
1286                                         ep_index, urb);
1287                         if (ret < 0) {
1288                                 xhci_urb_free_priv(xhci, urb_priv);
1289                                 urb->hcpriv = NULL;
1290                                 return ret;
1291                         }
1292                 }
1293
1294                 /* We have a spinlock and interrupts disabled, so we must pass
1295                  * atomic context to this function, which may allocate memory.
1296                  */
1297                 spin_lock_irqsave(&xhci->lock, flags);
1298                 if (xhci->xhc_state & XHCI_STATE_DYING)
1299                         goto dying;
1300                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1301                                 slot_id, ep_index);
1302                 if (ret)
1303                         goto free_priv;
1304                 spin_unlock_irqrestore(&xhci->lock, flags);
1305         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1306                 spin_lock_irqsave(&xhci->lock, flags);
1307                 if (xhci->xhc_state & XHCI_STATE_DYING)
1308                         goto dying;
1309                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1310                                 EP_GETTING_STREAMS) {
1311                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1312                                         "is transitioning to using streams.\n");
1313                         ret = -EINVAL;
1314                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1315                                 EP_GETTING_NO_STREAMS) {
1316                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1317                                         "is transitioning to "
1318                                         "not having streams.\n");
1319                         ret = -EINVAL;
1320                 } else {
1321                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1322                                         slot_id, ep_index);
1323                 }
1324                 if (ret)
1325                         goto free_priv;
1326                 spin_unlock_irqrestore(&xhci->lock, flags);
1327         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1328                 spin_lock_irqsave(&xhci->lock, flags);
1329                 if (xhci->xhc_state & XHCI_STATE_DYING)
1330                         goto dying;
1331                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1332                                 slot_id, ep_index);
1333                 if (ret)
1334                         goto free_priv;
1335                 spin_unlock_irqrestore(&xhci->lock, flags);
1336         } else {
1337                 spin_lock_irqsave(&xhci->lock, flags);
1338                 if (xhci->xhc_state & XHCI_STATE_DYING)
1339                         goto dying;
1340                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1341                                 slot_id, ep_index);
1342                 if (ret)
1343                         goto free_priv;
1344                 spin_unlock_irqrestore(&xhci->lock, flags);
1345         }
1346 exit:
1347         return ret;
1348 dying:
1349         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1350                         "non-responsive xHCI host.\n",
1351                         urb->ep->desc.bEndpointAddress, urb);
1352         ret = -ESHUTDOWN;
1353 free_priv:
1354         xhci_urb_free_priv(xhci, urb_priv);
1355         urb->hcpriv = NULL;
1356         spin_unlock_irqrestore(&xhci->lock, flags);
1357         return ret;
1358 }
1359
1360 /* Get the right ring for the given URB.
1361  * If the endpoint supports streams, boundary check the URB's stream ID.
1362  * If the endpoint doesn't support streams, return the singular endpoint ring.
1363  */
1364 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1365                 struct urb *urb)
1366 {
1367         unsigned int slot_id;
1368         unsigned int ep_index;
1369         unsigned int stream_id;
1370         struct xhci_virt_ep *ep;
1371
1372         slot_id = urb->dev->slot_id;
1373         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1374         stream_id = urb->stream_id;
1375         ep = &xhci->devs[slot_id]->eps[ep_index];
1376         /* Common case: no streams */
1377         if (!(ep->ep_state & EP_HAS_STREAMS))
1378                 return ep->ring;
1379
1380         if (stream_id == 0) {
1381                 xhci_warn(xhci,
1382                                 "WARN: Slot ID %u, ep index %u has streams, "
1383                                 "but URB has no stream ID.\n",
1384                                 slot_id, ep_index);
1385                 return NULL;
1386         }
1387
1388         if (stream_id < ep->stream_info->num_streams)
1389                 return ep->stream_info->stream_rings[stream_id];
1390
1391         xhci_warn(xhci,
1392                         "WARN: Slot ID %u, ep index %u has "
1393                         "stream IDs 1 to %u allocated, "
1394                         "but stream ID %u is requested.\n",
1395                         slot_id, ep_index,
1396                         ep->stream_info->num_streams - 1,
1397                         stream_id);
1398         return NULL;
1399 }
1400
1401 /*
1402  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1403  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1404  * should pick up where it left off in the TD, unless a Set Transfer Ring
1405  * Dequeue Pointer is issued.
1406  *
1407  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1408  * the ring.  Since the ring is a contiguous structure, they can't be physically
1409  * removed.  Instead, there are two options:
1410  *
1411  *  1) If the HC is in the middle of processing the URB to be canceled, we
1412  *     simply move the ring's dequeue pointer past those TRBs using the Set
1413  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1414  *     when drivers timeout on the last submitted URB and attempt to cancel.
1415  *
1416  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1417  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1418  *     HC will need to invalidate the any TRBs it has cached after the stop
1419  *     endpoint command, as noted in the xHCI 0.95 errata.
1420  *
1421  *  3) The TD may have completed by the time the Stop Endpoint Command
1422  *     completes, so software needs to handle that case too.
1423  *
1424  * This function should protect against the TD enqueueing code ringing the
1425  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1426  * It also needs to account for multiple cancellations on happening at the same
1427  * time for the same endpoint.
1428  *
1429  * Note that this function can be called in any context, or so says
1430  * usb_hcd_unlink_urb()
1431  */
1432 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1433 {
1434         unsigned long flags;
1435         int ret, i;
1436         u32 temp;
1437         struct xhci_hcd *xhci;
1438         struct urb_priv *urb_priv;
1439         struct xhci_td *td;
1440         unsigned int ep_index;
1441         struct xhci_ring *ep_ring;
1442         struct xhci_virt_ep *ep;
1443
1444         xhci = hcd_to_xhci(hcd);
1445         spin_lock_irqsave(&xhci->lock, flags);
1446         /* Make sure the URB hasn't completed or been unlinked already */
1447         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1448         if (ret || !urb->hcpriv)
1449                 goto done;
1450         temp = xhci_readl(xhci, &xhci->op_regs->status);
1451         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1452                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1453                                 "HW died, freeing TD.");
1454                 urb_priv = urb->hcpriv;
1455                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1456                         td = urb_priv->td[i];
1457                         if (!list_empty(&td->td_list))
1458                                 list_del_init(&td->td_list);
1459                         if (!list_empty(&td->cancelled_td_list))
1460                                 list_del_init(&td->cancelled_td_list);
1461                 }
1462
1463                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1464                 spin_unlock_irqrestore(&xhci->lock, flags);
1465                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1466                 xhci_urb_free_priv(xhci, urb_priv);
1467                 return ret;
1468         }
1469         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1470                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1471                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1472                                 "Ep 0x%x: URB %p to be canceled on "
1473                                 "non-responsive xHCI host.",
1474                                 urb->ep->desc.bEndpointAddress, urb);
1475                 /* Let the stop endpoint command watchdog timer (which set this
1476                  * state) finish cleaning up the endpoint TD lists.  We must
1477                  * have caught it in the middle of dropping a lock and giving
1478                  * back an URB.
1479                  */
1480                 goto done;
1481         }
1482
1483         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1484         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1485         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1486         if (!ep_ring) {
1487                 ret = -EINVAL;
1488                 goto done;
1489         }
1490
1491         urb_priv = urb->hcpriv;
1492         i = urb_priv->td_cnt;
1493         if (i < urb_priv->length)
1494                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1495                                 "Cancel URB %p, dev %s, ep 0x%x, "
1496                                 "starting at offset 0x%llx",
1497                                 urb, urb->dev->devpath,
1498                                 urb->ep->desc.bEndpointAddress,
1499                                 (unsigned long long) xhci_trb_virt_to_dma(
1500                                         urb_priv->td[i]->start_seg,
1501                                         urb_priv->td[i]->first_trb));
1502
1503         for (; i < urb_priv->length; i++) {
1504                 td = urb_priv->td[i];
1505                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1506         }
1507
1508         /* Queue a stop endpoint command, but only if this is
1509          * the first cancellation to be handled.
1510          */
1511         if (!(ep->ep_state & EP_HALT_PENDING)) {
1512                 ep->ep_state |= EP_HALT_PENDING;
1513                 ep->stop_cmds_pending++;
1514                 ep->stop_cmd_timer.expires = jiffies +
1515                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1516                 add_timer(&ep->stop_cmd_timer);
1517                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1518                 xhci_ring_cmd_db(xhci);
1519         }
1520 done:
1521         spin_unlock_irqrestore(&xhci->lock, flags);
1522         return ret;
1523 }
1524
1525 /* Drop an endpoint from a new bandwidth configuration for this device.
1526  * Only one call to this function is allowed per endpoint before
1527  * check_bandwidth() or reset_bandwidth() must be called.
1528  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1529  * add the endpoint to the schedule with possibly new parameters denoted by a
1530  * different endpoint descriptor in usb_host_endpoint.
1531  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1532  * not allowed.
1533  *
1534  * The USB core will not allow URBs to be queued to an endpoint that is being
1535  * disabled, so there's no need for mutual exclusion to protect
1536  * the xhci->devs[slot_id] structure.
1537  */
1538 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1539                 struct usb_host_endpoint *ep)
1540 {
1541         struct xhci_hcd *xhci;
1542         struct xhci_container_ctx *in_ctx, *out_ctx;
1543         struct xhci_input_control_ctx *ctrl_ctx;
1544         struct xhci_slot_ctx *slot_ctx;
1545         unsigned int last_ctx;
1546         unsigned int ep_index;
1547         struct xhci_ep_ctx *ep_ctx;
1548         u32 drop_flag;
1549         u32 new_add_flags, new_drop_flags, new_slot_info;
1550         int ret;
1551
1552         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1553         if (ret <= 0)
1554                 return ret;
1555         xhci = hcd_to_xhci(hcd);
1556         if (xhci->xhc_state & XHCI_STATE_DYING)
1557                 return -ENODEV;
1558
1559         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1560         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1561         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1562                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1563                                 __func__, drop_flag);
1564                 return 0;
1565         }
1566
1567         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1568         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1569         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1570         if (!ctrl_ctx) {
1571                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1572                                 __func__);
1573                 return 0;
1574         }
1575
1576         ep_index = xhci_get_endpoint_index(&ep->desc);
1577         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1578         /* If the HC already knows the endpoint is disabled,
1579          * or the HCD has noted it is disabled, ignore this request
1580          */
1581         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1582              cpu_to_le32(EP_STATE_DISABLED)) ||
1583             le32_to_cpu(ctrl_ctx->drop_flags) &
1584             xhci_get_endpoint_flag(&ep->desc)) {
1585                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1586                                 __func__, ep);
1587                 return 0;
1588         }
1589
1590         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1591         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1592
1593         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1594         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1595
1596         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1597         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1598         /* Update the last valid endpoint context, if we deleted the last one */
1599         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1600             LAST_CTX(last_ctx)) {
1601                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1602                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1603         }
1604         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1605
1606         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1607
1608         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1609                         (unsigned int) ep->desc.bEndpointAddress,
1610                         udev->slot_id,
1611                         (unsigned int) new_drop_flags,
1612                         (unsigned int) new_add_flags,
1613                         (unsigned int) new_slot_info);
1614         return 0;
1615 }
1616
1617 /* Add an endpoint to a new possible bandwidth configuration for this device.
1618  * Only one call to this function is allowed per endpoint before
1619  * check_bandwidth() or reset_bandwidth() must be called.
1620  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1621  * add the endpoint to the schedule with possibly new parameters denoted by a
1622  * different endpoint descriptor in usb_host_endpoint.
1623  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1624  * not allowed.
1625  *
1626  * The USB core will not allow URBs to be queued to an endpoint until the
1627  * configuration or alt setting is installed in the device, so there's no need
1628  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1629  */
1630 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1631                 struct usb_host_endpoint *ep)
1632 {
1633         struct xhci_hcd *xhci;
1634         struct xhci_container_ctx *in_ctx, *out_ctx;
1635         unsigned int ep_index;
1636         struct xhci_slot_ctx *slot_ctx;
1637         struct xhci_input_control_ctx *ctrl_ctx;
1638         u32 added_ctxs;
1639         unsigned int last_ctx;
1640         u32 new_add_flags, new_drop_flags, new_slot_info;
1641         struct xhci_virt_device *virt_dev;
1642         int ret = 0;
1643
1644         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1645         if (ret <= 0) {
1646                 /* So we won't queue a reset ep command for a root hub */
1647                 ep->hcpriv = NULL;
1648                 return ret;
1649         }
1650         xhci = hcd_to_xhci(hcd);
1651         if (xhci->xhc_state & XHCI_STATE_DYING)
1652                 return -ENODEV;
1653
1654         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1655         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1656         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1657                 /* FIXME when we have to issue an evaluate endpoint command to
1658                  * deal with ep0 max packet size changing once we get the
1659                  * descriptors
1660                  */
1661                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1662                                 __func__, added_ctxs);
1663                 return 0;
1664         }
1665
1666         virt_dev = xhci->devs[udev->slot_id];
1667         in_ctx = virt_dev->in_ctx;
1668         out_ctx = virt_dev->out_ctx;
1669         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1670         if (!ctrl_ctx) {
1671                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1672                                 __func__);
1673                 return 0;
1674         }
1675
1676         ep_index = xhci_get_endpoint_index(&ep->desc);
1677         /* If this endpoint is already in use, and the upper layers are trying
1678          * to add it again without dropping it, reject the addition.
1679          */
1680         if (virt_dev->eps[ep_index].ring &&
1681                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1682                                 xhci_get_endpoint_flag(&ep->desc))) {
1683                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1684                                 "without dropping it.\n",
1685                                 (unsigned int) ep->desc.bEndpointAddress);
1686                 return -EINVAL;
1687         }
1688
1689         /* If the HCD has already noted the endpoint is enabled,
1690          * ignore this request.
1691          */
1692         if (le32_to_cpu(ctrl_ctx->add_flags) &
1693             xhci_get_endpoint_flag(&ep->desc)) {
1694                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1695                                 __func__, ep);
1696                 return 0;
1697         }
1698
1699         /*
1700          * Configuration and alternate setting changes must be done in
1701          * process context, not interrupt context (or so documenation
1702          * for usb_set_interface() and usb_set_configuration() claim).
1703          */
1704         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1705                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1706                                 __func__, ep->desc.bEndpointAddress);
1707                 return -ENOMEM;
1708         }
1709
1710         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1711         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1712
1713         /* If xhci_endpoint_disable() was called for this endpoint, but the
1714          * xHC hasn't been notified yet through the check_bandwidth() call,
1715          * this re-adds a new state for the endpoint from the new endpoint
1716          * descriptors.  We must drop and re-add this endpoint, so we leave the
1717          * drop flags alone.
