Btrfs: use bitfield instead of integer data type for the some variants in btrfs_root
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41                     int level, int slot);
42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43                                  struct extent_buffer *eb);
44
45 struct btrfs_path *btrfs_alloc_path(void)
46 {
47         struct btrfs_path *path;
48         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49         return path;
50 }
51
52 /*
53  * set all locked nodes in the path to blocking locks.  This should
54  * be done before scheduling
55  */
56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57 {
58         int i;
59         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60                 if (!p->nodes[i] || !p->locks[i])
61                         continue;
62                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63                 if (p->locks[i] == BTRFS_READ_LOCK)
64                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67         }
68 }
69
70 /*
71  * reset all the locked nodes in the patch to spinning locks.
72  *
73  * held is used to keep lockdep happy, when lockdep is enabled
74  * we set held to a blocking lock before we go around and
75  * retake all the spinlocks in the path.  You can safely use NULL
76  * for held
77  */
78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79                                         struct extent_buffer *held, int held_rw)
80 {
81         int i;
82
83 #ifdef CONFIG_DEBUG_LOCK_ALLOC
84         /* lockdep really cares that we take all of these spinlocks
85          * in the right order.  If any of the locks in the path are not
86          * currently blocking, it is going to complain.  So, make really
87          * really sure by forcing the path to blocking before we clear
88          * the path blocking.
89          */
90         if (held) {
91                 btrfs_set_lock_blocking_rw(held, held_rw);
92                 if (held_rw == BTRFS_WRITE_LOCK)
93                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
94                 else if (held_rw == BTRFS_READ_LOCK)
95                         held_rw = BTRFS_READ_LOCK_BLOCKING;
96         }
97         btrfs_set_path_blocking(p);
98 #endif
99
100         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
101                 if (p->nodes[i] && p->locks[i]) {
102                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
103                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
104                                 p->locks[i] = BTRFS_WRITE_LOCK;
105                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
106                                 p->locks[i] = BTRFS_READ_LOCK;
107                 }
108         }
109
110 #ifdef CONFIG_DEBUG_LOCK_ALLOC
111         if (held)
112                 btrfs_clear_lock_blocking_rw(held, held_rw);
113 #endif
114 }
115
116 /* this also releases the path */
117 void btrfs_free_path(struct btrfs_path *p)
118 {
119         if (!p)
120                 return;
121         btrfs_release_path(p);
122         kmem_cache_free(btrfs_path_cachep, p);
123 }
124
125 /*
126  * path release drops references on the extent buffers in the path
127  * and it drops any locks held by this path
128  *
129  * It is safe to call this on paths that no locks or extent buffers held.
130  */
131 noinline void btrfs_release_path(struct btrfs_path *p)
132 {
133         int i;
134
135         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
136                 p->slots[i] = 0;
137                 if (!p->nodes[i])
138                         continue;
139                 if (p->locks[i]) {
140                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
141                         p->locks[i] = 0;
142                 }
143                 free_extent_buffer(p->nodes[i]);
144                 p->nodes[i] = NULL;
145         }
146 }
147
148 /*
149  * safely gets a reference on the root node of a tree.  A lock
150  * is not taken, so a concurrent writer may put a different node
151  * at the root of the tree.  See btrfs_lock_root_node for the
152  * looping required.
153  *
154  * The extent buffer returned by this has a reference taken, so
155  * it won't disappear.  It may stop being the root of the tree
156  * at any time because there are no locks held.
157  */
158 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
159 {
160         struct extent_buffer *eb;
161
162         while (1) {
163                 rcu_read_lock();
164                 eb = rcu_dereference(root->node);
165
166                 /*
167                  * RCU really hurts here, we could free up the root node because
168                  * it was cow'ed but we may not get the new root node yet so do
169                  * the inc_not_zero dance and if it doesn't work then
170                  * synchronize_rcu and try again.
171                  */
172                 if (atomic_inc_not_zero(&eb->refs)) {
173                         rcu_read_unlock();
174                         break;
175                 }
176                 rcu_read_unlock();
177                 synchronize_rcu();
178         }
179         return eb;
180 }
181
182 /* loop around taking references on and locking the root node of the
183  * tree until you end up with a lock on the root.  A locked buffer
184  * is returned, with a reference held.
185  */
186 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
187 {
188         struct extent_buffer *eb;
189
190         while (1) {
191                 eb = btrfs_root_node(root);
192                 btrfs_tree_lock(eb);
193                 if (eb == root->node)
194                         break;
195                 btrfs_tree_unlock(eb);
196                 free_extent_buffer(eb);
197         }
198         return eb;
199 }
200
201 /* loop around taking references on and locking the root node of the
202  * tree until you end up with a lock on the root.  A locked buffer
203  * is returned, with a reference held.
204  */
205 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
206 {
207         struct extent_buffer *eb;
208
209         while (1) {
210                 eb = btrfs_root_node(root);
211                 btrfs_tree_read_lock(eb);
212                 if (eb == root->node)
213                         break;
214                 btrfs_tree_read_unlock(eb);
215                 free_extent_buffer(eb);
216         }
217         return eb;
218 }
219
220 /* cowonly root (everything not a reference counted cow subvolume), just get
221  * put onto a simple dirty list.  transaction.c walks this to make sure they
222  * get properly updated on disk.
223  */
224 static void add_root_to_dirty_list(struct btrfs_root *root)
225 {
226         spin_lock(&root->fs_info->trans_lock);
227         if (test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state) &&
228             list_empty(&root->dirty_list)) {
229                 list_add(&root->dirty_list,
230                          &root->fs_info->dirty_cowonly_roots);
231         }
232         spin_unlock(&root->fs_info->trans_lock);
233 }
234
235 /*
236  * used by snapshot creation to make a copy of a root for a tree with
237  * a given objectid.  The buffer with the new root node is returned in
238  * cow_ret, and this func returns zero on success or a negative error code.
239  */
240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241                       struct btrfs_root *root,
242                       struct extent_buffer *buf,
243                       struct extent_buffer **cow_ret, u64 new_root_objectid)
244 {
245         struct extent_buffer *cow;
246         int ret = 0;
247         int level;
248         struct btrfs_disk_key disk_key;
249
250         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
251                 trans->transid != root->fs_info->running_transaction->transid);
252         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
253                 trans->transid != root->last_trans);
254
255         level = btrfs_header_level(buf);
256         if (level == 0)
257                 btrfs_item_key(buf, &disk_key, 0);
258         else
259                 btrfs_node_key(buf, &disk_key, 0);
260
261         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
262                                      new_root_objectid, &disk_key, level,
263                                      buf->start, 0);
264         if (IS_ERR(cow))
265                 return PTR_ERR(cow);
266
267         copy_extent_buffer(cow, buf, 0, 0, cow->len);
268         btrfs_set_header_bytenr(cow, cow->start);
269         btrfs_set_header_generation(cow, trans->transid);
270         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
271         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
272                                      BTRFS_HEADER_FLAG_RELOC);
273         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
274                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
275         else
276                 btrfs_set_header_owner(cow, new_root_objectid);
277
278         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
279                             BTRFS_FSID_SIZE);
280
281         WARN_ON(btrfs_header_generation(buf) > trans->transid);
282         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
283                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
284         else
285                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
286
287         if (ret)
288                 return ret;
289
290         btrfs_mark_buffer_dirty(cow);
291         *cow_ret = cow;
292         return 0;
293 }
294
295 enum mod_log_op {
296         MOD_LOG_KEY_REPLACE,
297         MOD_LOG_KEY_ADD,
298         MOD_LOG_KEY_REMOVE,
299         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
300         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
301         MOD_LOG_MOVE_KEYS,
302         MOD_LOG_ROOT_REPLACE,
303 };
304
305 struct tree_mod_move {
306         int dst_slot;
307         int nr_items;
308 };
309
310 struct tree_mod_root {
311         u64 logical;
312         u8 level;
313 };
314
315 struct tree_mod_elem {
316         struct rb_node node;
317         u64 index;              /* shifted logical */
318         u64 seq;
319         enum mod_log_op op;
320
321         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
322         int slot;
323
324         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
325         u64 generation;
326
327         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
328         struct btrfs_disk_key key;
329         u64 blockptr;
330
331         /* this is used for op == MOD_LOG_MOVE_KEYS */
332         struct tree_mod_move move;
333
334         /* this is used for op == MOD_LOG_ROOT_REPLACE */
335         struct tree_mod_root old_root;
336 };
337
338 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
339 {
340         read_lock(&fs_info->tree_mod_log_lock);
341 }
342
343 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
344 {
345         read_unlock(&fs_info->tree_mod_log_lock);
346 }
347
348 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
349 {
350         write_lock(&fs_info->tree_mod_log_lock);
351 }
352
353 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
354 {
355         write_unlock(&fs_info->tree_mod_log_lock);
356 }
357
358 /*
359  * Increment the upper half of tree_mod_seq, set lower half zero.
360  *
361  * Must be called with fs_info->tree_mod_seq_lock held.
362  */
363 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
364 {
365         u64 seq = atomic64_read(&fs_info->tree_mod_seq);
366         seq &= 0xffffffff00000000ull;
367         seq += 1ull << 32;
368         atomic64_set(&fs_info->tree_mod_seq, seq);
369         return seq;
370 }
371
372 /*
373  * Increment the lower half of tree_mod_seq.
374  *
375  * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
376  * are generated should not technically require a spin lock here. (Rationale:
377  * incrementing the minor while incrementing the major seq number is between its
378  * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
379  * just returns a unique sequence number as usual.) We have decided to leave
380  * that requirement in here and rethink it once we notice it really imposes a
381  * problem on some workload.
382  */
383 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
384 {
385         return atomic64_inc_return(&fs_info->tree_mod_seq);
386 }
387
388 /*
389  * return the last minor in the previous major tree_mod_seq number
390  */
391 u64 btrfs_tree_mod_seq_prev(u64 seq)
392 {
393         return (seq & 0xffffffff00000000ull) - 1ull;
394 }
395
396 /*
397  * This adds a new blocker to the tree mod log's blocker list if the @elem
398  * passed does not already have a sequence number set. So when a caller expects
399  * to record tree modifications, it should ensure to set elem->seq to zero
400  * before calling btrfs_get_tree_mod_seq.
401  * Returns a fresh, unused tree log modification sequence number, even if no new
402  * blocker was added.
403  */
404 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
405                            struct seq_list *elem)
406 {
407         u64 seq;
408
409         tree_mod_log_write_lock(fs_info);
410         spin_lock(&fs_info->tree_mod_seq_lock);
411         if (!elem->seq) {
412                 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
413                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
414         }
415         seq = btrfs_inc_tree_mod_seq_minor(fs_info);
416         spin_unlock(&fs_info->tree_mod_seq_lock);
417         tree_mod_log_write_unlock(fs_info);
418
419         return seq;
420 }
421
422 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
423                             struct seq_list *elem)
424 {
425         struct rb_root *tm_root;
426         struct rb_node *node;
427         struct rb_node *next;
428         struct seq_list *cur_elem;
429         struct tree_mod_elem *tm;
430         u64 min_seq = (u64)-1;
431         u64 seq_putting = elem->seq;
432
433         if (!seq_putting)
434                 return;
435
436         spin_lock(&fs_info->tree_mod_seq_lock);
437         list_del(&elem->list);
438         elem->seq = 0;
439
440         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
441                 if (cur_elem->seq < min_seq) {
442                         if (seq_putting > cur_elem->seq) {
443                                 /*
444                                  * blocker with lower sequence number exists, we
445                                  * cannot remove anything from the log
446                                  */
447                                 spin_unlock(&fs_info->tree_mod_seq_lock);
448                                 return;
449                         }
450                         min_seq = cur_elem->seq;
451                 }
452         }
453         spin_unlock(&fs_info->tree_mod_seq_lock);
454
455         /*
456          * anything that's lower than the lowest existing (read: blocked)
457          * sequence number can be removed from the tree.
458          */
459         tree_mod_log_write_lock(fs_info);
460         tm_root = &fs_info->tree_mod_log;
461         for (node = rb_first(tm_root); node; node = next) {
462                 next = rb_next(node);
463                 tm = container_of(node, struct tree_mod_elem, node);
464                 if (tm->seq > min_seq)
465                         continue;
466                 rb_erase(node, tm_root);
467                 kfree(tm);
468         }
469         tree_mod_log_write_unlock(fs_info);
470 }
471
472 /*
473  * key order of the log:
474  *       index -> sequence
475  *
476  * the index is the shifted logical of the *new* root node for root replace
477  * operations, or the shifted logical of the affected block for all other
478  * operations.
479  *
480  * Note: must be called with write lock (tree_mod_log_write_lock).
481  */
482 static noinline int
483 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
484 {
485         struct rb_root *tm_root;
486         struct rb_node **new;
487         struct rb_node *parent = NULL;
488         struct tree_mod_elem *cur;
489
490         BUG_ON(!tm);
491
492         spin_lock(&fs_info->tree_mod_seq_lock);
493         tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
494         spin_unlock(&fs_info->tree_mod_seq_lock);
495
496         tm_root = &fs_info->tree_mod_log;
497         new = &tm_root->rb_node;
498         while (*new) {
499                 cur = container_of(*new, struct tree_mod_elem, node);
500                 parent = *new;
501                 if (cur->index < tm->index)
502                         new = &((*new)->rb_left);
503                 else if (cur->index > tm->index)
504                         new = &((*new)->rb_right);
505                 else if (cur->seq < tm->seq)
506                         new = &((*new)->rb_left);
507                 else if (cur->seq > tm->seq)
508                         new = &((*new)->rb_right);
509                 else
510                         return -EEXIST;
511         }
512
513         rb_link_node(&tm->node, parent, new);
514         rb_insert_color(&tm->node, tm_root);
515         return 0;
516 }
517
518 /*
519  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
520  * returns zero with the tree_mod_log_lock acquired. The caller must hold
521  * this until all tree mod log insertions are recorded in the rb tree and then
522  * call tree_mod_log_write_unlock() to release.
523  */
524 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
525                                     struct extent_buffer *eb) {
526         smp_mb();
527         if (list_empty(&(fs_info)->tree_mod_seq_list))
528                 return 1;
529         if (eb && btrfs_header_level(eb) == 0)
530                 return 1;
531
532         tree_mod_log_write_lock(fs_info);
533         if (list_empty(&(fs_info)->tree_mod_seq_list)) {
534                 tree_mod_log_write_unlock(fs_info);
535                 return 1;
536         }
537
538         return 0;
539 }
540
541 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
542 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
543                                     struct extent_buffer *eb)
544 {
545         smp_mb();
546         if (list_empty(&(fs_info)->tree_mod_seq_list))
547                 return 0;
548         if (eb && btrfs_header_level(eb) == 0)
549                 return 0;
550
551         return 1;
552 }
553
554 static struct tree_mod_elem *
555 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
556                     enum mod_log_op op, gfp_t flags)
557 {
558         struct tree_mod_elem *tm;
559
560         tm = kzalloc(sizeof(*tm), flags);
561         if (!tm)
562                 return NULL;
563
564         tm->index = eb->start >> PAGE_CACHE_SHIFT;
565         if (op != MOD_LOG_KEY_ADD) {
566                 btrfs_node_key(eb, &tm->key, slot);
567                 tm->blockptr = btrfs_node_blockptr(eb, slot);
568         }
569         tm->op = op;
570         tm->slot = slot;
571         tm->generation = btrfs_node_ptr_generation(eb, slot);
572         RB_CLEAR_NODE(&tm->node);
573
574         return tm;
575 }
576
577 static noinline int
578 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
579                         struct extent_buffer *eb, int slot,
580                         enum mod_log_op op, gfp_t flags)
581 {
582         struct tree_mod_elem *tm;
583         int ret;
584
585         if (!tree_mod_need_log(fs_info, eb))
586                 return 0;
587
588         tm = alloc_tree_mod_elem(eb, slot, op, flags);
589         if (!tm)
590                 return -ENOMEM;
591
592         if (tree_mod_dont_log(fs_info, eb)) {
593                 kfree(tm);
594                 return 0;
595         }
596
597         ret = __tree_mod_log_insert(fs_info, tm);
598         tree_mod_log_write_unlock(fs_info);
599         if (ret)
600                 kfree(tm);
601
602         return ret;
603 }
604
605 static noinline int
606 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
607                          struct extent_buffer *eb, int dst_slot, int src_slot,
608                          int nr_items, gfp_t flags)
609 {
610         struct tree_mod_elem *tm = NULL;
611         struct tree_mod_elem **tm_list = NULL;
612         int ret = 0;
613         int i;
614         int locked = 0;
615
616         if (!tree_mod_need_log(fs_info, eb))
617                 return 0;
618
619         tm_list = kzalloc(nr_items * sizeof(struct tree_mod_elem *), flags);
620         if (!tm_list)
621                 return -ENOMEM;
622
623         tm = kzalloc(sizeof(*tm), flags);
624         if (!tm) {
625                 ret = -ENOMEM;
626                 goto free_tms;
627         }
628
629         tm->index = eb->start >> PAGE_CACHE_SHIFT;
630         tm->slot = src_slot;
631         tm->move.dst_slot = dst_slot;
632         tm->move.nr_items = nr_items;
633         tm->op = MOD_LOG_MOVE_KEYS;
634
635         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
636                 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
637                     MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
638                 if (!tm_list[i]) {
639                         ret = -ENOMEM;
640                         goto free_tms;
641                 }
642         }
643
644         if (tree_mod_dont_log(fs_info, eb))
645                 goto free_tms;
646         locked = 1;
647
648         /*
649          * When we override something during the move, we log these removals.
650          * This can only happen when we move towards the beginning of the
651          * buffer, i.e. dst_slot < src_slot.
652          */
653         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
654                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
655                 if (ret)
656                         goto free_tms;
657         }
658
659         ret = __tree_mod_log_insert(fs_info, tm);
660         if (ret)
661                 goto free_tms;
662         tree_mod_log_write_unlock(fs_info);
663         kfree(tm_list);
664
665         return 0;
666 free_tms:
667         for (i = 0; i < nr_items; i++) {
668                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
669                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
670                 kfree(tm_list[i]);
671         }
672         if (locked)
673                 tree_mod_log_write_unlock(fs_info);
674         kfree(tm_list);
675         kfree(tm);
676
677         return ret;
678 }
679
680 static inline int
681 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
682                        struct tree_mod_elem **tm_list,
683                        int nritems)
684 {
685         int i, j;
686         int ret;
687
688         for (i = nritems - 1; i >= 0; i--) {
689                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
690                 if (ret) {
691                         for (j = nritems - 1; j > i; j--)
692                                 rb_erase(&tm_list[j]->node,
693                                          &fs_info->tree_mod_log);
694                         return ret;
695                 }
696         }
697
698         return 0;
699 }
700
701 static noinline int
702 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
703                          struct extent_buffer *old_root,
704                          struct extent_buffer *new_root, gfp_t flags,
705                          int log_removal)
706 {
707         struct tree_mod_elem *tm = NULL;
708         struct tree_mod_elem **tm_list = NULL;
709         int nritems = 0;
710         int ret = 0;
711         int i;
712
713         if (!tree_mod_need_log(fs_info, NULL))
714                 return 0;
715
716         if (log_removal && btrfs_header_level(old_root) > 0) {
717                 nritems = btrfs_header_nritems(old_root);
718                 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
719                                   flags);
720                 if (!tm_list) {
721                         ret = -ENOMEM;
722                         goto free_tms;
723                 }
724                 for (i = 0; i < nritems; i++) {
725                         tm_list[i] = alloc_tree_mod_elem(old_root, i,
726                             MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
727                         if (!tm_list[i]) {
728                                 ret = -ENOMEM;
729                                 goto free_tms;
730                         }
731                 }
732         }
733
734         tm = kzalloc(sizeof(*tm), flags);
735         if (!tm) {
736                 ret = -ENOMEM;
737                 goto free_tms;
738         }
739
740         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
741         tm->old_root.logical = old_root->start;
742         tm->old_root.level = btrfs_header_level(old_root);
743         tm->generation = btrfs_header_generation(old_root);
744         tm->op = MOD_LOG_ROOT_REPLACE;
745
746         if (tree_mod_dont_log(fs_info, NULL))
747                 goto free_tms;
748
749         if (tm_list)
750                 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
751         if (!ret)
752                 ret = __tree_mod_log_insert(fs_info, tm);
753
754         tree_mod_log_write_unlock(fs_info);
755         if (ret)
756                 goto free_tms;
757         kfree(tm_list);
758
759         return ret;
760
761 free_tms:
762         if (tm_list) {
763                 for (i = 0; i < nritems; i++)
764                         kfree(tm_list[i]);
765                 kfree(tm_list);
766         }
767         kfree(tm);
768
769         return ret;
770 }
771
772 static struct tree_mod_elem *
773 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
774                       int smallest)
775 {
776         struct rb_root *tm_root;
777         struct rb_node *node;
778         struct tree_mod_elem *cur = NULL;
779         struct tree_mod_elem *found = NULL;
780         u64 index = start >> PAGE_CACHE_SHIFT;
781
782         tree_mod_log_read_lock(fs_info);
783         tm_root = &fs_info->tree_mod_log;
784         node = tm_root->rb_node;
785         while (node) {
786                 cur = container_of(node, struct tree_mod_elem, node);
787                 if (cur->index < index) {
788                         node = node->rb_left;
789                 } else if (cur->index > index) {
790                         node = node->rb_right;
791                 } else if (cur->seq < min_seq) {
792                         node = node->rb_left;
793                 } else if (!smallest) {
794                         /* we want the node with the highest seq */
795                         if (found)
796                                 BUG_ON(found->seq > cur->seq);
797                         found = cur;
798                         node = node->rb_left;
799                 } else if (cur->seq > min_seq) {
800                         /* we want the node with the smallest seq */
801                         if (found)
802                                 BUG_ON(found->seq < cur->seq);
803                         found = cur;
804                         node = node->rb_right;
805                 } else {
806                         found = cur;
807                         break;
808                 }
809         }
810         tree_mod_log_read_unlock(fs_info);
811
812         return found;
813 }
814
815 /*
816  * this returns the element from the log with the smallest time sequence
817  * value that's in the log (the oldest log item). any element with a time
818  * sequence lower than min_seq will be ignored.
819  */
820 static struct tree_mod_elem *
821 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
822                            u64 min_seq)
823 {
824         return __tree_mod_log_search(fs_info, start, min_seq, 1);
825 }
826
827 /*
828  * this returns the element from the log with the largest time sequence
829  * value that's in the log (the most recent log item). any element with
830  * a time sequence lower than min_seq will be ignored.
