02fae7f7e42cb417a14fe0243805bcad4270b592
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41                     int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43                                  struct extent_buffer *eb);
44 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
45
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48         struct btrfs_path *path;
49         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50         return path;
51 }
52
53 /*
54  * set all locked nodes in the path to blocking locks.  This should
55  * be done before scheduling
56  */
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59         int i;
60         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61                 if (!p->nodes[i] || !p->locks[i])
62                         continue;
63                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64                 if (p->locks[i] == BTRFS_READ_LOCK)
65                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
67                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68         }
69 }
70
71 /*
72  * reset all the locked nodes in the patch to spinning locks.
73  *
74  * held is used to keep lockdep happy, when lockdep is enabled
75  * we set held to a blocking lock before we go around and
76  * retake all the spinlocks in the path.  You can safely use NULL
77  * for held
78  */
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80                                         struct extent_buffer *held, int held_rw)
81 {
82         int i;
83
84 #ifdef CONFIG_DEBUG_LOCK_ALLOC
85         /* lockdep really cares that we take all of these spinlocks
86          * in the right order.  If any of the locks in the path are not
87          * currently blocking, it is going to complain.  So, make really
88          * really sure by forcing the path to blocking before we clear
89          * the path blocking.
90          */
91         if (held) {
92                 btrfs_set_lock_blocking_rw(held, held_rw);
93                 if (held_rw == BTRFS_WRITE_LOCK)
94                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
95                 else if (held_rw == BTRFS_READ_LOCK)
96                         held_rw = BTRFS_READ_LOCK_BLOCKING;
97         }
98         btrfs_set_path_blocking(p);
99 #endif
100
101         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
102                 if (p->nodes[i] && p->locks[i]) {
103                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
104                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
105                                 p->locks[i] = BTRFS_WRITE_LOCK;
106                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
107                                 p->locks[i] = BTRFS_READ_LOCK;
108                 }
109         }
110
111 #ifdef CONFIG_DEBUG_LOCK_ALLOC
112         if (held)
113                 btrfs_clear_lock_blocking_rw(held, held_rw);
114 #endif
115 }
116
117 /* this also releases the path */
118 void btrfs_free_path(struct btrfs_path *p)
119 {
120         if (!p)
121                 return;
122         btrfs_release_path(p);
123         kmem_cache_free(btrfs_path_cachep, p);
124 }
125
126 /*
127  * path release drops references on the extent buffers in the path
128  * and it drops any locks held by this path
129  *
130  * It is safe to call this on paths that no locks or extent buffers held.
131  */
132 noinline void btrfs_release_path(struct btrfs_path *p)
133 {
134         int i;
135
136         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
137                 p->slots[i] = 0;
138                 if (!p->nodes[i])
139                         continue;
140                 if (p->locks[i]) {
141                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
142                         p->locks[i] = 0;
143                 }
144                 free_extent_buffer(p->nodes[i]);
145                 p->nodes[i] = NULL;
146         }
147 }
148
149 /*
150  * safely gets a reference on the root node of a tree.  A lock
151  * is not taken, so a concurrent writer may put a different node
152  * at the root of the tree.  See btrfs_lock_root_node for the
153  * looping required.
154  *
155  * The extent buffer returned by this has a reference taken, so
156  * it won't disappear.  It may stop being the root of the tree
157  * at any time because there are no locks held.
158  */
159 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
160 {
161         struct extent_buffer *eb;
162
163         while (1) {
164                 rcu_read_lock();
165                 eb = rcu_dereference(root->node);
166
167                 /*
168                  * RCU really hurts here, we could free up the root node because
169                  * it was cow'ed but we may not get the new root node yet so do
170                  * the inc_not_zero dance and if it doesn't work then
171                  * synchronize_rcu and try again.
172                  */
173                 if (atomic_inc_not_zero(&eb->refs)) {
174                         rcu_read_unlock();
175                         break;
176                 }
177                 rcu_read_unlock();
178                 synchronize_rcu();
179         }
180         return eb;
181 }
182
183 /* loop around taking references on and locking the root node of the
184  * tree until you end up with a lock on the root.  A locked buffer
185  * is returned, with a reference held.
186  */
187 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
188 {
189         struct extent_buffer *eb;
190
191         while (1) {
192                 eb = btrfs_root_node(root);
193                 btrfs_tree_lock(eb);
194                 if (eb == root->node)
195                         break;
196                 btrfs_tree_unlock(eb);
197                 free_extent_buffer(eb);
198         }
199         return eb;
200 }
201
202 /* loop around taking references on and locking the root node of the
203  * tree until you end up with a lock on the root.  A locked buffer
204  * is returned, with a reference held.
205  */
206 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
207 {
208         struct extent_buffer *eb;
209
210         while (1) {
211                 eb = btrfs_root_node(root);
212                 btrfs_tree_read_lock(eb);
213                 if (eb == root->node)
214                         break;
215                 btrfs_tree_read_unlock(eb);
216                 free_extent_buffer(eb);
217         }
218         return eb;
219 }
220
221 /* cowonly root (everything not a reference counted cow subvolume), just get
222  * put onto a simple dirty list.  transaction.c walks this to make sure they
223  * get properly updated on disk.
224  */
225 static void add_root_to_dirty_list(struct btrfs_root *root)
226 {
227         spin_lock(&root->fs_info->trans_lock);
228         if (root->track_dirty && list_empty(&root->dirty_list)) {
229                 list_add(&root->dirty_list,
230                          &root->fs_info->dirty_cowonly_roots);
231         }
232         spin_unlock(&root->fs_info->trans_lock);
233 }
234
235 /*
236  * used by snapshot creation to make a copy of a root for a tree with
237  * a given objectid.  The buffer with the new root node is returned in
238  * cow_ret, and this func returns zero on success or a negative error code.
239  */
240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241                       struct btrfs_root *root,
242                       struct extent_buffer *buf,
243                       struct extent_buffer **cow_ret, u64 new_root_objectid)
244 {
245         struct extent_buffer *cow;
246         int ret = 0;
247         int level;
248         struct btrfs_disk_key disk_key;
249
250         WARN_ON(root->ref_cows && trans->transid !=
251                 root->fs_info->running_transaction->transid);
252         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
253
254         level = btrfs_header_level(buf);
255         if (level == 0)
256                 btrfs_item_key(buf, &disk_key, 0);
257         else
258                 btrfs_node_key(buf, &disk_key, 0);
259
260         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
261                                      new_root_objectid, &disk_key, level,
262                                      buf->start, 0);
263         if (IS_ERR(cow))
264                 return PTR_ERR(cow);
265
266         copy_extent_buffer(cow, buf, 0, 0, cow->len);
267         btrfs_set_header_bytenr(cow, cow->start);
268         btrfs_set_header_generation(cow, trans->transid);
269         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
270         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
271                                      BTRFS_HEADER_FLAG_RELOC);
272         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
273                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
274         else
275                 btrfs_set_header_owner(cow, new_root_objectid);
276
277         write_extent_buffer(cow, root->fs_info->fsid,
278                             (unsigned long)btrfs_header_fsid(cow),
279                             BTRFS_FSID_SIZE);
280
281         WARN_ON(btrfs_header_generation(buf) > trans->transid);
282         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
283                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
284         else
285                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
286
287         if (ret)
288                 return ret;
289
290         btrfs_mark_buffer_dirty(cow);
291         *cow_ret = cow;
292         return 0;
293 }
294
295 enum mod_log_op {
296         MOD_LOG_KEY_REPLACE,
297         MOD_LOG_KEY_ADD,
298         MOD_LOG_KEY_REMOVE,
299         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
300         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
301         MOD_LOG_MOVE_KEYS,
302         MOD_LOG_ROOT_REPLACE,
303 };
304
305 struct tree_mod_move {
306         int dst_slot;
307         int nr_items;
308 };
309
310 struct tree_mod_root {
311         u64 logical;
312         u8 level;
313 };
314
315 struct tree_mod_elem {
316         struct rb_node node;
317         u64 index;              /* shifted logical */
318         u64 seq;
319         enum mod_log_op op;
320
321         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
322         int slot;
323
324         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
325         u64 generation;
326
327         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
328         struct btrfs_disk_key key;
329         u64 blockptr;
330
331         /* this is used for op == MOD_LOG_MOVE_KEYS */
332         struct tree_mod_move move;
333
334         /* this is used for op == MOD_LOG_ROOT_REPLACE */
335         struct tree_mod_root old_root;
336 };
337
338 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
339 {
340         read_lock(&fs_info->tree_mod_log_lock);
341 }
342
343 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
344 {
345         read_unlock(&fs_info->tree_mod_log_lock);
346 }
347
348 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
349 {
350         write_lock(&fs_info->tree_mod_log_lock);
351 }
352
353 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
354 {
355         write_unlock(&fs_info->tree_mod_log_lock);
356 }
357
358 /*
359  * Increment the upper half of tree_mod_seq, set lower half zero.
360  *
361  * Must be called with fs_info->tree_mod_seq_lock held.
362  */
363 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
364 {
365         u64 seq = atomic64_read(&fs_info->tree_mod_seq);
366         seq &= 0xffffffff00000000ull;
367         seq += 1ull << 32;
368         atomic64_set(&fs_info->tree_mod_seq, seq);
369         return seq;
370 }
371
372 /*
373  * Increment the lower half of tree_mod_seq.
374  *
375  * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
376  * are generated should not technically require a spin lock here. (Rationale:
377  * incrementing the minor while incrementing the major seq number is between its
378  * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
379  * just returns a unique sequence number as usual.) We have decided to leave
380  * that requirement in here and rethink it once we notice it really imposes a
381  * problem on some workload.
382  */
383 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
384 {
385         return atomic64_inc_return(&fs_info->tree_mod_seq);
386 }
387
388 /*
389  * return the last minor in the previous major tree_mod_seq number
390  */
391 u64 btrfs_tree_mod_seq_prev(u64 seq)
392 {
393         return (seq & 0xffffffff00000000ull) - 1ull;
394 }
395
396 /*
397  * This adds a new blocker to the tree mod log's blocker list if the @elem
398  * passed does not already have a sequence number set. So when a caller expects
399  * to record tree modifications, it should ensure to set elem->seq to zero
400  * before calling btrfs_get_tree_mod_seq.
401  * Returns a fresh, unused tree log modification sequence number, even if no new
402  * blocker was added.
403  */
404 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
405                            struct seq_list *elem)
406 {
407         u64 seq;
408
409         tree_mod_log_write_lock(fs_info);
410         spin_lock(&fs_info->tree_mod_seq_lock);
411         if (!elem->seq) {
412                 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
413                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
414         }
415         seq = btrfs_inc_tree_mod_seq_minor(fs_info);
416         spin_unlock(&fs_info->tree_mod_seq_lock);
417         tree_mod_log_write_unlock(fs_info);
418
419         return seq;
420 }
421
422 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
423                             struct seq_list *elem)
424 {
425         struct rb_root *tm_root;
426         struct rb_node *node;
427         struct rb_node *next;
428         struct seq_list *cur_elem;
429         struct tree_mod_elem *tm;
430         u64 min_seq = (u64)-1;
431         u64 seq_putting = elem->seq;
432
433         if (!seq_putting)
434                 return;
435
436         spin_lock(&fs_info->tree_mod_seq_lock);
437         list_del(&elem->list);
438         elem->seq = 0;
439
440         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
441                 if (cur_elem->seq < min_seq) {
442                         if (seq_putting > cur_elem->seq) {
443                                 /*
444                                  * blocker with lower sequence number exists, we
445                                  * cannot remove anything from the log
446                                  */
447                                 spin_unlock(&fs_info->tree_mod_seq_lock);
448                                 return;
449                         }
450                         min_seq = cur_elem->seq;
451                 }
452         }
453         spin_unlock(&fs_info->tree_mod_seq_lock);
454
455         /*
456          * anything that's lower than the lowest existing (read: blocked)
457          * sequence number can be removed from the tree.
458          */
459         tree_mod_log_write_lock(fs_info);
460         tm_root = &fs_info->tree_mod_log;
461         for (node = rb_first(tm_root); node; node = next) {
462                 next = rb_next(node);
463                 tm = container_of(node, struct tree_mod_elem, node);
464                 if (tm->seq > min_seq)
465                         continue;
466                 rb_erase(node, tm_root);
467                 kfree(tm);
468         }
469         tree_mod_log_write_unlock(fs_info);
470 }
471
472 /*
473  * key order of the log:
474  *       index -> sequence
475  *
476  * the index is the shifted logical of the *new* root node for root replace
477  * operations, or the shifted logical of the affected block for all other
478  * operations.
479  */
480 static noinline int
481 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
482 {
483         struct rb_root *tm_root;
484         struct rb_node **new;
485         struct rb_node *parent = NULL;
486         struct tree_mod_elem *cur;
487
488         BUG_ON(!tm || !tm->seq);
489
490         tm_root = &fs_info->tree_mod_log;
491         new = &tm_root->rb_node;
492         while (*new) {
493                 cur = container_of(*new, struct tree_mod_elem, node);
494                 parent = *new;
495                 if (cur->index < tm->index)
496                         new = &((*new)->rb_left);
497                 else if (cur->index > tm->index)
498                         new = &((*new)->rb_right);
499                 else if (cur->seq < tm->seq)
500                         new = &((*new)->rb_left);
501                 else if (cur->seq > tm->seq)
502                         new = &((*new)->rb_right);
503                 else {
504                         kfree(tm);
505                         return -EEXIST;
506                 }
507         }
508
509         rb_link_node(&tm->node, parent, new);
510         rb_insert_color(&tm->node, tm_root);
511         return 0;
512 }
513
514 /*
515  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
516  * returns zero with the tree_mod_log_lock acquired. The caller must hold
517  * this until all tree mod log insertions are recorded in the rb tree and then
518  * call tree_mod_log_write_unlock() to release.
519  */
520 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
521                                     struct extent_buffer *eb) {
522         smp_mb();
523         if (list_empty(&(fs_info)->tree_mod_seq_list))
524                 return 1;
525         if (eb && btrfs_header_level(eb) == 0)
526                 return 1;
527
528         tree_mod_log_write_lock(fs_info);
529         if (list_empty(&fs_info->tree_mod_seq_list)) {
530                 /*
531                  * someone emptied the list while we were waiting for the lock.
532                  * we must not add to the list when no blocker exists.
533                  */
534                 tree_mod_log_write_unlock(fs_info);
535                 return 1;
536         }
537
538         return 0;
539 }
540
541 /*
542  * This allocates memory and gets a tree modification sequence number.
543  *
544  * Returns <0 on error.
545  * Returns >0 (the added sequence number) on success.
546  */
547 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
548                                  struct tree_mod_elem **tm_ret)
549 {
550         struct tree_mod_elem *tm;
551
552         /*
553          * once we switch from spin locks to something different, we should
554          * honor the flags parameter here.
555          */
556         tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
557         if (!tm)
558                 return -ENOMEM;
559
560         spin_lock(&fs_info->tree_mod_seq_lock);
561         tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
562         spin_unlock(&fs_info->tree_mod_seq_lock);
563
564         return tm->seq;
565 }
566
567 static inline int
568 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
569                           struct extent_buffer *eb, int slot,
570                           enum mod_log_op op, gfp_t flags)
571 {
572         int ret;
573         struct tree_mod_elem *tm;
574
575         ret = tree_mod_alloc(fs_info, flags, &tm);
576         if (ret < 0)
577                 return ret;
578
579         tm->index = eb->start >> PAGE_CACHE_SHIFT;
580         if (op != MOD_LOG_KEY_ADD) {
581                 btrfs_node_key(eb, &tm->key, slot);
582                 tm->blockptr = btrfs_node_blockptr(eb, slot);
583         }
584         tm->op = op;
585         tm->slot = slot;
586         tm->generation = btrfs_node_ptr_generation(eb, slot);
587
588         return __tree_mod_log_insert(fs_info, tm);
589 }
590
591 static noinline int
592 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
593                              struct extent_buffer *eb, int slot,
594                              enum mod_log_op op, gfp_t flags)
595 {
596         int ret;
597
598         if (tree_mod_dont_log(fs_info, eb))
599                 return 0;
600
601         ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
602
603         tree_mod_log_write_unlock(fs_info);
604         return ret;
605 }
606
607 static noinline int
608 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
609                         int slot, enum mod_log_op op)
610 {
611         return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
612 }
613
614 static noinline int
615 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
616                              struct extent_buffer *eb, int slot,
617                              enum mod_log_op op)
618 {
619         return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
620 }
621
622 static noinline int
623 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
624                          struct extent_buffer *eb, int dst_slot, int src_slot,
625                          int nr_items, gfp_t flags)
626 {
627         struct tree_mod_elem *tm;
628         int ret;
629         int i;
630
631         if (tree_mod_dont_log(fs_info, eb))
632                 return 0;
633
634         /*
635          * When we override something during the move, we log these removals.
636          * This can only happen when we move towards the beginning of the
637          * buffer, i.e. dst_slot < src_slot.
638          */
639         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
640                 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
641                                               MOD_LOG_KEY_REMOVE_WHILE_MOVING);
642                 BUG_ON(ret < 0);
643         }
644
645         ret = tree_mod_alloc(fs_info, flags, &tm);
646         if (ret < 0)
647                 goto out;
648
649         tm->index = eb->start >> PAGE_CACHE_SHIFT;
650         tm->slot = src_slot;
651         tm->move.dst_slot = dst_slot;
652         tm->move.nr_items = nr_items;
653         tm->op = MOD_LOG_MOVE_KEYS;
654
655         ret = __tree_mod_log_insert(fs_info, tm);
656 out:
657         tree_mod_log_write_unlock(fs_info);
658         return ret;
659 }
660
661 static inline void
662 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
663 {
664         int i;
665         u32 nritems;
666         int ret;
667
668         if (btrfs_header_level(eb) == 0)
669                 return;
670
671         nritems = btrfs_header_nritems(eb);
672         for (i = nritems - 1; i >= 0; i--) {
673                 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
674                                               MOD_LOG_KEY_REMOVE_WHILE_FREEING);
675                 BUG_ON(ret < 0);
676         }
677 }
678
679 static noinline int
680 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
681                          struct extent_buffer *old_root,
682                          struct extent_buffer *new_root, gfp_t flags,
683                          int log_removal)
684 {
685         struct tree_mod_elem *tm;
686         int ret;
687
688         if (tree_mod_dont_log(fs_info, NULL))
689                 return 0;
690
691         if (log_removal)
692                 __tree_mod_log_free_eb(fs_info, old_root);
693
694         ret = tree_mod_alloc(fs_info, flags, &tm);
695         if (ret < 0)
696                 goto out;
697
698         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
699         tm->old_root.logical = old_root->start;
700         tm->old_root.level = btrfs_header_level(old_root);
701         tm->generation = btrfs_header_generation(old_root);
702         tm->op = MOD_LOG_ROOT_REPLACE;
703
704         ret = __tree_mod_log_insert(fs_info, tm);
705 out:
706         tree_mod_log_write_unlock(fs_info);
707         return ret;
708 }
709
710 static struct tree_mod_elem *
711 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
712                       int smallest)
713 {
714         struct rb_root *tm_root;
715         struct rb_node *node;
716         struct tree_mod_elem *cur = NULL;
717         struct tree_mod_elem *found = NULL;
718         u64 index = start >> PAGE_CACHE_SHIFT;
719
720         tree_mod_log_read_lock(fs_info);
721         tm_root = &fs_info->tree_mod_log;
722         node = tm_root->rb_node;
723         while (node) {
724                 cur = container_of(node, struct tree_mod_elem, node);
725                 if (cur->index < index) {
726                         node = node->rb_left;
727                 } else if (cur->index > index) {
728                         node = node->rb_right;
729                 } else if (cur->seq < min_seq) {
730                         node = node->rb_left;
731                 } else if (!smallest) {
732                         /* we want the node with the highest seq */
733                         if (found)
734                                 BUG_ON(found->seq > cur->seq);
735                         found = cur;
736                         node = node->rb_left;
737                 } else if (cur->seq > min_seq) {
738                         /* we want the node with the smallest seq */
739                         if (found)
740                                 BUG_ON(found->seq < cur->seq);
741                         found = cur;
742                         node = node->rb_right;
743                 } else {
744                         found = cur;
745                         break;
746                 }
747         }
748         tree_mod_log_read_unlock(fs_info);
749
750         return found;
751 }
752
753 /*
754  * this returns the element from the log with the smallest time sequence
755  * value that's in the log (the oldest log item). any element with a time
756  * sequence lower than min_seq will be ignored.
757  */
758 static struct tree_mod_elem *
759 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
760                            u64 min_seq)
761 {
762         return __tree_mod_log_search(fs_info, start, min_seq, 1);
763 }
764
765 /*
766  * this returns the element from the log with the largest time sequence
767  * value that's in the log (the most recent log item). any element with
768  * a time sequence lower than min_seq will be ignored.
769  */
770 static struct tree_mod_elem *
771 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
772 {
773         return __tree_mod_log_search(fs_info, start, min_seq, 0);
774 }
775
776 static noinline void
777 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
778                      struct extent_buffer *src, unsigned long dst_offset,
779                      unsigned long src_offset, int nr_items)
780 {
781         int ret;
782         int i;
783
784         if (tree_mod_dont_log(fs_info, NULL))
785                 return;
786
787         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
788                 tree_mod_log_write_unlock(fs_info);
789                 return;
790         }
791
792         for (i = 0; i < nr_items; i++) {
793                 ret = tree_mod_log_insert_key_locked(fs_info, src,
794                                                 i + src_offset,
795                                                 MOD_LOG_KEY_REMOVE);
796                 BUG_ON(ret < 0);
797                 ret = tree_mod_log_insert_key_locked(fs_info, dst,
798                                                      i + dst_offset,
799                                                      MOD_LOG_KEY_ADD);
800                 BUG_ON(ret < 0);
801         }
802
803         tree_mod_log_write_unlock(fs_info);
804 }
805
806 static inline void
807 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
808                      int dst_offset, int src_offset, int nr_items)
809 {
810         int ret;
811         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
812                                        nr_items, GFP_NOFS);
813         BUG_ON(ret < 0);
814 }
815
816 static noinline void
817 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
818                           struct extent_buffer *eb, int slot, int atomic)
819 {
820         int ret;
821
822         ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
823                                            MOD_LOG_KEY_REPLACE,
824                                            atomic ? GFP_ATOMIC : GFP_NOFS);
825         BUG_ON(ret < 0);
826 }
827
828 static noinline void
829 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
830 {
831         if (tree_mod_dont_log(fs_info, eb))
832                 return;
833
834         __tree_mod_log_free_eb(fs_info, eb);
835
836         tree_mod_log_write_unlock(fs_info);
837 }
838
839 static noinline void
840 tree_mod_log_set_root_pointer(struct btrfs_root *root,
841                               struct extent_buffer *new_root_node,
842                               int log_removal)
843 {
844         int ret;
845         ret = tree_mod_log_insert_root(root->fs_info, root->node,
846                                        new_root_node, GFP_NOFS, log_removal);
847         BUG_ON(ret < 0);
848 }
849
850 /*
851  * check if the tree block can be shared by multiple trees
852  */
853 int btrfs_block_can_be_shared(struct btrfs_root *root,
854                               struct extent_buffer *buf)
855 {
856         /*
857          * Tree blocks not in refernece counted trees and tree roots
858          * are never shared. If a block was allocated after the last
859          * snapshot and the block was not allocated by tree relocation,
860          * we know the block is not shared.