1718          */
1719         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1720
1721         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1722         /* Update the last valid endpoint context, if we just added one past */
1723         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1724             LAST_CTX(last_ctx)) {
1725                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1726                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1727         }
1728         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1729
1730         /* Store the usb_device pointer for later use */
1731         ep->hcpriv = udev;
1732
1733         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1734                         (unsigned int) ep->desc.bEndpointAddress,
1735                         udev->slot_id,
1736                         (unsigned int) new_drop_flags,
1737                         (unsigned int) new_add_flags,
1738                         (unsigned int) new_slot_info);
1739         return 0;
1740 }
1741
1742 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1743 {
1744         struct xhci_input_control_ctx *ctrl_ctx;
1745         struct xhci_ep_ctx *ep_ctx;
1746         struct xhci_slot_ctx *slot_ctx;
1747         int i;
1748
1749         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1750         if (!ctrl_ctx) {
1751                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1752                                 __func__);
1753                 return;
1754         }
1755
1756         /* When a device's add flag and drop flag are zero, any subsequent
1757          * configure endpoint command will leave that endpoint's state
1758          * untouched.  Make sure we don't leave any old state in the input
1759          * endpoint contexts.
1760          */
1761         ctrl_ctx->drop_flags = 0;
1762         ctrl_ctx->add_flags = 0;
1763         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1764         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1765         /* Endpoint 0 is always valid */
1766         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1767         for (i = 1; i < 31; ++i) {
1768                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1769                 ep_ctx->ep_info = 0;
1770                 ep_ctx->ep_info2 = 0;
1771                 ep_ctx->deq = 0;
1772                 ep_ctx->tx_info = 0;
1773         }
1774 }
1775
1776 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1777                 struct usb_device *udev, u32 *cmd_status)
1778 {
1779         int ret;
1780
1781         switch (*cmd_status) {
1782         case COMP_ENOMEM:
1783                 dev_warn(&udev->dev, "Not enough host controller resources "
1784                                 "for new device state.\n");
1785                 ret = -ENOMEM;
1786                 /* FIXME: can we allocate more resources for the HC? */
1787                 break;
1788         case COMP_BW_ERR:
1789         case COMP_2ND_BW_ERR:
1790                 dev_warn(&udev->dev, "Not enough bandwidth "
1791                                 "for new device state.\n");
1792                 ret = -ENOSPC;
1793                 /* FIXME: can we go back to the old state? */
1794                 break;
1795         case COMP_TRB_ERR:
1796                 /* the HCD set up something wrong */
1797                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1798                                 "add flag = 1, "
1799                                 "and endpoint is not disabled.\n");
1800                 ret = -EINVAL;
1801                 break;
1802         case COMP_DEV_ERR:
1803                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1804                                 "configure command.\n");
1805                 ret = -ENODEV;
1806                 break;
1807         case COMP_SUCCESS:
1808                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1809                                 "Successful Endpoint Configure command");
1810                 ret = 0;
1811                 break;
1812         default:
1813                 xhci_err(xhci, "ERROR: unexpected command completion "
1814                                 "code 0x%x.\n", *cmd_status);
1815                 ret = -EINVAL;
1816                 break;
1817         }
1818         return ret;
1819 }
1820
1821 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1822                 struct usb_device *udev, u32 *cmd_status)
1823 {
1824         int ret;
1825         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1826
1827         switch (*cmd_status) {
1828         case COMP_EINVAL:
1829                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1830                                 "context command.\n");
1831                 ret = -EINVAL;
1832                 break;
1833         case COMP_EBADSLT:
1834                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1835                                 "evaluate context command.\n");
1836                 ret = -EINVAL;
1837                 break;
1838         case COMP_CTX_STATE:
1839                 dev_warn(&udev->dev, "WARN: invalid context state for "
1840                                 "evaluate context command.\n");
1841                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1842                 ret = -EINVAL;
1843                 break;
1844         case COMP_DEV_ERR:
1845                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1846                                 "context command.\n");
1847                 ret = -ENODEV;
1848                 break;
1849         case COMP_MEL_ERR:
1850                 /* Max Exit Latency too large error */
1851                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1852                 ret = -EINVAL;
1853                 break;
1854         case COMP_SUCCESS:
1855                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1856                                 "Successful evaluate context command");
1857                 ret = 0;
1858                 break;
1859         default:
1860                 xhci_err(xhci, "ERROR: unexpected command completion "
1861                                 "code 0x%x.\n", *cmd_status);
1862                 ret = -EINVAL;
1863                 break;
1864         }
1865         return ret;
1866 }
1867
1868 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1869                 struct xhci_input_control_ctx *ctrl_ctx)
1870 {
1871         u32 valid_add_flags;
1872         u32 valid_drop_flags;
1873
1874         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1875          * (bit 1).  The default control endpoint is added during the Address
1876          * Device command and is never removed until the slot is disabled.
1877          */
1878         valid_add_flags = ctrl_ctx->add_flags >> 2;
1879         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1880
1881         /* Use hweight32 to count the number of ones in the add flags, or
1882          * number of endpoints added.  Don't count endpoints that are changed
1883          * (both added and dropped).
1884          */
1885         return hweight32(valid_add_flags) -
1886                 hweight32(valid_add_flags & valid_drop_flags);
1887 }
1888
1889 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1890                 struct xhci_input_control_ctx *ctrl_ctx)
1891 {
1892         u32 valid_add_flags;
1893         u32 valid_drop_flags;
1894
1895         valid_add_flags = ctrl_ctx->add_flags >> 2;
1896         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1897
1898         return hweight32(valid_drop_flags) -
1899                 hweight32(valid_add_flags & valid_drop_flags);
1900 }
1901
1902 /*
1903  * We need to reserve the new number of endpoints before the configure endpoint
1904  * command completes.  We can't subtract the dropped endpoints from the number
1905  * of active endpoints until the command completes because we can oversubscribe
1906  * the host in this case:
1907  *
1908  *  - the first configure endpoint command drops more endpoints than it adds
1909  *  - a second configure endpoint command that adds more endpoints is queued
1910  *  - the first configure endpoint command fails, so the config is unchanged
1911  *  - the second command may succeed, even though there isn't enough resources
1912  *
1913  * Must be called with xhci->lock held.
1914  */
1915 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1916                 struct xhci_input_control_ctx *ctrl_ctx)
1917 {
1918         u32 added_eps;
1919
1920         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1921         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1922                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1923                                 "Not enough ep ctxs: "
1924                                 "%u active, need to add %u, limit is %u.",
1925                                 xhci->num_active_eps, added_eps,
1926                                 xhci->limit_active_eps);
1927                 return -ENOMEM;
1928         }
1929         xhci->num_active_eps += added_eps;
1930         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1931                         "Adding %u ep ctxs, %u now active.", added_eps,
1932                         xhci->num_active_eps);
1933         return 0;
1934 }
1935
1936 /*
1937  * The configure endpoint was failed by the xHC for some other reason, so we
1938  * need to revert the resources that failed configuration would have used.
1939  *
1940  * Must be called with xhci->lock held.
1941  */
1942 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1943                 struct xhci_input_control_ctx *ctrl_ctx)
1944 {
1945         u32 num_failed_eps;
1946
1947         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1948         xhci->num_active_eps -= num_failed_eps;
1949         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1950                         "Removing %u failed ep ctxs, %u now active.",
1951                         num_failed_eps,
1952                         xhci->num_active_eps);
1953 }
1954
1955 /*
1956  * Now that the command has completed, clean up the active endpoint count by
1957  * subtracting out the endpoints that were dropped (but not changed).
1958  *
1959  * Must be called with xhci->lock held.
1960  */
1961 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1962                 struct xhci_input_control_ctx *ctrl_ctx)
1963 {
1964         u32 num_dropped_eps;
1965
1966         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1967         xhci->num_active_eps -= num_dropped_eps;
1968         if (num_dropped_eps)
1969                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1970                                 "Removing %u dropped ep ctxs, %u now active.",
1971                                 num_dropped_eps,
1972                                 xhci->num_active_eps);
1973 }
1974
1975 static unsigned int xhci_get_block_size(struct usb_device *udev)
1976 {
1977         switch (udev->speed) {
1978         case USB_SPEED_LOW:
1979         case USB_SPEED_FULL:
1980                 return FS_BLOCK;
1981         case USB_SPEED_HIGH:
1982                 return HS_BLOCK;
1983         case USB_SPEED_SUPER:
1984                 return SS_BLOCK;
1985         case USB_SPEED_UNKNOWN:
1986         case USB_SPEED_WIRELESS:
1987         default:
1988                 /* Should never happen */
1989                 return 1;
1990         }
1991 }
1992
1993 static unsigned int
1994 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1995 {
1996         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1997                 return LS_OVERHEAD;
1998         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1999                 return FS_OVERHEAD;
2000         return HS_OVERHEAD;
2001 }
2002
2003 /* If we are changing a LS/FS device under a HS hub,
2004  * make sure (if we are activating a new TT) that the HS bus has enough
2005  * bandwidth for this new TT.
2006  */
2007 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2008                 struct xhci_virt_device *virt_dev,
2009                 int old_active_eps)
2010 {
2011         struct xhci_interval_bw_table *bw_table;
2012         struct xhci_tt_bw_info *tt_info;
2013
2014         /* Find the bandwidth table for the root port this TT is attached to. */
2015         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2016         tt_info = virt_dev->tt_info;
2017         /* If this TT already had active endpoints, the bandwidth for this TT
2018          * has already been added.  Removing all periodic endpoints (and thus
2019          * making the TT enactive) will only decrease the bandwidth used.
2020          */
2021         if (old_active_eps)
2022                 return 0;
2023         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2024                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2025                         return -ENOMEM;
2026                 return 0;
2027         }
2028         /* Not sure why we would have no new active endpoints...
2029          *
2030          * Maybe because of an Evaluate Context change for a hub update or a
2031          * control endpoint 0 max packet size change?
2032          * FIXME: skip the bandwidth calculation in that case.
2033          */
2034         return 0;
2035 }
2036
2037 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2038                 struct xhci_virt_device *virt_dev)
2039 {
2040         unsigned int bw_reserved;
2041
2042         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2043         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2044                 return -ENOMEM;
2045
2046         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2047         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2048                 return -ENOMEM;
2049
2050         return 0;
2051 }
2052
2053 /*
2054  * This algorithm is a very conservative estimate of the worst-case scheduling
2055  * scenario for any one interval.  The hardware dynamically schedules the
2056  * packets, so we can't tell which microframe could be the limiting factor in
2057  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2058  *
2059  * Obviously, we can't solve an NP complete problem to find the minimum worst
2060  * case scenario.  Instead, we come up with an estimate that is no less than
2061  * the worst case bandwidth used for any one microframe, but may be an
2062  * over-estimate.
2063  *
2064  * We walk the requirements for each endpoint by interval, starting with the
2065  * smallest interval, and place packets in the schedule where there is only one
2066  * possible way to schedule packets for that interval.  In order to simplify
2067  * this algorithm, we record the largest max packet size for each interval, and
2068  * assume all packets will be that size.
2069  *
2070  * For interval 0, we obviously must schedule all packets for each interval.
2071  * The bandwidth for interval 0 is just the amount of data to be transmitted
2072  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2073  * the number of packets).
2074  *
2075  * For interval 1, we have two possible microframes to schedule those packets
2076  * in.  For this algorithm, if we can schedule the same number of packets for
2077  * each possible scheduling opportunity (each microframe), we will do so.  The
2078  * remaining number of packets will be saved to be transmitted in the gaps in
2079  * the next interval's scheduling sequence.
2080  *
2081  * As we move those remaining packets to be scheduled with interval 2 packets,
2082  * we have to double the number of remaining packets to transmit.  This is
2083  * because the intervals are actually powers of 2, and we would be transmitting
2084  * the previous interval's packets twice in this interval.  We also have to be
2085  * sure that when we look at the largest max packet size for this interval, we
2086  * also look at the largest max packet size for the remaining packets and take
2087  * the greater of the two.
2088  *
2089  * The algorithm continues to evenly distribute packets in each scheduling
2090  * opportunity, and push the remaining packets out, until we get to the last
2091  * interval.  Then those packets and their associated overhead are just added
2092  * to the bandwidth used.
2093  */
2094 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2095                 struct xhci_virt_device *virt_dev,
2096                 int old_active_eps)
2097 {
2098         unsigned int bw_reserved;
2099         unsigned int max_bandwidth;
2100         unsigned int bw_used;
2101         unsigned int block_size;
2102         struct xhci_interval_bw_table *bw_table;
2103         unsigned int packet_size = 0;
2104         unsigned int overhead = 0;
2105         unsigned int packets_transmitted = 0;
2106         unsigned int packets_remaining = 0;
2107         unsigned int i;
2108
2109         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2110                 return xhci_check_ss_bw(xhci, virt_dev);
2111
2112         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2113                 max_bandwidth = HS_BW_LIMIT;
2114                 /* Convert percent of bus BW reserved to blocks reserved */
2115                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2116         } else {
2117                 max_bandwidth = FS_BW_LIMIT;
2118                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2119         }
2120
2121         bw_table = virt_dev->bw_table;
2122         /* We need to translate the max packet size and max ESIT payloads into
2123          * the units the hardware uses.
2124          */
2125         block_size = xhci_get_block_size(virt_dev->udev);
2126
2127         /* If we are manipulating a LS/FS device under a HS hub, double check
2128          * that the HS bus has enough bandwidth if we are activing a new TT.
2129          */
2130         if (virt_dev->tt_info) {
2131                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2132                                 "Recalculating BW for rootport %u",
2133                                 virt_dev->real_port);
2134                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2135                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2136                                         "newly activated TT.\n");
2137                         return -ENOMEM;
2138                 }
2139                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2140                                 "Recalculating BW for TT slot %u port %u",
2141                                 virt_dev->tt_info->slot_id,
2142                                 virt_dev->tt_info->ttport);
2143         } else {
2144                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2145                                 "Recalculating BW for rootport %u",
2146                                 virt_dev->real_port);
2147         }
2148
2149         /* Add in how much bandwidth will be used for interval zero, or the
2150          * rounded max ESIT payload + number of packets * largest overhead.
2151          */
2152         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2153                 bw_table->interval_bw[0].num_packets *
2154                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2155
2156         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2157                 unsigned int bw_added;
2158                 unsigned int largest_mps;
2159                 unsigned int interval_overhead;
2160
2161                 /*
2162                  * How many packets could we transmit in this interval?
2163                  * If packets didn't fit in the previous interval, we will need
2164                  * to transmit that many packets twice within this interval.
2165                  */
2166                 packets_remaining = 2 * packets_remaining +
2167                         bw_table->interval_bw[i].num_packets;
2168
2169                 /* Find the largest max packet size of this or the previous
2170                  * interval.