831  */
832 static struct tree_mod_elem *
833 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
834 {
835         return __tree_mod_log_search(fs_info, start, min_seq, 0);
836 }
837
838 static noinline int
839 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
840                      struct extent_buffer *src, unsigned long dst_offset,
841                      unsigned long src_offset, int nr_items)
842 {
843         int ret = 0;
844         struct tree_mod_elem **tm_list = NULL;
845         struct tree_mod_elem **tm_list_add, **tm_list_rem;
846         int i;
847         int locked = 0;
848
849         if (!tree_mod_need_log(fs_info, NULL))
850                 return 0;
851
852         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
853                 return 0;
854
855         tm_list = kzalloc(nr_items * 2 * sizeof(struct tree_mod_elem *),
856                           GFP_NOFS);
857         if (!tm_list)
858                 return -ENOMEM;
859
860         tm_list_add = tm_list;
861         tm_list_rem = tm_list + nr_items;
862         for (i = 0; i < nr_items; i++) {
863                 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
864                     MOD_LOG_KEY_REMOVE, GFP_NOFS);
865                 if (!tm_list_rem[i]) {
866                         ret = -ENOMEM;
867                         goto free_tms;
868                 }
869
870                 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
871                     MOD_LOG_KEY_ADD, GFP_NOFS);
872                 if (!tm_list_add[i]) {
873                         ret = -ENOMEM;
874                         goto free_tms;
875                 }
876         }
877
878         if (tree_mod_dont_log(fs_info, NULL))
879                 goto free_tms;
880         locked = 1;
881
882         for (i = 0; i < nr_items; i++) {
883                 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
884                 if (ret)
885                         goto free_tms;
886                 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
887                 if (ret)
888                         goto free_tms;
889         }
890
891         tree_mod_log_write_unlock(fs_info);
892         kfree(tm_list);
893
894         return 0;
895
896 free_tms:
897         for (i = 0; i < nr_items * 2; i++) {
898                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
899                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
900                 kfree(tm_list[i]);
901         }
902         if (locked)
903                 tree_mod_log_write_unlock(fs_info);
904         kfree(tm_list);
905
906         return ret;
907 }
908
909 static inline void
910 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
911                      int dst_offset, int src_offset, int nr_items)
912 {
913         int ret;
914         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
915                                        nr_items, GFP_NOFS);
916         BUG_ON(ret < 0);
917 }
918
919 static noinline void
920 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
921                           struct extent_buffer *eb, int slot, int atomic)
922 {
923         int ret;
924
925         ret = tree_mod_log_insert_key(fs_info, eb, slot,
926                                         MOD_LOG_KEY_REPLACE,
927                                         atomic ? GFP_ATOMIC : GFP_NOFS);
928         BUG_ON(ret < 0);
929 }
930
931 static noinline int
932 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
933 {
934         struct tree_mod_elem **tm_list = NULL;
935         int nritems = 0;
936         int i;
937         int ret = 0;
938
939         if (btrfs_header_level(eb) == 0)
940                 return 0;
941
942         if (!tree_mod_need_log(fs_info, NULL))
943                 return 0;
944
945         nritems = btrfs_header_nritems(eb);
946         tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
947                           GFP_NOFS);
948         if (!tm_list)
949                 return -ENOMEM;
950
951         for (i = 0; i < nritems; i++) {
952                 tm_list[i] = alloc_tree_mod_elem(eb, i,
953                     MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
954                 if (!tm_list[i]) {
955                         ret = -ENOMEM;
956                         goto free_tms;
957                 }
958         }
959
960         if (tree_mod_dont_log(fs_info, eb))
961                 goto free_tms;
962
963         ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
964         tree_mod_log_write_unlock(fs_info);
965         if (ret)
966                 goto free_tms;
967         kfree(tm_list);
968
969         return 0;
970
971 free_tms:
972         for (i = 0; i < nritems; i++)
973                 kfree(tm_list[i]);
974         kfree(tm_list);
975
976         return ret;
977 }
978
979 static noinline void
980 tree_mod_log_set_root_pointer(struct btrfs_root *root,
981                               struct extent_buffer *new_root_node,
982                               int log_removal)
983 {
984         int ret;
985         ret = tree_mod_log_insert_root(root->fs_info, root->node,
986                                        new_root_node, GFP_NOFS, log_removal);
987         BUG_ON(ret < 0);
988 }
989
990 /*
991  * check if the tree block can be shared by multiple trees
992  */
993 int btrfs_block_can_be_shared(struct btrfs_root *root,
994                               struct extent_buffer *buf)
995 {
996         /*
997          * Tree blocks not in refernece counted trees and tree roots
998          * are never shared. If a block was allocated after the last
999          * snapshot and the block was not allocated by tree relocation,
1000          * we know the block is not shared.
1001          */
1002         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1003             buf != root->node && buf != root->commit_root &&
1004             (btrfs_header_generation(buf) <=
1005              btrfs_root_last_snapshot(&root->root_item) ||
1006              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
1007                 return 1;
1008 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1009         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1010             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1011                 return 1;
1012 #endif
1013         return 0;
1014 }
1015
1016 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
1017                                        struct btrfs_root *root,
1018                                        struct extent_buffer *buf,
1019                                        struct extent_buffer *cow,
1020                                        int *last_ref)
1021 {
1022         u64 refs;
1023         u64 owner;
1024         u64 flags;
1025         u64 new_flags = 0;
1026         int ret;
1027
1028         /*
1029          * Backrefs update rules:
1030          *
1031          * Always use full backrefs for extent pointers in tree block
1032          * allocated by tree relocation.
1033          *
1034          * If a shared tree block is no longer referenced by its owner
1035          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
1036          * use full backrefs for extent pointers in tree block.
1037          *
1038          * If a tree block is been relocating
1039          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1040          * use full backrefs for extent pointers in tree block.
1041          * The reason for this is some operations (such as drop tree)
1042          * are only allowed for blocks use full backrefs.
1043          */
1044
1045         if (btrfs_block_can_be_shared(root, buf)) {
1046                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1047                                                btrfs_header_level(buf), 1,
1048                                                &refs, &flags);
1049                 if (ret)
1050                         return ret;
1051                 if (refs == 0) {
1052                         ret = -EROFS;
1053                         btrfs_std_error(root->fs_info, ret);
1054                         return ret;
1055                 }
1056         } else {
1057                 refs = 1;
1058                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1059                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1060                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1061                 else
1062                         flags = 0;
1063         }
1064
1065         owner = btrfs_header_owner(buf);
1066         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1067                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1068
1069         if (refs > 1) {
1070                 if ((owner == root->root_key.objectid ||
1071                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1072                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1073                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
1074                         BUG_ON(ret); /* -ENOMEM */
1075
1076                         if (root->root_key.objectid ==
1077                             BTRFS_TREE_RELOC_OBJECTID) {
1078                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
1079                                 BUG_ON(ret); /* -ENOMEM */
1080                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1081                                 BUG_ON(ret); /* -ENOMEM */
1082                         }
1083                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1084                 } else {
1085
1086                         if (root->root_key.objectid ==
1087                             BTRFS_TREE_RELOC_OBJECTID)
1088                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1089                         else
1090                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
1091                         BUG_ON(ret); /* -ENOMEM */
1092                 }
1093                 if (new_flags != 0) {
1094                         int level = btrfs_header_level(buf);
1095
1096                         ret = btrfs_set_disk_extent_flags(trans, root,
1097                                                           buf->start,
1098                                                           buf->len,
1099                                                           new_flags, level, 0);
1100                         if (ret)
1101                                 return ret;
1102                 }
1103         } else {
1104                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1105                         if (root->root_key.objectid ==
1106                             BTRFS_TREE_RELOC_OBJECTID)
1107                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1108                         else
1109                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
1110                         BUG_ON(ret); /* -ENOMEM */
1111                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
1112                         BUG_ON(ret); /* -ENOMEM */
1113                 }
1114                 clean_tree_block(trans, root, buf);
1115                 *last_ref = 1;
1116         }
1117         return 0;
1118 }
1119
1120 /*
1121  * does the dirty work in cow of a single block.  The parent block (if
1122  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1123  * dirty and returned locked.  If you modify the block it needs to be marked
1124  * dirty again.
1125  *
1126  * search_start -- an allocation hint for the new block
1127  *
1128  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1129  * bytes the allocator should try to find free next to the block it returns.
1130  * This is just a hint and may be ignored by the allocator.
1131  */
1132 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1133                              struct btrfs_root *root,
1134                              struct extent_buffer *buf,
1135                              struct extent_buffer *parent, int parent_slot,
1136                              struct extent_buffer **cow_ret,
1137                              u64 search_start, u64 empty_size)
1138 {
1139         struct btrfs_disk_key disk_key;
1140         struct extent_buffer *cow;
1141         int level, ret;
1142         int last_ref = 0;
1143         int unlock_orig = 0;
1144         u64 parent_start;
1145
1146         if (*cow_ret == buf)
1147                 unlock_orig = 1;
1148
1149         btrfs_assert_tree_locked(buf);
1150
1151         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1152                 trans->transid != root->fs_info->running_transaction->transid);
1153         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1154                 trans->transid != root->last_trans);
1155
1156         level = btrfs_header_level(buf);
1157
1158         if (level == 0)
1159                 btrfs_item_key(buf, &disk_key, 0);
1160         else
1161                 btrfs_node_key(buf, &disk_key, 0);
1162
1163         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1164                 if (parent)
1165                         parent_start = parent->start;
1166                 else
1167                         parent_start = 0;
1168         } else
1169                 parent_start = 0;
1170
1171         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
1172                                      root->root_key.objectid, &disk_key,
1173                                      level, search_start, empty_size);
1174         if (IS_ERR(cow))
1175                 return PTR_ERR(cow);
1176
1177         /* cow is set to blocking by btrfs_init_new_buffer */
1178
1179         copy_extent_buffer(cow, buf, 0, 0, cow->len);
1180         btrfs_set_header_bytenr(cow, cow->start);
1181         btrfs_set_header_generation(cow, trans->transid);
1182         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1183         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1184                                      BTRFS_HEADER_FLAG_RELOC);
1185         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1186                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1187         else
1188                 btrfs_set_header_owner(cow, root->root_key.objectid);
1189
1190         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1191                             BTRFS_FSID_SIZE);
1192
1193         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1194         if (ret) {
1195                 btrfs_abort_transaction(trans, root, ret);
1196                 return ret;
1197         }
1198
1199         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1200                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1201                 if (ret)
1202                         return ret;
1203         }
1204
1205         if (buf == root->node) {
1206                 WARN_ON(parent && parent != buf);
1207                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1208                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1209                         parent_start = buf->start;
1210                 else
1211                         parent_start = 0;
1212
1213                 extent_buffer_get(cow);
1214                 tree_mod_log_set_root_pointer(root, cow, 1);
1215                 rcu_assign_pointer(root->node, cow);
1216
1217                 btrfs_free_tree_block(trans, root, buf, parent_start,
1218                                       last_ref);
1219                 free_extent_buffer(buf);
1220                 add_root_to_dirty_list(root);
1221         } else {
1222                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1223                         parent_start = parent->start;
1224                 else
1225                         parent_start = 0;
1226
1227                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1228                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1229                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1230                 btrfs_set_node_blockptr(parent, parent_slot,
1231                                         cow->start);
1232                 btrfs_set_node_ptr_generation(parent, parent_slot,
1233                                               trans->transid);
1234                 btrfs_mark_buffer_dirty(parent);
1235                 if (last_ref) {
1236                         ret = tree_mod_log_free_eb(root->fs_info, buf);
1237                         if (ret) {
1238                                 btrfs_abort_transaction(trans, root, ret);
1239                                 return ret;
1240                         }
1241                 }
1242                 btrfs_free_tree_block(trans, root, buf, parent_start,
1243                                       last_ref);
1244         }
1245         if (unlock_orig)
1246                 btrfs_tree_unlock(buf);
1247         free_extent_buffer_stale(buf);
1248         btrfs_mark_buffer_dirty(cow);
1249         *cow_ret = cow;
1250         return 0;
1251 }
1252
1253 /*
1254  * returns the logical address of the oldest predecessor of the given root.
1255  * entries older than time_seq are ignored.
1256  */
1257 static struct tree_mod_elem *
1258 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1259                            struct extent_buffer *eb_root, u64 time_seq)
1260 {
1261         struct tree_mod_elem *tm;
1262         struct tree_mod_elem *found = NULL;
1263         u64 root_logical = eb_root->start;
1264         int looped = 0;
1265
1266         if (!time_seq)
1267                 return NULL;
1268
1269         /*
1270          * the very last operation that's logged for a root is the replacement
1271          * operation (if it is replaced at all). this has the index of the *new*
1272          * root, making it the very first operation that's logged for this root.
1273          */
1274         while (1) {
1275                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1276                                                 time_seq);
1277                 if (!looped && !tm)
1278                         return NULL;
1279                 /*
1280                  * if there are no tree operation for the oldest root, we simply
1281                  * return it. this should only happen if that (old) root is at
1282                  * level 0.
1283                  */
1284                 if (!tm)
1285                         break;
1286
1287                 /*
1288                  * if there's an operation that's not a root replacement, we
1289                  * found the oldest version of our root. normally, we'll find a
1290                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1291                  */
1292                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1293                         break;
1294
1295                 found = tm;
1296                 root_logical = tm->old_root.logical;
1297                 looped = 1;
1298         }
1299
1300         /* if there's no old root to return, return what we found instead */
1301         if (!found)
1302                 found = tm;
1303
1304         return found;
1305 }
1306
1307 /*
1308  * tm is a pointer to the first operation to rewind within eb. then, all
1309  * previous operations will be rewinded (until we reach something older than
1310  * time_seq).
1311  */
1312 static void
1313 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1314                       u64 time_seq, struct tree_mod_elem *first_tm)
1315 {
1316         u32 n;
1317         struct rb_node *next;
1318         struct tree_mod_elem *tm = first_tm;
1319         unsigned long o_dst;
1320         unsigned long o_src;
1321         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1322
1323         n = btrfs_header_nritems(eb);
1324         tree_mod_log_read_lock(fs_info);
1325         while (tm && tm->seq >= time_seq) {
1326                 /*
1327                  * all the operations are recorded with the operator used for
1328                  * the modification. as we're going backwards, we do the
1329                  * opposite of each operation here.
1330                  */
1331                 switch (tm->op) {
1332                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1333                         BUG_ON(tm->slot < n);
1334                         /* Fallthrough */
1335                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1336                 case MOD_LOG_KEY_REMOVE:
1337                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1338                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1339                         btrfs_set_node_ptr_generation(eb, tm->slot,
1340                                                       tm->generation);
1341                         n++;
1342                         break;
1343                 case MOD_LOG_KEY_REPLACE:
1344                         BUG_ON(tm->slot >= n);
1345                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1346                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1347                         btrfs_set_node_ptr_generation(eb, tm->slot,
1348                                                       tm->generation);
1349                         break;
1350                 case MOD_LOG_KEY_ADD:
1351                         /* if a move operation is needed it's in the log */
1352                         n--;
1353                         break;
1354                 case MOD_LOG_MOVE_KEYS:
1355                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1356                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1357                         memmove_extent_buffer(eb, o_dst, o_src,
1358                                               tm->move.nr_items * p_size);
1359                         break;
1360                 case MOD_LOG_ROOT_REPLACE:
1361                         /*
1362                          * this operation is special. for roots, this must be
1363                          * handled explicitly before rewinding.
1364                          * for non-roots, this operation may exist if the node
1365                          * was a root: root A -> child B; then A gets empty and
1366                          * B is promoted to the new root. in the mod log, we'll
1367                          * have a root-replace operation for B, a tree block
1368                          * that is no root. we simply ignore that operation.
1369                          */
1370                         break;
1371                 }
1372                 next = rb_next(&tm->node);
1373                 if (!next)
1374                         break;
1375                 tm = container_of(next, struct tree_mod_elem, node);
1376                 if (tm->index != first_tm->index)
1377                         break;
1378         }
1379         tree_mod_log_read_unlock(fs_info);
1380         btrfs_set_header_nritems(eb, n);
1381 }
1382
1383 /*
1384  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1385  * is returned. If rewind operations happen, a fresh buffer is returned. The
1386  * returned buffer is always read-locked. If the returned buffer is not the
1387  * input buffer, the lock on the input buffer is released and the input buffer
1388  * is freed (its refcount is decremented).
1389  */
1390 static struct extent_buffer *
1391 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1392                     struct extent_buffer *eb, u64 time_seq)
1393 {
1394         struct extent_buffer *eb_rewin;
1395         struct tree_mod_elem *tm;
1396
1397         if (!time_seq)
1398                 return eb;
1399
1400         if (btrfs_header_level(eb) == 0)
1401                 return eb;
1402
1403         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1404         if (!tm)
1405                 return eb;
1406
1407         btrfs_set_path_blocking(path);
1408         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1409
1410         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1411                 BUG_ON(tm->slot != 0);
1412                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1413                                                 fs_info->tree_root->nodesize);
1414                 if (!eb_rewin) {
1415                         btrfs_tree_read_unlock_blocking(eb);
1416                         free_extent_buffer(eb);
1417                         return NULL;
1418                 }
1419                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1420                 btrfs_set_header_backref_rev(eb_rewin,
1421                                              btrfs_header_backref_rev(eb));
1422                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1423                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1424         } else {
1425                 eb_rewin = btrfs_clone_extent_buffer(eb);
1426                 if (!eb_rewin) {
1427                         btrfs_tree_read_unlock_blocking(eb);
1428                         free_extent_buffer(eb);
1429                         return NULL;
1430                 }
1431         }
1432
1433         btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1434         btrfs_tree_read_unlock_blocking(eb);
1435         free_extent_buffer(eb);
1436
1437         extent_buffer_get(eb_rewin);
1438         btrfs_tree_read_lock(eb_rewin);
1439         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1440         WARN_ON(btrfs_header_nritems(eb_rewin) >
1441                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1442
1443         return eb_rewin;
1444 }
1445
1446 /*
1447  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1448  * value. If there are no changes, the current root->root_node is returned. If
1449  * anything changed in between, there's a fresh buffer allocated on which the
1450  * rewind operations are done. In any case, the returned buffer is read locked.
1451  * Returns NULL on error (with no locks held).
1452  */
1453 static inline struct extent_buffer *
1454 get_old_root(struct btrfs_root *root, u64 time_seq)
1455 {
1456         struct tree_mod_elem *tm;
1457         struct extent_buffer *eb = NULL;
1458         struct extent_buffer *eb_root;
1459         struct extent_buffer *old;
1460         struct tree_mod_root *old_root = NULL;
1461         u64 old_generation = 0;
1462         u64 logical;
1463         u32 blocksize;
1464
1465         eb_root = btrfs_read_lock_root_node(root);
1466         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1467         if (!tm)
1468                 return eb_root;
1469
1470         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1471                 old_root = &tm->old_root;
1472                 old_generation = tm->generation;
1473                 logical = old_root->logical;
1474         } else {
1475                 logical = eb_root->start;
1476         }
1477
1478         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1479         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1480                 btrfs_tree_read_unlock(eb_root);
1481                 free_extent_buffer(eb_root);
1482                 blocksize = btrfs_level_size(root, old_root->level);
1483                 old = read_tree_block(root, logical, blocksize, 0);
1484                 if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
1485                         free_extent_buffer(old);
1486                         btrfs_warn(root->fs_info,
1487                                 "failed to read tree block %llu from get_old_root", logical);
1488                 } else {
1489                         eb = btrfs_clone_extent_buffer(old);
1490                         free_extent_buffer(old);
1491                 }
1492         } else if (old_root) {
1493                 btrfs_tree_read_unlock(eb_root);
1494                 free_extent_buffer(eb_root);
1495                 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1496         } else {
1497                 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1498                 eb = btrfs_clone_extent_buffer(eb_root);
1499                 btrfs_tree_read_unlock_blocking(eb_root);
1500                 free_extent_buffer(eb_root);
1501         }
1502
1503         if (!eb)
1504                 return NULL;
1505         extent_buffer_get(eb);
1506         btrfs_tree_read_lock(eb);
1507         if (old_root) {
1508                 btrfs_set_header_bytenr(eb, eb->start);
1509                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1510                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1511                 btrfs_set_header_level(eb, old_root->level);
1512                 btrfs_set_header_generation(eb, old_generation);
1513         }
1514         if (tm)
1515                 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1516         else
1517                 WARN_ON(btrfs_header_level(eb) != 0);
1518         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1519
1520         return eb;
1521 }
1522
1523 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1524 {
1525         struct tree_mod_elem *tm;
1526         int level;
1527         struct extent_buffer *eb_root = btrfs_root_node(root);
1528
1529         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1530         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1531                 level = tm->old_root.level;
1532         } else {
1533                 level = btrfs_header_level(eb_root);
1534         }
1535         free_extent_buffer(eb_root);
1536
1537         return level;
1538 }
1539
1540 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1541                                    struct btrfs_root *root,
1542                                    struct extent_buffer *buf)
1543 {
1544         /* ensure we can see the force_cow */
1545         smp_rmb();
1546
1547         /*
1548          * We do not need to cow a block if
1549          * 1) this block is not created or changed in this transaction;
1550          * 2) this block does not belong to TREE_RELOC tree;
1551          * 3) the root is not forced COW.
1552          *
1553          * What is forced COW:
1554          *    when we create snapshot during commiting the transaction,
1555          *    after we've finished coping src root, we must COW the shared
1556          *    block to ensure the metadata consistency.
1557          */
1558         if (btrfs_header_generation(buf) == trans->transid &&
1559             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1560             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1561               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1562             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1563                 return 0;
1564         return 1;
1565 }
1566
1567 /*
1568  * cows a single block, see __btrfs_cow_block for the real work.
