Btrfs: merge inode_list in __merge_refs
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41                     struct btrfs_path *path, int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43                                  struct extent_buffer *eb);
44 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
45                                           u32 blocksize, u64 parent_transid,
46                                           u64 time_seq);
47 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
48                                                 u64 bytenr, u32 blocksize,
49                                                 u64 time_seq);
50
51 struct btrfs_path *btrfs_alloc_path(void)
52 {
53         struct btrfs_path *path;
54         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
55         return path;
56 }
57
58 /*
59  * set all locked nodes in the path to blocking locks.  This should
60  * be done before scheduling
61  */
62 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
63 {
64         int i;
65         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
66                 if (!p->nodes[i] || !p->locks[i])
67                         continue;
68                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
69                 if (p->locks[i] == BTRFS_READ_LOCK)
70                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
71                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
72                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
73         }
74 }
75
76 /*
77  * reset all the locked nodes in the patch to spinning locks.
78  *
79  * held is used to keep lockdep happy, when lockdep is enabled
80  * we set held to a blocking lock before we go around and
81  * retake all the spinlocks in the path.  You can safely use NULL
82  * for held
83  */
84 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
85                                         struct extent_buffer *held, int held_rw)
86 {
87         int i;
88
89 #ifdef CONFIG_DEBUG_LOCK_ALLOC
90         /* lockdep really cares that we take all of these spinlocks
91          * in the right order.  If any of the locks in the path are not
92          * currently blocking, it is going to complain.  So, make really
93          * really sure by forcing the path to blocking before we clear
94          * the path blocking.
95          */
96         if (held) {
97                 btrfs_set_lock_blocking_rw(held, held_rw);
98                 if (held_rw == BTRFS_WRITE_LOCK)
99                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
100                 else if (held_rw == BTRFS_READ_LOCK)
101                         held_rw = BTRFS_READ_LOCK_BLOCKING;
102         }
103         btrfs_set_path_blocking(p);
104 #endif
105
106         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
107                 if (p->nodes[i] && p->locks[i]) {
108                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
109                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
110                                 p->locks[i] = BTRFS_WRITE_LOCK;
111                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
112                                 p->locks[i] = BTRFS_READ_LOCK;
113                 }
114         }
115
116 #ifdef CONFIG_DEBUG_LOCK_ALLOC
117         if (held)
118                 btrfs_clear_lock_blocking_rw(held, held_rw);
119 #endif
120 }
121
122 /* this also releases the path */
123 void btrfs_free_path(struct btrfs_path *p)
124 {
125         if (!p)
126                 return;
127         btrfs_release_path(p);
128         kmem_cache_free(btrfs_path_cachep, p);
129 }
130
131 /*
132  * path release drops references on the extent buffers in the path
133  * and it drops any locks held by this path
134  *
135  * It is safe to call this on paths that no locks or extent buffers held.
136  */
137 noinline void btrfs_release_path(struct btrfs_path *p)
138 {
139         int i;
140
141         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
142                 p->slots[i] = 0;
143                 if (!p->nodes[i])
144                         continue;
145                 if (p->locks[i]) {
146                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
147                         p->locks[i] = 0;
148                 }
149                 free_extent_buffer(p->nodes[i]);
150                 p->nodes[i] = NULL;
151         }
152 }
153
154 /*
155  * safely gets a reference on the root node of a tree.  A lock
156  * is not taken, so a concurrent writer may put a different node
157  * at the root of the tree.  See btrfs_lock_root_node for the
158  * looping required.
159  *
160  * The extent buffer returned by this has a reference taken, so
161  * it won't disappear.  It may stop being the root of the tree
162  * at any time because there are no locks held.
163  */
164 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
165 {
166         struct extent_buffer *eb;
167
168         while (1) {
169                 rcu_read_lock();
170                 eb = rcu_dereference(root->node);
171
172                 /*
173                  * RCU really hurts here, we could free up the root node because
174                  * it was cow'ed but we may not get the new root node yet so do
175                  * the inc_not_zero dance and if it doesn't work then
176                  * synchronize_rcu and try again.
177                  */
178                 if (atomic_inc_not_zero(&eb->refs)) {
179                         rcu_read_unlock();
180                         break;
181                 }
182                 rcu_read_unlock();
183                 synchronize_rcu();
184         }
185         return eb;
186 }
187
188 /* loop around taking references on and locking the root node of the
189  * tree until you end up with a lock on the root.  A locked buffer
190  * is returned, with a reference held.
191  */
192 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
193 {
194         struct extent_buffer *eb;
195
196         while (1) {
197                 eb = btrfs_root_node(root);
198                 btrfs_tree_lock(eb);
199                 if (eb == root->node)
200                         break;
201                 btrfs_tree_unlock(eb);
202                 free_extent_buffer(eb);
203         }
204         return eb;
205 }
206
207 /* loop around taking references on and locking the root node of the
208  * tree until you end up with a lock on the root.  A locked buffer
209  * is returned, with a reference held.
210  */
211 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
212 {
213         struct extent_buffer *eb;
214
215         while (1) {
216                 eb = btrfs_root_node(root);
217                 btrfs_tree_read_lock(eb);
218                 if (eb == root->node)
219                         break;
220                 btrfs_tree_read_unlock(eb);
221                 free_extent_buffer(eb);
222         }
223         return eb;
224 }
225
226 /* cowonly root (everything not a reference counted cow subvolume), just get
227  * put onto a simple dirty list.  transaction.c walks this to make sure they
228  * get properly updated on disk.
229  */
230 static void add_root_to_dirty_list(struct btrfs_root *root)
231 {
232         spin_lock(&root->fs_info->trans_lock);
233         if (root->track_dirty && list_empty(&root->dirty_list)) {
234                 list_add(&root->dirty_list,
235                          &root->fs_info->dirty_cowonly_roots);
236         }
237         spin_unlock(&root->fs_info->trans_lock);
238 }
239
240 /*
241  * used by snapshot creation to make a copy of a root for a tree with
242  * a given objectid.  The buffer with the new root node is returned in
243  * cow_ret, and this func returns zero on success or a negative error code.
244  */
245 int btrfs_copy_root(struct btrfs_trans_handle *trans,
246                       struct btrfs_root *root,
247                       struct extent_buffer *buf,
248                       struct extent_buffer **cow_ret, u64 new_root_objectid)
249 {
250         struct extent_buffer *cow;
251         int ret = 0;
252         int level;
253         struct btrfs_disk_key disk_key;
254
255         WARN_ON(root->ref_cows && trans->transid !=
256                 root->fs_info->running_transaction->transid);
257         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
258
259         level = btrfs_header_level(buf);
260         if (level == 0)
261                 btrfs_item_key(buf, &disk_key, 0);
262         else
263                 btrfs_node_key(buf, &disk_key, 0);
264
265         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
266                                      new_root_objectid, &disk_key, level,
267                                      buf->start, 0);
268         if (IS_ERR(cow))
269                 return PTR_ERR(cow);
270
271         copy_extent_buffer(cow, buf, 0, 0, cow->len);
272         btrfs_set_header_bytenr(cow, cow->start);
273         btrfs_set_header_generation(cow, trans->transid);
274         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
275         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
276                                      BTRFS_HEADER_FLAG_RELOC);
277         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
278                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
279         else
280                 btrfs_set_header_owner(cow, new_root_objectid);
281
282         write_extent_buffer(cow, root->fs_info->fsid,
283                             (unsigned long)btrfs_header_fsid(cow),
284                             BTRFS_FSID_SIZE);
285
286         WARN_ON(btrfs_header_generation(buf) > trans->transid);
287         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
288                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
289         else
290                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
291
292         if (ret)
293                 return ret;
294
295         btrfs_mark_buffer_dirty(cow);
296         *cow_ret = cow;
297         return 0;
298 }
299
300 enum mod_log_op {
301         MOD_LOG_KEY_REPLACE,
302         MOD_LOG_KEY_ADD,
303         MOD_LOG_KEY_REMOVE,
304         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
305         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
306         MOD_LOG_MOVE_KEYS,
307         MOD_LOG_ROOT_REPLACE,
308 };
309
310 struct tree_mod_move {
311         int dst_slot;
312         int nr_items;
313 };
314
315 struct tree_mod_root {
316         u64 logical;
317         u8 level;
318 };
319
320 struct tree_mod_elem {
321         struct rb_node node;
322         u64 index;              /* shifted logical */
323         u64 seq;
324         enum mod_log_op op;
325
326         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
327         int slot;
328
329         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
330         u64 generation;
331
332         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
333         struct btrfs_disk_key key;
334         u64 blockptr;
335
336         /* this is used for op == MOD_LOG_MOVE_KEYS */
337         struct tree_mod_move move;
338
339         /* this is used for op == MOD_LOG_ROOT_REPLACE */
340         struct tree_mod_root old_root;
341 };
342
343 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
344 {
345         read_lock(&fs_info->tree_mod_log_lock);
346 }
347
348 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
349 {
350         read_unlock(&fs_info->tree_mod_log_lock);
351 }
352
353 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
354 {
355         write_lock(&fs_info->tree_mod_log_lock);
356 }
357
358 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
359 {
360         write_unlock(&fs_info->tree_mod_log_lock);
361 }
362
363 /*
364  * This adds a new blocker to the tree mod log's blocker list if the @elem
365  * passed does not already have a sequence number set. So when a caller expects
366  * to record tree modifications, it should ensure to set elem->seq to zero
367  * before calling btrfs_get_tree_mod_seq.
368  * Returns a fresh, unused tree log modification sequence number, even if no new
369  * blocker was added.
370  */
371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372                            struct seq_list *elem)
373 {
374         u64 seq;
375
376         tree_mod_log_write_lock(fs_info);
377         spin_lock(&fs_info->tree_mod_seq_lock);
378         if (!elem->seq) {
379                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381         }
382         seq = btrfs_inc_tree_mod_seq(fs_info);
383         spin_unlock(&fs_info->tree_mod_seq_lock);
384         tree_mod_log_write_unlock(fs_info);
385
386         return seq;
387 }
388
389 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
390                             struct seq_list *elem)
391 {
392         struct rb_root *tm_root;
393         struct rb_node *node;
394         struct rb_node *next;
395         struct seq_list *cur_elem;
396         struct tree_mod_elem *tm;
397         u64 min_seq = (u64)-1;
398         u64 seq_putting = elem->seq;
399
400         if (!seq_putting)
401                 return;
402
403         spin_lock(&fs_info->tree_mod_seq_lock);
404         list_del(&elem->list);
405         elem->seq = 0;
406
407         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
408                 if (cur_elem->seq < min_seq) {
409                         if (seq_putting > cur_elem->seq) {
410                                 /*
411                                  * blocker with lower sequence number exists, we
412                                  * cannot remove anything from the log
413                                  */
414                                 spin_unlock(&fs_info->tree_mod_seq_lock);
415                                 return;
416                         }
417                         min_seq = cur_elem->seq;
418                 }
419         }
420         spin_unlock(&fs_info->tree_mod_seq_lock);
421
422         /*
423          * anything that's lower than the lowest existing (read: blocked)
424          * sequence number can be removed from the tree.
425          */
426         tree_mod_log_write_lock(fs_info);
427         tm_root = &fs_info->tree_mod_log;
428         for (node = rb_first(tm_root); node; node = next) {
429                 next = rb_next(node);
430                 tm = container_of(node, struct tree_mod_elem, node);
431                 if (tm->seq > min_seq)
432                         continue;
433                 rb_erase(node, tm_root);
434                 kfree(tm);
435         }
436         tree_mod_log_write_unlock(fs_info);
437 }
438
439 /*
440  * key order of the log:
441  *       index -> sequence
442  *
443  * the index is the shifted logical of the *new* root node for root replace
444  * operations, or the shifted logical of the affected block for all other
445  * operations.
446  */
447 static noinline int
448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449 {
450         struct rb_root *tm_root;
451         struct rb_node **new;
452         struct rb_node *parent = NULL;
453         struct tree_mod_elem *cur;
454
455         BUG_ON(!tm || !tm->seq);
456
457         tm_root = &fs_info->tree_mod_log;
458         new = &tm_root->rb_node;
459         while (*new) {
460                 cur = container_of(*new, struct tree_mod_elem, node);
461                 parent = *new;
462                 if (cur->index < tm->index)
463                         new = &((*new)->rb_left);
464                 else if (cur->index > tm->index)
465                         new = &((*new)->rb_right);
466                 else if (cur->seq < tm->seq)
467                         new = &((*new)->rb_left);
468                 else if (cur->seq > tm->seq)
469                         new = &((*new)->rb_right);
470                 else {
471                         kfree(tm);
472                         return -EEXIST;
473                 }
474         }
475
476         rb_link_node(&tm->node, parent, new);
477         rb_insert_color(&tm->node, tm_root);
478         return 0;
479 }
480
481 /*
482  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483  * returns zero with the tree_mod_log_lock acquired. The caller must hold
484  * this until all tree mod log insertions are recorded in the rb tree and then
485  * call tree_mod_log_write_unlock() to release.
486  */
487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488                                     struct extent_buffer *eb) {
489         smp_mb();
490         if (list_empty(&(fs_info)->tree_mod_seq_list))
491                 return 1;
492         if (eb && btrfs_header_level(eb) == 0)
493                 return 1;
494
495         tree_mod_log_write_lock(fs_info);
496         if (list_empty(&fs_info->tree_mod_seq_list)) {
497                 /*
498                  * someone emptied the list while we were waiting for the lock.
499                  * we must not add to the list when no blocker exists.
500                  */
501                 tree_mod_log_write_unlock(fs_info);
502                 return 1;
503         }
504
505         return 0;
506 }
507
508 /*
509  * This allocates memory and gets a tree modification sequence number.
510  *
511  * Returns <0 on error.
512  * Returns >0 (the added sequence number) on success.
513  */
514 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
515                                  struct tree_mod_elem **tm_ret)
516 {
517         struct tree_mod_elem *tm;
518
519         /*
520          * once we switch from spin locks to something different, we should
521          * honor the flags parameter here.
522          */
523         tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
524         if (!tm)
525                 return -ENOMEM;
526
527         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
528         return tm->seq;
529 }
530
531 static inline int
532 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
533                           struct extent_buffer *eb, int slot,
534                           enum mod_log_op op, gfp_t flags)
535 {
536         int ret;
537         struct tree_mod_elem *tm;
538
539         ret = tree_mod_alloc(fs_info, flags, &tm);
540         if (ret < 0)
541                 return ret;
542
543         tm->index = eb->start >> PAGE_CACHE_SHIFT;
544         if (op != MOD_LOG_KEY_ADD) {
545                 btrfs_node_key(eb, &tm->key, slot);
546                 tm->blockptr = btrfs_node_blockptr(eb, slot);
547         }
548         tm->op = op;
549         tm->slot = slot;
550         tm->generation = btrfs_node_ptr_generation(eb, slot);
551
552         return __tree_mod_log_insert(fs_info, tm);
553 }
554
555 static noinline int
556 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
557                              struct extent_buffer *eb, int slot,
558                              enum mod_log_op op, gfp_t flags)
559 {
560         int ret;
561
562         if (tree_mod_dont_log(fs_info, eb))
563                 return 0;
564
565         ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
566
567         tree_mod_log_write_unlock(fs_info);
568         return ret;
569 }
570
571 static noinline int
572 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
573                         int slot, enum mod_log_op op)
574 {
575         return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
576 }
577
578 static noinline int
579 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
580                              struct extent_buffer *eb, int slot,
581                              enum mod_log_op op)
582 {
583         return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
584 }
585
586 static noinline int
587 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
588                          struct extent_buffer *eb, int dst_slot, int src_slot,
589                          int nr_items, gfp_t flags)
590 {
591         struct tree_mod_elem *tm;
592         int ret;
593         int i;
594
595         if (tree_mod_dont_log(fs_info, eb))
596                 return 0;
597
598         /*
599          * When we override something during the move, we log these removals.
600          * This can only happen when we move towards the beginning of the
601          * buffer, i.e. dst_slot < src_slot.
