f68bc15d21e8a0aef7244d6e6011f4650a9eaad6
[firefly-linux-kernel-4.4.55.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29
30 #include "xhci.h"
31
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55                       u32 mask, u32 done, int usec)
56 {
57         u32     result;
58
59         do {
60                 result = xhci_readl(xhci, ptr);
61                 if (result == ~(u32)0)          /* card removed */
62                         return -ENODEV;
63                 result &= mask;
64                 if (result == done)
65                         return 0;
66                 udelay(1);
67                 usec--;
68         } while (usec > 0);
69         return -ETIMEDOUT;
70 }
71
72 /*
73  * Disable interrupts and begin the xHCI halting process.
74  */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77         u32 halted;
78         u32 cmd;
79         u32 mask;
80
81         mask = ~(XHCI_IRQS);
82         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83         if (!halted)
84                 mask &= ~CMD_RUN;
85
86         cmd = xhci_readl(xhci, &xhci->op_regs->command);
87         cmd &= mask;
88         xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90
91 /*
92  * Force HC into halt state.
93  *
94  * Disable any IRQs and clear the run/stop bit.
95  * HC will complete any current and actively pipelined transactions, and
96  * should halt within 16 ms of the run/stop bit being cleared.
97  * Read HC Halted bit in the status register to see when the HC is finished.
98  */
99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101         int ret;
102         xhci_dbg(xhci, "// Halt the HC\n");
103         xhci_quiesce(xhci);
104
105         ret = handshake(xhci, &xhci->op_regs->status,
106                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107         if (!ret)
108                 xhci->xhc_state |= XHCI_STATE_HALTED;
109         else
110                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
111                                 XHCI_MAX_HALT_USEC);
112         return ret;
113 }
114
115 /*
116  * Set the run bit and wait for the host to be running.
117  */
118 static int xhci_start(struct xhci_hcd *xhci)
119 {
120         u32 temp;
121         int ret;
122
123         temp = xhci_readl(xhci, &xhci->op_regs->command);
124         temp |= (CMD_RUN);
125         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
126                         temp);
127         xhci_writel(xhci, temp, &xhci->op_regs->command);
128
129         /*
130          * Wait for the HCHalted Status bit to be 0 to indicate the host is
131          * running.
132          */
133         ret = handshake(xhci, &xhci->op_regs->status,
134                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
135         if (ret == -ETIMEDOUT)
136                 xhci_err(xhci, "Host took too long to start, "
137                                 "waited %u microseconds.\n",
138                                 XHCI_MAX_HALT_USEC);
139         if (!ret)
140                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
141         return ret;
142 }
143
144 /*
145  * Reset a halted HC.
146  *
147  * This resets pipelines, timers, counters, state machines, etc.
148  * Transactions will be terminated immediately, and operational registers
149  * will be set to their defaults.
150  */
151 int xhci_reset(struct xhci_hcd *xhci)
152 {
153         u32 command;
154         u32 state;
155         int ret;
156
157         state = xhci_readl(xhci, &xhci->op_regs->status);
158         if ((state & STS_HALT) == 0) {
159                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
160                 return 0;
161         }
162
163         xhci_dbg(xhci, "// Reset the HC\n");
164         command = xhci_readl(xhci, &xhci->op_regs->command);
165         command |= CMD_RESET;
166         xhci_writel(xhci, command, &xhci->op_regs->command);
167
168         ret = handshake(xhci, &xhci->op_regs->command,
169                         CMD_RESET, 0, 250 * 1000);
170         if (ret)
171                 return ret;
172
173         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
174         /*
175          * xHCI cannot write to any doorbells or operational registers other
176          * than status until the "Controller Not Ready" flag is cleared.
177          */
178         return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
179 }
180
181 #ifdef CONFIG_PCI
182 static int xhci_free_msi(struct xhci_hcd *xhci)
183 {
184         int i;
185
186         if (!xhci->msix_entries)
187                 return -EINVAL;
188
189         for (i = 0; i < xhci->msix_count; i++)
190                 if (xhci->msix_entries[i].vector)
191                         free_irq(xhci->msix_entries[i].vector,
192                                         xhci_to_hcd(xhci));
193         return 0;
194 }
195
196 /*
197  * Set up MSI
198  */
199 static int xhci_setup_msi(struct xhci_hcd *xhci)
200 {
201         int ret;
202         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
203
204         ret = pci_enable_msi(pdev);
205         if (ret) {
206                 xhci_dbg(xhci, "failed to allocate MSI entry\n");
207                 return ret;
208         }
209
210         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
211                                 0, "xhci_hcd", xhci_to_hcd(xhci));
212         if (ret) {
213                 xhci_dbg(xhci, "disable MSI interrupt\n");
214                 pci_disable_msi(pdev);
215         }
216
217         return ret;
218 }
219
220 /*
221  * Free IRQs
222  * free all IRQs request
223  */
224 static void xhci_free_irq(struct xhci_hcd *xhci)
225 {
226         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
227         int ret;
228
229         /* return if using legacy interrupt */
230         if (xhci_to_hcd(xhci)->irq > 0)
231                 return;
232
233         ret = xhci_free_msi(xhci);
234         if (!ret)
235                 return;
236         if (pdev->irq > 0)
237                 free_irq(pdev->irq, xhci_to_hcd(xhci));
238
239         return;
240 }
241
242 /*
243  * Set up MSI-X
244  */
245 static int xhci_setup_msix(struct xhci_hcd *xhci)
246 {
247         int i, ret = 0;
248         struct usb_hcd *hcd = xhci_to_hcd(xhci);
249         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
250
251         /*
252          * calculate number of msi-x vectors supported.
253          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
254          *   with max number of interrupters based on the xhci HCSPARAMS1.
255          * - num_online_cpus: maximum msi-x vectors per CPUs core.
256          *   Add additional 1 vector to ensure always available interrupt.
257          */
258         xhci->msix_count = min(num_online_cpus() + 1,
259                                 HCS_MAX_INTRS(xhci->hcs_params1));
260
261         xhci->msix_entries =
262                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
263                                 GFP_KERNEL);
264         if (!xhci->msix_entries) {
265                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
266                 return -ENOMEM;
267         }
268
269         for (i = 0; i < xhci->msix_count; i++) {
270                 xhci->msix_entries[i].entry = i;
271                 xhci->msix_entries[i].vector = 0;
272         }
273
274         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
275         if (ret) {
276                 xhci_dbg(xhci, "Failed to enable MSI-X\n");
277                 goto free_entries;
278         }
279
280         for (i = 0; i < xhci->msix_count; i++) {
281                 ret = request_irq(xhci->msix_entries[i].vector,
282                                 (irq_handler_t)xhci_msi_irq,
283                                 0, "xhci_hcd", xhci_to_hcd(xhci));
284                 if (ret)
285                         goto disable_msix;
286         }
287
288         hcd->msix_enabled = 1;
289         return ret;
290
291 disable_msix:
292         xhci_dbg(xhci, "disable MSI-X interrupt\n");
293         xhci_free_irq(xhci);
294         pci_disable_msix(pdev);
295 free_entries:
296         kfree(xhci->msix_entries);
297         xhci->msix_entries = NULL;
298         return ret;
299 }
300
301 /* Free any IRQs and disable MSI-X */
302 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
303 {
304         struct usb_hcd *hcd = xhci_to_hcd(xhci);
305         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
306
307         xhci_free_irq(xhci);
308
309         if (xhci->msix_entries) {
310                 pci_disable_msix(pdev);
311                 kfree(xhci->msix_entries);
312                 xhci->msix_entries = NULL;
313         } else {
314                 pci_disable_msi(pdev);
315         }
316
317         hcd->msix_enabled = 0;
318         return;
319 }
320
321 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
322 {
323         int i;
324
325         if (xhci->msix_entries) {
326                 for (i = 0; i < xhci->msix_count; i++)
327                         synchronize_irq(xhci->msix_entries[i].vector);
328         }
329 }
330
331 static int xhci_try_enable_msi(struct usb_hcd *hcd)
332 {
333         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
334         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
335         int ret;
336
337         /*
338          * Some Fresco Logic host controllers advertise MSI, but fail to
339          * generate interrupts.  Don't even try to enable MSI.
340          */
341         if (xhci->quirks & XHCI_BROKEN_MSI)
342                 return 0;
343
344         /* unregister the legacy interrupt */
345         if (hcd->irq)
346                 free_irq(hcd->irq, hcd);
347         hcd->irq = 0;
348
349         ret = xhci_setup_msix(xhci);
350         if (ret)
351                 /* fall back to msi*/
352                 ret = xhci_setup_msi(xhci);
353
354         if (!ret)
355                 /* hcd->irq is 0, we have MSI */
356                 return 0;
357
358         if (!pdev->irq) {
359                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
360                 return -EINVAL;
361         }
362
363         /* fall back to legacy interrupt*/
364         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
365                         hcd->irq_descr, hcd);
366         if (ret) {
367                 xhci_err(xhci, "request interrupt %d failed\n",
368                                 pdev->irq);
369                 return ret;
370         }
371         hcd->irq = pdev->irq;
372         return 0;
373 }
374
375 #else
376
377 static int xhci_try_enable_msi(struct usb_hcd *hcd)
378 {
379         return 0;
380 }
381
382 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
383 {
384 }
385
386 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
387 {
388 }
389
390 #endif
391
392 /*
393  * Initialize memory for HCD and xHC (one-time init).
394  *
395  * Program the PAGESIZE register, initialize the device context array, create
396  * device contexts (?), set up a command ring segment (or two?), create event
397  * ring (one for now).
398  */
399 int xhci_init(struct usb_hcd *hcd)
400 {
401         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
402         int retval = 0;
403
404         xhci_dbg(xhci, "xhci_init\n");
405         spin_lock_init(&xhci->lock);
406         if (xhci->hci_version == 0x95 && link_quirk) {
407                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
408                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
409         } else {
410                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
411         }
412         retval = xhci_mem_init(xhci, GFP_KERNEL);
413         xhci_dbg(xhci, "Finished xhci_init\n");
414
415         return retval;
416 }
417
418 /*-------------------------------------------------------------------------*/
419
420
421 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
422 static void xhci_event_ring_work(unsigned long arg)
423 {
424         unsigned long flags;
425         int temp;
426         u64 temp_64;
427         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
428         int i, j;
429
430         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
431
432         spin_lock_irqsave(&xhci->lock, flags);
433         temp = xhci_readl(xhci, &xhci->op_regs->status);
434         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
435         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
436                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
437                 xhci_dbg(xhci, "HW died, polling stopped.\n");
438                 spin_unlock_irqrestore(&xhci->lock, flags);
439                 return;
440         }
441
442         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
443         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
444         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
445         xhci->error_bitmask = 0;
446         xhci_dbg(xhci, "Event ring:\n");
447         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
448         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
449         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
450         temp_64 &= ~ERST_PTR_MASK;
451         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
452         xhci_dbg(xhci, "Command ring:\n");
453         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
454         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
455         xhci_dbg_cmd_ptrs(xhci);
456         for (i = 0; i < MAX_HC_SLOTS; ++i) {
457                 if (!xhci->devs[i])
458                         continue;
459                 for (j = 0; j < 31; ++j) {
460                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
461                 }
462         }
463         spin_unlock_irqrestore(&xhci->lock, flags);
464
465         if (!xhci->zombie)
466                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
467         else
468                 xhci_dbg(xhci, "Quit polling the event ring.\n");
469 }
470 #endif
471
472 static int xhci_run_finished(struct xhci_hcd *xhci)
473 {
474         if (xhci_start(xhci)) {
475                 xhci_halt(xhci);
476                 return -ENODEV;
477         }
478         xhci->shared_hcd->state = HC_STATE_RUNNING;
479
480         if (xhci->quirks & XHCI_NEC_HOST)
481                 xhci_ring_cmd_db(xhci);
482
483         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
484         return 0;
485 }
486
487 /*
488  * Start the HC after it was halted.
489  *
490  * This function is called by the USB core when the HC driver is added.
491  * Its opposite is xhci_stop().
492  *
493  * xhci_init() must be called once before this function can be called.
494  * Reset the HC, enable device slot contexts, program DCBAAP, and
495  * set command ring pointer and event ring pointer.
496  *
497  * Setup MSI-X vectors and enable interrupts.
498  */
499 int xhci_run(struct usb_hcd *hcd)
500 {
501         u32 temp;
502         u64 temp_64;
503         int ret;
504         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
505
506         /* Start the xHCI host controller running only after the USB 2.0 roothub
507          * is setup.
508          */
509
510         hcd->uses_new_polling = 1;
511         if (!usb_hcd_is_primary_hcd(hcd))
512                 return xhci_run_finished(xhci);
513
514         xhci_dbg(xhci, "xhci_run\n");
515
516         ret = xhci_try_enable_msi(hcd);
517         if (ret)
518                 return ret;
519
520 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
521         init_timer(&xhci->event_ring_timer);
522         xhci->event_ring_timer.data = (unsigned long) xhci;
523         xhci->event_ring_timer.function = xhci_event_ring_work;
524         /* Poll the event ring */
525         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
526         xhci->zombie = 0;
527         xhci_dbg(xhci, "Setting event ring polling timer\n");
528         add_timer(&xhci->event_ring_timer);
529 #endif
530
531         xhci_dbg(xhci, "Command ring memory map follows:\n");
532         xhci_debug_ring(xhci, xhci->cmd_ring);
533         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
534         xhci_dbg_cmd_ptrs(xhci);
535
536         xhci_dbg(xhci, "ERST memory map follows:\n");
537         xhci_dbg_erst(xhci, &xhci->erst);
538         xhci_dbg(xhci, "Event ring:\n");
539         xhci_debug_ring(xhci, xhci->event_ring);
540         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
541         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
542         temp_64 &= ~ERST_PTR_MASK;
543         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
544
545         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
546         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
547         temp &= ~ER_IRQ_INTERVAL_MASK;
548         temp |= (u32) 160;
549         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
550
551         /* Set the HCD state before we enable the irqs */
552         temp = xhci_readl(xhci, &xhci->op_regs->command);
553         temp |= (CMD_EIE);
554         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
555                         temp);
556         xhci_writel(xhci, temp, &xhci->op_regs->command);
557
558         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
559         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
560                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
561         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
562                         &xhci->ir_set->irq_pending);
563         xhci_print_ir_set(xhci, 0);
564
565         if (xhci->quirks & XHCI_NEC_HOST)
566                 xhci_queue_vendor_command(xhci, 0, 0, 0,
567                                 TRB_TYPE(TRB_NEC_GET_FW));
568
569         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
570         return 0;
571 }
572
573 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
574 {
575         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
576
577         spin_lock_irq(&xhci->lock);
578         xhci_halt(xhci);
579
580         /* The shared_hcd is going to be deallocated shortly (the USB core only
581          * calls this function when allocation fails in usb_add_hcd(), or
582          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
583          */
584         xhci->shared_hcd = NULL;
585         spin_unlock_irq(&xhci->lock);
586 }
587
588 /*
589  * Stop xHCI driver.
590  *
591  * This function is called by the USB core when the HC driver is removed.
592  * Its opposite is xhci_run().
593  *
594  * Disable device contexts, disable IRQs, and quiesce the HC.
595  * Reset the HC, finish any completed transactions, and cleanup memory.
596  */
597 void xhci_stop(struct usb_hcd *hcd)
598 {
599         u32 temp;
600         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
601
602         if (!usb_hcd_is_primary_hcd(hcd)) {
603                 xhci_only_stop_hcd(xhci->shared_hcd);
604                 return;
605         }
606
607         spin_lock_irq(&xhci->lock);
608         /* Make sure the xHC is halted for a USB3 roothub
609          * (xhci_stop() could be called as part of failed init).