1569  * This version of it has extra checks so that a block isn't cow'd more than
1570  * once per transaction, as long as it hasn't been written yet
1571  */
1572 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1573                     struct btrfs_root *root, struct extent_buffer *buf,
1574                     struct extent_buffer *parent, int parent_slot,
1575                     struct extent_buffer **cow_ret)
1576 {
1577         u64 search_start;
1578         int ret;
1579
1580         if (trans->transaction != root->fs_info->running_transaction)
1581                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1582                        trans->transid,
1583                        root->fs_info->running_transaction->transid);
1584
1585         if (trans->transid != root->fs_info->generation)
1586                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1587                        trans->transid, root->fs_info->generation);
1588
1589         if (!should_cow_block(trans, root, buf)) {
1590                 *cow_ret = buf;
1591                 return 0;
1592         }
1593
1594         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1595
1596         if (parent)
1597                 btrfs_set_lock_blocking(parent);
1598         btrfs_set_lock_blocking(buf);
1599
1600         ret = __btrfs_cow_block(trans, root, buf, parent,
1601                                  parent_slot, cow_ret, search_start, 0);
1602
1603         trace_btrfs_cow_block(root, buf, *cow_ret);
1604
1605         return ret;
1606 }
1607
1608 /*
1609  * helper function for defrag to decide if two blocks pointed to by a
1610  * node are actually close by
1611  */
1612 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1613 {
1614         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1615                 return 1;
1616         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1617                 return 1;
1618         return 0;
1619 }
1620
1621 /*
1622  * compare two keys in a memcmp fashion
1623  */
1624 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1625 {
1626         struct btrfs_key k1;
1627
1628         btrfs_disk_key_to_cpu(&k1, disk);
1629
1630         return btrfs_comp_cpu_keys(&k1, k2);
1631 }
1632
1633 /*
1634  * same as comp_keys only with two btrfs_key's
1635  */
1636 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1637 {
1638         if (k1->objectid > k2->objectid)
1639                 return 1;
1640         if (k1->objectid < k2->objectid)
1641                 return -1;
1642         if (k1->type > k2->type)
1643                 return 1;
1644         if (k1->type < k2->type)
1645                 return -1;
1646         if (k1->offset > k2->offset)
1647                 return 1;
1648         if (k1->offset < k2->offset)
1649                 return -1;
1650         return 0;
1651 }
1652
1653 /*
1654  * this is used by the defrag code to go through all the
1655  * leaves pointed to by a node and reallocate them so that
1656  * disk order is close to key order
1657  */
1658 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1659                        struct btrfs_root *root, struct extent_buffer *parent,
1660                        int start_slot, u64 *last_ret,
1661                        struct btrfs_key *progress)
1662 {
1663         struct extent_buffer *cur;
1664         u64 blocknr;
1665         u64 gen;
1666         u64 search_start = *last_ret;
1667         u64 last_block = 0;
1668         u64 other;
1669         u32 parent_nritems;
1670         int end_slot;
1671         int i;
1672         int err = 0;
1673         int parent_level;
1674         int uptodate;
1675         u32 blocksize;
1676         int progress_passed = 0;
1677         struct btrfs_disk_key disk_key;
1678
1679         parent_level = btrfs_header_level(parent);
1680
1681         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1682         WARN_ON(trans->transid != root->fs_info->generation);
1683
1684         parent_nritems = btrfs_header_nritems(parent);
1685         blocksize = btrfs_level_size(root, parent_level - 1);
1686         end_slot = parent_nritems;
1687
1688         if (parent_nritems == 1)
1689                 return 0;
1690
1691         btrfs_set_lock_blocking(parent);
1692
1693         for (i = start_slot; i < end_slot; i++) {
1694                 int close = 1;
1695
1696                 btrfs_node_key(parent, &disk_key, i);
1697                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1698                         continue;
1699
1700                 progress_passed = 1;
1701                 blocknr = btrfs_node_blockptr(parent, i);
1702                 gen = btrfs_node_ptr_generation(parent, i);
1703                 if (last_block == 0)
1704                         last_block = blocknr;
1705
1706                 if (i > 0) {
1707                         other = btrfs_node_blockptr(parent, i - 1);
1708                         close = close_blocks(blocknr, other, blocksize);
1709                 }
1710                 if (!close && i < end_slot - 2) {
1711                         other = btrfs_node_blockptr(parent, i + 1);
1712                         close = close_blocks(blocknr, other, blocksize);
1713                 }
1714                 if (close) {
1715                         last_block = blocknr;
1716                         continue;
1717                 }
1718
1719                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1720                 if (cur)
1721                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1722                 else
1723                         uptodate = 0;
1724                 if (!cur || !uptodate) {
1725                         if (!cur) {
1726                                 cur = read_tree_block(root, blocknr,
1727                                                          blocksize, gen);
1728                                 if (!cur || !extent_buffer_uptodate(cur)) {
1729                                         free_extent_buffer(cur);
1730                                         return -EIO;
1731                                 }
1732                         } else if (!uptodate) {
1733                                 err = btrfs_read_buffer(cur, gen);
1734                                 if (err) {
1735                                         free_extent_buffer(cur);
1736                                         return err;
1737                                 }
1738                         }
1739                 }
1740                 if (search_start == 0)
1741                         search_start = last_block;
1742
1743                 btrfs_tree_lock(cur);
1744                 btrfs_set_lock_blocking(cur);
1745                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1746                                         &cur, search_start,
1747                                         min(16 * blocksize,
1748                                             (end_slot - i) * blocksize));
1749                 if (err) {
1750                         btrfs_tree_unlock(cur);
1751                         free_extent_buffer(cur);
1752                         break;
1753                 }
1754                 search_start = cur->start;
1755                 last_block = cur->start;
1756                 *last_ret = search_start;
1757                 btrfs_tree_unlock(cur);
1758                 free_extent_buffer(cur);
1759         }
1760         return err;
1761 }
1762
1763 /*
1764  * The leaf data grows from end-to-front in the node.
1765  * this returns the address of the start of the last item,
1766  * which is the stop of the leaf data stack
1767  */
1768 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1769                                          struct extent_buffer *leaf)
1770 {
1771         u32 nr = btrfs_header_nritems(leaf);
1772         if (nr == 0)
1773                 return BTRFS_LEAF_DATA_SIZE(root);
1774         return btrfs_item_offset_nr(leaf, nr - 1);
1775 }
1776
1777
1778 /*
1779  * search for key in the extent_buffer.  The items start at offset p,
1780  * and they are item_size apart.  There are 'max' items in p.
1781  *
1782  * the slot in the array is returned via slot, and it points to
1783  * the place where you would insert key if it is not found in
1784  * the array.
1785  *
1786  * slot may point to max if the key is bigger than all of the keys
1787  */
1788 static noinline int generic_bin_search(struct extent_buffer *eb,
1789                                        unsigned long p,
1790                                        int item_size, struct btrfs_key *key,
1791                                        int max, int *slot)
1792 {
1793         int low = 0;
1794         int high = max;
1795         int mid;
1796         int ret;
1797         struct btrfs_disk_key *tmp = NULL;
1798         struct btrfs_disk_key unaligned;
1799         unsigned long offset;
1800         char *kaddr = NULL;
1801         unsigned long map_start = 0;
1802         unsigned long map_len = 0;
1803         int err;
1804
1805         while (low < high) {
1806                 mid = (low + high) / 2;
1807                 offset = p + mid * item_size;
1808
1809                 if (!kaddr || offset < map_start ||
1810                     (offset + sizeof(struct btrfs_disk_key)) >
1811                     map_start + map_len) {
1812
1813                         err = map_private_extent_buffer(eb, offset,
1814                                                 sizeof(struct btrfs_disk_key),
1815                                                 &kaddr, &map_start, &map_len);
1816
1817                         if (!err) {
1818                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1819                                                         map_start);
1820                         } else {
1821                                 read_extent_buffer(eb, &unaligned,
1822                                                    offset, sizeof(unaligned));
1823                                 tmp = &unaligned;
1824                         }
1825
1826                 } else {
1827                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1828                                                         map_start);
1829                 }
1830                 ret = comp_keys(tmp, key);
1831
1832                 if (ret < 0)
1833                         low = mid + 1;
1834                 else if (ret > 0)
1835                         high = mid;
1836                 else {
1837                         *slot = mid;
1838                         return 0;
1839                 }
1840         }
1841         *slot = low;
1842         return 1;
1843 }
1844
1845 /*
1846  * simple bin_search frontend that does the right thing for
1847  * leaves vs nodes
1848  */
1849 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1850                       int level, int *slot)
1851 {
1852         if (level == 0)
1853                 return generic_bin_search(eb,
1854                                           offsetof(struct btrfs_leaf, items),
1855                                           sizeof(struct btrfs_item),
1856                                           key, btrfs_header_nritems(eb),
1857                                           slot);
1858         else
1859                 return generic_bin_search(eb,
1860                                           offsetof(struct btrfs_node, ptrs),
1861                                           sizeof(struct btrfs_key_ptr),
1862                                           key, btrfs_header_nritems(eb),
1863                                           slot);
1864 }
1865
1866 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1867                      int level, int *slot)
1868 {
1869         return bin_search(eb, key, level, slot);
1870 }
1871
1872 static void root_add_used(struct btrfs_root *root, u32 size)
1873 {
1874         spin_lock(&root->accounting_lock);
1875         btrfs_set_root_used(&root->root_item,
1876                             btrfs_root_used(&root->root_item) + size);
1877         spin_unlock(&root->accounting_lock);
1878 }
1879
1880 static void root_sub_used(struct btrfs_root *root, u32 size)
1881 {
1882         spin_lock(&root->accounting_lock);
1883         btrfs_set_root_used(&root->root_item,
1884                             btrfs_root_used(&root->root_item) - size);
1885         spin_unlock(&root->accounting_lock);
1886 }
1887
1888 /* given a node and slot number, this reads the blocks it points to.  The
1889  * extent buffer is returned with a reference taken (but unlocked).
1890  * NULL is returned on error.
1891  */
1892 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1893                                    struct extent_buffer *parent, int slot)
1894 {
1895         int level = btrfs_header_level(parent);
1896         struct extent_buffer *eb;
1897
1898         if (slot < 0)
1899                 return NULL;
1900         if (slot >= btrfs_header_nritems(parent))
1901                 return NULL;
1902
1903         BUG_ON(level == 0);
1904
1905         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1906                              btrfs_level_size(root, level - 1),
1907                              btrfs_node_ptr_generation(parent, slot));
1908         if (eb && !extent_buffer_uptodate(eb)) {
1909                 free_extent_buffer(eb);
1910                 eb = NULL;
1911         }
1912
1913         return eb;
1914 }
1915
1916 /*
1917  * node level balancing, used to make sure nodes are in proper order for
1918  * item deletion.  We balance from the top down, so we have to make sure
1919  * that a deletion won't leave an node completely empty later on.
1920  */
1921 static noinline int balance_level(struct btrfs_trans_handle *trans,
1922                          struct btrfs_root *root,
1923                          struct btrfs_path *path, int level)
1924 {
1925         struct extent_buffer *right = NULL;
1926         struct extent_buffer *mid;
1927         struct extent_buffer *left = NULL;
1928         struct extent_buffer *parent = NULL;
1929         int ret = 0;
1930         int wret;
1931         int pslot;
1932         int orig_slot = path->slots[level];
1933         u64 orig_ptr;
1934
1935         if (level == 0)
1936                 return 0;
1937
1938         mid = path->nodes[level];
1939
1940         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1941                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1942         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1943
1944         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1945
1946         if (level < BTRFS_MAX_LEVEL - 1) {
1947                 parent = path->nodes[level + 1];
1948                 pslot = path->slots[level + 1];
1949         }
1950
1951         /*
1952          * deal with the case where there is only one pointer in the root
1953          * by promoting the node below to a root
1954          */
1955         if (!parent) {
1956                 struct extent_buffer *child;
1957
1958                 if (btrfs_header_nritems(mid) != 1)
1959                         return 0;
1960
1961                 /* promote the child to a root */
1962                 child = read_node_slot(root, mid, 0);
1963                 if (!child) {
1964                         ret = -EROFS;
1965                         btrfs_std_error(root->fs_info, ret);
1966                         goto enospc;
1967                 }
1968
1969                 btrfs_tree_lock(child);
1970                 btrfs_set_lock_blocking(child);
1971                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1972                 if (ret) {
1973                         btrfs_tree_unlock(child);
1974                         free_extent_buffer(child);
1975                         goto enospc;
1976                 }
1977
1978                 tree_mod_log_set_root_pointer(root, child, 1);
1979                 rcu_assign_pointer(root->node, child);
1980
1981                 add_root_to_dirty_list(root);
1982                 btrfs_tree_unlock(child);
1983
1984                 path->locks[level] = 0;
1985                 path->nodes[level] = NULL;
1986                 clean_tree_block(trans, root, mid);
1987                 btrfs_tree_unlock(mid);
1988                 /* once for the path */
1989                 free_extent_buffer(mid);
1990
1991                 root_sub_used(root, mid->len);
1992                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1993                 /* once for the root ptr */
1994                 free_extent_buffer_stale(mid);
1995                 return 0;
1996         }
1997         if (btrfs_header_nritems(mid) >
1998             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1999                 return 0;
2000
2001         left = read_node_slot(root, parent, pslot - 1);
2002         if (left) {
2003                 btrfs_tree_lock(left);
2004                 btrfs_set_lock_blocking(left);
2005                 wret = btrfs_cow_block(trans, root, left,
2006                                        parent, pslot - 1, &left);
2007                 if (wret) {
2008                         ret = wret;
2009                         goto enospc;
2010                 }
2011         }
2012         right = read_node_slot(root, parent, pslot + 1);
2013         if (right) {
2014                 btrfs_tree_lock(right);
2015                 btrfs_set_lock_blocking(right);
2016                 wret = btrfs_cow_block(trans, root, right,
2017                                        parent, pslot + 1, &right);
2018                 if (wret) {
2019                         ret = wret;
2020                         goto enospc;
2021                 }
2022         }
2023
2024         /* first, try to make some room in the middle buffer */
2025         if (left) {
2026                 orig_slot += btrfs_header_nritems(left);
2027                 wret = push_node_left(trans, root, left, mid, 1);
2028                 if (wret < 0)
2029                         ret = wret;
2030         }
2031
2032         /*
2033          * then try to empty the right most buffer into the middle
2034          */
2035         if (right) {
2036                 wret = push_node_left(trans, root, mid, right, 1);
2037                 if (wret < 0 && wret != -ENOSPC)
2038                         ret = wret;
2039                 if (btrfs_header_nritems(right) == 0) {
2040                         clean_tree_block(trans, root, right);
2041                         btrfs_tree_unlock(right);
2042                         del_ptr(root, path, level + 1, pslot + 1);
2043                         root_sub_used(root, right->len);
2044                         btrfs_free_tree_block(trans, root, right, 0, 1);
2045                         free_extent_buffer_stale(right);
2046                         right = NULL;
2047                 } else {
2048                         struct btrfs_disk_key right_key;
2049                         btrfs_node_key(right, &right_key, 0);
2050                         tree_mod_log_set_node_key(root->fs_info, parent,
2051                                                   pslot + 1, 0);
2052                         btrfs_set_node_key(parent, &right_key, pslot + 1);
2053                         btrfs_mark_buffer_dirty(parent);
2054                 }
2055         }
2056         if (btrfs_header_nritems(mid) == 1) {
2057                 /*
2058                  * we're not allowed to leave a node with one item in the
2059                  * tree during a delete.  A deletion from lower in the tree
2060                  * could try to delete the only pointer in this node.
2061                  * So, pull some keys from the left.
2062                  * There has to be a left pointer at this point because
2063                  * otherwise we would have pulled some pointers from the
2064                  * right
2065                  */
2066                 if (!left) {
2067                         ret = -EROFS;
2068                         btrfs_std_error(root->fs_info, ret);
2069                         goto enospc;
2070                 }
2071                 wret = balance_node_right(trans, root, mid, left);
2072                 if (wret < 0) {
2073                         ret = wret;
2074                         goto enospc;
2075                 }
2076                 if (wret == 1) {
2077                         wret = push_node_left(trans, root, left, mid, 1);
2078                         if (wret < 0)
2079                                 ret = wret;
2080                 }
2081                 BUG_ON(wret == 1);
2082         }
2083         if (btrfs_header_nritems(mid) == 0) {
2084                 clean_tree_block(trans, root, mid);
2085                 btrfs_tree_unlock(mid);
2086                 del_ptr(root, path, level + 1, pslot);
2087                 root_sub_used(root, mid->len);
2088                 btrfs_free_tree_block(trans, root, mid, 0, 1);
2089                 free_extent_buffer_stale(mid);
2090                 mid = NULL;
2091         } else {
2092                 /* update the parent key to reflect our changes */
2093                 struct btrfs_disk_key mid_key;
2094                 btrfs_node_key(mid, &mid_key, 0);
2095                 tree_mod_log_set_node_key(root->fs_info, parent,
2096                                           pslot, 0);
2097                 btrfs_set_node_key(parent, &mid_key, pslot);
2098                 btrfs_mark_buffer_dirty(parent);
2099         }
2100
2101         /* update the path */
2102         if (left) {
2103                 if (btrfs_header_nritems(left) > orig_slot) {
2104                         extent_buffer_get(left);
2105                         /* left was locked after cow */
2106                         path->nodes[level] = left;
2107                         path->slots[level + 1] -= 1;
2108                         path->slots[level] = orig_slot;
2109                         if (mid) {
2110                                 btrfs_tree_unlock(mid);
2111                                 free_extent_buffer(mid);
2112                         }
2113                 } else {
2114                         orig_slot -= btrfs_header_nritems(left);
2115                         path->slots[level] = orig_slot;
2116                 }
2117         }
2118         /* double check we haven't messed things up */
2119         if (orig_ptr !=
2120             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2121                 BUG();
2122 enospc:
2123         if (right) {
2124                 btrfs_tree_unlock(right);
2125                 free_extent_buffer(right);
2126         }
2127         if (left) {
2128                 if (path->nodes[level] != left)
2129                         btrfs_tree_unlock(left);
2130                 free_extent_buffer(left);
2131         }
2132         return ret;
2133 }
2134
2135 /* Node balancing for insertion.  Here we only split or push nodes around
2136  * when they are completely full.  This is also done top down, so we
2137  * have to be pessimistic.
2138  */
2139 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2140                                           struct btrfs_root *root,
2141                                           struct btrfs_path *path, int level)
2142 {
2143         struct extent_buffer *right = NULL;
2144         struct extent_buffer *mid;
2145         struct extent_buffer *left = NULL;
2146         struct extent_buffer *parent = NULL;
2147         int ret = 0;
2148         int wret;
2149         int pslot;
2150         int orig_slot = path->slots[level];
2151
2152         if (level == 0)
2153                 return 1;
2154
2155         mid = path->nodes[level];
2156         WARN_ON(btrfs_header_generation(mid) != trans->transid);
2157
2158         if (level < BTRFS_MAX_LEVEL - 1) {
2159                 parent = path->nodes[level + 1];
2160                 pslot = path->slots[level + 1];
2161         }
2162
2163         if (!parent)
2164                 return 1;
2165
2166         left = read_node_slot(root, parent, pslot - 1);
2167
2168         /* first, try to make some room in the middle buffer */
2169         if (left) {
2170                 u32 left_nr;
2171
2172                 btrfs_tree_lock(left);
2173                 btrfs_set_lock_blocking(left);
2174
2175                 left_nr = btrfs_header_nritems(left);
2176                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2177                         wret = 1;
2178                 } else {
2179                         ret = btrfs_cow_block(trans, root, left, parent,
2180                                               pslot - 1, &left);
2181                         if (ret)
2182                                 wret = 1;
2183                         else {
2184                                 wret = push_node_left(trans, root,
2185                                                       left, mid, 0);
2186                         }
2187                 }
2188                 if (wret < 0)
2189                         ret = wret;
2190                 if (wret == 0) {
2191                         struct btrfs_disk_key disk_key;
2192                         orig_slot += left_nr;
2193                         btrfs_node_key(mid, &disk_key, 0);
2194                         tree_mod_log_set_node_key(root->fs_info, parent,
2195                                                   pslot, 0);
2196                         btrfs_set_node_key(parent, &disk_key, pslot);
2197                         btrfs_mark_buffer_dirty(parent);
2198                         if (btrfs_header_nritems(left) > orig_slot) {
2199                                 path->nodes[level] = left;
2200                                 path->slots[level + 1] -= 1;
2201                                 path->slots[level] = orig_slot;
2202                                 btrfs_tree_unlock(mid);
2203                                 free_extent_buffer(mid);
2204                         } else {
2205                                 orig_slot -=
2206                                         btrfs_header_nritems(left);
2207                                 path->slots[level] = orig_slot;
2208                                 btrfs_tree_unlock(left);
2209                                 free_extent_buffer(left);
2210                         }
2211                         return 0;
2212                 }
2213                 btrfs_tree_unlock(left);
2214                 free_extent_buffer(left);
2215         }
2216         right = read_node_slot(root, parent, pslot + 1);
2217
2218         /*
2219          * then try to empty the right most buffer into the middle
2220          */
2221         if (right) {
2222                 u32 right_nr;
2223
2224                 btrfs_tree_lock(right);
2225                 btrfs_set_lock_blocking(right);
2226
2227                 right_nr = btrfs_header_nritems(right);
2228                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2229                         wret = 1;
2230                 } else {
2231                         ret = btrfs_cow_block(trans, root, right,
2232                                               parent, pslot + 1,
2233                                               &right);
2234                         if (ret)
2235                                 wret = 1;
2236                         else {
2237                                 wret = balance_node_right(trans, root,
2238                                                           right, mid);
2239                         }
2240                 }
2241                 if (wret < 0)
2242                         ret = wret;
2243                 if (wret == 0) {
2244                         struct btrfs_disk_key disk_key;
2245
2246                         btrfs_node_key(right, &disk_key, 0);
2247                         tree_mod_log_set_node_key(root->fs_info, parent,
2248                                                   pslot + 1, 0);
2249                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2250                         btrfs_mark_buffer_dirty(parent);
2251
2252                         if (btrfs_header_nritems(mid) <= orig_slot) {
2253                                 path->nodes[level] = right;
2254                                 path->slots[level + 1] += 1;
2255                                 path->slots[level] = orig_slot -
2256                                         btrfs_header_nritems(mid);
2257                                 btrfs_tree_unlock(mid);
2258                                 free_extent_buffer(mid);
2259                         } else {
2260                                 btrfs_tree_unlock(right);
2261                                 free_extent_buffer(right);
2262                         }
2263                         return 0;
2264                 }
2265                 btrfs_tree_unlock(right);
2266                 free_extent_buffer(right);
2267         }
2268         return 1;
2269 }
2270
2271 /*
2272  * readahead one full node of leaves, finding things that are close
2273  * to the block in 'slot', and triggering ra on them.
2274  */
2275 static void reada_for_search(struct btrfs_root *root,
2276                              struct btrfs_path *path,
2277                              int level, int slot, u64 objectid)
2278 {
2279         struct extent_buffer *node;
2280         struct btrfs_disk_key disk_key;
2281         u32 nritems;
2282         u64 search;
2283         u64 target;
2284         u64 nread = 0;
2285         u64 gen;
2286         int direction = path->reada;
2287         struct extent_buffer *eb;
2288         u32 nr;
2289         u32 blocksize;
2290         u32 nscan = 0;
2291
2292         if (level != 1)
2293                 return;
2294
2295         if (!path->nodes[level])
2296                 return;
2297
2298         node = path->nodes[level];
2299
2300         search = btrfs_node_blockptr(node, slot);
2301         blocksize = btrfs_level_size(root, level - 1);
2302         eb = btrfs_find_tree_block(root, search, blocksize);
2303         if (eb) {
2304                 free_extent_buffer(eb);
2305                 return;
2306         }
2307
2308         target = search;
2309
2310         nritems = btrfs_header_nritems(node);
2311         nr = slot;
2312
2313         while (1) {
2314                 if (direction < 0) {
2315                         if (nr == 0)
2316                                 break;
2317                         nr--;
2318                 } else if (direction > 0) {
2319                         nr++;
2320                         if (nr >= nritems)
2321                                 break;
2322                 }
2323                 if (path->reada < 0 && objectid) {
2324                         btrfs_node_key(node, &disk_key, nr);
2325                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2326                                 break;
2327                 }
2328                 search = btrfs_node_blockptr(node, nr);
2329                 if ((search <= target && target - search <= 65536) ||
2330                     (search > target && search - target <= 65536)) {
2331                         gen = btrfs_node_ptr_generation(node, nr);
2332                         readahead_tree_block(root, search, blocksize, gen);
2333                         nread += blocksize;
2334                 }
2335                 nscan++;
2336                 if ((nread > 65536 || nscan > 32))
2337                         break;
2338         }
2339 }
2340
2341 static noinline void reada_for_balance(struct btrfs_root *root,
2342                                        struct btrfs_path *path, int level)
2343 {
2344         int slot;
2345         int nritems;
2346         struct extent_buffer *parent;
2347         struct extent_buffer *eb;
2348         u64 gen;
2349         u64 block1 = 0;
2350         u64 block2 = 0;
2351         int blocksize;
2352
2353         parent = path->nodes[level + 1];
2354         if (!parent)
2355                 return;
2356
2357         nritems = btrfs_header_nritems(parent);
2358         slot = path->slots[level + 1];
2359         blocksize = btrfs_level_size(root, level);
2360
2361         if (slot > 0) {
2362                 block1 = btrfs_node_blockptr(parent, slot - 1);
2363                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2364                 eb = btrfs_find_tree_block(root, block1, blocksize);
2365                 /*
2366                  * if we get -eagain from btrfs_buffer_uptodate, we
2367                  * don't want to return eagain here.  That will loop
2368                  * forever
2369                  */
2370                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2371                         block1 = 0;
2372                 free_extent_buffer(eb);
2373         }
2374         if (slot + 1 < nritems) {
2375                 block2 = btrfs_node_blockptr(parent, slot + 1);
2376                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2377                 eb = btrfs_find_tree_block(root, block2, blocksize);
2378                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2379                         block2 = 0;
2380                 free_extent_buffer(eb);
2381         }
2382
2383         if (block1)
2384                 readahead_tree_block(root, block1, blocksize, 0);
2385         if (block2)
2386                 readahead_tree_block(root, block2, blocksize, 0);
2387 }
2388
2389
2390 /*
2391  * when we walk down the tree, it is usually safe to unlock the higher layers
2392  * in the tree.  The exceptions are when our path goes through slot 0, because
2393  * operations on the tree might require changing key pointers higher up in the
2394  * tree.