2171                  */
2172                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2173                         largest_mps = 0;
2174                 else {
2175                         struct xhci_virt_ep *virt_ep;
2176                         struct list_head *ep_entry;
2177
2178                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2179                         virt_ep = list_entry(ep_entry,
2180                                         struct xhci_virt_ep, bw_endpoint_list);
2181                         /* Convert to blocks, rounding up */
2182                         largest_mps = DIV_ROUND_UP(
2183                                         virt_ep->bw_info.max_packet_size,
2184                                         block_size);
2185                 }
2186                 if (largest_mps > packet_size)
2187                         packet_size = largest_mps;
2188
2189                 /* Use the larger overhead of this or the previous interval. */
2190                 interval_overhead = xhci_get_largest_overhead(
2191                                 &bw_table->interval_bw[i]);
2192                 if (interval_overhead > overhead)
2193                         overhead = interval_overhead;
2194
2195                 /* How many packets can we evenly distribute across
2196                  * (1 << (i + 1)) possible scheduling opportunities?
2197                  */
2198                 packets_transmitted = packets_remaining >> (i + 1);
2199
2200                 /* Add in the bandwidth used for those scheduled packets */
2201                 bw_added = packets_transmitted * (overhead + packet_size);
2202
2203                 /* How many packets do we have remaining to transmit? */
2204                 packets_remaining = packets_remaining % (1 << (i + 1));
2205
2206                 /* What largest max packet size should those packets have? */
2207                 /* If we've transmitted all packets, don't carry over the
2208                  * largest packet size.
2209                  */
2210                 if (packets_remaining == 0) {
2211                         packet_size = 0;
2212                         overhead = 0;
2213                 } else if (packets_transmitted > 0) {
2214                         /* Otherwise if we do have remaining packets, and we've
2215                          * scheduled some packets in this interval, take the
2216                          * largest max packet size from endpoints with this
2217                          * interval.
2218                          */
2219                         packet_size = largest_mps;
2220                         overhead = interval_overhead;
2221                 }
2222                 /* Otherwise carry over packet_size and overhead from the last
2223                  * time we had a remainder.
2224                  */
2225                 bw_used += bw_added;
2226                 if (bw_used > max_bandwidth) {
2227                         xhci_warn(xhci, "Not enough bandwidth. "
2228                                         "Proposed: %u, Max: %u\n",
2229                                 bw_used, max_bandwidth);
2230                         return -ENOMEM;
2231                 }
2232         }
2233         /*
2234          * Ok, we know we have some packets left over after even-handedly
2235          * scheduling interval 15.  We don't know which microframes they will
2236          * fit into, so we over-schedule and say they will be scheduled every
2237          * microframe.
2238          */
2239         if (packets_remaining > 0)
2240                 bw_used += overhead + packet_size;
2241
2242         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2243                 unsigned int port_index = virt_dev->real_port - 1;
2244
2245                 /* OK, we're manipulating a HS device attached to a
2246                  * root port bandwidth domain.  Include the number of active TTs
2247                  * in the bandwidth used.
2248                  */
2249                 bw_used += TT_HS_OVERHEAD *
2250                         xhci->rh_bw[port_index].num_active_tts;
2251         }
2252
2253         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2254                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2255                 "Available: %u " "percent",
2256                 bw_used, max_bandwidth, bw_reserved,
2257                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2258                 max_bandwidth);
2259
2260         bw_used += bw_reserved;
2261         if (bw_used > max_bandwidth) {
2262                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2263                                 bw_used, max_bandwidth);
2264                 return -ENOMEM;
2265         }
2266
2267         bw_table->bw_used = bw_used;
2268         return 0;
2269 }
2270
2271 static bool xhci_is_async_ep(unsigned int ep_type)
2272 {
2273         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2274                                         ep_type != ISOC_IN_EP &&
2275                                         ep_type != INT_IN_EP);
2276 }
2277
2278 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2279 {
2280         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2281 }
2282
2283 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2284 {
2285         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2286
2287         if (ep_bw->ep_interval == 0)
2288                 return SS_OVERHEAD_BURST +
2289                         (ep_bw->mult * ep_bw->num_packets *
2290                                         (SS_OVERHEAD + mps));
2291         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2292                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2293                                 1 << ep_bw->ep_interval);
2294
2295 }
2296
2297 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2298                 struct xhci_bw_info *ep_bw,
2299                 struct xhci_interval_bw_table *bw_table,
2300                 struct usb_device *udev,
2301                 struct xhci_virt_ep *virt_ep,
2302                 struct xhci_tt_bw_info *tt_info)
2303 {
2304         struct xhci_interval_bw *interval_bw;
2305         int normalized_interval;
2306
2307         if (xhci_is_async_ep(ep_bw->type))
2308                 return;
2309
2310         if (udev->speed == USB_SPEED_SUPER) {
2311                 if (xhci_is_sync_in_ep(ep_bw->type))
2312                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2313                                 xhci_get_ss_bw_consumed(ep_bw);
2314                 else
2315                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2316                                 xhci_get_ss_bw_consumed(ep_bw);
2317                 return;
2318         }
2319
2320         /* SuperSpeed endpoints never get added to intervals in the table, so
2321          * this check is only valid for HS/FS/LS devices.
2322          */
2323         if (list_empty(&virt_ep->bw_endpoint_list))
2324                 return;
2325         /* For LS/FS devices, we need to translate the interval expressed in
2326          * microframes to frames.
2327          */
2328         if (udev->speed == USB_SPEED_HIGH)
2329                 normalized_interval = ep_bw->ep_interval;
2330         else
2331                 normalized_interval = ep_bw->ep_interval - 3;
2332
2333         if (normalized_interval == 0)
2334                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2335         interval_bw = &bw_table->interval_bw[normalized_interval];
2336         interval_bw->num_packets -= ep_bw->num_packets;
2337         switch (udev->speed) {
2338         case USB_SPEED_LOW:
2339                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2340                 break;
2341         case USB_SPEED_FULL:
2342                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2343                 break;
2344         case USB_SPEED_HIGH:
2345                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2346                 break;
2347         case USB_SPEED_SUPER:
2348         case USB_SPEED_UNKNOWN:
2349         case USB_SPEED_WIRELESS:
2350                 /* Should never happen because only LS/FS/HS endpoints will get
2351                  * added to the endpoint list.
2352                  */
2353                 return;
2354         }
2355         if (tt_info)
2356                 tt_info->active_eps -= 1;
2357         list_del_init(&virt_ep->bw_endpoint_list);
2358 }
2359
2360 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2361                 struct xhci_bw_info *ep_bw,
2362                 struct xhci_interval_bw_table *bw_table,
2363                 struct usb_device *udev,
2364                 struct xhci_virt_ep *virt_ep,
2365                 struct xhci_tt_bw_info *tt_info)
2366 {
2367         struct xhci_interval_bw *interval_bw;
2368         struct xhci_virt_ep *smaller_ep;
2369         int normalized_interval;
2370
2371         if (xhci_is_async_ep(ep_bw->type))
2372                 return;
2373
2374         if (udev->speed == USB_SPEED_SUPER) {
2375                 if (xhci_is_sync_in_ep(ep_bw->type))
2376                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2377                                 xhci_get_ss_bw_consumed(ep_bw);
2378                 else
2379                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2380                                 xhci_get_ss_bw_consumed(ep_bw);
2381                 return;
2382         }
2383
2384         /* For LS/FS devices, we need to translate the interval expressed in
2385          * microframes to frames.
2386          */
2387         if (udev->speed == USB_SPEED_HIGH)
2388                 normalized_interval = ep_bw->ep_interval;
2389         else
2390                 normalized_interval = ep_bw->ep_interval - 3;
2391
2392         if (normalized_interval == 0)
2393                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2394         interval_bw = &bw_table->interval_bw[normalized_interval];
2395         interval_bw->num_packets += ep_bw->num_packets;
2396         switch (udev->speed) {
2397         case USB_SPEED_LOW:
2398                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2399                 break;
2400         case USB_SPEED_FULL:
2401                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2402                 break;
2403         case USB_SPEED_HIGH:
2404                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2405                 break;
2406         case USB_SPEED_SUPER:
2407         case USB_SPEED_UNKNOWN:
2408         case USB_SPEED_WIRELESS:
2409                 /* Should never happen because only LS/FS/HS endpoints will get
2410                  * added to the endpoint list.
2411                  */
2412                 return;
2413         }
2414
2415         if (tt_info)
2416                 tt_info->active_eps += 1;
2417         /* Insert the endpoint into the list, largest max packet size first. */
2418         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2419                         bw_endpoint_list) {
2420                 if (ep_bw->max_packet_size >=
2421                                 smaller_ep->bw_info.max_packet_size) {
2422                         /* Add the new ep before the smaller endpoint */
2423                         list_add_tail(&virt_ep->bw_endpoint_list,
2424                                         &smaller_ep->bw_endpoint_list);
2425                         return;
2426                 }
2427         }
2428         /* Add the new endpoint at the end of the list. */
2429         list_add_tail(&virt_ep->bw_endpoint_list,
2430                         &interval_bw->endpoints);
2431 }
2432
2433 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2434                 struct xhci_virt_device *virt_dev,
2435                 int old_active_eps)
2436 {
2437         struct xhci_root_port_bw_info *rh_bw_info;
2438         if (!virt_dev->tt_info)
2439                 return;
2440
2441         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2442         if (old_active_eps == 0 &&
2443                                 virt_dev->tt_info->active_eps != 0) {
2444                 rh_bw_info->num_active_tts += 1;
2445                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2446         } else if (old_active_eps != 0 &&
2447                                 virt_dev->tt_info->active_eps == 0) {
2448                 rh_bw_info->num_active_tts -= 1;
2449                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2450         }
2451 }
2452
2453 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2454                 struct xhci_virt_device *virt_dev,
2455                 struct xhci_container_ctx *in_ctx)
2456 {
2457         struct xhci_bw_info ep_bw_info[31];
2458         int i;
2459         struct xhci_input_control_ctx *ctrl_ctx;
2460         int old_active_eps = 0;
2461
2462         if (virt_dev->tt_info)
2463                 old_active_eps = virt_dev->tt_info->active_eps;
2464
2465         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2466         if (!ctrl_ctx) {
2467                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2468                                 __func__);
2469                 return -ENOMEM;
2470         }
2471
2472         for (i = 0; i < 31; i++) {
2473                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2474                         continue;
2475
2476                 /* Make a copy of the BW info in case we need to revert this */
2477                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2478                                 sizeof(ep_bw_info[i]));
2479                 /* Drop the endpoint from the interval table if the endpoint is
2480                  * being dropped or changed.
2481                  */
2482                 if (EP_IS_DROPPED(ctrl_ctx, i))
2483                         xhci_drop_ep_from_interval_table(xhci,
2484                                         &virt_dev->eps[i].bw_info,
2485                                         virt_dev->bw_table,
2486                                         virt_dev->udev,
2487                                         &virt_dev->eps[i],
2488                                         virt_dev->tt_info);
2489         }
2490         /* Overwrite the information stored in the endpoints' bw_info */
2491         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2492         for (i = 0; i < 31; i++) {
2493                 /* Add any changed or added endpoints to the interval table */
2494                 if (EP_IS_ADDED(ctrl_ctx, i))
2495                         xhci_add_ep_to_interval_table(xhci,
2496                                         &virt_dev->eps[i].bw_info,
2497                                         virt_dev->bw_table,
2498                                         virt_dev->udev,
2499                                         &virt_dev->eps[i],
2500                                         virt_dev->tt_info);
2501         }
2502
2503         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2504                 /* Ok, this fits in the bandwidth we have.
2505                  * Update the number of active TTs.
2506                  */
2507                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2508                 return 0;
2509         }
2510
2511         /* We don't have enough bandwidth for this, revert the stored info. */
2512         for (i = 0; i < 31; i++) {
2513                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2514                         continue;
2515
2516                 /* Drop the new copies of any added or changed endpoints from
2517                  * the interval table.
2518                  */
2519                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2520                         xhci_drop_ep_from_interval_table(xhci,
2521                                         &virt_dev->eps[i].bw_info,
2522                                         virt_dev->bw_table,
2523                                         virt_dev->udev,
2524                                         &virt_dev->eps[i],
2525                                         virt_dev->tt_info);
2526                 }
2527                 /* Revert the endpoint back to its old information */
2528                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2529                                 sizeof(ep_bw_info[i]));
2530                 /* Add any changed or dropped endpoints back into the table */
2531                 if (EP_IS_DROPPED(ctrl_ctx, i))
2532                         xhci_add_ep_to_interval_table(xhci,
2533                                         &virt_dev->eps[i].bw_info,
2534                                         virt_dev->bw_table,
2535                                         virt_dev->udev,
2536                                         &virt_dev->eps[i],
2537                                         virt_dev->tt_info);
2538         }
2539         return -ENOMEM;
2540 }
2541
2542
2543 /* Issue a configure endpoint command or evaluate context command
2544  * and wait for it to finish.
2545  */
2546 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2547                 struct usb_device *udev,
2548                 struct xhci_command *command,
2549                 bool ctx_change, bool must_succeed)
2550 {
2551         int ret;
2552         int timeleft;
2553         unsigned long flags;
2554         struct xhci_container_ctx *in_ctx;
2555         struct xhci_input_control_ctx *ctrl_ctx;
2556         struct completion *cmd_completion;
2557         u32 *cmd_status;
2558         struct xhci_virt_device *virt_dev;
2559         union xhci_trb *cmd_trb;
2560
2561         spin_lock_irqsave(&xhci->lock, flags);
2562         virt_dev = xhci->devs[udev->slot_id];
2563
2564         if (command)
2565                 in_ctx = command->in_ctx;
2566         else
2567                 in_ctx = virt_dev->in_ctx;
2568         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2569         if (!ctrl_ctx) {
2570                 spin_unlock_irqrestore(&xhci->lock, flags);
2571                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2572                                 __func__);
2573                 return -ENOMEM;
2574         }
2575
2576         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2577                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2578                 spin_unlock_irqrestore(&xhci->lock, flags);
2579                 xhci_warn(xhci, "Not enough host resources, "
2580                                 "active endpoint contexts = %u\n",
2581                                 xhci->num_active_eps);
2582                 return -ENOMEM;
2583         }
2584         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2585                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2586                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2587                         xhci_free_host_resources(xhci, ctrl_ctx);
2588                 spin_unlock_irqrestore(&xhci->lock, flags);
2589                 xhci_warn(xhci, "Not enough bandwidth\n");
2590                 return -ENOMEM;
2591         }
2592
2593         if (command) {
2594                 cmd_completion = command->completion;
2595                 cmd_status = &command->status;
2596                 command->command_trb = xhci->cmd_ring->enqueue;
2597
2598                 /* Enqueue pointer can be left pointing to the link TRB,
2599                  * we must handle that
2600                  */
2601                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2602                         command->command_trb =
2603                                 xhci->cmd_ring->enq_seg->next->trbs;
2604
2605                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2606         } else {
2607                 cmd_completion = &virt_dev->cmd_completion;
2608                 cmd_status = &virt_dev->cmd_status;
2609         }
2610         init_completion(cmd_completion);
2611
2612         cmd_trb = xhci->cmd_ring->dequeue;
2613         if (!ctx_change)
2614                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2615                                 udev->slot_id, must_succeed);
2616         else
2617                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2618                                 udev->slot_id, must_succeed);
2619         if (ret < 0) {
2620                 if (command)
2621                         list_del(&command->cmd_list);
2622                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2623                         xhci_free_host_resources(xhci, ctrl_ctx);
2624                 spin_unlock_irqrestore(&xhci->lock, flags);
2625                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2626                                 "FIXME allocate a new ring segment");
2627                 return -ENOMEM;
2628         }
2629         xhci_ring_cmd_db(xhci);
2630         spin_unlock_irqrestore(&xhci->lock, flags);
2631
2632         /* Wait for the configure endpoint command to complete */
2633         timeleft = wait_for_completion_interruptible_timeout(
2634                         cmd_completion,
2635                         XHCI_CMD_DEFAULT_TIMEOUT);
2636         if (timeleft <= 0) {
2637                 xhci_warn(xhci, "%s while waiting for %s command\n",
2638                                 timeleft == 0 ? "Timeout" : "Signal",
2639                                 ctx_change == 0 ?