861          */
862         if (root->ref_cows &&
863             buf != root->node && buf != root->commit_root &&
864             (btrfs_header_generation(buf) <=
865              btrfs_root_last_snapshot(&root->root_item) ||
866              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
867                 return 1;
868 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
869         if (root->ref_cows &&
870             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
871                 return 1;
872 #endif
873         return 0;
874 }
875
876 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
877                                        struct btrfs_root *root,
878                                        struct extent_buffer *buf,
879                                        struct extent_buffer *cow,
880                                        int *last_ref)
881 {
882         u64 refs;
883         u64 owner;
884         u64 flags;
885         u64 new_flags = 0;
886         int ret;
887
888         /*
889          * Backrefs update rules:
890          *
891          * Always use full backrefs for extent pointers in tree block
892          * allocated by tree relocation.
893          *
894          * If a shared tree block is no longer referenced by its owner
895          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
896          * use full backrefs for extent pointers in tree block.
897          *
898          * If a tree block is been relocating
899          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
900          * use full backrefs for extent pointers in tree block.
901          * The reason for this is some operations (such as drop tree)
902          * are only allowed for blocks use full backrefs.
903          */
904
905         if (btrfs_block_can_be_shared(root, buf)) {
906                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
907                                                btrfs_header_level(buf), 1,
908                                                &refs, &flags);
909                 if (ret)
910                         return ret;
911                 if (refs == 0) {
912                         ret = -EROFS;
913                         btrfs_std_error(root->fs_info, ret);
914                         return ret;
915                 }
916         } else {
917                 refs = 1;
918                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
919                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
920                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
921                 else
922                         flags = 0;
923         }
924
925         owner = btrfs_header_owner(buf);
926         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
927                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
928
929         if (refs > 1) {
930                 if ((owner == root->root_key.objectid ||
931                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
932                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
933                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
934                         BUG_ON(ret); /* -ENOMEM */
935
936                         if (root->root_key.objectid ==
937                             BTRFS_TREE_RELOC_OBJECTID) {
938                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
939                                 BUG_ON(ret); /* -ENOMEM */
940                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
941                                 BUG_ON(ret); /* -ENOMEM */
942                         }
943                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
944                 } else {
945
946                         if (root->root_key.objectid ==
947                             BTRFS_TREE_RELOC_OBJECTID)
948                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
949                         else
950                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
951                         BUG_ON(ret); /* -ENOMEM */
952                 }
953                 if (new_flags != 0) {
954                         int level = btrfs_header_level(buf);
955
956                         ret = btrfs_set_disk_extent_flags(trans, root,
957                                                           buf->start,
958                                                           buf->len,
959                                                           new_flags, level, 0);
960                         if (ret)
961                                 return ret;
962                 }
963         } else {
964                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
965                         if (root->root_key.objectid ==
966                             BTRFS_TREE_RELOC_OBJECTID)
967                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
968                         else
969                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
970                         BUG_ON(ret); /* -ENOMEM */
971                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
972                         BUG_ON(ret); /* -ENOMEM */
973                 }
974                 clean_tree_block(trans, root, buf);
975                 *last_ref = 1;
976         }
977         return 0;
978 }
979
980 /*
981  * does the dirty work in cow of a single block.  The parent block (if
982  * supplied) is updated to point to the new cow copy.  The new buffer is marked
983  * dirty and returned locked.  If you modify the block it needs to be marked
984  * dirty again.
985  *
986  * search_start -- an allocation hint for the new block
987  *
988  * empty_size -- a hint that you plan on doing more cow.  This is the size in
989  * bytes the allocator should try to find free next to the block it returns.
990  * This is just a hint and may be ignored by the allocator.
991  */
992 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
993                              struct btrfs_root *root,
994                              struct extent_buffer *buf,
995                              struct extent_buffer *parent, int parent_slot,
996                              struct extent_buffer **cow_ret,
997                              u64 search_start, u64 empty_size)
998 {
999         struct btrfs_disk_key disk_key;
1000         struct extent_buffer *cow;
1001         int level, ret;
1002         int last_ref = 0;
1003         int unlock_orig = 0;
1004         u64 parent_start;
1005
1006         if (*cow_ret == buf)
1007                 unlock_orig = 1;
1008
1009         btrfs_assert_tree_locked(buf);
1010
1011         WARN_ON(root->ref_cows && trans->transid !=
1012                 root->fs_info->running_transaction->transid);
1013         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
1014
1015         level = btrfs_header_level(buf);
1016
1017         if (level == 0)
1018                 btrfs_item_key(buf, &disk_key, 0);
1019         else
1020                 btrfs_node_key(buf, &disk_key, 0);
1021
1022         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1023                 if (parent)
1024                         parent_start = parent->start;
1025                 else
1026                         parent_start = 0;
1027         } else
1028                 parent_start = 0;
1029
1030         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
1031                                      root->root_key.objectid, &disk_key,
1032                                      level, search_start, empty_size);
1033         if (IS_ERR(cow))
1034                 return PTR_ERR(cow);
1035
1036         /* cow is set to blocking by btrfs_init_new_buffer */
1037
1038         copy_extent_buffer(cow, buf, 0, 0, cow->len);
1039         btrfs_set_header_bytenr(cow, cow->start);
1040         btrfs_set_header_generation(cow, trans->transid);
1041         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1042         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1043                                      BTRFS_HEADER_FLAG_RELOC);
1044         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1045                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1046         else
1047                 btrfs_set_header_owner(cow, root->root_key.objectid);
1048
1049         write_extent_buffer(cow, root->fs_info->fsid,
1050                             (unsigned long)btrfs_header_fsid(cow),
1051                             BTRFS_FSID_SIZE);
1052
1053         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1054         if (ret) {
1055                 btrfs_abort_transaction(trans, root, ret);
1056                 return ret;
1057         }
1058
1059         if (root->ref_cows)
1060                 btrfs_reloc_cow_block(trans, root, buf, cow);
1061
1062         if (buf == root->node) {
1063                 WARN_ON(parent && parent != buf);
1064                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1065                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1066                         parent_start = buf->start;
1067                 else
1068                         parent_start = 0;
1069
1070                 extent_buffer_get(cow);
1071                 tree_mod_log_set_root_pointer(root, cow, 1);
1072                 rcu_assign_pointer(root->node, cow);
1073
1074                 btrfs_free_tree_block(trans, root, buf, parent_start,
1075                                       last_ref);
1076                 free_extent_buffer(buf);
1077                 add_root_to_dirty_list(root);
1078         } else {
1079                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1080                         parent_start = parent->start;
1081                 else
1082                         parent_start = 0;
1083
1084                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1085                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1086                                         MOD_LOG_KEY_REPLACE);
1087                 btrfs_set_node_blockptr(parent, parent_slot,
1088                                         cow->start);
1089                 btrfs_set_node_ptr_generation(parent, parent_slot,
1090                                               trans->transid);
1091                 btrfs_mark_buffer_dirty(parent);
1092                 tree_mod_log_free_eb(root->fs_info, buf);
1093                 btrfs_free_tree_block(trans, root, buf, parent_start,
1094                                       last_ref);
1095         }
1096         if (unlock_orig)
1097                 btrfs_tree_unlock(buf);
1098         free_extent_buffer_stale(buf);
1099         btrfs_mark_buffer_dirty(cow);
1100         *cow_ret = cow;
1101         return 0;
1102 }
1103
1104 /*
1105  * returns the logical address of the oldest predecessor of the given root.
1106  * entries older than time_seq are ignored.
1107  */
1108 static struct tree_mod_elem *
1109 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1110                            struct extent_buffer *eb_root, u64 time_seq)
1111 {
1112         struct tree_mod_elem *tm;
1113         struct tree_mod_elem *found = NULL;
1114         u64 root_logical = eb_root->start;
1115         int looped = 0;
1116
1117         if (!time_seq)
1118                 return 0;
1119
1120         /*
1121          * the very last operation that's logged for a root is the replacement
1122          * operation (if it is replaced at all). this has the index of the *new*
1123          * root, making it the very first operation that's logged for this root.
1124          */
1125         while (1) {
1126                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1127                                                 time_seq);
1128                 if (!looped && !tm)
1129                         return 0;
1130                 /*
1131                  * if there are no tree operation for the oldest root, we simply
1132                  * return it. this should only happen if that (old) root is at
1133                  * level 0.
1134                  */
1135                 if (!tm)
1136                         break;
1137
1138                 /*
1139                  * if there's an operation that's not a root replacement, we
1140                  * found the oldest version of our root. normally, we'll find a
1141                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1142                  */
1143                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1144                         break;
1145
1146                 found = tm;
1147                 root_logical = tm->old_root.logical;
1148                 looped = 1;
1149         }
1150
1151         /* if there's no old root to return, return what we found instead */
1152         if (!found)
1153                 found = tm;
1154
1155         return found;
1156 }
1157
1158 /*
1159  * tm is a pointer to the first operation to rewind within eb. then, all
1160  * previous operations will be rewinded (until we reach something older than
1161  * time_seq).
1162  */
1163 static void
1164 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1165                       struct tree_mod_elem *first_tm)
1166 {
1167         u32 n;
1168         struct rb_node *next;
1169         struct tree_mod_elem *tm = first_tm;
1170         unsigned long o_dst;
1171         unsigned long o_src;
1172         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1173
1174         n = btrfs_header_nritems(eb);
1175         while (tm && tm->seq >= time_seq) {
1176                 /*
1177                  * all the operations are recorded with the operator used for
1178                  * the modification. as we're going backwards, we do the
1179                  * opposite of each operation here.
1180                  */
1181                 switch (tm->op) {
1182                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1183                         BUG_ON(tm->slot < n);
1184                         /* Fallthrough */
1185                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1186                 case MOD_LOG_KEY_REMOVE:
1187                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1188                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1189                         btrfs_set_node_ptr_generation(eb, tm->slot,
1190                                                       tm->generation);
1191                         n++;
1192                         break;
1193                 case MOD_LOG_KEY_REPLACE:
1194                         BUG_ON(tm->slot >= n);
1195                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1196                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1197                         btrfs_set_node_ptr_generation(eb, tm->slot,
1198                                                       tm->generation);
1199                         break;
1200                 case MOD_LOG_KEY_ADD:
1201                         /* if a move operation is needed it's in the log */
1202                         n--;
1203                         break;
1204                 case MOD_LOG_MOVE_KEYS:
1205                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1206                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1207                         memmove_extent_buffer(eb, o_dst, o_src,
1208                                               tm->move.nr_items * p_size);
1209                         break;
1210                 case MOD_LOG_ROOT_REPLACE:
1211                         /*
1212                          * this operation is special. for roots, this must be
1213                          * handled explicitly before rewinding.
1214                          * for non-roots, this operation may exist if the node
1215                          * was a root: root A -> child B; then A gets empty and
1216                          * B is promoted to the new root. in the mod log, we'll
1217                          * have a root-replace operation for B, a tree block
1218                          * that is no root. we simply ignore that operation.
1219                          */
1220                         break;
1221                 }
1222                 next = rb_next(&tm->node);
1223                 if (!next)
1224                         break;
1225                 tm = container_of(next, struct tree_mod_elem, node);
1226                 if (tm->index != first_tm->index)
1227                         break;
1228         }
1229         btrfs_set_header_nritems(eb, n);
1230 }
1231
1232 /*
1233  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1234  * is returned. If rewind operations happen, a fresh buffer is returned. The
1235  * returned buffer is always read-locked. If the returned buffer is not the
1236  * input buffer, the lock on the input buffer is released and the input buffer
1237  * is freed (its refcount is decremented).
1238  */
1239 static struct extent_buffer *
1240 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1241                     u64 time_seq)
1242 {
1243         struct extent_buffer *eb_rewin;
1244         struct tree_mod_elem *tm;
1245
1246         if (!time_seq)
1247                 return eb;
1248
1249         if (btrfs_header_level(eb) == 0)
1250                 return eb;
1251
1252         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1253         if (!tm)
1254                 return eb;
1255
1256         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1257                 BUG_ON(tm->slot != 0);
1258                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1259                                                 fs_info->tree_root->nodesize);
1260                 BUG_ON(!eb_rewin);
1261                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1262                 btrfs_set_header_backref_rev(eb_rewin,
1263                                              btrfs_header_backref_rev(eb));
1264                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1265                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1266         } else {
1267                 eb_rewin = btrfs_clone_extent_buffer(eb);
1268                 BUG_ON(!eb_rewin);
1269         }
1270
1271         extent_buffer_get(eb_rewin);
1272         btrfs_tree_read_unlock(eb);
1273         free_extent_buffer(eb);
1274
1275         extent_buffer_get(eb_rewin);
1276         btrfs_tree_read_lock(eb_rewin);
1277         __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1278         WARN_ON(btrfs_header_nritems(eb_rewin) >
1279                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1280
1281         return eb_rewin;
1282 }
1283
1284 /*
1285  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1286  * value. If there are no changes, the current root->root_node is returned. If
1287  * anything changed in between, there's a fresh buffer allocated on which the
1288  * rewind operations are done. In any case, the returned buffer is read locked.
1289  * Returns NULL on error (with no locks held).
1290  */
1291 static inline struct extent_buffer *
1292 get_old_root(struct btrfs_root *root, u64 time_seq)
1293 {
1294         struct tree_mod_elem *tm;
1295         struct extent_buffer *eb = NULL;
1296         struct extent_buffer *eb_root;
1297         struct extent_buffer *old;
1298         struct tree_mod_root *old_root = NULL;
1299         u64 old_generation = 0;
1300         u64 logical;
1301         u32 blocksize;
1302
1303         eb_root = btrfs_read_lock_root_node(root);
1304         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1305         if (!tm)
1306                 return eb_root;
1307
1308         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1309                 old_root = &tm->old_root;
1310                 old_generation = tm->generation;
1311                 logical = old_root->logical;
1312         } else {
1313                 logical = eb_root->start;
1314         }
1315
1316         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1317         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1318                 btrfs_tree_read_unlock(eb_root);
1319                 free_extent_buffer(eb_root);
1320                 blocksize = btrfs_level_size(root, old_root->level);
1321                 old = read_tree_block(root, logical, blocksize, 0);
1322                 if (!old || !extent_buffer_uptodate(old)) {
1323                         free_extent_buffer(old);
1324                         pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1325                                 logical);
1326                         WARN_ON(1);
1327                 } else {
1328                         eb = btrfs_clone_extent_buffer(old);
1329                         free_extent_buffer(old);
1330                 }
1331         } else if (old_root) {
1332                 btrfs_tree_read_unlock(eb_root);
1333                 free_extent_buffer(eb_root);
1334                 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1335         } else {
1336                 eb = btrfs_clone_extent_buffer(eb_root);
1337                 btrfs_tree_read_unlock(eb_root);
1338                 free_extent_buffer(eb_root);
1339         }
1340
1341         if (!eb)
1342                 return NULL;
1343         extent_buffer_get(eb);
1344         btrfs_tree_read_lock(eb);
1345         if (old_root) {
1346                 btrfs_set_header_bytenr(eb, eb->start);
1347                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1348                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1349                 btrfs_set_header_level(eb, old_root->level);
1350                 btrfs_set_header_generation(eb, old_generation);
1351         }
1352         if (tm)
1353                 __tree_mod_log_rewind(eb, time_seq, tm);
1354         else
1355                 WARN_ON(btrfs_header_level(eb) != 0);
1356         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1357
1358         return eb;
1359 }
1360
1361 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1362 {
1363         struct tree_mod_elem *tm;
1364         int level;
1365         struct extent_buffer *eb_root = btrfs_root_node(root);
1366
1367         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1368         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1369                 level = tm->old_root.level;
1370         } else {
1371                 level = btrfs_header_level(eb_root);
1372         }
1373         free_extent_buffer(eb_root);
1374
1375         return level;
1376 }
1377
1378 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1379                                    struct btrfs_root *root,
1380                                    struct extent_buffer *buf)
1381 {
1382         /* ensure we can see the force_cow */
1383         smp_rmb();
1384
1385         /*
1386          * We do not need to cow a block if
1387          * 1) this block is not created or changed in this transaction;
1388          * 2) this block does not belong to TREE_RELOC tree;
1389          * 3) the root is not forced COW.
1390          *
1391          * What is forced COW:
1392          *    when we create snapshot during commiting the transaction,
1393          *    after we've finished coping src root, we must COW the shared
1394          *    block to ensure the metadata consistency.
1395          */
1396         if (btrfs_header_generation(buf) == trans->transid &&
1397             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1398             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1399               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1400             !root->force_cow)
1401                 return 0;
1402         return 1;
1403 }
1404
1405 /*
1406  * cows a single block, see __btrfs_cow_block for the real work.
1407  * This version of it has extra checks so that a block isn't cow'd more than
1408  * once per transaction, as long as it hasn't been written yet
1409  */
1410 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1411                     struct btrfs_root *root, struct extent_buffer *buf,
1412                     struct extent_buffer *parent, int parent_slot,
1413                     struct extent_buffer **cow_ret)
1414 {
1415         u64 search_start;
1416         int ret;
1417
1418         if (trans->transaction != root->fs_info->running_transaction)
1419                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1420                        (unsigned long long)trans->transid,
1421                        (unsigned long long)
1422                        root->fs_info->running_transaction->transid);
1423
1424         if (trans->transid != root->fs_info->generation)
1425                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1426                        (unsigned long long)trans->transid,
1427                        (unsigned long long)root->fs_info->generation);
1428
1429         if (!should_cow_block(trans, root, buf)) {
1430                 *cow_ret = buf;
1431                 return 0;
1432         }
1433
1434         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1435
1436         if (parent)
1437                 btrfs_set_lock_blocking(parent);
1438         btrfs_set_lock_blocking(buf);
1439
1440         ret = __btrfs_cow_block(trans, root, buf, parent,
1441                                  parent_slot, cow_ret, search_start, 0);
1442
1443         trace_btrfs_cow_block(root, buf, *cow_ret);
1444
1445         return ret;
1446 }
1447
1448 /*
1449  * helper function for defrag to decide if two blocks pointed to by a
1450  * node are actually close by
1451  */
1452 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1453 {
1454         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1455                 return 1;
1456         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1457                 return 1;
1458         return 0;
1459 }
1460
1461 /*
1462  * compare two keys in a memcmp fashion
1463  */
1464 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1465 {
1466         struct btrfs_key k1;
1467
1468         btrfs_disk_key_to_cpu(&k1, disk);
1469
1470         return btrfs_comp_cpu_keys(&k1, k2);
1471 }
1472
1473 /*
1474  * same as comp_keys only with two btrfs_key's
1475  */
1476 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1477 {
1478         if (k1->objectid > k2->objectid)
1479                 return 1;
1480         if (k1->objectid < k2->objectid)
1481                 return -1;
1482         if (k1->type > k2->type)
1483                 return 1;
1484         if (k1->type < k2->type)
1485                 return -1;
1486         if (k1->offset > k2->offset)
1487                 return 1;
1488         if (k1->offset < k2->offset)
1489                 return -1;
1490         return 0;
1491 }
1492
1493 /*
1494  * this is used by the defrag code to go through all the
1495  * leaves pointed to by a node and reallocate them so that
1496  * disk order is close to key order
1497  */
1498 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1499                        struct btrfs_root *root, struct extent_buffer *parent,
1500                        int start_slot, u64 *last_ret,
1501                        struct btrfs_key *progress)
1502 {
1503         struct extent_buffer *cur;
1504         u64 blocknr;
1505         u64 gen;
1506         u64 search_start = *last_ret;
1507         u64 last_block = 0;
1508         u64 other;
1509         u32 parent_nritems;
1510         int end_slot;
1511         int i;
1512         int err = 0;
1513         int parent_level;
1514         int uptodate;
1515         u32 blocksize;
1516         int progress_passed = 0;
1517         struct btrfs_disk_key disk_key;
1518
1519         parent_level = btrfs_header_level(parent);
1520
1521         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1522         WARN_ON(trans->transid != root->fs_info->generation);
1523
1524         parent_nritems = btrfs_header_nritems(parent);
1525         blocksize = btrfs_level_size(root, parent_level - 1);
1526         end_slot = parent_nritems;
1527
1528         if (parent_nritems == 1)
1529                 return 0;
1530
1531         btrfs_set_lock_blocking(parent);
1532
1533         for (i = start_slot; i < end_slot; i++) {
1534                 int close = 1;
1535
1536                 btrfs_node_key(parent, &disk_key, i);
1537                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1538                         continue;
1539
1540                 progress_passed = 1;
1541                 blocknr = btrfs_node_blockptr(parent, i);
1542                 gen = btrfs_node_ptr_generation(parent, i);
1543                 if (last_block == 0)
1544                         last_block = blocknr;
1545
1546                 if (i > 0) {
1547                         other = btrfs_node_blockptr(parent, i - 1);
1548                         close = close_blocks(blocknr, other, blocksize);
1549                 }
1550                 if (!close && i < end_slot - 2) {
1551                         other = btrfs_node_blockptr(parent, i + 1);
1552                         close = close_blocks(blocknr, other, blocksize);
1553                 }
1554                 if (close) {
1555                         last_block = blocknr;
1556                         continue;
1557                 }
1558
1559                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1560                 if (cur)
1561                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1562                 else
1563                         uptodate = 0;
1564                 if (!cur || !uptodate) {
1565                         if (!cur) {
1566                                 cur = read_tree_block(root, blocknr,
1567                                                          blocksize, gen);
1568                                 if (!cur || !extent_buffer_uptodate(cur)) {
1569                                         free_extent_buffer(cur);
1570                                         return -EIO;
1571                                 }
1572                         } else if (!uptodate) {
1573                                 err = btrfs_read_buffer(cur, gen);
1574                                 if (err) {
1575                                         free_extent_buffer(cur);
1576                                         return err;
1577                                 }
1578                         }
1579                 }
1580                 if (search_start == 0)
1581                         search_start = last_block;
1582
1583                 btrfs_tree_lock(cur);
1584                 btrfs_set_lock_blocking(cur);
1585                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1586                                         &cur, search_start,
1587                                         min(16 * blocksize,
1588                                             (end_slot - i) * blocksize));
1589                 if (err) {
1590                         btrfs_tree_unlock(cur);
1591                         free_extent_buffer(cur);
1592                         break;
1593                 }
1594                 search_start = cur->start;
1595                 last_block = cur->start;
1596                 *last_ret = search_start;
1597                 btrfs_tree_unlock(cur);
1598                 free_extent_buffer(cur);
1599         }
1600         return err;
1601 }
1602
1603 /*
1604  * The leaf data grows from end-to-front in the node.