602          */
603         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
604                 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
605                                               MOD_LOG_KEY_REMOVE_WHILE_MOVING);
606                 BUG_ON(ret < 0);
607         }
608
609         ret = tree_mod_alloc(fs_info, flags, &tm);
610         if (ret < 0)
611                 goto out;
612
613         tm->index = eb->start >> PAGE_CACHE_SHIFT;
614         tm->slot = src_slot;
615         tm->move.dst_slot = dst_slot;
616         tm->move.nr_items = nr_items;
617         tm->op = MOD_LOG_MOVE_KEYS;
618
619         ret = __tree_mod_log_insert(fs_info, tm);
620 out:
621         tree_mod_log_write_unlock(fs_info);
622         return ret;
623 }
624
625 static inline void
626 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
627 {
628         int i;
629         u32 nritems;
630         int ret;
631
632         if (btrfs_header_level(eb) == 0)
633                 return;
634
635         nritems = btrfs_header_nritems(eb);
636         for (i = nritems - 1; i >= 0; i--) {
637                 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
638                                               MOD_LOG_KEY_REMOVE_WHILE_FREEING);
639                 BUG_ON(ret < 0);
640         }
641 }
642
643 static noinline int
644 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
645                          struct extent_buffer *old_root,
646                          struct extent_buffer *new_root, gfp_t flags)
647 {
648         struct tree_mod_elem *tm;
649         int ret;
650
651         if (tree_mod_dont_log(fs_info, NULL))
652                 return 0;
653
654         ret = tree_mod_alloc(fs_info, flags, &tm);
655         if (ret < 0)
656                 goto out;
657
658         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
659         tm->old_root.logical = old_root->start;
660         tm->old_root.level = btrfs_header_level(old_root);
661         tm->generation = btrfs_header_generation(old_root);
662         tm->op = MOD_LOG_ROOT_REPLACE;
663
664         ret = __tree_mod_log_insert(fs_info, tm);
665 out:
666         tree_mod_log_write_unlock(fs_info);
667         return ret;
668 }
669
670 static struct tree_mod_elem *
671 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
672                       int smallest)
673 {
674         struct rb_root *tm_root;
675         struct rb_node *node;
676         struct tree_mod_elem *cur = NULL;
677         struct tree_mod_elem *found = NULL;
678         u64 index = start >> PAGE_CACHE_SHIFT;
679
680         tree_mod_log_read_lock(fs_info);
681         tm_root = &fs_info->tree_mod_log;
682         node = tm_root->rb_node;
683         while (node) {
684                 cur = container_of(node, struct tree_mod_elem, node);
685                 if (cur->index < index) {
686                         node = node->rb_left;
687                 } else if (cur->index > index) {
688                         node = node->rb_right;
689                 } else if (cur->seq < min_seq) {
690                         node = node->rb_left;
691                 } else if (!smallest) {
692                         /* we want the node with the highest seq */
693                         if (found)
694                                 BUG_ON(found->seq > cur->seq);
695                         found = cur;
696                         node = node->rb_left;
697                 } else if (cur->seq > min_seq) {
698                         /* we want the node with the smallest seq */
699                         if (found)
700                                 BUG_ON(found->seq < cur->seq);
701                         found = cur;
702                         node = node->rb_right;
703                 } else {
704                         found = cur;
705                         break;
706                 }
707         }
708         tree_mod_log_read_unlock(fs_info);
709
710         return found;
711 }
712
713 /*
714  * this returns the element from the log with the smallest time sequence
715  * value that's in the log (the oldest log item). any element with a time
716  * sequence lower than min_seq will be ignored.
717  */
718 static struct tree_mod_elem *
719 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
720                            u64 min_seq)
721 {
722         return __tree_mod_log_search(fs_info, start, min_seq, 1);
723 }
724
725 /*
726  * this returns the element from the log with the largest time sequence
727  * value that's in the log (the most recent log item). any element with
728  * a time sequence lower than min_seq will be ignored.
729  */
730 static struct tree_mod_elem *
731 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
732 {
733         return __tree_mod_log_search(fs_info, start, min_seq, 0);
734 }
735
736 static noinline void
737 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
738                      struct extent_buffer *src, unsigned long dst_offset,
739                      unsigned long src_offset, int nr_items)
740 {
741         int ret;
742         int i;
743
744         if (tree_mod_dont_log(fs_info, NULL))
745                 return;
746
747         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
748                 tree_mod_log_write_unlock(fs_info);
749                 return;
750         }
751
752         for (i = 0; i < nr_items; i++) {
753                 ret = tree_mod_log_insert_key_locked(fs_info, src,
754                                                      i + src_offset,
755                                                      MOD_LOG_KEY_REMOVE);
756                 BUG_ON(ret < 0);
757                 ret = tree_mod_log_insert_key_locked(fs_info, dst,
758                                                      i + dst_offset,
759                                                      MOD_LOG_KEY_ADD);
760                 BUG_ON(ret < 0);
761         }
762
763         tree_mod_log_write_unlock(fs_info);
764 }
765
766 static inline void
767 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
768                      int dst_offset, int src_offset, int nr_items)
769 {
770         int ret;
771         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
772                                        nr_items, GFP_NOFS);
773         BUG_ON(ret < 0);
774 }
775
776 static noinline void
777 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
778                           struct extent_buffer *eb, int slot, int atomic)
779 {
780         int ret;
781
782         ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
783                                            MOD_LOG_KEY_REPLACE,
784                                            atomic ? GFP_ATOMIC : GFP_NOFS);
785         BUG_ON(ret < 0);
786 }
787
788 static noinline void
789 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
790 {
791         if (tree_mod_dont_log(fs_info, eb))
792                 return;
793
794         __tree_mod_log_free_eb(fs_info, eb);
795
796         tree_mod_log_write_unlock(fs_info);
797 }
798
799 static noinline void
800 tree_mod_log_set_root_pointer(struct btrfs_root *root,
801                               struct extent_buffer *new_root_node)
802 {
803         int ret;
804         ret = tree_mod_log_insert_root(root->fs_info, root->node,
805                                        new_root_node, GFP_NOFS);
806         BUG_ON(ret < 0);
807 }
808
809 /*
810  * check if the tree block can be shared by multiple trees
811  */
812 int btrfs_block_can_be_shared(struct btrfs_root *root,
813                               struct extent_buffer *buf)
814 {
815         /*
816          * Tree blocks not in refernece counted trees and tree roots
817          * are never shared. If a block was allocated after the last
818          * snapshot and the block was not allocated by tree relocation,
819          * we know the block is not shared.
820          */
821         if (root->ref_cows &&
822             buf != root->node && buf != root->commit_root &&
823             (btrfs_header_generation(buf) <=
824              btrfs_root_last_snapshot(&root->root_item) ||
825              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
826                 return 1;
827 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
828         if (root->ref_cows &&
829             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
830                 return 1;
831 #endif
832         return 0;
833 }
834
835 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
836                                        struct btrfs_root *root,
837                                        struct extent_buffer *buf,
838                                        struct extent_buffer *cow,
839                                        int *last_ref)
840 {
841         u64 refs;
842         u64 owner;
843         u64 flags;
844         u64 new_flags = 0;
845         int ret;
846
847         /*
848          * Backrefs update rules:
849          *
850          * Always use full backrefs for extent pointers in tree block
851          * allocated by tree relocation.
852          *
853          * If a shared tree block is no longer referenced by its owner
854          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
855          * use full backrefs for extent pointers in tree block.
856          *
857          * If a tree block is been relocating
858          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
859          * use full backrefs for extent pointers in tree block.
860          * The reason for this is some operations (such as drop tree)
861          * are only allowed for blocks use full backrefs.
862          */
863
864         if (btrfs_block_can_be_shared(root, buf)) {
865                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
866                                                buf->len, &refs, &flags);
867                 if (ret)
868                         return ret;
869                 if (refs == 0) {
870                         ret = -EROFS;
871                         btrfs_std_error(root->fs_info, ret);
872                         return ret;
873                 }
874         } else {
875                 refs = 1;
876                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
877                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
878                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
879                 else
880                         flags = 0;
881         }
882
883         owner = btrfs_header_owner(buf);
884         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
885                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
886
887         if (refs > 1) {
888                 if ((owner == root->root_key.objectid ||
889                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
890                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
891                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
892                         BUG_ON(ret); /* -ENOMEM */
893
894                         if (root->root_key.objectid ==
895                             BTRFS_TREE_RELOC_OBJECTID) {
896                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
897                                 BUG_ON(ret); /* -ENOMEM */
898                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
899                                 BUG_ON(ret); /* -ENOMEM */
900                         }
901                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
902                 } else {
903
904                         if (root->root_key.objectid ==
905                             BTRFS_TREE_RELOC_OBJECTID)
906                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
907                         else
908                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
909                         BUG_ON(ret); /* -ENOMEM */
910                 }
911                 if (new_flags != 0) {
912                         ret = btrfs_set_disk_extent_flags(trans, root,
913                                                           buf->start,
914                                                           buf->len,
915                                                           new_flags, 0);
916                         if (ret)
917                                 return ret;
918                 }
919         } else {
920                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
921                         if (root->root_key.objectid ==
922                             BTRFS_TREE_RELOC_OBJECTID)
923                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
924                         else
925                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
926                         BUG_ON(ret); /* -ENOMEM */
927                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
928                         BUG_ON(ret); /* -ENOMEM */
929                 }
930                 tree_mod_log_free_eb(root->fs_info, buf);
931                 clean_tree_block(trans, root, buf);
932                 *last_ref = 1;
933         }
934         return 0;
935 }
936
937 /*
938  * does the dirty work in cow of a single block.  The parent block (if
939  * supplied) is updated to point to the new cow copy.  The new buffer is marked
940  * dirty and returned locked.  If you modify the block it needs to be marked
941  * dirty again.
942  *
943  * search_start -- an allocation hint for the new block
944  *
945  * empty_size -- a hint that you plan on doing more cow.  This is the size in
946  * bytes the allocator should try to find free next to the block it returns.
947  * This is just a hint and may be ignored by the allocator.
948  */
949 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
950                              struct btrfs_root *root,
951                              struct extent_buffer *buf,
952                              struct extent_buffer *parent, int parent_slot,
953                              struct extent_buffer **cow_ret,
954                              u64 search_start, u64 empty_size)
955 {
956         struct btrfs_disk_key disk_key;
957         struct extent_buffer *cow;
958         int level, ret;
959         int last_ref = 0;
960         int unlock_orig = 0;
961         u64 parent_start;
962
963         if (*cow_ret == buf)
964                 unlock_orig = 1;
965
966         btrfs_assert_tree_locked(buf);
967
968         WARN_ON(root->ref_cows && trans->transid !=
969                 root->fs_info->running_transaction->transid);
970         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
971
972         level = btrfs_header_level(buf);
973
974         if (level == 0)
975                 btrfs_item_key(buf, &disk_key, 0);
976         else
977                 btrfs_node_key(buf, &disk_key, 0);
978
979         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
980                 if (parent)
981                         parent_start = parent->start;
982                 else
983                         parent_start = 0;
984         } else
985                 parent_start = 0;
986
987         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
988                                      root->root_key.objectid, &disk_key,
989                                      level, search_start, empty_size);
990         if (IS_ERR(cow))
991                 return PTR_ERR(cow);
992
993         /* cow is set to blocking by btrfs_init_new_buffer */
994
995         copy_extent_buffer(cow, buf, 0, 0, cow->len);
996         btrfs_set_header_bytenr(cow, cow->start);
997         btrfs_set_header_generation(cow, trans->transid);
998         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
999         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1000                                      BTRFS_HEADER_FLAG_RELOC);
1001         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1002                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1003         else
1004                 btrfs_set_header_owner(cow, root->root_key.objectid);
1005
1006         write_extent_buffer(cow, root->fs_info->fsid,
1007                             (unsigned long)btrfs_header_fsid(cow),
1008                             BTRFS_FSID_SIZE);
1009
1010         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1011         if (ret) {
1012                 btrfs_abort_transaction(trans, root, ret);
1013                 return ret;
1014         }
1015
1016         if (root->ref_cows)
1017                 btrfs_reloc_cow_block(trans, root, buf, cow);
1018
1019         if (buf == root->node) {
1020                 WARN_ON(parent && parent != buf);
1021                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1022                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1023                         parent_start = buf->start;
1024                 else
1025                         parent_start = 0;
1026
1027                 extent_buffer_get(cow);
1028                 tree_mod_log_set_root_pointer(root, cow);
1029                 rcu_assign_pointer(root->node, cow);
1030
1031                 btrfs_free_tree_block(trans, root, buf, parent_start,
1032                                       last_ref);
1033                 free_extent_buffer(buf);
1034                 add_root_to_dirty_list(root);
1035         } else {
1036                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1037                         parent_start = parent->start;
1038                 else
1039                         parent_start = 0;
1040
1041                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1042                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1043                                         MOD_LOG_KEY_REPLACE);
1044                 btrfs_set_node_blockptr(parent, parent_slot,
1045                                         cow->start);
1046                 btrfs_set_node_ptr_generation(parent, parent_slot,
1047                                               trans->transid);
1048                 btrfs_mark_buffer_dirty(parent);
1049                 btrfs_free_tree_block(trans, root, buf, parent_start,
1050                                       last_ref);
1051         }
1052         if (unlock_orig)
1053                 btrfs_tree_unlock(buf);
1054         free_extent_buffer_stale(buf);
1055         btrfs_mark_buffer_dirty(cow);
1056         *cow_ret = cow;
1057         return 0;
1058 }
1059
1060 /*
1061  * returns the logical address of the oldest predecessor of the given root.
1062  * entries older than time_seq are ignored.
1063  */
1064 static struct tree_mod_elem *
1065 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1066                            struct btrfs_root *root, u64 time_seq)
1067 {
1068         struct tree_mod_elem *tm;
1069         struct tree_mod_elem *found = NULL;
1070         u64 root_logical = root->node->start;
1071         int looped = 0;
1072
1073         if (!time_seq)
1074                 return 0;
1075
1076         /*
1077          * the very last operation that's logged for a root is the replacement
1078          * operation (if it is replaced at all). this has the index of the *new*
1079          * root, making it the very first operation that's logged for this root.
1080          */
1081         while (1) {
1082                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1083                                                 time_seq);
1084                 if (!looped && !tm)
1085                         return 0;
1086                 /*
1087                  * if there are no tree operation for the oldest root, we simply
1088                  * return it. this should only happen if that (old) root is at
1089                  * level 0.
1090                  */
1091                 if (!tm)
1092                         break;
1093
1094                 /*
1095                  * if there's an operation that's not a root replacement, we
1096                  * found the oldest version of our root. normally, we'll find a
1097                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1098                  */
1099                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1100                         break;
1101
1102                 found = tm;
1103                 root_logical = tm->old_root.logical;
1104                 BUG_ON(root_logical == root->node->start);
1105                 looped = 1;
1106         }
1107
1108         /* if there's no old root to return, return what we found instead */
1109         if (!found)
1110                 found = tm;
1111
1112         return found;
1113 }
1114
1115 /*
1116  * tm is a pointer to the first operation to rewind within eb. then, all
1117  * previous operations will be rewinded (until we reach something older than
1118  * time_seq).
1119  */
1120 static void
1121 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1122                       struct tree_mod_elem *first_tm)
1123 {
1124         u32 n;
1125         struct rb_node *next;
1126         struct tree_mod_elem *tm = first_tm;
1127         unsigned long o_dst;
1128         unsigned long o_src;
1129         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1130
1131         n = btrfs_header_nritems(eb);
1132         while (tm && tm->seq >= time_seq) {
1133                 /*
1134                  * all the operations are recorded with the operator used for
1135                  * the modification. as we're going backwards, we do the
1136                  * opposite of each operation here.
1137                  */
1138                 switch (tm->op) {
1139                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1140                         BUG_ON(tm->slot < n);
1141                 case MOD_LOG_KEY_REMOVE:
1142                         n++;
1143                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1144                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1145                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1146                         btrfs_set_node_ptr_generation(eb, tm->slot,
1147                                                       tm->generation);
1148                         break;
1149                 case MOD_LOG_KEY_REPLACE:
1150                         BUG_ON(tm->slot >= n);
1151                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1152                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1153                         btrfs_set_node_ptr_generation(eb, tm->slot,
1154                                                       tm->generation);
1155                         break;
1156                 case MOD_LOG_KEY_ADD:
1157                         /* if a move operation is needed it's in the log */
1158                         n--;
1159                         break;
1160                 case MOD_LOG_MOVE_KEYS:
1161                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1162                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1163                         memmove_extent_buffer(eb, o_dst, o_src,
1164                                               tm->move.nr_items * p_size);
1165                         break;
1166                 case MOD_LOG_ROOT_REPLACE:
1167                         /*
1168                          * this operation is special. for roots, this must be
1169                          * handled explicitly before rewinding.
1170                          * for non-roots, this operation may exist if the node
1171                          * was a root: root A -> child B; then A gets empty and
1172                          * B is promoted to the new root. in the mod log, we'll
1173                          * have a root-replace operation for B, a tree block
1174                          * that is no root. we simply ignore that operation.