2640                                         "configure endpoint" :
2641                                         "evaluate context");
2642                 /* cancel the configure endpoint command */
2643                 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2644                 if (ret < 0)
2645                         return ret;
2646                 return -ETIME;
2647         }
2648
2649         if (!ctx_change)
2650                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2651         else
2652                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2653
2654         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2655                 spin_lock_irqsave(&xhci->lock, flags);
2656                 /* If the command failed, remove the reserved resources.
2657                  * Otherwise, clean up the estimate to include dropped eps.
2658                  */
2659                 if (ret)
2660                         xhci_free_host_resources(xhci, ctrl_ctx);
2661                 else
2662                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2663                 spin_unlock_irqrestore(&xhci->lock, flags);
2664         }
2665         return ret;
2666 }
2667
2668 /* Called after one or more calls to xhci_add_endpoint() or
2669  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2670  * to call xhci_reset_bandwidth().
2671  *
2672  * Since we are in the middle of changing either configuration or
2673  * installing a new alt setting, the USB core won't allow URBs to be
2674  * enqueued for any endpoint on the old config or interface.  Nothing
2675  * else should be touching the xhci->devs[slot_id] structure, so we
2676  * don't need to take the xhci->lock for manipulating that.
2677  */
2678 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2679 {
2680         int i;
2681         int ret = 0;
2682         struct xhci_hcd *xhci;
2683         struct xhci_virt_device *virt_dev;
2684         struct xhci_input_control_ctx *ctrl_ctx;
2685         struct xhci_slot_ctx *slot_ctx;
2686
2687         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2688         if (ret <= 0)
2689                 return ret;
2690         xhci = hcd_to_xhci(hcd);
2691         if (xhci->xhc_state & XHCI_STATE_DYING)
2692                 return -ENODEV;
2693
2694         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2695         virt_dev = xhci->devs[udev->slot_id];
2696
2697         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2698         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2699         if (!ctrl_ctx) {
2700                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2701                                 __func__);
2702                 return -ENOMEM;
2703         }
2704         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2705         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2706         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2707
2708         /* Don't issue the command if there's no endpoints to update. */
2709         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2710                         ctrl_ctx->drop_flags == 0)
2711                 return 0;
2712
2713         xhci_dbg(xhci, "New Input Control Context:\n");
2714         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2715         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2716                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2717
2718         ret = xhci_configure_endpoint(xhci, udev, NULL,
2719                         false, false);
2720         if (ret) {
2721                 /* Callee should call reset_bandwidth() */
2722                 return ret;
2723         }
2724
2725         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2726         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2727                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2728
2729         /* Free any rings that were dropped, but not changed. */
2730         for (i = 1; i < 31; ++i) {
2731                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2732                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2733                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2734         }
2735         xhci_zero_in_ctx(xhci, virt_dev);
2736         /*
2737          * Install any rings for completely new endpoints or changed endpoints,
2738          * and free or cache any old rings from changed endpoints.
2739          */
2740         for (i = 1; i < 31; ++i) {
2741                 if (!virt_dev->eps[i].new_ring)
2742                         continue;
2743                 /* Only cache or free the old ring if it exists.
2744                  * It may not if this is the first add of an endpoint.
2745                  */
2746                 if (virt_dev->eps[i].ring) {
2747                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2748                 }
2749                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2750                 virt_dev->eps[i].new_ring = NULL;
2751         }
2752
2753         return ret;
2754 }
2755
2756 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2757 {
2758         struct xhci_hcd *xhci;
2759         struct xhci_virt_device *virt_dev;
2760         int i, ret;
2761
2762         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2763         if (ret <= 0)
2764                 return;
2765         xhci = hcd_to_xhci(hcd);
2766
2767         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2768         virt_dev = xhci->devs[udev->slot_id];
2769         /* Free any rings allocated for added endpoints */
2770         for (i = 0; i < 31; ++i) {
2771                 if (virt_dev->eps[i].new_ring) {
2772                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2773                         virt_dev->eps[i].new_ring = NULL;
2774                 }
2775         }
2776         xhci_zero_in_ctx(xhci, virt_dev);
2777 }
2778
2779 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2780                 struct xhci_container_ctx *in_ctx,
2781                 struct xhci_container_ctx *out_ctx,
2782                 struct xhci_input_control_ctx *ctrl_ctx,
2783                 u32 add_flags, u32 drop_flags)
2784 {
2785         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2786         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2787         xhci_slot_copy(xhci, in_ctx, out_ctx);
2788         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2789
2790         xhci_dbg(xhci, "Input Context:\n");
2791         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2792 }
2793
2794 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2795                 unsigned int slot_id, unsigned int ep_index,
2796                 struct xhci_dequeue_state *deq_state)
2797 {
2798         struct xhci_input_control_ctx *ctrl_ctx;
2799         struct xhci_container_ctx *in_ctx;
2800         struct xhci_ep_ctx *ep_ctx;
2801         u32 added_ctxs;
2802         dma_addr_t addr;
2803
2804         in_ctx = xhci->devs[slot_id]->in_ctx;
2805         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2806         if (!ctrl_ctx) {
2807                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2808                                 __func__);
2809                 return;
2810         }
2811
2812         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2813                         xhci->devs[slot_id]->out_ctx, ep_index);
2814         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2815         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2816                         deq_state->new_deq_ptr);
2817         if (addr == 0) {
2818                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2819                                 "reset ep command\n");
2820                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2821                                 deq_state->new_deq_seg,
2822                                 deq_state->new_deq_ptr);
2823                 return;
2824         }
2825         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2826
2827         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2828         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2829                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2830                         added_ctxs, added_ctxs);
2831 }
2832
2833 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2834                 struct usb_device *udev, unsigned int ep_index)
2835 {
2836         struct xhci_dequeue_state deq_state;
2837         struct xhci_virt_ep *ep;
2838
2839         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2840                         "Cleaning up stalled endpoint ring");
2841         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2842         /* We need to move the HW's dequeue pointer past this TD,
2843          * or it will attempt to resend it on the next doorbell ring.
2844          */
2845         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2846                         ep_index, ep->stopped_stream, ep->stopped_td,
2847                         &deq_state);
2848
2849         /* HW with the reset endpoint quirk will use the saved dequeue state to
2850          * issue a configure endpoint command later.
2851          */
2852         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2853                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2854                                 "Queueing new dequeue state");
2855                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2856                                 ep_index, ep->stopped_stream, &deq_state);
2857         } else {
2858                 /* Better hope no one uses the input context between now and the
2859                  * reset endpoint completion!
2860                  * XXX: No idea how this hardware will react when stream rings
2861                  * are enabled.
2862                  */
2863                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2864                                 "Setting up input context for "
2865                                 "configure endpoint command");
2866                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2867                                 ep_index, &deq_state);
2868         }
2869 }
2870
2871 /* Deal with stalled endpoints.  The core should have sent the control message
2872  * to clear the halt condition.  However, we need to make the xHCI hardware
2873  * reset its sequence number, since a device will expect a sequence number of
2874  * zero after the halt condition is cleared.
2875  * Context: in_interrupt
2876  */
2877 void xhci_endpoint_reset(struct usb_hcd *hcd,
2878                 struct usb_host_endpoint *ep)
2879 {
2880         struct xhci_hcd *xhci;
2881         struct usb_device *udev;
2882         unsigned int ep_index;
2883         unsigned long flags;
2884         int ret;
2885         struct xhci_virt_ep *virt_ep;
2886
2887         xhci = hcd_to_xhci(hcd);
2888         udev = (struct usb_device *) ep->hcpriv;
2889         /* Called with a root hub endpoint (or an endpoint that wasn't added
2890          * with xhci_add_endpoint()
2891          */
2892         if (!ep->hcpriv)
2893                 return;
2894         ep_index = xhci_get_endpoint_index(&ep->desc);
2895         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2896         if (!virt_ep->stopped_td) {
2897                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2898                         "Endpoint 0x%x not halted, refusing to reset.",
2899                         ep->desc.bEndpointAddress);
2900                 return;
2901         }
2902         if (usb_endpoint_xfer_control(&ep->desc)) {
2903                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2904                                 "Control endpoint stall already handled.");
2905                 return;
2906         }
2907
2908         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2909                         "Queueing reset endpoint command");
2910         spin_lock_irqsave(&xhci->lock, flags);
2911         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2912         /*
2913          * Can't change the ring dequeue pointer until it's transitioned to the
2914          * stopped state, which is only upon a successful reset endpoint
2915          * command.  Better hope that last command worked!
2916          */
2917         if (!ret) {
2918                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2919                 kfree(virt_ep->stopped_td);
2920                 xhci_ring_cmd_db(xhci);
2921         }
2922         virt_ep->stopped_td = NULL;
2923         virt_ep->stopped_trb = NULL;
2924         virt_ep->stopped_stream = 0;
2925         spin_unlock_irqrestore(&xhci->lock, flags);
2926
2927         if (ret)
2928                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2929 }
2930
2931 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2932                 struct usb_device *udev, struct usb_host_endpoint *ep,
2933                 unsigned int slot_id)
2934 {
2935         int ret;
2936         unsigned int ep_index;
2937         unsigned int ep_state;
2938
2939         if (!ep)
2940                 return -EINVAL;
2941         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2942         if (ret <= 0)
2943                 return -EINVAL;
2944         if (ep->ss_ep_comp.bmAttributes == 0) {
2945                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2946                                 " descriptor for ep 0x%x does not support streams\n",
2947                                 ep->desc.bEndpointAddress);
2948                 return -EINVAL;
2949         }
2950
2951         ep_index = xhci_get_endpoint_index(&ep->desc);
2952         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2953         if (ep_state & EP_HAS_STREAMS ||
2954                         ep_state & EP_GETTING_STREAMS) {
2955                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2956                                 "already has streams set up.\n",
2957                                 ep->desc.bEndpointAddress);
2958                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2959                                 "dynamic stream context array reallocation.\n");
2960                 return -EINVAL;
2961         }
2962         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2963                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2964                                 "endpoint 0x%x; URBs are pending.\n",
2965                                 ep->desc.bEndpointAddress);
2966                 return -EINVAL;
2967         }
2968         return 0;
2969 }
2970
2971 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2972                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2973 {
2974         unsigned int max_streams;
2975
2976         /* The stream context array size must be a power of two */
2977         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2978         /*
2979          * Find out how many primary stream array entries the host controller
2980          * supports.  Later we may use secondary stream arrays (similar to 2nd
2981          * level page entries), but that's an optional feature for xHCI host
2982          * controllers. xHCs must support at least 4 stream IDs.
2983          */
2984         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2985         if (*num_stream_ctxs > max_streams) {
2986                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2987                                 max_streams);
2988                 *num_stream_ctxs = max_streams;
2989                 *num_streams = max_streams;
2990         }
2991 }
2992
2993 /* Returns an error code if one of the endpoint already has streams.
2994  * This does not change any data structures, it only checks and gathers
2995  * information.
2996  */
2997 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2998                 struct usb_device *udev,
2999                 struct usb_host_endpoint **eps, unsigned int num_eps,
3000                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3001 {
3002         unsigned int max_streams;
3003         unsigned int endpoint_flag;
3004         int i;
3005         int ret;
3006
3007         for (i = 0; i < num_eps; i++) {
3008                 ret = xhci_check_streams_endpoint(xhci, udev,
3009                                 eps[i], udev->slot_id);
3010                 if (ret < 0)
3011                         return ret;
3012
3013                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3014                 if (max_streams < (*num_streams - 1)) {
3015                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3016                                         eps[i]->desc.bEndpointAddress,
3017                                         max_streams);
3018                         *num_streams = max_streams+1;
3019                 }
3020
3021                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3022                 if (*changed_ep_bitmask & endpoint_flag)
3023                         return -EINVAL;
3024                 *changed_ep_bitmask |= endpoint_flag;
3025         }
3026         return 0;
3027 }
3028
3029 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3030                 struct usb_device *udev,
3031                 struct usb_host_endpoint **eps, unsigned int num_eps)
3032 {
3033         u32 changed_ep_bitmask = 0;
3034         unsigned int slot_id;
3035         unsigned int ep_index;
3036         unsigned int ep_state;
3037         int i;
3038
3039         slot_id = udev->slot_id;
3040         if (!xhci->devs[slot_id])
3041                 return 0;
3042
3043         for (i = 0; i < num_eps; i++) {
3044                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3045                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3046                 /* Are streams already being freed for the endpoint? */
3047                 if (ep_state & EP_GETTING_NO_STREAMS) {
3048                         xhci_warn(xhci, "WARN Can't disable streams for "
3049                                         "endpoint 0x%x, "
3050                                         "streams are being disabled already\n",
3051                                         eps[i]->desc.bEndpointAddress);
3052                         return 0;
3053                 }
3054                 /* Are there actually any streams to free? */
3055                 if (!(ep_state & EP_HAS_STREAMS) &&
3056                                 !(ep_state & EP_GETTING_STREAMS)) {
3057                         xhci_warn(xhci, "WARN Can't disable streams for "
3058                                         "endpoint 0x%x, "
3059                                         "streams are already disabled!\n",
3060                                         eps[i]->desc.bEndpointAddress);
3061                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3062                                         "with non-streams endpoint\n");
3063                         return 0;
3064                 }
3065                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3066         }
3067         return changed_ep_bitmask;
3068 }
3069
3070 /*
3071  * The USB device drivers use this function (though the HCD interface in USB
3072  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3073  * coordinate mass storage command queueing across multiple endpoints (basically
3074  * a stream ID == a task ID).