2395  *
2396  * callers might also have set path->keep_locks, which tells this code to keep
2397  * the lock if the path points to the last slot in the block.  This is part of
2398  * walking through the tree, and selecting the next slot in the higher block.
2399  *
2400  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2401  * if lowest_unlock is 1, level 0 won't be unlocked
2402  */
2403 static noinline void unlock_up(struct btrfs_path *path, int level,
2404                                int lowest_unlock, int min_write_lock_level,
2405                                int *write_lock_level)
2406 {
2407         int i;
2408         int skip_level = level;
2409         int no_skips = 0;
2410         struct extent_buffer *t;
2411
2412         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2413                 if (!path->nodes[i])
2414                         break;
2415                 if (!path->locks[i])
2416                         break;
2417                 if (!no_skips && path->slots[i] == 0) {
2418                         skip_level = i + 1;
2419                         continue;
2420                 }
2421                 if (!no_skips && path->keep_locks) {
2422                         u32 nritems;
2423                         t = path->nodes[i];
2424                         nritems = btrfs_header_nritems(t);
2425                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2426                                 skip_level = i + 1;
2427                                 continue;
2428                         }
2429                 }
2430                 if (skip_level < i && i >= lowest_unlock)
2431                         no_skips = 1;
2432
2433                 t = path->nodes[i];
2434                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2435                         btrfs_tree_unlock_rw(t, path->locks[i]);
2436                         path->locks[i] = 0;
2437                         if (write_lock_level &&
2438                             i > min_write_lock_level &&
2439                             i <= *write_lock_level) {
2440                                 *write_lock_level = i - 1;
2441                         }
2442                 }
2443         }
2444 }
2445
2446 /*
2447  * This releases any locks held in the path starting at level and
2448  * going all the way up to the root.
2449  *
2450  * btrfs_search_slot will keep the lock held on higher nodes in a few
2451  * corner cases, such as COW of the block at slot zero in the node.  This
2452  * ignores those rules, and it should only be called when there are no
2453  * more updates to be done higher up in the tree.
2454  */
2455 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2456 {
2457         int i;
2458
2459         if (path->keep_locks)
2460                 return;
2461
2462         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2463                 if (!path->nodes[i])
2464                         continue;
2465                 if (!path->locks[i])
2466                         continue;
2467                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2468                 path->locks[i] = 0;
2469         }
2470 }
2471
2472 /*
2473  * helper function for btrfs_search_slot.  The goal is to find a block
2474  * in cache without setting the path to blocking.  If we find the block
2475  * we return zero and the path is unchanged.
2476  *
2477  * If we can't find the block, we set the path blocking and do some
2478  * reada.  -EAGAIN is returned and the search must be repeated.
2479  */
2480 static int
2481 read_block_for_search(struct btrfs_trans_handle *trans,
2482                        struct btrfs_root *root, struct btrfs_path *p,
2483                        struct extent_buffer **eb_ret, int level, int slot,
2484                        struct btrfs_key *key, u64 time_seq)
2485 {
2486         u64 blocknr;
2487         u64 gen;
2488         u32 blocksize;
2489         struct extent_buffer *b = *eb_ret;
2490         struct extent_buffer *tmp;
2491         int ret;
2492
2493         blocknr = btrfs_node_blockptr(b, slot);
2494         gen = btrfs_node_ptr_generation(b, slot);
2495         blocksize = btrfs_level_size(root, level - 1);
2496
2497         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2498         if (tmp) {
2499                 /* first we do an atomic uptodate check */
2500                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2501                         *eb_ret = tmp;
2502                         return 0;
2503                 }
2504
2505                 /* the pages were up to date, but we failed
2506                  * the generation number check.  Do a full
2507                  * read for the generation number that is correct.
2508                  * We must do this without dropping locks so
2509                  * we can trust our generation number
2510                  */
2511                 btrfs_set_path_blocking(p);
2512
2513                 /* now we're allowed to do a blocking uptodate check */
2514                 ret = btrfs_read_buffer(tmp, gen);
2515                 if (!ret) {
2516                         *eb_ret = tmp;
2517                         return 0;
2518                 }
2519                 free_extent_buffer(tmp);
2520                 btrfs_release_path(p);
2521                 return -EIO;
2522         }
2523
2524         /*
2525          * reduce lock contention at high levels
2526          * of the btree by dropping locks before
2527          * we read.  Don't release the lock on the current
2528          * level because we need to walk this node to figure
2529          * out which blocks to read.
2530          */
2531         btrfs_unlock_up_safe(p, level + 1);
2532         btrfs_set_path_blocking(p);
2533
2534         free_extent_buffer(tmp);
2535         if (p->reada)
2536                 reada_for_search(root, p, level, slot, key->objectid);
2537
2538         btrfs_release_path(p);
2539
2540         ret = -EAGAIN;
2541         tmp = read_tree_block(root, blocknr, blocksize, 0);
2542         if (tmp) {
2543                 /*
2544                  * If the read above didn't mark this buffer up to date,
2545                  * it will never end up being up to date.  Set ret to EIO now
2546                  * and give up so that our caller doesn't loop forever
2547                  * on our EAGAINs.
2548                  */
2549                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2550                         ret = -EIO;
2551                 free_extent_buffer(tmp);
2552         }
2553         return ret;
2554 }
2555
2556 /*
2557  * helper function for btrfs_search_slot.  This does all of the checks
2558  * for node-level blocks and does any balancing required based on
2559  * the ins_len.
2560  *
2561  * If no extra work was required, zero is returned.  If we had to
2562  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2563  * start over
2564  */
2565 static int
2566 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2567                        struct btrfs_root *root, struct btrfs_path *p,
2568                        struct extent_buffer *b, int level, int ins_len,
2569                        int *write_lock_level)
2570 {
2571         int ret;
2572         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2573             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2574                 int sret;
2575
2576                 if (*write_lock_level < level + 1) {
2577                         *write_lock_level = level + 1;
2578                         btrfs_release_path(p);
2579                         goto again;
2580                 }
2581
2582                 btrfs_set_path_blocking(p);
2583                 reada_for_balance(root, p, level);
2584                 sret = split_node(trans, root, p, level);
2585                 btrfs_clear_path_blocking(p, NULL, 0);
2586
2587                 BUG_ON(sret > 0);
2588                 if (sret) {
2589                         ret = sret;
2590                         goto done;
2591                 }
2592                 b = p->nodes[level];
2593         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2594                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2595                 int sret;
2596
2597                 if (*write_lock_level < level + 1) {
2598                         *write_lock_level = level + 1;
2599                         btrfs_release_path(p);
2600                         goto again;
2601                 }
2602
2603                 btrfs_set_path_blocking(p);
2604                 reada_for_balance(root, p, level);
2605                 sret = balance_level(trans, root, p, level);
2606                 btrfs_clear_path_blocking(p, NULL, 0);
2607
2608                 if (sret) {
2609                         ret = sret;
2610                         goto done;
2611                 }
2612                 b = p->nodes[level];
2613                 if (!b) {
2614                         btrfs_release_path(p);
2615                         goto again;
2616                 }
2617                 BUG_ON(btrfs_header_nritems(b) == 1);
2618         }
2619         return 0;
2620
2621 again:
2622         ret = -EAGAIN;
2623 done:
2624         return ret;
2625 }
2626
2627 static void key_search_validate(struct extent_buffer *b,
2628                                 struct btrfs_key *key,
2629                                 int level)
2630 {
2631 #ifdef CONFIG_BTRFS_ASSERT
2632         struct btrfs_disk_key disk_key;
2633
2634         btrfs_cpu_key_to_disk(&disk_key, key);
2635
2636         if (level == 0)
2637                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2638                     offsetof(struct btrfs_leaf, items[0].key),
2639                     sizeof(disk_key)));
2640         else
2641                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2642                     offsetof(struct btrfs_node, ptrs[0].key),
2643                     sizeof(disk_key)));
2644 #endif
2645 }
2646
2647 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2648                       int level, int *prev_cmp, int *slot)
2649 {
2650         if (*prev_cmp != 0) {
2651                 *prev_cmp = bin_search(b, key, level, slot);
2652                 return *prev_cmp;
2653         }
2654
2655         key_search_validate(b, key, level);
2656         *slot = 0;
2657
2658         return 0;
2659 }
2660
2661 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
2662                 u64 iobjectid, u64 ioff, u8 key_type,
2663                 struct btrfs_key *found_key)
2664 {
2665         int ret;
2666         struct btrfs_key key;
2667         struct extent_buffer *eb;
2668         struct btrfs_path *path;
2669
2670         key.type = key_type;
2671         key.objectid = iobjectid;
2672         key.offset = ioff;
2673
2674         if (found_path == NULL) {
2675                 path = btrfs_alloc_path();
2676                 if (!path)
2677                         return -ENOMEM;
2678         } else
2679                 path = found_path;
2680
2681         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2682         if ((ret < 0) || (found_key == NULL)) {
2683                 if (path != found_path)
2684                         btrfs_free_path(path);
2685                 return ret;
2686         }
2687
2688         eb = path->nodes[0];
2689         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2690                 ret = btrfs_next_leaf(fs_root, path);
2691                 if (ret)
2692                         return ret;
2693                 eb = path->nodes[0];
2694         }
2695
2696         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2697         if (found_key->type != key.type ||
2698                         found_key->objectid != key.objectid)
2699                 return 1;
2700
2701         return 0;
2702 }
2703
2704 /*
2705  * look for key in the tree.  path is filled in with nodes along the way
2706  * if key is found, we return zero and you can find the item in the leaf
2707  * level of the path (level 0)
2708  *
2709  * If the key isn't found, the path points to the slot where it should
2710  * be inserted, and 1 is returned.  If there are other errors during the
2711  * search a negative error number is returned.
2712  *
2713  * if ins_len > 0, nodes and leaves will be split as we walk down the
2714  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2715  * possible)
2716  */
2717 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2718                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2719                       ins_len, int cow)
2720 {
2721         struct extent_buffer *b;
2722         int slot;
2723         int ret;
2724         int err;
2725         int level;
2726         int lowest_unlock = 1;
2727         int root_lock;
2728         /* everything at write_lock_level or lower must be write locked */
2729         int write_lock_level = 0;
2730         u8 lowest_level = 0;
2731         int min_write_lock_level;
2732         int prev_cmp;
2733
2734         lowest_level = p->lowest_level;
2735         WARN_ON(lowest_level && ins_len > 0);
2736         WARN_ON(p->nodes[0] != NULL);
2737         BUG_ON(!cow && ins_len);
2738
2739         if (ins_len < 0) {
2740                 lowest_unlock = 2;
2741
2742                 /* when we are removing items, we might have to go up to level
2743                  * two as we update tree pointers  Make sure we keep write
2744                  * for those levels as well
2745                  */
2746                 write_lock_level = 2;
2747         } else if (ins_len > 0) {
2748                 /*
2749                  * for inserting items, make sure we have a write lock on
2750                  * level 1 so we can update keys
2751                  */
2752                 write_lock_level = 1;
2753         }
2754
2755         if (!cow)
2756                 write_lock_level = -1;
2757
2758         if (cow && (p->keep_locks || p->lowest_level))
2759                 write_lock_level = BTRFS_MAX_LEVEL;
2760
2761         min_write_lock_level = write_lock_level;
2762
2763 again:
2764         prev_cmp = -1;
2765         /*
2766          * we try very hard to do read locks on the root
2767          */
2768         root_lock = BTRFS_READ_LOCK;
2769         level = 0;
2770         if (p->search_commit_root) {
2771                 /*
2772                  * the commit roots are read only
2773                  * so we always do read locks
2774                  */
2775                 if (p->need_commit_sem)
2776                         down_read(&root->fs_info->commit_root_sem);
2777                 b = root->commit_root;
2778                 extent_buffer_get(b);
2779                 level = btrfs_header_level(b);
2780                 if (p->need_commit_sem)
2781                         up_read(&root->fs_info->commit_root_sem);
2782                 if (!p->skip_locking)
2783                         btrfs_tree_read_lock(b);
2784         } else {
2785                 if (p->skip_locking) {
2786                         b = btrfs_root_node(root);
2787                         level = btrfs_header_level(b);
2788                 } else {
2789                         /* we don't know the level of the root node
2790                          * until we actually have it read locked
2791                          */
2792                         b = btrfs_read_lock_root_node(root);
2793                         level = btrfs_header_level(b);
2794                         if (level <= write_lock_level) {
2795                                 /* whoops, must trade for write lock */
2796                                 btrfs_tree_read_unlock(b);
2797                                 free_extent_buffer(b);
2798                                 b = btrfs_lock_root_node(root);
2799                                 root_lock = BTRFS_WRITE_LOCK;
2800
2801                                 /* the level might have changed, check again */
2802                                 level = btrfs_header_level(b);
2803                         }
2804                 }
2805         }
2806         p->nodes[level] = b;
2807         if (!p->skip_locking)
2808                 p->locks[level] = root_lock;
2809
2810         while (b) {
2811                 level = btrfs_header_level(b);
2812
2813                 /*
2814                  * setup the path here so we can release it under lock
2815                  * contention with the cow code
2816                  */
2817                 if (cow) {
2818                         /*
2819                          * if we don't really need to cow this block
2820                          * then we don't want to set the path blocking,
2821                          * so we test it here
2822                          */
2823                         if (!should_cow_block(trans, root, b))
2824                                 goto cow_done;
2825
2826                         btrfs_set_path_blocking(p);
2827
2828                         /*
2829                          * must have write locks on this node and the
2830                          * parent
2831                          */
2832                         if (level > write_lock_level ||
2833                             (level + 1 > write_lock_level &&
2834                             level + 1 < BTRFS_MAX_LEVEL &&
2835                             p->nodes[level + 1])) {
2836                                 write_lock_level = level + 1;
2837                                 btrfs_release_path(p);
2838                                 goto again;
2839                         }
2840
2841                         err = btrfs_cow_block(trans, root, b,
2842                                               p->nodes[level + 1],
2843                                               p->slots[level + 1], &b);
2844                         if (err) {
2845                                 ret = err;
2846                                 goto done;
2847                         }
2848                 }
2849 cow_done:
2850                 p->nodes[level] = b;
2851                 btrfs_clear_path_blocking(p, NULL, 0);
2852
2853                 /*
2854                  * we have a lock on b and as long as we aren't changing
2855                  * the tree, there is no way to for the items in b to change.
2856                  * It is safe to drop the lock on our parent before we
2857                  * go through the expensive btree search on b.
2858                  *
2859                  * If we're inserting or deleting (ins_len != 0), then we might
2860                  * be changing slot zero, which may require changing the parent.
2861                  * So, we can't drop the lock until after we know which slot
2862                  * we're operating on.
2863                  */
2864                 if (!ins_len && !p->keep_locks) {
2865                         int u = level + 1;
2866
2867                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2868                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2869                                 p->locks[u] = 0;
2870                         }
2871                 }
2872
2873                 ret = key_search(b, key, level, &prev_cmp, &slot);
2874
2875                 if (level != 0) {
2876                         int dec = 0;
2877                         if (ret && slot > 0) {
2878                                 dec = 1;
2879                                 slot -= 1;
2880                         }
2881                         p->slots[level] = slot;
2882                         err = setup_nodes_for_search(trans, root, p, b, level,
2883                                              ins_len, &write_lock_level);
2884                         if (err == -EAGAIN)
2885                                 goto again;
2886                         if (err) {
2887                                 ret = err;
2888                                 goto done;
2889                         }
2890                         b = p->nodes[level];
2891                         slot = p->slots[level];
2892
2893                         /*
2894                          * slot 0 is special, if we change the key
2895                          * we have to update the parent pointer
2896                          * which means we must have a write lock
2897                          * on the parent
2898                          */
2899                         if (slot == 0 && ins_len &&
2900                             write_lock_level < level + 1) {
2901                                 write_lock_level = level + 1;
2902                                 btrfs_release_path(p);
2903                                 goto again;
2904                         }
2905
2906                         unlock_up(p, level, lowest_unlock,
2907                                   min_write_lock_level, &write_lock_level);
2908
2909                         if (level == lowest_level) {
2910                                 if (dec)
2911                                         p->slots[level]++;
2912                                 goto done;
2913                         }
2914
2915                         err = read_block_for_search(trans, root, p,
2916                                                     &b, level, slot, key, 0);
2917                         if (err == -EAGAIN)
2918                                 goto again;
2919                         if (err) {
2920                                 ret = err;
2921                                 goto done;
2922                         }
2923
2924                         if (!p->skip_locking) {
2925                                 level = btrfs_header_level(b);
2926                                 if (level <= write_lock_level) {
2927                                         err = btrfs_try_tree_write_lock(b);
2928                                         if (!err) {
2929                                                 btrfs_set_path_blocking(p);
2930                                                 btrfs_tree_lock(b);
2931                                                 btrfs_clear_path_blocking(p, b,
2932                                                                   BTRFS_WRITE_LOCK);
2933                                         }
2934                                         p->locks[level] = BTRFS_WRITE_LOCK;
2935                                 } else {
2936                                         err = btrfs_try_tree_read_lock(b);
2937                                         if (!err) {
2938                                                 btrfs_set_path_blocking(p);
2939                                                 btrfs_tree_read_lock(b);
2940                                                 btrfs_clear_path_blocking(p, b,
2941                                                                   BTRFS_READ_LOCK);
2942                                         }
2943                                         p->locks[level] = BTRFS_READ_LOCK;
2944                                 }
2945                                 p->nodes[level] = b;
2946                         }
2947                 } else {
2948                         p->slots[level] = slot;
2949                         if (ins_len > 0 &&
2950                             btrfs_leaf_free_space(root, b) < ins_len) {
2951                                 if (write_lock_level < 1) {
2952                                         write_lock_level = 1;
2953                                         btrfs_release_path(p);
2954                                         goto again;
2955                                 }
2956
2957                                 btrfs_set_path_blocking(p);
2958                                 err = split_leaf(trans, root, key,
2959                                                  p, ins_len, ret == 0);
2960                                 btrfs_clear_path_blocking(p, NULL, 0);
2961
2962                                 BUG_ON(err > 0);
2963                                 if (err) {
2964                                         ret = err;
2965                                         goto done;
2966                                 }
2967                         }
2968                         if (!p->search_for_split)
2969                                 unlock_up(p, level, lowest_unlock,
2970                                           min_write_lock_level, &write_lock_level);
2971                         goto done;
2972                 }
2973         }
2974         ret = 1;
2975 done:
2976         /*
2977          * we don't really know what they plan on doing with the path
2978          * from here on, so for now just mark it as blocking
2979          */
2980         if (!p->leave_spinning)
2981                 btrfs_set_path_blocking(p);
2982         if (ret < 0)
2983                 btrfs_release_path(p);
2984         return ret;
2985 }
2986
2987 /*
2988  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2989  * current state of the tree together with the operations recorded in the tree
2990  * modification log to search for the key in a previous version of this tree, as
2991  * denoted by the time_seq parameter.
2992  *
2993  * Naturally, there is no support for insert, delete or cow operations.
2994  *
2995  * The resulting path and return value will be set up as if we called
2996  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2997  */
2998 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2999                           struct btrfs_path *p, u64 time_seq)
3000 {
3001         struct extent_buffer *b;
3002         int slot;
3003         int ret;
3004         int err;
3005         int level;
3006         int lowest_unlock = 1;
3007         u8 lowest_level = 0;
3008         int prev_cmp = -1;
3009
3010         lowest_level = p->lowest_level;
3011         WARN_ON(p->nodes[0] != NULL);
3012
3013         if (p->search_commit_root) {
3014                 BUG_ON(time_seq);
3015                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
3016         }
3017
3018 again:
3019         b = get_old_root(root, time_seq);
3020         level = btrfs_header_level(b);
3021         p->locks[level] = BTRFS_READ_LOCK;
3022
3023         while (b) {
3024                 level = btrfs_header_level(b);
3025                 p->nodes[level] = b;
3026                 btrfs_clear_path_blocking(p, NULL, 0);
3027
3028                 /*
3029                  * we have a lock on b and as long as we aren't changing
3030                  * the tree, there is no way to for the items in b to change.
3031                  * It is safe to drop the lock on our parent before we
3032                  * go through the expensive btree search on b.
3033                  */
3034                 btrfs_unlock_up_safe(p, level + 1);
3035
3036                 /*
3037                  * Since we can unwind eb's we want to do a real search every
3038                  * time.