1175                          */
1176                         break;
1177                 }
1178                 next = rb_next(&tm->node);
1179                 if (!next)
1180                         break;
1181                 tm = container_of(next, struct tree_mod_elem, node);
1182                 if (tm->index != first_tm->index)
1183                         break;
1184         }
1185         btrfs_set_header_nritems(eb, n);
1186 }
1187
1188 static struct extent_buffer *
1189 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1190                     u64 time_seq)
1191 {
1192         struct extent_buffer *eb_rewin;
1193         struct tree_mod_elem *tm;
1194
1195         if (!time_seq)
1196                 return eb;
1197
1198         if (btrfs_header_level(eb) == 0)
1199                 return eb;
1200
1201         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1202         if (!tm)
1203                 return eb;
1204
1205         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1206                 BUG_ON(tm->slot != 0);
1207                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1208                                                 fs_info->tree_root->nodesize);
1209                 BUG_ON(!eb_rewin);
1210                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1211                 btrfs_set_header_backref_rev(eb_rewin,
1212                                              btrfs_header_backref_rev(eb));
1213                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1214                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1215         } else {
1216                 eb_rewin = btrfs_clone_extent_buffer(eb);
1217                 BUG_ON(!eb_rewin);
1218         }
1219
1220         extent_buffer_get(eb_rewin);
1221         free_extent_buffer(eb);
1222
1223         __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1224         WARN_ON(btrfs_header_nritems(eb_rewin) >
1225                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->fs_root));
1226
1227         return eb_rewin;
1228 }
1229
1230 /*
1231  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1232  * value. If there are no changes, the current root->root_node is returned. If
1233  * anything changed in between, there's a fresh buffer allocated on which the
1234  * rewind operations are done. In any case, the returned buffer is read locked.
1235  * Returns NULL on error (with no locks held).
1236  */
1237 static inline struct extent_buffer *
1238 get_old_root(struct btrfs_root *root, u64 time_seq)
1239 {
1240         struct tree_mod_elem *tm;
1241         struct extent_buffer *eb;
1242         struct extent_buffer *old;
1243         struct tree_mod_root *old_root = NULL;
1244         u64 old_generation = 0;
1245         u64 logical;
1246         u32 blocksize;
1247
1248         eb = btrfs_read_lock_root_node(root);
1249         tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1250         if (!tm)
1251                 return root->node;
1252
1253         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1254                 old_root = &tm->old_root;
1255                 old_generation = tm->generation;
1256                 logical = old_root->logical;
1257         } else {
1258                 logical = root->node->start;
1259         }
1260
1261         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1262         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1263                 btrfs_tree_read_unlock(root->node);
1264                 free_extent_buffer(root->node);
1265                 blocksize = btrfs_level_size(root, old_root->level);
1266                 old = read_tree_block(root, logical, blocksize, 0);
1267                 if (!old) {
1268                         pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1269                                 logical);
1270                         WARN_ON(1);
1271                 } else {
1272                         eb = btrfs_clone_extent_buffer(old);
1273                         free_extent_buffer(old);
1274                 }
1275         } else if (old_root) {
1276                 btrfs_tree_read_unlock(root->node);
1277                 free_extent_buffer(root->node);
1278                 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1279         } else {
1280                 eb = btrfs_clone_extent_buffer(root->node);
1281                 btrfs_tree_read_unlock(root->node);
1282                 free_extent_buffer(root->node);
1283         }
1284
1285         if (!eb)
1286                 return NULL;
1287         extent_buffer_get(eb);
1288         btrfs_tree_read_lock(eb);
1289         if (old_root) {
1290                 btrfs_set_header_bytenr(eb, eb->start);
1291                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1292                 btrfs_set_header_owner(eb, root->root_key.objectid);
1293                 btrfs_set_header_level(eb, old_root->level);
1294                 btrfs_set_header_generation(eb, old_generation);
1295         }
1296         if (tm)
1297                 __tree_mod_log_rewind(eb, time_seq, tm);
1298         else
1299                 WARN_ON(btrfs_header_level(eb) != 0);
1300         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1301
1302         return eb;
1303 }
1304
1305 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1306 {
1307         struct tree_mod_elem *tm;
1308         int level;
1309
1310         tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1311         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1312                 level = tm->old_root.level;
1313         } else {
1314                 rcu_read_lock();
1315                 level = btrfs_header_level(root->node);
1316                 rcu_read_unlock();
1317         }
1318
1319         return level;
1320 }
1321
1322 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1323                                    struct btrfs_root *root,
1324                                    struct extent_buffer *buf)
1325 {
1326         /* ensure we can see the force_cow */
1327         smp_rmb();
1328
1329         /*
1330          * We do not need to cow a block if
1331          * 1) this block is not created or changed in this transaction;
1332          * 2) this block does not belong to TREE_RELOC tree;
1333          * 3) the root is not forced COW.
1334          *
1335          * What is forced COW:
1336          *    when we create snapshot during commiting the transaction,
1337          *    after we've finished coping src root, we must COW the shared
1338          *    block to ensure the metadata consistency.
1339          */
1340         if (btrfs_header_generation(buf) == trans->transid &&
1341             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1342             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1343               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1344             !root->force_cow)
1345                 return 0;
1346         return 1;
1347 }
1348
1349 /*
1350  * cows a single block, see __btrfs_cow_block for the real work.
1351  * This version of it has extra checks so that a block isn't cow'd more than
1352  * once per transaction, as long as it hasn't been written yet
1353  */
1354 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1355                     struct btrfs_root *root, struct extent_buffer *buf,
1356                     struct extent_buffer *parent, int parent_slot,
1357                     struct extent_buffer **cow_ret)
1358 {
1359         u64 search_start;
1360         int ret;
1361
1362         if (trans->transaction != root->fs_info->running_transaction)
1363                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1364                        (unsigned long long)trans->transid,
1365                        (unsigned long long)
1366                        root->fs_info->running_transaction->transid);
1367
1368         if (trans->transid != root->fs_info->generation)
1369                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1370                        (unsigned long long)trans->transid,
1371                        (unsigned long long)root->fs_info->generation);
1372
1373         if (!should_cow_block(trans, root, buf)) {
1374                 *cow_ret = buf;
1375                 return 0;
1376         }
1377
1378         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1379
1380         if (parent)
1381                 btrfs_set_lock_blocking(parent);
1382         btrfs_set_lock_blocking(buf);
1383
1384         ret = __btrfs_cow_block(trans, root, buf, parent,
1385                                  parent_slot, cow_ret, search_start, 0);
1386
1387         trace_btrfs_cow_block(root, buf, *cow_ret);
1388
1389         return ret;
1390 }
1391
1392 /*
1393  * helper function for defrag to decide if two blocks pointed to by a
1394  * node are actually close by
1395  */
1396 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1397 {
1398         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1399                 return 1;
1400         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1401                 return 1;
1402         return 0;
1403 }
1404
1405 /*
1406  * compare two keys in a memcmp fashion
1407  */
1408 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1409 {
1410         struct btrfs_key k1;
1411
1412         btrfs_disk_key_to_cpu(&k1, disk);
1413
1414         return btrfs_comp_cpu_keys(&k1, k2);
1415 }
1416
1417 /*
1418  * same as comp_keys only with two btrfs_key's
1419  */
1420 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1421 {
1422         if (k1->objectid > k2->objectid)
1423                 return 1;
1424         if (k1->objectid < k2->objectid)
1425                 return -1;
1426         if (k1->type > k2->type)
1427                 return 1;
1428         if (k1->type < k2->type)
1429                 return -1;
1430         if (k1->offset > k2->offset)
1431                 return 1;
1432         if (k1->offset < k2->offset)
1433                 return -1;
1434         return 0;
1435 }
1436
1437 /*
1438  * this is used by the defrag code to go through all the
1439  * leaves pointed to by a node and reallocate them so that
1440  * disk order is close to key order
1441  */
1442 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1443                        struct btrfs_root *root, struct extent_buffer *parent,
1444                        int start_slot, int cache_only, u64 *last_ret,
1445                        struct btrfs_key *progress)
1446 {
1447         struct extent_buffer *cur;
1448         u64 blocknr;
1449         u64 gen;
1450         u64 search_start = *last_ret;
1451         u64 last_block = 0;
1452         u64 other;
1453         u32 parent_nritems;
1454         int end_slot;
1455         int i;
1456         int err = 0;
1457         int parent_level;
1458         int uptodate;
1459         u32 blocksize;
1460         int progress_passed = 0;
1461         struct btrfs_disk_key disk_key;
1462
1463         parent_level = btrfs_header_level(parent);
1464         if (cache_only && parent_level != 1)
1465                 return 0;
1466
1467         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1468         WARN_ON(trans->transid != root->fs_info->generation);
1469
1470         parent_nritems = btrfs_header_nritems(parent);
1471         blocksize = btrfs_level_size(root, parent_level - 1);
1472         end_slot = parent_nritems;
1473
1474         if (parent_nritems == 1)
1475                 return 0;
1476
1477         btrfs_set_lock_blocking(parent);
1478
1479         for (i = start_slot; i < end_slot; i++) {
1480                 int close = 1;
1481
1482                 btrfs_node_key(parent, &disk_key, i);
1483                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1484                         continue;
1485
1486                 progress_passed = 1;
1487                 blocknr = btrfs_node_blockptr(parent, i);
1488                 gen = btrfs_node_ptr_generation(parent, i);
1489                 if (last_block == 0)
1490                         last_block = blocknr;
1491
1492                 if (i > 0) {
1493                         other = btrfs_node_blockptr(parent, i - 1);
1494                         close = close_blocks(blocknr, other, blocksize);
1495                 }
1496                 if (!close && i < end_slot - 2) {
1497                         other = btrfs_node_blockptr(parent, i + 1);
1498                         close = close_blocks(blocknr, other, blocksize);
1499                 }
1500                 if (close) {
1501                         last_block = blocknr;
1502                         continue;
1503                 }
1504
1505                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1506                 if (cur)
1507                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1508                 else
1509                         uptodate = 0;
1510                 if (!cur || !uptodate) {
1511                         if (cache_only) {
1512                                 free_extent_buffer(cur);
1513                                 continue;
1514                         }
1515                         if (!cur) {
1516                                 cur = read_tree_block(root, blocknr,
1517                                                          blocksize, gen);
1518                                 if (!cur)
1519                                         return -EIO;
1520                         } else if (!uptodate) {
1521                                 err = btrfs_read_buffer(cur, gen);
1522                                 if (err) {
1523                                         free_extent_buffer(cur);
1524                                         return err;
1525                                 }
1526                         }
1527                 }
1528                 if (search_start == 0)
1529                         search_start = last_block;
1530
1531                 btrfs_tree_lock(cur);
1532                 btrfs_set_lock_blocking(cur);
1533                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1534                                         &cur, search_start,
1535                                         min(16 * blocksize,
1536                                             (end_slot - i) * blocksize));
1537                 if (err) {
1538                         btrfs_tree_unlock(cur);
1539                         free_extent_buffer(cur);
1540                         break;
1541                 }
1542                 search_start = cur->start;
1543                 last_block = cur->start;
1544                 *last_ret = search_start;
1545                 btrfs_tree_unlock(cur);
1546                 free_extent_buffer(cur);
1547         }
1548         return err;
1549 }
1550
1551 /*
1552  * The leaf data grows from end-to-front in the node.
1553  * this returns the address of the start of the last item,
1554  * which is the stop of the leaf data stack
1555  */
1556 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1557                                          struct extent_buffer *leaf)
1558 {
1559         u32 nr = btrfs_header_nritems(leaf);
1560         if (nr == 0)
1561                 return BTRFS_LEAF_DATA_SIZE(root);
1562         return btrfs_item_offset_nr(leaf, nr - 1);
1563 }
1564
1565
1566 /*
1567  * search for key in the extent_buffer.  The items start at offset p,
1568  * and they are item_size apart.  There are 'max' items in p.
1569  *
1570  * the slot in the array is returned via slot, and it points to
1571  * the place where you would insert key if it is not found in
1572  * the array.
1573  *
1574  * slot may point to max if the key is bigger than all of the keys
1575  */
1576 static noinline int generic_bin_search(struct extent_buffer *eb,
1577                                        unsigned long p,
1578                                        int item_size, struct btrfs_key *key,
1579                                        int max, int *slot)
1580 {
1581         int low = 0;
1582         int high = max;
1583         int mid;
1584         int ret;
1585         struct btrfs_disk_key *tmp = NULL;
1586         struct btrfs_disk_key unaligned;
1587         unsigned long offset;
1588         char *kaddr = NULL;
1589         unsigned long map_start = 0;
1590         unsigned long map_len = 0;
1591         int err;
1592
1593         while (low < high) {
1594                 mid = (low + high) / 2;
1595                 offset = p + mid * item_size;
1596
1597                 if (!kaddr || offset < map_start ||
1598                     (offset + sizeof(struct btrfs_disk_key)) >
1599                     map_start + map_len) {
1600
1601                         err = map_private_extent_buffer(eb, offset,
1602                                                 sizeof(struct btrfs_disk_key),
1603                                                 &kaddr, &map_start, &map_len);
1604
1605                         if (!err) {
1606                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1607                                                         map_start);
1608                         } else {
1609                                 read_extent_buffer(eb, &unaligned,
1610                                                    offset, sizeof(unaligned));
1611                                 tmp = &unaligned;
1612                         }
1613
1614                 } else {
1615                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1616                                                         map_start);
1617                 }
1618                 ret = comp_keys(tmp, key);
1619
1620                 if (ret < 0)
1621                         low = mid + 1;
1622                 else if (ret > 0)
1623                         high = mid;
1624                 else {
1625                         *slot = mid;
1626                         return 0;
1627                 }
1628         }
1629         *slot = low;
1630         return 1;
1631 }
1632
1633 /*
1634  * simple bin_search frontend that does the right thing for
1635  * leaves vs nodes
1636  */
1637 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1638                       int level, int *slot)
1639 {
1640         if (level == 0)
1641                 return generic_bin_search(eb,
1642                                           offsetof(struct btrfs_leaf, items),
1643                                           sizeof(struct btrfs_item),
1644                                           key, btrfs_header_nritems(eb),
1645                                           slot);
1646         else
1647                 return generic_bin_search(eb,
1648                                           offsetof(struct btrfs_node, ptrs),
1649                                           sizeof(struct btrfs_key_ptr),
1650                                           key, btrfs_header_nritems(eb),
1651                                           slot);
1652 }
1653
1654 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1655                      int level, int *slot)
1656 {
1657         return bin_search(eb, key, level, slot);
1658 }
1659
1660 static void root_add_used(struct btrfs_root *root, u32 size)
1661 {
1662         spin_lock(&root->accounting_lock);
1663         btrfs_set_root_used(&root->root_item,
1664                             btrfs_root_used(&root->root_item) + size);
1665         spin_unlock(&root->accounting_lock);
1666 }
1667
1668 static void root_sub_used(struct btrfs_root *root, u32 size)
1669 {
1670         spin_lock(&root->accounting_lock);
1671         btrfs_set_root_used(&root->root_item,
1672                             btrfs_root_used(&root->root_item) - size);
1673         spin_unlock(&root->accounting_lock);
1674 }
1675
1676 /* given a node and slot number, this reads the blocks it points to.  The
1677  * extent buffer is returned with a reference taken (but unlocked).
1678  * NULL is returned on error.
1679  */
1680 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1681                                    struct extent_buffer *parent, int slot)
1682 {
1683         int level = btrfs_header_level(parent);
1684         if (slot < 0)
1685                 return NULL;
1686         if (slot >= btrfs_header_nritems(parent))
1687                 return NULL;
1688
1689         BUG_ON(level == 0);
1690
1691         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1692                        btrfs_level_size(root, level - 1),
1693                        btrfs_node_ptr_generation(parent, slot));
1694 }
1695
1696 /*
1697  * node level balancing, used to make sure nodes are in proper order for
1698  * item deletion.  We balance from the top down, so we have to make sure
1699  * that a deletion won't leave an node completely empty later on.