3075  *
3076  * Setting up streams involves allocating the same size stream context array
3077  * for each endpoint and issuing a configure endpoint command for all endpoints.
3078  *
3079  * Don't allow the call to succeed if one endpoint only supports one stream
3080  * (which means it doesn't support streams at all).
3081  *
3082  * Drivers may get less stream IDs than they asked for, if the host controller
3083  * hardware or endpoints claim they can't support the number of requested
3084  * stream IDs.
3085  */
3086 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3087                 struct usb_host_endpoint **eps, unsigned int num_eps,
3088                 unsigned int num_streams, gfp_t mem_flags)
3089 {
3090         int i, ret;
3091         struct xhci_hcd *xhci;
3092         struct xhci_virt_device *vdev;
3093         struct xhci_command *config_cmd;
3094         struct xhci_input_control_ctx *ctrl_ctx;
3095         unsigned int ep_index;
3096         unsigned int num_stream_ctxs;
3097         unsigned long flags;
3098         u32 changed_ep_bitmask = 0;
3099
3100         if (!eps)
3101                 return -EINVAL;
3102
3103         /* Add one to the number of streams requested to account for
3104          * stream 0 that is reserved for xHCI usage.
3105          */
3106         num_streams += 1;
3107         xhci = hcd_to_xhci(hcd);
3108         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3109                         num_streams);
3110
3111         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3112         if (!config_cmd) {
3113                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3114                 return -ENOMEM;
3115         }
3116         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3117         if (!ctrl_ctx) {
3118                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3119                                 __func__);
3120                 xhci_free_command(xhci, config_cmd);
3121                 return -ENOMEM;
3122         }
3123
3124         /* Check to make sure all endpoints are not already configured for
3125          * streams.  While we're at it, find the maximum number of streams that
3126          * all the endpoints will support and check for duplicate endpoints.
3127          */
3128         spin_lock_irqsave(&xhci->lock, flags);
3129         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3130                         num_eps, &num_streams, &changed_ep_bitmask);
3131         if (ret < 0) {
3132                 xhci_free_command(xhci, config_cmd);
3133                 spin_unlock_irqrestore(&xhci->lock, flags);
3134                 return ret;
3135         }
3136         if (num_streams <= 1) {
3137                 xhci_warn(xhci, "WARN: endpoints can't handle "
3138                                 "more than one stream.\n");
3139                 xhci_free_command(xhci, config_cmd);
3140                 spin_unlock_irqrestore(&xhci->lock, flags);
3141                 return -EINVAL;
3142         }
3143         vdev = xhci->devs[udev->slot_id];
3144         /* Mark each endpoint as being in transition, so
3145          * xhci_urb_enqueue() will reject all URBs.
3146          */
3147         for (i = 0; i < num_eps; i++) {
3148                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3149                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3150         }
3151         spin_unlock_irqrestore(&xhci->lock, flags);
3152
3153         /* Setup internal data structures and allocate HW data structures for
3154          * streams (but don't install the HW structures in the input context
3155          * until we're sure all memory allocation succeeded).
3156          */
3157         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3158         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3159                         num_stream_ctxs, num_streams);
3160
3161         for (i = 0; i < num_eps; i++) {
3162                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3163                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3164                                 num_stream_ctxs,
3165                                 num_streams, mem_flags);
3166                 if (!vdev->eps[ep_index].stream_info)
3167                         goto cleanup;
3168                 /* Set maxPstreams in endpoint context and update deq ptr to
3169                  * point to stream context array. FIXME
3170                  */
3171         }
3172
3173         /* Set up the input context for a configure endpoint command. */
3174         for (i = 0; i < num_eps; i++) {
3175                 struct xhci_ep_ctx *ep_ctx;
3176
3177                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3178                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3179
3180                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3181                                 vdev->out_ctx, ep_index);
3182                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3183                                 vdev->eps[ep_index].stream_info);
3184         }
3185         /* Tell the HW to drop its old copy of the endpoint context info
3186          * and add the updated copy from the input context.
3187          */
3188         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3189                         vdev->out_ctx, ctrl_ctx,
3190                         changed_ep_bitmask, changed_ep_bitmask);
3191
3192         /* Issue and wait for the configure endpoint command */
3193         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3194                         false, false);
3195
3196         /* xHC rejected the configure endpoint command for some reason, so we
3197          * leave the old ring intact and free our internal streams data
3198          * structure.
3199          */
3200         if (ret < 0)
3201                 goto cleanup;
3202
3203         spin_lock_irqsave(&xhci->lock, flags);
3204         for (i = 0; i < num_eps; i++) {
3205                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3206                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3207                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3208                          udev->slot_id, ep_index);
3209                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3210         }
3211         xhci_free_command(xhci, config_cmd);
3212         spin_unlock_irqrestore(&xhci->lock, flags);
3213
3214         /* Subtract 1 for stream 0, which drivers can't use */
3215         return num_streams - 1;
3216
3217 cleanup:
3218         /* If it didn't work, free the streams! */
3219         for (i = 0; i < num_eps; i++) {
3220                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3221                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3222                 vdev->eps[ep_index].stream_info = NULL;
3223                 /* FIXME Unset maxPstreams in endpoint context and
3224                  * update deq ptr to point to normal string ring.
3225                  */
3226                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3227                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3228                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3229         }
3230         xhci_free_command(xhci, config_cmd);
3231         return -ENOMEM;
3232 }
3233
3234 /* Transition the endpoint from using streams to being a "normal" endpoint
3235  * without streams.
3236  *
3237  * Modify the endpoint context state, submit a configure endpoint command,
3238  * and free all endpoint rings for streams if that completes successfully.
3239  */
3240 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3241                 struct usb_host_endpoint **eps, unsigned int num_eps,
3242                 gfp_t mem_flags)
3243 {
3244         int i, ret;
3245         struct xhci_hcd *xhci;
3246         struct xhci_virt_device *vdev;
3247         struct xhci_command *command;
3248         struct xhci_input_control_ctx *ctrl_ctx;
3249         unsigned int ep_index;
3250         unsigned long flags;
3251         u32 changed_ep_bitmask;
3252
3253         xhci = hcd_to_xhci(hcd);
3254         vdev = xhci->devs[udev->slot_id];
3255
3256         /* Set up a configure endpoint command to remove the streams rings */
3257         spin_lock_irqsave(&xhci->lock, flags);
3258         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3259                         udev, eps, num_eps);
3260         if (changed_ep_bitmask == 0) {
3261                 spin_unlock_irqrestore(&xhci->lock, flags);
3262                 return -EINVAL;
3263         }
3264
3265         /* Use the xhci_command structure from the first endpoint.  We may have
3266          * allocated too many, but the driver may call xhci_free_streams() for
3267          * each endpoint it grouped into one call to xhci_alloc_streams().
3268          */
3269         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3270         command = vdev->eps[ep_index].stream_info->free_streams_command;
3271         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3272         if (!ctrl_ctx) {
3273                 spin_unlock_irqrestore(&xhci->lock, flags);
3274                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3275                                 __func__);
3276                 return -EINVAL;
3277         }
3278
3279         for (i = 0; i < num_eps; i++) {
3280                 struct xhci_ep_ctx *ep_ctx;
3281
3282                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3283                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3284                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3285                         EP_GETTING_NO_STREAMS;
3286
3287                 xhci_endpoint_copy(xhci, command->in_ctx,
3288                                 vdev->out_ctx, ep_index);
3289                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3290                                 &vdev->eps[ep_index]);
3291         }
3292         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3293                         vdev->out_ctx, ctrl_ctx,
3294                         changed_ep_bitmask, changed_ep_bitmask);
3295         spin_unlock_irqrestore(&xhci->lock, flags);
3296
3297         /* Issue and wait for the configure endpoint command,
3298          * which must succeed.
3299          */
3300         ret = xhci_configure_endpoint(xhci, udev, command,
3301                         false, true);
3302
3303         /* xHC rejected the configure endpoint command for some reason, so we
3304          * leave the streams rings intact.
3305          */
3306         if (ret < 0)
3307                 return ret;
3308
3309         spin_lock_irqsave(&xhci->lock, flags);
3310         for (i = 0; i < num_eps; i++) {
3311                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3312                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3313                 vdev->eps[ep_index].stream_info = NULL;
3314                 /* FIXME Unset maxPstreams in endpoint context and
3315                  * update deq ptr to point to normal string ring.
3316                  */
3317                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3318                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3319         }
3320         spin_unlock_irqrestore(&xhci->lock, flags);
3321
3322         return 0;
3323 }
3324
3325 /*
3326  * Deletes endpoint resources for endpoints that were active before a Reset
3327  * Device command, or a Disable Slot command.  The Reset Device command leaves
3328  * the control endpoint intact, whereas the Disable Slot command deletes it.
3329  *
3330  * Must be called with xhci->lock held.
3331  */
3332 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3333         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3334 {
3335         int i;
3336         unsigned int num_dropped_eps = 0;
3337         unsigned int drop_flags = 0;
3338
3339         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3340                 if (virt_dev->eps[i].ring) {
3341                         drop_flags |= 1 << i;
3342                         num_dropped_eps++;
3343                 }
3344         }
3345         xhci->num_active_eps -= num_dropped_eps;
3346         if (num_dropped_eps)
3347                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3348                                 "Dropped %u ep ctxs, flags = 0x%x, "
3349                                 "%u now active.",
3350                                 num_dropped_eps, drop_flags,
3351                                 xhci->num_active_eps);
3352 }
3353
3354 /*
3355  * This submits a Reset Device Command, which will set the device state to 0,
3356  * set the device address to 0, and disable all the endpoints except the default
3357  * control endpoint.  The USB core should come back and call
3358  * xhci_address_device(), and then re-set up the configuration.  If this is
3359  * called because of a usb_reset_and_verify_device(), then the old alternate
3360  * settings will be re-installed through the normal bandwidth allocation
3361  * functions.
3362  *
3363  * Wait for the Reset Device command to finish.  Remove all structures
3364  * associated with the endpoints that were disabled.  Clear the input device
3365  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3366  *
3367  * If the virt_dev to be reset does not exist or does not match the udev,
3368  * it means the device is lost, possibly due to the xHC restore error and
3369  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3370  * re-allocate the device.
3371  */
3372 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3373 {
3374         int ret, i;
3375         unsigned long flags;
3376         struct xhci_hcd *xhci;
3377         unsigned int slot_id;
3378         struct xhci_virt_device *virt_dev;
3379         struct xhci_command *reset_device_cmd;
3380         int timeleft;
3381         int last_freed_endpoint;
3382         struct xhci_slot_ctx *slot_ctx;
3383         int old_active_eps = 0;
3384
3385         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3386         if (ret <= 0)
3387                 return ret;
3388         xhci = hcd_to_xhci(hcd);
3389         slot_id = udev->slot_id;
3390         virt_dev = xhci->devs[slot_id];
3391         if (!virt_dev) {
3392                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3393                                 "not exist. Re-allocate the device\n", slot_id);
3394                 ret = xhci_alloc_dev(hcd, udev);
3395                 if (ret == 1)
3396                         return 0;
3397                 else
3398                         return -EINVAL;
3399         }
3400
3401         if (virt_dev->udev != udev) {
3402                 /* If the virt_dev and the udev does not match, this virt_dev
3403                  * may belong to another udev.
3404                  * Re-allocate the device.
3405                  */
3406                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3407                                 "not match the udev. Re-allocate the device\n",
3408                                 slot_id);
3409                 ret = xhci_alloc_dev(hcd, udev);
3410                 if (ret == 1)
3411                         return 0;
3412                 else
3413                         return -EINVAL;
3414         }
3415
3416         /* If device is not setup, there is no point in resetting it */
3417         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3418         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3419                                                 SLOT_STATE_DISABLED)
3420                 return 0;
3421
3422         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3423         /* Allocate the command structure that holds the struct completion.
3424          * Assume we're in process context, since the normal device reset
3425          * process has to wait for the device anyway.  Storage devices are
3426          * reset as part of error handling, so use GFP_NOIO instead of
3427          * GFP_KERNEL.
3428          */
3429         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3430         if (!reset_device_cmd) {
3431                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3432                 return -ENOMEM;
3433         }
3434
3435         /* Attempt to submit the Reset Device command to the command ring */
3436         spin_lock_irqsave(&xhci->lock, flags);
3437         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3438
3439         /* Enqueue pointer can be left pointing to the link TRB,
3440          * we must handle that
3441          */
3442         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3443                 reset_device_cmd->command_trb =
3444                         xhci->cmd_ring->enq_seg->next->trbs;
3445
3446         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3447         ret = xhci_queue_reset_device(xhci, slot_id);
3448         if (ret) {
3449                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3450                 list_del(&reset_device_cmd->cmd_list);
3451                 spin_unlock_irqrestore(&xhci->lock, flags);
3452                 goto command_cleanup;
3453         }
3454         xhci_ring_cmd_db(xhci);
3455         spin_unlock_irqrestore(&xhci->lock, flags);
3456
3457         /* Wait for the Reset Device command to finish */
3458         timeleft = wait_for_completion_interruptible_timeout(
3459                         reset_device_cmd->completion,
3460                         USB_CTRL_SET_TIMEOUT);
3461         if (timeleft <= 0) {
3462                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3463                                 timeleft == 0 ? "Timeout" : "Signal");
3464                 spin_lock_irqsave(&xhci->lock, flags);
3465                 /* The timeout might have raced with the event ring handler, so
3466                  * only delete from the list if the item isn't poisoned.
3467                  */
3468                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3469                         list_del(&reset_device_cmd->cmd_list);
3470                 spin_unlock_irqrestore(&xhci->lock, flags);
3471                 ret = -ETIME;
3472                 goto command_cleanup;
3473         }
3474
3475         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3476          * unless we tried to reset a slot ID that wasn't enabled,
3477          * or the device wasn't in the addressed or configured state.