610          */
611         xhci_halt(xhci);
612         xhci_reset(xhci);
613         spin_unlock_irq(&xhci->lock);
614
615         xhci_cleanup_msix(xhci);
616
617 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
618         /* Tell the event ring poll function not to reschedule */
619         xhci->zombie = 1;
620         del_timer_sync(&xhci->event_ring_timer);
621 #endif
622
623         if (xhci->quirks & XHCI_AMD_PLL_FIX)
624                 usb_amd_dev_put();
625
626         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
627         temp = xhci_readl(xhci, &xhci->op_regs->status);
628         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
629         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
630         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
631                         &xhci->ir_set->irq_pending);
632         xhci_print_ir_set(xhci, 0);
633
634         xhci_dbg(xhci, "cleaning up memory\n");
635         xhci_mem_cleanup(xhci);
636         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
637                     xhci_readl(xhci, &xhci->op_regs->status));
638 }
639
640 /*
641  * Shutdown HC (not bus-specific)
642  *
643  * This is called when the machine is rebooting or halting.  We assume that the
644  * machine will be powered off, and the HC's internal state will be reset.
645  * Don't bother to free memory.
646  *
647  * This will only ever be called with the main usb_hcd (the USB3 roothub).
648  */
649 void xhci_shutdown(struct usb_hcd *hcd)
650 {
651         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
652
653         spin_lock_irq(&xhci->lock);
654         xhci_halt(xhci);
655         spin_unlock_irq(&xhci->lock);
656
657         xhci_cleanup_msix(xhci);
658
659         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
660                     xhci_readl(xhci, &xhci->op_regs->status));
661 }
662
663 #ifdef CONFIG_PM
664 static void xhci_save_registers(struct xhci_hcd *xhci)
665 {
666         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
667         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
668         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
669         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
670         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
671         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
672         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
673         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
674         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
675 }
676
677 static void xhci_restore_registers(struct xhci_hcd *xhci)
678 {
679         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
680         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
681         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
682         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
683         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
684         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
685         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
686         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
687 }
688
689 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
690 {
691         u64     val_64;
692
693         /* step 2: initialize command ring buffer */
694         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
695         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
696                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
697                                       xhci->cmd_ring->dequeue) &
698                  (u64) ~CMD_RING_RSVD_BITS) |
699                 xhci->cmd_ring->cycle_state;
700         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
701                         (long unsigned long) val_64);
702         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
703 }
704
705 /*
706  * The whole command ring must be cleared to zero when we suspend the host.
707  *
708  * The host doesn't save the command ring pointer in the suspend well, so we
709  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
710  * aligned, because of the reserved bits in the command ring dequeue pointer
711  * register.  Therefore, we can't just set the dequeue pointer back in the
712  * middle of the ring (TRBs are 16-byte aligned).
713  */
714 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
715 {
716         struct xhci_ring *ring;
717         struct xhci_segment *seg;
718
719         ring = xhci->cmd_ring;
720         seg = ring->deq_seg;
721         do {
722                 memset(seg->trbs, 0,
723                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
724                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
725                         cpu_to_le32(~TRB_CYCLE);
726                 seg = seg->next;
727         } while (seg != ring->deq_seg);
728
729         /* Reset the software enqueue and dequeue pointers */
730         ring->deq_seg = ring->first_seg;
731         ring->dequeue = ring->first_seg->trbs;
732         ring->enq_seg = ring->deq_seg;
733         ring->enqueue = ring->dequeue;
734
735         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
736         /*
737          * Ring is now zeroed, so the HW should look for change of ownership
738          * when the cycle bit is set to 1.
739          */
740         ring->cycle_state = 1;
741
742         /*
743          * Reset the hardware dequeue pointer.
744          * Yes, this will need to be re-written after resume, but we're paranoid
745          * and want to make sure the hardware doesn't access bogus memory
746          * because, say, the BIOS or an SMI started the host without changing
747          * the command ring pointers.
748          */
749         xhci_set_cmd_ring_deq(xhci);
750 }
751
752 /*
753  * Stop HC (not bus-specific)
754  *
755  * This is called when the machine transition into S3/S4 mode.
756  *
757  */
758 int xhci_suspend(struct xhci_hcd *xhci)
759 {
760         int                     rc = 0;
761         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
762         u32                     command;
763
764         spin_lock_irq(&xhci->lock);
765         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
766         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
767         /* step 1: stop endpoint */
768         /* skipped assuming that port suspend has done */
769
770         /* step 2: clear Run/Stop bit */
771         command = xhci_readl(xhci, &xhci->op_regs->command);
772         command &= ~CMD_RUN;
773         xhci_writel(xhci, command, &xhci->op_regs->command);
774         if (handshake(xhci, &xhci->op_regs->status,
775                       STS_HALT, STS_HALT, 100*100)) {
776                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
777                 spin_unlock_irq(&xhci->lock);
778                 return -ETIMEDOUT;
779         }
780         xhci_clear_command_ring(xhci);
781
782         /* step 3: save registers */
783         xhci_save_registers(xhci);
784
785         /* step 4: set CSS flag */
786         command = xhci_readl(xhci, &xhci->op_regs->command);
787         command |= CMD_CSS;
788         xhci_writel(xhci, command, &xhci->op_regs->command);
789         if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
790                 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
791                 spin_unlock_irq(&xhci->lock);
792                 return -ETIMEDOUT;
793         }
794         spin_unlock_irq(&xhci->lock);
795
796         /* step 5: remove core well power */
797         /* synchronize irq when using MSI-X */
798         xhci_msix_sync_irqs(xhci);
799
800         return rc;
801 }
802
803 /*
804  * start xHC (not bus-specific)
805  *
806  * This is called when the machine transition from S3/S4 mode.
807  *
808  */
809 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
810 {
811         u32                     command, temp = 0;
812         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
813         struct usb_hcd          *secondary_hcd;
814         int                     retval = 0;
815
816         /* Wait a bit if either of the roothubs need to settle from the
817          * transition into bus suspend.
818          */
819         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
820                         time_before(jiffies,
821                                 xhci->bus_state[1].next_statechange))
822                 msleep(100);
823
824         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
825         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
826
827         spin_lock_irq(&xhci->lock);
828         if (xhci->quirks & XHCI_RESET_ON_RESUME)
829                 hibernated = true;
830
831         if (!hibernated) {
832                 /* step 1: restore register */
833                 xhci_restore_registers(xhci);
834                 /* step 2: initialize command ring buffer */
835                 xhci_set_cmd_ring_deq(xhci);
836                 /* step 3: restore state and start state*/
837                 /* step 3: set CRS flag */
838                 command = xhci_readl(xhci, &xhci->op_regs->command);
839                 command |= CMD_CRS;
840                 xhci_writel(xhci, command, &xhci->op_regs->command);
841                 if (handshake(xhci, &xhci->op_regs->status,
842                               STS_RESTORE, 0, 10*100)) {
843                         xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
844                         spin_unlock_irq(&xhci->lock);
845                         return -ETIMEDOUT;
846                 }
847                 temp = xhci_readl(xhci, &xhci->op_regs->status);
848         }
849
850         /* If restore operation fails, re-initialize the HC during resume */
851         if ((temp & STS_SRE) || hibernated) {
852                 /* Let the USB core know _both_ roothubs lost power. */
853                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
854                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
855
856                 xhci_dbg(xhci, "Stop HCD\n");
857                 xhci_halt(xhci);
858                 xhci_reset(xhci);
859                 spin_unlock_irq(&xhci->lock);
860                 xhci_cleanup_msix(xhci);
861
862 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
863                 /* Tell the event ring poll function not to reschedule */
864                 xhci->zombie = 1;
865                 del_timer_sync(&xhci->event_ring_timer);
866 #endif
867
868                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
869                 temp = xhci_readl(xhci, &xhci->op_regs->status);
870                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
871                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
872                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
873                                 &xhci->ir_set->irq_pending);
874                 xhci_print_ir_set(xhci, 0);
875
876                 xhci_dbg(xhci, "cleaning up memory\n");
877                 xhci_mem_cleanup(xhci);
878                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
879                             xhci_readl(xhci, &xhci->op_regs->status));
880
881                 /* USB core calls the PCI reinit and start functions twice:
882                  * first with the primary HCD, and then with the secondary HCD.
883                  * If we don't do the same, the host will never be started.
884                  */
885                 if (!usb_hcd_is_primary_hcd(hcd))
886                         secondary_hcd = hcd;
887                 else
888                         secondary_hcd = xhci->shared_hcd;
889
890                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
891                 retval = xhci_init(hcd->primary_hcd);
892                 if (retval)
893                         return retval;
894                 xhci_dbg(xhci, "Start the primary HCD\n");
895                 retval = xhci_run(hcd->primary_hcd);
896                 if (!retval) {
897                         xhci_dbg(xhci, "Start the secondary HCD\n");
898                         retval = xhci_run(secondary_hcd);
899                 }
900                 hcd->state = HC_STATE_SUSPENDED;
901                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
902                 goto done;
903         }
904
905         /* step 4: set Run/Stop bit */
906         command = xhci_readl(xhci, &xhci->op_regs->command);
907         command |= CMD_RUN;
908         xhci_writel(xhci, command, &xhci->op_regs->command);
909         handshake(xhci, &xhci->op_regs->status, STS_HALT,
910                   0, 250 * 1000);
911
912         /* step 5: walk topology and initialize portsc,
913          * portpmsc and portli
914          */
915         /* this is done in bus_resume */
916
917         /* step 6: restart each of the previously
918          * Running endpoints by ringing their doorbells
919          */
920
921         spin_unlock_irq(&xhci->lock);
922
923  done:
924         if (retval == 0) {
925                 usb_hcd_resume_root_hub(hcd);
926                 usb_hcd_resume_root_hub(xhci->shared_hcd);
927         }
928         return retval;
929 }
930 #endif  /* CONFIG_PM */
931
932 /*-------------------------------------------------------------------------*/
933
934 /**
935  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
936  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
937  * value to right shift 1 for the bitmask.
938  *
939  * Index  = (epnum * 2) + direction - 1,
940  * where direction = 0 for OUT, 1 for IN.
941  * For control endpoints, the IN index is used (OUT index is unused), so
942  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
943  */
944 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
945 {
946         unsigned int index;
947         if (usb_endpoint_xfer_control(desc))
948                 index = (unsigned int) (usb_endpoint_num(desc)*2);
949         else
950                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
951                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
952         return index;
953 }
954
955 /* Find the flag for this endpoint (for use in the control context).  Use the
956  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
957  * bit 1, etc.
958  */
959 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
960 {
961         return 1 << (xhci_get_endpoint_index(desc) + 1);
962 }
963
964 /* Find the flag for this endpoint (for use in the control context).  Use the
965  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
966  * bit 1, etc.
967  */
968 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
969 {
970         return 1 << (ep_index + 1);
971 }
972
973 /* Compute the last valid endpoint context index.  Basically, this is the
974  * endpoint index plus one.  For slot contexts with more than valid endpoint,
975  * we find the most significant bit set in the added contexts flags.
976  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
977  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
978  */
979 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
980 {
981         return fls(added_ctxs) - 1;
982 }
983
984 /* Returns 1 if the arguments are OK;
985  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
986  */
987 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
988                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
989                 const char *func) {
990         struct xhci_hcd *xhci;
991         struct xhci_virt_device *virt_dev;
992
993         if (!hcd || (check_ep && !ep) || !udev) {
994                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
995                                 func);
996                 return -EINVAL;
997         }
998         if (!udev->parent) {
999                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1000                                 func);
1001                 return 0;
1002         }
1003
1004         xhci = hcd_to_xhci(hcd);
1005         if (xhci->xhc_state & XHCI_STATE_HALTED)
1006                 return -ENODEV;
1007
1008         if (check_virt_dev) {
1009                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1010                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
1011                                                 "device\n", func);
1012                         return -EINVAL;
1013                 }
1014
1015                 virt_dev = xhci->devs[udev->slot_id];
1016                 if (virt_dev->udev != udev) {
1017                         printk(KERN_DEBUG "xHCI %s called with udev and "
1018                                           "virt_dev does not match\n", func);
1019                         return -EINVAL;
1020                 }
1021         }
1022
1023         return 1;
1024 }
1025
1026 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1027                 struct usb_device *udev, struct xhci_command *command,
1028                 bool ctx_change, bool must_succeed);
1029
1030 /*
1031  * Full speed devices may have a max packet size greater than 8 bytes, but the
1032  * USB core doesn't know that until it reads the first 8 bytes of the
1033  * descriptor.  If the usb_device's max packet size changes after that point,
1034  * we need to issue an evaluate context command and wait on it.
1035  */
1036 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1037                 unsigned int ep_index, struct urb *urb)
1038 {
1039         struct xhci_container_ctx *in_ctx;
1040         struct xhci_container_ctx *out_ctx;
1041         struct xhci_input_control_ctx *ctrl_ctx;
1042         struct xhci_ep_ctx *ep_ctx;
1043         int max_packet_size;
1044         int hw_max_packet_size;
1045         int ret = 0;
1046
1047         out_ctx = xhci->devs[slot_id]->out_ctx;
1048         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1049         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1050         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1051         if (hw_max_packet_size != max_packet_size) {
1052                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1053                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1054                                 max_packet_size);
1055                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1056                                 hw_max_packet_size);
1057                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1058
1059                 /* Set up the modified control endpoint 0 */
1060                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1061                                 xhci->devs[slot_id]->out_ctx, ep_index);
1062                 in_ctx = xhci->devs[slot_id]->in_ctx;
1063                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1064                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1065                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1066
1067                 /* Set up the input context flags for the command */
1068                 /* FIXME: This won't work if a non-default control endpoint
1069                  * changes max packet sizes.
1070                  */
1071                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1072                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1073                 ctrl_ctx->drop_flags = 0;
1074
1075                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1076                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1077                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1078                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1079
1080                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1081                                 true, false);
1082
1083                 /* Clean up the input context for later use by bandwidth
1084                  * functions.
1085                  */
1086                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1087         }
1088         return ret;
1089 }
1090
1091 /*
1092  * non-error returns are a promise to giveback() the urb later
1093  * we drop ownership so next owner (or urb unlink) can get it
1094  */
1095 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1096 {
1097         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1098         struct xhci_td *buffer;
1099         unsigned long flags;
1100         int ret = 0;
1101         unsigned int slot_id, ep_index;
1102         struct urb_priv *urb_priv;
1103         int size, i;
1104
1105         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1106                                         true, true, __func__) <= 0)
1107                 return -EINVAL;
1108
1109         slot_id = urb->dev->slot_id;
1110         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1111
1112         if (!HCD_HW_ACCESSIBLE(hcd)) {
1113                 if (!in_interrupt())
1114                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1115                 ret = -ESHUTDOWN;
1116                 goto exit;
1117         }
1118
1119         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1120                 size = urb->number_of_packets;
1121         else
1122                 size = 1;
1123
1124         urb_priv = kzalloc(sizeof(struct urb_priv) +
1125                                   size * sizeof(struct xhci_td *), mem_flags);
1126         if (!urb_priv)
1127                 return -ENOMEM;
1128
1129         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1130         if (!buffer) {
1131                 kfree(urb_priv);
1132                 return -ENOMEM;
1133         }
1134
1135         for (i = 0; i < size; i++) {
1136                 urb_priv->td[i] = buffer;
1137                 buffer++;
1138         }
1139
1140         urb_priv->length = size;
1141         urb_priv->td_cnt = 0;
1142         urb->hcpriv = urb_priv;
1143
1144         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1145                 /* Check to see if the max packet size for the default control
1146                  * endpoint changed during FS device enumeration
1147                  */
1148                 if (urb->dev->speed == USB_SPEED_FULL) {
1149                         ret = xhci_check_maxpacket(xhci, slot_id,
1150                                         ep_index, urb);
1151                         if (ret < 0) {
1152                                 xhci_urb_free_priv(xhci, urb_priv);
1153                                 urb->hcpriv = NULL;
1154                                 return ret;
1155                         }
1156                 }
1157
1158                 /* We have a spinlock and interrupts disabled, so we must pass
1159                  * atomic context to this function, which may allocate memory.