1700  */
1701 static noinline int balance_level(struct btrfs_trans_handle *trans,
1702                          struct btrfs_root *root,
1703                          struct btrfs_path *path, int level)
1704 {
1705         struct extent_buffer *right = NULL;
1706         struct extent_buffer *mid;
1707         struct extent_buffer *left = NULL;
1708         struct extent_buffer *parent = NULL;
1709         int ret = 0;
1710         int wret;
1711         int pslot;
1712         int orig_slot = path->slots[level];
1713         u64 orig_ptr;
1714
1715         if (level == 0)
1716                 return 0;
1717
1718         mid = path->nodes[level];
1719
1720         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1721                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1722         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1723
1724         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1725
1726         if (level < BTRFS_MAX_LEVEL - 1) {
1727                 parent = path->nodes[level + 1];
1728                 pslot = path->slots[level + 1];
1729         }
1730
1731         /*
1732          * deal with the case where there is only one pointer in the root
1733          * by promoting the node below to a root
1734          */
1735         if (!parent) {
1736                 struct extent_buffer *child;
1737
1738                 if (btrfs_header_nritems(mid) != 1)
1739                         return 0;
1740
1741                 /* promote the child to a root */
1742                 child = read_node_slot(root, mid, 0);
1743                 if (!child) {
1744                         ret = -EROFS;
1745                         btrfs_std_error(root->fs_info, ret);
1746                         goto enospc;
1747                 }
1748
1749                 btrfs_tree_lock(child);
1750                 btrfs_set_lock_blocking(child);
1751                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1752                 if (ret) {
1753                         btrfs_tree_unlock(child);
1754                         free_extent_buffer(child);
1755                         goto enospc;
1756                 }
1757
1758                 tree_mod_log_free_eb(root->fs_info, root->node);
1759                 tree_mod_log_set_root_pointer(root, child);
1760                 rcu_assign_pointer(root->node, child);
1761
1762                 add_root_to_dirty_list(root);
1763                 btrfs_tree_unlock(child);
1764
1765                 path->locks[level] = 0;
1766                 path->nodes[level] = NULL;
1767                 clean_tree_block(trans, root, mid);
1768                 btrfs_tree_unlock(mid);
1769                 /* once for the path */
1770                 free_extent_buffer(mid);
1771
1772                 root_sub_used(root, mid->len);
1773                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1774                 /* once for the root ptr */
1775                 free_extent_buffer_stale(mid);
1776                 return 0;
1777         }
1778         if (btrfs_header_nritems(mid) >
1779             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1780                 return 0;
1781
1782         left = read_node_slot(root, parent, pslot - 1);
1783         if (left) {
1784                 btrfs_tree_lock(left);
1785                 btrfs_set_lock_blocking(left);
1786                 wret = btrfs_cow_block(trans, root, left,
1787                                        parent, pslot - 1, &left);
1788                 if (wret) {
1789                         ret = wret;
1790                         goto enospc;
1791                 }
1792         }
1793         right = read_node_slot(root, parent, pslot + 1);
1794         if (right) {
1795                 btrfs_tree_lock(right);
1796                 btrfs_set_lock_blocking(right);
1797                 wret = btrfs_cow_block(trans, root, right,
1798                                        parent, pslot + 1, &right);
1799                 if (wret) {
1800                         ret = wret;
1801                         goto enospc;
1802                 }
1803         }
1804
1805         /* first, try to make some room in the middle buffer */
1806         if (left) {
1807                 orig_slot += btrfs_header_nritems(left);
1808                 wret = push_node_left(trans, root, left, mid, 1);
1809                 if (wret < 0)
1810                         ret = wret;
1811         }
1812
1813         /*
1814          * then try to empty the right most buffer into the middle
1815          */
1816         if (right) {
1817                 wret = push_node_left(trans, root, mid, right, 1);
1818                 if (wret < 0 && wret != -ENOSPC)
1819                         ret = wret;
1820                 if (btrfs_header_nritems(right) == 0) {
1821                         clean_tree_block(trans, root, right);
1822                         btrfs_tree_unlock(right);
1823                         del_ptr(trans, root, path, level + 1, pslot + 1);
1824                         root_sub_used(root, right->len);
1825                         btrfs_free_tree_block(trans, root, right, 0, 1);
1826                         free_extent_buffer_stale(right);
1827                         right = NULL;
1828                 } else {
1829                         struct btrfs_disk_key right_key;
1830                         btrfs_node_key(right, &right_key, 0);
1831                         tree_mod_log_set_node_key(root->fs_info, parent,
1832                                                   pslot + 1, 0);
1833                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1834                         btrfs_mark_buffer_dirty(parent);
1835                 }
1836         }
1837         if (btrfs_header_nritems(mid) == 1) {
1838                 /*
1839                  * we're not allowed to leave a node with one item in the
1840                  * tree during a delete.  A deletion from lower in the tree
1841                  * could try to delete the only pointer in this node.
1842                  * So, pull some keys from the left.
1843                  * There has to be a left pointer at this point because
1844                  * otherwise we would have pulled some pointers from the
1845                  * right
1846                  */
1847                 if (!left) {
1848                         ret = -EROFS;
1849                         btrfs_std_error(root->fs_info, ret);
1850                         goto enospc;
1851                 }
1852                 wret = balance_node_right(trans, root, mid, left);
1853                 if (wret < 0) {
1854                         ret = wret;
1855                         goto enospc;
1856                 }
1857                 if (wret == 1) {
1858                         wret = push_node_left(trans, root, left, mid, 1);
1859                         if (wret < 0)
1860                                 ret = wret;
1861                 }
1862                 BUG_ON(wret == 1);
1863         }
1864         if (btrfs_header_nritems(mid) == 0) {
1865                 clean_tree_block(trans, root, mid);
1866                 btrfs_tree_unlock(mid);
1867                 del_ptr(trans, root, path, level + 1, pslot);
1868                 root_sub_used(root, mid->len);
1869                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1870                 free_extent_buffer_stale(mid);
1871                 mid = NULL;
1872         } else {
1873                 /* update the parent key to reflect our changes */
1874                 struct btrfs_disk_key mid_key;
1875                 btrfs_node_key(mid, &mid_key, 0);
1876                 tree_mod_log_set_node_key(root->fs_info, parent,
1877                                           pslot, 0);
1878                 btrfs_set_node_key(parent, &mid_key, pslot);
1879                 btrfs_mark_buffer_dirty(parent);
1880         }
1881
1882         /* update the path */
1883         if (left) {
1884                 if (btrfs_header_nritems(left) > orig_slot) {
1885                         extent_buffer_get(left);
1886                         /* left was locked after cow */
1887                         path->nodes[level] = left;
1888                         path->slots[level + 1] -= 1;
1889                         path->slots[level] = orig_slot;
1890                         if (mid) {
1891                                 btrfs_tree_unlock(mid);
1892                                 free_extent_buffer(mid);
1893                         }
1894                 } else {
1895                         orig_slot -= btrfs_header_nritems(left);
1896                         path->slots[level] = orig_slot;
1897                 }
1898         }
1899         /* double check we haven't messed things up */
1900         if (orig_ptr !=
1901             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1902                 BUG();
1903 enospc:
1904         if (right) {
1905                 btrfs_tree_unlock(right);
1906                 free_extent_buffer(right);
1907         }
1908         if (left) {
1909                 if (path->nodes[level] != left)
1910                         btrfs_tree_unlock(left);
1911                 free_extent_buffer(left);
1912         }
1913         return ret;
1914 }
1915
1916 /* Node balancing for insertion.  Here we only split or push nodes around
1917  * when they are completely full.  This is also done top down, so we
1918  * have to be pessimistic.
1919  */
1920 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1921                                           struct btrfs_root *root,
1922                                           struct btrfs_path *path, int level)
1923 {
1924         struct extent_buffer *right = NULL;
1925         struct extent_buffer *mid;
1926         struct extent_buffer *left = NULL;
1927         struct extent_buffer *parent = NULL;
1928         int ret = 0;
1929         int wret;
1930         int pslot;
1931         int orig_slot = path->slots[level];
1932
1933         if (level == 0)
1934                 return 1;
1935
1936         mid = path->nodes[level];
1937         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1938
1939         if (level < BTRFS_MAX_LEVEL - 1) {
1940                 parent = path->nodes[level + 1];
1941                 pslot = path->slots[level + 1];
1942         }
1943
1944         if (!parent)
1945                 return 1;
1946
1947         left = read_node_slot(root, parent, pslot - 1);
1948
1949         /* first, try to make some room in the middle buffer */
1950         if (left) {
1951                 u32 left_nr;
1952
1953                 btrfs_tree_lock(left);
1954                 btrfs_set_lock_blocking(left);
1955
1956                 left_nr = btrfs_header_nritems(left);
1957                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1958                         wret = 1;
1959                 } else {
1960                         ret = btrfs_cow_block(trans, root, left, parent,
1961                                               pslot - 1, &left);
1962                         if (ret)
1963                                 wret = 1;
1964                         else {
1965                                 wret = push_node_left(trans, root,
1966                                                       left, mid, 0);
1967                         }
1968                 }
1969                 if (wret < 0)
1970                         ret = wret;
1971                 if (wret == 0) {
1972                         struct btrfs_disk_key disk_key;
1973                         orig_slot += left_nr;
1974                         btrfs_node_key(mid, &disk_key, 0);
1975                         tree_mod_log_set_node_key(root->fs_info, parent,
1976                                                   pslot, 0);
1977                         btrfs_set_node_key(parent, &disk_key, pslot);
1978                         btrfs_mark_buffer_dirty(parent);
1979                         if (btrfs_header_nritems(left) > orig_slot) {
1980                                 path->nodes[level] = left;
1981                                 path->slots[level + 1] -= 1;
1982                                 path->slots[level] = orig_slot;
1983                                 btrfs_tree_unlock(mid);
1984                                 free_extent_buffer(mid);
1985                         } else {
1986                                 orig_slot -=
1987                                         btrfs_header_nritems(left);
1988                                 path->slots[level] = orig_slot;
1989                                 btrfs_tree_unlock(left);
1990                                 free_extent_buffer(left);
1991                         }
1992                         return 0;
1993                 }
1994                 btrfs_tree_unlock(left);
1995                 free_extent_buffer(left);
1996         }
1997         right = read_node_slot(root, parent, pslot + 1);
1998
1999         /*
2000          * then try to empty the right most buffer into the middle
2001          */
2002         if (right) {
2003                 u32 right_nr;
2004
2005                 btrfs_tree_lock(right);
2006                 btrfs_set_lock_blocking(right);
2007
2008                 right_nr = btrfs_header_nritems(right);
2009                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2010                         wret = 1;
2011                 } else {
2012                         ret = btrfs_cow_block(trans, root, right,
2013                                               parent, pslot + 1,
2014                                               &right);
2015                         if (ret)
2016                                 wret = 1;
2017                         else {
2018                                 wret = balance_node_right(trans, root,
2019                                                           right, mid);
2020                         }
2021                 }
2022                 if (wret < 0)
2023                         ret = wret;
2024                 if (wret == 0) {
2025                         struct btrfs_disk_key disk_key;
2026
2027                         btrfs_node_key(right, &disk_key, 0);
2028                         tree_mod_log_set_node_key(root->fs_info, parent,
2029                                                   pslot + 1, 0);
2030                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2031                         btrfs_mark_buffer_dirty(parent);
2032
2033                         if (btrfs_header_nritems(mid) <= orig_slot) {
2034                                 path->nodes[level] = right;
2035                                 path->slots[level + 1] += 1;
2036                                 path->slots[level] = orig_slot -
2037                                         btrfs_header_nritems(mid);
2038                                 btrfs_tree_unlock(mid);
2039                                 free_extent_buffer(mid);
2040                         } else {
2041                                 btrfs_tree_unlock(right);
2042                                 free_extent_buffer(right);
2043                         }
2044                         return 0;
2045                 }
2046                 btrfs_tree_unlock(right);
2047                 free_extent_buffer(right);
2048         }
2049         return 1;
2050 }
2051
2052 /*
2053  * readahead one full node of leaves, finding things that are close
2054  * to the block in 'slot', and triggering ra on them.
2055  */
2056 static void reada_for_search(struct btrfs_root *root,
2057                              struct btrfs_path *path,
2058                              int level, int slot, u64 objectid)
2059 {
2060         struct extent_buffer *node;
2061         struct btrfs_disk_key disk_key;
2062         u32 nritems;
2063         u64 search;
2064         u64 target;
2065         u64 nread = 0;
2066         u64 gen;
2067         int direction = path->reada;
2068         struct extent_buffer *eb;
2069         u32 nr;
2070         u32 blocksize;
2071         u32 nscan = 0;
2072
2073         if (level != 1)
2074                 return;
2075
2076         if (!path->nodes[level])
2077                 return;
2078
2079         node = path->nodes[level];
2080
2081         search = btrfs_node_blockptr(node, slot);
2082         blocksize = btrfs_level_size(root, level - 1);
2083         eb = btrfs_find_tree_block(root, search, blocksize);
2084         if (eb) {
2085                 free_extent_buffer(eb);
2086                 return;
2087         }
2088
2089         target = search;
2090
2091         nritems = btrfs_header_nritems(node);
2092         nr = slot;
2093
2094         while (1) {
2095                 if (direction < 0) {
2096                         if (nr == 0)
2097                                 break;
2098                         nr--;
2099                 } else if (direction > 0) {
2100                         nr++;
2101                         if (nr >= nritems)
2102                                 break;
2103                 }
2104                 if (path->reada < 0 && objectid) {
2105                         btrfs_node_key(node, &disk_key, nr);
2106                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2107                                 break;
2108                 }
2109                 search = btrfs_node_blockptr(node, nr);
2110                 if ((search <= target && target - search <= 65536) ||
2111                     (search > target && search - target <= 65536)) {
2112                         gen = btrfs_node_ptr_generation(node, nr);
2113                         readahead_tree_block(root, search, blocksize, gen);
2114                         nread += blocksize;
2115                 }
2116                 nscan++;
2117                 if ((nread > 65536 || nscan > 32))
2118                         break;
2119         }
2120 }
2121
2122 /*
2123  * returns -EAGAIN if it had to drop the path, or zero if everything was in
2124  * cache
2125  */
2126 static noinline int reada_for_balance(struct btrfs_root *root,
2127                                       struct btrfs_path *path, int level)
2128 {
2129         int slot;
2130         int nritems;
2131         struct extent_buffer *parent;
2132         struct extent_buffer *eb;
2133         u64 gen;
2134         u64 block1 = 0;
2135         u64 block2 = 0;
2136         int ret = 0;
2137         int blocksize;
2138
2139         parent = path->nodes[level + 1];
2140         if (!parent)
2141                 return 0;
2142
2143         nritems = btrfs_header_nritems(parent);
2144         slot = path->slots[level + 1];
2145         blocksize = btrfs_level_size(root, level);
2146
2147         if (slot > 0) {
2148                 block1 = btrfs_node_blockptr(parent, slot - 1);
2149                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2150                 eb = btrfs_find_tree_block(root, block1, blocksize);
2151                 /*
2152                  * if we get -eagain from btrfs_buffer_uptodate, we
2153                  * don't want to return eagain here.  That will loop
2154                  * forever
2155                  */
2156                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2157                         block1 = 0;
2158                 free_extent_buffer(eb);
2159         }
2160         if (slot + 1 < nritems) {
2161                 block2 = btrfs_node_blockptr(parent, slot + 1);
2162                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2163                 eb = btrfs_find_tree_block(root, block2, blocksize);
2164                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2165                         block2 = 0;
2166                 free_extent_buffer(eb);
2167         }
2168         if (block1 || block2) {
2169                 ret = -EAGAIN;
2170
2171                 /* release the whole path */
2172                 btrfs_release_path(path);
2173
2174                 /* read the blocks */
2175                 if (block1)
2176                         readahead_tree_block(root, block1, blocksize, 0);
2177                 if (block2)
2178                         readahead_tree_block(root, block2, blocksize, 0);
2179
2180                 if (block1) {
2181                         eb = read_tree_block(root, block1, blocksize, 0);
2182                         free_extent_buffer(eb);
2183                 }
2184                 if (block2) {
2185                         eb = read_tree_block(root, block2, blocksize, 0);
2186                         free_extent_buffer(eb);
2187                 }
2188         }
2189         return ret;
2190 }
2191
2192
2193 /*
2194  * when we walk down the tree, it is usually safe to unlock the higher layers
2195  * in the tree.  The exceptions are when our path goes through slot 0, because
2196  * operations on the tree might require changing key pointers higher up in the
2197  * tree.
2198  *
2199  * callers might also have set path->keep_locks, which tells this code to keep
2200  * the lock if the path points to the last slot in the block.  This is part of
2201  * walking through the tree, and selecting the next slot in the higher block.