1605  * this returns the address of the start of the last item,
1606  * which is the stop of the leaf data stack
1607  */
1608 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1609                                          struct extent_buffer *leaf)
1610 {
1611         u32 nr = btrfs_header_nritems(leaf);
1612         if (nr == 0)
1613                 return BTRFS_LEAF_DATA_SIZE(root);
1614         return btrfs_item_offset_nr(leaf, nr - 1);
1615 }
1616
1617
1618 /*
1619  * search for key in the extent_buffer.  The items start at offset p,
1620  * and they are item_size apart.  There are 'max' items in p.
1621  *
1622  * the slot in the array is returned via slot, and it points to
1623  * the place where you would insert key if it is not found in
1624  * the array.
1625  *
1626  * slot may point to max if the key is bigger than all of the keys
1627  */
1628 static noinline int generic_bin_search(struct extent_buffer *eb,
1629                                        unsigned long p,
1630                                        int item_size, struct btrfs_key *key,
1631                                        int max, int *slot)
1632 {
1633         int low = 0;
1634         int high = max;
1635         int mid;
1636         int ret;
1637         struct btrfs_disk_key *tmp = NULL;
1638         struct btrfs_disk_key unaligned;
1639         unsigned long offset;
1640         char *kaddr = NULL;
1641         unsigned long map_start = 0;
1642         unsigned long map_len = 0;
1643         int err;
1644
1645         while (low < high) {
1646                 mid = (low + high) / 2;
1647                 offset = p + mid * item_size;
1648
1649                 if (!kaddr || offset < map_start ||
1650                     (offset + sizeof(struct btrfs_disk_key)) >
1651                     map_start + map_len) {
1652
1653                         err = map_private_extent_buffer(eb, offset,
1654                                                 sizeof(struct btrfs_disk_key),
1655                                                 &kaddr, &map_start, &map_len);
1656
1657                         if (!err) {
1658                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1659                                                         map_start);
1660                         } else {
1661                                 read_extent_buffer(eb, &unaligned,
1662                                                    offset, sizeof(unaligned));
1663                                 tmp = &unaligned;
1664                         }
1665
1666                 } else {
1667                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1668                                                         map_start);
1669                 }
1670                 ret = comp_keys(tmp, key);
1671
1672                 if (ret < 0)
1673                         low = mid + 1;
1674                 else if (ret > 0)
1675                         high = mid;
1676                 else {
1677                         *slot = mid;
1678                         return 0;
1679                 }
1680         }
1681         *slot = low;
1682         return 1;
1683 }
1684
1685 /*
1686  * simple bin_search frontend that does the right thing for
1687  * leaves vs nodes
1688  */
1689 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1690                       int level, int *slot)
1691 {
1692         if (level == 0)
1693                 return generic_bin_search(eb,
1694                                           offsetof(struct btrfs_leaf, items),
1695                                           sizeof(struct btrfs_item),
1696                                           key, btrfs_header_nritems(eb),
1697                                           slot);
1698         else
1699                 return generic_bin_search(eb,
1700                                           offsetof(struct btrfs_node, ptrs),
1701                                           sizeof(struct btrfs_key_ptr),
1702                                           key, btrfs_header_nritems(eb),
1703                                           slot);
1704 }
1705
1706 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1707                      int level, int *slot)
1708 {
1709         return bin_search(eb, key, level, slot);
1710 }
1711
1712 static void root_add_used(struct btrfs_root *root, u32 size)
1713 {
1714         spin_lock(&root->accounting_lock);
1715         btrfs_set_root_used(&root->root_item,
1716                             btrfs_root_used(&root->root_item) + size);
1717         spin_unlock(&root->accounting_lock);
1718 }
1719
1720 static void root_sub_used(struct btrfs_root *root, u32 size)
1721 {
1722         spin_lock(&root->accounting_lock);
1723         btrfs_set_root_used(&root->root_item,
1724                             btrfs_root_used(&root->root_item) - size);
1725         spin_unlock(&root->accounting_lock);
1726 }
1727
1728 /* given a node and slot number, this reads the blocks it points to.  The
1729  * extent buffer is returned with a reference taken (but unlocked).
1730  * NULL is returned on error.
1731  */
1732 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1733                                    struct extent_buffer *parent, int slot)
1734 {
1735         int level = btrfs_header_level(parent);
1736         struct extent_buffer *eb;
1737
1738         if (slot < 0)
1739                 return NULL;
1740         if (slot >= btrfs_header_nritems(parent))
1741                 return NULL;
1742
1743         BUG_ON(level == 0);
1744
1745         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1746                              btrfs_level_size(root, level - 1),
1747                              btrfs_node_ptr_generation(parent, slot));
1748         if (eb && !extent_buffer_uptodate(eb)) {
1749                 free_extent_buffer(eb);
1750                 eb = NULL;
1751         }
1752
1753         return eb;
1754 }
1755
1756 /*
1757  * node level balancing, used to make sure nodes are in proper order for
1758  * item deletion.  We balance from the top down, so we have to make sure
1759  * that a deletion won't leave an node completely empty later on.
1760  */
1761 static noinline int balance_level(struct btrfs_trans_handle *trans,
1762                          struct btrfs_root *root,
1763                          struct btrfs_path *path, int level)
1764 {
1765         struct extent_buffer *right = NULL;
1766         struct extent_buffer *mid;
1767         struct extent_buffer *left = NULL;
1768         struct extent_buffer *parent = NULL;
1769         int ret = 0;
1770         int wret;
1771         int pslot;
1772         int orig_slot = path->slots[level];
1773         u64 orig_ptr;
1774
1775         if (level == 0)
1776                 return 0;
1777
1778         mid = path->nodes[level];
1779
1780         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1781                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1782         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1783
1784         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1785
1786         if (level < BTRFS_MAX_LEVEL - 1) {
1787                 parent = path->nodes[level + 1];
1788                 pslot = path->slots[level + 1];
1789         }
1790
1791         /*
1792          * deal with the case where there is only one pointer in the root
1793          * by promoting the node below to a root
1794          */
1795         if (!parent) {
1796                 struct extent_buffer *child;
1797
1798                 if (btrfs_header_nritems(mid) != 1)
1799                         return 0;
1800
1801                 /* promote the child to a root */
1802                 child = read_node_slot(root, mid, 0);
1803                 if (!child) {
1804                         ret = -EROFS;
1805                         btrfs_std_error(root->fs_info, ret);
1806                         goto enospc;
1807                 }
1808
1809                 btrfs_tree_lock(child);
1810                 btrfs_set_lock_blocking(child);
1811                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1812                 if (ret) {
1813                         btrfs_tree_unlock(child);
1814                         free_extent_buffer(child);
1815                         goto enospc;
1816                 }
1817
1818                 tree_mod_log_set_root_pointer(root, child, 1);
1819                 rcu_assign_pointer(root->node, child);
1820
1821                 add_root_to_dirty_list(root);
1822                 btrfs_tree_unlock(child);
1823
1824                 path->locks[level] = 0;
1825                 path->nodes[level] = NULL;
1826                 clean_tree_block(trans, root, mid);
1827                 btrfs_tree_unlock(mid);
1828                 /* once for the path */
1829                 free_extent_buffer(mid);
1830
1831                 root_sub_used(root, mid->len);
1832                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1833                 /* once for the root ptr */
1834                 free_extent_buffer_stale(mid);
1835                 return 0;
1836         }
1837         if (btrfs_header_nritems(mid) >
1838             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1839                 return 0;
1840
1841         left = read_node_slot(root, parent, pslot - 1);
1842         if (left) {
1843                 btrfs_tree_lock(left);
1844                 btrfs_set_lock_blocking(left);
1845                 wret = btrfs_cow_block(trans, root, left,
1846                                        parent, pslot - 1, &left);
1847                 if (wret) {
1848                         ret = wret;
1849                         goto enospc;
1850                 }
1851         }
1852         right = read_node_slot(root, parent, pslot + 1);
1853         if (right) {
1854                 btrfs_tree_lock(right);
1855                 btrfs_set_lock_blocking(right);
1856                 wret = btrfs_cow_block(trans, root, right,
1857                                        parent, pslot + 1, &right);
1858                 if (wret) {
1859                         ret = wret;
1860                         goto enospc;
1861                 }
1862         }
1863
1864         /* first, try to make some room in the middle buffer */
1865         if (left) {
1866                 orig_slot += btrfs_header_nritems(left);
1867                 wret = push_node_left(trans, root, left, mid, 1);
1868                 if (wret < 0)
1869                         ret = wret;
1870         }
1871
1872         /*
1873          * then try to empty the right most buffer into the middle
1874          */
1875         if (right) {
1876                 wret = push_node_left(trans, root, mid, right, 1);
1877                 if (wret < 0 && wret != -ENOSPC)
1878                         ret = wret;
1879                 if (btrfs_header_nritems(right) == 0) {
1880                         clean_tree_block(trans, root, right);
1881                         btrfs_tree_unlock(right);
1882                         del_ptr(root, path, level + 1, pslot + 1);
1883                         root_sub_used(root, right->len);
1884                         btrfs_free_tree_block(trans, root, right, 0, 1);
1885                         free_extent_buffer_stale(right);
1886                         right = NULL;
1887                 } else {
1888                         struct btrfs_disk_key right_key;
1889                         btrfs_node_key(right, &right_key, 0);
1890                         tree_mod_log_set_node_key(root->fs_info, parent,
1891                                                   pslot + 1, 0);
1892                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1893                         btrfs_mark_buffer_dirty(parent);
1894                 }
1895         }
1896         if (btrfs_header_nritems(mid) == 1) {
1897                 /*
1898                  * we're not allowed to leave a node with one item in the
1899                  * tree during a delete.  A deletion from lower in the tree
1900                  * could try to delete the only pointer in this node.
1901                  * So, pull some keys from the left.
1902                  * There has to be a left pointer at this point because
1903                  * otherwise we would have pulled some pointers from the
1904                  * right
1905                  */
1906                 if (!left) {
1907                         ret = -EROFS;
1908                         btrfs_std_error(root->fs_info, ret);
1909                         goto enospc;
1910                 }
1911                 wret = balance_node_right(trans, root, mid, left);
1912                 if (wret < 0) {
1913                         ret = wret;
1914                         goto enospc;
1915                 }
1916                 if (wret == 1) {
1917                         wret = push_node_left(trans, root, left, mid, 1);
1918                         if (wret < 0)
1919                                 ret = wret;
1920                 }
1921                 BUG_ON(wret == 1);
1922         }
1923         if (btrfs_header_nritems(mid) == 0) {
1924                 clean_tree_block(trans, root, mid);
1925                 btrfs_tree_unlock(mid);
1926                 del_ptr(root, path, level + 1, pslot);
1927                 root_sub_used(root, mid->len);
1928                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1929                 free_extent_buffer_stale(mid);
1930                 mid = NULL;
1931         } else {
1932                 /* update the parent key to reflect our changes */
1933                 struct btrfs_disk_key mid_key;
1934                 btrfs_node_key(mid, &mid_key, 0);
1935                 tree_mod_log_set_node_key(root->fs_info, parent,
1936                                           pslot, 0);
1937                 btrfs_set_node_key(parent, &mid_key, pslot);
1938                 btrfs_mark_buffer_dirty(parent);
1939         }
1940
1941         /* update the path */
1942         if (left) {
1943                 if (btrfs_header_nritems(left) > orig_slot) {
1944                         extent_buffer_get(left);
1945                         /* left was locked after cow */
1946                         path->nodes[level] = left;
1947                         path->slots[level + 1] -= 1;
1948                         path->slots[level] = orig_slot;
1949                         if (mid) {
1950                                 btrfs_tree_unlock(mid);
1951                                 free_extent_buffer(mid);
1952                         }
1953                 } else {
1954                         orig_slot -= btrfs_header_nritems(left);
1955                         path->slots[level] = orig_slot;
1956                 }
1957         }
1958         /* double check we haven't messed things up */
1959         if (orig_ptr !=
1960             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1961                 BUG();
1962 enospc:
1963         if (right) {
1964                 btrfs_tree_unlock(right);
1965                 free_extent_buffer(right);
1966         }
1967         if (left) {
1968                 if (path->nodes[level] != left)
1969                         btrfs_tree_unlock(left);
1970                 free_extent_buffer(left);
1971         }
1972         return ret;
1973 }
1974
1975 /* Node balancing for insertion.  Here we only split or push nodes around
1976  * when they are completely full.  This is also done top down, so we
1977  * have to be pessimistic.
1978  */
1979 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1980                                           struct btrfs_root *root,
1981                                           struct btrfs_path *path, int level)
1982 {
1983         struct extent_buffer *right = NULL;
1984         struct extent_buffer *mid;
1985         struct extent_buffer *left = NULL;
1986         struct extent_buffer *parent = NULL;
1987         int ret = 0;
1988         int wret;
1989         int pslot;
1990         int orig_slot = path->slots[level];
1991
1992         if (level == 0)
1993                 return 1;
1994
1995         mid = path->nodes[level];
1996         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1997
1998         if (level < BTRFS_MAX_LEVEL - 1) {
1999                 parent = path->nodes[level + 1];
2000                 pslot = path->slots[level + 1];
2001         }
2002
2003         if (!parent)
2004                 return 1;
2005
2006         left = read_node_slot(root, parent, pslot - 1);
2007
2008         /* first, try to make some room in the middle buffer */
2009         if (left) {
2010                 u32 left_nr;
2011
2012                 btrfs_tree_lock(left);
2013                 btrfs_set_lock_blocking(left);
2014
2015                 left_nr = btrfs_header_nritems(left);
2016                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2017                         wret = 1;
2018                 } else {
2019                         ret = btrfs_cow_block(trans, root, left, parent,
2020                                               pslot - 1, &left);
2021                         if (ret)
2022                                 wret = 1;
2023                         else {
2024                                 wret = push_node_left(trans, root,
2025                                                       left, mid, 0);
2026                         }
2027                 }
2028                 if (wret < 0)
2029                         ret = wret;
2030                 if (wret == 0) {
2031                         struct btrfs_disk_key disk_key;
2032                         orig_slot += left_nr;
2033                         btrfs_node_key(mid, &disk_key, 0);
2034                         tree_mod_log_set_node_key(root->fs_info, parent,
2035                                                   pslot, 0);
2036                         btrfs_set_node_key(parent, &disk_key, pslot);
2037                         btrfs_mark_buffer_dirty(parent);
2038                         if (btrfs_header_nritems(left) > orig_slot) {
2039                                 path->nodes[level] = left;
2040                                 path->slots[level + 1] -= 1;
2041                                 path->slots[level] = orig_slot;
2042                                 btrfs_tree_unlock(mid);
2043                                 free_extent_buffer(mid);
2044                         } else {
2045                                 orig_slot -=
2046                                         btrfs_header_nritems(left);
2047                                 path->slots[level] = orig_slot;
2048                                 btrfs_tree_unlock(left);
2049                                 free_extent_buffer(left);
2050                         }
2051                         return 0;
2052                 }
2053                 btrfs_tree_unlock(left);
2054                 free_extent_buffer(left);
2055         }
2056         right = read_node_slot(root, parent, pslot + 1);
2057
2058         /*
2059          * then try to empty the right most buffer into the middle
2060          */
2061         if (right) {
2062                 u32 right_nr;
2063
2064                 btrfs_tree_lock(right);
2065                 btrfs_set_lock_blocking(right);
2066
2067                 right_nr = btrfs_header_nritems(right);
2068                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2069                         wret = 1;
2070                 } else {
2071                         ret = btrfs_cow_block(trans, root, right,
2072                                               parent, pslot + 1,
2073                                               &right);
2074                         if (ret)
2075                                 wret = 1;
2076                         else {
2077                                 wret = balance_node_right(trans, root,
2078                                                           right, mid);
2079                         }
2080                 }
2081                 if (wret < 0)
2082                         ret = wret;
2083                 if (wret == 0) {
2084                         struct btrfs_disk_key disk_key;
2085
2086                         btrfs_node_key(right, &disk_key, 0);
2087                         tree_mod_log_set_node_key(root->fs_info, parent,
2088                                                   pslot + 1, 0);
2089                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2090                         btrfs_mark_buffer_dirty(parent);
2091
2092                         if (btrfs_header_nritems(mid) <= orig_slot) {
2093                                 path->nodes[level] = right;
2094                                 path->slots[level + 1] += 1;
2095                                 path->slots[level] = orig_slot -
2096                                         btrfs_header_nritems(mid);
2097                                 btrfs_tree_unlock(mid);
2098                                 free_extent_buffer(mid);
2099                         } else {
2100                                 btrfs_tree_unlock(right);
2101                                 free_extent_buffer(right);
2102                         }
2103                         return 0;
2104                 }
2105                 btrfs_tree_unlock(right);
2106                 free_extent_buffer(right);
2107         }
2108         return 1;
2109 }
2110
2111 /*
2112  * readahead one full node of leaves, finding things that are close
2113  * to the block in 'slot', and triggering ra on them.
2114  */
2115 static void reada_for_search(struct btrfs_root *root,
2116                              struct btrfs_path *path,
2117                              int level, int slot, u64 objectid)
2118 {
2119         struct extent_buffer *node;
2120         struct btrfs_disk_key disk_key;
2121         u32 nritems;
2122         u64 search;
2123         u64 target;
2124         u64 nread = 0;
2125         u64 gen;
2126         int direction = path->reada;
2127         struct extent_buffer *eb;
2128         u32 nr;
2129         u32 blocksize;
2130         u32 nscan = 0;
2131
2132         if (level != 1)
2133                 return;
2134
2135         if (!path->nodes[level])
2136                 return;
2137
2138         node = path->nodes[level];
2139
2140         search = btrfs_node_blockptr(node, slot);
2141         blocksize = btrfs_level_size(root, level - 1);
2142         eb = btrfs_find_tree_block(root, search, blocksize);
2143         if (eb) {
2144                 free_extent_buffer(eb);
2145                 return;
2146         }
2147
2148         target = search;
2149
2150         nritems = btrfs_header_nritems(node);
2151         nr = slot;
2152
2153         while (1) {
2154                 if (direction < 0) {
2155                         if (nr == 0)
2156                                 break;
2157                         nr--;
2158                 } else if (direction > 0) {
2159                         nr++;
2160                         if (nr >= nritems)
2161                                 break;
2162                 }
2163                 if (path->reada < 0 && objectid) {
2164                         btrfs_node_key(node, &disk_key, nr);
2165                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2166                                 break;
2167                 }
2168                 search = btrfs_node_blockptr(node, nr);
2169                 if ((search <= target && target - search <= 65536) ||
2170                     (search > target && search - target <= 65536)) {
2171                         gen = btrfs_node_ptr_generation(node, nr);
2172                         readahead_tree_block(root, search, blocksize, gen);
2173                         nread += blocksize;
2174                 }
2175                 nscan++;
2176                 if ((nread > 65536 || nscan > 32))
2177                         break;
2178         }
2179 }
2180
2181 /*
2182  * returns -EAGAIN if it had to drop the path, or zero if everything was in
2183  * cache
2184  */
2185 static noinline int reada_for_balance(struct btrfs_root *root,
2186                                       struct btrfs_path *path, int level)
2187 {
2188         int slot;
2189         int nritems;
2190         struct extent_buffer *parent;
2191         struct extent_buffer *eb;
2192         u64 gen;
2193         u64 block1 = 0;
2194         u64 block2 = 0;
2195         int ret = 0;
2196         int blocksize;
2197
2198         parent = path->nodes[level + 1];
2199         if (!parent)
2200                 return 0;
2201
2202         nritems = btrfs_header_nritems(parent);
2203         slot = path->slots[level + 1];
2204         blocksize = btrfs_level_size(root, level);
2205
2206         if (slot > 0) {
2207                 block1 = btrfs_node_blockptr(parent, slot - 1);
2208                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2209                 eb = btrfs_find_tree_block(root, block1, blocksize);
2210                 /*
2211                  * if we get -eagain from btrfs_buffer_uptodate, we
2212                  * don't want to return eagain here.  That will loop
2213                  * forever
2214                  */
2215                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2216                         block1 = 0;
2217                 free_extent_buffer(eb);
2218         }
2219         if (slot + 1 < nritems) {
2220                 block2 = btrfs_node_blockptr(parent, slot + 1);
2221                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2222                 eb = btrfs_find_tree_block(root, block2, blocksize);
2223                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2224                         block2 = 0;
2225                 free_extent_buffer(eb);
2226         }
2227         if (block1 || block2) {
2228                 ret = -EAGAIN;
2229
2230                 /* release the whole path */
2231                 btrfs_release_path(path);
2232
2233                 /* read the blocks */
2234                 if (block1)
2235                         readahead_tree_block(root, block1, blocksize, 0);
2236                 if (block2)
2237                         readahead_tree_block(root, block2, blocksize, 0);
2238
2239                 if (block1) {
2240                         eb = read_tree_block(root, block1, blocksize, 0);
2241                         free_extent_buffer(eb);
2242                 }
2243                 if (block2) {
2244                         eb = read_tree_block(root, block2, blocksize, 0);
2245                         free_extent_buffer(eb);
2246                 }
2247         }
2248         return ret;
2249 }
2250
2251
2252 /*
2253  * when we walk down the tree, it is usually safe to unlock the higher layers
2254  * in the tree.  The exceptions are when our path goes through slot 0, because
2255  * operations on the tree might require changing key pointers higher up in the
2256  * tree.