3478          */
3479         ret = reset_device_cmd->status;
3480         switch (ret) {
3481         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3482         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3483                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3484                                 slot_id,
3485                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3486                 xhci_dbg(xhci, "Not freeing device rings.\n");
3487                 /* Don't treat this as an error.  May change my mind later. */
3488                 ret = 0;
3489                 goto command_cleanup;
3490         case COMP_SUCCESS:
3491                 xhci_dbg(xhci, "Successful reset device command.\n");
3492                 break;
3493         default:
3494                 if (xhci_is_vendor_info_code(xhci, ret))
3495                         break;
3496                 xhci_warn(xhci, "Unknown completion code %u for "
3497                                 "reset device command.\n", ret);
3498                 ret = -EINVAL;
3499                 goto command_cleanup;
3500         }
3501
3502         /* Free up host controller endpoint resources */
3503         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3504                 spin_lock_irqsave(&xhci->lock, flags);
3505                 /* Don't delete the default control endpoint resources */
3506                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3507                 spin_unlock_irqrestore(&xhci->lock, flags);
3508         }
3509
3510         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3511         last_freed_endpoint = 1;
3512         for (i = 1; i < 31; ++i) {
3513                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3514
3515                 if (ep->ep_state & EP_HAS_STREAMS) {
3516                         xhci_free_stream_info(xhci, ep->stream_info);
3517                         ep->stream_info = NULL;
3518                         ep->ep_state &= ~EP_HAS_STREAMS;
3519                 }
3520
3521                 if (ep->ring) {
3522                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3523                         last_freed_endpoint = i;
3524                 }
3525                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3526                         xhci_drop_ep_from_interval_table(xhci,
3527                                         &virt_dev->eps[i].bw_info,
3528                                         virt_dev->bw_table,
3529                                         udev,
3530                                         &virt_dev->eps[i],
3531                                         virt_dev->tt_info);
3532                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3533         }
3534         /* If necessary, update the number of active TTs on this root port */
3535         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3536
3537         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3538         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3539         ret = 0;
3540
3541 command_cleanup:
3542         xhci_free_command(xhci, reset_device_cmd);
3543         return ret;
3544 }
3545
3546 /*
3547  * At this point, the struct usb_device is about to go away, the device has
3548  * disconnected, and all traffic has been stopped and the endpoints have been
3549  * disabled.  Free any HC data structures associated with that device.
3550  */
3551 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3552 {
3553         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3554         struct xhci_virt_device *virt_dev;
3555         unsigned long flags;
3556         u32 state;
3557         int i, ret;
3558
3559         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3560         /* If the host is halted due to driver unload, we still need to free the
3561          * device.
3562          */
3563         if (ret <= 0 && ret != -ENODEV)
3564                 return;
3565
3566         virt_dev = xhci->devs[udev->slot_id];
3567
3568         /* Stop any wayward timer functions (which may grab the lock) */
3569         for (i = 0; i < 31; ++i) {
3570                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3571                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3572         }
3573
3574         if (udev->usb2_hw_lpm_enabled) {
3575                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3576                 udev->usb2_hw_lpm_enabled = 0;
3577         }
3578
3579         spin_lock_irqsave(&xhci->lock, flags);
3580         /* Don't disable the slot if the host controller is dead. */
3581         state = xhci_readl(xhci, &xhci->op_regs->status);
3582         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3583                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3584                 xhci_free_virt_device(xhci, udev->slot_id);
3585                 spin_unlock_irqrestore(&xhci->lock, flags);
3586                 return;
3587         }
3588
3589         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3590                 spin_unlock_irqrestore(&xhci->lock, flags);
3591                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3592                 return;
3593         }
3594         xhci_ring_cmd_db(xhci);
3595         spin_unlock_irqrestore(&xhci->lock, flags);
3596         /*
3597          * Event command completion handler will free any data structures
3598          * associated with the slot.  XXX Can free sleep?
3599          */
3600 }
3601
3602 /*
3603  * Checks if we have enough host controller resources for the default control
3604  * endpoint.
3605  *
3606  * Must be called with xhci->lock held.
3607  */
3608 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3609 {
3610         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3611                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3612                                 "Not enough ep ctxs: "
3613                                 "%u active, need to add 1, limit is %u.",
3614                                 xhci->num_active_eps, xhci->limit_active_eps);
3615                 return -ENOMEM;
3616         }
3617         xhci->num_active_eps += 1;
3618         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3619                         "Adding 1 ep ctx, %u now active.",
3620                         xhci->num_active_eps);
3621         return 0;
3622 }
3623
3624
3625 /*
3626  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3627  * timed out, or allocating memory failed.  Returns 1 on success.
3628  */
3629 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3630 {
3631         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3632         unsigned long flags;
3633         int timeleft;
3634         int ret;
3635         union xhci_trb *cmd_trb;
3636
3637         spin_lock_irqsave(&xhci->lock, flags);
3638         cmd_trb = xhci->cmd_ring->dequeue;
3639         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3640         if (ret) {
3641                 spin_unlock_irqrestore(&xhci->lock, flags);
3642                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3643                 return 0;
3644         }
3645         xhci_ring_cmd_db(xhci);
3646         spin_unlock_irqrestore(&xhci->lock, flags);
3647
3648         /* XXX: how much time for xHC slot assignment? */
3649         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3650                         XHCI_CMD_DEFAULT_TIMEOUT);
3651         if (timeleft <= 0) {
3652                 xhci_warn(xhci, "%s while waiting for a slot\n",
3653                                 timeleft == 0 ? "Timeout" : "Signal");
3654                 /* cancel the enable slot request */
3655                 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3656         }
3657
3658         if (!xhci->slot_id) {
3659                 xhci_err(xhci, "Error while assigning device slot ID\n");
3660                 return 0;
3661         }
3662
3663         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3664                 spin_lock_irqsave(&xhci->lock, flags);
3665                 ret = xhci_reserve_host_control_ep_resources(xhci);
3666                 if (ret) {
3667                         spin_unlock_irqrestore(&xhci->lock, flags);
3668                         xhci_warn(xhci, "Not enough host resources, "
3669                                         "active endpoint contexts = %u\n",
3670                                         xhci->num_active_eps);
3671                         goto disable_slot;
3672                 }
3673                 spin_unlock_irqrestore(&xhci->lock, flags);
3674         }
3675         /* Use GFP_NOIO, since this function can be called from
3676          * xhci_discover_or_reset_device(), which may be called as part of
3677          * mass storage driver error handling.
3678          */
3679         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3680                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3681                 goto disable_slot;
3682         }
3683         udev->slot_id = xhci->slot_id;
3684         /* Is this a LS or FS device under a HS hub? */
3685         /* Hub or peripherial? */
3686         return 1;
3687
3688 disable_slot:
3689         /* Disable slot, if we can do it without mem alloc */
3690         spin_lock_irqsave(&xhci->lock, flags);
3691         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3692                 xhci_ring_cmd_db(xhci);
3693         spin_unlock_irqrestore(&xhci->lock, flags);
3694         return 0;
3695 }
3696
3697 /*
3698  * Issue an Address Device command (which will issue a SetAddress request to
3699  * the device).
3700  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3701  * we should only issue and wait on one address command at the same time.
3702  *
3703  * We add one to the device address issued by the hardware because the USB core
3704  * uses address 1 for the root hubs (even though they're not really devices).
3705  */
3706 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3707 {
3708         unsigned long flags;
3709         int timeleft;
3710         struct xhci_virt_device *virt_dev;
3711         int ret = 0;
3712         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3713         struct xhci_slot_ctx *slot_ctx;
3714         struct xhci_input_control_ctx *ctrl_ctx;
3715         u64 temp_64;
3716         union xhci_trb *cmd_trb;
3717
3718         if (!udev->slot_id) {
3719                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3720                                 "Bad Slot ID %d", udev->slot_id);
3721                 return -EINVAL;
3722         }
3723
3724         virt_dev = xhci->devs[udev->slot_id];
3725
3726         if (WARN_ON(!virt_dev)) {
3727                 /*
3728                  * In plug/unplug torture test with an NEC controller,
3729                  * a zero-dereference was observed once due to virt_dev = 0.
3730                  * Print useful debug rather than crash if it is observed again!
3731                  */
3732                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3733                         udev->slot_id);
3734                 return -EINVAL;
3735         }
3736
3737         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3738         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3739         if (!ctrl_ctx) {
3740                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3741                                 __func__);
3742                 return -EINVAL;
3743         }
3744         /*
3745          * If this is the first Set Address since device plug-in or
3746          * virt_device realloaction after a resume with an xHCI power loss,
3747          * then set up the slot context.
3748          */
3749         if (!slot_ctx->dev_info)
3750                 xhci_setup_addressable_virt_dev(xhci, udev);
3751         /* Otherwise, update the control endpoint ring enqueue pointer. */
3752         else
3753                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3754         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3755         ctrl_ctx->drop_flags = 0;
3756
3757         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3758         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3759         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3760                                 slot_ctx->dev_info >> 27);
3761
3762         spin_lock_irqsave(&xhci->lock, flags);
3763         cmd_trb = xhci->cmd_ring->dequeue;
3764         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3765                                         udev->slot_id);
3766         if (ret) {
3767                 spin_unlock_irqrestore(&xhci->lock, flags);
3768                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3769                                 "FIXME: allocate a command ring segment");
3770                 return ret;
3771         }
3772         xhci_ring_cmd_db(xhci);
3773         spin_unlock_irqrestore(&xhci->lock, flags);
3774
3775         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3776         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3777                         XHCI_CMD_DEFAULT_TIMEOUT);
3778         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3779          * the SetAddress() "recovery interval" required by USB and aborting the
3780          * command on a timeout.
3781          */
3782         if (timeleft <= 0) {
3783                 xhci_warn(xhci, "%s while waiting for address device command\n",
3784                                 timeleft == 0 ? "Timeout" : "Signal");
3785                 /* cancel the address device command */
3786                 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3787                 if (ret < 0)
3788                         return ret;
3789                 return -ETIME;
3790         }
3791
3792         switch (virt_dev->cmd_status) {
3793         case COMP_CTX_STATE:
3794         case COMP_EBADSLT:
3795                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3796                                 udev->slot_id);
3797                 ret = -EINVAL;
3798                 break;
3799         case COMP_TX_ERR:
3800                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3801                 ret = -EPROTO;
3802                 break;
3803         case COMP_DEV_ERR:
3804                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3805                                 "device command.\n");
3806                 ret = -ENODEV;
3807                 break;
3808         case COMP_SUCCESS:
3809                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3810                                 "Successful Address Device command");
3811                 break;
3812         default:
3813                 xhci_err(xhci, "ERROR: unexpected command completion "
3814                                 "code 0x%x.\n", virt_dev->cmd_status);
3815                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3816                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3817                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3818                 ret = -EINVAL;
3819                 break;
3820         }
3821         if (ret) {
3822                 return ret;
3823         }
3824         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3825         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3826                         "Op regs DCBAA ptr = %#016llx", temp_64);
3827         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3828                 "Slot ID %d dcbaa entry @%p = %#016llx",
3829                 udev->slot_id,
3830                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3831                 (unsigned long long)
3832                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3833         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3834                         "Output Context DMA address = %#08llx",
3835                         (unsigned long long)virt_dev->out_ctx->dma);
3836         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3837         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3838         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3839                                 slot_ctx->dev_info >> 27);
3840         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3841         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3842         /*
3843          * USB core uses address 1 for the roothubs, so we add one to the
3844          * address given back to us by the HC.
3845          */
3846         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3847         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3848                                 slot_ctx->dev_info >> 27);
3849         /* Use kernel assigned address for devices; store xHC assigned
3850          * address locally. */
3851         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3852                 + 1;
3853         /* Zero the input context control for later use */
3854         ctrl_ctx->add_flags = 0;
3855         ctrl_ctx->drop_flags = 0;
3856
3857         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3858                         "Internal device address = %d", virt_dev->address);
3859
3860         return 0;
3861 }
3862
3863 /*
3864  * Transfer the port index into real index in the HW port status
3865  * registers. Caculate offset between the port's PORTSC register
3866  * and port status base. Divide the number of per port register
3867  * to get the real index. The raw port number bases 1.
3868  */
3869 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3870 {
3871         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3872         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3873         __le32 __iomem *addr;
3874         int raw_port;
3875
3876         if (hcd->speed != HCD_USB3)
3877                 addr = xhci->usb2_ports[port1 - 1];
3878         else
3879                 addr = xhci->usb3_ports[port1 - 1];
3880
3881         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3882         return raw_port;
3883 }
3884
3885 /*
3886  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3887  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3888  */
3889 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3890                         struct usb_device *udev, u16 max_exit_latency)
3891 {
3892         struct xhci_virt_device *virt_dev;
3893         struct xhci_command *command;
3894         struct xhci_input_control_ctx *ctrl_ctx;
3895         struct xhci_slot_ctx *slot_ctx;
3896         unsigned long flags;
3897         int ret;
3898
3899         spin_lock_irqsave(&xhci->lock, flags);
3900         if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3901                 spin_unlock_irqrestore(&xhci->lock, flags);
3902                 return 0;
3903         }
3904
3905         /* Attempt to issue an Evaluate Context command to change the MEL. */
3906         virt_dev = xhci->devs[udev->slot_id];
3907         command = xhci->lpm_command;
3908         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3909         if (!ctrl_ctx) {
3910                 spin_unlock_irqrestore(&xhci->lock, flags);
3911                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3912                                 __func__);
3913                 return -ENOMEM;
3914         }
3915
3916         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3917         spin_unlock_irqrestore(&xhci->lock, flags);
3918
3919         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3920         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3921         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3922         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3923
3924         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3925                         "Set up evaluate context for LPM MEL change.");
3926         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3927         xhci_dbg_ctx(xhci, command->in_ctx, 0);
3928
3929         /* Issue and wait for the evaluate context command. */
3930         ret = xhci_configure_endpoint(xhci, udev, command,
3931                         true, true);
3932         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3933         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3934
3935         if (!ret) {
3936                 spin_lock_irqsave(&xhci->lock, flags);
3937                 virt_dev->current_mel = max_exit_latency;
3938                 spin_unlock_irqrestore(&xhci->lock, flags);
3939         }
3940         return ret;
3941 }
3942
3943 #ifdef CONFIG_PM_RUNTIME
3944
3945 /* BESL to HIRD Encoding array for USB2 LPM */
3946 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3947         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3948
3949 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3950 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3951                                         struct usb_device *udev)
3952 {
3953         int u2del, besl, besl_host;
3954         int besl_device = 0;
3955         u32 field;
3956
3957         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3958         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3959
3960         if (field & USB_BESL_SUPPORT) {
3961                 for (besl_host = 0; besl_host < 16; besl_host++) {
3962                         if (xhci_besl_encoding[besl_host] >= u2del)
3963                                 break;
3964                 }
3965                 /* Use baseline BESL value as default */
3966                 if (field & USB_BESL_BASELINE_VALID)
3967                         besl_device = USB_GET_BESL_BASELINE(field);
3968                 else if (field & USB_BESL_DEEP_VALID)
3969                         besl_device = USB_GET_BESL_DEEP(field);
3970         } else {
3971                 if (u2del <= 50)
3972                         besl_host = 0;
3973                 else
3974                         besl_host = (u2del - 51) / 75 + 1;
3975         }
3976
3977         besl = besl_host + besl_device;
3978         if (besl > 15)
3979                 besl = 15;
3980
3981         return besl;
3982 }
3983
3984 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
3985 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
3986 {
3987         u32 field;
3988         int l1;
3989         int besld = 0;
3990         int hirdm = 0;
3991
3992         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3993
3994         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
3995         l1 = udev->l1_params.timeout / 256;
3996
3997         /* device has preferred BESLD */
3998         if (field & USB_BESL_DEEP_VALID) {
3999                 besld = USB_GET_BESL_DEEP(field);
4000                 hirdm = 1;
4001         }
4002
4003         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4004 }
4005
4006 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
4007                                         struct usb_device *udev)
4008 {
4009         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4010         struct dev_info *dev_info;
4011         __le32 __iomem  **port_array;
4012         __le32 __iomem  *addr, *pm_addr;
4013         u32             temp, dev_id;
4014         unsigned int    port_num;
4015         unsigned long   flags;
4016         int             hird;
4017         int             ret;
4018
4019         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4020                         !udev->lpm_capable)
4021                 return -EINVAL;
4022
4023         /* we only support lpm for non-hub device connected to root hub yet */
4024         if (!udev->parent || udev->parent->parent ||
4025                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4026                 return -EINVAL;
4027
4028         spin_lock_irqsave(&xhci->lock, flags);
4029
4030         /* Look for devices in lpm_failed_devs list */
4031         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
4032                         le16_to_cpu(udev->descriptor.idProduct);
4033         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
4034                 if (dev_info->dev_id == dev_id) {
4035                         ret = -EINVAL;
4036                         goto finish;
4037                 }
4038         }
4039
4040         port_array = xhci->usb2_ports;
4041         port_num = udev->portnum - 1;
4042
4043         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
4044                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
4045                 ret = -EINVAL;
4046                 goto finish;
4047         }
4048
4049         /*
4050          * Test USB 2.0 software LPM.