3039                  */
3040                 prev_cmp = -1;
3041                 ret = key_search(b, key, level, &prev_cmp, &slot);
3042
3043                 if (level != 0) {
3044                         int dec = 0;
3045                         if (ret && slot > 0) {
3046                                 dec = 1;
3047                                 slot -= 1;
3048                         }
3049                         p->slots[level] = slot;
3050                         unlock_up(p, level, lowest_unlock, 0, NULL);
3051
3052                         if (level == lowest_level) {
3053                                 if (dec)
3054                                         p->slots[level]++;
3055                                 goto done;
3056                         }
3057
3058                         err = read_block_for_search(NULL, root, p, &b, level,
3059                                                     slot, key, time_seq);
3060                         if (err == -EAGAIN)
3061                                 goto again;
3062                         if (err) {
3063                                 ret = err;
3064                                 goto done;
3065                         }
3066
3067                         level = btrfs_header_level(b);
3068                         err = btrfs_try_tree_read_lock(b);
3069                         if (!err) {
3070                                 btrfs_set_path_blocking(p);
3071                                 btrfs_tree_read_lock(b);
3072                                 btrfs_clear_path_blocking(p, b,
3073                                                           BTRFS_READ_LOCK);
3074                         }
3075                         b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3076                         if (!b) {
3077                                 ret = -ENOMEM;
3078                                 goto done;
3079                         }
3080                         p->locks[level] = BTRFS_READ_LOCK;
3081                         p->nodes[level] = b;
3082                 } else {
3083                         p->slots[level] = slot;
3084                         unlock_up(p, level, lowest_unlock, 0, NULL);
3085                         goto done;
3086                 }
3087         }
3088         ret = 1;
3089 done:
3090         if (!p->leave_spinning)
3091                 btrfs_set_path_blocking(p);
3092         if (ret < 0)
3093                 btrfs_release_path(p);
3094
3095         return ret;
3096 }
3097
3098 /*
3099  * helper to use instead of search slot if no exact match is needed but
3100  * instead the next or previous item should be returned.
3101  * When find_higher is true, the next higher item is returned, the next lower
3102  * otherwise.
3103  * When return_any and find_higher are both true, and no higher item is found,
3104  * return the next lower instead.
3105  * When return_any is true and find_higher is false, and no lower item is found,
3106  * return the next higher instead.
3107  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3108  * < 0 on error
3109  */
3110 int btrfs_search_slot_for_read(struct btrfs_root *root,
3111                                struct btrfs_key *key, struct btrfs_path *p,
3112                                int find_higher, int return_any)
3113 {
3114         int ret;
3115         struct extent_buffer *leaf;
3116
3117 again:
3118         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3119         if (ret <= 0)
3120                 return ret;
3121         /*
3122          * a return value of 1 means the path is at the position where the
3123          * item should be inserted. Normally this is the next bigger item,
3124          * but in case the previous item is the last in a leaf, path points
3125          * to the first free slot in the previous leaf, i.e. at an invalid
3126          * item.
3127          */
3128         leaf = p->nodes[0];
3129
3130         if (find_higher) {
3131                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3132                         ret = btrfs_next_leaf(root, p);
3133                         if (ret <= 0)
3134                                 return ret;
3135                         if (!return_any)
3136                                 return 1;
3137                         /*
3138                          * no higher item found, return the next
3139                          * lower instead
3140                          */
3141                         return_any = 0;
3142                         find_higher = 0;
3143                         btrfs_release_path(p);
3144                         goto again;
3145                 }
3146         } else {
3147                 if (p->slots[0] == 0) {
3148                         ret = btrfs_prev_leaf(root, p);
3149                         if (ret < 0)
3150                                 return ret;
3151                         if (!ret) {
3152                                 leaf = p->nodes[0];
3153                                 if (p->slots[0] == btrfs_header_nritems(leaf))
3154                                         p->slots[0]--;
3155                                 return 0;
3156                         }
3157                         if (!return_any)
3158                                 return 1;
3159                         /*
3160                          * no lower item found, return the next
3161                          * higher instead
3162                          */
3163                         return_any = 0;
3164                         find_higher = 1;
3165                         btrfs_release_path(p);
3166                         goto again;
3167                 } else {
3168                         --p->slots[0];
3169                 }
3170         }
3171         return 0;
3172 }
3173
3174 /*
3175  * adjust the pointers going up the tree, starting at level
3176  * making sure the right key of each node is points to 'key'.
3177  * This is used after shifting pointers to the left, so it stops
3178  * fixing up pointers when a given leaf/node is not in slot 0 of the
3179  * higher levels
3180  *
3181  */
3182 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
3183                            struct btrfs_disk_key *key, int level)
3184 {
3185         int i;
3186         struct extent_buffer *t;
3187
3188         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3189                 int tslot = path->slots[i];
3190                 if (!path->nodes[i])
3191                         break;
3192                 t = path->nodes[i];
3193                 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
3194                 btrfs_set_node_key(t, key, tslot);
3195                 btrfs_mark_buffer_dirty(path->nodes[i]);
3196                 if (tslot != 0)
3197                         break;
3198         }
3199 }
3200
3201 /*
3202  * update item key.
3203  *
3204  * This function isn't completely safe. It's the caller's responsibility
3205  * that the new key won't break the order
3206  */
3207 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3208                              struct btrfs_key *new_key)
3209 {
3210         struct btrfs_disk_key disk_key;
3211         struct extent_buffer *eb;
3212         int slot;
3213
3214         eb = path->nodes[0];
3215         slot = path->slots[0];
3216         if (slot > 0) {
3217                 btrfs_item_key(eb, &disk_key, slot - 1);
3218                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3219         }
3220         if (slot < btrfs_header_nritems(eb) - 1) {
3221                 btrfs_item_key(eb, &disk_key, slot + 1);
3222                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3223         }
3224
3225         btrfs_cpu_key_to_disk(&disk_key, new_key);
3226         btrfs_set_item_key(eb, &disk_key, slot);
3227         btrfs_mark_buffer_dirty(eb);
3228         if (slot == 0)
3229                 fixup_low_keys(root, path, &disk_key, 1);
3230 }
3231
3232 /*
3233  * try to push data from one node into the next node left in the
3234  * tree.
3235  *
3236  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3237  * error, and > 0 if there was no room in the left hand block.
3238  */
3239 static int push_node_left(struct btrfs_trans_handle *trans,
3240                           struct btrfs_root *root, struct extent_buffer *dst,
3241                           struct extent_buffer *src, int empty)
3242 {
3243         int push_items = 0;
3244         int src_nritems;
3245         int dst_nritems;
3246         int ret = 0;
3247
3248         src_nritems = btrfs_header_nritems(src);
3249         dst_nritems = btrfs_header_nritems(dst);
3250         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3251         WARN_ON(btrfs_header_generation(src) != trans->transid);
3252         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3253
3254         if (!empty && src_nritems <= 8)
3255                 return 1;
3256
3257         if (push_items <= 0)
3258                 return 1;
3259
3260         if (empty) {
3261                 push_items = min(src_nritems, push_items);
3262                 if (push_items < src_nritems) {
3263                         /* leave at least 8 pointers in the node if
3264                          * we aren't going to empty it
3265                          */
3266                         if (src_nritems - push_items < 8) {
3267                                 if (push_items <= 8)
3268                                         return 1;
3269                                 push_items -= 8;
3270                         }
3271                 }
3272         } else
3273                 push_items = min(src_nritems - 8, push_items);
3274
3275         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3276                                    push_items);
3277         if (ret) {
3278                 btrfs_abort_transaction(trans, root, ret);
3279                 return ret;
3280         }
3281         copy_extent_buffer(dst, src,
3282                            btrfs_node_key_ptr_offset(dst_nritems),
3283                            btrfs_node_key_ptr_offset(0),
3284                            push_items * sizeof(struct btrfs_key_ptr));
3285
3286         if (push_items < src_nritems) {
3287                 /*
3288                  * don't call tree_mod_log_eb_move here, key removal was already
3289                  * fully logged by tree_mod_log_eb_copy above.
3290                  */
3291                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3292                                       btrfs_node_key_ptr_offset(push_items),
3293                                       (src_nritems - push_items) *
3294                                       sizeof(struct btrfs_key_ptr));
3295         }
3296         btrfs_set_header_nritems(src, src_nritems - push_items);
3297         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3298         btrfs_mark_buffer_dirty(src);
3299         btrfs_mark_buffer_dirty(dst);
3300
3301         return ret;
3302 }
3303
3304 /*
3305  * try to push data from one node into the next node right in the
3306  * tree.
3307  *
3308  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3309  * error, and > 0 if there was no room in the right hand block.
3310  *
3311  * this will  only push up to 1/2 the contents of the left node over
3312  */
3313 static int balance_node_right(struct btrfs_trans_handle *trans,
3314                               struct btrfs_root *root,
3315                               struct extent_buffer *dst,
3316                               struct extent_buffer *src)
3317 {
3318         int push_items = 0;
3319         int max_push;
3320         int src_nritems;
3321         int dst_nritems;
3322         int ret = 0;
3323
3324         WARN_ON(btrfs_header_generation(src) != trans->transid);
3325         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3326
3327         src_nritems = btrfs_header_nritems(src);
3328         dst_nritems = btrfs_header_nritems(dst);
3329         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3330         if (push_items <= 0)
3331                 return 1;
3332
3333         if (src_nritems < 4)
3334                 return 1;
3335
3336         max_push = src_nritems / 2 + 1;
3337         /* don't try to empty the node */
3338         if (max_push >= src_nritems)
3339                 return 1;
3340
3341         if (max_push < push_items)
3342                 push_items = max_push;
3343
3344         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3345         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3346                                       btrfs_node_key_ptr_offset(0),
3347                                       (dst_nritems) *
3348                                       sizeof(struct btrfs_key_ptr));
3349
3350         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3351                                    src_nritems - push_items, push_items);
3352         if (ret) {
3353                 btrfs_abort_transaction(trans, root, ret);
3354                 return ret;
3355         }
3356         copy_extent_buffer(dst, src,
3357                            btrfs_node_key_ptr_offset(0),
3358                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3359                            push_items * sizeof(struct btrfs_key_ptr));
3360
3361         btrfs_set_header_nritems(src, src_nritems - push_items);
3362         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3363
3364         btrfs_mark_buffer_dirty(src);
3365         btrfs_mark_buffer_dirty(dst);
3366
3367         return ret;
3368 }
3369
3370 /*
3371  * helper function to insert a new root level in the tree.
3372  * A new node is allocated, and a single item is inserted to
3373  * point to the existing root
3374  *
3375  * returns zero on success or < 0 on failure.
3376  */
3377 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3378                            struct btrfs_root *root,
3379                            struct btrfs_path *path, int level)
3380 {
3381         u64 lower_gen;
3382         struct extent_buffer *lower;
3383         struct extent_buffer *c;
3384         struct extent_buffer *old;
3385         struct btrfs_disk_key lower_key;
3386
3387         BUG_ON(path->nodes[level]);
3388         BUG_ON(path->nodes[level-1] != root->node);
3389
3390         lower = path->nodes[level-1];
3391         if (level == 1)
3392                 btrfs_item_key(lower, &lower_key, 0);
3393         else
3394                 btrfs_node_key(lower, &lower_key, 0);
3395
3396         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3397                                    root->root_key.objectid, &lower_key,
3398                                    level, root->node->start, 0);
3399         if (IS_ERR(c))
3400                 return PTR_ERR(c);
3401
3402         root_add_used(root, root->nodesize);
3403
3404         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3405         btrfs_set_header_nritems(c, 1);
3406         btrfs_set_header_level(c, level);
3407         btrfs_set_header_bytenr(c, c->start);
3408         btrfs_set_header_generation(c, trans->transid);
3409         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3410         btrfs_set_header_owner(c, root->root_key.objectid);
3411
3412         write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3413                             BTRFS_FSID_SIZE);
3414
3415         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3416                             btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3417
3418         btrfs_set_node_key(c, &lower_key, 0);
3419         btrfs_set_node_blockptr(c, 0, lower->start);
3420         lower_gen = btrfs_header_generation(lower);
3421         WARN_ON(lower_gen != trans->transid);
3422
3423         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3424
3425         btrfs_mark_buffer_dirty(c);
3426
3427         old = root->node;
3428         tree_mod_log_set_root_pointer(root, c, 0);
3429         rcu_assign_pointer(root->node, c);
3430
3431         /* the super has an extra ref to root->node */
3432         free_extent_buffer(old);
3433
3434         add_root_to_dirty_list(root);
3435         extent_buffer_get(c);
3436         path->nodes[level] = c;
3437         path->locks[level] = BTRFS_WRITE_LOCK;
3438         path->slots[level] = 0;
3439         return 0;
3440 }
3441
3442 /*
3443  * worker function to insert a single pointer in a node.
3444  * the node should have enough room for the pointer already
3445  *
3446  * slot and level indicate where you want the key to go, and
3447  * blocknr is the block the key points to.
3448  */
3449 static void insert_ptr(struct btrfs_trans_handle *trans,
3450                        struct btrfs_root *root, struct btrfs_path *path,
3451                        struct btrfs_disk_key *key, u64 bytenr,
3452                        int slot, int level)
3453 {
3454         struct extent_buffer *lower;
3455         int nritems;
3456         int ret;
3457
3458         BUG_ON(!path->nodes[level]);
3459         btrfs_assert_tree_locked(path->nodes[level]);
3460         lower = path->nodes[level];
3461         nritems = btrfs_header_nritems(lower);
3462         BUG_ON(slot > nritems);
3463         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3464         if (slot != nritems) {
3465                 if (level)
3466                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3467                                              slot, nritems - slot);
3468                 memmove_extent_buffer(lower,
3469                               btrfs_node_key_ptr_offset(slot + 1),
3470                               btrfs_node_key_ptr_offset(slot),
3471                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3472         }
3473         if (level) {
3474                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3475                                               MOD_LOG_KEY_ADD, GFP_NOFS);
3476                 BUG_ON(ret < 0);
3477         }
3478         btrfs_set_node_key(lower, key, slot);
3479         btrfs_set_node_blockptr(lower, slot, bytenr);
3480         WARN_ON(trans->transid == 0);
3481         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3482         btrfs_set_header_nritems(lower, nritems + 1);
3483         btrfs_mark_buffer_dirty(lower);
3484 }
3485
3486 /*
3487  * split the node at the specified level in path in two.
3488  * The path is corrected to point to the appropriate node after the split
3489  *
3490  * Before splitting this tries to make some room in the node by pushing
3491  * left and right, if either one works, it returns right away.
3492  *
3493  * returns 0 on success and < 0 on failure
3494  */
3495 static noinline int split_node(struct btrfs_trans_handle *trans,
3496                                struct btrfs_root *root,
3497                                struct btrfs_path *path, int level)
3498 {
3499         struct extent_buffer *c;
3500         struct extent_buffer *split;
3501         struct btrfs_disk_key disk_key;
3502         int mid;
3503         int ret;
3504         u32 c_nritems;
3505
3506         c = path->nodes[level];
3507         WARN_ON(btrfs_header_generation(c) != trans->transid);
3508         if (c == root->node) {
3509                 /*
3510                  * trying to split the root, lets make a new one
3511                  *
3512                  * tree mod log: We don't log_removal old root in
3513                  * insert_new_root, because that root buffer will be kept as a
3514                  * normal node. We are going to log removal of half of the
3515                  * elements below with tree_mod_log_eb_copy. We're holding a
3516                  * tree lock on the buffer, which is why we cannot race with
3517                  * other tree_mod_log users.
3518                  */
3519                 ret = insert_new_root(trans, root, path, level + 1);
3520                 if (ret)
3521                         return ret;
3522         } else {
3523                 ret = push_nodes_for_insert(trans, root, path, level);
3524                 c = path->nodes[level];
3525                 if (!ret && btrfs_header_nritems(c) <
3526                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3527                         return 0;
3528                 if (ret < 0)
3529                         return ret;
3530         }
3531
3532         c_nritems = btrfs_header_nritems(c);
3533         mid = (c_nritems + 1) / 2;
3534         btrfs_node_key(c, &disk_key, mid);
3535
3536         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3537                                         root->root_key.objectid,
3538                                         &disk_key, level, c->start, 0);
3539         if (IS_ERR(split))
3540                 return PTR_ERR(split);
3541
3542         root_add_used(root, root->nodesize);
3543
3544         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3545         btrfs_set_header_level(split, btrfs_header_level(c));
3546         btrfs_set_header_bytenr(split, split->start);
3547         btrfs_set_header_generation(split, trans->transid);
3548         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3549         btrfs_set_header_owner(split, root->root_key.objectid);
3550         write_extent_buffer(split, root->fs_info->fsid,
3551                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
3552         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3553                             btrfs_header_chunk_tree_uuid(split),
3554                             BTRFS_UUID_SIZE);
3555
3556         ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3557                                    mid, c_nritems - mid);
3558         if (ret) {
3559                 btrfs_abort_transaction(trans, root, ret);
3560                 return ret;
3561         }
3562         copy_extent_buffer(split, c,
3563                            btrfs_node_key_ptr_offset(0),
3564                            btrfs_node_key_ptr_offset(mid),
3565                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3566         btrfs_set_header_nritems(split, c_nritems - mid);
3567         btrfs_set_header_nritems(c, mid);
3568         ret = 0;
3569
3570         btrfs_mark_buffer_dirty(c);
3571         btrfs_mark_buffer_dirty(split);
3572
3573         insert_ptr(trans, root, path, &disk_key, split->start,
3574                    path->slots[level + 1] + 1, level + 1);
3575
3576         if (path->slots[level] >= mid) {
3577                 path->slots[level] -= mid;
3578                 btrfs_tree_unlock(c);
3579                 free_extent_buffer(c);
3580                 path->nodes[level] = split;
3581                 path->slots[level + 1] += 1;
3582         } else {
3583                 btrfs_tree_unlock(split);
3584                 free_extent_buffer(split);
3585         }
3586         return ret;
3587 }
3588
3589 /*
3590  * how many bytes are required to store the items in a leaf.  start
3591  * and nr indicate which items in the leaf to check.  This totals up the
3592  * space used both by the item structs and the item data
3593  */
3594 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3595 {
3596         struct btrfs_item *start_item;
3597         struct btrfs_item *end_item;
3598         struct btrfs_map_token token;
3599         int data_len;
3600         int nritems = btrfs_header_nritems(l);
3601         int end = min(nritems, start + nr) - 1;
3602
3603         if (!nr)
3604                 return 0;
3605         btrfs_init_map_token(&token);
3606         start_item = btrfs_item_nr(start);
3607         end_item = btrfs_item_nr(end);
3608         data_len = btrfs_token_item_offset(l, start_item, &token) +
3609                 btrfs_token_item_size(l, start_item, &token);
3610         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3611         data_len += sizeof(struct btrfs_item) * nr;
3612         WARN_ON(data_len < 0);
3613         return data_len;
3614 }
3615
3616 /*
3617  * The space between the end of the leaf items and
3618  * the start of the leaf data.  IOW, how much room
3619  * the leaf has left for both items and data
3620  */
3621 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3622                                    struct extent_buffer *leaf)
3623 {
3624         int nritems = btrfs_header_nritems(leaf);
3625         int ret;
3626         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3627         if (ret < 0) {
3628                 btrfs_crit(root->fs_info,
3629                         "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3630                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3631                        leaf_space_used(leaf, 0, nritems), nritems);
3632         }
3633         return ret;
3634 }
3635
3636 /*
3637  * min slot controls the lowest index we're willing to push to the
3638  * right.  We'll push up to and including min_slot, but no lower
3639  */
3640 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3641                                       struct btrfs_root *root,
3642                                       struct btrfs_path *path,
3643                                       int data_size, int empty,
3644                                       struct extent_buffer *right,
3645                                       int free_space, u32 left_nritems,
3646                                       u32 min_slot)
3647 {
3648         struct extent_buffer *left = path->nodes[0];
3649         struct extent_buffer *upper = path->nodes[1];
3650         struct btrfs_map_token token;
3651         struct btrfs_disk_key disk_key;
3652         int slot;
3653         u32 i;
3654         int push_space = 0;
3655         int push_items = 0;
3656         struct btrfs_item *item;
3657         u32 nr;
3658         u32 right_nritems;
3659         u32 data_end;
3660         u32 this_item_size;
3661
3662         btrfs_init_map_token(&token);
3663
3664         if (empty)
3665                 nr = 0;
3666         else
3667                 nr = max_t(u32, 1, min_slot);
3668
3669         if (path->slots[0] >= left_nritems)
3670                 push_space += data_size;
3671
3672         slot = path->slots[1];
3673         i = left_nritems - 1;
3674         while (i >= nr) {
3675                 item = btrfs_item_nr(i);
3676
3677                 if (!empty && push_items > 0) {
3678                         if (path->slots[0] > i)
3679                                 break;
3680                         if (path->slots[0] == i) {
3681                                 int space = btrfs_leaf_free_space(root, left);
3682                                 if (space + push_space * 2 > free_space)
3683                                         break;
3684                         }
3685                 }
3686
3687                 if (path->slots[0] == i)
3688                         push_space += data_size;
3689
3690                 this_item_size = btrfs_item_size(left, item);
3691                 if (this_item_size + sizeof(*item) + push_space > free_space)
3692                         break;
3693
3694                 push_items++;
3695                 push_space += this_item_size + sizeof(*item);
3696                 if (i == 0)
3697                         break;
3698                 i--;
3699         }
3700
3701         if (push_items == 0)
3702                 goto out_unlock;
3703
3704         WARN_ON(!empty && push_items == left_nritems);
3705
3706         /* push left to right */
3707         right_nritems = btrfs_header_nritems(right);
3708
3709         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3710         push_space -= leaf_data_end(root, left);
3711
3712         /* make room in the right data area */
3713         data_end = leaf_data_end(root, right);
3714         memmove_extent_buffer(right,
3715                               btrfs_leaf_data(right) + data_end - push_space,
3716                               btrfs_leaf_data(right) + data_end,
3717                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3718
3719         /* copy from the left data area */
3720         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3721                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3722                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3723                      push_space);
3724
3725         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3726                               btrfs_item_nr_offset(0),
3727                               right_nritems * sizeof(struct btrfs_item));
3728
3729         /* copy the items from left to right */
3730         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3731                    btrfs_item_nr_offset(left_nritems - push_items),
3732                    push_items * sizeof(struct btrfs_item));
3733
3734         /* update the item pointers */
3735         right_nritems += push_items;
3736         btrfs_set_header_nritems(right, right_nritems);
3737         push_space = BTRFS_LEAF_DATA_SIZE(root);
3738         for (i = 0; i < right_nritems; i++) {
3739                 item = btrfs_item_nr(i);
3740                 push_space -= btrfs_token_item_size(right, item, &token);
3741                 btrfs_set_token_item_offset(right, item, push_space, &token);
3742         }
3743
3744         left_nritems -= push_items;
3745         btrfs_set_header_nritems(left, left_nritems);
3746
3747         if (left_nritems)
3748                 btrfs_mark_buffer_dirty(left);
3749         else
3750                 clean_tree_block(trans, root, left);
3751
3752         btrfs_mark_buffer_dirty(right);
3753
3754         btrfs_item_key(right, &disk_key, 0);
3755         btrfs_set_node_key(upper, &disk_key, slot + 1);
3756         btrfs_mark_buffer_dirty(upper);
3757
3758         /* then fixup the leaf pointer in the path */
3759         if (path->slots[0] >= left_nritems) {
3760                 path->slots[0] -= left_nritems;
3761                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3762                         clean_tree_block(trans, root, path->nodes[0]);
3763                 btrfs_tree_unlock(path->nodes[0]);
3764                 free_extent_buffer(path->nodes[0]);
3765                 path->nodes[0] = right;
3766                 path->slots[1] += 1;
3767         } else {
3768                 btrfs_tree_unlock(right);
3769                 free_extent_buffer(right);
3770         }
3771         return 0;
3772
3773 out_unlock:
3774         btrfs_tree_unlock(right);
3775         free_extent_buffer(right);
3776         return 1;
3777 }
3778
3779 /*
3780  * push some data in the path leaf to the right, trying to free up at
3781  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3782  *
3783  * returns 1 if the push failed because the other node didn't have enough
3784  * room, 0 if everything worked out and < 0 if there were major errors.
