1 //===--- examples/Fibonacci/fibonacci.cpp - An example use of the JIT -----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This small program provides an example of how to build quickly a small module
11 // with function Fibonacci and execute it with the JIT.
13 // The goal of this snippet is to create in the memory the LLVM module
14 // consisting of one function as follow:
18 // return fib(x-1)+fib(x-2);
21 // Once we have this, we compile the module via JIT, then execute the `fib'
22 // function and return result to a driver, i.e. to a "host program".
24 //===----------------------------------------------------------------------===//
26 #include "llvm/IR/Verifier.h"
27 #include "llvm/ExecutionEngine/GenericValue.h"
28 #include "llvm/ExecutionEngine/Interpreter.h"
29 #include "llvm/ExecutionEngine/JIT.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/TargetSelect.h"
36 #include "llvm/Support/raw_ostream.h"
39 static Function *CreateFibFunction(Module *M, LLVMContext &Context) {
40 // Create the fib function and insert it into module M. This function is said
41 // to return an int and take an int parameter.
43 cast<Function>(M->getOrInsertFunction("fib", Type::getInt32Ty(Context),
44 Type::getInt32Ty(Context),
47 // Add a basic block to the function.
48 BasicBlock *BB = BasicBlock::Create(Context, "EntryBlock", FibF);
50 // Get pointers to the constants.
51 Value *One = ConstantInt::get(Type::getInt32Ty(Context), 1);
52 Value *Two = ConstantInt::get(Type::getInt32Ty(Context), 2);
54 // Get pointer to the integer argument of the add1 function...
55 Argument *ArgX = FibF->arg_begin(); // Get the arg.
56 ArgX->setName("AnArg"); // Give it a nice symbolic name for fun.
58 // Create the true_block.
59 BasicBlock *RetBB = BasicBlock::Create(Context, "return", FibF);
60 // Create an exit block.
61 BasicBlock* RecurseBB = BasicBlock::Create(Context, "recurse", FibF);
63 // Create the "if (arg <= 2) goto exitbb"
64 Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond");
65 BranchInst::Create(RetBB, RecurseBB, CondInst, BB);
68 ReturnInst::Create(Context, One, RetBB);
71 Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB);
72 CallInst *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB);
73 CallFibX1->setTailCall();
76 Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB);
77 CallInst *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB);
78 CallFibX2->setTailCall();
82 Value *Sum = BinaryOperator::CreateAdd(CallFibX1, CallFibX2,
83 "addresult", RecurseBB);
85 // Create the return instruction and add it to the basic block
86 ReturnInst::Create(Context, Sum, RecurseBB);
92 int main(int argc, char **argv) {
93 int n = argc > 1 ? atol(argv[1]) : 24;
95 InitializeNativeTarget();
98 // Create some module to put our function into it.
99 std::unique_ptr<Module> M(new Module("test", Context));
101 // We are about to create the "fib" function:
102 Function *FibF = CreateFibFunction(M.get(), Context);
104 // Now we going to create JIT
106 ExecutionEngine *EE =
107 EngineBuilder(M.get())
108 .setErrorStr(&errStr)
109 .setEngineKind(EngineKind::JIT)
113 errs() << argv[0] << ": Failed to construct ExecutionEngine: " << errStr
118 errs() << "verifying... ";
119 if (verifyModule(*M)) {
120 errs() << argv[0] << ": Error constructing function!\n";
125 errs() << "We just constructed this LLVM module:\n\n---------\n" << *M;
126 errs() << "---------\nstarting fibonacci(" << n << ") with JIT...\n";
128 // Call the Fibonacci function with argument n:
129 std::vector<GenericValue> Args(1);
130 Args[0].IntVal = APInt(32, n);
131 GenericValue GV = EE->runFunction(FibF, Args);
133 // import result of execution
134 outs() << "Result: " << GV.IntVal << "\n";