2202  *
2203  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2204  * if lowest_unlock is 1, level 0 won't be unlocked
2205  */
2206 static noinline void unlock_up(struct btrfs_path *path, int level,
2207                                int lowest_unlock, int min_write_lock_level,
2208                                int *write_lock_level)
2209 {
2210         int i;
2211         int skip_level = level;
2212         int no_skips = 0;
2213         struct extent_buffer *t;
2214
2215         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2216                 if (!path->nodes[i])
2217                         break;
2218                 if (!path->locks[i])
2219                         break;
2220                 if (!no_skips && path->slots[i] == 0) {
2221                         skip_level = i + 1;
2222                         continue;
2223                 }
2224                 if (!no_skips && path->keep_locks) {
2225                         u32 nritems;
2226                         t = path->nodes[i];
2227                         nritems = btrfs_header_nritems(t);
2228                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2229                                 skip_level = i + 1;
2230                                 continue;
2231                         }
2232                 }
2233                 if (skip_level < i && i >= lowest_unlock)
2234                         no_skips = 1;
2235
2236                 t = path->nodes[i];
2237                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2238                         btrfs_tree_unlock_rw(t, path->locks[i]);
2239                         path->locks[i] = 0;
2240                         if (write_lock_level &&
2241                             i > min_write_lock_level &&
2242                             i <= *write_lock_level) {
2243                                 *write_lock_level = i - 1;
2244                         }
2245                 }
2246         }
2247 }
2248
2249 /*
2250  * This releases any locks held in the path starting at level and
2251  * going all the way up to the root.
2252  *
2253  * btrfs_search_slot will keep the lock held on higher nodes in a few
2254  * corner cases, such as COW of the block at slot zero in the node.  This
2255  * ignores those rules, and it should only be called when there are no
2256  * more updates to be done higher up in the tree.
2257  */
2258 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2259 {
2260         int i;
2261
2262         if (path->keep_locks)
2263                 return;
2264
2265         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2266                 if (!path->nodes[i])
2267                         continue;
2268                 if (!path->locks[i])
2269                         continue;
2270                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2271                 path->locks[i] = 0;
2272         }
2273 }
2274
2275 /*
2276  * helper function for btrfs_search_slot.  The goal is to find a block
2277  * in cache without setting the path to blocking.  If we find the block
2278  * we return zero and the path is unchanged.
2279  *
2280  * If we can't find the block, we set the path blocking and do some
2281  * reada.  -EAGAIN is returned and the search must be repeated.
2282  */
2283 static int
2284 read_block_for_search(struct btrfs_trans_handle *trans,
2285                        struct btrfs_root *root, struct btrfs_path *p,
2286                        struct extent_buffer **eb_ret, int level, int slot,
2287                        struct btrfs_key *key, u64 time_seq)
2288 {
2289         u64 blocknr;
2290         u64 gen;
2291         u32 blocksize;
2292         struct extent_buffer *b = *eb_ret;
2293         struct extent_buffer *tmp;
2294         int ret;
2295
2296         blocknr = btrfs_node_blockptr(b, slot);
2297         gen = btrfs_node_ptr_generation(b, slot);
2298         blocksize = btrfs_level_size(root, level - 1);
2299
2300         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2301         if (tmp) {
2302                 /* first we do an atomic uptodate check */
2303                 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2304                         if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2305                                 /*
2306                                  * we found an up to date block without
2307                                  * sleeping, return
2308                                  * right away
2309                                  */
2310                                 *eb_ret = tmp;
2311                                 return 0;
2312                         }
2313                         /* the pages were up to date, but we failed
2314                          * the generation number check.  Do a full
2315                          * read for the generation number that is correct.
2316                          * We must do this without dropping locks so
2317                          * we can trust our generation number
2318                          */
2319                         free_extent_buffer(tmp);
2320                         btrfs_set_path_blocking(p);
2321
2322                         /* now we're allowed to do a blocking uptodate check */
2323                         tmp = read_tree_block(root, blocknr, blocksize, gen);
2324                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2325                                 *eb_ret = tmp;
2326                                 return 0;
2327                         }
2328                         free_extent_buffer(tmp);
2329                         btrfs_release_path(p);
2330                         return -EIO;
2331                 }
2332         }
2333
2334         /*
2335          * reduce lock contention at high levels
2336          * of the btree by dropping locks before
2337          * we read.  Don't release the lock on the current
2338          * level because we need to walk this node to figure
2339          * out which blocks to read.
2340          */
2341         btrfs_unlock_up_safe(p, level + 1);
2342         btrfs_set_path_blocking(p);
2343
2344         free_extent_buffer(tmp);
2345         if (p->reada)
2346                 reada_for_search(root, p, level, slot, key->objectid);
2347
2348         btrfs_release_path(p);
2349
2350         ret = -EAGAIN;
2351         tmp = read_tree_block(root, blocknr, blocksize, 0);
2352         if (tmp) {
2353                 /*
2354                  * If the read above didn't mark this buffer up to date,
2355                  * it will never end up being up to date.  Set ret to EIO now
2356                  * and give up so that our caller doesn't loop forever
2357                  * on our EAGAINs.
2358                  */
2359                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2360                         ret = -EIO;
2361                 free_extent_buffer(tmp);
2362         }
2363         return ret;
2364 }
2365
2366 /*
2367  * helper function for btrfs_search_slot.  This does all of the checks
2368  * for node-level blocks and does any balancing required based on
2369  * the ins_len.
2370  *
2371  * If no extra work was required, zero is returned.  If we had to
2372  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2373  * start over
2374  */
2375 static int
2376 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2377                        struct btrfs_root *root, struct btrfs_path *p,
2378                        struct extent_buffer *b, int level, int ins_len,
2379                        int *write_lock_level)
2380 {
2381         int ret;
2382         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2383             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2384                 int sret;
2385
2386                 if (*write_lock_level < level + 1) {
2387                         *write_lock_level = level + 1;
2388                         btrfs_release_path(p);
2389                         goto again;
2390                 }
2391
2392                 sret = reada_for_balance(root, p, level);
2393                 if (sret)
2394                         goto again;
2395
2396                 btrfs_set_path_blocking(p);
2397                 sret = split_node(trans, root, p, level);
2398                 btrfs_clear_path_blocking(p, NULL, 0);
2399
2400                 BUG_ON(sret > 0);
2401                 if (sret) {
2402                         ret = sret;
2403                         goto done;
2404                 }
2405                 b = p->nodes[level];
2406         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2407                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2408                 int sret;
2409
2410                 if (*write_lock_level < level + 1) {
2411                         *write_lock_level = level + 1;
2412                         btrfs_release_path(p);
2413                         goto again;
2414                 }
2415
2416                 sret = reada_for_balance(root, p, level);
2417                 if (sret)
2418                         goto again;
2419
2420                 btrfs_set_path_blocking(p);
2421                 sret = balance_level(trans, root, p, level);
2422                 btrfs_clear_path_blocking(p, NULL, 0);
2423
2424                 if (sret) {
2425                         ret = sret;
2426                         goto done;
2427                 }
2428                 b = p->nodes[level];
2429                 if (!b) {
2430                         btrfs_release_path(p);
2431                         goto again;
2432                 }
2433                 BUG_ON(btrfs_header_nritems(b) == 1);
2434         }
2435         return 0;
2436
2437 again:
2438         ret = -EAGAIN;
2439 done:
2440         return ret;
2441 }
2442
2443 /*
2444  * look for key in the tree.  path is filled in with nodes along the way
2445  * if key is found, we return zero and you can find the item in the leaf
2446  * level of the path (level 0)
2447  *
2448  * If the key isn't found, the path points to the slot where it should
2449  * be inserted, and 1 is returned.  If there are other errors during the
2450  * search a negative error number is returned.
2451  *
2452  * if ins_len > 0, nodes and leaves will be split as we walk down the
2453  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2454  * possible)
2455  */
2456 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2457                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2458                       ins_len, int cow)
2459 {
2460         struct extent_buffer *b;
2461         int slot;
2462         int ret;
2463         int err;
2464         int level;
2465         int lowest_unlock = 1;
2466         int root_lock;
2467         /* everything at write_lock_level or lower must be write locked */
2468         int write_lock_level = 0;
2469         u8 lowest_level = 0;
2470         int min_write_lock_level;
2471
2472         lowest_level = p->lowest_level;
2473         WARN_ON(lowest_level && ins_len > 0);
2474         WARN_ON(p->nodes[0] != NULL);
2475
2476         if (ins_len < 0) {
2477                 lowest_unlock = 2;
2478
2479                 /* when we are removing items, we might have to go up to level
2480                  * two as we update tree pointers  Make sure we keep write
2481                  * for those levels as well
2482                  */
2483                 write_lock_level = 2;
2484         } else if (ins_len > 0) {
2485                 /*
2486                  * for inserting items, make sure we have a write lock on
2487                  * level 1 so we can update keys
2488                  */
2489                 write_lock_level = 1;
2490         }
2491
2492         if (!cow)
2493                 write_lock_level = -1;
2494
2495         if (cow && (p->keep_locks || p->lowest_level))
2496                 write_lock_level = BTRFS_MAX_LEVEL;
2497
2498         min_write_lock_level = write_lock_level;
2499
2500 again:
2501         /*
2502          * we try very hard to do read locks on the root
2503          */
2504         root_lock = BTRFS_READ_LOCK;
2505         level = 0;
2506         if (p->search_commit_root) {
2507                 /*
2508                  * the commit roots are read only
2509                  * so we always do read locks
2510                  */
2511                 b = root->commit_root;
2512                 extent_buffer_get(b);
2513                 level = btrfs_header_level(b);
2514                 if (!p->skip_locking)
2515                         btrfs_tree_read_lock(b);
2516         } else {
2517                 if (p->skip_locking) {
2518                         b = btrfs_root_node(root);
2519                         level = btrfs_header_level(b);
2520                 } else {
2521                         /* we don't know the level of the root node
2522                          * until we actually have it read locked
2523                          */
2524                         b = btrfs_read_lock_root_node(root);
2525                         level = btrfs_header_level(b);
2526                         if (level <= write_lock_level) {
2527                                 /* whoops, must trade for write lock */
2528                                 btrfs_tree_read_unlock(b);
2529                                 free_extent_buffer(b);
2530                                 b = btrfs_lock_root_node(root);
2531                                 root_lock = BTRFS_WRITE_LOCK;
2532
2533                                 /* the level might have changed, check again */
2534                                 level = btrfs_header_level(b);
2535                         }
2536                 }
2537         }
2538         p->nodes[level] = b;
2539         if (!p->skip_locking)
2540                 p->locks[level] = root_lock;
2541
2542         while (b) {
2543                 level = btrfs_header_level(b);
2544
2545                 /*
2546                  * setup the path here so we can release it under lock
2547                  * contention with the cow code
2548                  */
2549                 if (cow) {
2550                         /*
2551                          * if we don't really need to cow this block
2552                          * then we don't want to set the path blocking,
2553                          * so we test it here
2554                          */
2555                         if (!should_cow_block(trans, root, b))
2556                                 goto cow_done;
2557
2558                         btrfs_set_path_blocking(p);
2559
2560                         /*
2561                          * must have write locks on this node and the
2562                          * parent
2563                          */
2564                         if (level + 1 > write_lock_level) {
2565                                 write_lock_level = level + 1;
2566                                 btrfs_release_path(p);
2567                                 goto again;
2568                         }
2569
2570                         err = btrfs_cow_block(trans, root, b,
2571                                               p->nodes[level + 1],
2572                                               p->slots[level + 1], &b);
2573                         if (err) {
2574                                 ret = err;
2575                                 goto done;
2576                         }
2577                 }
2578 cow_done:
2579                 BUG_ON(!cow && ins_len);
2580
2581                 p->nodes[level] = b;
2582                 btrfs_clear_path_blocking(p, NULL, 0);
2583
2584                 /*
2585                  * we have a lock on b and as long as we aren't changing
2586                  * the tree, there is no way to for the items in b to change.
2587                  * It is safe to drop the lock on our parent before we
2588                  * go through the expensive btree search on b.
2589                  *
2590                  * If cow is true, then we might be changing slot zero,
2591                  * which may require changing the parent.  So, we can't
2592                  * drop the lock until after we know which slot we're
2593                  * operating on.
2594                  */
2595                 if (!cow)
2596                         btrfs_unlock_up_safe(p, level + 1);
2597
2598                 ret = bin_search(b, key, level, &slot);
2599
2600                 if (level != 0) {
2601                         int dec = 0;
2602                         if (ret && slot > 0) {
2603                                 dec = 1;
2604                                 slot -= 1;
2605                         }
2606                         p->slots[level] = slot;
2607                         err = setup_nodes_for_search(trans, root, p, b, level,
2608                                              ins_len, &write_lock_level);
2609                         if (err == -EAGAIN)
2610                                 goto again;
2611                         if (err) {
2612                                 ret = err;
2613                                 goto done;
2614                         }
2615                         b = p->nodes[level];
2616                         slot = p->slots[level];
2617
2618                         /*
2619                          * slot 0 is special, if we change the key
2620                          * we have to update the parent pointer
2621                          * which means we must have a write lock
2622                          * on the parent
2623                          */
2624                         if (slot == 0 && cow &&
2625                             write_lock_level < level + 1) {
2626                                 write_lock_level = level + 1;
2627                                 btrfs_release_path(p);
2628                                 goto again;
2629                         }
2630
2631                         unlock_up(p, level, lowest_unlock,
2632                                   min_write_lock_level, &write_lock_level);
2633
2634                         if (level == lowest_level) {
2635                                 if (dec)
2636                                         p->slots[level]++;
2637                                 goto done;
2638                         }
2639
2640                         err = read_block_for_search(trans, root, p,
2641                                                     &b, level, slot, key, 0);
2642                         if (err == -EAGAIN)
2643                                 goto again;
2644                         if (err) {
2645                                 ret = err;
2646                                 goto done;
2647                         }
2648
2649                         if (!p->skip_locking) {
2650                                 level = btrfs_header_level(b);
2651                                 if (level <= write_lock_level) {
2652                                         err = btrfs_try_tree_write_lock(b);
2653                                         if (!err) {
2654                                                 btrfs_set_path_blocking(p);
2655                                                 btrfs_tree_lock(b);
2656                                                 btrfs_clear_path_blocking(p, b,
2657                                                                   BTRFS_WRITE_LOCK);
2658                                         }
2659                                         p->locks[level] = BTRFS_WRITE_LOCK;
2660                                 } else {
2661                                         err = btrfs_try_tree_read_lock(b);
2662                                         if (!err) {
2663                                                 btrfs_set_path_blocking(p);
2664                                                 btrfs_tree_read_lock(b);
2665                                                 btrfs_clear_path_blocking(p, b,
2666                                                                   BTRFS_READ_LOCK);
2667                                         }
2668                                         p->locks[level] = BTRFS_READ_LOCK;
2669                                 }
2670                                 p->nodes[level] = b;
2671                         }
2672                 } else {
2673                         p->slots[level] = slot;
2674                         if (ins_len > 0 &&
2675                             btrfs_leaf_free_space(root, b) < ins_len) {
2676                                 if (write_lock_level < 1) {
2677                                         write_lock_level = 1;
2678                                         btrfs_release_path(p);
2679                                         goto again;
2680                                 }
2681
2682                                 btrfs_set_path_blocking(p);
2683                                 err = split_leaf(trans, root, key,
2684                                                  p, ins_len, ret == 0);
2685                                 btrfs_clear_path_blocking(p, NULL, 0);
2686
2687                                 BUG_ON(err > 0);
2688                                 if (err) {
2689                                         ret = err;
2690                                         goto done;
2691                                 }
2692                         }
2693                         if (!p->search_for_split)
2694                                 unlock_up(p, level, lowest_unlock,
2695                                           min_write_lock_level, &write_lock_level);
2696                         goto done;
2697                 }
2698         }
2699         ret = 1;
2700 done:
2701         /*
2702          * we don't really know what they plan on doing with the path
2703          * from here on, so for now just mark it as blocking
2704          */
2705         if (!p->leave_spinning)
2706                 btrfs_set_path_blocking(p);
2707         if (ret < 0)
2708                 btrfs_release_path(p);
2709         return ret;
2710 }
2711
2712 /*
2713  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2714  * current state of the tree together with the operations recorded in the tree
2715  * modification log to search for the key in a previous version of this tree, as
2716  * denoted by the time_seq parameter.
2717  *
2718  * Naturally, there is no support for insert, delete or cow operations.