3785  *
3786  * this will push starting from min_slot to the end of the leaf.  It won't
3787  * push any slot lower than min_slot
3788  */
3789 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3790                            *root, struct btrfs_path *path,
3791                            int min_data_size, int data_size,
3792                            int empty, u32 min_slot)
3793 {
3794         struct extent_buffer *left = path->nodes[0];
3795         struct extent_buffer *right;
3796         struct extent_buffer *upper;
3797         int slot;
3798         int free_space;
3799         u32 left_nritems;
3800         int ret;
3801
3802         if (!path->nodes[1])
3803                 return 1;
3804
3805         slot = path->slots[1];
3806         upper = path->nodes[1];
3807         if (slot >= btrfs_header_nritems(upper) - 1)
3808                 return 1;
3809
3810         btrfs_assert_tree_locked(path->nodes[1]);
3811
3812         right = read_node_slot(root, upper, slot + 1);
3813         if (right == NULL)
3814                 return 1;
3815
3816         btrfs_tree_lock(right);
3817         btrfs_set_lock_blocking(right);
3818
3819         free_space = btrfs_leaf_free_space(root, right);
3820         if (free_space < data_size)
3821                 goto out_unlock;
3822
3823         /* cow and double check */
3824         ret = btrfs_cow_block(trans, root, right, upper,
3825                               slot + 1, &right);
3826         if (ret)
3827                 goto out_unlock;
3828
3829         free_space = btrfs_leaf_free_space(root, right);
3830         if (free_space < data_size)
3831                 goto out_unlock;
3832
3833         left_nritems = btrfs_header_nritems(left);
3834         if (left_nritems == 0)
3835                 goto out_unlock;
3836
3837         if (path->slots[0] == left_nritems && !empty) {
3838                 /* Key greater than all keys in the leaf, right neighbor has
3839                  * enough room for it and we're not emptying our leaf to delete
3840                  * it, therefore use right neighbor to insert the new item and
3841                  * no need to touch/dirty our left leaft. */
3842                 btrfs_tree_unlock(left);
3843                 free_extent_buffer(left);
3844                 path->nodes[0] = right;
3845                 path->slots[0] = 0;
3846                 path->slots[1]++;
3847                 return 0;
3848         }
3849
3850         return __push_leaf_right(trans, root, path, min_data_size, empty,
3851                                 right, free_space, left_nritems, min_slot);
3852 out_unlock:
3853         btrfs_tree_unlock(right);
3854         free_extent_buffer(right);
3855         return 1;
3856 }
3857
3858 /*
3859  * push some data in the path leaf to the left, trying to free up at
3860  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3861  *
3862  * max_slot can put a limit on how far into the leaf we'll push items.  The
3863  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3864  * items
3865  */
3866 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3867                                      struct btrfs_root *root,
3868                                      struct btrfs_path *path, int data_size,
3869                                      int empty, struct extent_buffer *left,
3870                                      int free_space, u32 right_nritems,
3871                                      u32 max_slot)
3872 {
3873         struct btrfs_disk_key disk_key;
3874         struct extent_buffer *right = path->nodes[0];
3875         int i;
3876         int push_space = 0;
3877         int push_items = 0;
3878         struct btrfs_item *item;
3879         u32 old_left_nritems;
3880         u32 nr;
3881         int ret = 0;
3882         u32 this_item_size;
3883         u32 old_left_item_size;
3884         struct btrfs_map_token token;
3885
3886         btrfs_init_map_token(&token);
3887
3888         if (empty)
3889                 nr = min(right_nritems, max_slot);
3890         else
3891                 nr = min(right_nritems - 1, max_slot);
3892
3893         for (i = 0; i < nr; i++) {
3894                 item = btrfs_item_nr(i);
3895
3896                 if (!empty && push_items > 0) {
3897                         if (path->slots[0] < i)
3898                                 break;
3899                         if (path->slots[0] == i) {
3900                                 int space = btrfs_leaf_free_space(root, right);
3901                                 if (space + push_space * 2 > free_space)
3902                                         break;
3903                         }
3904                 }
3905
3906                 if (path->slots[0] == i)
3907                         push_space += data_size;
3908
3909                 this_item_size = btrfs_item_size(right, item);
3910                 if (this_item_size + sizeof(*item) + push_space > free_space)
3911                         break;
3912
3913                 push_items++;
3914                 push_space += this_item_size + sizeof(*item);
3915         }
3916
3917         if (push_items == 0) {
3918                 ret = 1;
3919                 goto out;
3920         }
3921         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3922
3923         /* push data from right to left */
3924         copy_extent_buffer(left, right,
3925                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3926                            btrfs_item_nr_offset(0),
3927                            push_items * sizeof(struct btrfs_item));
3928
3929         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3930                      btrfs_item_offset_nr(right, push_items - 1);
3931
3932         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3933                      leaf_data_end(root, left) - push_space,
3934                      btrfs_leaf_data(right) +
3935                      btrfs_item_offset_nr(right, push_items - 1),
3936                      push_space);
3937         old_left_nritems = btrfs_header_nritems(left);
3938         BUG_ON(old_left_nritems <= 0);
3939
3940         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3941         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3942                 u32 ioff;
3943
3944                 item = btrfs_item_nr(i);
3945
3946                 ioff = btrfs_token_item_offset(left, item, &token);
3947                 btrfs_set_token_item_offset(left, item,
3948                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3949                       &token);
3950         }
3951         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3952
3953         /* fixup right node */
3954         if (push_items > right_nritems)
3955                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3956                        right_nritems);
3957
3958         if (push_items < right_nritems) {
3959                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3960                                                   leaf_data_end(root, right);
3961                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3962                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3963                                       btrfs_leaf_data(right) +
3964                                       leaf_data_end(root, right), push_space);
3965
3966                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3967                               btrfs_item_nr_offset(push_items),
3968                              (btrfs_header_nritems(right) - push_items) *
3969                              sizeof(struct btrfs_item));
3970         }
3971         right_nritems -= push_items;
3972         btrfs_set_header_nritems(right, right_nritems);
3973         push_space = BTRFS_LEAF_DATA_SIZE(root);
3974         for (i = 0; i < right_nritems; i++) {
3975                 item = btrfs_item_nr(i);
3976
3977                 push_space = push_space - btrfs_token_item_size(right,
3978                                                                 item, &token);
3979                 btrfs_set_token_item_offset(right, item, push_space, &token);
3980         }
3981
3982         btrfs_mark_buffer_dirty(left);
3983         if (right_nritems)
3984                 btrfs_mark_buffer_dirty(right);
3985         else
3986                 clean_tree_block(trans, root, right);
3987
3988         btrfs_item_key(right, &disk_key, 0);
3989         fixup_low_keys(root, path, &disk_key, 1);
3990
3991         /* then fixup the leaf pointer in the path */
3992         if (path->slots[0] < push_items) {
3993                 path->slots[0] += old_left_nritems;
3994                 btrfs_tree_unlock(path->nodes[0]);
3995                 free_extent_buffer(path->nodes[0]);
3996                 path->nodes[0] = left;
3997                 path->slots[1] -= 1;
3998         } else {
3999                 btrfs_tree_unlock(left);
4000                 free_extent_buffer(left);
4001                 path->slots[0] -= push_items;
4002         }
4003         BUG_ON(path->slots[0] < 0);
4004         return ret;
4005 out:
4006         btrfs_tree_unlock(left);
4007         free_extent_buffer(left);
4008         return ret;
4009 }
4010
4011 /*
4012  * push some data in the path leaf to the left, trying to free up at
4013  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
4014  *
4015  * max_slot can put a limit on how far into the leaf we'll push items.  The
4016  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
4017  * items
4018  */
4019 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
4020                           *root, struct btrfs_path *path, int min_data_size,
4021                           int data_size, int empty, u32 max_slot)
4022 {
4023         struct extent_buffer *right = path->nodes[0];
4024         struct extent_buffer *left;
4025         int slot;
4026         int free_space;
4027         u32 right_nritems;
4028         int ret = 0;
4029
4030         slot = path->slots[1];
4031         if (slot == 0)
4032                 return 1;
4033         if (!path->nodes[1])
4034                 return 1;
4035
4036         right_nritems = btrfs_header_nritems(right);
4037         if (right_nritems == 0)
4038                 return 1;
4039
4040         btrfs_assert_tree_locked(path->nodes[1]);
4041
4042         left = read_node_slot(root, path->nodes[1], slot - 1);
4043         if (left == NULL)
4044                 return 1;
4045
4046         btrfs_tree_lock(left);
4047         btrfs_set_lock_blocking(left);
4048
4049         free_space = btrfs_leaf_free_space(root, left);
4050         if (free_space < data_size) {
4051                 ret = 1;
4052                 goto out;
4053         }
4054
4055         /* cow and double check */
4056         ret = btrfs_cow_block(trans, root, left,
4057                               path->nodes[1], slot - 1, &left);
4058         if (ret) {
4059                 /* we hit -ENOSPC, but it isn't fatal here */
4060                 if (ret == -ENOSPC)
4061                         ret = 1;
4062                 goto out;
4063         }
4064
4065         free_space = btrfs_leaf_free_space(root, left);
4066         if (free_space < data_size) {
4067                 ret = 1;
4068                 goto out;
4069         }
4070
4071         return __push_leaf_left(trans, root, path, min_data_size,
4072                                empty, left, free_space, right_nritems,
4073                                max_slot);
4074 out:
4075         btrfs_tree_unlock(left);
4076         free_extent_buffer(left);
4077         return ret;
4078 }
4079
4080 /*
4081  * split the path's leaf in two, making sure there is at least data_size
4082  * available for the resulting leaf level of the path.
4083  */
4084 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4085                                     struct btrfs_root *root,
4086                                     struct btrfs_path *path,
4087                                     struct extent_buffer *l,
4088                                     struct extent_buffer *right,
4089                                     int slot, int mid, int nritems)
4090 {
4091         int data_copy_size;
4092         int rt_data_off;
4093         int i;
4094         struct btrfs_disk_key disk_key;
4095         struct btrfs_map_token token;
4096
4097         btrfs_init_map_token(&token);
4098
4099         nritems = nritems - mid;
4100         btrfs_set_header_nritems(right, nritems);
4101         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4102
4103         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4104                            btrfs_item_nr_offset(mid),
4105                            nritems * sizeof(struct btrfs_item));
4106
4107         copy_extent_buffer(right, l,
4108                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4109                      data_copy_size, btrfs_leaf_data(l) +
4110                      leaf_data_end(root, l), data_copy_size);
4111
4112         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4113                       btrfs_item_end_nr(l, mid);
4114
4115         for (i = 0; i < nritems; i++) {
4116                 struct btrfs_item *item = btrfs_item_nr(i);
4117                 u32 ioff;
4118
4119                 ioff = btrfs_token_item_offset(right, item, &token);
4120                 btrfs_set_token_item_offset(right, item,
4121                                             ioff + rt_data_off, &token);
4122         }
4123
4124         btrfs_set_header_nritems(l, mid);
4125         btrfs_item_key(right, &disk_key, 0);
4126         insert_ptr(trans, root, path, &disk_key, right->start,
4127                    path->slots[1] + 1, 1);
4128
4129         btrfs_mark_buffer_dirty(right);
4130         btrfs_mark_buffer_dirty(l);
4131         BUG_ON(path->slots[0] != slot);
4132
4133         if (mid <= slot) {
4134                 btrfs_tree_unlock(path->nodes[0]);
4135                 free_extent_buffer(path->nodes[0]);
4136                 path->nodes[0] = right;
4137                 path->slots[0] -= mid;
4138                 path->slots[1] += 1;
4139         } else {
4140                 btrfs_tree_unlock(right);
4141                 free_extent_buffer(right);
4142         }
4143
4144         BUG_ON(path->slots[0] < 0);
4145 }
4146
4147 /*
4148  * double splits happen when we need to insert a big item in the middle
4149  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4150  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4151  *          A                 B                 C
4152  *
4153  * We avoid this by trying to push the items on either side of our target
4154  * into the adjacent leaves.  If all goes well we can avoid the double split
4155  * completely.
4156  */
4157 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4158                                           struct btrfs_root *root,
4159                                           struct btrfs_path *path,
4160                                           int data_size)
4161 {
4162         int ret;
4163         int progress = 0;
4164         int slot;
4165         u32 nritems;
4166         int space_needed = data_size;
4167
4168         slot = path->slots[0];
4169         if (slot < btrfs_header_nritems(path->nodes[0]))
4170                 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4171
4172         /*
4173          * try to push all the items after our slot into the
4174          * right leaf
4175          */
4176         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4177         if (ret < 0)
4178                 return ret;
4179
4180         if (ret == 0)
4181                 progress++;
4182
4183         nritems = btrfs_header_nritems(path->nodes[0]);
4184         /*
4185          * our goal is to get our slot at the start or end of a leaf.  If
4186          * we've done so we're done
4187          */
4188         if (path->slots[0] == 0 || path->slots[0] == nritems)
4189                 return 0;
4190
4191         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4192                 return 0;
4193
4194         /* try to push all the items before our slot into the next leaf */
4195         slot = path->slots[0];
4196         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4197         if (ret < 0)
4198                 return ret;
4199
4200         if (ret == 0)
4201                 progress++;
4202
4203         if (progress)
4204                 return 0;
4205         return 1;
4206 }
4207
4208 /*
4209  * split the path's leaf in two, making sure there is at least data_size
4210  * available for the resulting leaf level of the path.
4211  *
4212  * returns 0 if all went well and < 0 on failure.
4213  */
4214 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4215                                struct btrfs_root *root,
4216                                struct btrfs_key *ins_key,
4217                                struct btrfs_path *path, int data_size,
4218                                int extend)
4219 {
4220         struct btrfs_disk_key disk_key;
4221         struct extent_buffer *l;
4222         u32 nritems;
4223         int mid;
4224         int slot;
4225         struct extent_buffer *right;
4226         int ret = 0;
4227         int wret;
4228         int split;
4229         int num_doubles = 0;
4230         int tried_avoid_double = 0;
4231
4232         l = path->nodes[0];
4233         slot = path->slots[0];
4234         if (extend && data_size + btrfs_item_size_nr(l, slot) +
4235             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4236                 return -EOVERFLOW;
4237
4238         /* first try to make some room by pushing left and right */
4239         if (data_size && path->nodes[1]) {
4240                 int space_needed = data_size;
4241
4242                 if (slot < btrfs_header_nritems(l))
4243                         space_needed -= btrfs_leaf_free_space(root, l);
4244
4245                 wret = push_leaf_right(trans, root, path, space_needed,
4246                                        space_needed, 0, 0);
4247                 if (wret < 0)
4248                         return wret;
4249                 if (wret) {
4250                         wret = push_leaf_left(trans, root, path, space_needed,
4251                                               space_needed, 0, (u32)-1);
4252                         if (wret < 0)
4253                                 return wret;
4254                 }
4255                 l = path->nodes[0];
4256
4257                 /* did the pushes work? */
4258                 if (btrfs_leaf_free_space(root, l) >= data_size)
4259                         return 0;
4260         }
4261
4262         if (!path->nodes[1]) {
4263                 ret = insert_new_root(trans, root, path, 1);
4264                 if (ret)
4265                         return ret;
4266         }
4267 again:
4268         split = 1;
4269         l = path->nodes[0];
4270         slot = path->slots[0];
4271         nritems = btrfs_header_nritems(l);
4272         mid = (nritems + 1) / 2;
4273
4274         if (mid <= slot) {
4275                 if (nritems == 1 ||
4276                     leaf_space_used(l, mid, nritems - mid) + data_size >
4277                         BTRFS_LEAF_DATA_SIZE(root)) {
4278                         if (slot >= nritems) {
4279                                 split = 0;
4280                         } else {
4281                                 mid = slot;
4282                                 if (mid != nritems &&
4283                                     leaf_space_used(l, mid, nritems - mid) +
4284                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4285                                         if (data_size && !tried_avoid_double)
4286                                                 goto push_for_double;
4287                                         split = 2;
4288                                 }
4289                         }
4290                 }
4291         } else {
4292                 if (leaf_space_used(l, 0, mid) + data_size >
4293                         BTRFS_LEAF_DATA_SIZE(root)) {
4294                         if (!extend && data_size && slot == 0) {
4295                                 split = 0;
4296                         } else if ((extend || !data_size) && slot == 0) {
4297                                 mid = 1;
4298                         } else {
4299                                 mid = slot;
4300                                 if (mid != nritems &&
4301                                     leaf_space_used(l, mid, nritems - mid) +
4302                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4303                                         if (data_size && !tried_avoid_double)
4304                                                 goto push_for_double;
4305                                         split = 2;
4306                                 }
4307                         }
4308                 }
4309         }
4310
4311         if (split == 0)
4312                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4313         else
4314                 btrfs_item_key(l, &disk_key, mid);
4315
4316         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4317                                         root->root_key.objectid,
4318                                         &disk_key, 0, l->start, 0);
4319         if (IS_ERR(right))
4320                 return PTR_ERR(right);
4321
4322         root_add_used(root, root->leafsize);
4323
4324         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4325         btrfs_set_header_bytenr(right, right->start);
4326         btrfs_set_header_generation(right, trans->transid);
4327         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4328         btrfs_set_header_owner(right, root->root_key.objectid);
4329         btrfs_set_header_level(right, 0);
4330         write_extent_buffer(right, root->fs_info->fsid,
4331                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
4332
4333         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4334                             btrfs_header_chunk_tree_uuid(right),
4335                             BTRFS_UUID_SIZE);
4336
4337         if (split == 0) {
4338                 if (mid <= slot) {
4339                         btrfs_set_header_nritems(right, 0);
4340                         insert_ptr(trans, root, path, &disk_key, right->start,
4341                                    path->slots[1] + 1, 1);
4342                         btrfs_tree_unlock(path->nodes[0]);
4343                         free_extent_buffer(path->nodes[0]);
4344                         path->nodes[0] = right;
4345                         path->slots[0] = 0;
4346                         path->slots[1] += 1;
4347                 } else {
4348                         btrfs_set_header_nritems(right, 0);
4349                         insert_ptr(trans, root, path, &disk_key, right->start,
4350                                           path->slots[1], 1);
4351                         btrfs_tree_unlock(path->nodes[0]);
4352                         free_extent_buffer(path->nodes[0]);
4353                         path->nodes[0] = right;
4354                         path->slots[0] = 0;
4355                         if (path->slots[1] == 0)
4356                                 fixup_low_keys(root, path, &disk_key, 1);
4357                 }
4358                 btrfs_mark_buffer_dirty(right);
4359                 return ret;
4360         }
4361
4362         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4363
4364         if (split == 2) {
4365                 BUG_ON(num_doubles != 0);
4366                 num_doubles++;
4367                 goto again;
4368         }
4369
4370         return 0;
4371
4372 push_for_double:
4373         push_for_double_split(trans, root, path, data_size);
4374         tried_avoid_double = 1;
4375         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4376                 return 0;
4377         goto again;
4378 }
4379
4380 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4381                                          struct btrfs_root *root,
4382                                          struct btrfs_path *path, int ins_len)
4383 {
4384         struct btrfs_key key;
4385         struct extent_buffer *leaf;
4386         struct btrfs_file_extent_item *fi;
4387         u64 extent_len = 0;
4388         u32 item_size;
4389         int ret;
4390
4391         leaf = path->nodes[0];
4392         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4393
4394         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4395                key.type != BTRFS_EXTENT_CSUM_KEY);
4396
4397         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4398                 return 0;
4399
4400         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4401         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4402                 fi = btrfs_item_ptr(leaf, path->slots[0],
4403                                     struct btrfs_file_extent_item);
4404                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4405         }
4406         btrfs_release_path(path);
4407
4408         path->keep_locks = 1;
4409         path->search_for_split = 1;
4410         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4411         path->search_for_split = 0;
4412         if (ret < 0)
4413                 goto err;
4414
4415         ret = -EAGAIN;
4416         leaf = path->nodes[0];
4417         /* if our item isn't there or got smaller, return now */
4418         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4419                 goto err;
4420
4421         /* the leaf has  changed, it now has room.  return now */
4422         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4423                 goto err;
4424
4425         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4426                 fi = btrfs_item_ptr(leaf, path->slots[0],
4427                                     struct btrfs_file_extent_item);
4428                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4429                         goto err;
4430         }
4431
4432         btrfs_set_path_blocking(path);
4433         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4434         if (ret)
4435                 goto err;
4436
4437         path->keep_locks = 0;
4438         btrfs_unlock_up_safe(path, 1);
4439         return 0;
4440 err:
4441         path->keep_locks = 0;
4442         return ret;
4443 }
4444
4445 static noinline int split_item(struct btrfs_trans_handle *trans,
4446                                struct btrfs_root *root,
4447                                struct btrfs_path *path,
4448                                struct btrfs_key *new_key,
4449                                unsigned long split_offset)
4450 {
4451         struct extent_buffer *leaf;
4452         struct btrfs_item *item;
4453         struct btrfs_item *new_item;
4454         int slot;
4455         char *buf;
4456         u32 nritems;
4457         u32 item_size;
4458         u32 orig_offset;
4459         struct btrfs_disk_key disk_key;
4460
4461         leaf = path->nodes[0];
4462         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4463
4464         btrfs_set_path_blocking(path);
4465
4466         item = btrfs_item_nr(path->slots[0]);
4467         orig_offset = btrfs_item_offset(leaf, item);
4468         item_size = btrfs_item_size(leaf, item);
4469
4470         buf = kmalloc(item_size, GFP_NOFS);
4471         if (!buf)
4472                 return -ENOMEM;
4473
4474         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4475                             path->slots[0]), item_size);
4476
4477         slot = path->slots[0] + 1;
4478         nritems = btrfs_header_nritems(leaf);
4479         if (slot != nritems) {
4480                 /* shift the items */
4481                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4482                                 btrfs_item_nr_offset(slot),
4483                                 (nritems - slot) * sizeof(struct btrfs_item));
4484         }
4485
4486         btrfs_cpu_key_to_disk(&disk_key, new_key);
4487         btrfs_set_item_key(leaf, &disk_key, slot);
4488
4489         new_item = btrfs_item_nr(slot);
4490
4491         btrfs_set_item_offset(leaf, new_item, orig_offset);
4492         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4493
4494         btrfs_set_item_offset(leaf, item,
4495                               orig_offset + item_size - split_offset);
4496         btrfs_set_item_size(leaf, item, split_offset);
4497
4498         btrfs_set_header_nritems(leaf, nritems + 1);
4499
4500         /* write the data for the start of the original item */
4501         write_extent_buffer(leaf, buf,
4502                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4503                             split_offset);
4504
4505         /* write the data for the new item */
4506         write_extent_buffer(leaf, buf + split_offset,
4507                             btrfs_item_ptr_offset(leaf, slot),
4508                             item_size - split_offset);
4509         btrfs_mark_buffer_dirty(leaf);
4510
4511         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4512         kfree(buf);
4513         return 0;
4514 }
4515
4516 /*
4517  * This function splits a single item into two items,
4518  * giving 'new_key' to the new item and splitting the
4519  * old one at split_offset (from the start of the item).