1160                  */
1161                 spin_lock_irqsave(&xhci->lock, flags);
1162                 if (xhci->xhc_state & XHCI_STATE_DYING)
1163                         goto dying;
1164                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1165                                 slot_id, ep_index);
1166                 if (ret)
1167                         goto free_priv;
1168                 spin_unlock_irqrestore(&xhci->lock, flags);
1169         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1170                 spin_lock_irqsave(&xhci->lock, flags);
1171                 if (xhci->xhc_state & XHCI_STATE_DYING)
1172                         goto dying;
1173                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1174                                 EP_GETTING_STREAMS) {
1175                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1176                                         "is transitioning to using streams.\n");
1177                         ret = -EINVAL;
1178                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1179                                 EP_GETTING_NO_STREAMS) {
1180                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1181                                         "is transitioning to "
1182                                         "not having streams.\n");
1183                         ret = -EINVAL;
1184                 } else {
1185                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1186                                         slot_id, ep_index);
1187                 }
1188                 if (ret)
1189                         goto free_priv;
1190                 spin_unlock_irqrestore(&xhci->lock, flags);
1191         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1192                 spin_lock_irqsave(&xhci->lock, flags);
1193                 if (xhci->xhc_state & XHCI_STATE_DYING)
1194                         goto dying;
1195                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1196                                 slot_id, ep_index);
1197                 if (ret)
1198                         goto free_priv;
1199                 spin_unlock_irqrestore(&xhci->lock, flags);
1200         } else {
1201                 spin_lock_irqsave(&xhci->lock, flags);
1202                 if (xhci->xhc_state & XHCI_STATE_DYING)
1203                         goto dying;
1204                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1205                                 slot_id, ep_index);
1206                 if (ret)
1207                         goto free_priv;
1208                 spin_unlock_irqrestore(&xhci->lock, flags);
1209         }
1210 exit:
1211         return ret;
1212 dying:
1213         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1214                         "non-responsive xHCI host.\n",
1215                         urb->ep->desc.bEndpointAddress, urb);
1216         ret = -ESHUTDOWN;
1217 free_priv:
1218         xhci_urb_free_priv(xhci, urb_priv);
1219         urb->hcpriv = NULL;
1220         spin_unlock_irqrestore(&xhci->lock, flags);
1221         return ret;
1222 }
1223
1224 /* Get the right ring for the given URB.
1225  * If the endpoint supports streams, boundary check the URB's stream ID.
1226  * If the endpoint doesn't support streams, return the singular endpoint ring.
1227  */
1228 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1229                 struct urb *urb)
1230 {
1231         unsigned int slot_id;
1232         unsigned int ep_index;
1233         unsigned int stream_id;
1234         struct xhci_virt_ep *ep;
1235
1236         slot_id = urb->dev->slot_id;
1237         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1238         stream_id = urb->stream_id;
1239         ep = &xhci->devs[slot_id]->eps[ep_index];
1240         /* Common case: no streams */
1241         if (!(ep->ep_state & EP_HAS_STREAMS))
1242                 return ep->ring;
1243
1244         if (stream_id == 0) {
1245                 xhci_warn(xhci,
1246                                 "WARN: Slot ID %u, ep index %u has streams, "
1247                                 "but URB has no stream ID.\n",
1248                                 slot_id, ep_index);
1249                 return NULL;
1250         }
1251
1252         if (stream_id < ep->stream_info->num_streams)
1253                 return ep->stream_info->stream_rings[stream_id];
1254
1255         xhci_warn(xhci,
1256                         "WARN: Slot ID %u, ep index %u has "
1257                         "stream IDs 1 to %u allocated, "
1258                         "but stream ID %u is requested.\n",
1259                         slot_id, ep_index,
1260                         ep->stream_info->num_streams - 1,
1261                         stream_id);
1262         return NULL;
1263 }
1264
1265 /*
1266  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1267  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1268  * should pick up where it left off in the TD, unless a Set Transfer Ring
1269  * Dequeue Pointer is issued.
1270  *
1271  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1272  * the ring.  Since the ring is a contiguous structure, they can't be physically
1273  * removed.  Instead, there are two options:
1274  *
1275  *  1) If the HC is in the middle of processing the URB to be canceled, we
1276  *     simply move the ring's dequeue pointer past those TRBs using the Set
1277  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1278  *     when drivers timeout on the last submitted URB and attempt to cancel.
1279  *
1280  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1281  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1282  *     HC will need to invalidate the any TRBs it has cached after the stop
1283  *     endpoint command, as noted in the xHCI 0.95 errata.
1284  *
1285  *  3) The TD may have completed by the time the Stop Endpoint Command
1286  *     completes, so software needs to handle that case too.
1287  *
1288  * This function should protect against the TD enqueueing code ringing the
1289  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1290  * It also needs to account for multiple cancellations on happening at the same
1291  * time for the same endpoint.
1292  *
1293  * Note that this function can be called in any context, or so says
1294  * usb_hcd_unlink_urb()
1295  */
1296 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1297 {
1298         unsigned long flags;
1299         int ret, i;
1300         u32 temp;
1301         struct xhci_hcd *xhci;
1302         struct urb_priv *urb_priv;
1303         struct xhci_td *td;
1304         unsigned int ep_index;
1305         struct xhci_ring *ep_ring;
1306         struct xhci_virt_ep *ep;
1307
1308         xhci = hcd_to_xhci(hcd);
1309         spin_lock_irqsave(&xhci->lock, flags);
1310         /* Make sure the URB hasn't completed or been unlinked already */
1311         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1312         if (ret || !urb->hcpriv)
1313                 goto done;
1314         temp = xhci_readl(xhci, &xhci->op_regs->status);
1315         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1316                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1317                 urb_priv = urb->hcpriv;
1318                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1319                         td = urb_priv->td[i];
1320                         if (!list_empty(&td->td_list))
1321                                 list_del_init(&td->td_list);
1322                         if (!list_empty(&td->cancelled_td_list))
1323                                 list_del_init(&td->cancelled_td_list);
1324                 }
1325
1326                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1327                 spin_unlock_irqrestore(&xhci->lock, flags);
1328                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1329                 xhci_urb_free_priv(xhci, urb_priv);
1330                 return ret;
1331         }
1332         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1333                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1334                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1335                                 "non-responsive xHCI host.\n",
1336                                 urb->ep->desc.bEndpointAddress, urb);
1337                 /* Let the stop endpoint command watchdog timer (which set this
1338                  * state) finish cleaning up the endpoint TD lists.  We must
1339                  * have caught it in the middle of dropping a lock and giving
1340                  * back an URB.
1341                  */
1342                 goto done;
1343         }
1344
1345         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1346         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1347         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1348         if (!ep_ring) {
1349                 ret = -EINVAL;
1350                 goto done;
1351         }
1352
1353         urb_priv = urb->hcpriv;
1354         i = urb_priv->td_cnt;
1355         if (i < urb_priv->length)
1356                 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1357                                 "starting at offset 0x%llx\n",
1358                                 urb, urb->dev->devpath,
1359                                 urb->ep->desc.bEndpointAddress,
1360                                 (unsigned long long) xhci_trb_virt_to_dma(
1361                                         urb_priv->td[i]->start_seg,
1362                                         urb_priv->td[i]->first_trb));
1363
1364         for (; i < urb_priv->length; i++) {
1365                 td = urb_priv->td[i];
1366                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1367         }
1368
1369         /* Queue a stop endpoint command, but only if this is
1370          * the first cancellation to be handled.
1371          */
1372         if (!(ep->ep_state & EP_HALT_PENDING)) {
1373                 ep->ep_state |= EP_HALT_PENDING;
1374                 ep->stop_cmds_pending++;
1375                 ep->stop_cmd_timer.expires = jiffies +
1376                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1377                 add_timer(&ep->stop_cmd_timer);
1378                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1379                 xhci_ring_cmd_db(xhci);
1380         }
1381 done:
1382         spin_unlock_irqrestore(&xhci->lock, flags);
1383         return ret;
1384 }
1385
1386 /* Drop an endpoint from a new bandwidth configuration for this device.
1387  * Only one call to this function is allowed per endpoint before
1388  * check_bandwidth() or reset_bandwidth() must be called.
1389  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1390  * add the endpoint to the schedule with possibly new parameters denoted by a
1391  * different endpoint descriptor in usb_host_endpoint.
1392  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1393  * not allowed.
1394  *
1395  * The USB core will not allow URBs to be queued to an endpoint that is being
1396  * disabled, so there's no need for mutual exclusion to protect
1397  * the xhci->devs[slot_id] structure.
1398  */
1399 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1400                 struct usb_host_endpoint *ep)
1401 {
1402         struct xhci_hcd *xhci;
1403         struct xhci_container_ctx *in_ctx, *out_ctx;
1404         struct xhci_input_control_ctx *ctrl_ctx;
1405         struct xhci_slot_ctx *slot_ctx;
1406         unsigned int last_ctx;
1407         unsigned int ep_index;
1408         struct xhci_ep_ctx *ep_ctx;
1409         u32 drop_flag;
1410         u32 new_add_flags, new_drop_flags, new_slot_info;
1411         int ret;
1412
1413         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1414         if (ret <= 0)
1415                 return ret;
1416         xhci = hcd_to_xhci(hcd);
1417         if (xhci->xhc_state & XHCI_STATE_DYING)
1418                 return -ENODEV;
1419
1420         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1421         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1422         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1423                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1424                                 __func__, drop_flag);
1425                 return 0;
1426         }
1427
1428         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1429         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1430         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1431         ep_index = xhci_get_endpoint_index(&ep->desc);
1432         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1433         /* If the HC already knows the endpoint is disabled,
1434          * or the HCD has noted it is disabled, ignore this request
1435          */
1436         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1437              cpu_to_le32(EP_STATE_DISABLED)) ||
1438             le32_to_cpu(ctrl_ctx->drop_flags) &
1439             xhci_get_endpoint_flag(&ep->desc)) {
1440                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1441                                 __func__, ep);
1442                 return 0;
1443         }
1444
1445         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1446         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1447
1448         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1449         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1450
1451         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1452         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1453         /* Update the last valid endpoint context, if we deleted the last one */
1454         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1455             LAST_CTX(last_ctx)) {
1456                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1457                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1458         }
1459         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1460
1461         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1462
1463         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1464                         (unsigned int) ep->desc.bEndpointAddress,
1465                         udev->slot_id,
1466                         (unsigned int) new_drop_flags,
1467                         (unsigned int) new_add_flags,
1468                         (unsigned int) new_slot_info);
1469         return 0;
1470 }
1471
1472 /* Add an endpoint to a new possible bandwidth configuration for this device.
1473  * Only one call to this function is allowed per endpoint before
1474  * check_bandwidth() or reset_bandwidth() must be called.
1475  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1476  * add the endpoint to the schedule with possibly new parameters denoted by a
1477  * different endpoint descriptor in usb_host_endpoint.
1478  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1479  * not allowed.
1480  *
1481  * The USB core will not allow URBs to be queued to an endpoint until the
1482  * configuration or alt setting is installed in the device, so there's no need
1483  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1484  */
1485 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1486                 struct usb_host_endpoint *ep)
1487 {
1488         struct xhci_hcd *xhci;
1489         struct xhci_container_ctx *in_ctx, *out_ctx;
1490         unsigned int ep_index;
1491         struct xhci_ep_ctx *ep_ctx;
1492         struct xhci_slot_ctx *slot_ctx;
1493         struct xhci_input_control_ctx *ctrl_ctx;
1494         u32 added_ctxs;
1495         unsigned int last_ctx;
1496         u32 new_add_flags, new_drop_flags, new_slot_info;
1497         struct xhci_virt_device *virt_dev;
1498         int ret = 0;
1499
1500         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1501         if (ret <= 0) {
1502                 /* So we won't queue a reset ep command for a root hub */
1503                 ep->hcpriv = NULL;
1504                 return ret;
1505         }
1506         xhci = hcd_to_xhci(hcd);
1507         if (xhci->xhc_state & XHCI_STATE_DYING)
1508                 return -ENODEV;
1509
1510         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1511         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1512         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1513                 /* FIXME when we have to issue an evaluate endpoint command to
1514                  * deal with ep0 max packet size changing once we get the
1515                  * descriptors
1516                  */
1517                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1518                                 __func__, added_ctxs);
1519                 return 0;
1520         }
1521
1522         virt_dev = xhci->devs[udev->slot_id];
1523         in_ctx = virt_dev->in_ctx;
1524         out_ctx = virt_dev->out_ctx;
1525         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1526         ep_index = xhci_get_endpoint_index(&ep->desc);
1527         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1528
1529         /* If this endpoint is already in use, and the upper layers are trying
1530          * to add it again without dropping it, reject the addition.
1531          */
1532         if (virt_dev->eps[ep_index].ring &&
1533                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1534                                 xhci_get_endpoint_flag(&ep->desc))) {
1535                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1536                                 "without dropping it.\n",
1537                                 (unsigned int) ep->desc.bEndpointAddress);
1538                 return -EINVAL;
1539         }
1540
1541         /* If the HCD has already noted the endpoint is enabled,
1542          * ignore this request.
1543          */
1544         if (le32_to_cpu(ctrl_ctx->add_flags) &
1545             xhci_get_endpoint_flag(&ep->desc)) {
1546                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1547                                 __func__, ep);
1548                 return 0;
1549         }
1550
1551         /*
1552          * Configuration and alternate setting changes must be done in
1553          * process context, not interrupt context (or so documenation
1554          * for usb_set_interface() and usb_set_configuration() claim).
1555          */
1556         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1557                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1558                                 __func__, ep->desc.bEndpointAddress);
1559                 return -ENOMEM;
1560         }
1561
1562         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1563         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1564
1565         /* If xhci_endpoint_disable() was called for this endpoint, but the
1566          * xHC hasn't been notified yet through the check_bandwidth() call,
1567          * this re-adds a new state for the endpoint from the new endpoint
1568          * descriptors.  We must drop and re-add this endpoint, so we leave the
1569          * drop flags alone.
1570          */
1571         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1572
1573         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1574         /* Update the last valid endpoint context, if we just added one past */
1575         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1576             LAST_CTX(last_ctx)) {
1577                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1578                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1579         }
1580         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1581
1582         /* Store the usb_device pointer for later use */
1583         ep->hcpriv = udev;
1584
1585         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1586                         (unsigned int) ep->desc.bEndpointAddress,
1587                         udev->slot_id,
1588                         (unsigned int) new_drop_flags,
1589                         (unsigned int) new_add_flags,
1590                         (unsigned int) new_slot_info);
1591         return 0;
1592 }
1593
1594 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1595 {
1596         struct xhci_input_control_ctx *ctrl_ctx;
1597         struct xhci_ep_ctx *ep_ctx;
1598         struct xhci_slot_ctx *slot_ctx;
1599         int i;
1600
1601         /* When a device's add flag and drop flag are zero, any subsequent
1602          * configure endpoint command will leave that endpoint's state
1603          * untouched.  Make sure we don't leave any old state in the input
1604          * endpoint contexts.