2257  *
2258  * callers might also have set path->keep_locks, which tells this code to keep
2259  * the lock if the path points to the last slot in the block.  This is part of
2260  * walking through the tree, and selecting the next slot in the higher block.
2261  *
2262  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2263  * if lowest_unlock is 1, level 0 won't be unlocked
2264  */
2265 static noinline void unlock_up(struct btrfs_path *path, int level,
2266                                int lowest_unlock, int min_write_lock_level,
2267                                int *write_lock_level)
2268 {
2269         int i;
2270         int skip_level = level;
2271         int no_skips = 0;
2272         struct extent_buffer *t;
2273
2274         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2275                 if (!path->nodes[i])
2276                         break;
2277                 if (!path->locks[i])
2278                         break;
2279                 if (!no_skips && path->slots[i] == 0) {
2280                         skip_level = i + 1;
2281                         continue;
2282                 }
2283                 if (!no_skips && path->keep_locks) {
2284                         u32 nritems;
2285                         t = path->nodes[i];
2286                         nritems = btrfs_header_nritems(t);
2287                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2288                                 skip_level = i + 1;
2289                                 continue;
2290                         }
2291                 }
2292                 if (skip_level < i && i >= lowest_unlock)
2293                         no_skips = 1;
2294
2295                 t = path->nodes[i];
2296                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2297                         btrfs_tree_unlock_rw(t, path->locks[i]);
2298                         path->locks[i] = 0;
2299                         if (write_lock_level &&
2300                             i > min_write_lock_level &&
2301                             i <= *write_lock_level) {
2302                                 *write_lock_level = i - 1;
2303                         }
2304                 }
2305         }
2306 }
2307
2308 /*
2309  * This releases any locks held in the path starting at level and
2310  * going all the way up to the root.
2311  *
2312  * btrfs_search_slot will keep the lock held on higher nodes in a few
2313  * corner cases, such as COW of the block at slot zero in the node.  This
2314  * ignores those rules, and it should only be called when there are no
2315  * more updates to be done higher up in the tree.
2316  */
2317 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2318 {
2319         int i;
2320
2321         if (path->keep_locks)
2322                 return;
2323
2324         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2325                 if (!path->nodes[i])
2326                         continue;
2327                 if (!path->locks[i])
2328                         continue;
2329                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2330                 path->locks[i] = 0;
2331         }
2332 }
2333
2334 /*
2335  * helper function for btrfs_search_slot.  The goal is to find a block
2336  * in cache without setting the path to blocking.  If we find the block
2337  * we return zero and the path is unchanged.
2338  *
2339  * If we can't find the block, we set the path blocking and do some
2340  * reada.  -EAGAIN is returned and the search must be repeated.
2341  */
2342 static int
2343 read_block_for_search(struct btrfs_trans_handle *trans,
2344                        struct btrfs_root *root, struct btrfs_path *p,
2345                        struct extent_buffer **eb_ret, int level, int slot,
2346                        struct btrfs_key *key, u64 time_seq)
2347 {
2348         u64 blocknr;
2349         u64 gen;
2350         u32 blocksize;
2351         struct extent_buffer *b = *eb_ret;
2352         struct extent_buffer *tmp;
2353         int ret;
2354
2355         blocknr = btrfs_node_blockptr(b, slot);
2356         gen = btrfs_node_ptr_generation(b, slot);
2357         blocksize = btrfs_level_size(root, level - 1);
2358
2359         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2360         if (tmp) {
2361                 /* first we do an atomic uptodate check */
2362                 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2363                         if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2364                                 /*
2365                                  * we found an up to date block without
2366                                  * sleeping, return
2367                                  * right away
2368                                  */
2369                                 *eb_ret = tmp;
2370                                 return 0;
2371                         }
2372                         /* the pages were up to date, but we failed
2373                          * the generation number check.  Do a full
2374                          * read for the generation number that is correct.
2375                          * We must do this without dropping locks so
2376                          * we can trust our generation number
2377                          */
2378                         free_extent_buffer(tmp);
2379                         btrfs_set_path_blocking(p);
2380
2381                         /* now we're allowed to do a blocking uptodate check */
2382                         tmp = read_tree_block(root, blocknr, blocksize, gen);
2383                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2384                                 *eb_ret = tmp;
2385                                 return 0;
2386                         }
2387                         free_extent_buffer(tmp);
2388                         btrfs_release_path(p);
2389                         return -EIO;
2390                 }
2391         }
2392
2393         /*
2394          * reduce lock contention at high levels
2395          * of the btree by dropping locks before
2396          * we read.  Don't release the lock on the current
2397          * level because we need to walk this node to figure
2398          * out which blocks to read.
2399          */
2400         btrfs_unlock_up_safe(p, level + 1);
2401         btrfs_set_path_blocking(p);
2402
2403         free_extent_buffer(tmp);
2404         if (p->reada)
2405                 reada_for_search(root, p, level, slot, key->objectid);
2406
2407         btrfs_release_path(p);
2408
2409         ret = -EAGAIN;
2410         tmp = read_tree_block(root, blocknr, blocksize, 0);
2411         if (tmp) {
2412                 /*
2413                  * If the read above didn't mark this buffer up to date,
2414                  * it will never end up being up to date.  Set ret to EIO now
2415                  * and give up so that our caller doesn't loop forever
2416                  * on our EAGAINs.
2417                  */
2418                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2419                         ret = -EIO;
2420                 free_extent_buffer(tmp);
2421         }
2422         return ret;
2423 }
2424
2425 /*
2426  * helper function for btrfs_search_slot.  This does all of the checks
2427  * for node-level blocks and does any balancing required based on
2428  * the ins_len.
2429  *
2430  * If no extra work was required, zero is returned.  If we had to
2431  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2432  * start over
2433  */
2434 static int
2435 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2436                        struct btrfs_root *root, struct btrfs_path *p,
2437                        struct extent_buffer *b, int level, int ins_len,
2438                        int *write_lock_level)
2439 {
2440         int ret;
2441         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2442             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2443                 int sret;
2444
2445                 if (*write_lock_level < level + 1) {
2446                         *write_lock_level = level + 1;
2447                         btrfs_release_path(p);
2448                         goto again;
2449                 }
2450
2451                 sret = reada_for_balance(root, p, level);
2452                 if (sret)
2453                         goto again;
2454
2455                 btrfs_set_path_blocking(p);
2456                 sret = split_node(trans, root, p, level);
2457                 btrfs_clear_path_blocking(p, NULL, 0);
2458
2459                 BUG_ON(sret > 0);
2460                 if (sret) {
2461                         ret = sret;
2462                         goto done;
2463                 }
2464                 b = p->nodes[level];
2465         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2466                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2467                 int sret;
2468
2469                 if (*write_lock_level < level + 1) {
2470                         *write_lock_level = level + 1;
2471                         btrfs_release_path(p);
2472                         goto again;
2473                 }
2474
2475                 sret = reada_for_balance(root, p, level);
2476                 if (sret)
2477                         goto again;
2478
2479                 btrfs_set_path_blocking(p);
2480                 sret = balance_level(trans, root, p, level);
2481                 btrfs_clear_path_blocking(p, NULL, 0);
2482
2483                 if (sret) {
2484                         ret = sret;
2485                         goto done;
2486                 }
2487                 b = p->nodes[level];
2488                 if (!b) {
2489                         btrfs_release_path(p);
2490                         goto again;
2491                 }
2492                 BUG_ON(btrfs_header_nritems(b) == 1);
2493         }
2494         return 0;
2495
2496 again:
2497         ret = -EAGAIN;
2498 done:
2499         return ret;
2500 }
2501
2502 /*
2503  * look for key in the tree.  path is filled in with nodes along the way
2504  * if key is found, we return zero and you can find the item in the leaf
2505  * level of the path (level 0)
2506  *
2507  * If the key isn't found, the path points to the slot where it should
2508  * be inserted, and 1 is returned.  If there are other errors during the
2509  * search a negative error number is returned.
2510  *
2511  * if ins_len > 0, nodes and leaves will be split as we walk down the
2512  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2513  * possible)
2514  */
2515 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2516                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2517                       ins_len, int cow)
2518 {
2519         struct extent_buffer *b;
2520         int slot;
2521         int ret;
2522         int err;
2523         int level;
2524         int lowest_unlock = 1;
2525         int root_lock;
2526         /* everything at write_lock_level or lower must be write locked */
2527         int write_lock_level = 0;
2528         u8 lowest_level = 0;
2529         int min_write_lock_level;
2530
2531         lowest_level = p->lowest_level;
2532         WARN_ON(lowest_level && ins_len > 0);
2533         WARN_ON(p->nodes[0] != NULL);
2534
2535         if (ins_len < 0) {
2536                 lowest_unlock = 2;
2537
2538                 /* when we are removing items, we might have to go up to level
2539                  * two as we update tree pointers  Make sure we keep write
2540                  * for those levels as well
2541                  */
2542                 write_lock_level = 2;
2543         } else if (ins_len > 0) {
2544                 /*
2545                  * for inserting items, make sure we have a write lock on
2546                  * level 1 so we can update keys
2547                  */
2548                 write_lock_level = 1;
2549         }
2550
2551         if (!cow)
2552                 write_lock_level = -1;
2553
2554         if (cow && (p->keep_locks || p->lowest_level))
2555                 write_lock_level = BTRFS_MAX_LEVEL;
2556
2557         min_write_lock_level = write_lock_level;
2558
2559 again:
2560         /*
2561          * we try very hard to do read locks on the root
2562          */
2563         root_lock = BTRFS_READ_LOCK;
2564         level = 0;
2565         if (p->search_commit_root) {
2566                 /*
2567                  * the commit roots are read only
2568                  * so we always do read locks
2569                  */
2570                 b = root->commit_root;
2571                 extent_buffer_get(b);
2572                 level = btrfs_header_level(b);
2573                 if (!p->skip_locking)
2574                         btrfs_tree_read_lock(b);
2575         } else {
2576                 if (p->skip_locking) {
2577                         b = btrfs_root_node(root);
2578                         level = btrfs_header_level(b);
2579                 } else {
2580                         /* we don't know the level of the root node
2581                          * until we actually have it read locked
2582                          */
2583                         b = btrfs_read_lock_root_node(root);
2584                         level = btrfs_header_level(b);
2585                         if (level <= write_lock_level) {
2586                                 /* whoops, must trade for write lock */
2587                                 btrfs_tree_read_unlock(b);
2588                                 free_extent_buffer(b);
2589                                 b = btrfs_lock_root_node(root);
2590                                 root_lock = BTRFS_WRITE_LOCK;
2591
2592                                 /* the level might have changed, check again */
2593                                 level = btrfs_header_level(b);
2594                         }
2595                 }
2596         }
2597         p->nodes[level] = b;
2598         if (!p->skip_locking)
2599                 p->locks[level] = root_lock;
2600
2601         while (b) {
2602                 level = btrfs_header_level(b);
2603
2604                 /*
2605                  * setup the path here so we can release it under lock
2606                  * contention with the cow code
2607                  */
2608                 if (cow) {
2609                         /*
2610                          * if we don't really need to cow this block
2611                          * then we don't want to set the path blocking,
2612                          * so we test it here
2613                          */
2614                         if (!should_cow_block(trans, root, b))
2615                                 goto cow_done;
2616
2617                         btrfs_set_path_blocking(p);
2618
2619                         /*
2620                          * must have write locks on this node and the
2621                          * parent
2622                          */
2623                         if (level > write_lock_level ||
2624                             (level + 1 > write_lock_level &&
2625                             level + 1 < BTRFS_MAX_LEVEL &&
2626                             p->nodes[level + 1])) {
2627                                 write_lock_level = level + 1;
2628                                 btrfs_release_path(p);
2629                                 goto again;
2630                         }
2631
2632                         err = btrfs_cow_block(trans, root, b,
2633                                               p->nodes[level + 1],
2634                                               p->slots[level + 1], &b);
2635                         if (err) {
2636                                 ret = err;
2637                                 goto done;
2638                         }
2639                 }
2640 cow_done:
2641                 BUG_ON(!cow && ins_len);
2642
2643                 p->nodes[level] = b;
2644                 btrfs_clear_path_blocking(p, NULL, 0);
2645
2646                 /*
2647                  * we have a lock on b and as long as we aren't changing
2648                  * the tree, there is no way to for the items in b to change.
2649                  * It is safe to drop the lock on our parent before we
2650                  * go through the expensive btree search on b.
2651                  *
2652                  * If cow is true, then we might be changing slot zero,
2653                  * which may require changing the parent.  So, we can't
2654                  * drop the lock until after we know which slot we're
2655                  * operating on.
2656                  */
2657                 if (!cow)
2658                         btrfs_unlock_up_safe(p, level + 1);
2659
2660                 ret = bin_search(b, key, level, &slot);
2661
2662                 if (level != 0) {
2663                         int dec = 0;
2664                         if (ret && slot > 0) {
2665                                 dec = 1;
2666                                 slot -= 1;
2667                         }
2668                         p->slots[level] = slot;
2669                         err = setup_nodes_for_search(trans, root, p, b, level,
2670                                              ins_len, &write_lock_level);
2671                         if (err == -EAGAIN)
2672                                 goto again;
2673                         if (err) {
2674                                 ret = err;
2675                                 goto done;
2676                         }
2677                         b = p->nodes[level];
2678                         slot = p->slots[level];
2679
2680                         /*
2681                          * slot 0 is special, if we change the key
2682                          * we have to update the parent pointer
2683                          * which means we must have a write lock
2684                          * on the parent
2685                          */
2686                         if (slot == 0 && cow &&
2687                             write_lock_level < level + 1) {
2688                                 write_lock_level = level + 1;
2689                                 btrfs_release_path(p);
2690                                 goto again;
2691                         }
2692
2693                         unlock_up(p, level, lowest_unlock,
2694                                   min_write_lock_level, &write_lock_level);
2695
2696                         if (level == lowest_level) {
2697                                 if (dec)
2698                                         p->slots[level]++;
2699                                 goto done;
2700                         }
2701
2702                         err = read_block_for_search(trans, root, p,
2703                                                     &b, level, slot, key, 0);
2704                         if (err == -EAGAIN)
2705                                 goto again;
2706                         if (err) {
2707                                 ret = err;
2708                                 goto done;
2709                         }
2710
2711                         if (!p->skip_locking) {
2712                                 level = btrfs_header_level(b);
2713                                 if (level <= write_lock_level) {
2714                                         err = btrfs_try_tree_write_lock(b);
2715                                         if (!err) {
2716                                                 btrfs_set_path_blocking(p);
2717                                                 btrfs_tree_lock(b);
2718                                                 btrfs_clear_path_blocking(p, b,
2719                                                                   BTRFS_WRITE_LOCK);
2720                                         }
2721                                         p->locks[level] = BTRFS_WRITE_LOCK;
2722                                 } else {
2723                                         err = btrfs_try_tree_read_lock(b);
2724                                         if (!err) {
2725                                                 btrfs_set_path_blocking(p);
2726                                                 btrfs_tree_read_lock(b);
2727                                                 btrfs_clear_path_blocking(p, b,
2728                                                                   BTRFS_READ_LOCK);
2729                                         }
2730                                         p->locks[level] = BTRFS_READ_LOCK;
2731                                 }
2732                                 p->nodes[level] = b;
2733                         }
2734                 } else {
2735                         p->slots[level] = slot;
2736                         if (ins_len > 0 &&
2737                             btrfs_leaf_free_space(root, b) < ins_len) {
2738                                 if (write_lock_level < 1) {
2739                                         write_lock_level = 1;
2740                                         btrfs_release_path(p);
2741                                         goto again;
2742                                 }
2743
2744                                 btrfs_set_path_blocking(p);
2745                                 err = split_leaf(trans, root, key,
2746                                                  p, ins_len, ret == 0);
2747                                 btrfs_clear_path_blocking(p, NULL, 0);
2748
2749                                 BUG_ON(err > 0);
2750                                 if (err) {
2751                                         ret = err;
2752                                         goto done;
2753                                 }
2754                         }
2755                         if (!p->search_for_split)
2756                                 unlock_up(p, level, lowest_unlock,
2757                                           min_write_lock_level, &write_lock_level);
2758                         goto done;
2759                 }
2760         }
2761         ret = 1;
2762 done:
2763         /*
2764          * we don't really know what they plan on doing with the path
2765          * from here on, so for now just mark it as blocking
2766          */
2767         if (!p->leave_spinning)
2768                 btrfs_set_path_blocking(p);
2769         if (ret < 0)
2770                 btrfs_release_path(p);
2771         return ret;
2772 }
2773
2774 /*
2775  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2776  * current state of the tree together with the operations recorded in the tree
2777  * modification log to search for the key in a previous version of this tree, as
2778  * denoted by the time_seq parameter.
2779  *
2780  * Naturally, there is no support for insert, delete or cow operations.
2781  *
2782  * The resulting path and return value will be set up as if we called
2783  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2784  */
2785 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2786                           struct btrfs_path *p, u64 time_seq)
2787 {
2788         struct extent_buffer *b;
2789         int slot;
2790         int ret;
2791         int err;
2792         int level;
2793         int lowest_unlock = 1;
2794         u8 lowest_level = 0;
2795
2796         lowest_level = p->lowest_level;
2797         WARN_ON(p->nodes[0] != NULL);
2798
2799         if (p->search_commit_root) {
2800                 BUG_ON(time_seq);
2801                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2802         }
2803
2804 again:
2805         b = get_old_root(root, time_seq);
2806         level = btrfs_header_level(b);
2807         p->locks[level] = BTRFS_READ_LOCK;
2808
2809         while (b) {
2810                 level = btrfs_header_level(b);
2811                 p->nodes[level] = b;
2812                 btrfs_clear_path_blocking(p, NULL, 0);
2813
2814                 /*
2815                  * we have a lock on b and as long as we aren't changing
2816                  * the tree, there is no way to for the items in b to change.
2817                  * It is safe to drop the lock on our parent before we
2818                  * go through the expensive btree search on b.
2819                  */
2820                 btrfs_unlock_up_safe(p, level + 1);
2821
2822                 ret = bin_search(b, key, level, &slot);
2823
2824                 if (level != 0) {
2825                         int dec = 0;
2826                         if (ret && slot > 0) {
2827                                 dec = 1;
2828                                 slot -= 1;
2829                         }
2830                         p->slots[level] = slot;
2831                         unlock_up(p, level, lowest_unlock, 0, NULL);
2832
2833                         if (level == lowest_level) {
2834                                 if (dec)
2835                                         p->slots[level]++;
2836                                 goto done;
2837                         }
2838
2839                         err = read_block_for_search(NULL, root, p, &b, level,
2840                                                     slot, key, time_seq);
2841                         if (err == -EAGAIN)
2842                                 goto again;
2843                         if (err) {
2844                                 ret = err;
2845                                 goto done;
2846                         }
2847
2848                         level = btrfs_header_level(b);
2849                         err = btrfs_try_tree_read_lock(b);
2850                         if (!err) {
2851                                 btrfs_set_path_blocking(p);
2852                                 btrfs_tree_read_lock(b);
2853                                 btrfs_clear_path_blocking(p, b,
2854                                                           BTRFS_READ_LOCK);
2855                         }
2856                         b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2857                         p->locks[level] = BTRFS_READ_LOCK;
2858                         p->nodes[level] = b;
2859                 } else {
2860                         p->slots[level] = slot;
2861                         unlock_up(p, level, lowest_unlock, 0, NULL);
2862                         goto done;
2863                 }
2864         }
2865         ret = 1;
2866 done:
2867         if (!p->leave_spinning)
2868                 btrfs_set_path_blocking(p);
2869         if (ret < 0)
2870                 btrfs_release_path(p);
2871
2872         return ret;
2873 }
2874
2875 /*
2876  * helper to use instead of search slot if no exact match is needed but
2877  * instead the next or previous item should be returned.
2878  * When find_higher is true, the next higher item is returned, the next lower
2879  * otherwise.
2880  * When return_any and find_higher are both true, and no higher item is found,
2881  * return the next lower instead.
2882  * When return_any is true and find_higher is false, and no lower item is found,
2883  * return the next higher instead.
2884  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2885  * < 0 on error
2886  */
2887 int btrfs_search_slot_for_read(struct btrfs_root *root,
2888                                struct btrfs_key *key, struct btrfs_path *p,
2889                                int find_higher, int return_any)
2890 {
2891         int ret;
2892         struct extent_buffer *leaf;
2893
2894 again:
2895         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2896         if (ret <= 0)
2897                 return ret;
2898         /*
2899          * a return value of 1 means the path is at the position where the
2900          * item should be inserted. Normally this is the next bigger item,
2901          * but in case the previous item is the last in a leaf, path points
2902          * to the first free slot in the previous leaf, i.e. at an invalid
2903          * item.
2904          */
2905         leaf = p->nodes[0];
2906
2907         if (find_higher) {
2908                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2909                         ret = btrfs_next_leaf(root, p);
2910                         if (ret <= 0)
2911                                 return ret;
2912                         if (!return_any)
2913                                 return 1;
2914                         /*
2915                          * no higher item found, return the next
2916                          * lower instead
2917                          */
2918                         return_any = 0;
2919                         find_higher = 0;
2920                         btrfs_release_path(p);
2921                         goto again;
2922                 }
2923         } else {
2924                 if (p->slots[0] == 0) {
2925                         ret = btrfs_prev_leaf(root, p);
2926                         if (ret < 0)
2927                                 return ret;
2928                         if (!ret) {
2929                                 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2930                                 return 0;
2931                         }
2932                         if (!return_any)
2933                                 return 1;
2934                         /*
2935                          * no lower item found, return the next
2936                          * higher instead
2937                          */
2938                         return_any = 0;
2939                         find_higher = 1;
2940                         btrfs_release_path(p);
2941                         goto again;
2942                 } else {
2943                         --p->slots[0];
2944                 }
2945         }
2946         return 0;
2947 }
2948
2949 /*
2950  * adjust the pointers going up the tree, starting at level
2951  * making sure the right key of each node is points to 'key'.