2719  *
2720  * The resulting path and return value will be set up as if we called
2721  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2722  */
2723 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2724                           struct btrfs_path *p, u64 time_seq)
2725 {
2726         struct extent_buffer *b;
2727         int slot;
2728         int ret;
2729         int err;
2730         int level;
2731         int lowest_unlock = 1;
2732         u8 lowest_level = 0;
2733
2734         lowest_level = p->lowest_level;
2735         WARN_ON(p->nodes[0] != NULL);
2736
2737         if (p->search_commit_root) {
2738                 BUG_ON(time_seq);
2739                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2740         }
2741
2742 again:
2743         b = get_old_root(root, time_seq);
2744         level = btrfs_header_level(b);
2745         p->locks[level] = BTRFS_READ_LOCK;
2746
2747         while (b) {
2748                 level = btrfs_header_level(b);
2749                 p->nodes[level] = b;
2750                 btrfs_clear_path_blocking(p, NULL, 0);
2751
2752                 /*
2753                  * we have a lock on b and as long as we aren't changing
2754                  * the tree, there is no way to for the items in b to change.
2755                  * It is safe to drop the lock on our parent before we
2756                  * go through the expensive btree search on b.
2757                  */
2758                 btrfs_unlock_up_safe(p, level + 1);
2759
2760                 ret = bin_search(b, key, level, &slot);
2761
2762                 if (level != 0) {
2763                         int dec = 0;
2764                         if (ret && slot > 0) {
2765                                 dec = 1;
2766                                 slot -= 1;
2767                         }
2768                         p->slots[level] = slot;
2769                         unlock_up(p, level, lowest_unlock, 0, NULL);
2770
2771                         if (level == lowest_level) {
2772                                 if (dec)
2773                                         p->slots[level]++;
2774                                 goto done;
2775                         }
2776
2777                         err = read_block_for_search(NULL, root, p, &b, level,
2778                                                     slot, key, time_seq);
2779                         if (err == -EAGAIN)
2780                                 goto again;
2781                         if (err) {
2782                                 ret = err;
2783                                 goto done;
2784                         }
2785
2786                         level = btrfs_header_level(b);
2787                         err = btrfs_try_tree_read_lock(b);
2788                         if (!err) {
2789                                 btrfs_set_path_blocking(p);
2790                                 btrfs_tree_read_lock(b);
2791                                 btrfs_clear_path_blocking(p, b,
2792                                                           BTRFS_READ_LOCK);
2793                         }
2794                         p->locks[level] = BTRFS_READ_LOCK;
2795                         p->nodes[level] = b;
2796                         b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2797                         if (b != p->nodes[level]) {
2798                                 btrfs_tree_unlock_rw(p->nodes[level],
2799                                                      p->locks[level]);
2800                                 p->locks[level] = 0;
2801                                 p->nodes[level] = b;
2802                         }
2803                 } else {
2804                         p->slots[level] = slot;
2805                         unlock_up(p, level, lowest_unlock, 0, NULL);
2806                         goto done;
2807                 }
2808         }
2809         ret = 1;
2810 done:
2811         if (!p->leave_spinning)
2812                 btrfs_set_path_blocking(p);
2813         if (ret < 0)
2814                 btrfs_release_path(p);
2815
2816         return ret;
2817 }
2818
2819 /*
2820  * helper to use instead of search slot if no exact match is needed but
2821  * instead the next or previous item should be returned.
2822  * When find_higher is true, the next higher item is returned, the next lower
2823  * otherwise.
2824  * When return_any and find_higher are both true, and no higher item is found,
2825  * return the next lower instead.
2826  * When return_any is true and find_higher is false, and no lower item is found,
2827  * return the next higher instead.
2828  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2829  * < 0 on error
2830  */
2831 int btrfs_search_slot_for_read(struct btrfs_root *root,
2832                                struct btrfs_key *key, struct btrfs_path *p,
2833                                int find_higher, int return_any)
2834 {
2835         int ret;
2836         struct extent_buffer *leaf;
2837
2838 again:
2839         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2840         if (ret <= 0)
2841                 return ret;
2842         /*
2843          * a return value of 1 means the path is at the position where the
2844          * item should be inserted. Normally this is the next bigger item,
2845          * but in case the previous item is the last in a leaf, path points
2846          * to the first free slot in the previous leaf, i.e. at an invalid
2847          * item.
2848          */
2849         leaf = p->nodes[0];
2850
2851         if (find_higher) {
2852                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2853                         ret = btrfs_next_leaf(root, p);
2854                         if (ret <= 0)
2855                                 return ret;
2856                         if (!return_any)
2857                                 return 1;
2858                         /*
2859                          * no higher item found, return the next
2860                          * lower instead
2861                          */
2862                         return_any = 0;
2863                         find_higher = 0;
2864                         btrfs_release_path(p);
2865                         goto again;
2866                 }
2867         } else {
2868                 if (p->slots[0] == 0) {
2869                         ret = btrfs_prev_leaf(root, p);
2870                         if (ret < 0)
2871                                 return ret;
2872                         if (!ret) {
2873                                 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2874                                 return 0;
2875                         }
2876                         if (!return_any)
2877                                 return 1;
2878                         /*
2879                          * no lower item found, return the next
2880                          * higher instead
2881                          */
2882                         return_any = 0;
2883                         find_higher = 1;
2884                         btrfs_release_path(p);
2885                         goto again;
2886                 } else {
2887                         --p->slots[0];
2888                 }
2889         }
2890         return 0;
2891 }
2892
2893 /*
2894  * adjust the pointers going up the tree, starting at level
2895  * making sure the right key of each node is points to 'key'.
2896  * This is used after shifting pointers to the left, so it stops
2897  * fixing up pointers when a given leaf/node is not in slot 0 of the
2898  * higher levels
2899  *
2900  */
2901 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2902                            struct btrfs_root *root, struct btrfs_path *path,
2903                            struct btrfs_disk_key *key, int level)
2904 {
2905         int i;
2906         struct extent_buffer *t;
2907
2908         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2909                 int tslot = path->slots[i];
2910                 if (!path->nodes[i])
2911                         break;
2912                 t = path->nodes[i];
2913                 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2914                 btrfs_set_node_key(t, key, tslot);
2915                 btrfs_mark_buffer_dirty(path->nodes[i]);
2916                 if (tslot != 0)
2917                         break;
2918         }
2919 }
2920
2921 /*
2922  * update item key.
2923  *
2924  * This function isn't completely safe. It's the caller's responsibility
2925  * that the new key won't break the order
2926  */
2927 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2928                              struct btrfs_root *root, struct btrfs_path *path,
2929                              struct btrfs_key *new_key)
2930 {
2931         struct btrfs_disk_key disk_key;
2932         struct extent_buffer *eb;
2933         int slot;
2934
2935         eb = path->nodes[0];
2936         slot = path->slots[0];
2937         if (slot > 0) {
2938                 btrfs_item_key(eb, &disk_key, slot - 1);
2939                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2940         }
2941         if (slot < btrfs_header_nritems(eb) - 1) {
2942                 btrfs_item_key(eb, &disk_key, slot + 1);
2943                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2944         }
2945
2946         btrfs_cpu_key_to_disk(&disk_key, new_key);
2947         btrfs_set_item_key(eb, &disk_key, slot);
2948         btrfs_mark_buffer_dirty(eb);
2949         if (slot == 0)
2950                 fixup_low_keys(trans, root, path, &disk_key, 1);
2951 }
2952
2953 /*
2954  * try to push data from one node into the next node left in the
2955  * tree.
2956  *
2957  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2958  * error, and > 0 if there was no room in the left hand block.
2959  */
2960 static int push_node_left(struct btrfs_trans_handle *trans,
2961                           struct btrfs_root *root, struct extent_buffer *dst,
2962                           struct extent_buffer *src, int empty)
2963 {
2964         int push_items = 0;
2965         int src_nritems;
2966         int dst_nritems;
2967         int ret = 0;
2968
2969         src_nritems = btrfs_header_nritems(src);
2970         dst_nritems = btrfs_header_nritems(dst);
2971         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2972         WARN_ON(btrfs_header_generation(src) != trans->transid);
2973         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2974
2975         if (!empty && src_nritems <= 8)
2976                 return 1;
2977
2978         if (push_items <= 0)
2979                 return 1;
2980
2981         if (empty) {
2982                 push_items = min(src_nritems, push_items);
2983                 if (push_items < src_nritems) {
2984                         /* leave at least 8 pointers in the node if
2985                          * we aren't going to empty it
2986                          */
2987                         if (src_nritems - push_items < 8) {
2988                                 if (push_items <= 8)
2989                                         return 1;
2990                                 push_items -= 8;
2991                         }
2992                 }
2993         } else
2994                 push_items = min(src_nritems - 8, push_items);
2995
2996         tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
2997                              push_items);
2998         copy_extent_buffer(dst, src,
2999                            btrfs_node_key_ptr_offset(dst_nritems),
3000                            btrfs_node_key_ptr_offset(0),
3001                            push_items * sizeof(struct btrfs_key_ptr));
3002
3003         if (push_items < src_nritems) {
3004                 /*
3005                  * don't call tree_mod_log_eb_move here, key removal was already
3006                  * fully logged by tree_mod_log_eb_copy above.
3007                  */
3008                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3009                                       btrfs_node_key_ptr_offset(push_items),
3010                                       (src_nritems - push_items) *
3011                                       sizeof(struct btrfs_key_ptr));
3012         }
3013         btrfs_set_header_nritems(src, src_nritems - push_items);
3014         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3015         btrfs_mark_buffer_dirty(src);
3016         btrfs_mark_buffer_dirty(dst);
3017
3018         return ret;
3019 }
3020
3021 /*
3022  * try to push data from one node into the next node right in the
3023  * tree.
3024  *
3025  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3026  * error, and > 0 if there was no room in the right hand block.
3027  *
3028  * this will  only push up to 1/2 the contents of the left node over
3029  */
3030 static int balance_node_right(struct btrfs_trans_handle *trans,
3031                               struct btrfs_root *root,
3032                               struct extent_buffer *dst,
3033                               struct extent_buffer *src)
3034 {
3035         int push_items = 0;
3036         int max_push;
3037         int src_nritems;
3038         int dst_nritems;
3039         int ret = 0;
3040
3041         WARN_ON(btrfs_header_generation(src) != trans->transid);
3042         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3043
3044         src_nritems = btrfs_header_nritems(src);
3045         dst_nritems = btrfs_header_nritems(dst);
3046         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3047         if (push_items <= 0)
3048                 return 1;
3049
3050         if (src_nritems < 4)
3051                 return 1;
3052
3053         max_push = src_nritems / 2 + 1;
3054         /* don't try to empty the node */
3055         if (max_push >= src_nritems)
3056                 return 1;
3057
3058         if (max_push < push_items)
3059                 push_items = max_push;
3060
3061         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3062         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3063                                       btrfs_node_key_ptr_offset(0),
3064                                       (dst_nritems) *
3065                                       sizeof(struct btrfs_key_ptr));
3066
3067         tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3068                              src_nritems - push_items, push_items);
3069         copy_extent_buffer(dst, src,
3070                            btrfs_node_key_ptr_offset(0),
3071                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3072                            push_items * sizeof(struct btrfs_key_ptr));
3073
3074         btrfs_set_header_nritems(src, src_nritems - push_items);
3075         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3076
3077         btrfs_mark_buffer_dirty(src);
3078         btrfs_mark_buffer_dirty(dst);
3079
3080         return ret;
3081 }
3082
3083 /*
3084  * helper function to insert a new root level in the tree.
3085  * A new node is allocated, and a single item is inserted to
3086  * point to the existing root
3087  *
3088  * returns zero on success or < 0 on failure.
3089  */
3090 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3091                            struct btrfs_root *root,
3092                            struct btrfs_path *path, int level)
3093 {
3094         u64 lower_gen;
3095         struct extent_buffer *lower;
3096         struct extent_buffer *c;
3097         struct extent_buffer *old;
3098         struct btrfs_disk_key lower_key;
3099
3100         BUG_ON(path->nodes[level]);
3101         BUG_ON(path->nodes[level-1] != root->node);
3102
3103         lower = path->nodes[level-1];
3104         if (level == 1)
3105                 btrfs_item_key(lower, &lower_key, 0);
3106         else
3107                 btrfs_node_key(lower, &lower_key, 0);
3108
3109         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3110                                    root->root_key.objectid, &lower_key,
3111                                    level, root->node->start, 0);
3112         if (IS_ERR(c))
3113                 return PTR_ERR(c);
3114
3115         root_add_used(root, root->nodesize);
3116
3117         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3118         btrfs_set_header_nritems(c, 1);
3119         btrfs_set_header_level(c, level);
3120         btrfs_set_header_bytenr(c, c->start);
3121         btrfs_set_header_generation(c, trans->transid);
3122         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3123         btrfs_set_header_owner(c, root->root_key.objectid);
3124
3125         write_extent_buffer(c, root->fs_info->fsid,
3126                             (unsigned long)btrfs_header_fsid(c),
3127                             BTRFS_FSID_SIZE);
3128
3129         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3130                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
3131                             BTRFS_UUID_SIZE);
3132
3133         btrfs_set_node_key(c, &lower_key, 0);
3134         btrfs_set_node_blockptr(c, 0, lower->start);
3135         lower_gen = btrfs_header_generation(lower);
3136         WARN_ON(lower_gen != trans->transid);
3137
3138         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3139
3140         btrfs_mark_buffer_dirty(c);
3141
3142         old = root->node;
3143         tree_mod_log_set_root_pointer(root, c);
3144         rcu_assign_pointer(root->node, c);
3145
3146         /* the super has an extra ref to root->node */
3147         free_extent_buffer(old);
3148
3149         add_root_to_dirty_list(root);
3150         extent_buffer_get(c);
3151         path->nodes[level] = c;
3152         path->locks[level] = BTRFS_WRITE_LOCK;
3153         path->slots[level] = 0;
3154         return 0;
3155 }
3156
3157 /*
3158  * worker function to insert a single pointer in a node.
3159  * the node should have enough room for the pointer already
3160  *
3161  * slot and level indicate where you want the key to go, and
3162  * blocknr is the block the key points to.
3163  */
3164 static void insert_ptr(struct btrfs_trans_handle *trans,
3165                        struct btrfs_root *root, struct btrfs_path *path,
3166                        struct btrfs_disk_key *key, u64 bytenr,
3167                        int slot, int level)
3168 {
3169         struct extent_buffer *lower;
3170         int nritems;
3171         int ret;
3172
3173         BUG_ON(!path->nodes[level]);
3174         btrfs_assert_tree_locked(path->nodes[level]);
3175         lower = path->nodes[level];
3176         nritems = btrfs_header_nritems(lower);
3177         BUG_ON(slot > nritems);
3178         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3179         if (slot != nritems) {
3180                 if (level)
3181                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3182                                              slot, nritems - slot);
3183                 memmove_extent_buffer(lower,
3184                               btrfs_node_key_ptr_offset(slot + 1),
3185                               btrfs_node_key_ptr_offset(slot),
3186                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3187         }
3188         if (level) {
3189                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3190                                               MOD_LOG_KEY_ADD);
3191                 BUG_ON(ret < 0);
3192         }
3193         btrfs_set_node_key(lower, key, slot);
3194         btrfs_set_node_blockptr(lower, slot, bytenr);
3195         WARN_ON(trans->transid == 0);
3196         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3197         btrfs_set_header_nritems(lower, nritems + 1);
3198         btrfs_mark_buffer_dirty(lower);
3199 }
3200
3201 /*
3202  * split the node at the specified level in path in two.
3203  * The path is corrected to point to the appropriate node after the split
3204  *
3205  * Before splitting this tries to make some room in the node by pushing
3206  * left and right, if either one works, it returns right away.