1605          */
1606         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1607         ctrl_ctx->drop_flags = 0;
1608         ctrl_ctx->add_flags = 0;
1609         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1610         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1611         /* Endpoint 0 is always valid */
1612         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1613         for (i = 1; i < 31; ++i) {
1614                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1615                 ep_ctx->ep_info = 0;
1616                 ep_ctx->ep_info2 = 0;
1617                 ep_ctx->deq = 0;
1618                 ep_ctx->tx_info = 0;
1619         }
1620 }
1621
1622 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1623                 struct usb_device *udev, u32 *cmd_status)
1624 {
1625         int ret;
1626
1627         switch (*cmd_status) {
1628         case COMP_ENOMEM:
1629                 dev_warn(&udev->dev, "Not enough host controller resources "
1630                                 "for new device state.\n");
1631                 ret = -ENOMEM;
1632                 /* FIXME: can we allocate more resources for the HC? */
1633                 break;
1634         case COMP_BW_ERR:
1635         case COMP_2ND_BW_ERR:
1636                 dev_warn(&udev->dev, "Not enough bandwidth "
1637                                 "for new device state.\n");
1638                 ret = -ENOSPC;
1639                 /* FIXME: can we go back to the old state? */
1640                 break;
1641         case COMP_TRB_ERR:
1642                 /* the HCD set up something wrong */
1643                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1644                                 "add flag = 1, "
1645                                 "and endpoint is not disabled.\n");
1646                 ret = -EINVAL;
1647                 break;
1648         case COMP_DEV_ERR:
1649                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1650                                 "configure command.\n");
1651                 ret = -ENODEV;
1652                 break;
1653         case COMP_SUCCESS:
1654                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1655                 ret = 0;
1656                 break;
1657         default:
1658                 xhci_err(xhci, "ERROR: unexpected command completion "
1659                                 "code 0x%x.\n", *cmd_status);
1660                 ret = -EINVAL;
1661                 break;
1662         }
1663         return ret;
1664 }
1665
1666 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1667                 struct usb_device *udev, u32 *cmd_status)
1668 {
1669         int ret;
1670         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1671
1672         switch (*cmd_status) {
1673         case COMP_EINVAL:
1674                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1675                                 "context command.\n");
1676                 ret = -EINVAL;
1677                 break;
1678         case COMP_EBADSLT:
1679                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1680                                 "evaluate context command.\n");
1681         case COMP_CTX_STATE:
1682                 dev_warn(&udev->dev, "WARN: invalid context state for "
1683                                 "evaluate context command.\n");
1684                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1685                 ret = -EINVAL;
1686                 break;
1687         case COMP_DEV_ERR:
1688                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1689                                 "context command.\n");
1690                 ret = -ENODEV;
1691                 break;
1692         case COMP_MEL_ERR:
1693                 /* Max Exit Latency too large error */
1694                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1695                 ret = -EINVAL;
1696                 break;
1697         case COMP_SUCCESS:
1698                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1699                 ret = 0;
1700                 break;
1701         default:
1702                 xhci_err(xhci, "ERROR: unexpected command completion "
1703                                 "code 0x%x.\n", *cmd_status);
1704                 ret = -EINVAL;
1705                 break;
1706         }
1707         return ret;
1708 }
1709
1710 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1711                 struct xhci_container_ctx *in_ctx)
1712 {
1713         struct xhci_input_control_ctx *ctrl_ctx;
1714         u32 valid_add_flags;
1715         u32 valid_drop_flags;
1716
1717         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1718         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1719          * (bit 1).  The default control endpoint is added during the Address
1720          * Device command and is never removed until the slot is disabled.
1721          */
1722         valid_add_flags = ctrl_ctx->add_flags >> 2;
1723         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1724
1725         /* Use hweight32 to count the number of ones in the add flags, or
1726          * number of endpoints added.  Don't count endpoints that are changed
1727          * (both added and dropped).
1728          */
1729         return hweight32(valid_add_flags) -
1730                 hweight32(valid_add_flags & valid_drop_flags);
1731 }
1732
1733 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1734                 struct xhci_container_ctx *in_ctx)
1735 {
1736         struct xhci_input_control_ctx *ctrl_ctx;
1737         u32 valid_add_flags;
1738         u32 valid_drop_flags;
1739
1740         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1741         valid_add_flags = ctrl_ctx->add_flags >> 2;
1742         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1743
1744         return hweight32(valid_drop_flags) -
1745                 hweight32(valid_add_flags & valid_drop_flags);
1746 }
1747
1748 /*
1749  * We need to reserve the new number of endpoints before the configure endpoint
1750  * command completes.  We can't subtract the dropped endpoints from the number
1751  * of active endpoints until the command completes because we can oversubscribe
1752  * the host in this case:
1753  *
1754  *  - the first configure endpoint command drops more endpoints than it adds
1755  *  - a second configure endpoint command that adds more endpoints is queued
1756  *  - the first configure endpoint command fails, so the config is unchanged
1757  *  - the second command may succeed, even though there isn't enough resources
1758  *
1759  * Must be called with xhci->lock held.
1760  */
1761 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1762                 struct xhci_container_ctx *in_ctx)
1763 {
1764         u32 added_eps;
1765
1766         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1767         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1768                 xhci_dbg(xhci, "Not enough ep ctxs: "
1769                                 "%u active, need to add %u, limit is %u.\n",
1770                                 xhci->num_active_eps, added_eps,
1771                                 xhci->limit_active_eps);
1772                 return -ENOMEM;
1773         }
1774         xhci->num_active_eps += added_eps;
1775         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1776                         xhci->num_active_eps);
1777         return 0;
1778 }
1779
1780 /*
1781  * The configure endpoint was failed by the xHC for some other reason, so we
1782  * need to revert the resources that failed configuration would have used.
1783  *
1784  * Must be called with xhci->lock held.
1785  */
1786 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1787                 struct xhci_container_ctx *in_ctx)
1788 {
1789         u32 num_failed_eps;
1790
1791         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1792         xhci->num_active_eps -= num_failed_eps;
1793         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1794                         num_failed_eps,
1795                         xhci->num_active_eps);
1796 }
1797
1798 /*
1799  * Now that the command has completed, clean up the active endpoint count by
1800  * subtracting out the endpoints that were dropped (but not changed).
1801  *
1802  * Must be called with xhci->lock held.
1803  */
1804 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1805                 struct xhci_container_ctx *in_ctx)
1806 {
1807         u32 num_dropped_eps;
1808
1809         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1810         xhci->num_active_eps -= num_dropped_eps;
1811         if (num_dropped_eps)
1812                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1813                                 num_dropped_eps,
1814                                 xhci->num_active_eps);
1815 }
1816
1817 unsigned int xhci_get_block_size(struct usb_device *udev)
1818 {
1819         switch (udev->speed) {
1820         case USB_SPEED_LOW:
1821         case USB_SPEED_FULL:
1822                 return FS_BLOCK;
1823         case USB_SPEED_HIGH:
1824                 return HS_BLOCK;
1825         case USB_SPEED_SUPER:
1826                 return SS_BLOCK;
1827         case USB_SPEED_UNKNOWN:
1828         case USB_SPEED_WIRELESS:
1829         default:
1830                 /* Should never happen */
1831                 return 1;
1832         }
1833 }
1834
1835 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1836 {
1837         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1838                 return LS_OVERHEAD;
1839         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1840                 return FS_OVERHEAD;
1841         return HS_OVERHEAD;
1842 }
1843
1844 /* If we are changing a LS/FS device under a HS hub,
1845  * make sure (if we are activating a new TT) that the HS bus has enough
1846  * bandwidth for this new TT.
1847  */
1848 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1849                 struct xhci_virt_device *virt_dev,
1850                 int old_active_eps)
1851 {
1852         struct xhci_interval_bw_table *bw_table;
1853         struct xhci_tt_bw_info *tt_info;
1854
1855         /* Find the bandwidth table for the root port this TT is attached to. */
1856         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1857         tt_info = virt_dev->tt_info;
1858         /* If this TT already had active endpoints, the bandwidth for this TT
1859          * has already been added.  Removing all periodic endpoints (and thus
1860          * making the TT enactive) will only decrease the bandwidth used.
1861          */
1862         if (old_active_eps)
1863                 return 0;
1864         if (old_active_eps == 0 && tt_info->active_eps != 0) {
1865                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
1866                         return -ENOMEM;
1867                 return 0;
1868         }
1869         /* Not sure why we would have no new active endpoints...
1870          *
1871          * Maybe because of an Evaluate Context change for a hub update or a
1872          * control endpoint 0 max packet size change?
1873          * FIXME: skip the bandwidth calculation in that case.
1874          */
1875         return 0;
1876 }
1877
1878 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
1879                 struct xhci_virt_device *virt_dev)
1880 {
1881         unsigned int bw_reserved;
1882
1883         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
1884         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
1885                 return -ENOMEM;
1886
1887         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
1888         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
1889                 return -ENOMEM;
1890
1891         return 0;
1892 }
1893
1894 /*
1895  * This algorithm is a very conservative estimate of the worst-case scheduling
1896  * scenario for any one interval.  The hardware dynamically schedules the
1897  * packets, so we can't tell which microframe could be the limiting factor in
1898  * the bandwidth scheduling.  This only takes into account periodic endpoints.
1899  *
1900  * Obviously, we can't solve an NP complete problem to find the minimum worst
1901  * case scenario.  Instead, we come up with an estimate that is no less than
1902  * the worst case bandwidth used for any one microframe, but may be an
1903  * over-estimate.
1904  *
1905  * We walk the requirements for each endpoint by interval, starting with the
1906  * smallest interval, and place packets in the schedule where there is only one
1907  * possible way to schedule packets for that interval.  In order to simplify
1908  * this algorithm, we record the largest max packet size for each interval, and
1909  * assume all packets will be that size.
1910  *
1911  * For interval 0, we obviously must schedule all packets for each interval.
1912  * The bandwidth for interval 0 is just the amount of data to be transmitted
1913  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
1914  * the number of packets).
1915  *
1916  * For interval 1, we have two possible microframes to schedule those packets
1917  * in.  For this algorithm, if we can schedule the same number of packets for
1918  * each possible scheduling opportunity (each microframe), we will do so.  The
1919  * remaining number of packets will be saved to be transmitted in the gaps in
1920  * the next interval's scheduling sequence.
1921  *
1922  * As we move those remaining packets to be scheduled with interval 2 packets,
1923  * we have to double the number of remaining packets to transmit.  This is
1924  * because the intervals are actually powers of 2, and we would be transmitting
1925  * the previous interval's packets twice in this interval.  We also have to be
1926  * sure that when we look at the largest max packet size for this interval, we
1927  * also look at the largest max packet size for the remaining packets and take
1928  * the greater of the two.
1929  *
1930  * The algorithm continues to evenly distribute packets in each scheduling
1931  * opportunity, and push the remaining packets out, until we get to the last
1932  * interval.  Then those packets and their associated overhead are just added
1933  * to the bandwidth used.
1934  */
1935 static int xhci_check_bw_table(struct xhci_hcd *xhci,
1936                 struct xhci_virt_device *virt_dev,
1937                 int old_active_eps)
1938 {
1939         unsigned int bw_reserved;
1940         unsigned int max_bandwidth;
1941         unsigned int bw_used;
1942         unsigned int block_size;
1943         struct xhci_interval_bw_table *bw_table;
1944         unsigned int packet_size = 0;
1945         unsigned int overhead = 0;
1946         unsigned int packets_transmitted = 0;
1947         unsigned int packets_remaining = 0;
1948         unsigned int i;
1949
1950         if (virt_dev->udev->speed == USB_SPEED_SUPER)
1951                 return xhci_check_ss_bw(xhci, virt_dev);
1952
1953         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
1954                 max_bandwidth = HS_BW_LIMIT;
1955                 /* Convert percent of bus BW reserved to blocks reserved */
1956                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
1957         } else {
1958                 max_bandwidth = FS_BW_LIMIT;
1959                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
1960         }
1961
1962         bw_table = virt_dev->bw_table;
1963         /* We need to translate the max packet size and max ESIT payloads into
1964          * the units the hardware uses.
1965          */
1966         block_size = xhci_get_block_size(virt_dev->udev);
1967
1968         /* If we are manipulating a LS/FS device under a HS hub, double check
1969          * that the HS bus has enough bandwidth if we are activing a new TT.
1970          */
1971         if (virt_dev->tt_info) {
1972                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1973                                 virt_dev->real_port);
1974                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
1975                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
1976                                         "newly activated TT.\n");
1977                         return -ENOMEM;
1978                 }
1979                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
1980                                 virt_dev->tt_info->slot_id,
1981                                 virt_dev->tt_info->ttport);
1982         } else {
1983                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1984                                 virt_dev->real_port);
1985         }
1986
1987         /* Add in how much bandwidth will be used for interval zero, or the
1988          * rounded max ESIT payload + number of packets * largest overhead.
1989          */
1990         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
1991                 bw_table->interval_bw[0].num_packets *
1992                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
1993
1994         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
1995                 unsigned int bw_added;
1996                 unsigned int largest_mps;
1997                 unsigned int interval_overhead;
1998
1999                 /*
2000                  * How many packets could we transmit in this interval?
2001                  * If packets didn't fit in the previous interval, we will need
2002                  * to transmit that many packets twice within this interval.
2003                  */
2004                 packets_remaining = 2 * packets_remaining +
2005                         bw_table->interval_bw[i].num_packets;
2006
2007                 /* Find the largest max packet size of this or the previous
2008                  * interval.
2009                  */
2010                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2011                         largest_mps = 0;
2012                 else {
2013                         struct xhci_virt_ep *virt_ep;
2014                         struct list_head *ep_entry;
2015
2016                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2017                         virt_ep = list_entry(ep_entry,
2018                                         struct xhci_virt_ep, bw_endpoint_list);
2019                         /* Convert to blocks, rounding up */
2020                         largest_mps = DIV_ROUND_UP(
2021                                         virt_ep->bw_info.max_packet_size,
2022                                         block_size);
2023                 }
2024                 if (largest_mps > packet_size)
2025                         packet_size = largest_mps;
2026
2027                 /* Use the larger overhead of this or the previous interval. */
2028                 interval_overhead = xhci_get_largest_overhead(
2029                                 &bw_table->interval_bw[i]);
2030                 if (interval_overhead > overhead)
2031                         overhead = interval_overhead;
2032
2033                 /* How many packets can we evenly distribute across
2034                  * (1 << (i + 1)) possible scheduling opportunities?
2035                  */
2036                 packets_transmitted = packets_remaining >> (i + 1);
2037
2038                 /* Add in the bandwidth used for those scheduled packets */
2039                 bw_added = packets_transmitted * (overhead + packet_size);
2040
2041                 /* How many packets do we have remaining to transmit? */
2042                 packets_remaining = packets_remaining % (1 << (i + 1));
2043
2044                 /* What largest max packet size should those packets have? */
2045                 /* If we've transmitted all packets, don't carry over the
2046                  * largest packet size.
2047                  */
2048                 if (packets_remaining == 0) {
2049                         packet_size = 0;
2050                         overhead = 0;
2051                 } else if (packets_transmitted > 0) {
2052                         /* Otherwise if we do have remaining packets, and we've
2053                          * scheduled some packets in this interval, take the
2054                          * largest max packet size from endpoints with this
2055                          * interval.
2056                          */
2057                         packet_size = largest_mps;
2058                         overhead = interval_overhead;
2059                 }
2060                 /* Otherwise carry over packet_size and overhead from the last
2061                  * time we had a remainder.
2062                  */
2063                 bw_used += bw_added;
2064                 if (bw_used > max_bandwidth) {
2065                         xhci_warn(xhci, "Not enough bandwidth. "
2066                                         "Proposed: %u, Max: %u\n",
2067                                 bw_used, max_bandwidth);
2068                         return -ENOMEM;
2069                 }
2070         }
2071         /*
2072          * Ok, we know we have some packets left over after even-handedly
2073          * scheduling interval 15.  We don't know which microframes they will
2074          * fit into, so we over-schedule and say they will be scheduled every
2075          * microframe.
2076          */
2077         if (packets_remaining > 0)
2078                 bw_used += overhead + packet_size;
2079
2080         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2081                 unsigned int port_index = virt_dev->real_port - 1;
2082
2083                 /* OK, we're manipulating a HS device attached to a
2084                  * root port bandwidth domain.  Include the number of active TTs
2085                  * in the bandwidth used.