4520  *
4521  * The path may be released by this operation.  After
4522  * the split, the path is pointing to the old item.  The
4523  * new item is going to be in the same node as the old one.
4524  *
4525  * Note, the item being split must be smaller enough to live alone on
4526  * a tree block with room for one extra struct btrfs_item
4527  *
4528  * This allows us to split the item in place, keeping a lock on the
4529  * leaf the entire time.
4530  */
4531 int btrfs_split_item(struct btrfs_trans_handle *trans,
4532                      struct btrfs_root *root,
4533                      struct btrfs_path *path,
4534                      struct btrfs_key *new_key,
4535                      unsigned long split_offset)
4536 {
4537         int ret;
4538         ret = setup_leaf_for_split(trans, root, path,
4539                                    sizeof(struct btrfs_item));
4540         if (ret)
4541                 return ret;
4542
4543         ret = split_item(trans, root, path, new_key, split_offset);
4544         return ret;
4545 }
4546
4547 /*
4548  * This function duplicate a item, giving 'new_key' to the new item.
4549  * It guarantees both items live in the same tree leaf and the new item
4550  * is contiguous with the original item.
4551  *
4552  * This allows us to split file extent in place, keeping a lock on the
4553  * leaf the entire time.
4554  */
4555 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4556                          struct btrfs_root *root,
4557                          struct btrfs_path *path,
4558                          struct btrfs_key *new_key)
4559 {
4560         struct extent_buffer *leaf;
4561         int ret;
4562         u32 item_size;
4563
4564         leaf = path->nodes[0];
4565         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4566         ret = setup_leaf_for_split(trans, root, path,
4567                                    item_size + sizeof(struct btrfs_item));
4568         if (ret)
4569                 return ret;
4570
4571         path->slots[0]++;
4572         setup_items_for_insert(root, path, new_key, &item_size,
4573                                item_size, item_size +
4574                                sizeof(struct btrfs_item), 1);
4575         leaf = path->nodes[0];
4576         memcpy_extent_buffer(leaf,
4577                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4578                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4579                              item_size);
4580         return 0;
4581 }
4582
4583 /*
4584  * make the item pointed to by the path smaller.  new_size indicates
4585  * how small to make it, and from_end tells us if we just chop bytes
4586  * off the end of the item or if we shift the item to chop bytes off
4587  * the front.
4588  */
4589 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4590                          u32 new_size, int from_end)
4591 {
4592         int slot;
4593         struct extent_buffer *leaf;
4594         struct btrfs_item *item;
4595         u32 nritems;
4596         unsigned int data_end;
4597         unsigned int old_data_start;
4598         unsigned int old_size;
4599         unsigned int size_diff;
4600         int i;
4601         struct btrfs_map_token token;
4602
4603         btrfs_init_map_token(&token);
4604
4605         leaf = path->nodes[0];
4606         slot = path->slots[0];
4607
4608         old_size = btrfs_item_size_nr(leaf, slot);
4609         if (old_size == new_size)
4610                 return;
4611
4612         nritems = btrfs_header_nritems(leaf);
4613         data_end = leaf_data_end(root, leaf);
4614
4615         old_data_start = btrfs_item_offset_nr(leaf, slot);
4616
4617         size_diff = old_size - new_size;
4618
4619         BUG_ON(slot < 0);
4620         BUG_ON(slot >= nritems);
4621
4622         /*
4623          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4624          */
4625         /* first correct the data pointers */
4626         for (i = slot; i < nritems; i++) {
4627                 u32 ioff;
4628                 item = btrfs_item_nr(i);
4629
4630                 ioff = btrfs_token_item_offset(leaf, item, &token);
4631                 btrfs_set_token_item_offset(leaf, item,
4632                                             ioff + size_diff, &token);
4633         }
4634
4635         /* shift the data */
4636         if (from_end) {
4637                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4638                               data_end + size_diff, btrfs_leaf_data(leaf) +
4639                               data_end, old_data_start + new_size - data_end);
4640         } else {
4641                 struct btrfs_disk_key disk_key;
4642                 u64 offset;
4643
4644                 btrfs_item_key(leaf, &disk_key, slot);
4645
4646                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4647                         unsigned long ptr;
4648                         struct btrfs_file_extent_item *fi;
4649
4650                         fi = btrfs_item_ptr(leaf, slot,
4651                                             struct btrfs_file_extent_item);
4652                         fi = (struct btrfs_file_extent_item *)(
4653                              (unsigned long)fi - size_diff);
4654
4655                         if (btrfs_file_extent_type(leaf, fi) ==
4656                             BTRFS_FILE_EXTENT_INLINE) {
4657                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4658                                 memmove_extent_buffer(leaf, ptr,
4659                                       (unsigned long)fi,
4660                                       offsetof(struct btrfs_file_extent_item,
4661                                                  disk_bytenr));
4662                         }
4663                 }
4664
4665                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4666                               data_end + size_diff, btrfs_leaf_data(leaf) +
4667                               data_end, old_data_start - data_end);
4668
4669                 offset = btrfs_disk_key_offset(&disk_key);
4670                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4671                 btrfs_set_item_key(leaf, &disk_key, slot);
4672                 if (slot == 0)
4673                         fixup_low_keys(root, path, &disk_key, 1);
4674         }
4675
4676         item = btrfs_item_nr(slot);
4677         btrfs_set_item_size(leaf, item, new_size);
4678         btrfs_mark_buffer_dirty(leaf);
4679
4680         if (btrfs_leaf_free_space(root, leaf) < 0) {
4681                 btrfs_print_leaf(root, leaf);
4682                 BUG();
4683         }
4684 }
4685
4686 /*
4687  * make the item pointed to by the path bigger, data_size is the added size.
4688  */
4689 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4690                        u32 data_size)
4691 {
4692         int slot;
4693         struct extent_buffer *leaf;
4694         struct btrfs_item *item;
4695         u32 nritems;
4696         unsigned int data_end;
4697         unsigned int old_data;
4698         unsigned int old_size;
4699         int i;
4700         struct btrfs_map_token token;
4701
4702         btrfs_init_map_token(&token);
4703
4704         leaf = path->nodes[0];
4705
4706         nritems = btrfs_header_nritems(leaf);
4707         data_end = leaf_data_end(root, leaf);
4708
4709         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4710                 btrfs_print_leaf(root, leaf);
4711                 BUG();
4712         }
4713         slot = path->slots[0];
4714         old_data = btrfs_item_end_nr(leaf, slot);
4715
4716         BUG_ON(slot < 0);
4717         if (slot >= nritems) {
4718                 btrfs_print_leaf(root, leaf);
4719                 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4720                        slot, nritems);
4721                 BUG_ON(1);
4722         }
4723
4724         /*
4725          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4726          */
4727         /* first correct the data pointers */
4728         for (i = slot; i < nritems; i++) {
4729                 u32 ioff;
4730                 item = btrfs_item_nr(i);
4731
4732                 ioff = btrfs_token_item_offset(leaf, item, &token);
4733                 btrfs_set_token_item_offset(leaf, item,
4734                                             ioff - data_size, &token);
4735         }
4736
4737         /* shift the data */
4738         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4739                       data_end - data_size, btrfs_leaf_data(leaf) +
4740                       data_end, old_data - data_end);
4741
4742         data_end = old_data;
4743         old_size = btrfs_item_size_nr(leaf, slot);
4744         item = btrfs_item_nr(slot);
4745         btrfs_set_item_size(leaf, item, old_size + data_size);
4746         btrfs_mark_buffer_dirty(leaf);
4747
4748         if (btrfs_leaf_free_space(root, leaf) < 0) {
4749                 btrfs_print_leaf(root, leaf);
4750                 BUG();
4751         }
4752 }
4753
4754 /*
4755  * this is a helper for btrfs_insert_empty_items, the main goal here is
4756  * to save stack depth by doing the bulk of the work in a function
4757  * that doesn't call btrfs_search_slot
4758  */
4759 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4760                             struct btrfs_key *cpu_key, u32 *data_size,
4761                             u32 total_data, u32 total_size, int nr)
4762 {
4763         struct btrfs_item *item;
4764         int i;
4765         u32 nritems;
4766         unsigned int data_end;
4767         struct btrfs_disk_key disk_key;
4768         struct extent_buffer *leaf;
4769         int slot;
4770         struct btrfs_map_token token;
4771
4772         btrfs_init_map_token(&token);
4773
4774         leaf = path->nodes[0];
4775         slot = path->slots[0];
4776
4777         nritems = btrfs_header_nritems(leaf);
4778         data_end = leaf_data_end(root, leaf);
4779
4780         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4781                 btrfs_print_leaf(root, leaf);
4782                 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4783                        total_size, btrfs_leaf_free_space(root, leaf));
4784                 BUG();
4785         }
4786
4787         if (slot != nritems) {
4788                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4789
4790                 if (old_data < data_end) {
4791                         btrfs_print_leaf(root, leaf);
4792                         btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4793                                slot, old_data, data_end);
4794                         BUG_ON(1);
4795                 }
4796                 /*
4797                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4798                  */
4799                 /* first correct the data pointers */
4800                 for (i = slot; i < nritems; i++) {
4801                         u32 ioff;
4802
4803                         item = btrfs_item_nr( i);
4804                         ioff = btrfs_token_item_offset(leaf, item, &token);
4805                         btrfs_set_token_item_offset(leaf, item,
4806                                                     ioff - total_data, &token);
4807                 }
4808                 /* shift the items */
4809                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4810                               btrfs_item_nr_offset(slot),
4811                               (nritems - slot) * sizeof(struct btrfs_item));
4812
4813                 /* shift the data */
4814                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4815                               data_end - total_data, btrfs_leaf_data(leaf) +
4816                               data_end, old_data - data_end);
4817                 data_end = old_data;
4818         }
4819
4820         /* setup the item for the new data */
4821         for (i = 0; i < nr; i++) {
4822                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4823                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4824                 item = btrfs_item_nr(slot + i);
4825                 btrfs_set_token_item_offset(leaf, item,
4826                                             data_end - data_size[i], &token);
4827                 data_end -= data_size[i];
4828                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4829         }
4830
4831         btrfs_set_header_nritems(leaf, nritems + nr);
4832
4833         if (slot == 0) {
4834                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4835                 fixup_low_keys(root, path, &disk_key, 1);
4836         }
4837         btrfs_unlock_up_safe(path, 1);
4838         btrfs_mark_buffer_dirty(leaf);
4839
4840         if (btrfs_leaf_free_space(root, leaf) < 0) {
4841                 btrfs_print_leaf(root, leaf);
4842                 BUG();
4843         }
4844 }
4845
4846 /*
4847  * Given a key and some data, insert items into the tree.
4848  * This does all the path init required, making room in the tree if needed.
4849  */
4850 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4851                             struct btrfs_root *root,
4852                             struct btrfs_path *path,
4853                             struct btrfs_key *cpu_key, u32 *data_size,
4854                             int nr)
4855 {
4856         int ret = 0;
4857         int slot;
4858         int i;
4859         u32 total_size = 0;
4860         u32 total_data = 0;
4861
4862         for (i = 0; i < nr; i++)
4863                 total_data += data_size[i];
4864
4865         total_size = total_data + (nr * sizeof(struct btrfs_item));
4866         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4867         if (ret == 0)
4868                 return -EEXIST;
4869         if (ret < 0)
4870                 return ret;
4871
4872         slot = path->slots[0];
4873         BUG_ON(slot < 0);
4874
4875         setup_items_for_insert(root, path, cpu_key, data_size,
4876                                total_data, total_size, nr);
4877         return 0;
4878 }
4879
4880 /*
4881  * Given a key and some data, insert an item into the tree.
4882  * This does all the path init required, making room in the tree if needed.
4883  */
4884 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4885                       *root, struct btrfs_key *cpu_key, void *data, u32
4886                       data_size)
4887 {
4888         int ret = 0;
4889         struct btrfs_path *path;
4890         struct extent_buffer *leaf;
4891         unsigned long ptr;
4892
4893         path = btrfs_alloc_path();
4894         if (!path)
4895                 return -ENOMEM;
4896         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4897         if (!ret) {
4898                 leaf = path->nodes[0];
4899                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4900                 write_extent_buffer(leaf, data, ptr, data_size);
4901                 btrfs_mark_buffer_dirty(leaf);
4902         }
4903         btrfs_free_path(path);
4904         return ret;
4905 }
4906
4907 /*
4908  * delete the pointer from a given node.
4909  *
4910  * the tree should have been previously balanced so the deletion does not
4911  * empty a node.
4912  */
4913 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4914                     int level, int slot)
4915 {
4916         struct extent_buffer *parent = path->nodes[level];
4917         u32 nritems;
4918         int ret;
4919
4920         nritems = btrfs_header_nritems(parent);
4921         if (slot != nritems - 1) {
4922                 if (level)
4923                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4924                                              slot + 1, nritems - slot - 1);
4925                 memmove_extent_buffer(parent,
4926                               btrfs_node_key_ptr_offset(slot),
4927                               btrfs_node_key_ptr_offset(slot + 1),
4928                               sizeof(struct btrfs_key_ptr) *
4929                               (nritems - slot - 1));
4930         } else if (level) {
4931                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4932                                               MOD_LOG_KEY_REMOVE, GFP_NOFS);
4933                 BUG_ON(ret < 0);
4934         }
4935
4936         nritems--;
4937         btrfs_set_header_nritems(parent, nritems);
4938         if (nritems == 0 && parent == root->node) {
4939                 BUG_ON(btrfs_header_level(root->node) != 1);
4940                 /* just turn the root into a leaf and break */
4941                 btrfs_set_header_level(root->node, 0);
4942         } else if (slot == 0) {
4943                 struct btrfs_disk_key disk_key;
4944
4945                 btrfs_node_key(parent, &disk_key, 0);
4946                 fixup_low_keys(root, path, &disk_key, level + 1);
4947         }
4948         btrfs_mark_buffer_dirty(parent);
4949 }
4950
4951 /*
4952  * a helper function to delete the leaf pointed to by path->slots[1] and
4953  * path->nodes[1].
4954  *
4955  * This deletes the pointer in path->nodes[1] and frees the leaf
4956  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4957  *
4958  * The path must have already been setup for deleting the leaf, including
4959  * all the proper balancing.  path->nodes[1] must be locked.
4960  */
4961 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4962                                     struct btrfs_root *root,
4963                                     struct btrfs_path *path,
4964                                     struct extent_buffer *leaf)
4965 {
4966         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4967         del_ptr(root, path, 1, path->slots[1]);
4968
4969         /*
4970          * btrfs_free_extent is expensive, we want to make sure we
4971          * aren't holding any locks when we call it
4972          */
4973         btrfs_unlock_up_safe(path, 0);
4974
4975         root_sub_used(root, leaf->len);
4976
4977         extent_buffer_get(leaf);
4978         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4979         free_extent_buffer_stale(leaf);
4980 }
4981 /*
4982  * delete the item at the leaf level in path.  If that empties
4983  * the leaf, remove it from the tree
4984  */
4985 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4986                     struct btrfs_path *path, int slot, int nr)
4987 {
4988         struct extent_buffer *leaf;
4989         struct btrfs_item *item;
4990         int last_off;
4991         int dsize = 0;
4992         int ret = 0;
4993         int wret;
4994         int i;
4995         u32 nritems;
4996         struct btrfs_map_token token;
4997
4998         btrfs_init_map_token(&token);
4999
5000         leaf = path->nodes[0];
5001         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
5002
5003         for (i = 0; i < nr; i++)
5004                 dsize += btrfs_item_size_nr(leaf, slot + i);
5005
5006         nritems = btrfs_header_nritems(leaf);
5007
5008         if (slot + nr != nritems) {
5009                 int data_end = leaf_data_end(root, leaf);
5010
5011                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
5012                               data_end + dsize,
5013                               btrfs_leaf_data(leaf) + data_end,
5014                               last_off - data_end);
5015
5016                 for (i = slot + nr; i < nritems; i++) {
5017                         u32 ioff;
5018
5019                         item = btrfs_item_nr(i);
5020                         ioff = btrfs_token_item_offset(leaf, item, &token);
5021                         btrfs_set_token_item_offset(leaf, item,
5022                                                     ioff + dsize, &token);
5023                 }
5024
5025                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5026                               btrfs_item_nr_offset(slot + nr),
5027                               sizeof(struct btrfs_item) *
5028                               (nritems - slot - nr));
5029         }
5030         btrfs_set_header_nritems(leaf, nritems - nr);
5031         nritems -= nr;
5032
5033         /* delete the leaf if we've emptied it */
5034         if (nritems == 0) {
5035                 if (leaf == root->node) {
5036                         btrfs_set_header_level(leaf, 0);
5037                 } else {
5038                         btrfs_set_path_blocking(path);
5039                         clean_tree_block(trans, root, leaf);
5040                         btrfs_del_leaf(trans, root, path, leaf);
5041                 }
5042         } else {
5043                 int used = leaf_space_used(leaf, 0, nritems);
5044                 if (slot == 0) {
5045                         struct btrfs_disk_key disk_key;
5046
5047                         btrfs_item_key(leaf, &disk_key, 0);
5048                         fixup_low_keys(root, path, &disk_key, 1);
5049                 }
5050
5051                 /* delete the leaf if it is mostly empty */
5052                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5053                         /* push_leaf_left fixes the path.
5054                          * make sure the path still points to our leaf
5055                          * for possible call to del_ptr below
5056                          */
5057                         slot = path->slots[1];
5058                         extent_buffer_get(leaf);
5059
5060                         btrfs_set_path_blocking(path);
5061                         wret = push_leaf_left(trans, root, path, 1, 1,
5062                                               1, (u32)-1);
5063                         if (wret < 0 && wret != -ENOSPC)
5064                                 ret = wret;
5065
5066                         if (path->nodes[0] == leaf &&
5067                             btrfs_header_nritems(leaf)) {
5068                                 wret = push_leaf_right(trans, root, path, 1,
5069                                                        1, 1, 0);
5070                                 if (wret < 0 && wret != -ENOSPC)
5071                                         ret = wret;
5072                         }
5073
5074                         if (btrfs_header_nritems(leaf) == 0) {
5075                                 path->slots[1] = slot;
5076                                 btrfs_del_leaf(trans, root, path, leaf);
5077                                 free_extent_buffer(leaf);
5078                                 ret = 0;
5079                         } else {
5080                                 /* if we're still in the path, make sure
5081                                  * we're dirty.  Otherwise, one of the
5082                                  * push_leaf functions must have already
5083                                  * dirtied this buffer
5084                                  */
5085                                 if (path->nodes[0] == leaf)
5086                                         btrfs_mark_buffer_dirty(leaf);
5087                                 free_extent_buffer(leaf);
5088                         }
5089                 } else {
5090                         btrfs_mark_buffer_dirty(leaf);
5091                 }
5092         }
5093         return ret;
5094 }
5095
5096 /*
5097  * search the tree again to find a leaf with lesser keys
5098  * returns 0 if it found something or 1 if there are no lesser leaves.
5099  * returns < 0 on io errors.
5100  *
5101  * This may release the path, and so you may lose any locks held at the
5102  * time you call it.
5103  */
5104 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5105 {
5106         struct btrfs_key key;
5107         struct btrfs_disk_key found_key;
5108         int ret;
5109
5110         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5111
5112         if (key.offset > 0) {
5113                 key.offset--;
5114         } else if (key.type > 0) {
5115                 key.type--;
5116                 key.offset = (u64)-1;
5117         } else if (key.objectid > 0) {
5118                 key.objectid--;
5119                 key.type = (u8)-1;
5120                 key.offset = (u64)-1;
5121         } else {
5122                 return 1;
5123         }
5124
5125         btrfs_release_path(path);
5126         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5127         if (ret < 0)
5128                 return ret;
5129         btrfs_item_key(path->nodes[0], &found_key, 0);
5130         ret = comp_keys(&found_key, &key);
5131         if (ret < 0)
5132                 return 0;
5133         return 1;
5134 }
5135
5136 /*
5137  * A helper function to walk down the tree starting at min_key, and looking
5138  * for nodes or leaves that are have a minimum transaction id.
5139  * This is used by the btree defrag code, and tree logging
5140  *
5141  * This does not cow, but it does stuff the starting key it finds back
5142  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5143  * key and get a writable path.
5144  *
5145  * This does lock as it descends, and path->keep_locks should be set
5146  * to 1 by the caller.
5147  *
5148  * This honors path->lowest_level to prevent descent past a given level
5149  * of the tree.
5150  *
5151  * min_trans indicates the oldest transaction that you are interested
5152  * in walking through.  Any nodes or leaves older than min_trans are
5153  * skipped over (without reading them).
5154  *
5155  * returns zero if something useful was found, < 0 on error and 1 if there
5156  * was nothing in the tree that matched the search criteria.
5157  */
5158 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5159                          struct btrfs_path *path,
5160                          u64 min_trans)
5161 {
5162         struct extent_buffer *cur;
5163         struct btrfs_key found_key;
5164         int slot;
5165         int sret;
5166         u32 nritems;
5167         int level;
5168         int ret = 1;
5169
5170         WARN_ON(!path->keep_locks);
5171 again:
5172         cur = btrfs_read_lock_root_node(root);
5173         level = btrfs_header_level(cur);
5174         WARN_ON(path->nodes[level]);
5175         path->nodes[level] = cur;
5176         path->locks[level] = BTRFS_READ_LOCK;
5177
5178         if (btrfs_header_generation(cur) < min_trans) {
5179                 ret = 1;
5180                 goto out;
5181         }
5182         while (1) {
5183                 nritems = btrfs_header_nritems(cur);
5184                 level = btrfs_header_level(cur);
5185                 sret = bin_search(cur, min_key, level, &slot);
5186
5187                 /* at the lowest level, we're done, setup the path and exit */
5188                 if (level == path->lowest_level) {
5189                         if (slot >= nritems)
5190                                 goto find_next_key;
5191                         ret = 0;
5192                         path->slots[level] = slot;
5193                         btrfs_item_key_to_cpu(cur, &found_key, slot);
5194                         goto out;
5195                 }
5196                 if (sret && slot > 0)
5197                         slot--;
5198                 /*
5199                  * check this node pointer against the min_trans parameters.
5200                  * If it is too old, old, skip to the next one.