3207  *
3208  * returns 0 on success and < 0 on failure
3209  */
3210 static noinline int split_node(struct btrfs_trans_handle *trans,
3211                                struct btrfs_root *root,
3212                                struct btrfs_path *path, int level)
3213 {
3214         struct extent_buffer *c;
3215         struct extent_buffer *split;
3216         struct btrfs_disk_key disk_key;
3217         int mid;
3218         int ret;
3219         u32 c_nritems;
3220
3221         c = path->nodes[level];
3222         WARN_ON(btrfs_header_generation(c) != trans->transid);
3223         if (c == root->node) {
3224                 /* trying to split the root, lets make a new one */
3225                 ret = insert_new_root(trans, root, path, level + 1);
3226                 if (ret)
3227                         return ret;
3228         } else {
3229                 ret = push_nodes_for_insert(trans, root, path, level);
3230                 c = path->nodes[level];
3231                 if (!ret && btrfs_header_nritems(c) <
3232                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3233                         return 0;
3234                 if (ret < 0)
3235                         return ret;
3236         }
3237
3238         c_nritems = btrfs_header_nritems(c);
3239         mid = (c_nritems + 1) / 2;
3240         btrfs_node_key(c, &disk_key, mid);
3241
3242         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3243                                         root->root_key.objectid,
3244                                         &disk_key, level, c->start, 0);
3245         if (IS_ERR(split))
3246                 return PTR_ERR(split);
3247
3248         root_add_used(root, root->nodesize);
3249
3250         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3251         btrfs_set_header_level(split, btrfs_header_level(c));
3252         btrfs_set_header_bytenr(split, split->start);
3253         btrfs_set_header_generation(split, trans->transid);
3254         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3255         btrfs_set_header_owner(split, root->root_key.objectid);
3256         write_extent_buffer(split, root->fs_info->fsid,
3257                             (unsigned long)btrfs_header_fsid(split),
3258                             BTRFS_FSID_SIZE);
3259         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3260                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
3261                             BTRFS_UUID_SIZE);
3262
3263         tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3264         copy_extent_buffer(split, c,
3265                            btrfs_node_key_ptr_offset(0),
3266                            btrfs_node_key_ptr_offset(mid),
3267                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3268         btrfs_set_header_nritems(split, c_nritems - mid);
3269         btrfs_set_header_nritems(c, mid);
3270         ret = 0;
3271
3272         btrfs_mark_buffer_dirty(c);
3273         btrfs_mark_buffer_dirty(split);
3274
3275         insert_ptr(trans, root, path, &disk_key, split->start,
3276                    path->slots[level + 1] + 1, level + 1);
3277
3278         if (path->slots[level] >= mid) {
3279                 path->slots[level] -= mid;
3280                 btrfs_tree_unlock(c);
3281                 free_extent_buffer(c);
3282                 path->nodes[level] = split;
3283                 path->slots[level + 1] += 1;
3284         } else {
3285                 btrfs_tree_unlock(split);
3286                 free_extent_buffer(split);
3287         }
3288         return ret;
3289 }
3290
3291 /*
3292  * how many bytes are required to store the items in a leaf.  start
3293  * and nr indicate which items in the leaf to check.  This totals up the
3294  * space used both by the item structs and the item data
3295  */
3296 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3297 {
3298         int data_len;
3299         int nritems = btrfs_header_nritems(l);
3300         int end = min(nritems, start + nr) - 1;
3301
3302         if (!nr)
3303                 return 0;
3304         data_len = btrfs_item_end_nr(l, start);
3305         data_len = data_len - btrfs_item_offset_nr(l, end);
3306         data_len += sizeof(struct btrfs_item) * nr;
3307         WARN_ON(data_len < 0);
3308         return data_len;
3309 }
3310
3311 /*
3312  * The space between the end of the leaf items and
3313  * the start of the leaf data.  IOW, how much room
3314  * the leaf has left for both items and data
3315  */
3316 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3317                                    struct extent_buffer *leaf)
3318 {
3319         int nritems = btrfs_header_nritems(leaf);
3320         int ret;
3321         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3322         if (ret < 0) {
3323                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3324                        "used %d nritems %d\n",
3325                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3326                        leaf_space_used(leaf, 0, nritems), nritems);
3327         }
3328         return ret;
3329 }
3330
3331 /*
3332  * min slot controls the lowest index we're willing to push to the
3333  * right.  We'll push up to and including min_slot, but no lower
3334  */
3335 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3336                                       struct btrfs_root *root,
3337                                       struct btrfs_path *path,
3338                                       int data_size, int empty,
3339                                       struct extent_buffer *right,
3340                                       int free_space, u32 left_nritems,
3341                                       u32 min_slot)
3342 {
3343         struct extent_buffer *left = path->nodes[0];
3344         struct extent_buffer *upper = path->nodes[1];
3345         struct btrfs_map_token token;
3346         struct btrfs_disk_key disk_key;
3347         int slot;
3348         u32 i;
3349         int push_space = 0;
3350         int push_items = 0;
3351         struct btrfs_item *item;
3352         u32 nr;
3353         u32 right_nritems;
3354         u32 data_end;
3355         u32 this_item_size;
3356
3357         btrfs_init_map_token(&token);
3358
3359         if (empty)
3360                 nr = 0;
3361         else
3362                 nr = max_t(u32, 1, min_slot);
3363
3364         if (path->slots[0] >= left_nritems)
3365                 push_space += data_size;
3366
3367         slot = path->slots[1];
3368         i = left_nritems - 1;
3369         while (i >= nr) {
3370                 item = btrfs_item_nr(left, i);
3371
3372                 if (!empty && push_items > 0) {
3373                         if (path->slots[0] > i)
3374                                 break;
3375                         if (path->slots[0] == i) {
3376                                 int space = btrfs_leaf_free_space(root, left);
3377                                 if (space + push_space * 2 > free_space)
3378                                         break;
3379                         }
3380                 }
3381
3382                 if (path->slots[0] == i)
3383                         push_space += data_size;
3384
3385                 this_item_size = btrfs_item_size(left, item);
3386                 if (this_item_size + sizeof(*item) + push_space > free_space)
3387                         break;
3388
3389                 push_items++;
3390                 push_space += this_item_size + sizeof(*item);
3391                 if (i == 0)
3392                         break;
3393                 i--;
3394         }
3395
3396         if (push_items == 0)
3397                 goto out_unlock;
3398
3399         WARN_ON(!empty && push_items == left_nritems);
3400
3401         /* push left to right */
3402         right_nritems = btrfs_header_nritems(right);
3403
3404         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3405         push_space -= leaf_data_end(root, left);
3406
3407         /* make room in the right data area */
3408         data_end = leaf_data_end(root, right);
3409         memmove_extent_buffer(right,
3410                               btrfs_leaf_data(right) + data_end - push_space,
3411                               btrfs_leaf_data(right) + data_end,
3412                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3413
3414         /* copy from the left data area */
3415         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3416                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3417                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3418                      push_space);
3419
3420         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3421                               btrfs_item_nr_offset(0),
3422                               right_nritems * sizeof(struct btrfs_item));
3423
3424         /* copy the items from left to right */
3425         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3426                    btrfs_item_nr_offset(left_nritems - push_items),
3427                    push_items * sizeof(struct btrfs_item));
3428
3429         /* update the item pointers */
3430         right_nritems += push_items;
3431         btrfs_set_header_nritems(right, right_nritems);
3432         push_space = BTRFS_LEAF_DATA_SIZE(root);
3433         for (i = 0; i < right_nritems; i++) {
3434                 item = btrfs_item_nr(right, i);
3435                 push_space -= btrfs_token_item_size(right, item, &token);
3436                 btrfs_set_token_item_offset(right, item, push_space, &token);
3437         }
3438
3439         left_nritems -= push_items;
3440         btrfs_set_header_nritems(left, left_nritems);
3441
3442         if (left_nritems)
3443                 btrfs_mark_buffer_dirty(left);
3444         else
3445                 clean_tree_block(trans, root, left);
3446
3447         btrfs_mark_buffer_dirty(right);
3448
3449         btrfs_item_key(right, &disk_key, 0);
3450         btrfs_set_node_key(upper, &disk_key, slot + 1);
3451         btrfs_mark_buffer_dirty(upper);
3452
3453         /* then fixup the leaf pointer in the path */
3454         if (path->slots[0] >= left_nritems) {
3455                 path->slots[0] -= left_nritems;
3456                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3457                         clean_tree_block(trans, root, path->nodes[0]);
3458                 btrfs_tree_unlock(path->nodes[0]);
3459                 free_extent_buffer(path->nodes[0]);
3460                 path->nodes[0] = right;
3461                 path->slots[1] += 1;
3462         } else {
3463                 btrfs_tree_unlock(right);
3464                 free_extent_buffer(right);
3465         }
3466         return 0;
3467
3468 out_unlock:
3469         btrfs_tree_unlock(right);
3470         free_extent_buffer(right);
3471         return 1;
3472 }
3473
3474 /*
3475  * push some data in the path leaf to the right, trying to free up at
3476  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3477  *
3478  * returns 1 if the push failed because the other node didn't have enough
3479  * room, 0 if everything worked out and < 0 if there were major errors.
3480  *
3481  * this will push starting from min_slot to the end of the leaf.  It won't
3482  * push any slot lower than min_slot
3483  */
3484 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3485                            *root, struct btrfs_path *path,
3486                            int min_data_size, int data_size,
3487                            int empty, u32 min_slot)
3488 {
3489         struct extent_buffer *left = path->nodes[0];
3490         struct extent_buffer *right;
3491         struct extent_buffer *upper;
3492         int slot;
3493         int free_space;
3494         u32 left_nritems;
3495         int ret;
3496
3497         if (!path->nodes[1])
3498                 return 1;
3499
3500         slot = path->slots[1];
3501         upper = path->nodes[1];
3502         if (slot >= btrfs_header_nritems(upper) - 1)
3503                 return 1;
3504
3505         btrfs_assert_tree_locked(path->nodes[1]);
3506
3507         right = read_node_slot(root, upper, slot + 1);
3508         if (right == NULL)
3509                 return 1;
3510
3511         btrfs_tree_lock(right);
3512         btrfs_set_lock_blocking(right);
3513
3514         free_space = btrfs_leaf_free_space(root, right);
3515         if (free_space < data_size)
3516                 goto out_unlock;
3517
3518         /* cow and double check */
3519         ret = btrfs_cow_block(trans, root, right, upper,
3520                               slot + 1, &right);
3521         if (ret)
3522                 goto out_unlock;
3523
3524         free_space = btrfs_leaf_free_space(root, right);
3525         if (free_space < data_size)
3526                 goto out_unlock;
3527
3528         left_nritems = btrfs_header_nritems(left);
3529         if (left_nritems == 0)
3530                 goto out_unlock;
3531
3532         return __push_leaf_right(trans, root, path, min_data_size, empty,
3533                                 right, free_space, left_nritems, min_slot);
3534 out_unlock:
3535         btrfs_tree_unlock(right);
3536         free_extent_buffer(right);
3537         return 1;
3538 }
3539
3540 /*
3541  * push some data in the path leaf to the left, trying to free up at
3542  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3543  *
3544  * max_slot can put a limit on how far into the leaf we'll push items.  The
3545  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3546  * items
3547  */
3548 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3549                                      struct btrfs_root *root,
3550                                      struct btrfs_path *path, int data_size,
3551                                      int empty, struct extent_buffer *left,
3552                                      int free_space, u32 right_nritems,
3553                                      u32 max_slot)
3554 {
3555         struct btrfs_disk_key disk_key;
3556         struct extent_buffer *right = path->nodes[0];
3557         int i;
3558         int push_space = 0;
3559         int push_items = 0;
3560         struct btrfs_item *item;
3561         u32 old_left_nritems;
3562         u32 nr;
3563         int ret = 0;
3564         u32 this_item_size;
3565         u32 old_left_item_size;
3566         struct btrfs_map_token token;
3567
3568         btrfs_init_map_token(&token);
3569
3570         if (empty)
3571                 nr = min(right_nritems, max_slot);
3572         else
3573                 nr = min(right_nritems - 1, max_slot);
3574
3575         for (i = 0; i < nr; i++) {
3576                 item = btrfs_item_nr(right, i);
3577
3578                 if (!empty && push_items > 0) {
3579                         if (path->slots[0] < i)
3580                                 break;
3581                         if (path->slots[0] == i) {
3582                                 int space = btrfs_leaf_free_space(root, right);
3583                                 if (space + push_space * 2 > free_space)
3584                                         break;
3585                         }
3586                 }
3587
3588                 if (path->slots[0] == i)
3589                         push_space += data_size;
3590
3591                 this_item_size = btrfs_item_size(right, item);
3592                 if (this_item_size + sizeof(*item) + push_space > free_space)
3593                         break;
3594
3595                 push_items++;
3596                 push_space += this_item_size + sizeof(*item);
3597         }
3598
3599         if (push_items == 0) {
3600                 ret = 1;
3601                 goto out;
3602         }
3603         if (!empty && push_items == btrfs_header_nritems(right))
3604                 WARN_ON(1);
3605
3606         /* push data from right to left */
3607         copy_extent_buffer(left, right,
3608                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3609                            btrfs_item_nr_offset(0),
3610                            push_items * sizeof(struct btrfs_item));
3611
3612         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3613                      btrfs_item_offset_nr(right, push_items - 1);
3614
3615         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3616                      leaf_data_end(root, left) - push_space,
3617                      btrfs_leaf_data(right) +
3618                      btrfs_item_offset_nr(right, push_items - 1),
3619                      push_space);
3620         old_left_nritems = btrfs_header_nritems(left);
3621         BUG_ON(old_left_nritems <= 0);
3622
3623         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3624         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3625                 u32 ioff;
3626
3627                 item = btrfs_item_nr(left, i);
3628
3629                 ioff = btrfs_token_item_offset(left, item, &token);
3630                 btrfs_set_token_item_offset(left, item,
3631                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3632                       &token);
3633         }
3634         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3635
3636         /* fixup right node */
3637         if (push_items > right_nritems)
3638                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3639                        right_nritems);
3640
3641         if (push_items < right_nritems) {
3642                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3643                                                   leaf_data_end(root, right);
3644                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3645                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3646                                       btrfs_leaf_data(right) +
3647                                       leaf_data_end(root, right), push_space);
3648
3649                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3650                               btrfs_item_nr_offset(push_items),
3651                              (btrfs_header_nritems(right) - push_items) *
3652                              sizeof(struct btrfs_item));
3653         }
3654         right_nritems -= push_items;
3655         btrfs_set_header_nritems(right, right_nritems);
3656         push_space = BTRFS_LEAF_DATA_SIZE(root);
3657         for (i = 0; i < right_nritems; i++) {
3658                 item = btrfs_item_nr(right, i);
3659
3660                 push_space = push_space - btrfs_token_item_size(right,
3661                                                                 item, &token);
3662                 btrfs_set_token_item_offset(right, item, push_space, &token);
3663         }
3664
3665         btrfs_mark_buffer_dirty(left);
3666         if (right_nritems)
3667                 btrfs_mark_buffer_dirty(right);
3668         else
3669                 clean_tree_block(trans, root, right);
3670
3671         btrfs_item_key(right, &disk_key, 0);
3672         fixup_low_keys(trans, root, path, &disk_key, 1);
3673
3674         /* then fixup the leaf pointer in the path */
3675         if (path->slots[0] < push_items) {
3676                 path->slots[0] += old_left_nritems;
3677                 btrfs_tree_unlock(path->nodes[0]);
3678                 free_extent_buffer(path->nodes[0]);
3679                 path->nodes[0] = left;
3680                 path->slots[1] -= 1;
3681         } else {
3682                 btrfs_tree_unlock(left);
3683                 free_extent_buffer(left);
3684                 path->slots[0] -= push_items;
3685         }
3686         BUG_ON(path->slots[0] < 0);
3687         return ret;
3688 out:
3689         btrfs_tree_unlock(left);
3690         free_extent_buffer(left);
3691         return ret;
3692 }
3693
3694 /*
3695  * push some data in the path leaf to the left, trying to free up at
3696  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3697  *
3698  * max_slot can put a limit on how far into the leaf we'll push items.  The
3699  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3700  * items
3701  */
3702 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3703                           *root, struct btrfs_path *path, int min_data_size,
3704                           int data_size, int empty, u32 max_slot)
3705 {
3706         struct extent_buffer *right = path->nodes[0];
3707         struct extent_buffer *left;
3708         int slot;
3709         int free_space;
3710         u32 right_nritems;
3711         int ret = 0;
3712
3713         slot = path->slots[1];
3714         if (slot == 0)
3715                 return 1;
3716         if (!path->nodes[1])
3717                 return 1;
3718
3719         right_nritems = btrfs_header_nritems(right);
3720         if (right_nritems == 0)
3721                 return 1;
3722
3723         btrfs_assert_tree_locked(path->nodes[1]);
3724
3725         left = read_node_slot(root, path->nodes[1], slot - 1);
3726         if (left == NULL)
3727                 return 1;
3728
3729         btrfs_tree_lock(left);
3730         btrfs_set_lock_blocking(left);
3731
3732         free_space = btrfs_leaf_free_space(root, left);
3733         if (free_space < data_size) {
3734                 ret = 1;
3735                 goto out;
3736         }
3737
3738         /* cow and double check */
3739         ret = btrfs_cow_block(trans, root, left,
3740                               path->nodes[1], slot - 1, &left);
3741         if (ret) {
3742                 /* we hit -ENOSPC, but it isn't fatal here */
3743                 if (ret == -ENOSPC)
3744                         ret = 1;
3745                 goto out;
3746         }
3747
3748         free_space = btrfs_leaf_free_space(root, left);
3749         if (free_space < data_size) {
3750                 ret = 1;
3751                 goto out;
3752         }
3753
3754         return __push_leaf_left(trans, root, path, min_data_size,
3755                                empty, left, free_space, right_nritems,
3756                                max_slot);
3757 out:
3758         btrfs_tree_unlock(left);
3759         free_extent_buffer(left);
3760         return ret;
3761 }
3762
3763 /*
3764  * split the path's leaf in two, making sure there is at least data_size
3765  * available for the resulting leaf level of the path.