2086                  */
2087                 bw_used += TT_HS_OVERHEAD *
2088                         xhci->rh_bw[port_index].num_active_tts;
2089         }
2090
2091         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2092                 "Available: %u " "percent\n",
2093                 bw_used, max_bandwidth, bw_reserved,
2094                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2095                 max_bandwidth);
2096
2097         bw_used += bw_reserved;
2098         if (bw_used > max_bandwidth) {
2099                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2100                                 bw_used, max_bandwidth);
2101                 return -ENOMEM;
2102         }
2103
2104         bw_table->bw_used = bw_used;
2105         return 0;
2106 }
2107
2108 static bool xhci_is_async_ep(unsigned int ep_type)
2109 {
2110         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2111                                         ep_type != ISOC_IN_EP &&
2112                                         ep_type != INT_IN_EP);
2113 }
2114
2115 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2116 {
2117         return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2118 }
2119
2120 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2121 {
2122         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2123
2124         if (ep_bw->ep_interval == 0)
2125                 return SS_OVERHEAD_BURST +
2126                         (ep_bw->mult * ep_bw->num_packets *
2127                                         (SS_OVERHEAD + mps));
2128         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2129                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2130                                 1 << ep_bw->ep_interval);
2131
2132 }
2133
2134 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2135                 struct xhci_bw_info *ep_bw,
2136                 struct xhci_interval_bw_table *bw_table,
2137                 struct usb_device *udev,
2138                 struct xhci_virt_ep *virt_ep,
2139                 struct xhci_tt_bw_info *tt_info)
2140 {
2141         struct xhci_interval_bw *interval_bw;
2142         int normalized_interval;
2143
2144         if (xhci_is_async_ep(ep_bw->type))
2145                 return;
2146
2147         if (udev->speed == USB_SPEED_SUPER) {
2148                 if (xhci_is_sync_in_ep(ep_bw->type))
2149                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2150                                 xhci_get_ss_bw_consumed(ep_bw);
2151                 else
2152                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2153                                 xhci_get_ss_bw_consumed(ep_bw);
2154                 return;
2155         }
2156
2157         /* SuperSpeed endpoints never get added to intervals in the table, so
2158          * this check is only valid for HS/FS/LS devices.
2159          */
2160         if (list_empty(&virt_ep->bw_endpoint_list))
2161                 return;
2162         /* For LS/FS devices, we need to translate the interval expressed in
2163          * microframes to frames.
2164          */
2165         if (udev->speed == USB_SPEED_HIGH)
2166                 normalized_interval = ep_bw->ep_interval;
2167         else
2168                 normalized_interval = ep_bw->ep_interval - 3;
2169
2170         if (normalized_interval == 0)
2171                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2172         interval_bw = &bw_table->interval_bw[normalized_interval];
2173         interval_bw->num_packets -= ep_bw->num_packets;
2174         switch (udev->speed) {
2175         case USB_SPEED_LOW:
2176                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2177                 break;
2178         case USB_SPEED_FULL:
2179                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2180                 break;
2181         case USB_SPEED_HIGH:
2182                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2183                 break;
2184         case USB_SPEED_SUPER:
2185         case USB_SPEED_UNKNOWN:
2186         case USB_SPEED_WIRELESS:
2187                 /* Should never happen because only LS/FS/HS endpoints will get
2188                  * added to the endpoint list.
2189                  */
2190                 return;
2191         }
2192         if (tt_info)
2193                 tt_info->active_eps -= 1;
2194         list_del_init(&virt_ep->bw_endpoint_list);
2195 }
2196
2197 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2198                 struct xhci_bw_info *ep_bw,
2199                 struct xhci_interval_bw_table *bw_table,
2200                 struct usb_device *udev,
2201                 struct xhci_virt_ep *virt_ep,
2202                 struct xhci_tt_bw_info *tt_info)
2203 {
2204         struct xhci_interval_bw *interval_bw;
2205         struct xhci_virt_ep *smaller_ep;
2206         int normalized_interval;
2207
2208         if (xhci_is_async_ep(ep_bw->type))
2209                 return;
2210
2211         if (udev->speed == USB_SPEED_SUPER) {
2212                 if (xhci_is_sync_in_ep(ep_bw->type))
2213                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2214                                 xhci_get_ss_bw_consumed(ep_bw);
2215                 else
2216                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2217                                 xhci_get_ss_bw_consumed(ep_bw);
2218                 return;
2219         }
2220
2221         /* For LS/FS devices, we need to translate the interval expressed in
2222          * microframes to frames.
2223          */
2224         if (udev->speed == USB_SPEED_HIGH)
2225                 normalized_interval = ep_bw->ep_interval;
2226         else
2227                 normalized_interval = ep_bw->ep_interval - 3;
2228
2229         if (normalized_interval == 0)
2230                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2231         interval_bw = &bw_table->interval_bw[normalized_interval];
2232         interval_bw->num_packets += ep_bw->num_packets;
2233         switch (udev->speed) {
2234         case USB_SPEED_LOW:
2235                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2236                 break;
2237         case USB_SPEED_FULL:
2238                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2239                 break;
2240         case USB_SPEED_HIGH:
2241                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2242                 break;
2243         case USB_SPEED_SUPER:
2244         case USB_SPEED_UNKNOWN:
2245         case USB_SPEED_WIRELESS:
2246                 /* Should never happen because only LS/FS/HS endpoints will get
2247                  * added to the endpoint list.
2248                  */
2249                 return;
2250         }
2251
2252         if (tt_info)
2253                 tt_info->active_eps += 1;
2254         /* Insert the endpoint into the list, largest max packet size first. */
2255         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2256                         bw_endpoint_list) {
2257                 if (ep_bw->max_packet_size >=
2258                                 smaller_ep->bw_info.max_packet_size) {
2259                         /* Add the new ep before the smaller endpoint */
2260                         list_add_tail(&virt_ep->bw_endpoint_list,
2261                                         &smaller_ep->bw_endpoint_list);
2262                         return;
2263                 }
2264         }
2265         /* Add the new endpoint at the end of the list. */
2266         list_add_tail(&virt_ep->bw_endpoint_list,
2267                         &interval_bw->endpoints);
2268 }
2269
2270 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2271                 struct xhci_virt_device *virt_dev,
2272                 int old_active_eps)
2273 {
2274         struct xhci_root_port_bw_info *rh_bw_info;
2275         if (!virt_dev->tt_info)
2276                 return;
2277
2278         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2279         if (old_active_eps == 0 &&
2280                                 virt_dev->tt_info->active_eps != 0) {
2281                 rh_bw_info->num_active_tts += 1;
2282                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2283         } else if (old_active_eps != 0 &&
2284                                 virt_dev->tt_info->active_eps == 0) {
2285                 rh_bw_info->num_active_tts -= 1;
2286                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2287         }
2288 }
2289
2290 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2291                 struct xhci_virt_device *virt_dev,
2292                 struct xhci_container_ctx *in_ctx)
2293 {
2294         struct xhci_bw_info ep_bw_info[31];
2295         int i;
2296         struct xhci_input_control_ctx *ctrl_ctx;
2297         int old_active_eps = 0;
2298
2299         if (virt_dev->tt_info)
2300                 old_active_eps = virt_dev->tt_info->active_eps;
2301
2302         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2303
2304         for (i = 0; i < 31; i++) {
2305                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2306                         continue;
2307
2308                 /* Make a copy of the BW info in case we need to revert this */
2309                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2310                                 sizeof(ep_bw_info[i]));
2311                 /* Drop the endpoint from the interval table if the endpoint is
2312                  * being dropped or changed.
2313                  */
2314                 if (EP_IS_DROPPED(ctrl_ctx, i))
2315                         xhci_drop_ep_from_interval_table(xhci,
2316                                         &virt_dev->eps[i].bw_info,
2317                                         virt_dev->bw_table,
2318                                         virt_dev->udev,
2319                                         &virt_dev->eps[i],
2320                                         virt_dev->tt_info);
2321         }
2322         /* Overwrite the information stored in the endpoints' bw_info */
2323         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2324         for (i = 0; i < 31; i++) {
2325                 /* Add any changed or added endpoints to the interval table */
2326                 if (EP_IS_ADDED(ctrl_ctx, i))
2327                         xhci_add_ep_to_interval_table(xhci,
2328                                         &virt_dev->eps[i].bw_info,
2329                                         virt_dev->bw_table,
2330                                         virt_dev->udev,
2331                                         &virt_dev->eps[i],
2332                                         virt_dev->tt_info);
2333         }
2334
2335         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2336                 /* Ok, this fits in the bandwidth we have.
2337                  * Update the number of active TTs.
2338                  */
2339                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2340                 return 0;
2341         }
2342
2343         /* We don't have enough bandwidth for this, revert the stored info. */
2344         for (i = 0; i < 31; i++) {
2345                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2346                         continue;
2347
2348                 /* Drop the new copies of any added or changed endpoints from
2349                  * the interval table.
2350                  */
2351                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2352                         xhci_drop_ep_from_interval_table(xhci,
2353                                         &virt_dev->eps[i].bw_info,
2354                                         virt_dev->bw_table,
2355                                         virt_dev->udev,
2356                                         &virt_dev->eps[i],
2357                                         virt_dev->tt_info);
2358                 }
2359                 /* Revert the endpoint back to its old information */
2360                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2361                                 sizeof(ep_bw_info[i]));
2362                 /* Add any changed or dropped endpoints back into the table */
2363                 if (EP_IS_DROPPED(ctrl_ctx, i))
2364                         xhci_add_ep_to_interval_table(xhci,
2365                                         &virt_dev->eps[i].bw_info,
2366                                         virt_dev->bw_table,
2367                                         virt_dev->udev,
2368                                         &virt_dev->eps[i],
2369                                         virt_dev->tt_info);
2370         }
2371         return -ENOMEM;
2372 }
2373
2374
2375 /* Issue a configure endpoint command or evaluate context command
2376  * and wait for it to finish.
2377  */
2378 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2379                 struct usb_device *udev,
2380                 struct xhci_command *command,
2381                 bool ctx_change, bool must_succeed)
2382 {
2383         int ret;
2384         int timeleft;
2385         unsigned long flags;
2386         struct xhci_container_ctx *in_ctx;
2387         struct completion *cmd_completion;
2388         u32 *cmd_status;
2389         struct xhci_virt_device *virt_dev;
2390
2391         spin_lock_irqsave(&xhci->lock, flags);
2392         virt_dev = xhci->devs[udev->slot_id];
2393
2394         if (command)
2395                 in_ctx = command->in_ctx;
2396         else
2397                 in_ctx = virt_dev->in_ctx;
2398
2399         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2400                         xhci_reserve_host_resources(xhci, in_ctx)) {
2401                 spin_unlock_irqrestore(&xhci->lock, flags);
2402                 xhci_warn(xhci, "Not enough host resources, "
2403                                 "active endpoint contexts = %u\n",
2404                                 xhci->num_active_eps);
2405                 return -ENOMEM;
2406         }
2407         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2408                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2409                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2410                         xhci_free_host_resources(xhci, in_ctx);
2411                 spin_unlock_irqrestore(&xhci->lock, flags);
2412                 xhci_warn(xhci, "Not enough bandwidth\n");
2413                 return -ENOMEM;
2414         }
2415
2416         if (command) {
2417                 cmd_completion = command->completion;
2418                 cmd_status = &command->status;
2419                 command->command_trb = xhci->cmd_ring->enqueue;
2420
2421                 /* Enqueue pointer can be left pointing to the link TRB,
2422                  * we must handle that
2423                  */
2424                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2425                         command->command_trb =
2426                                 xhci->cmd_ring->enq_seg->next->trbs;
2427
2428                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2429         } else {
2430                 cmd_completion = &virt_dev->cmd_completion;
2431                 cmd_status = &virt_dev->cmd_status;
2432         }
2433         init_completion(cmd_completion);
2434
2435         if (!ctx_change)
2436                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2437                                 udev->slot_id, must_succeed);
2438         else
2439                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2440                                 udev->slot_id);
2441         if (ret < 0) {
2442                 if (command)
2443                         list_del(&command->cmd_list);
2444                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2445                         xhci_free_host_resources(xhci, in_ctx);
2446                 spin_unlock_irqrestore(&xhci->lock, flags);
2447                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2448                 return -ENOMEM;
2449         }
2450         xhci_ring_cmd_db(xhci);
2451         spin_unlock_irqrestore(&xhci->lock, flags);
2452
2453         /* Wait for the configure endpoint command to complete */
2454         timeleft = wait_for_completion_interruptible_timeout(
2455                         cmd_completion,
2456                         USB_CTRL_SET_TIMEOUT);
2457         if (timeleft <= 0) {
2458                 xhci_warn(xhci, "%s while waiting for %s command\n",
2459                                 timeleft == 0 ? "Timeout" : "Signal",
2460                                 ctx_change == 0 ?
2461                                         "configure endpoint" :
2462                                         "evaluate context");
2463                 /* FIXME cancel the configure endpoint command */
2464                 return -ETIME;
2465         }
2466
2467         if (!ctx_change)
2468                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2469         else
2470                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2471
2472         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2473                 spin_lock_irqsave(&xhci->lock, flags);
2474                 /* If the command failed, remove the reserved resources.
2475                  * Otherwise, clean up the estimate to include dropped eps.
2476                  */
2477                 if (ret)
2478                         xhci_free_host_resources(xhci, in_ctx);
2479                 else
2480                         xhci_finish_resource_reservation(xhci, in_ctx);
2481                 spin_unlock_irqrestore(&xhci->lock, flags);
2482         }
2483         return ret;
2484 }
2485
2486 /* Called after one or more calls to xhci_add_endpoint() or
2487  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2488  * to call xhci_reset_bandwidth().
2489  *
2490  * Since we are in the middle of changing either configuration or
2491  * installing a new alt setting, the USB core won't allow URBs to be
2492  * enqueued for any endpoint on the old config or interface.  Nothing
2493  * else should be touching the xhci->devs[slot_id] structure, so we
2494  * don't need to take the xhci->lock for manipulating that.
2495  */
2496 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2497 {
2498         int i;
2499         int ret = 0;
2500         struct xhci_hcd *xhci;
2501         struct xhci_virt_device *virt_dev;
2502         struct xhci_input_control_ctx *ctrl_ctx;
2503         struct xhci_slot_ctx *slot_ctx;
2504
2505         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2506         if (ret <= 0)
2507                 return ret;
2508         xhci = hcd_to_xhci(hcd);
2509         if (xhci->xhc_state & XHCI_STATE_DYING)
2510                 return -ENODEV;
2511
2512         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2513         virt_dev = xhci->devs[udev->slot_id];
2514
2515         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2516         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2517         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2518         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2519         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2520
2521         /* Don't issue the command if there's no endpoints to update. */
2522         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2523                         ctrl_ctx->drop_flags == 0)
2524                 return 0;
2525
2526         xhci_dbg(xhci, "New Input Control Context:\n");
2527         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2528         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2529                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2530
2531         ret = xhci_configure_endpoint(xhci, udev, NULL,
2532                         false, false);
2533         if (ret) {
2534                 /* Callee should call reset_bandwidth() */
2535                 return ret;
2536         }
2537
2538         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2539         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2540                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2541
2542         /* Free any rings that were dropped, but not changed. */
2543         for (i = 1; i < 31; ++i) {
2544                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2545                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2546                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2547         }
2548         xhci_zero_in_ctx(xhci, virt_dev);
2549         /*
2550          * Install any rings for completely new endpoints or changed endpoints,
2551          * and free or cache any old rings from changed endpoints.
2552          */
2553         for (i = 1; i < 31; ++i) {
2554                 if (!virt_dev->eps[i].new_ring)
2555                         continue;
2556                 /* Only cache or free the old ring if it exists.
2557                  * It may not if this is the first add of an endpoint.