4051          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
4052          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
4053          * in the June 2011 errata release.
4054          */
4055         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
4056         /*
4057          * Set L1 Device Slot and HIRD/BESL.
4058          * Check device's USB 2.0 extension descriptor to determine whether
4059          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
4060          */
4061         pm_addr = port_array[port_num] + PORTPMSC;
4062         hird = xhci_calculate_hird_besl(xhci, udev);
4063         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
4064         xhci_writel(xhci, temp, pm_addr);
4065
4066         /* Set port link state to U2(L1) */
4067         addr = port_array[port_num];
4068         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
4069
4070         /* wait for ACK */
4071         spin_unlock_irqrestore(&xhci->lock, flags);
4072         msleep(10);
4073         spin_lock_irqsave(&xhci->lock, flags);
4074
4075         /* Check L1 Status */
4076         ret = xhci_handshake(xhci, pm_addr,
4077                         PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
4078         if (ret != -ETIMEDOUT) {
4079                 /* enter L1 successfully */
4080                 temp = xhci_readl(xhci, addr);
4081                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
4082                                 port_num, temp);
4083                 ret = 0;
4084         } else {
4085                 temp = xhci_readl(xhci, pm_addr);
4086                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
4087                                 port_num, temp & PORT_L1S_MASK);
4088                 ret = -EINVAL;
4089         }
4090
4091         /* Resume the port */
4092         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
4093
4094         spin_unlock_irqrestore(&xhci->lock, flags);
4095         msleep(10);
4096         spin_lock_irqsave(&xhci->lock, flags);
4097
4098         /* Clear PLC */
4099         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
4100
4101         /* Check PORTSC to make sure the device is in the right state */
4102         if (!ret) {
4103                 temp = xhci_readl(xhci, addr);
4104                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
4105                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
4106                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
4107                         xhci_dbg(xhci, "port L1 resume fail\n");
4108                         ret = -EINVAL;
4109                 }
4110         }
4111
4112         if (ret) {
4113                 /* Insert dev to lpm_failed_devs list */
4114                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
4115                                 "re-enumerate\n");
4116                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
4117                 if (!dev_info) {
4118                         ret = -ENOMEM;
4119                         goto finish;
4120                 }
4121                 dev_info->dev_id = dev_id;
4122                 INIT_LIST_HEAD(&dev_info->list);
4123                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
4124         } else {
4125                 xhci_ring_device(xhci, udev->slot_id);
4126         }
4127
4128 finish:
4129         spin_unlock_irqrestore(&xhci->lock, flags);
4130         return ret;
4131 }
4132
4133 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4134                         struct usb_device *udev, int enable)
4135 {
4136         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4137         __le32 __iomem  **port_array;
4138         __le32 __iomem  *pm_addr, *hlpm_addr;
4139         u32             pm_val, hlpm_val, field;
4140         unsigned int    port_num;
4141         unsigned long   flags;
4142         int             hird, exit_latency;
4143         int             ret;
4144
4145         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4146                         !udev->lpm_capable)
4147                 return -EPERM;
4148
4149         if (!udev->parent || udev->parent->parent ||
4150                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4151                 return -EPERM;
4152
4153         if (udev->usb2_hw_lpm_capable != 1)
4154                 return -EPERM;
4155
4156         spin_lock_irqsave(&xhci->lock, flags);
4157
4158         port_array = xhci->usb2_ports;
4159         port_num = udev->portnum - 1;
4160         pm_addr = port_array[port_num] + PORTPMSC;
4161         pm_val = xhci_readl(xhci, pm_addr);
4162         hlpm_addr = port_array[port_num] + PORTHLPMC;
4163         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4164
4165         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4166                         enable ? "enable" : "disable", port_num);
4167
4168         if (enable) {
4169                 /* Host supports BESL timeout instead of HIRD */
4170                 if (udev->usb2_hw_lpm_besl_capable) {
4171                         /* if device doesn't have a preferred BESL value use a
4172                          * default one which works with mixed HIRD and BESL
4173                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4174                          */
4175                         if ((field & USB_BESL_SUPPORT) &&
4176                             (field & USB_BESL_BASELINE_VALID))
4177                                 hird = USB_GET_BESL_BASELINE(field);
4178                         else
4179                                 hird = udev->l1_params.besl;
4180
4181                         exit_latency = xhci_besl_encoding[hird];
4182                         spin_unlock_irqrestore(&xhci->lock, flags);
4183
4184                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4185                          * input context for link powermanagement evaluate
4186                          * context commands. It is protected by hcd->bandwidth
4187                          * mutex and is shared by all devices. We need to set
4188                          * the max ext latency in USB 2 BESL LPM as well, so
4189                          * use the same mutex and xhci_change_max_exit_latency()
4190                          */
4191                         mutex_lock(hcd->bandwidth_mutex);
4192                         ret = xhci_change_max_exit_latency(xhci, udev,
4193                                                            exit_latency);
4194                         mutex_unlock(hcd->bandwidth_mutex);
4195
4196                         if (ret < 0)
4197                                 return ret;
4198                         spin_lock_irqsave(&xhci->lock, flags);
4199
4200                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4201                         xhci_writel(xhci, hlpm_val, hlpm_addr);
4202                         /* flush write */
4203                         xhci_readl(xhci, hlpm_addr);
4204                 } else {
4205                         hird = xhci_calculate_hird_besl(xhci, udev);
4206                 }
4207
4208                 pm_val &= ~PORT_HIRD_MASK;
4209                 pm_val |= PORT_HIRD(hird) | PORT_RWE;
4210                 xhci_writel(xhci, pm_val, pm_addr);
4211                 pm_val = xhci_readl(xhci, pm_addr);
4212                 pm_val |= PORT_HLE;
4213                 xhci_writel(xhci, pm_val, pm_addr);
4214                 /* flush write */
4215                 xhci_readl(xhci, pm_addr);
4216         } else {
4217                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4218                 xhci_writel(xhci, pm_val, pm_addr);
4219                 /* flush write */
4220                 xhci_readl(xhci, pm_addr);
4221                 if (udev->usb2_hw_lpm_besl_capable) {
4222                         spin_unlock_irqrestore(&xhci->lock, flags);
4223                         mutex_lock(hcd->bandwidth_mutex);
4224                         xhci_change_max_exit_latency(xhci, udev, 0);
4225                         mutex_unlock(hcd->bandwidth_mutex);
4226                         return 0;
4227                 }
4228         }
4229
4230         spin_unlock_irqrestore(&xhci->lock, flags);
4231         return 0;
4232 }
4233
4234 /* check if a usb2 port supports a given extened capability protocol
4235  * only USB2 ports extended protocol capability values are cached.
4236  * Return 1 if capability is supported
4237  */
4238 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4239                                            unsigned capability)
4240 {
4241         u32 port_offset, port_count;
4242         int i;
4243
4244         for (i = 0; i < xhci->num_ext_caps; i++) {
4245                 if (xhci->ext_caps[i] & capability) {
4246                         /* port offsets starts at 1 */
4247                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4248                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4249                         if (port >= port_offset &&
4250                             port < port_offset + port_count)
4251                                 return 1;
4252                 }
4253         }
4254         return 0;
4255 }
4256
4257 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4258 {
4259         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4260         int             ret;
4261         int             portnum = udev->portnum - 1;
4262
4263         ret = xhci_usb2_software_lpm_test(hcd, udev);
4264         if (!ret) {
4265                 xhci_dbg(xhci, "software LPM test succeed\n");
4266                 if (xhci->hw_lpm_support == 1 &&
4267                     xhci_check_usb2_port_capability(xhci, portnum, XHCI_HLC)) {
4268                         udev->usb2_hw_lpm_capable = 1;
4269                         udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4270                         udev->l1_params.besl = XHCI_DEFAULT_BESL;
4271                         if (xhci_check_usb2_port_capability(xhci, portnum,
4272                                                             XHCI_BLC))
4273                                 udev->usb2_hw_lpm_besl_capable = 1;
4274                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4275                         if (!ret)
4276                                 udev->usb2_hw_lpm_enabled = 1;
4277                 }
4278         }
4279
4280         return 0;
4281 }
4282
4283 #else
4284
4285 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4286                                 struct usb_device *udev, int enable)
4287 {
4288         return 0;
4289 }
4290
4291 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4292 {
4293         return 0;
4294 }
4295
4296 #endif /* CONFIG_PM_RUNTIME */
4297
4298 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4299
4300 #ifdef CONFIG_PM
4301 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4302 static unsigned long long xhci_service_interval_to_ns(
4303                 struct usb_endpoint_descriptor *desc)
4304 {
4305         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4306 }
4307
4308 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4309                 enum usb3_link_state state)
4310 {
4311         unsigned long long sel;
4312         unsigned long long pel;
4313         unsigned int max_sel_pel;
4314         char *state_name;
4315
4316         switch (state) {
4317         case USB3_LPM_U1:
4318                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4319                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4320                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4321                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4322                 state_name = "U1";
4323                 break;
4324         case USB3_LPM_U2:
4325                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4326                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4327                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4328                 state_name = "U2";
4329                 break;
4330         default:
4331                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4332                                 __func__);
4333                 return USB3_LPM_DISABLED;
4334         }
4335
4336         if (sel <= max_sel_pel && pel <= max_sel_pel)
4337                 return USB3_LPM_DEVICE_INITIATED;
4338
4339         if (sel > max_sel_pel)
4340                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4341                                 "due to long SEL %llu ms\n",
4342                                 state_name, sel);
4343         else
4344                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4345                                 "due to long PEL %llu ms\n",
4346                                 state_name, pel);
4347         return USB3_LPM_DISABLED;
4348 }
4349
4350 /* Returns the hub-encoded U1 timeout value.
4351  * The U1 timeout should be the maximum of the following values:
4352  *  - For control endpoints, U1 system exit latency (SEL) * 3
4353  *  - For bulk endpoints, U1 SEL * 5
4354  *  - For interrupt endpoints:
4355  *    - Notification EPs, U1 SEL * 3
4356  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4357  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4358  */
4359 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4360                 struct usb_endpoint_descriptor *desc)
4361 {
4362         unsigned long long timeout_ns;
4363         int ep_type;
4364         int intr_type;
4365
4366         ep_type = usb_endpoint_type(desc);
4367         switch (ep_type) {
4368         case USB_ENDPOINT_XFER_CONTROL:
4369                 timeout_ns = udev->u1_params.sel * 3;
4370                 break;
4371         case USB_ENDPOINT_XFER_BULK:
4372                 timeout_ns = udev->u1_params.sel * 5;
4373                 break;
4374         case USB_ENDPOINT_XFER_INT:
4375                 intr_type = usb_endpoint_interrupt_type(desc);
4376                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4377                         timeout_ns = udev->u1_params.sel * 3;
4378                         break;
4379                 }
4380                 /* Otherwise the calculation is the same as isoc eps */
4381         case USB_ENDPOINT_XFER_ISOC:
4382                 timeout_ns = xhci_service_interval_to_ns(desc);
4383                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4384                 if (timeout_ns < udev->u1_params.sel * 2)
4385                         timeout_ns = udev->u1_params.sel * 2;
4386                 break;
4387         default:
4388                 return 0;
4389         }
4390
4391         /* The U1 timeout is encoded in 1us intervals. */
4392         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4393         /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4394         if (timeout_ns == USB3_LPM_DISABLED)
4395                 timeout_ns++;
4396
4397         /* If the necessary timeout value is bigger than what we can set in the
4398          * USB 3.0 hub, we have to disable hub-initiated U1.
4399          */
4400         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4401                 return timeout_ns;
4402         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4403                         "due to long timeout %llu ms\n", timeout_ns);
4404         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4405 }
4406
4407 /* Returns the hub-encoded U2 timeout value.
4408  * The U2 timeout should be the maximum of:
4409  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4410  *  - largest bInterval of any active periodic endpoint (to avoid going
4411  *    into lower power link states between intervals).
4412  *  - the U2 Exit Latency of the device
4413  */
4414 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4415                 struct usb_endpoint_descriptor *desc)
4416 {
4417         unsigned long long timeout_ns;
4418         unsigned long long u2_del_ns;
4419
4420         timeout_ns = 10 * 1000 * 1000;
4421
4422         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4423                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4424                 timeout_ns = xhci_service_interval_to_ns(desc);
4425
4426         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4427         if (u2_del_ns > timeout_ns)
4428                 timeout_ns = u2_del_ns;
4429
4430         /* The U2 timeout is encoded in 256us intervals */
4431         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4432         /* If the necessary timeout value is bigger than what we can set in the
4433          * USB 3.0 hub, we have to disable hub-initiated U2.