2952  * This is used after shifting pointers to the left, so it stops
2953  * fixing up pointers when a given leaf/node is not in slot 0 of the
2954  * higher levels
2955  *
2956  */
2957 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
2958                            struct btrfs_disk_key *key, int level)
2959 {
2960         int i;
2961         struct extent_buffer *t;
2962
2963         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2964                 int tslot = path->slots[i];
2965                 if (!path->nodes[i])
2966                         break;
2967                 t = path->nodes[i];
2968                 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2969                 btrfs_set_node_key(t, key, tslot);
2970                 btrfs_mark_buffer_dirty(path->nodes[i]);
2971                 if (tslot != 0)
2972                         break;
2973         }
2974 }
2975
2976 /*
2977  * update item key.
2978  *
2979  * This function isn't completely safe. It's the caller's responsibility
2980  * that the new key won't break the order
2981  */
2982 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
2983                              struct btrfs_key *new_key)
2984 {
2985         struct btrfs_disk_key disk_key;
2986         struct extent_buffer *eb;
2987         int slot;
2988
2989         eb = path->nodes[0];
2990         slot = path->slots[0];
2991         if (slot > 0) {
2992                 btrfs_item_key(eb, &disk_key, slot - 1);
2993                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2994         }
2995         if (slot < btrfs_header_nritems(eb) - 1) {
2996                 btrfs_item_key(eb, &disk_key, slot + 1);
2997                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2998         }
2999
3000         btrfs_cpu_key_to_disk(&disk_key, new_key);
3001         btrfs_set_item_key(eb, &disk_key, slot);
3002         btrfs_mark_buffer_dirty(eb);
3003         if (slot == 0)
3004                 fixup_low_keys(root, path, &disk_key, 1);
3005 }
3006
3007 /*
3008  * try to push data from one node into the next node left in the
3009  * tree.
3010  *
3011  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3012  * error, and > 0 if there was no room in the left hand block.
3013  */
3014 static int push_node_left(struct btrfs_trans_handle *trans,
3015                           struct btrfs_root *root, struct extent_buffer *dst,
3016                           struct extent_buffer *src, int empty)
3017 {
3018         int push_items = 0;
3019         int src_nritems;
3020         int dst_nritems;
3021         int ret = 0;
3022
3023         src_nritems = btrfs_header_nritems(src);
3024         dst_nritems = btrfs_header_nritems(dst);
3025         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3026         WARN_ON(btrfs_header_generation(src) != trans->transid);
3027         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3028
3029         if (!empty && src_nritems <= 8)
3030                 return 1;
3031
3032         if (push_items <= 0)
3033                 return 1;
3034
3035         if (empty) {
3036                 push_items = min(src_nritems, push_items);
3037                 if (push_items < src_nritems) {
3038                         /* leave at least 8 pointers in the node if
3039                          * we aren't going to empty it
3040                          */
3041                         if (src_nritems - push_items < 8) {
3042                                 if (push_items <= 8)
3043                                         return 1;
3044                                 push_items -= 8;
3045                         }
3046                 }
3047         } else
3048                 push_items = min(src_nritems - 8, push_items);
3049
3050         tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3051                              push_items);
3052         copy_extent_buffer(dst, src,
3053                            btrfs_node_key_ptr_offset(dst_nritems),
3054                            btrfs_node_key_ptr_offset(0),
3055                            push_items * sizeof(struct btrfs_key_ptr));
3056
3057         if (push_items < src_nritems) {
3058                 /*
3059                  * don't call tree_mod_log_eb_move here, key removal was already
3060                  * fully logged by tree_mod_log_eb_copy above.
3061                  */
3062                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3063                                       btrfs_node_key_ptr_offset(push_items),
3064                                       (src_nritems - push_items) *
3065                                       sizeof(struct btrfs_key_ptr));
3066         }
3067         btrfs_set_header_nritems(src, src_nritems - push_items);
3068         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3069         btrfs_mark_buffer_dirty(src);
3070         btrfs_mark_buffer_dirty(dst);
3071
3072         return ret;
3073 }
3074
3075 /*
3076  * try to push data from one node into the next node right in the
3077  * tree.
3078  *
3079  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3080  * error, and > 0 if there was no room in the right hand block.
3081  *
3082  * this will  only push up to 1/2 the contents of the left node over
3083  */
3084 static int balance_node_right(struct btrfs_trans_handle *trans,
3085                               struct btrfs_root *root,
3086                               struct extent_buffer *dst,
3087                               struct extent_buffer *src)
3088 {
3089         int push_items = 0;
3090         int max_push;
3091         int src_nritems;
3092         int dst_nritems;
3093         int ret = 0;
3094
3095         WARN_ON(btrfs_header_generation(src) != trans->transid);
3096         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3097
3098         src_nritems = btrfs_header_nritems(src);
3099         dst_nritems = btrfs_header_nritems(dst);
3100         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3101         if (push_items <= 0)
3102                 return 1;
3103
3104         if (src_nritems < 4)
3105                 return 1;
3106
3107         max_push = src_nritems / 2 + 1;
3108         /* don't try to empty the node */
3109         if (max_push >= src_nritems)
3110                 return 1;
3111
3112         if (max_push < push_items)
3113                 push_items = max_push;
3114
3115         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3116         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3117                                       btrfs_node_key_ptr_offset(0),
3118                                       (dst_nritems) *
3119                                       sizeof(struct btrfs_key_ptr));
3120
3121         tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3122                              src_nritems - push_items, push_items);
3123         copy_extent_buffer(dst, src,
3124                            btrfs_node_key_ptr_offset(0),
3125                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3126                            push_items * sizeof(struct btrfs_key_ptr));
3127
3128         btrfs_set_header_nritems(src, src_nritems - push_items);
3129         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3130
3131         btrfs_mark_buffer_dirty(src);
3132         btrfs_mark_buffer_dirty(dst);
3133
3134         return ret;
3135 }
3136
3137 /*
3138  * helper function to insert a new root level in the tree.
3139  * A new node is allocated, and a single item is inserted to
3140  * point to the existing root
3141  *
3142  * returns zero on success or < 0 on failure.
3143  */
3144 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3145                            struct btrfs_root *root,
3146                            struct btrfs_path *path, int level, int log_removal)
3147 {
3148         u64 lower_gen;
3149         struct extent_buffer *lower;
3150         struct extent_buffer *c;
3151         struct extent_buffer *old;
3152         struct btrfs_disk_key lower_key;
3153
3154         BUG_ON(path->nodes[level]);
3155         BUG_ON(path->nodes[level-1] != root->node);
3156
3157         lower = path->nodes[level-1];
3158         if (level == 1)
3159                 btrfs_item_key(lower, &lower_key, 0);
3160         else
3161                 btrfs_node_key(lower, &lower_key, 0);
3162
3163         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3164                                    root->root_key.objectid, &lower_key,
3165                                    level, root->node->start, 0);
3166         if (IS_ERR(c))
3167                 return PTR_ERR(c);
3168
3169         root_add_used(root, root->nodesize);
3170
3171         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3172         btrfs_set_header_nritems(c, 1);
3173         btrfs_set_header_level(c, level);
3174         btrfs_set_header_bytenr(c, c->start);
3175         btrfs_set_header_generation(c, trans->transid);
3176         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3177         btrfs_set_header_owner(c, root->root_key.objectid);
3178
3179         write_extent_buffer(c, root->fs_info->fsid,
3180                             (unsigned long)btrfs_header_fsid(c),
3181                             BTRFS_FSID_SIZE);
3182
3183         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3184                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
3185                             BTRFS_UUID_SIZE);
3186
3187         btrfs_set_node_key(c, &lower_key, 0);
3188         btrfs_set_node_blockptr(c, 0, lower->start);
3189         lower_gen = btrfs_header_generation(lower);
3190         WARN_ON(lower_gen != trans->transid);
3191
3192         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3193
3194         btrfs_mark_buffer_dirty(c);
3195
3196         old = root->node;
3197         tree_mod_log_set_root_pointer(root, c, log_removal);
3198         rcu_assign_pointer(root->node, c);
3199
3200         /* the super has an extra ref to root->node */
3201         free_extent_buffer(old);
3202
3203         add_root_to_dirty_list(root);
3204         extent_buffer_get(c);
3205         path->nodes[level] = c;
3206         path->locks[level] = BTRFS_WRITE_LOCK;
3207         path->slots[level] = 0;
3208         return 0;
3209 }
3210
3211 /*
3212  * worker function to insert a single pointer in a node.
3213  * the node should have enough room for the pointer already
3214  *
3215  * slot and level indicate where you want the key to go, and
3216  * blocknr is the block the key points to.
3217  */
3218 static void insert_ptr(struct btrfs_trans_handle *trans,
3219                        struct btrfs_root *root, struct btrfs_path *path,
3220                        struct btrfs_disk_key *key, u64 bytenr,
3221                        int slot, int level)
3222 {
3223         struct extent_buffer *lower;
3224         int nritems;
3225         int ret;
3226
3227         BUG_ON(!path->nodes[level]);
3228         btrfs_assert_tree_locked(path->nodes[level]);
3229         lower = path->nodes[level];
3230         nritems = btrfs_header_nritems(lower);
3231         BUG_ON(slot > nritems);
3232         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3233         if (slot != nritems) {
3234                 if (level)
3235                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3236                                              slot, nritems - slot);
3237                 memmove_extent_buffer(lower,
3238                               btrfs_node_key_ptr_offset(slot + 1),
3239                               btrfs_node_key_ptr_offset(slot),
3240                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3241         }
3242         if (level) {
3243                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3244                                               MOD_LOG_KEY_ADD);
3245                 BUG_ON(ret < 0);
3246         }
3247         btrfs_set_node_key(lower, key, slot);
3248         btrfs_set_node_blockptr(lower, slot, bytenr);
3249         WARN_ON(trans->transid == 0);
3250         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3251         btrfs_set_header_nritems(lower, nritems + 1);
3252         btrfs_mark_buffer_dirty(lower);
3253 }
3254
3255 /*
3256  * split the node at the specified level in path in two.
3257  * The path is corrected to point to the appropriate node after the split
3258  *
3259  * Before splitting this tries to make some room in the node by pushing
3260  * left and right, if either one works, it returns right away.
3261  *
3262  * returns 0 on success and < 0 on failure
3263  */
3264 static noinline int split_node(struct btrfs_trans_handle *trans,
3265                                struct btrfs_root *root,
3266                                struct btrfs_path *path, int level)
3267 {
3268         struct extent_buffer *c;
3269         struct extent_buffer *split;
3270         struct btrfs_disk_key disk_key;
3271         int mid;
3272         int ret;
3273         u32 c_nritems;
3274
3275         c = path->nodes[level];
3276         WARN_ON(btrfs_header_generation(c) != trans->transid);
3277         if (c == root->node) {
3278                 /*
3279                  * trying to split the root, lets make a new one
3280                  *
3281                  * tree mod log: We pass 0 as log_removal parameter to
3282                  * insert_new_root, because that root buffer will be kept as a
3283                  * normal node. We are going to log removal of half of the
3284                  * elements below with tree_mod_log_eb_copy. We're holding a
3285                  * tree lock on the buffer, which is why we cannot race with
3286                  * other tree_mod_log users.
3287                  */
3288                 ret = insert_new_root(trans, root, path, level + 1, 0);
3289                 if (ret)
3290                         return ret;
3291         } else {
3292                 ret = push_nodes_for_insert(trans, root, path, level);
3293                 c = path->nodes[level];
3294                 if (!ret && btrfs_header_nritems(c) <
3295                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3296                         return 0;
3297                 if (ret < 0)
3298                         return ret;
3299         }
3300
3301         c_nritems = btrfs_header_nritems(c);
3302         mid = (c_nritems + 1) / 2;
3303         btrfs_node_key(c, &disk_key, mid);
3304
3305         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3306                                         root->root_key.objectid,
3307                                         &disk_key, level, c->start, 0);
3308         if (IS_ERR(split))
3309                 return PTR_ERR(split);
3310
3311         root_add_used(root, root->nodesize);
3312
3313         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3314         btrfs_set_header_level(split, btrfs_header_level(c));
3315         btrfs_set_header_bytenr(split, split->start);
3316         btrfs_set_header_generation(split, trans->transid);
3317         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3318         btrfs_set_header_owner(split, root->root_key.objectid);
3319         write_extent_buffer(split, root->fs_info->fsid,
3320                             (unsigned long)btrfs_header_fsid(split),
3321                             BTRFS_FSID_SIZE);
3322         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3323                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
3324                             BTRFS_UUID_SIZE);
3325
3326         tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3327         copy_extent_buffer(split, c,
3328                            btrfs_node_key_ptr_offset(0),
3329                            btrfs_node_key_ptr_offset(mid),
3330                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3331         btrfs_set_header_nritems(split, c_nritems - mid);
3332         btrfs_set_header_nritems(c, mid);
3333         ret = 0;
3334
3335         btrfs_mark_buffer_dirty(c);
3336         btrfs_mark_buffer_dirty(split);
3337
3338         insert_ptr(trans, root, path, &disk_key, split->start,
3339                    path->slots[level + 1] + 1, level + 1);
3340
3341         if (path->slots[level] >= mid) {
3342                 path->slots[level] -= mid;
3343                 btrfs_tree_unlock(c);
3344                 free_extent_buffer(c);
3345                 path->nodes[level] = split;
3346                 path->slots[level + 1] += 1;
3347         } else {
3348                 btrfs_tree_unlock(split);
3349                 free_extent_buffer(split);
3350         }
3351         return ret;
3352 }
3353
3354 /*
3355  * how many bytes are required to store the items in a leaf.  start
3356  * and nr indicate which items in the leaf to check.  This totals up the
3357  * space used both by the item structs and the item data
3358  */
3359 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3360 {
3361         struct btrfs_item *start_item;
3362         struct btrfs_item *end_item;
3363         struct btrfs_map_token token;
3364         int data_len;
3365         int nritems = btrfs_header_nritems(l);
3366         int end = min(nritems, start + nr) - 1;
3367
3368         if (!nr)
3369                 return 0;
3370         btrfs_init_map_token(&token);
3371         start_item = btrfs_item_nr(l, start);
3372         end_item = btrfs_item_nr(l, end);
3373         data_len = btrfs_token_item_offset(l, start_item, &token) +
3374                 btrfs_token_item_size(l, start_item, &token);
3375         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3376         data_len += sizeof(struct btrfs_item) * nr;
3377         WARN_ON(data_len < 0);
3378         return data_len;
3379 }
3380
3381 /*
3382  * The space between the end of the leaf items and
3383  * the start of the leaf data.  IOW, how much room
3384  * the leaf has left for both items and data
3385  */
3386 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3387                                    struct extent_buffer *leaf)
3388 {
3389         int nritems = btrfs_header_nritems(leaf);
3390         int ret;
3391         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3392         if (ret < 0) {
3393                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3394                        "used %d nritems %d\n",
3395                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3396                        leaf_space_used(leaf, 0, nritems), nritems);
3397         }
3398         return ret;
3399 }
3400
3401 /*
3402  * min slot controls the lowest index we're willing to push to the
3403  * right.  We'll push up to and including min_slot, but no lower
3404  */
3405 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3406                                       struct btrfs_root *root,
3407                                       struct btrfs_path *path,
3408                                       int data_size, int empty,
3409                                       struct extent_buffer *right,
3410                                       int free_space, u32 left_nritems,
3411                                       u32 min_slot)
3412 {
3413         struct extent_buffer *left = path->nodes[0];
3414         struct extent_buffer *upper = path->nodes[1];
3415         struct btrfs_map_token token;
3416         struct btrfs_disk_key disk_key;
3417         int slot;
3418         u32 i;
3419         int push_space = 0;
3420         int push_items = 0;
3421         struct btrfs_item *item;
3422         u32 nr;
3423         u32 right_nritems;
3424         u32 data_end;
3425         u32 this_item_size;
3426
3427         btrfs_init_map_token(&token);
3428
3429         if (empty)
3430                 nr = 0;
3431         else
3432                 nr = max_t(u32, 1, min_slot);
3433
3434         if (path->slots[0] >= left_nritems)
3435                 push_space += data_size;
3436
3437         slot = path->slots[1];
3438         i = left_nritems - 1;
3439         while (i >= nr) {
3440                 item = btrfs_item_nr(left, i);
3441
3442                 if (!empty && push_items > 0) {
3443                         if (path->slots[0] > i)
3444                                 break;
3445                         if (path->slots[0] == i) {
3446                                 int space = btrfs_leaf_free_space(root, left);
3447                                 if (space + push_space * 2 > free_space)
3448                                         break;
3449                         }
3450                 }
3451
3452                 if (path->slots[0] == i)
3453                         push_space += data_size;
3454
3455                 this_item_size = btrfs_item_size(left, item);
3456                 if (this_item_size + sizeof(*item) + push_space > free_space)
3457                         break;
3458
3459                 push_items++;
3460                 push_space += this_item_size + sizeof(*item);
3461                 if (i == 0)
3462                         break;
3463                 i--;
3464         }
3465
3466         if (push_items == 0)
3467                 goto out_unlock;
3468
3469         WARN_ON(!empty && push_items == left_nritems);
3470
3471         /* push left to right */
3472         right_nritems = btrfs_header_nritems(right);
3473
3474         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3475         push_space -= leaf_data_end(root, left);
3476
3477         /* make room in the right data area */
3478         data_end = leaf_data_end(root, right);
3479         memmove_extent_buffer(right,
3480                               btrfs_leaf_data(right) + data_end - push_space,
3481                               btrfs_leaf_data(right) + data_end,
3482                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3483
3484         /* copy from the left data area */
3485         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3486                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3487                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3488                      push_space);
3489
3490         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3491                               btrfs_item_nr_offset(0),
3492                               right_nritems * sizeof(struct btrfs_item));
3493
3494         /* copy the items from left to right */
3495         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3496                    btrfs_item_nr_offset(left_nritems - push_items),
3497                    push_items * sizeof(struct btrfs_item));
3498
3499         /* update the item pointers */
3500         right_nritems += push_items;
3501         btrfs_set_header_nritems(right, right_nritems);
3502         push_space = BTRFS_LEAF_DATA_SIZE(root);
3503         for (i = 0; i < right_nritems; i++) {
3504                 item = btrfs_item_nr(right, i);
3505                 push_space -= btrfs_token_item_size(right, item, &token);
3506                 btrfs_set_token_item_offset(right, item, push_space, &token);
3507         }
3508
3509         left_nritems -= push_items;
3510         btrfs_set_header_nritems(left, left_nritems);
3511
3512         if (left_nritems)
3513                 btrfs_mark_buffer_dirty(left);
3514         else
3515                 clean_tree_block(trans, root, left);
3516
3517         btrfs_mark_buffer_dirty(right);
3518
3519         btrfs_item_key(right, &disk_key, 0);
3520         btrfs_set_node_key(upper, &disk_key, slot + 1);
3521         btrfs_mark_buffer_dirty(upper);
3522
3523         /* then fixup the leaf pointer in the path */
3524         if (path->slots[0] >= left_nritems) {
3525                 path->slots[0] -= left_nritems;
3526                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3527                         clean_tree_block(trans, root, path->nodes[0]);
3528                 btrfs_tree_unlock(path->nodes[0]);
3529                 free_extent_buffer(path->nodes[0]);
3530                 path->nodes[0] = right;
3531                 path->slots[1] += 1;
3532         } else {
3533                 btrfs_tree_unlock(right);
3534                 free_extent_buffer(right);
3535         }
3536         return 0;
3537
3538 out_unlock:
3539         btrfs_tree_unlock(right);
3540         free_extent_buffer(right);
3541         return 1;
3542 }
3543
3544 /*
3545  * push some data in the path leaf to the right, trying to free up at
3546  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3547  *
3548  * returns 1 if the push failed because the other node didn't have enough
3549  * room, 0 if everything worked out and < 0 if there were major errors.