2558                  */
2559                 if (virt_dev->eps[i].ring) {
2560                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2561                 }
2562                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2563                 virt_dev->eps[i].new_ring = NULL;
2564         }
2565
2566         return ret;
2567 }
2568
2569 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2570 {
2571         struct xhci_hcd *xhci;
2572         struct xhci_virt_device *virt_dev;
2573         int i, ret;
2574
2575         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2576         if (ret <= 0)
2577                 return;
2578         xhci = hcd_to_xhci(hcd);
2579
2580         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2581         virt_dev = xhci->devs[udev->slot_id];
2582         /* Free any rings allocated for added endpoints */
2583         for (i = 0; i < 31; ++i) {
2584                 if (virt_dev->eps[i].new_ring) {
2585                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2586                         virt_dev->eps[i].new_ring = NULL;
2587                 }
2588         }
2589         xhci_zero_in_ctx(xhci, virt_dev);
2590 }
2591
2592 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2593                 struct xhci_container_ctx *in_ctx,
2594                 struct xhci_container_ctx *out_ctx,
2595                 u32 add_flags, u32 drop_flags)
2596 {
2597         struct xhci_input_control_ctx *ctrl_ctx;
2598         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2599         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2600         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2601         xhci_slot_copy(xhci, in_ctx, out_ctx);
2602         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2603
2604         xhci_dbg(xhci, "Input Context:\n");
2605         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2606 }
2607
2608 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2609                 unsigned int slot_id, unsigned int ep_index,
2610                 struct xhci_dequeue_state *deq_state)
2611 {
2612         struct xhci_container_ctx *in_ctx;
2613         struct xhci_ep_ctx *ep_ctx;
2614         u32 added_ctxs;
2615         dma_addr_t addr;
2616
2617         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2618                         xhci->devs[slot_id]->out_ctx, ep_index);
2619         in_ctx = xhci->devs[slot_id]->in_ctx;
2620         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2621         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2622                         deq_state->new_deq_ptr);
2623         if (addr == 0) {
2624                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2625                                 "reset ep command\n");
2626                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2627                                 deq_state->new_deq_seg,
2628                                 deq_state->new_deq_ptr);
2629                 return;
2630         }
2631         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2632
2633         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2634         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2635                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2636 }
2637
2638 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2639                 struct usb_device *udev, unsigned int ep_index)
2640 {
2641         struct xhci_dequeue_state deq_state;
2642         struct xhci_virt_ep *ep;
2643
2644         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2645         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2646         /* We need to move the HW's dequeue pointer past this TD,
2647          * or it will attempt to resend it on the next doorbell ring.
2648          */
2649         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2650                         ep_index, ep->stopped_stream, ep->stopped_td,
2651                         &deq_state);
2652
2653         /* HW with the reset endpoint quirk will use the saved dequeue state to
2654          * issue a configure endpoint command later.
2655          */
2656         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2657                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2658                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2659                                 ep_index, ep->stopped_stream, &deq_state);
2660         } else {
2661                 /* Better hope no one uses the input context between now and the
2662                  * reset endpoint completion!
2663                  * XXX: No idea how this hardware will react when stream rings
2664                  * are enabled.
2665                  */
2666                 xhci_dbg(xhci, "Setting up input context for "
2667                                 "configure endpoint command\n");
2668                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2669                                 ep_index, &deq_state);
2670         }
2671 }
2672
2673 /* Deal with stalled endpoints.  The core should have sent the control message
2674  * to clear the halt condition.  However, we need to make the xHCI hardware
2675  * reset its sequence number, since a device will expect a sequence number of
2676  * zero after the halt condition is cleared.
2677  * Context: in_interrupt
2678  */
2679 void xhci_endpoint_reset(struct usb_hcd *hcd,
2680                 struct usb_host_endpoint *ep)
2681 {
2682         struct xhci_hcd *xhci;
2683         struct usb_device *udev;
2684         unsigned int ep_index;
2685         unsigned long flags;
2686         int ret;
2687         struct xhci_virt_ep *virt_ep;
2688
2689         xhci = hcd_to_xhci(hcd);
2690         udev = (struct usb_device *) ep->hcpriv;
2691         /* Called with a root hub endpoint (or an endpoint that wasn't added
2692          * with xhci_add_endpoint()
2693          */
2694         if (!ep->hcpriv)
2695                 return;
2696         ep_index = xhci_get_endpoint_index(&ep->desc);
2697         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2698         if (!virt_ep->stopped_td) {
2699                 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2700                                 ep->desc.bEndpointAddress);
2701                 return;
2702         }
2703         if (usb_endpoint_xfer_control(&ep->desc)) {
2704                 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2705                 return;
2706         }
2707
2708         xhci_dbg(xhci, "Queueing reset endpoint command\n");
2709         spin_lock_irqsave(&xhci->lock, flags);
2710         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2711         /*
2712          * Can't change the ring dequeue pointer until it's transitioned to the
2713          * stopped state, which is only upon a successful reset endpoint
2714          * command.  Better hope that last command worked!
2715          */
2716         if (!ret) {
2717                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2718                 kfree(virt_ep->stopped_td);
2719                 xhci_ring_cmd_db(xhci);
2720         }
2721         virt_ep->stopped_td = NULL;
2722         virt_ep->stopped_trb = NULL;
2723         virt_ep->stopped_stream = 0;
2724         spin_unlock_irqrestore(&xhci->lock, flags);
2725
2726         if (ret)
2727                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2728 }
2729
2730 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2731                 struct usb_device *udev, struct usb_host_endpoint *ep,
2732                 unsigned int slot_id)
2733 {
2734         int ret;
2735         unsigned int ep_index;
2736         unsigned int ep_state;
2737
2738         if (!ep)
2739                 return -EINVAL;
2740         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2741         if (ret <= 0)
2742                 return -EINVAL;
2743         if (ep->ss_ep_comp.bmAttributes == 0) {
2744                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2745                                 " descriptor for ep 0x%x does not support streams\n",
2746                                 ep->desc.bEndpointAddress);
2747                 return -EINVAL;
2748         }
2749
2750         ep_index = xhci_get_endpoint_index(&ep->desc);
2751         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2752         if (ep_state & EP_HAS_STREAMS ||
2753                         ep_state & EP_GETTING_STREAMS) {
2754                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2755                                 "already has streams set up.\n",
2756                                 ep->desc.bEndpointAddress);
2757                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2758                                 "dynamic stream context array reallocation.\n");
2759                 return -EINVAL;
2760         }
2761         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2762                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2763                                 "endpoint 0x%x; URBs are pending.\n",
2764                                 ep->desc.bEndpointAddress);
2765                 return -EINVAL;
2766         }
2767         return 0;
2768 }
2769
2770 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2771                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2772 {
2773         unsigned int max_streams;
2774
2775         /* The stream context array size must be a power of two */
2776         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2777         /*
2778          * Find out how many primary stream array entries the host controller
2779          * supports.  Later we may use secondary stream arrays (similar to 2nd
2780          * level page entries), but that's an optional feature for xHCI host
2781          * controllers. xHCs must support at least 4 stream IDs.
2782          */
2783         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2784         if (*num_stream_ctxs > max_streams) {
2785                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2786                                 max_streams);
2787                 *num_stream_ctxs = max_streams;
2788                 *num_streams = max_streams;
2789         }
2790 }
2791
2792 /* Returns an error code if one of the endpoint already has streams.
2793  * This does not change any data structures, it only checks and gathers
2794  * information.
2795  */
2796 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2797                 struct usb_device *udev,
2798                 struct usb_host_endpoint **eps, unsigned int num_eps,
2799                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2800 {
2801         unsigned int max_streams;
2802         unsigned int endpoint_flag;
2803         int i;
2804         int ret;
2805
2806         for (i = 0; i < num_eps; i++) {
2807                 ret = xhci_check_streams_endpoint(xhci, udev,
2808                                 eps[i], udev->slot_id);
2809                 if (ret < 0)
2810                         return ret;
2811
2812                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2813                 if (max_streams < (*num_streams - 1)) {
2814                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2815                                         eps[i]->desc.bEndpointAddress,
2816                                         max_streams);
2817                         *num_streams = max_streams+1;
2818                 }
2819
2820                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2821                 if (*changed_ep_bitmask & endpoint_flag)
2822                         return -EINVAL;
2823                 *changed_ep_bitmask |= endpoint_flag;
2824         }
2825         return 0;
2826 }
2827
2828 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2829                 struct usb_device *udev,
2830                 struct usb_host_endpoint **eps, unsigned int num_eps)
2831 {
2832         u32 changed_ep_bitmask = 0;
2833         unsigned int slot_id;
2834         unsigned int ep_index;
2835         unsigned int ep_state;
2836         int i;
2837
2838         slot_id = udev->slot_id;
2839         if (!xhci->devs[slot_id])
2840                 return 0;
2841
2842         for (i = 0; i < num_eps; i++) {
2843                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2844                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2845                 /* Are streams already being freed for the endpoint? */
2846                 if (ep_state & EP_GETTING_NO_STREAMS) {
2847                         xhci_warn(xhci, "WARN Can't disable streams for "
2848                                         "endpoint 0x%x\n, "
2849                                         "streams are being disabled already.",
2850                                         eps[i]->desc.bEndpointAddress);
2851                         return 0;
2852                 }
2853                 /* Are there actually any streams to free? */
2854                 if (!(ep_state & EP_HAS_STREAMS) &&
2855                                 !(ep_state & EP_GETTING_STREAMS)) {
2856                         xhci_warn(xhci, "WARN Can't disable streams for "
2857                                         "endpoint 0x%x\n, "
2858                                         "streams are already disabled!",
2859                                         eps[i]->desc.bEndpointAddress);
2860                         xhci_warn(xhci, "WARN xhci_free_streams() called "
2861                                         "with non-streams endpoint\n");
2862                         return 0;
2863                 }
2864                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2865         }
2866         return changed_ep_bitmask;
2867 }
2868
2869 /*
2870  * The USB device drivers use this function (though the HCD interface in USB
2871  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2872  * coordinate mass storage command queueing across multiple endpoints (basically
2873  * a stream ID == a task ID).
2874  *
2875  * Setting up streams involves allocating the same size stream context array
2876  * for each endpoint and issuing a configure endpoint command for all endpoints.
2877  *
2878  * Don't allow the call to succeed if one endpoint only supports one stream
2879  * (which means it doesn't support streams at all).
2880  *
2881  * Drivers may get less stream IDs than they asked for, if the host controller
2882  * hardware or endpoints claim they can't support the number of requested
2883  * stream IDs.
2884  */
2885 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2886                 struct usb_host_endpoint **eps, unsigned int num_eps,
2887                 unsigned int num_streams, gfp_t mem_flags)
2888 {
2889         int i, ret;
2890         struct xhci_hcd *xhci;
2891         struct xhci_virt_device *vdev;
2892         struct xhci_command *config_cmd;
2893         unsigned int ep_index;
2894         unsigned int num_stream_ctxs;
2895         unsigned long flags;
2896         u32 changed_ep_bitmask = 0;
2897
2898         if (!eps)
2899                 return -EINVAL;
2900
2901         /* Add one to the number of streams requested to account for
2902          * stream 0 that is reserved for xHCI usage.
2903          */
2904         num_streams += 1;
2905         xhci = hcd_to_xhci(hcd);
2906         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2907                         num_streams);
2908
2909         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2910         if (!config_cmd) {
2911                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2912                 return -ENOMEM;
2913         }
2914
2915         /* Check to make sure all endpoints are not already configured for
2916          * streams.  While we're at it, find the maximum number of streams that
2917          * all the endpoints will support and check for duplicate endpoints.
2918          */
2919         spin_lock_irqsave(&xhci->lock, flags);
2920         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2921                         num_eps, &num_streams, &changed_ep_bitmask);
2922         if (ret < 0) {
2923                 xhci_free_command(xhci, config_cmd);
2924                 spin_unlock_irqrestore(&xhci->lock, flags);
2925                 return ret;
2926         }
2927         if (num_streams <= 1) {
2928                 xhci_warn(xhci, "WARN: endpoints can't handle "
2929                                 "more than one stream.\n");
2930                 xhci_free_command(xhci, config_cmd);
2931                 spin_unlock_irqrestore(&xhci->lock, flags);
2932                 return -EINVAL;
2933         }
2934         vdev = xhci->devs[udev->slot_id];
2935         /* Mark each endpoint as being in transition, so
2936          * xhci_urb_enqueue() will reject all URBs.
2937          */
2938         for (i = 0; i < num_eps; i++) {
2939                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2940                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2941         }
2942         spin_unlock_irqrestore(&xhci->lock, flags);
2943
2944         /* Setup internal data structures and allocate HW data structures for
2945          * streams (but don't install the HW structures in the input context
2946          * until we're sure all memory allocation succeeded).
2947          */
2948         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2949         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2950                         num_stream_ctxs, num_streams);
2951
2952         for (i = 0; i < num_eps; i++) {
2953                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2954                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2955                                 num_stream_ctxs,
2956                                 num_streams, mem_flags);
2957                 if (!vdev->eps[ep_index].stream_info)
2958                         goto cleanup;
2959                 /* Set maxPstreams in endpoint context and update deq ptr to
2960                  * point to stream context array. FIXME
2961                  */
2962         }
2963
2964         /* Set up the input context for a configure endpoint command. */
2965         for (i = 0; i < num_eps; i++) {
2966                 struct xhci_ep_ctx *ep_ctx;
2967
2968                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2969                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2970
2971                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2972                                 vdev->out_ctx, ep_index);
2973                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2974                                 vdev->eps[ep_index].stream_info);
2975         }
2976         /* Tell the HW to drop its old copy of the endpoint context info
2977          * and add the updated copy from the input context.
2978          */
2979         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2980                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2981
2982         /* Issue and wait for the configure endpoint command */
2983         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2984                         false, false);
2985
2986         /* xHC rejected the configure endpoint command for some reason, so we
2987          * leave the old ring intact and free our internal streams data
2988          * structure.
2989          */
2990         if (ret < 0)
2991                 goto cleanup;
2992
2993         spin_lock_irqsave(&xhci->lock, flags);
2994         for (i = 0; i < num_eps; i++) {
2995                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2996                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2997                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2998                          udev->slot_id, ep_index);
2999                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3000         }
3001         xhci_free_command(xhci, config_cmd);
3002         spin_unlock_irqrestore(&xhci->lock, flags);
3003
3004         /* Subtract 1 for stream 0, which drivers can't use */
3005         return num_streams - 1;
3006
3007 cleanup:
3008         /* If it didn't work, free the streams! */
3009         for (i = 0; i < num_eps; i++) {
3010                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3011                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3012                 vdev->eps[ep_index].stream_info = NULL;
3013                 /* FIXME Unset maxPstreams in endpoint context and
3014                  * update deq ptr to point to normal string ring.
3015                  */
3016                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3017                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3018                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3019         }
3020         xhci_free_command(xhci, config_cmd);
3021         return -ENOMEM;
3022 }
3023
3024 /* Transition the endpoint from using streams to being a "normal" endpoint
3025  * without streams.
3026  *
3027  * Modify the endpoint context state, submit a configure endpoint command,
3028  * and free all endpoint rings for streams if that completes successfully.
3029  */
3030 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3031                 struct usb_host_endpoint **eps, unsigned int num_eps,
3032                 gfp_t mem_flags)
3033 {
3034         int i, ret;
3035         struct xhci_hcd *xhci;
3036         struct xhci_virt_device *vdev;
3037         struct xhci_command *command;
3038         unsigned int ep_index;
3039         unsigned long flags;
3040         u32 changed_ep_bitmask;
3041
3042         xhci = hcd_to_xhci(hcd);
3043         vdev = xhci->devs[udev->slot_id];
3044
3045         /* Set up a configure endpoint command to remove the streams rings */
3046         spin_lock_irqsave(&xhci->lock, flags);
3047         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3048                         udev, eps, num_eps);
3049         if (changed_ep_bitmask == 0) {
3050                 spin_unlock_irqrestore(&xhci->lock, flags);
3051                 return -EINVAL;
3052         }
3053
3054         /* Use the xhci_command structure from the first endpoint.  We may have
3055          * allocated too many, but the driver may call xhci_free_streams() for
3056          * each endpoint it grouped into one call to xhci_alloc_streams().