5201                  */
5202                 while (slot < nritems) {
5203                         u64 gen;
5204
5205                         gen = btrfs_node_ptr_generation(cur, slot);
5206                         if (gen < min_trans) {
5207                                 slot++;
5208                                 continue;
5209                         }
5210                         break;
5211                 }
5212 find_next_key:
5213                 /*
5214                  * we didn't find a candidate key in this node, walk forward
5215                  * and find another one
5216                  */
5217                 if (slot >= nritems) {
5218                         path->slots[level] = slot;
5219                         btrfs_set_path_blocking(path);
5220                         sret = btrfs_find_next_key(root, path, min_key, level,
5221                                                   min_trans);
5222                         if (sret == 0) {
5223                                 btrfs_release_path(path);
5224                                 goto again;
5225                         } else {
5226                                 goto out;
5227                         }
5228                 }
5229                 /* save our key for returning back */
5230                 btrfs_node_key_to_cpu(cur, &found_key, slot);
5231                 path->slots[level] = slot;
5232                 if (level == path->lowest_level) {
5233                         ret = 0;
5234                         unlock_up(path, level, 1, 0, NULL);
5235                         goto out;
5236                 }
5237                 btrfs_set_path_blocking(path);
5238                 cur = read_node_slot(root, cur, slot);
5239                 BUG_ON(!cur); /* -ENOMEM */
5240
5241                 btrfs_tree_read_lock(cur);
5242
5243                 path->locks[level - 1] = BTRFS_READ_LOCK;
5244                 path->nodes[level - 1] = cur;
5245                 unlock_up(path, level, 1, 0, NULL);
5246                 btrfs_clear_path_blocking(path, NULL, 0);
5247         }
5248 out:
5249         if (ret == 0)
5250                 memcpy(min_key, &found_key, sizeof(found_key));
5251         btrfs_set_path_blocking(path);
5252         return ret;
5253 }
5254
5255 static void tree_move_down(struct btrfs_root *root,
5256                            struct btrfs_path *path,
5257                            int *level, int root_level)
5258 {
5259         BUG_ON(*level == 0);
5260         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5261                                         path->slots[*level]);
5262         path->slots[*level - 1] = 0;
5263         (*level)--;
5264 }
5265
5266 static int tree_move_next_or_upnext(struct btrfs_root *root,
5267                                     struct btrfs_path *path,
5268                                     int *level, int root_level)
5269 {
5270         int ret = 0;
5271         int nritems;
5272         nritems = btrfs_header_nritems(path->nodes[*level]);
5273
5274         path->slots[*level]++;
5275
5276         while (path->slots[*level] >= nritems) {
5277                 if (*level == root_level)
5278                         return -1;
5279
5280                 /* move upnext */
5281                 path->slots[*level] = 0;
5282                 free_extent_buffer(path->nodes[*level]);
5283                 path->nodes[*level] = NULL;
5284                 (*level)++;
5285                 path->slots[*level]++;
5286
5287                 nritems = btrfs_header_nritems(path->nodes[*level]);
5288                 ret = 1;
5289         }
5290         return ret;
5291 }
5292
5293 /*
5294  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5295  * or down.
5296  */
5297 static int tree_advance(struct btrfs_root *root,
5298                         struct btrfs_path *path,
5299                         int *level, int root_level,
5300                         int allow_down,
5301                         struct btrfs_key *key)
5302 {
5303         int ret;
5304
5305         if (*level == 0 || !allow_down) {
5306                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5307         } else {
5308                 tree_move_down(root, path, level, root_level);
5309                 ret = 0;
5310         }
5311         if (ret >= 0) {
5312                 if (*level == 0)
5313                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5314                                         path->slots[*level]);
5315                 else
5316                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5317                                         path->slots[*level]);
5318         }
5319         return ret;
5320 }
5321
5322 static int tree_compare_item(struct btrfs_root *left_root,
5323                              struct btrfs_path *left_path,
5324                              struct btrfs_path *right_path,
5325                              char *tmp_buf)
5326 {
5327         int cmp;
5328         int len1, len2;
5329         unsigned long off1, off2;
5330
5331         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5332         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5333         if (len1 != len2)
5334                 return 1;
5335
5336         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5337         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5338                                 right_path->slots[0]);
5339
5340         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5341
5342         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5343         if (cmp)
5344                 return 1;
5345         return 0;
5346 }
5347
5348 #define ADVANCE 1
5349 #define ADVANCE_ONLY_NEXT -1
5350
5351 /*
5352  * This function compares two trees and calls the provided callback for
5353  * every changed/new/deleted item it finds.
5354  * If shared tree blocks are encountered, whole subtrees are skipped, making
5355  * the compare pretty fast on snapshotted subvolumes.
5356  *
5357  * This currently works on commit roots only. As commit roots are read only,
5358  * we don't do any locking. The commit roots are protected with transactions.
5359  * Transactions are ended and rejoined when a commit is tried in between.
5360  *
5361  * This function checks for modifications done to the trees while comparing.
5362  * If it detects a change, it aborts immediately.
5363  */
5364 int btrfs_compare_trees(struct btrfs_root *left_root,
5365                         struct btrfs_root *right_root,
5366                         btrfs_changed_cb_t changed_cb, void *ctx)
5367 {
5368         int ret;
5369         int cmp;
5370         struct btrfs_path *left_path = NULL;
5371         struct btrfs_path *right_path = NULL;
5372         struct btrfs_key left_key;
5373         struct btrfs_key right_key;
5374         char *tmp_buf = NULL;
5375         int left_root_level;
5376         int right_root_level;
5377         int left_level;
5378         int right_level;
5379         int left_end_reached;
5380         int right_end_reached;
5381         int advance_left;
5382         int advance_right;
5383         u64 left_blockptr;
5384         u64 right_blockptr;
5385         u64 left_gen;
5386         u64 right_gen;
5387
5388         left_path = btrfs_alloc_path();
5389         if (!left_path) {
5390                 ret = -ENOMEM;
5391                 goto out;
5392         }
5393         right_path = btrfs_alloc_path();
5394         if (!right_path) {
5395                 ret = -ENOMEM;
5396                 goto out;
5397         }
5398
5399         tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5400         if (!tmp_buf) {
5401                 ret = -ENOMEM;
5402                 goto out;
5403         }
5404
5405         left_path->search_commit_root = 1;
5406         left_path->skip_locking = 1;
5407         right_path->search_commit_root = 1;
5408         right_path->skip_locking = 1;
5409
5410         /*
5411          * Strategy: Go to the first items of both trees. Then do
5412          *
5413          * If both trees are at level 0
5414          *   Compare keys of current items
5415          *     If left < right treat left item as new, advance left tree
5416          *       and repeat
5417          *     If left > right treat right item as deleted, advance right tree
5418          *       and repeat
5419          *     If left == right do deep compare of items, treat as changed if
5420          *       needed, advance both trees and repeat
5421          * If both trees are at the same level but not at level 0
5422          *   Compare keys of current nodes/leafs
5423          *     If left < right advance left tree and repeat
5424          *     If left > right advance right tree and repeat
5425          *     If left == right compare blockptrs of the next nodes/leafs
5426          *       If they match advance both trees but stay at the same level
5427          *         and repeat
5428          *       If they don't match advance both trees while allowing to go
5429          *         deeper and repeat
5430          * If tree levels are different
5431          *   Advance the tree that needs it and repeat
5432          *
5433          * Advancing a tree means:
5434          *   If we are at level 0, try to go to the next slot. If that's not
5435          *   possible, go one level up and repeat. Stop when we found a level
5436          *   where we could go to the next slot. We may at this point be on a
5437          *   node or a leaf.
5438          *
5439          *   If we are not at level 0 and not on shared tree blocks, go one
5440          *   level deeper.
5441          *
5442          *   If we are not at level 0 and on shared tree blocks, go one slot to
5443          *   the right if possible or go up and right.
5444          */
5445
5446         down_read(&left_root->fs_info->commit_root_sem);
5447         left_level = btrfs_header_level(left_root->commit_root);
5448         left_root_level = left_level;
5449         left_path->nodes[left_level] = left_root->commit_root;
5450         extent_buffer_get(left_path->nodes[left_level]);
5451
5452         right_level = btrfs_header_level(right_root->commit_root);
5453         right_root_level = right_level;
5454         right_path->nodes[right_level] = right_root->commit_root;
5455         extent_buffer_get(right_path->nodes[right_level]);
5456         up_read(&left_root->fs_info->commit_root_sem);
5457
5458         if (left_level == 0)
5459                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5460                                 &left_key, left_path->slots[left_level]);
5461         else
5462                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5463                                 &left_key, left_path->slots[left_level]);
5464         if (right_level == 0)
5465                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5466                                 &right_key, right_path->slots[right_level]);
5467         else
5468                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5469                                 &right_key, right_path->slots[right_level]);
5470
5471         left_end_reached = right_end_reached = 0;
5472         advance_left = advance_right = 0;
5473
5474         while (1) {
5475                 if (advance_left && !left_end_reached) {
5476                         ret = tree_advance(left_root, left_path, &left_level,
5477                                         left_root_level,
5478                                         advance_left != ADVANCE_ONLY_NEXT,
5479                                         &left_key);
5480                         if (ret < 0)
5481                                 left_end_reached = ADVANCE;
5482                         advance_left = 0;
5483                 }
5484                 if (advance_right && !right_end_reached) {
5485                         ret = tree_advance(right_root, right_path, &right_level,
5486                                         right_root_level,
5487                                         advance_right != ADVANCE_ONLY_NEXT,
5488                                         &right_key);
5489                         if (ret < 0)
5490                                 right_end_reached = ADVANCE;
5491                         advance_right = 0;
5492                 }
5493
5494                 if (left_end_reached && right_end_reached) {
5495                         ret = 0;
5496                         goto out;
5497                 } else if (left_end_reached) {
5498                         if (right_level == 0) {
5499                                 ret = changed_cb(left_root, right_root,
5500                                                 left_path, right_path,
5501                                                 &right_key,
5502                                                 BTRFS_COMPARE_TREE_DELETED,
5503                                                 ctx);
5504                                 if (ret < 0)
5505                                         goto out;
5506                         }
5507                         advance_right = ADVANCE;
5508                         continue;
5509                 } else if (right_end_reached) {
5510                         if (left_level == 0) {
5511                                 ret = changed_cb(left_root, right_root,
5512                                                 left_path, right_path,
5513                                                 &left_key,
5514                                                 BTRFS_COMPARE_TREE_NEW,
5515                                                 ctx);
5516                                 if (ret < 0)
5517                                         goto out;
5518                         }
5519                         advance_left = ADVANCE;
5520                         continue;
5521                 }
5522
5523                 if (left_level == 0 && right_level == 0) {
5524                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5525                         if (cmp < 0) {
5526                                 ret = changed_cb(left_root, right_root,
5527                                                 left_path, right_path,
5528                                                 &left_key,
5529                                                 BTRFS_COMPARE_TREE_NEW,
5530                                                 ctx);
5531                                 if (ret < 0)
5532                                         goto out;
5533                                 advance_left = ADVANCE;
5534                         } else if (cmp > 0) {
5535                                 ret = changed_cb(left_root, right_root,
5536                                                 left_path, right_path,
5537                                                 &right_key,
5538                                                 BTRFS_COMPARE_TREE_DELETED,
5539                                                 ctx);
5540                                 if (ret < 0)
5541                                         goto out;
5542                                 advance_right = ADVANCE;
5543                         } else {
5544                                 enum btrfs_compare_tree_result cmp;
5545
5546                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5547                                 ret = tree_compare_item(left_root, left_path,
5548                                                 right_path, tmp_buf);
5549                                 if (ret)
5550                                         cmp = BTRFS_COMPARE_TREE_CHANGED;
5551                                 else
5552                                         cmp = BTRFS_COMPARE_TREE_SAME;
5553                                 ret = changed_cb(left_root, right_root,
5554                                                  left_path, right_path,
5555                                                  &left_key, cmp, ctx);
5556                                 if (ret < 0)
5557                                         goto out;
5558                                 advance_left = ADVANCE;
5559                                 advance_right = ADVANCE;
5560                         }
5561                 } else if (left_level == right_level) {
5562                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5563                         if (cmp < 0) {
5564                                 advance_left = ADVANCE;
5565                         } else if (cmp > 0) {
5566                                 advance_right = ADVANCE;
5567                         } else {
5568                                 left_blockptr = btrfs_node_blockptr(
5569                                                 left_path->nodes[left_level],
5570                                                 left_path->slots[left_level]);
5571                                 right_blockptr = btrfs_node_blockptr(
5572                                                 right_path->nodes[right_level],
5573                                                 right_path->slots[right_level]);
5574                                 left_gen = btrfs_node_ptr_generation(
5575                                                 left_path->nodes[left_level],
5576                                                 left_path->slots[left_level]);
5577                                 right_gen = btrfs_node_ptr_generation(
5578                                                 right_path->nodes[right_level],
5579                                                 right_path->slots[right_level]);
5580                                 if (left_blockptr == right_blockptr &&
5581                                     left_gen == right_gen) {
5582                                         /*
5583                                          * As we're on a shared block, don't
5584                                          * allow to go deeper.
5585                                          */
5586                                         advance_left = ADVANCE_ONLY_NEXT;
5587                                         advance_right = ADVANCE_ONLY_NEXT;
5588                                 } else {
5589                                         advance_left = ADVANCE;
5590                                         advance_right = ADVANCE;
5591                                 }
5592                         }
5593                 } else if (left_level < right_level) {
5594                         advance_right = ADVANCE;
5595                 } else {
5596                         advance_left = ADVANCE;
5597                 }
5598         }
5599
5600 out:
5601         btrfs_free_path(left_path);
5602         btrfs_free_path(right_path);
5603         kfree(tmp_buf);
5604         return ret;
5605 }
5606
5607 /*
5608  * this is similar to btrfs_next_leaf, but does not try to preserve
5609  * and fixup the path.  It looks for and returns the next key in the
5610  * tree based on the current path and the min_trans parameters.
5611  *
5612  * 0 is returned if another key is found, < 0 if there are any errors
5613  * and 1 is returned if there are no higher keys in the tree
5614  *
5615  * path->keep_locks should be set to 1 on the search made before
5616  * calling this function.
5617  */
5618 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5619                         struct btrfs_key *key, int level, u64 min_trans)
5620 {
5621         int slot;
5622         struct extent_buffer *c;
5623
5624         WARN_ON(!path->keep_locks);
5625         while (level < BTRFS_MAX_LEVEL) {
5626                 if (!path->nodes[level])
5627                         return 1;
5628
5629                 slot = path->slots[level] + 1;
5630                 c = path->nodes[level];
5631 next:
5632                 if (slot >= btrfs_header_nritems(c)) {
5633                         int ret;
5634                         int orig_lowest;
5635                         struct btrfs_key cur_key;
5636                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5637                             !path->nodes[level + 1])
5638                                 return 1;
5639
5640                         if (path->locks[level + 1]) {
5641                                 level++;
5642                                 continue;
5643                         }
5644
5645                         slot = btrfs_header_nritems(c) - 1;
5646                         if (level == 0)
5647                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5648                         else
5649                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5650
5651                         orig_lowest = path->lowest_level;
5652                         btrfs_release_path(path);
5653                         path->lowest_level = level;
5654                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5655                                                 0, 0);
5656                         path->lowest_level = orig_lowest;
5657                         if (ret < 0)
5658                                 return ret;
5659
5660                         c = path->nodes[level];
5661                         slot = path->slots[level];
5662                         if (ret == 0)
5663                                 slot++;
5664                         goto next;
5665                 }
5666
5667                 if (level == 0)
5668                         btrfs_item_key_to_cpu(c, key, slot);
5669                 else {
5670                         u64 gen = btrfs_node_ptr_generation(c, slot);
5671
5672                         if (gen < min_trans) {
5673                                 slot++;
5674                                 goto next;
5675                         }
5676                         btrfs_node_key_to_cpu(c, key, slot);
5677                 }
5678                 return 0;
5679         }
5680         return 1;
5681 }
5682
5683 /*
5684  * search the tree again to find a leaf with greater keys
5685  * returns 0 if it found something or 1 if there are no greater leaves.
5686  * returns < 0 on io errors.
5687  */
5688 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5689 {
5690         return btrfs_next_old_leaf(root, path, 0);
5691 }
5692
5693 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5694                         u64 time_seq)
5695 {
5696         int slot;
5697         int level;
5698         struct extent_buffer *c;
5699         struct extent_buffer *next;
5700         struct btrfs_key key;
5701         u32 nritems;
5702         int ret;
5703         int old_spinning = path->leave_spinning;
5704         int next_rw_lock = 0;
5705
5706         nritems = btrfs_header_nritems(path->nodes[0]);
5707         if (nritems == 0)
5708                 return 1;
5709
5710         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5711 again:
5712         level = 1;
5713         next = NULL;
5714         next_rw_lock = 0;
5715         btrfs_release_path(path);
5716
5717         path->keep_locks = 1;
5718         path->leave_spinning = 1;
5719
5720         if (time_seq)
5721                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5722         else
5723                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5724         path->keep_locks = 0;
5725
5726         if (ret < 0)
5727                 return ret;
5728
5729         nritems = btrfs_header_nritems(path->nodes[0]);
5730         /*
5731          * by releasing the path above we dropped all our locks.  A balance
5732          * could have added more items next to the key that used to be
5733          * at the very end of the block.  So, check again here and
5734          * advance the path if there are now more items available.
5735          */
5736         if (nritems > 0 && path->slots[0] < nritems - 1) {
5737                 if (ret == 0)
5738                         path->slots[0]++;
5739                 ret = 0;
5740                 goto done;
5741         }
5742
5743         while (level < BTRFS_MAX_LEVEL) {
5744                 if (!path->nodes[level]) {
5745                         ret = 1;
5746                         goto done;
5747                 }
5748
5749                 slot = path->slots[level] + 1;
5750                 c = path->nodes[level];
5751                 if (slot >= btrfs_header_nritems(c)) {
5752                         level++;
5753                         if (level == BTRFS_MAX_LEVEL) {
5754                                 ret = 1;
5755                                 goto done;
5756                         }
5757                         continue;
5758                 }
5759
5760                 if (next) {
5761                         btrfs_tree_unlock_rw(next, next_rw_lock);
5762                         free_extent_buffer(next);
5763                 }
5764
5765                 next = c;
5766                 next_rw_lock = path->locks[level];
5767                 ret = read_block_for_search(NULL, root, path, &next, level,
5768                                             slot, &key, 0);
5769                 if (ret == -EAGAIN)
5770                         goto again;
5771
5772                 if (ret < 0) {
5773                         btrfs_release_path(path);
5774                         goto done;
5775                 }
5776
5777                 if (!path->skip_locking) {
5778                         ret = btrfs_try_tree_read_lock(next);
5779                         if (!ret && time_seq) {
5780                                 /*
5781                                  * If we don't get the lock, we may be racing
5782                                  * with push_leaf_left, holding that lock while
5783                                  * itself waiting for the leaf we've currently
5784                                  * locked. To solve this situation, we give up
5785                                  * on our lock and cycle.
5786                                  */
5787                                 free_extent_buffer(next);
5788                                 btrfs_release_path(path);
5789                                 cond_resched();
5790                                 goto again;
5791                         }
5792                         if (!ret) {
5793                                 btrfs_set_path_blocking(path);
5794                                 btrfs_tree_read_lock(next);
5795                                 btrfs_clear_path_blocking(path, next,
5796                                                           BTRFS_READ_LOCK);
5797                         }
5798                         next_rw_lock = BTRFS_READ_LOCK;
5799                 }
5800                 break;
5801         }
5802         path->slots[level] = slot;
5803         while (1) {
5804                 level--;
5805                 c = path->nodes[level];
5806                 if (path->locks[level])
5807                         btrfs_tree_unlock_rw(c, path->locks[level]);
5808
5809                 free_extent_buffer(c);
5810                 path->nodes[level] = next;
5811                 path->slots[level] = 0;
5812                 if (!path->skip_locking)
5813                         path->locks[level] = next_rw_lock;
5814                 if (!level)
5815                         break;
5816
5817                 ret = read_block_for_search(NULL, root, path, &next, level,
5818                                             0, &key, 0);
5819                 if (ret == -EAGAIN)
5820                         goto again;
5821
5822                 if (ret < 0) {
5823                         btrfs_release_path(path);
5824                         goto done;
5825                 }
5826
5827                 if (!path->skip_locking) {
5828                         ret = btrfs_try_tree_read_lock(next);
5829                         if (!ret) {
5830                                 btrfs_set_path_blocking(path);
5831                                 btrfs_tree_read_lock(next);
5832                                 btrfs_clear_path_blocking(path, next,
5833                                                           BTRFS_READ_LOCK);
5834                         }
5835                         next_rw_lock = BTRFS_READ_LOCK;
5836                 }
5837         }
5838         ret = 0;
5839 done:
5840         unlock_up(path, 0, 1, 0, NULL);
5841         path->leave_spinning = old_spinning;
5842         if (!old_spinning)
5843                 btrfs_set_path_blocking(path);
5844
5845         return ret;
5846 }
5847
5848 /*
5849  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5850  * searching until it gets past min_objectid or finds an item of 'type'
5851  *
5852  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5853  */
5854 int btrfs_previous_item(struct btrfs_root *root,
5855                         struct btrfs_path *path, u64 min_objectid,
5856                         int type)
5857 {
5858         struct btrfs_key found_key;
5859         struct extent_buffer *leaf;
5860         u32 nritems;
5861         int ret;
5862
5863         while (1) {
5864                 if (path->slots[0] == 0) {
5865                         btrfs_set_path_blocking(path);
5866                         ret = btrfs_prev_leaf(root, path);
5867                         if (ret != 0)
5868                                 return ret;
5869                 } else {
5870                         path->slots[0]--;
5871                 }
5872                 leaf = path->nodes[0];
5873                 nritems = btrfs_header_nritems(leaf);
5874                 if (nritems == 0)
5875                         return 1;
5876                 if (path->slots[0] == nritems)
5877                         path->slots[0]--;
5878
5879                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5880                 if (found_key.objectid < min_objectid)
5881                         break;
5882                 if (found_key.type == type)
5883                         return 0;
5884                 if (found_key.objectid == min_objectid &&
5885                     found_key.type < type)
5886                         break;
5887         }
5888         return 1;
5889 }
5890
5891 /*
5892  * search in extent tree to find a previous Metadata/Data extent item with
5893  * min objecitd.
5894  *
5895  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5896  */
5897 int btrfs_previous_extent_item(struct btrfs_root *root,
5898                         struct btrfs_path *path, u64 min_objectid)
5899 {
5900         struct btrfs_key found_key;
5901         struct extent_buffer *leaf;
5902         u32 nritems;
5903         int ret;
5904
5905         while (1) {
5906                 if (path->slots[0] == 0) {
5907                         btrfs_set_path_blocking(path);
5908                         ret = btrfs_prev_leaf(root, path);
5909                         if (ret != 0)
5910                                 return ret;
5911                 } else {
5912                         path->slots[0]--;
5913                 }
5914                 leaf = path->nodes[0];
5915                 nritems = btrfs_header_nritems(leaf);
5916                 if (nritems == 0)
5917                         return 1;
5918                 if (path->slots[0] == nritems)
5919                         path->slots[0]--;
5920
5921                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5922                 if (found_key.objectid < min_objectid)
5923                         break;
5924                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5925                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5926                         return 0;
5927                 if (found_key.objectid == min_objectid &&
5928                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5929                         break;
5930         }
5931         return 1;
5932 }