3550  *
3551  * this will push starting from min_slot to the end of the leaf.  It won't
3552  * push any slot lower than min_slot
3553  */
3554 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3555                            *root, struct btrfs_path *path,
3556                            int min_data_size, int data_size,
3557                            int empty, u32 min_slot)
3558 {
3559         struct extent_buffer *left = path->nodes[0];
3560         struct extent_buffer *right;
3561         struct extent_buffer *upper;
3562         int slot;
3563         int free_space;
3564         u32 left_nritems;
3565         int ret;
3566
3567         if (!path->nodes[1])
3568                 return 1;
3569
3570         slot = path->slots[1];
3571         upper = path->nodes[1];
3572         if (slot >= btrfs_header_nritems(upper) - 1)
3573                 return 1;
3574
3575         btrfs_assert_tree_locked(path->nodes[1]);
3576
3577         right = read_node_slot(root, upper, slot + 1);
3578         if (right == NULL)
3579                 return 1;
3580
3581         btrfs_tree_lock(right);
3582         btrfs_set_lock_blocking(right);
3583
3584         free_space = btrfs_leaf_free_space(root, right);
3585         if (free_space < data_size)
3586                 goto out_unlock;
3587
3588         /* cow and double check */
3589         ret = btrfs_cow_block(trans, root, right, upper,
3590                               slot + 1, &right);
3591         if (ret)
3592                 goto out_unlock;
3593
3594         free_space = btrfs_leaf_free_space(root, right);
3595         if (free_space < data_size)
3596                 goto out_unlock;
3597
3598         left_nritems = btrfs_header_nritems(left);
3599         if (left_nritems == 0)
3600                 goto out_unlock;
3601
3602         return __push_leaf_right(trans, root, path, min_data_size, empty,
3603                                 right, free_space, left_nritems, min_slot);
3604 out_unlock:
3605         btrfs_tree_unlock(right);
3606         free_extent_buffer(right);
3607         return 1;
3608 }
3609
3610 /*
3611  * push some data in the path leaf to the left, trying to free up at
3612  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3613  *
3614  * max_slot can put a limit on how far into the leaf we'll push items.  The
3615  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3616  * items
3617  */
3618 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3619                                      struct btrfs_root *root,
3620                                      struct btrfs_path *path, int data_size,
3621                                      int empty, struct extent_buffer *left,
3622                                      int free_space, u32 right_nritems,
3623                                      u32 max_slot)
3624 {
3625         struct btrfs_disk_key disk_key;
3626         struct extent_buffer *right = path->nodes[0];
3627         int i;
3628         int push_space = 0;
3629         int push_items = 0;
3630         struct btrfs_item *item;
3631         u32 old_left_nritems;
3632         u32 nr;
3633         int ret = 0;
3634         u32 this_item_size;
3635         u32 old_left_item_size;
3636         struct btrfs_map_token token;
3637
3638         btrfs_init_map_token(&token);
3639
3640         if (empty)
3641                 nr = min(right_nritems, max_slot);
3642         else
3643                 nr = min(right_nritems - 1, max_slot);
3644
3645         for (i = 0; i < nr; i++) {
3646                 item = btrfs_item_nr(right, i);
3647
3648                 if (!empty && push_items > 0) {
3649                         if (path->slots[0] < i)
3650                                 break;
3651                         if (path->slots[0] == i) {
3652                                 int space = btrfs_leaf_free_space(root, right);
3653                                 if (space + push_space * 2 > free_space)
3654                                         break;
3655                         }
3656                 }
3657
3658                 if (path->slots[0] == i)
3659                         push_space += data_size;
3660
3661                 this_item_size = btrfs_item_size(right, item);
3662                 if (this_item_size + sizeof(*item) + push_space > free_space)
3663                         break;
3664
3665                 push_items++;
3666                 push_space += this_item_size + sizeof(*item);
3667         }
3668
3669         if (push_items == 0) {
3670                 ret = 1;
3671                 goto out;
3672         }
3673         if (!empty && push_items == btrfs_header_nritems(right))
3674                 WARN_ON(1);
3675
3676         /* push data from right to left */
3677         copy_extent_buffer(left, right,
3678                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3679                            btrfs_item_nr_offset(0),
3680                            push_items * sizeof(struct btrfs_item));
3681
3682         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3683                      btrfs_item_offset_nr(right, push_items - 1);
3684
3685         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3686                      leaf_data_end(root, left) - push_space,
3687                      btrfs_leaf_data(right) +
3688                      btrfs_item_offset_nr(right, push_items - 1),
3689                      push_space);
3690         old_left_nritems = btrfs_header_nritems(left);
3691         BUG_ON(old_left_nritems <= 0);
3692
3693         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3694         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3695                 u32 ioff;
3696
3697                 item = btrfs_item_nr(left, i);
3698
3699                 ioff = btrfs_token_item_offset(left, item, &token);
3700                 btrfs_set_token_item_offset(left, item,
3701                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3702                       &token);
3703         }
3704         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3705
3706         /* fixup right node */
3707         if (push_items > right_nritems)
3708                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3709                        right_nritems);
3710
3711         if (push_items < right_nritems) {
3712                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3713                                                   leaf_data_end(root, right);
3714                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3715                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3716                                       btrfs_leaf_data(right) +
3717                                       leaf_data_end(root, right), push_space);
3718
3719                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3720                               btrfs_item_nr_offset(push_items),
3721                              (btrfs_header_nritems(right) - push_items) *
3722                              sizeof(struct btrfs_item));
3723         }
3724         right_nritems -= push_items;
3725         btrfs_set_header_nritems(right, right_nritems);
3726         push_space = BTRFS_LEAF_DATA_SIZE(root);
3727         for (i = 0; i < right_nritems; i++) {
3728                 item = btrfs_item_nr(right, i);
3729
3730                 push_space = push_space - btrfs_token_item_size(right,
3731                                                                 item, &token);
3732                 btrfs_set_token_item_offset(right, item, push_space, &token);
3733         }
3734
3735         btrfs_mark_buffer_dirty(left);
3736         if (right_nritems)
3737                 btrfs_mark_buffer_dirty(right);
3738         else
3739                 clean_tree_block(trans, root, right);
3740
3741         btrfs_item_key(right, &disk_key, 0);
3742         fixup_low_keys(root, path, &disk_key, 1);
3743
3744         /* then fixup the leaf pointer in the path */
3745         if (path->slots[0] < push_items) {
3746                 path->slots[0] += old_left_nritems;
3747                 btrfs_tree_unlock(path->nodes[0]);
3748                 free_extent_buffer(path->nodes[0]);
3749                 path->nodes[0] = left;
3750                 path->slots[1] -= 1;
3751         } else {
3752                 btrfs_tree_unlock(left);
3753                 free_extent_buffer(left);
3754                 path->slots[0] -= push_items;
3755         }
3756         BUG_ON(path->slots[0] < 0);
3757         return ret;
3758 out:
3759         btrfs_tree_unlock(left);
3760         free_extent_buffer(left);
3761         return ret;
3762 }
3763
3764 /*
3765  * push some data in the path leaf to the left, trying to free up at
3766  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3767  *
3768  * max_slot can put a limit on how far into the leaf we'll push items.  The
3769  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3770  * items
3771  */
3772 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3773                           *root, struct btrfs_path *path, int min_data_size,
3774                           int data_size, int empty, u32 max_slot)
3775 {
3776         struct extent_buffer *right = path->nodes[0];
3777         struct extent_buffer *left;
3778         int slot;
3779         int free_space;
3780         u32 right_nritems;
3781         int ret = 0;
3782
3783         slot = path->slots[1];
3784         if (slot == 0)
3785                 return 1;
3786         if (!path->nodes[1])
3787                 return 1;
3788
3789         right_nritems = btrfs_header_nritems(right);
3790         if (right_nritems == 0)
3791                 return 1;
3792
3793         btrfs_assert_tree_locked(path->nodes[1]);
3794
3795         left = read_node_slot(root, path->nodes[1], slot - 1);
3796         if (left == NULL)
3797                 return 1;
3798
3799         btrfs_tree_lock(left);
3800         btrfs_set_lock_blocking(left);
3801
3802         free_space = btrfs_leaf_free_space(root, left);
3803         if (free_space < data_size) {
3804                 ret = 1;
3805                 goto out;
3806         }
3807
3808         /* cow and double check */
3809         ret = btrfs_cow_block(trans, root, left,
3810                               path->nodes[1], slot - 1, &left);
3811         if (ret) {
3812                 /* we hit -ENOSPC, but it isn't fatal here */
3813                 if (ret == -ENOSPC)
3814                         ret = 1;
3815                 goto out;
3816         }
3817
3818         free_space = btrfs_leaf_free_space(root, left);
3819         if (free_space < data_size) {
3820                 ret = 1;
3821                 goto out;
3822         }
3823
3824         return __push_leaf_left(trans, root, path, min_data_size,
3825                                empty, left, free_space, right_nritems,
3826                                max_slot);
3827 out:
3828         btrfs_tree_unlock(left);
3829         free_extent_buffer(left);
3830         return ret;
3831 }
3832
3833 /*
3834  * split the path's leaf in two, making sure there is at least data_size
3835  * available for the resulting leaf level of the path.
3836  */
3837 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3838                                     struct btrfs_root *root,
3839                                     struct btrfs_path *path,
3840                                     struct extent_buffer *l,
3841                                     struct extent_buffer *right,
3842                                     int slot, int mid, int nritems)
3843 {
3844         int data_copy_size;
3845         int rt_data_off;
3846         int i;
3847         struct btrfs_disk_key disk_key;
3848         struct btrfs_map_token token;
3849
3850         btrfs_init_map_token(&token);
3851
3852         nritems = nritems - mid;
3853         btrfs_set_header_nritems(right, nritems);
3854         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3855
3856         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3857                            btrfs_item_nr_offset(mid),
3858                            nritems * sizeof(struct btrfs_item));
3859
3860         copy_extent_buffer(right, l,
3861                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3862                      data_copy_size, btrfs_leaf_data(l) +
3863                      leaf_data_end(root, l), data_copy_size);
3864
3865         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3866                       btrfs_item_end_nr(l, mid);
3867
3868         for (i = 0; i < nritems; i++) {
3869                 struct btrfs_item *item = btrfs_item_nr(right, i);
3870                 u32 ioff;
3871
3872                 ioff = btrfs_token_item_offset(right, item, &token);
3873                 btrfs_set_token_item_offset(right, item,
3874                                             ioff + rt_data_off, &token);
3875         }
3876
3877         btrfs_set_header_nritems(l, mid);
3878         btrfs_item_key(right, &disk_key, 0);
3879         insert_ptr(trans, root, path, &disk_key, right->start,
3880                    path->slots[1] + 1, 1);
3881
3882         btrfs_mark_buffer_dirty(right);
3883         btrfs_mark_buffer_dirty(l);
3884         BUG_ON(path->slots[0] != slot);
3885
3886         if (mid <= slot) {
3887                 btrfs_tree_unlock(path->nodes[0]);
3888                 free_extent_buffer(path->nodes[0]);
3889                 path->nodes[0] = right;
3890                 path->slots[0] -= mid;
3891                 path->slots[1] += 1;
3892         } else {
3893                 btrfs_tree_unlock(right);
3894                 free_extent_buffer(right);
3895         }
3896
3897         BUG_ON(path->slots[0] < 0);
3898 }
3899
3900 /*
3901  * double splits happen when we need to insert a big item in the middle
3902  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3903  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3904  *          A                 B                 C
3905  *
3906  * We avoid this by trying to push the items on either side of our target
3907  * into the adjacent leaves.  If all goes well we can avoid the double split
3908  * completely.
3909  */
3910 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3911                                           struct btrfs_root *root,
3912                                           struct btrfs_path *path,
3913                                           int data_size)
3914 {
3915         int ret;
3916         int progress = 0;
3917         int slot;
3918         u32 nritems;
3919
3920         slot = path->slots[0];
3921
3922         /*
3923          * try to push all the items after our slot into the
3924          * right leaf
3925          */
3926         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3927         if (ret < 0)
3928                 return ret;
3929
3930         if (ret == 0)
3931                 progress++;
3932
3933         nritems = btrfs_header_nritems(path->nodes[0]);
3934         /*
3935          * our goal is to get our slot at the start or end of a leaf.  If
3936          * we've done so we're done
3937          */
3938         if (path->slots[0] == 0 || path->slots[0] == nritems)
3939                 return 0;
3940
3941         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3942                 return 0;
3943
3944         /* try to push all the items before our slot into the next leaf */
3945         slot = path->slots[0];
3946         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3947         if (ret < 0)
3948                 return ret;
3949
3950         if (ret == 0)
3951                 progress++;
3952
3953         if (progress)
3954                 return 0;
3955         return 1;
3956 }
3957
3958 /*
3959  * split the path's leaf in two, making sure there is at least data_size
3960  * available for the resulting leaf level of the path.
3961  *
3962  * returns 0 if all went well and < 0 on failure.
3963  */
3964 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3965                                struct btrfs_root *root,
3966                                struct btrfs_key *ins_key,
3967                                struct btrfs_path *path, int data_size,
3968                                int extend)
3969 {
3970         struct btrfs_disk_key disk_key;
3971         struct extent_buffer *l;
3972         u32 nritems;
3973         int mid;
3974         int slot;
3975         struct extent_buffer *right;
3976         int ret = 0;
3977         int wret;
3978         int split;
3979         int num_doubles = 0;
3980         int tried_avoid_double = 0;
3981
3982         l = path->nodes[0];
3983         slot = path->slots[0];
3984         if (extend && data_size + btrfs_item_size_nr(l, slot) +
3985             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3986                 return -EOVERFLOW;
3987
3988         /* first try to make some room by pushing left and right */
3989         if (data_size) {
3990                 wret = push_leaf_right(trans, root, path, data_size,
3991                                        data_size, 0, 0);
3992                 if (wret < 0)
3993                         return wret;
3994                 if (wret) {
3995                         wret = push_leaf_left(trans, root, path, data_size,
3996                                               data_size, 0, (u32)-1);
3997                         if (wret < 0)
3998                                 return wret;
3999                 }
4000                 l = path->nodes[0];
4001
4002                 /* did the pushes work? */
4003                 if (btrfs_leaf_free_space(root, l) >= data_size)
4004                         return 0;
4005         }
4006
4007         if (!path->nodes[1]) {
4008                 ret = insert_new_root(trans, root, path, 1, 1);
4009                 if (ret)
4010                         return ret;
4011         }
4012 again:
4013         split = 1;
4014         l = path->nodes[0];
4015         slot = path->slots[0];
4016         nritems = btrfs_header_nritems(l);
4017         mid = (nritems + 1) / 2;
4018
4019         if (mid <= slot) {
4020                 if (nritems == 1 ||
4021                     leaf_space_used(l, mid, nritems - mid) + data_size >
4022                         BTRFS_LEAF_DATA_SIZE(root)) {
4023                         if (slot >= nritems) {
4024                                 split = 0;
4025                         } else {
4026                                 mid = slot;
4027                                 if (mid != nritems &&
4028                                     leaf_space_used(l, mid, nritems - mid) +
4029                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4030                                         if (data_size && !tried_avoid_double)
4031                                                 goto push_for_double;
4032                                         split = 2;
4033                                 }
4034                         }
4035                 }
4036         } else {
4037                 if (leaf_space_used(l, 0, mid) + data_size >
4038                         BTRFS_LEAF_DATA_SIZE(root)) {
4039                         if (!extend && data_size && slot == 0) {
4040                                 split = 0;
4041                         } else if ((extend || !data_size) && slot == 0) {
4042                                 mid = 1;
4043                         } else {
4044                                 mid = slot;
4045                                 if (mid != nritems &&
4046                                     leaf_space_used(l, mid, nritems - mid) +
4047                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4048                                         if (data_size && !tried_avoid_double)
4049                                                 goto push_for_double;
4050                                         split = 2 ;
4051                                 }
4052                         }
4053                 }
4054         }
4055
4056         if (split == 0)
4057                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4058         else
4059                 btrfs_item_key(l, &disk_key, mid);
4060
4061         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4062                                         root->root_key.objectid,
4063                                         &disk_key, 0, l->start, 0);
4064         if (IS_ERR(right))
4065                 return PTR_ERR(right);
4066
4067         root_add_used(root, root->leafsize);
4068
4069         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4070         btrfs_set_header_bytenr(right, right->start);
4071         btrfs_set_header_generation(right, trans->transid);
4072         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4073         btrfs_set_header_owner(right, root->root_key.objectid);
4074         btrfs_set_header_level(right, 0);
4075         write_extent_buffer(right, root->fs_info->fsid,
4076                             (unsigned long)btrfs_header_fsid(right),
4077                             BTRFS_FSID_SIZE);
4078
4079         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4080                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
4081                             BTRFS_UUID_SIZE);
4082
4083         if (split == 0) {
4084                 if (mid <= slot) {
4085                         btrfs_set_header_nritems(right, 0);
4086                         insert_ptr(trans, root, path, &disk_key, right->start,
4087                                    path->slots[1] + 1, 1);
4088                         btrfs_tree_unlock(path->nodes[0]);
4089                         free_extent_buffer(path->nodes[0]);
4090                         path->nodes[0] = right;
4091                         path->slots[0] = 0;
4092                         path->slots[1] += 1;
4093                 } else {
4094                         btrfs_set_header_nritems(right, 0);
4095                         insert_ptr(trans, root, path, &disk_key, right->start,
4096                                           path->slots[1], 1);
4097                         btrfs_tree_unlock(path->nodes[0]);
4098                         free_extent_buffer(path->nodes[0]);
4099                         path->nodes[0] = right;
4100                         path->slots[0] = 0;
4101                         if (path->slots[1] == 0)
4102                                 fixup_low_keys(root, path, &disk_key, 1);
4103                 }
4104                 btrfs_mark_buffer_dirty(right);
4105                 return ret;
4106         }
4107
4108         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4109
4110         if (split == 2) {
4111                 BUG_ON(num_doubles != 0);
4112                 num_doubles++;
4113                 goto again;
4114         }
4115
4116         return 0;
4117
4118 push_for_double:
4119         push_for_double_split(trans, root, path, data_size);
4120         tried_avoid_double = 1;
4121         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4122                 return 0;
4123         goto again;
4124 }
4125
4126 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4127                                          struct btrfs_root *root,
4128                                          struct btrfs_path *path, int ins_len)
4129 {
4130         struct btrfs_key key;
4131         struct extent_buffer *leaf;
4132         struct btrfs_file_extent_item *fi;
4133         u64 extent_len = 0;
4134         u32 item_size;
4135         int ret;
4136
4137         leaf = path->nodes[0];
4138         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4139
4140         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4141                key.type != BTRFS_EXTENT_CSUM_KEY);
4142
4143         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4144                 return 0;
4145
4146         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4147         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4148                 fi = btrfs_item_ptr(leaf, path->slots[0],
4149                                     struct btrfs_file_extent_item);
4150                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4151         }
4152         btrfs_release_path(path);
4153
4154         path->keep_locks = 1;
4155         path->search_for_split = 1;
4156         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4157         path->search_for_split = 0;
4158         if (ret < 0)
4159                 goto err;
4160
4161         ret = -EAGAIN;
4162         leaf = path->nodes[0];
4163         /* if our item isn't there or got smaller, return now */
4164         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4165                 goto err;
4166
4167         /* the leaf has  changed, it now has room.  return now */
4168         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4169                 goto err;
4170
4171         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4172                 fi = btrfs_item_ptr(leaf, path->slots[0],
4173                                     struct btrfs_file_extent_item);
4174                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4175                         goto err;
4176         }
4177
4178         btrfs_set_path_blocking(path);
4179         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4180         if (ret)
4181                 goto err;
4182
4183         path->keep_locks = 0;
4184         btrfs_unlock_up_safe(path, 1);
4185         return 0;
4186 err:
4187         path->keep_locks = 0;
4188         return ret;
4189 }
4190
4191 static noinline int split_item(struct btrfs_trans_handle *trans,
4192                                struct btrfs_root *root,
4193                                struct btrfs_path *path,
4194                                struct btrfs_key *new_key,
4195                                unsigned long split_offset)
4196 {
4197         struct extent_buffer *leaf;
4198         struct btrfs_item *item;
4199         struct btrfs_item *new_item;
4200         int slot;
4201         char *buf;
4202         u32 nritems;
4203         u32 item_size;
4204         u32 orig_offset;
4205         struct btrfs_disk_key disk_key;
4206
4207         leaf = path->nodes[0];
4208         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4209
4210         btrfs_set_path_blocking(path);
4211
4212         item = btrfs_item_nr(leaf, path->slots[0]);
4213         orig_offset = btrfs_item_offset(leaf, item);
4214         item_size = btrfs_item_size(leaf, item);
4215
4216         buf = kmalloc(item_size, GFP_NOFS);
4217         if (!buf)
4218                 return -ENOMEM;
4219
4220         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4221                             path->slots[0]), item_size);
4222
4223         slot = path->slots[0] + 1;
4224         nritems = btrfs_header_nritems(leaf);
4225         if (slot != nritems) {
4226                 /* shift the items */
4227                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4228                                 btrfs_item_nr_offset(slot),
4229                                 (nritems - slot) * sizeof(struct btrfs_item));
4230         }
4231
4232         btrfs_cpu_key_to_disk(&disk_key, new_key);
4233         btrfs_set_item_key(leaf, &disk_key, slot);
4234
4235         new_item = btrfs_item_nr(leaf, slot);
4236
4237         btrfs_set_item_offset(leaf, new_item, orig_offset);
4238         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4239
4240         btrfs_set_item_offset(leaf, item,
4241                               orig_offset + item_size - split_offset);
4242         btrfs_set_item_size(leaf, item, split_offset);
4243
4244         btrfs_set_header_nritems(leaf, nritems + 1);
4245
4246         /* write the data for the start of the original item */
4247         write_extent_buffer(leaf, buf,
4248                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4249                             split_offset);
4250
4251         /* write the data for the new item */
4252         write_extent_buffer(leaf, buf + split_offset,
4253                             btrfs_item_ptr_offset(leaf, slot),
4254                             item_size - split_offset);
4255         btrfs_mark_buffer_dirty(leaf);
4256
4257         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4258         kfree(buf);
4259         return 0;
4260 }
4261
4262 /*
4263  * This function splits a single item into two items,
4264  * giving 'new_key' to the new item and splitting the
4265  * old one at split_offset (from the start of the item).
4266  *
4267  * The path may be released by this operation.  After
4268  * the split, the path is pointing to the old item.  The
4269  * new item is going to be in the same node as the old one.
4270  *
4271  * Note, the item being split must be smaller enough to live alone on
4272  * a tree block with room for one extra struct btrfs_item
4273  *
4274  * This allows us to split the item in place, keeping a lock on the
4275  * leaf the entire time.
4276  */
4277 int btrfs_split_item(struct btrfs_trans_handle *trans,
4278                      struct btrfs_root *root,
4279                      struct btrfs_path *path,
4280                      struct btrfs_key *new_key,
4281                      unsigned long split_offset)
4282 {
4283         int ret;
4284         ret = setup_leaf_for_split(trans, root, path,
4285                                    sizeof(struct btrfs_item));
4286         if (ret)
4287                 return ret;
4288
4289         ret = split_item(trans, root, path, new_key, split_offset);
4290         return ret;
4291 }
4292
4293 /*
4294  * This function duplicate a item, giving 'new_key' to the new item.
4295  * It guarantees both items live in the same tree leaf and the new item
4296  * is contiguous with the original item.
4297  *
4298  * This allows us to split file extent in place, keeping a lock on the
4299  * leaf the entire time.
4300  */
4301 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4302                          struct btrfs_root *root,
4303                          struct btrfs_path *path,
4304                          struct btrfs_key *new_key)
4305 {
4306         struct extent_buffer *leaf;
4307         int ret;
4308         u32 item_size;
4309
4310         leaf = path->nodes[0];
4311         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4312         ret = setup_leaf_for_split(trans, root, path,
4313                                    item_size + sizeof(struct btrfs_item));
4314         if (ret)
4315                 return ret;
4316
4317         path->slots[0]++;
4318         setup_items_for_insert(root, path, new_key, &item_size,
4319                                item_size, item_size +
4320                                sizeof(struct btrfs_item), 1);
4321         leaf = path->nodes[0];
4322         memcpy_extent_buffer(leaf,
4323                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4324                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4325                              item_size);
4326         return 0;
4327 }
4328
4329 /*
4330  * make the item pointed to by the path smaller.  new_size indicates
4331  * how small to make it, and from_end tells us if we just chop bytes
4332  * off the end of the item or if we shift the item to chop bytes off
4333  * the front.