3057          */
3058         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3059         command = vdev->eps[ep_index].stream_info->free_streams_command;
3060         for (i = 0; i < num_eps; i++) {
3061                 struct xhci_ep_ctx *ep_ctx;
3062
3063                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3064                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3065                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3066                         EP_GETTING_NO_STREAMS;
3067
3068                 xhci_endpoint_copy(xhci, command->in_ctx,
3069                                 vdev->out_ctx, ep_index);
3070                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3071                                 &vdev->eps[ep_index]);
3072         }
3073         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3074                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3075         spin_unlock_irqrestore(&xhci->lock, flags);
3076
3077         /* Issue and wait for the configure endpoint command,
3078          * which must succeed.
3079          */
3080         ret = xhci_configure_endpoint(xhci, udev, command,
3081                         false, true);
3082
3083         /* xHC rejected the configure endpoint command for some reason, so we
3084          * leave the streams rings intact.
3085          */
3086         if (ret < 0)
3087                 return ret;
3088
3089         spin_lock_irqsave(&xhci->lock, flags);
3090         for (i = 0; i < num_eps; i++) {
3091                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3092                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3093                 vdev->eps[ep_index].stream_info = NULL;
3094                 /* FIXME Unset maxPstreams in endpoint context and
3095                  * update deq ptr to point to normal string ring.
3096                  */
3097                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3098                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3099         }
3100         spin_unlock_irqrestore(&xhci->lock, flags);
3101
3102         return 0;
3103 }
3104
3105 /*
3106  * Deletes endpoint resources for endpoints that were active before a Reset
3107  * Device command, or a Disable Slot command.  The Reset Device command leaves
3108  * the control endpoint intact, whereas the Disable Slot command deletes it.
3109  *
3110  * Must be called with xhci->lock held.
3111  */
3112 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3113         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3114 {
3115         int i;
3116         unsigned int num_dropped_eps = 0;
3117         unsigned int drop_flags = 0;
3118
3119         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3120                 if (virt_dev->eps[i].ring) {
3121                         drop_flags |= 1 << i;
3122                         num_dropped_eps++;
3123                 }
3124         }
3125         xhci->num_active_eps -= num_dropped_eps;
3126         if (num_dropped_eps)
3127                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3128                                 "%u now active.\n",
3129                                 num_dropped_eps, drop_flags,
3130                                 xhci->num_active_eps);
3131 }
3132
3133 /*
3134  * This submits a Reset Device Command, which will set the device state to 0,
3135  * set the device address to 0, and disable all the endpoints except the default
3136  * control endpoint.  The USB core should come back and call
3137  * xhci_address_device(), and then re-set up the configuration.  If this is
3138  * called because of a usb_reset_and_verify_device(), then the old alternate
3139  * settings will be re-installed through the normal bandwidth allocation
3140  * functions.
3141  *
3142  * Wait for the Reset Device command to finish.  Remove all structures
3143  * associated with the endpoints that were disabled.  Clear the input device
3144  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3145  *
3146  * If the virt_dev to be reset does not exist or does not match the udev,
3147  * it means the device is lost, possibly due to the xHC restore error and
3148  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3149  * re-allocate the device.
3150  */
3151 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3152 {
3153         int ret, i;
3154         unsigned long flags;
3155         struct xhci_hcd *xhci;
3156         unsigned int slot_id;
3157         struct xhci_virt_device *virt_dev;
3158         struct xhci_command *reset_device_cmd;
3159         int timeleft;
3160         int last_freed_endpoint;
3161         struct xhci_slot_ctx *slot_ctx;
3162         int old_active_eps = 0;
3163
3164         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3165         if (ret <= 0)
3166                 return ret;
3167         xhci = hcd_to_xhci(hcd);
3168         slot_id = udev->slot_id;
3169         virt_dev = xhci->devs[slot_id];
3170         if (!virt_dev) {
3171                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3172                                 "not exist. Re-allocate the device\n", slot_id);
3173                 ret = xhci_alloc_dev(hcd, udev);
3174                 if (ret == 1)
3175                         return 0;
3176                 else
3177                         return -EINVAL;
3178         }
3179
3180         if (virt_dev->udev != udev) {
3181                 /* If the virt_dev and the udev does not match, this virt_dev
3182                  * may belong to another udev.
3183                  * Re-allocate the device.
3184                  */
3185                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3186                                 "not match the udev. Re-allocate the device\n",
3187                                 slot_id);
3188                 ret = xhci_alloc_dev(hcd, udev);
3189                 if (ret == 1)
3190                         return 0;
3191                 else
3192                         return -EINVAL;
3193         }
3194
3195         /* If device is not setup, there is no point in resetting it */
3196         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3197         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3198                                                 SLOT_STATE_DISABLED)
3199                 return 0;
3200
3201         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3202         /* Allocate the command structure that holds the struct completion.
3203          * Assume we're in process context, since the normal device reset
3204          * process has to wait for the device anyway.  Storage devices are
3205          * reset as part of error handling, so use GFP_NOIO instead of
3206          * GFP_KERNEL.
3207          */
3208         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3209         if (!reset_device_cmd) {
3210                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3211                 return -ENOMEM;
3212         }
3213
3214         /* Attempt to submit the Reset Device command to the command ring */
3215         spin_lock_irqsave(&xhci->lock, flags);
3216         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3217
3218         /* Enqueue pointer can be left pointing to the link TRB,
3219          * we must handle that
3220          */
3221         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3222                 reset_device_cmd->command_trb =
3223                         xhci->cmd_ring->enq_seg->next->trbs;
3224
3225         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3226         ret = xhci_queue_reset_device(xhci, slot_id);
3227         if (ret) {
3228                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3229                 list_del(&reset_device_cmd->cmd_list);
3230                 spin_unlock_irqrestore(&xhci->lock, flags);
3231                 goto command_cleanup;
3232         }
3233         xhci_ring_cmd_db(xhci);
3234         spin_unlock_irqrestore(&xhci->lock, flags);
3235
3236         /* Wait for the Reset Device command to finish */
3237         timeleft = wait_for_completion_interruptible_timeout(
3238                         reset_device_cmd->completion,
3239                         USB_CTRL_SET_TIMEOUT);
3240         if (timeleft <= 0) {
3241                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3242                                 timeleft == 0 ? "Timeout" : "Signal");
3243                 spin_lock_irqsave(&xhci->lock, flags);
3244                 /* The timeout might have raced with the event ring handler, so
3245                  * only delete from the list if the item isn't poisoned.
3246                  */
3247                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3248                         list_del(&reset_device_cmd->cmd_list);
3249                 spin_unlock_irqrestore(&xhci->lock, flags);
3250                 ret = -ETIME;
3251                 goto command_cleanup;
3252         }
3253
3254         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3255          * unless we tried to reset a slot ID that wasn't enabled,
3256          * or the device wasn't in the addressed or configured state.
3257          */
3258         ret = reset_device_cmd->status;
3259         switch (ret) {
3260         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3261         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3262                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3263                                 slot_id,
3264                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3265                 xhci_info(xhci, "Not freeing device rings.\n");
3266                 /* Don't treat this as an error.  May change my mind later. */
3267                 ret = 0;
3268                 goto command_cleanup;
3269         case COMP_SUCCESS:
3270                 xhci_dbg(xhci, "Successful reset device command.\n");
3271                 break;
3272         default:
3273                 if (xhci_is_vendor_info_code(xhci, ret))
3274                         break;
3275                 xhci_warn(xhci, "Unknown completion code %u for "
3276                                 "reset device command.\n", ret);
3277                 ret = -EINVAL;
3278                 goto command_cleanup;
3279         }
3280
3281         /* Free up host controller endpoint resources */
3282         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3283                 spin_lock_irqsave(&xhci->lock, flags);
3284                 /* Don't delete the default control endpoint resources */
3285                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3286                 spin_unlock_irqrestore(&xhci->lock, flags);
3287         }
3288
3289         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3290         last_freed_endpoint = 1;
3291         for (i = 1; i < 31; ++i) {
3292                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3293
3294                 if (ep->ep_state & EP_HAS_STREAMS) {
3295                         xhci_free_stream_info(xhci, ep->stream_info);
3296                         ep->stream_info = NULL;
3297                         ep->ep_state &= ~EP_HAS_STREAMS;
3298                 }
3299
3300                 if (ep->ring) {
3301                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3302                         last_freed_endpoint = i;
3303                 }
3304                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3305                         xhci_drop_ep_from_interval_table(xhci,
3306                                         &virt_dev->eps[i].bw_info,
3307                                         virt_dev->bw_table,
3308                                         udev,
3309                                         &virt_dev->eps[i],
3310                                         virt_dev->tt_info);
3311                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3312         }
3313         /* If necessary, update the number of active TTs on this root port */
3314         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3315
3316         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3317         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3318         ret = 0;
3319
3320 command_cleanup:
3321         xhci_free_command(xhci, reset_device_cmd);
3322         return ret;
3323 }
3324
3325 /*
3326  * At this point, the struct usb_device is about to go away, the device has
3327  * disconnected, and all traffic has been stopped and the endpoints have been
3328  * disabled.  Free any HC data structures associated with that device.
3329  */
3330 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3331 {
3332         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3333         struct xhci_virt_device *virt_dev;
3334         unsigned long flags;
3335         u32 state;
3336         int i, ret;
3337
3338         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3339         /* If the host is halted due to driver unload, we still need to free the
3340          * device.
3341          */
3342         if (ret <= 0 && ret != -ENODEV)
3343                 return;
3344
3345         virt_dev = xhci->devs[udev->slot_id];
3346
3347         /* Stop any wayward timer functions (which may grab the lock) */
3348         for (i = 0; i < 31; ++i) {
3349                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3350                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3351         }
3352
3353         if (udev->usb2_hw_lpm_enabled) {
3354                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3355                 udev->usb2_hw_lpm_enabled = 0;
3356         }
3357
3358         spin_lock_irqsave(&xhci->lock, flags);
3359         /* Don't disable the slot if the host controller is dead. */
3360         state = xhci_readl(xhci, &xhci->op_regs->status);
3361         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3362                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3363                 xhci_free_virt_device(xhci, udev->slot_id);
3364                 spin_unlock_irqrestore(&xhci->lock, flags);
3365                 return;
3366         }
3367
3368         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3369                 spin_unlock_irqrestore(&xhci->lock, flags);
3370                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3371                 return;
3372         }
3373         xhci_ring_cmd_db(xhci);
3374         spin_unlock_irqrestore(&xhci->lock, flags);
3375         /*
3376          * Event command completion handler will free any data structures
3377          * associated with the slot.  XXX Can free sleep?
3378          */
3379 }
3380
3381 /*
3382  * Checks if we have enough host controller resources for the default control
3383  * endpoint.
3384  *
3385  * Must be called with xhci->lock held.
3386  */
3387 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3388 {
3389         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3390                 xhci_dbg(xhci, "Not enough ep ctxs: "
3391                                 "%u active, need to add 1, limit is %u.\n",
3392                                 xhci->num_active_eps, xhci->limit_active_eps);
3393                 return -ENOMEM;
3394         }
3395         xhci->num_active_eps += 1;
3396         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3397                         xhci->num_active_eps);
3398         return 0;
3399 }
3400
3401
3402 /*
3403  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3404  * timed out, or allocating memory failed.  Returns 1 on success.
3405  */
3406 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3407 {
3408         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3409         unsigned long flags;
3410         int timeleft;
3411         int ret;
3412
3413         spin_lock_irqsave(&xhci->lock, flags);
3414         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3415         if (ret) {
3416                 spin_unlock_irqrestore(&xhci->lock, flags);
3417                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3418                 return 0;
3419         }
3420         xhci_ring_cmd_db(xhci);
3421         spin_unlock_irqrestore(&xhci->lock, flags);
3422
3423         /* XXX: how much time for xHC slot assignment? */
3424         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3425                         USB_CTRL_SET_TIMEOUT);
3426         if (timeleft <= 0) {
3427                 xhci_warn(xhci, "%s while waiting for a slot\n",
3428                                 timeleft == 0 ? "Timeout" : "Signal");
3429                 /* FIXME cancel the enable slot request */
3430                 return 0;
3431         }
3432
3433         if (!xhci->slot_id) {
3434                 xhci_err(xhci, "Error while assigning device slot ID\n");
3435                 return 0;
3436         }
3437
3438         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3439                 spin_lock_irqsave(&xhci->lock, flags);
3440                 ret = xhci_reserve_host_control_ep_resources(xhci);
3441                 if (ret) {
3442                         spin_unlock_irqrestore(&xhci->lock, flags);
3443                         xhci_warn(xhci, "Not enough host resources, "
3444                                         "active endpoint contexts = %u\n",
3445                                         xhci->num_active_eps);
3446                         goto disable_slot;
3447                 }
3448                 spin_unlock_irqrestore(&xhci->lock, flags);
3449         }
3450         /* Use GFP_NOIO, since this function can be called from
3451          * xhci_discover_or_reset_device(), which may be called as part of
3452          * mass storage driver error handling.
3453          */
3454         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3455                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3456                 goto disable_slot;
3457         }
3458         udev->slot_id = xhci->slot_id;
3459         /* Is this a LS or FS device under a HS hub? */
3460         /* Hub or peripherial? */
3461         return 1;
3462
3463 disable_slot:
3464         /* Disable slot, if we can do it without mem alloc */
3465         spin_lock_irqsave(&xhci->lock, flags);
3466         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3467                 xhci_ring_cmd_db(xhci);
3468         spin_unlock_irqrestore(&xhci->lock, flags);
3469         return 0;
3470 }
3471
3472 /*
3473  * Issue an Address Device command (which will issue a SetAddress request to
3474  * the device).
3475  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3476  * we should only issue and wait on one address command at the same time.
3477  *
3478  * We add one to the device address issued by the hardware because the USB core
3479  * uses address 1 for the root hubs (even though they're not really devices).
3480  */
3481 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3482 {
3483         unsigned long flags;
3484         int timeleft;
3485         struct xhci_virt_device *virt_dev;
3486         int ret = 0;
3487         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3488         struct xhci_slot_ctx *slot_ctx;
3489         struct xhci_input_control_ctx *ctrl_ctx;
3490         u64 temp_64;
3491
3492         if (!udev->slot_id) {
3493                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3494                 return -EINVAL;
3495         }
3496
3497         virt_dev = xhci->devs[udev->slot_id];
3498
3499         if (WARN_ON(!virt_dev)) {
3500                 /*
3501                  * In plug/unplug torture test with an NEC controller,
3502                  * a zero-dereference was observed once due to virt_dev = 0.
3503                  * Print useful debug rather than crash if it is observed again!
3504                  */
3505                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3506                         udev->slot_id);
3507                 return -EINVAL;
3508         }
3509
3510         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3511         /*
3512          * If this is the first Set Address since device plug-in or
3513          * virt_device realloaction after a resume with an xHCI power loss,
3514          * then set up the slot context.
3515          */
3516         if (!slot_ctx->dev_info)
3517                 xhci_setup_addressable_virt_dev(xhci, udev);
3518         /* Otherwise, update the control endpoint ring enqueue pointer. */
3519         else
3520                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3521         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3522         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3523         ctrl_ctx->drop_flags = 0;
3524
3525         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3526         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3527
3528         spin_lock_irqsave(&xhci->lock, flags);
3529         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3530                                         udev->slot_id);
3531         if (ret) {
3532                 spin_unlock_irqrestore(&xhci->lock, flags);
3533                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3534                 return ret;
3535         }
3536         xhci_ring_cmd_db(xhci);
3537         spin_unlock_irqrestore(&xhci->lock, flags);
3538
3539         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3540         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3541                         USB_CTRL_SET_TIMEOUT);
3542         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3543          * the SetAddress() "recovery interval" required by USB and aborting the
3544          * command on a timeout.