4434          */
4435         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4436                 return timeout_ns;
4437         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4438                         "due to long timeout %llu ms\n", timeout_ns);
4439         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4440 }
4441
4442 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4443                 struct usb_device *udev,
4444                 struct usb_endpoint_descriptor *desc,
4445                 enum usb3_link_state state,
4446                 u16 *timeout)
4447 {
4448         if (state == USB3_LPM_U1) {
4449                 if (xhci->quirks & XHCI_INTEL_HOST)
4450                         return xhci_calculate_intel_u1_timeout(udev, desc);
4451         } else {
4452                 if (xhci->quirks & XHCI_INTEL_HOST)
4453                         return xhci_calculate_intel_u2_timeout(udev, desc);
4454         }
4455
4456         return USB3_LPM_DISABLED;
4457 }
4458
4459 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4460                 struct usb_device *udev,
4461                 struct usb_endpoint_descriptor *desc,
4462                 enum usb3_link_state state,
4463                 u16 *timeout)
4464 {
4465         u16 alt_timeout;
4466
4467         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4468                 desc, state, timeout);
4469
4470         /* If we found we can't enable hub-initiated LPM, or
4471          * the U1 or U2 exit latency was too high to allow
4472          * device-initiated LPM as well, just stop searching.
4473          */
4474         if (alt_timeout == USB3_LPM_DISABLED ||
4475                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4476                 *timeout = alt_timeout;
4477                 return -E2BIG;
4478         }
4479         if (alt_timeout > *timeout)
4480                 *timeout = alt_timeout;
4481         return 0;
4482 }
4483
4484 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4485                 struct usb_device *udev,
4486                 struct usb_host_interface *alt,
4487                 enum usb3_link_state state,
4488                 u16 *timeout)
4489 {
4490         int j;
4491
4492         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4493                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4494                                         &alt->endpoint[j].desc, state, timeout))
4495                         return -E2BIG;
4496                 continue;
4497         }
4498         return 0;
4499 }
4500
4501 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4502                 enum usb3_link_state state)
4503 {
4504         struct usb_device *parent;
4505         unsigned int num_hubs;
4506
4507         if (state == USB3_LPM_U2)
4508                 return 0;
4509
4510         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4511         for (parent = udev->parent, num_hubs = 0; parent->parent;
4512                         parent = parent->parent)
4513                 num_hubs++;
4514
4515         if (num_hubs < 2)
4516                 return 0;
4517
4518         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4519                         " below second-tier hub.\n");
4520         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4521                         "to decrease power consumption.\n");
4522         return -E2BIG;
4523 }
4524
4525 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4526                 struct usb_device *udev,
4527                 enum usb3_link_state state)
4528 {
4529         if (xhci->quirks & XHCI_INTEL_HOST)
4530                 return xhci_check_intel_tier_policy(udev, state);
4531         return -EINVAL;
4532 }
4533
4534 /* Returns the U1 or U2 timeout that should be enabled.
4535  * If the tier check or timeout setting functions return with a non-zero exit
4536  * code, that means the timeout value has been finalized and we shouldn't look
4537  * at any more endpoints.
4538  */
4539 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4540                         struct usb_device *udev, enum usb3_link_state state)
4541 {
4542         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4543         struct usb_host_config *config;
4544         char *state_name;
4545         int i;
4546         u16 timeout = USB3_LPM_DISABLED;
4547
4548         if (state == USB3_LPM_U1)
4549                 state_name = "U1";
4550         else if (state == USB3_LPM_U2)
4551                 state_name = "U2";
4552         else {
4553                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4554                                 state);
4555                 return timeout;
4556         }
4557
4558         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4559                 return timeout;
4560
4561         /* Gather some information about the currently installed configuration
4562          * and alternate interface settings.
4563          */
4564         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4565                         state, &timeout))
4566                 return timeout;
4567
4568         config = udev->actconfig;
4569         if (!config)
4570                 return timeout;
4571
4572         for (i = 0; i < USB_MAXINTERFACES; i++) {
4573                 struct usb_driver *driver;
4574                 struct usb_interface *intf = config->interface[i];
4575
4576                 if (!intf)
4577                         continue;
4578
4579                 /* Check if any currently bound drivers want hub-initiated LPM
4580                  * disabled.
4581                  */
4582                 if (intf->dev.driver) {
4583                         driver = to_usb_driver(intf->dev.driver);
4584                         if (driver && driver->disable_hub_initiated_lpm) {
4585                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4586                                                 "at request of driver %s\n",
4587                                                 state_name, driver->name);
4588                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4589                         }
4590                 }
4591
4592                 /* Not sure how this could happen... */
4593                 if (!intf->cur_altsetting)
4594                         continue;
4595
4596                 if (xhci_update_timeout_for_interface(xhci, udev,
4597                                         intf->cur_altsetting,
4598                                         state, &timeout))
4599                         return timeout;
4600         }
4601         return timeout;
4602 }
4603
4604 static int calculate_max_exit_latency(struct usb_device *udev,
4605                 enum usb3_link_state state_changed,
4606                 u16 hub_encoded_timeout)
4607 {
4608         unsigned long long u1_mel_us = 0;
4609         unsigned long long u2_mel_us = 0;
4610         unsigned long long mel_us = 0;
4611         bool disabling_u1;
4612         bool disabling_u2;
4613         bool enabling_u1;
4614         bool enabling_u2;
4615
4616         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4617                         hub_encoded_timeout == USB3_LPM_DISABLED);
4618         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4619                         hub_encoded_timeout == USB3_LPM_DISABLED);
4620
4621         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4622                         hub_encoded_timeout != USB3_LPM_DISABLED);
4623         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4624                         hub_encoded_timeout != USB3_LPM_DISABLED);
4625
4626         /* If U1 was already enabled and we're not disabling it,
4627          * or we're going to enable U1, account for the U1 max exit latency.
4628          */
4629         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4630                         enabling_u1)
4631                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4632         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4633                         enabling_u2)
4634                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4635
4636         if (u1_mel_us > u2_mel_us)
4637                 mel_us = u1_mel_us;
4638         else
4639                 mel_us = u2_mel_us;
4640         /* xHCI host controller max exit latency field is only 16 bits wide. */
4641         if (mel_us > MAX_EXIT) {
4642                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4643                                 "is too big.\n", mel_us);
4644                 return -E2BIG;
4645         }
4646         return mel_us;
4647 }
4648
4649 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4650 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4651                         struct usb_device *udev, enum usb3_link_state state)
4652 {
4653         struct xhci_hcd *xhci;
4654         u16 hub_encoded_timeout;
4655         int mel;
4656         int ret;
4657
4658         xhci = hcd_to_xhci(hcd);
4659         /* The LPM timeout values are pretty host-controller specific, so don't
4660          * enable hub-initiated timeouts unless the vendor has provided
4661          * information about their timeout algorithm.
4662          */
4663         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4664                         !xhci->devs[udev->slot_id])
4665                 return USB3_LPM_DISABLED;
4666
4667         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4668         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4669         if (mel < 0) {
4670                 /* Max Exit Latency is too big, disable LPM. */
4671                 hub_encoded_timeout = USB3_LPM_DISABLED;
4672                 mel = 0;
4673         }
4674
4675         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4676         if (ret)
4677                 return ret;
4678         return hub_encoded_timeout;
4679 }
4680
4681 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4682                         struct usb_device *udev, enum usb3_link_state state)
4683 {
4684         struct xhci_hcd *xhci;
4685         u16 mel;
4686         int ret;
4687
4688         xhci = hcd_to_xhci(hcd);
4689         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4690                         !xhci->devs[udev->slot_id])
4691                 return 0;
4692
4693         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4694         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4695         if (ret)
4696                 return ret;
4697         return 0;
4698 }
4699 #else /* CONFIG_PM */
4700
4701 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4702                         struct usb_device *udev, enum usb3_link_state state)
4703 {
4704         return USB3_LPM_DISABLED;
4705 }
4706
4707 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4708                         struct usb_device *udev, enum usb3_link_state state)
4709 {
4710         return 0;
4711 }
4712 #endif  /* CONFIG_PM */
4713
4714 /*-------------------------------------------------------------------------*/
4715
4716 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4717  * internal data structures for the device.
4718  */
4719 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4720                         struct usb_tt *tt, gfp_t mem_flags)
4721 {
4722         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4723         struct xhci_virt_device *vdev;
4724         struct xhci_command *config_cmd;
4725         struct xhci_input_control_ctx *ctrl_ctx;
4726         struct xhci_slot_ctx *slot_ctx;
4727         unsigned long flags;
4728         unsigned think_time;
4729         int ret;
4730
4731         /* Ignore root hubs */
4732         if (!hdev->parent)
4733                 return 0;
4734
4735         vdev = xhci->devs[hdev->slot_id];
4736         if (!vdev) {
4737                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4738                 return -EINVAL;
4739         }
4740         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4741         if (!config_cmd) {
4742                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4743                 return -ENOMEM;
4744         }
4745         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4746         if (!ctrl_ctx) {
4747                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4748                                 __func__);
4749                 xhci_free_command(xhci, config_cmd);
4750                 return -ENOMEM;
4751         }
4752
4753         spin_lock_irqsave(&xhci->lock, flags);
4754         if (hdev->speed == USB_SPEED_HIGH &&
4755                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4756                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4757                 xhci_free_command(xhci, config_cmd);
4758                 spin_unlock_irqrestore(&xhci->lock, flags);
4759                 return -ENOMEM;
4760         }
4761
4762         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4763         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4764         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4765         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4766         if (tt->multi)
4767                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4768         if (xhci->hci_version > 0x95) {
4769                 xhci_dbg(xhci, "xHCI version %x needs hub "
4770                                 "TT think time and number of ports\n",
4771                                 (unsigned int) xhci->hci_version);
4772                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4773                 /* Set TT think time - convert from ns to FS bit times.
4774                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4775                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4776                  *
4777                  * xHCI 1.0: this field shall be 0 if the device is not a
4778                  * High-spped hub.
4779                  */
4780                 think_time = tt->think_time;
4781                 if (think_time != 0)
4782                         think_time = (think_time / 666) - 1;
4783                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4784                         slot_ctx->tt_info |=
4785                                 cpu_to_le32(TT_THINK_TIME(think_time));
4786         } else {
4787                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4788                                 "TT think time or number of ports\n",
4789                                 (unsigned int) xhci->hci_version);
4790         }
4791         slot_ctx->dev_state = 0;
4792         spin_unlock_irqrestore(&xhci->lock, flags);
4793
4794         xhci_dbg(xhci, "Set up %s for hub device.\n",
4795                         (xhci->hci_version > 0x95) ?
4796                         "configure endpoint" : "evaluate context");
4797         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4798         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4799
4800         /* Issue and wait for the configure endpoint or
4801          * evaluate context command.
4802          */
4803         if (xhci->hci_version > 0x95)
4804                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4805                                 false, false);
4806         else
4807                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4808                                 true, false);
4809
4810         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4811         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4812
4813         xhci_free_command(xhci, config_cmd);
4814         return ret;
4815 }
4816
4817 int xhci_get_frame(struct usb_hcd *hcd)
4818 {
4819         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4820         /* EHCI mods by the periodic size.  Why? */
4821         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4822 }
4823
4824 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4825 {
4826         struct xhci_hcd         *xhci;
4827         struct device           *dev = hcd->self.controller;
4828         int                     retval;
4829
4830         /* Accept arbitrarily long scatter-gather lists */
4831         hcd->self.sg_tablesize = ~0;
4832
4833         /* support to build packet from discontinuous buffers */
4834         hcd->self.no_sg_constraint = 1;
4835
4836         /* XHCI controllers don't stop the ep queue on short packets :| */
4837         hcd->self.no_stop_on_short = 1;
4838
4839         if (usb_hcd_is_primary_hcd(hcd)) {
4840                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4841                 if (!xhci)
4842                         return -ENOMEM;
4843                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4844                 xhci->main_hcd = hcd;
4845                 /* Mark the first roothub as being USB 2.0.
4846                  * The xHCI driver will register the USB 3.0 roothub.
4847                  */
4848                 hcd->speed = HCD_USB2;
4849                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4850                 /*
4851                  * USB 2.0 roothub under xHCI has an integrated TT,
4852                  * (rate matching hub) as opposed to having an OHCI/UHCI
4853                  * companion controller.
4854                  */
4855                 hcd->has_tt = 1;
4856         } else {
4857                 /* xHCI private pointer was set in xhci_pci_probe for the second
4858                  * registered roothub.
4859                  */
4860                 return 0;
4861         }
4862
4863         xhci->cap_regs = hcd->regs;
4864         xhci->op_regs = hcd->regs +
4865                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4866         xhci->run_regs = hcd->regs +
4867                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4868         /* Cache read-only capability registers */
4869         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4870         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4871         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4872         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4873         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4874         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4875         xhci_print_registers(xhci);
4876
4877         get_quirks(dev, xhci);
4878
4879         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4880          * success event after a short transfer. This quirk will ignore such
4881          * spurious event.
4882          */
4883         if (xhci->hci_version > 0x96)
4884                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4885
4886         /* Make sure the HC is halted. */
4887         retval = xhci_halt(xhci);
4888         if (retval)
4889                 goto error;
4890
4891         xhci_dbg(xhci, "Resetting HCD\n");
4892         /* Reset the internal HC memory state and registers. */
4893         retval = xhci_reset(xhci);
4894         if (retval)
4895                 goto error;
4896         xhci_dbg(xhci, "Reset complete\n");
4897
4898         /* Set dma_mask and coherent_dma_mask to 64-bits,
4899          * if xHC supports 64-bit addressing */
4900         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4901                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4902                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4903                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4904         }
4905
4906         xhci_dbg(xhci, "Calling HCD init\n");
4907         /* Initialize HCD and host controller data structures. */
4908         retval = xhci_init(hcd);
4909         if (retval)
4910                 goto error;
4911         xhci_dbg(xhci, "Called HCD init\n");
4912         return 0;
4913 error:
4914         kfree(xhci);
4915         return retval;
4916 }
4917
4918 MODULE_DESCRIPTION(DRIVER_DESC);
4919 MODULE_AUTHOR(DRIVER_AUTHOR);
4920 MODULE_LICENSE("GPL");
4921
4922 static int __init xhci_hcd_init(void)
4923 {
4924         int retval;
4925
4926         retval = xhci_register_pci();
4927         if (retval < 0) {
4928                 pr_debug("Problem registering PCI driver.\n");
4929                 return retval;
4930         }
4931         retval = xhci_register_plat();
4932         if (retval < 0) {
4933                 pr_debug("Problem registering platform driver.\n");
4934                 goto unreg_pci;
4935         }
4936         /*
4937          * Check the compiler generated sizes of structures that must be laid
4938          * out in specific ways for hardware access.
4939          */
4940         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4941         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4942         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4943         /* xhci_device_control has eight fields, and also
4944          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4945          */
4946         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4947         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4948         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4949         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4950         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4951         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4952         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4953         return 0;
4954 unreg_pci:
4955         xhci_unregister_pci();
4956         return retval;
4957 }
4958 module_init(xhci_hcd_init);
4959
4960 static void __exit xhci_hcd_cleanup(void)
4961 {
4962         xhci_unregister_pci();
4963         xhci_unregister_plat();
4964 }
4965 module_exit(xhci_hcd_cleanup);