4334  */
4335 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4336                          u32 new_size, int from_end)
4337 {
4338         int slot;
4339         struct extent_buffer *leaf;
4340         struct btrfs_item *item;
4341         u32 nritems;
4342         unsigned int data_end;
4343         unsigned int old_data_start;
4344         unsigned int old_size;
4345         unsigned int size_diff;
4346         int i;
4347         struct btrfs_map_token token;
4348
4349         btrfs_init_map_token(&token);
4350
4351         leaf = path->nodes[0];
4352         slot = path->slots[0];
4353
4354         old_size = btrfs_item_size_nr(leaf, slot);
4355         if (old_size == new_size)
4356                 return;
4357
4358         nritems = btrfs_header_nritems(leaf);
4359         data_end = leaf_data_end(root, leaf);
4360
4361         old_data_start = btrfs_item_offset_nr(leaf, slot);
4362
4363         size_diff = old_size - new_size;
4364
4365         BUG_ON(slot < 0);
4366         BUG_ON(slot >= nritems);
4367
4368         /*
4369          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4370          */
4371         /* first correct the data pointers */
4372         for (i = slot; i < nritems; i++) {
4373                 u32 ioff;
4374                 item = btrfs_item_nr(leaf, i);
4375
4376                 ioff = btrfs_token_item_offset(leaf, item, &token);
4377                 btrfs_set_token_item_offset(leaf, item,
4378                                             ioff + size_diff, &token);
4379         }
4380
4381         /* shift the data */
4382         if (from_end) {
4383                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4384                               data_end + size_diff, btrfs_leaf_data(leaf) +
4385                               data_end, old_data_start + new_size - data_end);
4386         } else {
4387                 struct btrfs_disk_key disk_key;
4388                 u64 offset;
4389
4390                 btrfs_item_key(leaf, &disk_key, slot);
4391
4392                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4393                         unsigned long ptr;
4394                         struct btrfs_file_extent_item *fi;
4395
4396                         fi = btrfs_item_ptr(leaf, slot,
4397                                             struct btrfs_file_extent_item);
4398                         fi = (struct btrfs_file_extent_item *)(
4399                              (unsigned long)fi - size_diff);
4400
4401                         if (btrfs_file_extent_type(leaf, fi) ==
4402                             BTRFS_FILE_EXTENT_INLINE) {
4403                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4404                                 memmove_extent_buffer(leaf, ptr,
4405                                       (unsigned long)fi,
4406                                       offsetof(struct btrfs_file_extent_item,
4407                                                  disk_bytenr));
4408                         }
4409                 }
4410
4411                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4412                               data_end + size_diff, btrfs_leaf_data(leaf) +
4413                               data_end, old_data_start - data_end);
4414
4415                 offset = btrfs_disk_key_offset(&disk_key);
4416                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4417                 btrfs_set_item_key(leaf, &disk_key, slot);
4418                 if (slot == 0)
4419                         fixup_low_keys(root, path, &disk_key, 1);
4420         }
4421
4422         item = btrfs_item_nr(leaf, slot);
4423         btrfs_set_item_size(leaf, item, new_size);
4424         btrfs_mark_buffer_dirty(leaf);
4425
4426         if (btrfs_leaf_free_space(root, leaf) < 0) {
4427                 btrfs_print_leaf(root, leaf);
4428                 BUG();
4429         }
4430 }
4431
4432 /*
4433  * make the item pointed to by the path bigger, data_size is the new size.
4434  */
4435 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4436                        u32 data_size)
4437 {
4438         int slot;
4439         struct extent_buffer *leaf;
4440         struct btrfs_item *item;
4441         u32 nritems;
4442         unsigned int data_end;
4443         unsigned int old_data;
4444         unsigned int old_size;
4445         int i;
4446         struct btrfs_map_token token;
4447
4448         btrfs_init_map_token(&token);
4449
4450         leaf = path->nodes[0];
4451
4452         nritems = btrfs_header_nritems(leaf);
4453         data_end = leaf_data_end(root, leaf);
4454
4455         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4456                 btrfs_print_leaf(root, leaf);
4457                 BUG();
4458         }
4459         slot = path->slots[0];
4460         old_data = btrfs_item_end_nr(leaf, slot);
4461
4462         BUG_ON(slot < 0);
4463         if (slot >= nritems) {
4464                 btrfs_print_leaf(root, leaf);
4465                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4466                        slot, nritems);
4467                 BUG_ON(1);
4468         }
4469
4470         /*
4471          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4472          */
4473         /* first correct the data pointers */
4474         for (i = slot; i < nritems; i++) {
4475                 u32 ioff;
4476                 item = btrfs_item_nr(leaf, i);
4477
4478                 ioff = btrfs_token_item_offset(leaf, item, &token);
4479                 btrfs_set_token_item_offset(leaf, item,
4480                                             ioff - data_size, &token);
4481         }
4482
4483         /* shift the data */
4484         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4485                       data_end - data_size, btrfs_leaf_data(leaf) +
4486                       data_end, old_data - data_end);
4487
4488         data_end = old_data;
4489         old_size = btrfs_item_size_nr(leaf, slot);
4490         item = btrfs_item_nr(leaf, slot);
4491         btrfs_set_item_size(leaf, item, old_size + data_size);
4492         btrfs_mark_buffer_dirty(leaf);
4493
4494         if (btrfs_leaf_free_space(root, leaf) < 0) {
4495                 btrfs_print_leaf(root, leaf);
4496                 BUG();
4497         }
4498 }
4499
4500 /*
4501  * this is a helper for btrfs_insert_empty_items, the main goal here is
4502  * to save stack depth by doing the bulk of the work in a function
4503  * that doesn't call btrfs_search_slot
4504  */
4505 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4506                             struct btrfs_key *cpu_key, u32 *data_size,
4507                             u32 total_data, u32 total_size, int nr)
4508 {
4509         struct btrfs_item *item;
4510         int i;
4511         u32 nritems;
4512         unsigned int data_end;
4513         struct btrfs_disk_key disk_key;
4514         struct extent_buffer *leaf;
4515         int slot;
4516         struct btrfs_map_token token;
4517
4518         btrfs_init_map_token(&token);
4519
4520         leaf = path->nodes[0];
4521         slot = path->slots[0];
4522
4523         nritems = btrfs_header_nritems(leaf);
4524         data_end = leaf_data_end(root, leaf);
4525
4526         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4527                 btrfs_print_leaf(root, leaf);
4528                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4529                        total_size, btrfs_leaf_free_space(root, leaf));
4530                 BUG();
4531         }
4532
4533         if (slot != nritems) {
4534                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4535
4536                 if (old_data < data_end) {
4537                         btrfs_print_leaf(root, leaf);
4538                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4539                                slot, old_data, data_end);
4540                         BUG_ON(1);
4541                 }
4542                 /*
4543                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4544                  */
4545                 /* first correct the data pointers */
4546                 for (i = slot; i < nritems; i++) {
4547                         u32 ioff;
4548
4549                         item = btrfs_item_nr(leaf, i);
4550                         ioff = btrfs_token_item_offset(leaf, item, &token);
4551                         btrfs_set_token_item_offset(leaf, item,
4552                                                     ioff - total_data, &token);
4553                 }
4554                 /* shift the items */
4555                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4556                               btrfs_item_nr_offset(slot),
4557                               (nritems - slot) * sizeof(struct btrfs_item));
4558
4559                 /* shift the data */
4560                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4561                               data_end - total_data, btrfs_leaf_data(leaf) +
4562                               data_end, old_data - data_end);
4563                 data_end = old_data;
4564         }
4565
4566         /* setup the item for the new data */
4567         for (i = 0; i < nr; i++) {
4568                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4569                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4570                 item = btrfs_item_nr(leaf, slot + i);
4571                 btrfs_set_token_item_offset(leaf, item,
4572                                             data_end - data_size[i], &token);
4573                 data_end -= data_size[i];
4574                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4575         }
4576
4577         btrfs_set_header_nritems(leaf, nritems + nr);
4578
4579         if (slot == 0) {
4580                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4581                 fixup_low_keys(root, path, &disk_key, 1);
4582         }
4583         btrfs_unlock_up_safe(path, 1);
4584         btrfs_mark_buffer_dirty(leaf);
4585
4586         if (btrfs_leaf_free_space(root, leaf) < 0) {
4587                 btrfs_print_leaf(root, leaf);
4588                 BUG();
4589         }
4590 }
4591
4592 /*
4593  * Given a key and some data, insert items into the tree.
4594  * This does all the path init required, making room in the tree if needed.
4595  */
4596 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4597                             struct btrfs_root *root,
4598                             struct btrfs_path *path,
4599                             struct btrfs_key *cpu_key, u32 *data_size,
4600                             int nr)
4601 {
4602         int ret = 0;
4603         int slot;
4604         int i;
4605         u32 total_size = 0;
4606         u32 total_data = 0;
4607
4608         for (i = 0; i < nr; i++)
4609                 total_data += data_size[i];
4610
4611         total_size = total_data + (nr * sizeof(struct btrfs_item));
4612         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4613         if (ret == 0)
4614                 return -EEXIST;
4615         if (ret < 0)
4616                 return ret;
4617
4618         slot = path->slots[0];
4619         BUG_ON(slot < 0);
4620
4621         setup_items_for_insert(root, path, cpu_key, data_size,
4622                                total_data, total_size, nr);
4623         return 0;
4624 }
4625
4626 /*
4627  * Given a key and some data, insert an item into the tree.
4628  * This does all the path init required, making room in the tree if needed.
4629  */
4630 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4631                       *root, struct btrfs_key *cpu_key, void *data, u32
4632                       data_size)
4633 {
4634         int ret = 0;
4635         struct btrfs_path *path;
4636         struct extent_buffer *leaf;
4637         unsigned long ptr;
4638
4639         path = btrfs_alloc_path();
4640         if (!path)
4641                 return -ENOMEM;
4642         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4643         if (!ret) {
4644                 leaf = path->nodes[0];
4645                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4646                 write_extent_buffer(leaf, data, ptr, data_size);
4647                 btrfs_mark_buffer_dirty(leaf);
4648         }
4649         btrfs_free_path(path);
4650         return ret;
4651 }
4652
4653 /*
4654  * delete the pointer from a given node.
4655  *
4656  * the tree should have been previously balanced so the deletion does not
4657  * empty a node.
4658  */
4659 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4660                     int level, int slot)
4661 {
4662         struct extent_buffer *parent = path->nodes[level];
4663         u32 nritems;
4664         int ret;
4665
4666         nritems = btrfs_header_nritems(parent);
4667         if (slot != nritems - 1) {
4668                 if (level)
4669                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4670                                              slot + 1, nritems - slot - 1);
4671                 memmove_extent_buffer(parent,
4672                               btrfs_node_key_ptr_offset(slot),
4673                               btrfs_node_key_ptr_offset(slot + 1),
4674                               sizeof(struct btrfs_key_ptr) *
4675                               (nritems - slot - 1));
4676         } else if (level) {
4677                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4678                                               MOD_LOG_KEY_REMOVE);
4679                 BUG_ON(ret < 0);
4680         }
4681
4682         nritems--;
4683         btrfs_set_header_nritems(parent, nritems);
4684         if (nritems == 0 && parent == root->node) {
4685                 BUG_ON(btrfs_header_level(root->node) != 1);
4686                 /* just turn the root into a leaf and break */
4687                 btrfs_set_header_level(root->node, 0);
4688         } else if (slot == 0) {
4689                 struct btrfs_disk_key disk_key;
4690
4691                 btrfs_node_key(parent, &disk_key, 0);
4692                 fixup_low_keys(root, path, &disk_key, level + 1);
4693         }
4694         btrfs_mark_buffer_dirty(parent);
4695 }
4696
4697 /*
4698  * a helper function to delete the leaf pointed to by path->slots[1] and
4699  * path->nodes[1].
4700  *
4701  * This deletes the pointer in path->nodes[1] and frees the leaf
4702  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4703  *
4704  * The path must have already been setup for deleting the leaf, including
4705  * all the proper balancing.  path->nodes[1] must be locked.
4706  */
4707 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4708                                     struct btrfs_root *root,
4709                                     struct btrfs_path *path,
4710                                     struct extent_buffer *leaf)
4711 {
4712         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4713         del_ptr(root, path, 1, path->slots[1]);
4714
4715         /*
4716          * btrfs_free_extent is expensive, we want to make sure we
4717          * aren't holding any locks when we call it
4718          */
4719         btrfs_unlock_up_safe(path, 0);
4720
4721         root_sub_used(root, leaf->len);
4722
4723         extent_buffer_get(leaf);
4724         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4725         free_extent_buffer_stale(leaf);
4726 }
4727 /*
4728  * delete the item at the leaf level in path.  If that empties
4729  * the leaf, remove it from the tree
4730  */
4731 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4732                     struct btrfs_path *path, int slot, int nr)
4733 {
4734         struct extent_buffer *leaf;
4735         struct btrfs_item *item;
4736         int last_off;
4737         int dsize = 0;
4738         int ret = 0;
4739         int wret;
4740         int i;
4741         u32 nritems;
4742         struct btrfs_map_token token;
4743
4744         btrfs_init_map_token(&token);
4745
4746         leaf = path->nodes[0];
4747         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4748
4749         for (i = 0; i < nr; i++)
4750                 dsize += btrfs_item_size_nr(leaf, slot + i);
4751
4752         nritems = btrfs_header_nritems(leaf);
4753
4754         if (slot + nr != nritems) {
4755                 int data_end = leaf_data_end(root, leaf);
4756
4757                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4758                               data_end + dsize,
4759                               btrfs_leaf_data(leaf) + data_end,
4760                               last_off - data_end);
4761
4762                 for (i = slot + nr; i < nritems; i++) {
4763                         u32 ioff;
4764
4765                         item = btrfs_item_nr(leaf, i);
4766                         ioff = btrfs_token_item_offset(leaf, item, &token);
4767                         btrfs_set_token_item_offset(leaf, item,
4768                                                     ioff + dsize, &token);
4769                 }
4770
4771                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4772                               btrfs_item_nr_offset(slot + nr),
4773                               sizeof(struct btrfs_item) *
4774                               (nritems - slot - nr));
4775         }
4776         btrfs_set_header_nritems(leaf, nritems - nr);
4777         nritems -= nr;
4778
4779         /* delete the leaf if we've emptied it */
4780         if (nritems == 0) {
4781                 if (leaf == root->node) {
4782                         btrfs_set_header_level(leaf, 0);
4783                 } else {
4784                         btrfs_set_path_blocking(path);
4785                         clean_tree_block(trans, root, leaf);
4786                         btrfs_del_leaf(trans, root, path, leaf);
4787                 }
4788         } else {
4789                 int used = leaf_space_used(leaf, 0, nritems);
4790                 if (slot == 0) {
4791                         struct btrfs_disk_key disk_key;
4792
4793                         btrfs_item_key(leaf, &disk_key, 0);
4794                         fixup_low_keys(root, path, &disk_key, 1);
4795                 }
4796
4797                 /* delete the leaf if it is mostly empty */
4798                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4799                         /* push_leaf_left fixes the path.
4800                          * make sure the path still points to our leaf
4801                          * for possible call to del_ptr below
4802                          */
4803                         slot = path->slots[1];
4804                         extent_buffer_get(leaf);
4805
4806                         btrfs_set_path_blocking(path);
4807                         wret = push_leaf_left(trans, root, path, 1, 1,
4808                                               1, (u32)-1);
4809                         if (wret < 0 && wret != -ENOSPC)
4810                                 ret = wret;
4811
4812                         if (path->nodes[0] == leaf &&
4813                             btrfs_header_nritems(leaf)) {
4814                                 wret = push_leaf_right(trans, root, path, 1,
4815                                                        1, 1, 0);
4816                                 if (wret < 0 && wret != -ENOSPC)
4817                                         ret = wret;
4818                         }
4819
4820                         if (btrfs_header_nritems(leaf) == 0) {
4821                                 path->slots[1] = slot;
4822                                 btrfs_del_leaf(trans, root, path, leaf);
4823                                 free_extent_buffer(leaf);
4824                                 ret = 0;
4825                         } else {
4826                                 /* if we're still in the path, make sure
4827                                  * we're dirty.  Otherwise, one of the
4828                                  * push_leaf functions must have already
4829                                  * dirtied this buffer
4830                                  */
4831                                 if (path->nodes[0] == leaf)
4832                                         btrfs_mark_buffer_dirty(leaf);
4833                                 free_extent_buffer(leaf);
4834                         }
4835                 } else {
4836                         btrfs_mark_buffer_dirty(leaf);
4837                 }
4838         }
4839         return ret;
4840 }
4841
4842 /*
4843  * search the tree again to find a leaf with lesser keys
4844  * returns 0 if it found something or 1 if there are no lesser leaves.
4845  * returns < 0 on io errors.
4846  *
4847  * This may release the path, and so you may lose any locks held at the
4848  * time you call it.
4849  */
4850 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4851 {
4852         struct btrfs_key key;
4853         struct btrfs_disk_key found_key;
4854         int ret;
4855
4856         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4857
4858         if (key.offset > 0)
4859                 key.offset--;
4860         else if (key.type > 0)
4861                 key.type--;
4862         else if (key.objectid > 0)
4863                 key.objectid--;
4864         else
4865                 return 1;
4866
4867         btrfs_release_path(path);
4868         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4869         if (ret < 0)
4870                 return ret;
4871         btrfs_item_key(path->nodes[0], &found_key, 0);
4872         ret = comp_keys(&found_key, &key);
4873         if (ret < 0)
4874                 return 0;
4875         return 1;
4876 }
4877
4878 /*
4879  * A helper function to walk down the tree starting at min_key, and looking
4880  * for nodes or leaves that are have a minimum transaction id.
4881  * This is used by the btree defrag code, and tree logging
4882  *
4883  * This does not cow, but it does stuff the starting key it finds back
4884  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4885  * key and get a writable path.
4886  *
4887  * This does lock as it descends, and path->keep_locks should be set
4888  * to 1 by the caller.
4889  *
4890  * This honors path->lowest_level to prevent descent past a given level
4891  * of the tree.
4892  *
4893  * min_trans indicates the oldest transaction that you are interested
4894  * in walking through.  Any nodes or leaves older than min_trans are
4895  * skipped over (without reading them).
4896  *
4897  * returns zero if something useful was found, < 0 on error and 1 if there
4898  * was nothing in the tree that matched the search criteria.
4899  */
4900 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4901                          struct btrfs_key *max_key,
4902                          struct btrfs_path *path,
4903                          u64 min_trans)
4904 {
4905         struct extent_buffer *cur;
4906         struct btrfs_key found_key;
4907         int slot;
4908         int sret;
4909         u32 nritems;
4910         int level;
4911         int ret = 1;
4912
4913         WARN_ON(!path->keep_locks);
4914 again:
4915         cur = btrfs_read_lock_root_node(root);
4916         level = btrfs_header_level(cur);
4917         WARN_ON(path->nodes[level]);
4918         path->nodes[level] = cur;
4919         path->locks[level] = BTRFS_READ_LOCK;
4920
4921         if (btrfs_header_generation(cur) < min_trans) {
4922                 ret = 1;
4923                 goto out;
4924         }
4925         while (1) {
4926                 nritems = btrfs_header_nritems(cur);
4927                 level = btrfs_header_level(cur);
4928                 sret = bin_search(cur, min_key, level, &slot);
4929
4930                 /* at the lowest level, we're done, setup the path and exit */
4931                 if (level == path->lowest_level) {
4932                         if (slot >= nritems)
4933                                 goto find_next_key;
4934                         ret = 0;
4935                         path->slots[level] = slot;
4936                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4937                         goto out;
4938                 }
4939                 if (sret && slot > 0)
4940                         slot--;
4941                 /*
4942                  * check this node pointer against the min_trans parameters.
4943                  * If it is too old, old, skip to the next one.
4944                  */
4945                 while (slot < nritems) {
4946                         u64 blockptr;
4947                         u64 gen;
4948
4949                         blockptr = btrfs_node_blockptr(cur, slot);
4950                         gen = btrfs_node_ptr_generation(cur, slot);
4951                         if (gen < min_trans) {
4952                                 slot++;
4953                                 continue;
4954                         }
4955                         break;
4956                 }
4957 find_next_key:
4958                 /*
4959                  * we didn't find a candidate key in this node, walk forward
4960                  * and find another one
4961                  */
4962                 if (slot >= nritems) {
4963                         path->slots[level] = slot;
4964                         btrfs_set_path_blocking(path);
4965                         sret = btrfs_find_next_key(root, path, min_key, level,
4966                                                   min_trans);
4967                         if (sret == 0) {
4968                                 btrfs_release_path(path);
4969                                 goto again;
4970                         } else {
4971                                 goto out;
4972                         }
4973                 }
4974                 /* save our key for returning back */
4975                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4976                 path->slots[level] = slot;
4977                 if (level == path->lowest_level) {
4978                         ret = 0;
4979                         unlock_up(path, level, 1, 0, NULL);
4980                         goto out;
4981                 }
4982                 btrfs_set_path_blocking(path);
4983                 cur = read_node_slot(root, cur, slot);
4984                 BUG_ON(!cur); /* -ENOMEM */
4985
4986                 btrfs_tree_read_lock(cur);
4987
4988                 path->locks[level - 1] = BTRFS_READ_LOCK;
4989                 path->nodes[level - 1] = cur;
4990                 unlock_up(path, level, 1, 0, NULL);
4991                 btrfs_clear_path_blocking(path, NULL, 0);
4992         }
4993 out:
4994         if (ret == 0)
4995                 memcpy(min_key, &found_key, sizeof(found_key));
4996         btrfs_set_path_blocking(path);
4997         return ret;
4998 }
4999
5000 static void tree_move_down(struct btrfs_root *root,
5001                            struct btrfs_path *path,
5002                            int *level, int root_level)
5003 {
5004         BUG_ON(*level == 0);
5005         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5006                                         path->slots[*level]);
5007         path->slots[*level - 1] = 0;
5008         (*level)--;
5009 }
5010
5011 static int tree_move_next_or_upnext(struct btrfs_root *root,
5012                                     struct btrfs_path *path,
5013                                     int *level, int root_level)
5014 {
5015         int ret = 0;
5016         int nritems;
5017         nritems = btrfs_header_nritems(path->nodes[*level]);
5018
5019         path->slots[*level]++;
5020
5021         while (path->slots[*level] >= nritems) {
5022                 if (*level == root_level)
5023                         return -1;
5024
5025                 /* move upnext */
5026                 path->slots[*level] = 0;
5027                 free_extent_buffer(path->nodes[*level]);
5028                 path->nodes[*level] = NULL;
5029                 (*level)++;
5030                 path->slots[*level]++;
5031
5032                 nritems = btrfs_header_nritems(path->nodes[*level]);
5033                 ret = 1;
5034         }
5035         return ret;
5036 }
5037
5038 /*
5039  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5040  * or down.