3545          */
3546         if (timeleft <= 0) {
3547                 xhci_warn(xhci, "%s while waiting for address device command\n",
3548                                 timeleft == 0 ? "Timeout" : "Signal");
3549                 /* FIXME cancel the address device command */
3550                 return -ETIME;
3551         }
3552
3553         switch (virt_dev->cmd_status) {
3554         case COMP_CTX_STATE:
3555         case COMP_EBADSLT:
3556                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3557                                 udev->slot_id);
3558                 ret = -EINVAL;
3559                 break;
3560         case COMP_TX_ERR:
3561                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3562                 ret = -EPROTO;
3563                 break;
3564         case COMP_DEV_ERR:
3565                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3566                                 "device command.\n");
3567                 ret = -ENODEV;
3568                 break;
3569         case COMP_SUCCESS:
3570                 xhci_dbg(xhci, "Successful Address Device command\n");
3571                 break;
3572         default:
3573                 xhci_err(xhci, "ERROR: unexpected command completion "
3574                                 "code 0x%x.\n", virt_dev->cmd_status);
3575                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3576                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3577                 ret = -EINVAL;
3578                 break;
3579         }
3580         if (ret) {
3581                 return ret;
3582         }
3583         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3584         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3585         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3586                  udev->slot_id,
3587                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3588                  (unsigned long long)
3589                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3590         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3591                         (unsigned long long)virt_dev->out_ctx->dma);
3592         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3593         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3594         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3595         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3596         /*
3597          * USB core uses address 1 for the roothubs, so we add one to the
3598          * address given back to us by the HC.
3599          */
3600         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3601         /* Use kernel assigned address for devices; store xHC assigned
3602          * address locally. */
3603         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3604                 + 1;
3605         /* Zero the input context control for later use */
3606         ctrl_ctx->add_flags = 0;
3607         ctrl_ctx->drop_flags = 0;
3608
3609         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3610
3611         return 0;
3612 }
3613
3614 #ifdef CONFIG_USB_SUSPEND
3615
3616 /* BESL to HIRD Encoding array for USB2 LPM */
3617 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3618         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3619
3620 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3621 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3622                                         struct usb_device *udev)
3623 {
3624         int u2del, besl, besl_host;
3625         int besl_device = 0;
3626         u32 field;
3627
3628         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3629         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3630
3631         if (field & USB_BESL_SUPPORT) {
3632                 for (besl_host = 0; besl_host < 16; besl_host++) {
3633                         if (xhci_besl_encoding[besl_host] >= u2del)
3634                                 break;
3635                 }
3636                 /* Use baseline BESL value as default */
3637                 if (field & USB_BESL_BASELINE_VALID)
3638                         besl_device = USB_GET_BESL_BASELINE(field);
3639                 else if (field & USB_BESL_DEEP_VALID)
3640                         besl_device = USB_GET_BESL_DEEP(field);
3641         } else {
3642                 if (u2del <= 50)
3643                         besl_host = 0;
3644                 else
3645                         besl_host = (u2del - 51) / 75 + 1;
3646         }
3647
3648         besl = besl_host + besl_device;
3649         if (besl > 15)
3650                 besl = 15;
3651
3652         return besl;
3653 }
3654
3655 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3656                                         struct usb_device *udev)
3657 {
3658         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3659         struct dev_info *dev_info;
3660         __le32 __iomem  **port_array;
3661         __le32 __iomem  *addr, *pm_addr;
3662         u32             temp, dev_id;
3663         unsigned int    port_num;
3664         unsigned long   flags;
3665         int             hird;
3666         int             ret;
3667
3668         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3669                         !udev->lpm_capable)
3670                 return -EINVAL;
3671
3672         /* we only support lpm for non-hub device connected to root hub yet */
3673         if (!udev->parent || udev->parent->parent ||
3674                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3675                 return -EINVAL;
3676
3677         spin_lock_irqsave(&xhci->lock, flags);
3678
3679         /* Look for devices in lpm_failed_devs list */
3680         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3681                         le16_to_cpu(udev->descriptor.idProduct);
3682         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3683                 if (dev_info->dev_id == dev_id) {
3684                         ret = -EINVAL;
3685                         goto finish;
3686                 }
3687         }
3688
3689         port_array = xhci->usb2_ports;
3690         port_num = udev->portnum - 1;
3691
3692         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3693                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3694                 ret = -EINVAL;
3695                 goto finish;
3696         }
3697
3698         /*
3699          * Test USB 2.0 software LPM.
3700          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3701          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3702          * in the June 2011 errata release.
3703          */
3704         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3705         /*
3706          * Set L1 Device Slot and HIRD/BESL.
3707          * Check device's USB 2.0 extension descriptor to determine whether
3708          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3709          */
3710         pm_addr = port_array[port_num] + 1;
3711         hird = xhci_calculate_hird_besl(xhci, udev);
3712         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3713         xhci_writel(xhci, temp, pm_addr);
3714
3715         /* Set port link state to U2(L1) */
3716         addr = port_array[port_num];
3717         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3718
3719         /* wait for ACK */
3720         spin_unlock_irqrestore(&xhci->lock, flags);
3721         msleep(10);
3722         spin_lock_irqsave(&xhci->lock, flags);
3723
3724         /* Check L1 Status */
3725         ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3726         if (ret != -ETIMEDOUT) {
3727                 /* enter L1 successfully */
3728                 temp = xhci_readl(xhci, addr);
3729                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3730                                 port_num, temp);
3731                 ret = 0;
3732         } else {
3733                 temp = xhci_readl(xhci, pm_addr);
3734                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3735                                 port_num, temp & PORT_L1S_MASK);
3736                 ret = -EINVAL;
3737         }
3738
3739         /* Resume the port */
3740         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3741
3742         spin_unlock_irqrestore(&xhci->lock, flags);
3743         msleep(10);
3744         spin_lock_irqsave(&xhci->lock, flags);
3745
3746         /* Clear PLC */
3747         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3748
3749         /* Check PORTSC to make sure the device is in the right state */
3750         if (!ret) {
3751                 temp = xhci_readl(xhci, addr);
3752                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3753                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3754                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
3755                         xhci_dbg(xhci, "port L1 resume fail\n");
3756                         ret = -EINVAL;
3757                 }
3758         }
3759
3760         if (ret) {
3761                 /* Insert dev to lpm_failed_devs list */
3762                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3763                                 "re-enumerate\n");
3764                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3765                 if (!dev_info) {
3766                         ret = -ENOMEM;
3767                         goto finish;
3768                 }
3769                 dev_info->dev_id = dev_id;
3770                 INIT_LIST_HEAD(&dev_info->list);
3771                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3772         } else {
3773                 xhci_ring_device(xhci, udev->slot_id);
3774         }
3775
3776 finish:
3777         spin_unlock_irqrestore(&xhci->lock, flags);
3778         return ret;
3779 }
3780
3781 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3782                         struct usb_device *udev, int enable)
3783 {
3784         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3785         __le32 __iomem  **port_array;
3786         __le32 __iomem  *pm_addr;
3787         u32             temp;
3788         unsigned int    port_num;
3789         unsigned long   flags;
3790         int             hird;
3791
3792         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3793                         !udev->lpm_capable)
3794                 return -EPERM;
3795
3796         if (!udev->parent || udev->parent->parent ||
3797                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3798                 return -EPERM;
3799
3800         if (udev->usb2_hw_lpm_capable != 1)
3801                 return -EPERM;
3802
3803         spin_lock_irqsave(&xhci->lock, flags);
3804
3805         port_array = xhci->usb2_ports;
3806         port_num = udev->portnum - 1;
3807         pm_addr = port_array[port_num] + 1;
3808         temp = xhci_readl(xhci, pm_addr);
3809
3810         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3811                         enable ? "enable" : "disable", port_num);
3812
3813         hird = xhci_calculate_hird_besl(xhci, udev);
3814
3815         if (enable) {
3816                 temp &= ~PORT_HIRD_MASK;
3817                 temp |= PORT_HIRD(hird) | PORT_RWE;
3818                 xhci_writel(xhci, temp, pm_addr);
3819                 temp = xhci_readl(xhci, pm_addr);
3820                 temp |= PORT_HLE;
3821                 xhci_writel(xhci, temp, pm_addr);
3822         } else {
3823                 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3824                 xhci_writel(xhci, temp, pm_addr);
3825         }
3826
3827         spin_unlock_irqrestore(&xhci->lock, flags);
3828         return 0;
3829 }
3830
3831 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3832 {
3833         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3834         int             ret;
3835
3836         ret = xhci_usb2_software_lpm_test(hcd, udev);
3837         if (!ret) {
3838                 xhci_dbg(xhci, "software LPM test succeed\n");
3839                 if (xhci->hw_lpm_support == 1) {
3840                         udev->usb2_hw_lpm_capable = 1;
3841                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3842                         if (!ret)
3843                                 udev->usb2_hw_lpm_enabled = 1;
3844                 }
3845         }
3846
3847         return 0;
3848 }
3849
3850 #else
3851
3852 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3853                                 struct usb_device *udev, int enable)
3854 {
3855         return 0;
3856 }
3857
3858 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3859 {
3860         return 0;
3861 }
3862
3863 #endif /* CONFIG_USB_SUSPEND */
3864
3865 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
3866  * internal data structures for the device.
3867  */
3868 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
3869                         struct usb_tt *tt, gfp_t mem_flags)
3870 {
3871         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3872         struct xhci_virt_device *vdev;
3873         struct xhci_command *config_cmd;
3874         struct xhci_input_control_ctx *ctrl_ctx;
3875         struct xhci_slot_ctx *slot_ctx;
3876         unsigned long flags;
3877         unsigned think_time;
3878         int ret;
3879
3880         /* Ignore root hubs */
3881         if (!hdev->parent)
3882                 return 0;
3883
3884         vdev = xhci->devs[hdev->slot_id];
3885         if (!vdev) {
3886                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
3887                 return -EINVAL;
3888         }
3889         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3890         if (!config_cmd) {
3891                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3892                 return -ENOMEM;
3893         }
3894
3895         spin_lock_irqsave(&xhci->lock, flags);
3896         if (hdev->speed == USB_SPEED_HIGH &&
3897                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
3898                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
3899                 xhci_free_command(xhci, config_cmd);
3900                 spin_unlock_irqrestore(&xhci->lock, flags);
3901                 return -ENOMEM;
3902         }
3903
3904         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
3905         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3906         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3907         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
3908         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
3909         if (tt->multi)
3910                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3911         if (xhci->hci_version > 0x95) {
3912                 xhci_dbg(xhci, "xHCI version %x needs hub "
3913                                 "TT think time and number of ports\n",
3914                                 (unsigned int) xhci->hci_version);
3915                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3916                 /* Set TT think time - convert from ns to FS bit times.
3917                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
3918                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
3919                  *
3920                  * xHCI 1.0: this field shall be 0 if the device is not a
3921                  * High-spped hub.
3922                  */
3923                 think_time = tt->think_time;
3924                 if (think_time != 0)
3925                         think_time = (think_time / 666) - 1;
3926                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3927                         slot_ctx->tt_info |=
3928                                 cpu_to_le32(TT_THINK_TIME(think_time));
3929         } else {
3930                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3931                                 "TT think time or number of ports\n",
3932                                 (unsigned int) xhci->hci_version);
3933         }
3934         slot_ctx->dev_state = 0;
3935         spin_unlock_irqrestore(&xhci->lock, flags);
3936
3937         xhci_dbg(xhci, "Set up %s for hub device.\n",
3938                         (xhci->hci_version > 0x95) ?
3939                         "configure endpoint" : "evaluate context");
3940         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3941         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3942
3943         /* Issue and wait for the configure endpoint or
3944          * evaluate context command.
3945          */
3946         if (xhci->hci_version > 0x95)
3947                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3948                                 false, false);
3949         else
3950                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3951                                 true, false);
3952
3953         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3954         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3955
3956         xhci_free_command(xhci, config_cmd);
3957         return ret;
3958 }
3959
3960 int xhci_get_frame(struct usb_hcd *hcd)
3961 {
3962         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3963         /* EHCI mods by the periodic size.  Why? */
3964         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3965 }
3966
3967 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
3968 {
3969         struct xhci_hcd         *xhci;
3970         struct device           *dev = hcd->self.controller;
3971         int                     retval;
3972         u32                     temp;
3973
3974         /* Accept arbitrarily long scatter-gather lists */
3975         hcd->self.sg_tablesize = ~0;
3976
3977         if (usb_hcd_is_primary_hcd(hcd)) {
3978                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
3979                 if (!xhci)
3980                         return -ENOMEM;
3981                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
3982                 xhci->main_hcd = hcd;
3983                 /* Mark the first roothub as being USB 2.0.
3984                  * The xHCI driver will register the USB 3.0 roothub.
3985                  */
3986                 hcd->speed = HCD_USB2;
3987                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
3988                 /*
3989                  * USB 2.0 roothub under xHCI has an integrated TT,
3990                  * (rate matching hub) as opposed to having an OHCI/UHCI
3991                  * companion controller.
3992                  */
3993                 hcd->has_tt = 1;
3994         } else {
3995                 /* xHCI private pointer was set in xhci_pci_probe for the second
3996                  * registered roothub.
3997                  */
3998                 xhci = hcd_to_xhci(hcd);
3999                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4000                 if (HCC_64BIT_ADDR(temp)) {
4001                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4002                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4003                 } else {
4004                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4005                 }
4006                 return 0;
4007         }
4008
4009         xhci->cap_regs = hcd->regs;
4010         xhci->op_regs = hcd->regs +
4011                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4012         xhci->run_regs = hcd->regs +
4013                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4014         /* Cache read-only capability registers */
4015         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4016         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4017         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4018         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4019         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4020         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4021         xhci_print_registers(xhci);
4022
4023         get_quirks(dev, xhci);
4024
4025         /* Make sure the HC is halted. */
4026         retval = xhci_halt(xhci);
4027         if (retval)
4028                 goto error;
4029
4030         xhci_dbg(xhci, "Resetting HCD\n");
4031         /* Reset the internal HC memory state and registers. */
4032         retval = xhci_reset(xhci);
4033         if (retval)
4034                 goto error;
4035         xhci_dbg(xhci, "Reset complete\n");
4036
4037         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4038         if (HCC_64BIT_ADDR(temp)) {
4039                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4040                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4041         } else {
4042                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4043         }
4044
4045         xhci_dbg(xhci, "Calling HCD init\n");
4046         /* Initialize HCD and host controller data structures. */
4047         retval = xhci_init(hcd);
4048         if (retval)
4049                 goto error;
4050         xhci_dbg(xhci, "Called HCD init\n");
4051         return 0;
4052 error:
4053         kfree(xhci);
4054         return retval;
4055 }
4056
4057 MODULE_DESCRIPTION(DRIVER_DESC);
4058 MODULE_AUTHOR(DRIVER_AUTHOR);
4059 MODULE_LICENSE("GPL");
4060
4061 static int __init xhci_hcd_init(void)
4062 {
4063         int retval;
4064
4065         retval = xhci_register_pci();
4066         if (retval < 0) {
4067                 printk(KERN_DEBUG "Problem registering PCI driver.");
4068                 return retval;
4069         }
4070         retval = xhci_register_plat();
4071         if (retval < 0) {
4072                 printk(KERN_DEBUG "Problem registering platform driver.");
4073                 goto unreg_pci;
4074         }
4075         /*
4076          * Check the compiler generated sizes of structures that must be laid
4077          * out in specific ways for hardware access.
4078          */
4079         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4080         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4081         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4082         /* xhci_device_control has eight fields, and also
4083          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4084          */
4085         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4086         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4087         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4088         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4089         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4090         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4091         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4092         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4093         return 0;
4094 unreg_pci:
4095         xhci_unregister_pci();
4096         return retval;
4097 }
4098 module_init(xhci_hcd_init);
4099
4100 static void __exit xhci_hcd_cleanup(void)
4101 {
4102         xhci_unregister_pci();
4103         xhci_unregister_plat();
4104 }
4105 module_exit(xhci_hcd_cleanup);