5041  */
5042 static int tree_advance(struct btrfs_root *root,
5043                         struct btrfs_path *path,
5044                         int *level, int root_level,
5045                         int allow_down,
5046                         struct btrfs_key *key)
5047 {
5048         int ret;
5049
5050         if (*level == 0 || !allow_down) {
5051                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5052         } else {
5053                 tree_move_down(root, path, level, root_level);
5054                 ret = 0;
5055         }
5056         if (ret >= 0) {
5057                 if (*level == 0)
5058                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5059                                         path->slots[*level]);
5060                 else
5061                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5062                                         path->slots[*level]);
5063         }
5064         return ret;
5065 }
5066
5067 static int tree_compare_item(struct btrfs_root *left_root,
5068                              struct btrfs_path *left_path,
5069                              struct btrfs_path *right_path,
5070                              char *tmp_buf)
5071 {
5072         int cmp;
5073         int len1, len2;
5074         unsigned long off1, off2;
5075
5076         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5077         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5078         if (len1 != len2)
5079                 return 1;
5080
5081         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5082         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5083                                 right_path->slots[0]);
5084
5085         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5086
5087         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5088         if (cmp)
5089                 return 1;
5090         return 0;
5091 }
5092
5093 #define ADVANCE 1
5094 #define ADVANCE_ONLY_NEXT -1
5095
5096 /*
5097  * This function compares two trees and calls the provided callback for
5098  * every changed/new/deleted item it finds.
5099  * If shared tree blocks are encountered, whole subtrees are skipped, making
5100  * the compare pretty fast on snapshotted subvolumes.
5101  *
5102  * This currently works on commit roots only. As commit roots are read only,
5103  * we don't do any locking. The commit roots are protected with transactions.
5104  * Transactions are ended and rejoined when a commit is tried in between.
5105  *
5106  * This function checks for modifications done to the trees while comparing.
5107  * If it detects a change, it aborts immediately.
5108  */
5109 int btrfs_compare_trees(struct btrfs_root *left_root,
5110                         struct btrfs_root *right_root,
5111                         btrfs_changed_cb_t changed_cb, void *ctx)
5112 {
5113         int ret;
5114         int cmp;
5115         struct btrfs_trans_handle *trans = NULL;
5116         struct btrfs_path *left_path = NULL;
5117         struct btrfs_path *right_path = NULL;
5118         struct btrfs_key left_key;
5119         struct btrfs_key right_key;
5120         char *tmp_buf = NULL;
5121         int left_root_level;
5122         int right_root_level;
5123         int left_level;
5124         int right_level;
5125         int left_end_reached;
5126         int right_end_reached;
5127         int advance_left;
5128         int advance_right;
5129         u64 left_blockptr;
5130         u64 right_blockptr;
5131         u64 left_start_ctransid;
5132         u64 right_start_ctransid;
5133         u64 ctransid;
5134
5135         left_path = btrfs_alloc_path();
5136         if (!left_path) {
5137                 ret = -ENOMEM;
5138                 goto out;
5139         }
5140         right_path = btrfs_alloc_path();
5141         if (!right_path) {
5142                 ret = -ENOMEM;
5143                 goto out;
5144         }
5145
5146         tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5147         if (!tmp_buf) {
5148                 ret = -ENOMEM;
5149                 goto out;
5150         }
5151
5152         left_path->search_commit_root = 1;
5153         left_path->skip_locking = 1;
5154         right_path->search_commit_root = 1;
5155         right_path->skip_locking = 1;
5156
5157         spin_lock(&left_root->root_item_lock);
5158         left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5159         spin_unlock(&left_root->root_item_lock);
5160
5161         spin_lock(&right_root->root_item_lock);
5162         right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5163         spin_unlock(&right_root->root_item_lock);
5164
5165         trans = btrfs_join_transaction(left_root);
5166         if (IS_ERR(trans)) {
5167                 ret = PTR_ERR(trans);
5168                 trans = NULL;
5169                 goto out;
5170         }
5171
5172         /*
5173          * Strategy: Go to the first items of both trees. Then do
5174          *
5175          * If both trees are at level 0
5176          *   Compare keys of current items
5177          *     If left < right treat left item as new, advance left tree
5178          *       and repeat
5179          *     If left > right treat right item as deleted, advance right tree
5180          *       and repeat
5181          *     If left == right do deep compare of items, treat as changed if
5182          *       needed, advance both trees and repeat
5183          * If both trees are at the same level but not at level 0
5184          *   Compare keys of current nodes/leafs
5185          *     If left < right advance left tree and repeat
5186          *     If left > right advance right tree and repeat
5187          *     If left == right compare blockptrs of the next nodes/leafs
5188          *       If they match advance both trees but stay at the same level
5189          *         and repeat
5190          *       If they don't match advance both trees while allowing to go
5191          *         deeper and repeat
5192          * If tree levels are different
5193          *   Advance the tree that needs it and repeat
5194          *
5195          * Advancing a tree means:
5196          *   If we are at level 0, try to go to the next slot. If that's not
5197          *   possible, go one level up and repeat. Stop when we found a level
5198          *   where we could go to the next slot. We may at this point be on a
5199          *   node or a leaf.
5200          *
5201          *   If we are not at level 0 and not on shared tree blocks, go one
5202          *   level deeper.
5203          *
5204          *   If we are not at level 0 and on shared tree blocks, go one slot to
5205          *   the right if possible or go up and right.
5206          */
5207
5208         left_level = btrfs_header_level(left_root->commit_root);
5209         left_root_level = left_level;
5210         left_path->nodes[left_level] = left_root->commit_root;
5211         extent_buffer_get(left_path->nodes[left_level]);
5212
5213         right_level = btrfs_header_level(right_root->commit_root);
5214         right_root_level = right_level;
5215         right_path->nodes[right_level] = right_root->commit_root;
5216         extent_buffer_get(right_path->nodes[right_level]);
5217
5218         if (left_level == 0)
5219                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5220                                 &left_key, left_path->slots[left_level]);
5221         else
5222                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5223                                 &left_key, left_path->slots[left_level]);
5224         if (right_level == 0)
5225                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5226                                 &right_key, right_path->slots[right_level]);
5227         else
5228                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5229                                 &right_key, right_path->slots[right_level]);
5230
5231         left_end_reached = right_end_reached = 0;
5232         advance_left = advance_right = 0;
5233
5234         while (1) {
5235                 /*
5236                  * We need to make sure the transaction does not get committed
5237                  * while we do anything on commit roots. This means, we need to
5238                  * join and leave transactions for every item that we process.
5239                  */
5240                 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5241                         btrfs_release_path(left_path);
5242                         btrfs_release_path(right_path);
5243
5244                         ret = btrfs_end_transaction(trans, left_root);
5245                         trans = NULL;
5246                         if (ret < 0)
5247                                 goto out;
5248                 }
5249                 /* now rejoin the transaction */
5250                 if (!trans) {
5251                         trans = btrfs_join_transaction(left_root);
5252                         if (IS_ERR(trans)) {
5253                                 ret = PTR_ERR(trans);
5254                                 trans = NULL;
5255                                 goto out;
5256                         }
5257
5258                         spin_lock(&left_root->root_item_lock);
5259                         ctransid = btrfs_root_ctransid(&left_root->root_item);
5260                         spin_unlock(&left_root->root_item_lock);
5261                         if (ctransid != left_start_ctransid)
5262                                 left_start_ctransid = 0;
5263
5264                         spin_lock(&right_root->root_item_lock);
5265                         ctransid = btrfs_root_ctransid(&right_root->root_item);
5266                         spin_unlock(&right_root->root_item_lock);
5267                         if (ctransid != right_start_ctransid)
5268                                 right_start_ctransid = 0;
5269
5270                         if (!left_start_ctransid || !right_start_ctransid) {
5271                                 WARN(1, KERN_WARNING
5272                                         "btrfs: btrfs_compare_tree detected "
5273                                         "a change in one of the trees while "
5274                                         "iterating. This is probably a "
5275                                         "bug.\n");
5276                                 ret = -EIO;
5277                                 goto out;
5278                         }
5279
5280                         /*
5281                          * the commit root may have changed, so start again
5282                          * where we stopped
5283                          */
5284                         left_path->lowest_level = left_level;
5285                         right_path->lowest_level = right_level;
5286                         ret = btrfs_search_slot(NULL, left_root,
5287                                         &left_key, left_path, 0, 0);
5288                         if (ret < 0)
5289                                 goto out;
5290                         ret = btrfs_search_slot(NULL, right_root,
5291                                         &right_key, right_path, 0, 0);
5292                         if (ret < 0)
5293                                 goto out;
5294                 }
5295
5296                 if (advance_left && !left_end_reached) {
5297                         ret = tree_advance(left_root, left_path, &left_level,
5298                                         left_root_level,
5299                                         advance_left != ADVANCE_ONLY_NEXT,
5300                                         &left_key);
5301                         if (ret < 0)
5302                                 left_end_reached = ADVANCE;
5303                         advance_left = 0;
5304                 }
5305                 if (advance_right && !right_end_reached) {
5306                         ret = tree_advance(right_root, right_path, &right_level,
5307                                         right_root_level,
5308                                         advance_right != ADVANCE_ONLY_NEXT,
5309                                         &right_key);
5310                         if (ret < 0)
5311                                 right_end_reached = ADVANCE;
5312                         advance_right = 0;
5313                 }
5314
5315                 if (left_end_reached && right_end_reached) {
5316                         ret = 0;
5317                         goto out;
5318                 } else if (left_end_reached) {
5319                         if (right_level == 0) {
5320                                 ret = changed_cb(left_root, right_root,
5321                                                 left_path, right_path,
5322                                                 &right_key,
5323                                                 BTRFS_COMPARE_TREE_DELETED,
5324                                                 ctx);
5325                                 if (ret < 0)
5326                                         goto out;
5327                         }
5328                         advance_right = ADVANCE;
5329                         continue;
5330                 } else if (right_end_reached) {
5331                         if (left_level == 0) {
5332                                 ret = changed_cb(left_root, right_root,
5333                                                 left_path, right_path,
5334                                                 &left_key,
5335                                                 BTRFS_COMPARE_TREE_NEW,
5336                                                 ctx);
5337                                 if (ret < 0)
5338                                         goto out;
5339                         }
5340                         advance_left = ADVANCE;
5341                         continue;
5342                 }
5343
5344                 if (left_level == 0 && right_level == 0) {
5345                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5346                         if (cmp < 0) {
5347                                 ret = changed_cb(left_root, right_root,
5348                                                 left_path, right_path,
5349                                                 &left_key,
5350                                                 BTRFS_COMPARE_TREE_NEW,
5351                                                 ctx);
5352                                 if (ret < 0)
5353                                         goto out;
5354                                 advance_left = ADVANCE;
5355                         } else if (cmp > 0) {
5356                                 ret = changed_cb(left_root, right_root,
5357                                                 left_path, right_path,
5358                                                 &right_key,
5359                                                 BTRFS_COMPARE_TREE_DELETED,
5360                                                 ctx);
5361                                 if (ret < 0)
5362                                         goto out;
5363                                 advance_right = ADVANCE;
5364                         } else {
5365                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5366                                 ret = tree_compare_item(left_root, left_path,
5367                                                 right_path, tmp_buf);
5368                                 if (ret) {
5369                                         WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5370                                         ret = changed_cb(left_root, right_root,
5371                                                 left_path, right_path,
5372                                                 &left_key,
5373                                                 BTRFS_COMPARE_TREE_CHANGED,
5374                                                 ctx);
5375                                         if (ret < 0)
5376                                                 goto out;
5377                                 }
5378                                 advance_left = ADVANCE;
5379                                 advance_right = ADVANCE;
5380                         }
5381                 } else if (left_level == right_level) {
5382                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5383                         if (cmp < 0) {
5384                                 advance_left = ADVANCE;
5385                         } else if (cmp > 0) {
5386                                 advance_right = ADVANCE;
5387                         } else {
5388                                 left_blockptr = btrfs_node_blockptr(
5389                                                 left_path->nodes[left_level],
5390                                                 left_path->slots[left_level]);
5391                                 right_blockptr = btrfs_node_blockptr(
5392                                                 right_path->nodes[right_level],
5393                                                 right_path->slots[right_level]);
5394                                 if (left_blockptr == right_blockptr) {
5395                                         /*
5396                                          * As we're on a shared block, don't
5397                                          * allow to go deeper.
5398                                          */
5399                                         advance_left = ADVANCE_ONLY_NEXT;
5400                                         advance_right = ADVANCE_ONLY_NEXT;
5401                                 } else {
5402                                         advance_left = ADVANCE;
5403                                         advance_right = ADVANCE;
5404                                 }
5405                         }
5406                 } else if (left_level < right_level) {
5407                         advance_right = ADVANCE;
5408                 } else {
5409                         advance_left = ADVANCE;
5410                 }
5411         }
5412
5413 out:
5414         btrfs_free_path(left_path);
5415         btrfs_free_path(right_path);
5416         kfree(tmp_buf);
5417
5418         if (trans) {
5419                 if (!ret)
5420                         ret = btrfs_end_transaction(trans, left_root);
5421                 else
5422                         btrfs_end_transaction(trans, left_root);
5423         }
5424
5425         return ret;
5426 }
5427
5428 /*
5429  * this is similar to btrfs_next_leaf, but does not try to preserve
5430  * and fixup the path.  It looks for and returns the next key in the
5431  * tree based on the current path and the min_trans parameters.
5432  *
5433  * 0 is returned if another key is found, < 0 if there are any errors
5434  * and 1 is returned if there are no higher keys in the tree
5435  *
5436  * path->keep_locks should be set to 1 on the search made before
5437  * calling this function.
5438  */
5439 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5440                         struct btrfs_key *key, int level, u64 min_trans)
5441 {
5442         int slot;
5443         struct extent_buffer *c;
5444
5445         WARN_ON(!path->keep_locks);
5446         while (level < BTRFS_MAX_LEVEL) {
5447                 if (!path->nodes[level])
5448                         return 1;
5449
5450                 slot = path->slots[level] + 1;
5451                 c = path->nodes[level];
5452 next:
5453                 if (slot >= btrfs_header_nritems(c)) {
5454                         int ret;
5455                         int orig_lowest;
5456                         struct btrfs_key cur_key;
5457                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5458                             !path->nodes[level + 1])
5459                                 return 1;
5460
5461                         if (path->locks[level + 1]) {
5462                                 level++;
5463                                 continue;
5464                         }
5465
5466                         slot = btrfs_header_nritems(c) - 1;
5467                         if (level == 0)
5468                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5469                         else
5470                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5471
5472                         orig_lowest = path->lowest_level;
5473                         btrfs_release_path(path);
5474                         path->lowest_level = level;
5475                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5476                                                 0, 0);
5477                         path->lowest_level = orig_lowest;
5478                         if (ret < 0)
5479                                 return ret;
5480
5481                         c = path->nodes[level];
5482                         slot = path->slots[level];
5483                         if (ret == 0)
5484                                 slot++;
5485                         goto next;
5486                 }
5487
5488                 if (level == 0)
5489                         btrfs_item_key_to_cpu(c, key, slot);
5490                 else {
5491                         u64 gen = btrfs_node_ptr_generation(c, slot);
5492
5493                         if (gen < min_trans) {
5494                                 slot++;
5495                                 goto next;
5496                         }
5497                         btrfs_node_key_to_cpu(c, key, slot);
5498                 }
5499                 return 0;
5500         }
5501         return 1;
5502 }
5503
5504 /*
5505  * search the tree again to find a leaf with greater keys
5506  * returns 0 if it found something or 1 if there are no greater leaves.
5507  * returns < 0 on io errors.
5508  */
5509 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5510 {
5511         return btrfs_next_old_leaf(root, path, 0);
5512 }
5513
5514 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5515                         u64 time_seq)
5516 {
5517         int slot;
5518         int level;
5519         struct extent_buffer *c;
5520         struct extent_buffer *next;
5521         struct btrfs_key key;
5522         u32 nritems;
5523         int ret;
5524         int old_spinning = path->leave_spinning;
5525         int next_rw_lock = 0;
5526
5527         nritems = btrfs_header_nritems(path->nodes[0]);
5528         if (nritems == 0)
5529                 return 1;
5530
5531         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5532 again:
5533         level = 1;
5534         next = NULL;
5535         next_rw_lock = 0;
5536         btrfs_release_path(path);
5537
5538         path->keep_locks = 1;
5539         path->leave_spinning = 1;
5540
5541         if (time_seq)
5542                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5543         else
5544                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5545         path->keep_locks = 0;
5546
5547         if (ret < 0)
5548                 return ret;
5549
5550         nritems = btrfs_header_nritems(path->nodes[0]);
5551         /*
5552          * by releasing the path above we dropped all our locks.  A balance
5553          * could have added more items next to the key that used to be
5554          * at the very end of the block.  So, check again here and
5555          * advance the path if there are now more items available.
5556          */
5557         if (nritems > 0 && path->slots[0] < nritems - 1) {
5558                 if (ret == 0)
5559                         path->slots[0]++;
5560                 ret = 0;
5561                 goto done;
5562         }
5563
5564         while (level < BTRFS_MAX_LEVEL) {
5565                 if (!path->nodes[level]) {
5566                         ret = 1;
5567                         goto done;
5568                 }
5569
5570                 slot = path->slots[level] + 1;
5571                 c = path->nodes[level];
5572                 if (slot >= btrfs_header_nritems(c)) {
5573                         level++;
5574                         if (level == BTRFS_MAX_LEVEL) {
5575                                 ret = 1;
5576                                 goto done;
5577                         }
5578                         continue;
5579                 }
5580
5581                 if (next) {
5582                         btrfs_tree_unlock_rw(next, next_rw_lock);
5583                         free_extent_buffer(next);
5584                 }
5585
5586                 next = c;
5587                 next_rw_lock = path->locks[level];
5588                 ret = read_block_for_search(NULL, root, path, &next, level,
5589                                             slot, &key, 0);
5590                 if (ret == -EAGAIN)
5591                         goto again;
5592
5593                 if (ret < 0) {
5594                         btrfs_release_path(path);
5595                         goto done;
5596                 }
5597
5598                 if (!path->skip_locking) {
5599                         ret = btrfs_try_tree_read_lock(next);
5600                         if (!ret && time_seq) {
5601                                 /*
5602                                  * If we don't get the lock, we may be racing
5603                                  * with push_leaf_left, holding that lock while
5604                                  * itself waiting for the leaf we've currently
5605                                  * locked. To solve this situation, we give up
5606                                  * on our lock and cycle.
5607                                  */
5608                                 free_extent_buffer(next);
5609                                 btrfs_release_path(path);
5610                                 cond_resched();
5611                                 goto again;
5612                         }
5613                         if (!ret) {
5614                                 btrfs_set_path_blocking(path);
5615                                 btrfs_tree_read_lock(next);
5616                                 btrfs_clear_path_blocking(path, next,
5617                                                           BTRFS_READ_LOCK);
5618                         }
5619                         next_rw_lock = BTRFS_READ_LOCK;
5620                 }
5621                 break;
5622         }
5623         path->slots[level] = slot;
5624         while (1) {
5625                 level--;
5626                 c = path->nodes[level];
5627                 if (path->locks[level])
5628                         btrfs_tree_unlock_rw(c, path->locks[level]);
5629
5630                 free_extent_buffer(c);
5631                 path->nodes[level] = next;
5632                 path->slots[level] = 0;
5633                 if (!path->skip_locking)
5634                         path->locks[level] = next_rw_lock;
5635                 if (!level)
5636                         break;
5637
5638                 ret = read_block_for_search(NULL, root, path, &next, level,
5639                                             0, &key, 0);
5640                 if (ret == -EAGAIN)
5641                         goto again;
5642
5643                 if (ret < 0) {
5644                         btrfs_release_path(path);
5645                         goto done;
5646                 }
5647
5648                 if (!path->skip_locking) {
5649                         ret = btrfs_try_tree_read_lock(next);
5650                         if (!ret) {
5651                                 btrfs_set_path_blocking(path);
5652                                 btrfs_tree_read_lock(next);
5653                                 btrfs_clear_path_blocking(path, next,
5654                                                           BTRFS_READ_LOCK);
5655                         }
5656                         next_rw_lock = BTRFS_READ_LOCK;
5657                 }
5658         }
5659         ret = 0;
5660 done:
5661         unlock_up(path, 0, 1, 0, NULL);
5662         path->leave_spinning = old_spinning;
5663         if (!old_spinning)
5664                 btrfs_set_path_blocking(path);
5665
5666         return ret;
5667 }
5668
5669 /*
5670  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5671  * searching until it gets past min_objectid or finds an item of 'type'
5672  *
5673  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5674  */
5675 int btrfs_previous_item(struct btrfs_root *root,
5676                         struct btrfs_path *path, u64 min_objectid,
5677                         int type)
5678 {
5679         struct btrfs_key found_key;
5680         struct extent_buffer *leaf;
5681         u32 nritems;
5682         int ret;
5683
5684         while (1) {
5685                 if (path->slots[0] == 0) {
5686                         btrfs_set_path_blocking(path);
5687                         ret = btrfs_prev_leaf(root, path);
5688                         if (ret != 0)
5689                                 return ret;
5690                 } else {
5691                         path->slots[0]--;
5692                 }
5693                 leaf = path->nodes[0];
5694                 nritems = btrfs_header_nritems(leaf);
5695                 if (nritems == 0)
5696                         return 1;
5697                 if (path->slots[0] == nritems)
5698                         path->slots[0]--;
5699
5700                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5701                 if (found_key.objectid < min_objectid)
5702                         break;
5703                 if (found_key.type == type)
5704                         return 0;
5705                 if (found_key.objectid == min_objectid &&
5706                     found_key.type < type)
5707                         break;
5708         }
5709         return 1;
5710 }