3766  */
3767 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3768                                     struct btrfs_root *root,
3769                                     struct btrfs_path *path,
3770                                     struct extent_buffer *l,
3771                                     struct extent_buffer *right,
3772                                     int slot, int mid, int nritems)
3773 {
3774         int data_copy_size;
3775         int rt_data_off;
3776         int i;
3777         struct btrfs_disk_key disk_key;
3778         struct btrfs_map_token token;
3779
3780         btrfs_init_map_token(&token);
3781
3782         nritems = nritems - mid;
3783         btrfs_set_header_nritems(right, nritems);
3784         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3785
3786         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3787                            btrfs_item_nr_offset(mid),
3788                            nritems * sizeof(struct btrfs_item));
3789
3790         copy_extent_buffer(right, l,
3791                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3792                      data_copy_size, btrfs_leaf_data(l) +
3793                      leaf_data_end(root, l), data_copy_size);
3794
3795         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3796                       btrfs_item_end_nr(l, mid);
3797
3798         for (i = 0; i < nritems; i++) {
3799                 struct btrfs_item *item = btrfs_item_nr(right, i);
3800                 u32 ioff;
3801
3802                 ioff = btrfs_token_item_offset(right, item, &token);
3803                 btrfs_set_token_item_offset(right, item,
3804                                             ioff + rt_data_off, &token);
3805         }
3806
3807         btrfs_set_header_nritems(l, mid);
3808         btrfs_item_key(right, &disk_key, 0);
3809         insert_ptr(trans, root, path, &disk_key, right->start,
3810                    path->slots[1] + 1, 1);
3811
3812         btrfs_mark_buffer_dirty(right);
3813         btrfs_mark_buffer_dirty(l);
3814         BUG_ON(path->slots[0] != slot);
3815
3816         if (mid <= slot) {
3817                 btrfs_tree_unlock(path->nodes[0]);
3818                 free_extent_buffer(path->nodes[0]);
3819                 path->nodes[0] = right;
3820                 path->slots[0] -= mid;
3821                 path->slots[1] += 1;
3822         } else {
3823                 btrfs_tree_unlock(right);
3824                 free_extent_buffer(right);
3825         }
3826
3827         BUG_ON(path->slots[0] < 0);
3828 }
3829
3830 /*
3831  * double splits happen when we need to insert a big item in the middle
3832  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3833  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3834  *          A                 B                 C
3835  *
3836  * We avoid this by trying to push the items on either side of our target
3837  * into the adjacent leaves.  If all goes well we can avoid the double split
3838  * completely.
3839  */
3840 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3841                                           struct btrfs_root *root,
3842                                           struct btrfs_path *path,
3843                                           int data_size)
3844 {
3845         int ret;
3846         int progress = 0;
3847         int slot;
3848         u32 nritems;
3849
3850         slot = path->slots[0];
3851
3852         /*
3853          * try to push all the items after our slot into the
3854          * right leaf
3855          */
3856         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3857         if (ret < 0)
3858                 return ret;
3859
3860         if (ret == 0)
3861                 progress++;
3862
3863         nritems = btrfs_header_nritems(path->nodes[0]);
3864         /*
3865          * our goal is to get our slot at the start or end of a leaf.  If
3866          * we've done so we're done
3867          */
3868         if (path->slots[0] == 0 || path->slots[0] == nritems)
3869                 return 0;
3870
3871         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3872                 return 0;
3873
3874         /* try to push all the items before our slot into the next leaf */
3875         slot = path->slots[0];
3876         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3877         if (ret < 0)
3878                 return ret;
3879
3880         if (ret == 0)
3881                 progress++;
3882
3883         if (progress)
3884                 return 0;
3885         return 1;
3886 }
3887
3888 /*
3889  * split the path's leaf in two, making sure there is at least data_size
3890  * available for the resulting leaf level of the path.
3891  *
3892  * returns 0 if all went well and < 0 on failure.
3893  */
3894 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3895                                struct btrfs_root *root,
3896                                struct btrfs_key *ins_key,
3897                                struct btrfs_path *path, int data_size,
3898                                int extend)
3899 {
3900         struct btrfs_disk_key disk_key;
3901         struct extent_buffer *l;
3902         u32 nritems;
3903         int mid;
3904         int slot;
3905         struct extent_buffer *right;
3906         int ret = 0;
3907         int wret;
3908         int split;
3909         int num_doubles = 0;
3910         int tried_avoid_double = 0;
3911
3912         l = path->nodes[0];
3913         slot = path->slots[0];
3914         if (extend && data_size + btrfs_item_size_nr(l, slot) +
3915             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3916                 return -EOVERFLOW;
3917
3918         /* first try to make some room by pushing left and right */
3919         if (data_size) {
3920                 wret = push_leaf_right(trans, root, path, data_size,
3921                                        data_size, 0, 0);
3922                 if (wret < 0)
3923                         return wret;
3924                 if (wret) {
3925                         wret = push_leaf_left(trans, root, path, data_size,
3926                                               data_size, 0, (u32)-1);
3927                         if (wret < 0)
3928                                 return wret;
3929                 }
3930                 l = path->nodes[0];
3931
3932                 /* did the pushes work? */
3933                 if (btrfs_leaf_free_space(root, l) >= data_size)
3934                         return 0;
3935         }
3936
3937         if (!path->nodes[1]) {
3938                 ret = insert_new_root(trans, root, path, 1);
3939                 if (ret)
3940                         return ret;
3941         }
3942 again:
3943         split = 1;
3944         l = path->nodes[0];
3945         slot = path->slots[0];
3946         nritems = btrfs_header_nritems(l);
3947         mid = (nritems + 1) / 2;
3948
3949         if (mid <= slot) {
3950                 if (nritems == 1 ||
3951                     leaf_space_used(l, mid, nritems - mid) + data_size >
3952                         BTRFS_LEAF_DATA_SIZE(root)) {
3953                         if (slot >= nritems) {
3954                                 split = 0;
3955                         } else {
3956                                 mid = slot;
3957                                 if (mid != nritems &&
3958                                     leaf_space_used(l, mid, nritems - mid) +
3959                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3960                                         if (data_size && !tried_avoid_double)
3961                                                 goto push_for_double;
3962                                         split = 2;
3963                                 }
3964                         }
3965                 }
3966         } else {
3967                 if (leaf_space_used(l, 0, mid) + data_size >
3968                         BTRFS_LEAF_DATA_SIZE(root)) {
3969                         if (!extend && data_size && slot == 0) {
3970                                 split = 0;
3971                         } else if ((extend || !data_size) && slot == 0) {
3972                                 mid = 1;
3973                         } else {
3974                                 mid = slot;
3975                                 if (mid != nritems &&
3976                                     leaf_space_used(l, mid, nritems - mid) +
3977                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3978                                         if (data_size && !tried_avoid_double)
3979                                                 goto push_for_double;
3980                                         split = 2 ;
3981                                 }
3982                         }
3983                 }
3984         }
3985
3986         if (split == 0)
3987                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3988         else
3989                 btrfs_item_key(l, &disk_key, mid);
3990
3991         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3992                                         root->root_key.objectid,
3993                                         &disk_key, 0, l->start, 0);
3994         if (IS_ERR(right))
3995                 return PTR_ERR(right);
3996
3997         root_add_used(root, root->leafsize);
3998
3999         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4000         btrfs_set_header_bytenr(right, right->start);
4001         btrfs_set_header_generation(right, trans->transid);
4002         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4003         btrfs_set_header_owner(right, root->root_key.objectid);
4004         btrfs_set_header_level(right, 0);
4005         write_extent_buffer(right, root->fs_info->fsid,
4006                             (unsigned long)btrfs_header_fsid(right),
4007                             BTRFS_FSID_SIZE);
4008
4009         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4010                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
4011                             BTRFS_UUID_SIZE);
4012
4013         if (split == 0) {
4014                 if (mid <= slot) {
4015                         btrfs_set_header_nritems(right, 0);
4016                         insert_ptr(trans, root, path, &disk_key, right->start,
4017                                    path->slots[1] + 1, 1);
4018                         btrfs_tree_unlock(path->nodes[0]);
4019                         free_extent_buffer(path->nodes[0]);
4020                         path->nodes[0] = right;
4021                         path->slots[0] = 0;
4022                         path->slots[1] += 1;
4023                 } else {
4024                         btrfs_set_header_nritems(right, 0);
4025                         insert_ptr(trans, root, path, &disk_key, right->start,
4026                                           path->slots[1], 1);
4027                         btrfs_tree_unlock(path->nodes[0]);
4028                         free_extent_buffer(path->nodes[0]);
4029                         path->nodes[0] = right;
4030                         path->slots[0] = 0;
4031                         if (path->slots[1] == 0)
4032                                 fixup_low_keys(trans, root, path,
4033                                                &disk_key, 1);
4034                 }
4035                 btrfs_mark_buffer_dirty(right);
4036                 return ret;
4037         }
4038
4039         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4040
4041         if (split == 2) {
4042                 BUG_ON(num_doubles != 0);
4043                 num_doubles++;
4044                 goto again;
4045         }
4046
4047         return 0;
4048
4049 push_for_double:
4050         push_for_double_split(trans, root, path, data_size);
4051         tried_avoid_double = 1;
4052         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4053                 return 0;
4054         goto again;
4055 }
4056
4057 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4058                                          struct btrfs_root *root,
4059                                          struct btrfs_path *path, int ins_len)
4060 {
4061         struct btrfs_key key;
4062         struct extent_buffer *leaf;
4063         struct btrfs_file_extent_item *fi;
4064         u64 extent_len = 0;
4065         u32 item_size;
4066         int ret;
4067
4068         leaf = path->nodes[0];
4069         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4070
4071         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4072                key.type != BTRFS_EXTENT_CSUM_KEY);
4073
4074         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4075                 return 0;
4076
4077         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4078         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4079                 fi = btrfs_item_ptr(leaf, path->slots[0],
4080                                     struct btrfs_file_extent_item);
4081                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4082         }
4083         btrfs_release_path(path);
4084
4085         path->keep_locks = 1;
4086         path->search_for_split = 1;
4087         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4088         path->search_for_split = 0;
4089         if (ret < 0)
4090                 goto err;
4091
4092         ret = -EAGAIN;
4093         leaf = path->nodes[0];
4094         /* if our item isn't there or got smaller, return now */
4095         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4096                 goto err;
4097
4098         /* the leaf has  changed, it now has room.  return now */
4099         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4100                 goto err;
4101
4102         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4103                 fi = btrfs_item_ptr(leaf, path->slots[0],
4104                                     struct btrfs_file_extent_item);
4105                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4106                         goto err;
4107         }
4108
4109         btrfs_set_path_blocking(path);
4110         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4111         if (ret)
4112                 goto err;
4113
4114         path->keep_locks = 0;
4115         btrfs_unlock_up_safe(path, 1);
4116         return 0;
4117 err:
4118         path->keep_locks = 0;
4119         return ret;
4120 }
4121
4122 static noinline int split_item(struct btrfs_trans_handle *trans,
4123                                struct btrfs_root *root,
4124                                struct btrfs_path *path,
4125                                struct btrfs_key *new_key,
4126                                unsigned long split_offset)
4127 {
4128         struct extent_buffer *leaf;
4129         struct btrfs_item *item;
4130         struct btrfs_item *new_item;
4131         int slot;
4132         char *buf;
4133         u32 nritems;
4134         u32 item_size;
4135         u32 orig_offset;
4136         struct btrfs_disk_key disk_key;
4137
4138         leaf = path->nodes[0];
4139         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4140
4141         btrfs_set_path_blocking(path);
4142
4143         item = btrfs_item_nr(leaf, path->slots[0]);
4144         orig_offset = btrfs_item_offset(leaf, item);
4145         item_size = btrfs_item_size(leaf, item);
4146
4147         buf = kmalloc(item_size, GFP_NOFS);
4148         if (!buf)
4149                 return -ENOMEM;
4150
4151         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4152                             path->slots[0]), item_size);
4153
4154         slot = path->slots[0] + 1;
4155         nritems = btrfs_header_nritems(leaf);
4156         if (slot != nritems) {
4157                 /* shift the items */
4158                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4159                                 btrfs_item_nr_offset(slot),
4160                                 (nritems - slot) * sizeof(struct btrfs_item));
4161         }
4162
4163         btrfs_cpu_key_to_disk(&disk_key, new_key);
4164         btrfs_set_item_key(leaf, &disk_key, slot);
4165
4166         new_item = btrfs_item_nr(leaf, slot);
4167
4168         btrfs_set_item_offset(leaf, new_item, orig_offset);
4169         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4170
4171         btrfs_set_item_offset(leaf, item,
4172                               orig_offset + item_size - split_offset);
4173         btrfs_set_item_size(leaf, item, split_offset);
4174
4175         btrfs_set_header_nritems(leaf, nritems + 1);
4176
4177         /* write the data for the start of the original item */
4178         write_extent_buffer(leaf, buf,
4179                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4180                             split_offset);
4181
4182         /* write the data for the new item */
4183         write_extent_buffer(leaf, buf + split_offset,
4184                             btrfs_item_ptr_offset(leaf, slot),
4185                             item_size - split_offset);
4186         btrfs_mark_buffer_dirty(leaf);
4187
4188         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4189         kfree(buf);
4190         return 0;
4191 }
4192
4193 /*
4194  * This function splits a single item into two items,
4195  * giving 'new_key' to the new item and splitting the
4196  * old one at split_offset (from the start of the item).
4197  *
4198  * The path may be released by this operation.  After
4199  * the split, the path is pointing to the old item.  The
4200  * new item is going to be in the same node as the old one.
4201  *
4202  * Note, the item being split must be smaller enough to live alone on
4203  * a tree block with room for one extra struct btrfs_item
4204  *
4205  * This allows us to split the item in place, keeping a lock on the
4206  * leaf the entire time.
4207  */
4208 int btrfs_split_item(struct btrfs_trans_handle *trans,
4209                      struct btrfs_root *root,
4210                      struct btrfs_path *path,
4211                      struct btrfs_key *new_key,
4212                      unsigned long split_offset)
4213 {
4214         int ret;
4215         ret = setup_leaf_for_split(trans, root, path,
4216                                    sizeof(struct btrfs_item));
4217         if (ret)
4218                 return ret;
4219
4220         ret = split_item(trans, root, path, new_key, split_offset);
4221         return ret;
4222 }
4223
4224 /*
4225  * This function duplicate a item, giving 'new_key' to the new item.
4226  * It guarantees both items live in the same tree leaf and the new item
4227  * is contiguous with the original item.
4228  *
4229  * This allows us to split file extent in place, keeping a lock on the
4230  * leaf the entire time.
4231  */
4232 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4233                          struct btrfs_root *root,
4234                          struct btrfs_path *path,
4235                          struct btrfs_key *new_key)
4236 {
4237         struct extent_buffer *leaf;
4238         int ret;
4239         u32 item_size;
4240
4241         leaf = path->nodes[0];
4242         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4243         ret = setup_leaf_for_split(trans, root, path,
4244                                    item_size + sizeof(struct btrfs_item));
4245         if (ret)
4246                 return ret;
4247
4248         path->slots[0]++;
4249         setup_items_for_insert(trans, root, path, new_key, &item_size,
4250                                item_size, item_size +
4251                                sizeof(struct btrfs_item), 1);
4252         leaf = path->nodes[0];
4253         memcpy_extent_buffer(leaf,
4254                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4255                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4256                              item_size);
4257         return 0;
4258 }
4259
4260 /*
4261  * make the item pointed to by the path smaller.  new_size indicates
4262  * how small to make it, and from_end tells us if we just chop bytes
4263  * off the end of the item or if we shift the item to chop bytes off
4264  * the front.
4265  */
4266 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4267                          struct btrfs_root *root,
4268                          struct btrfs_path *path,
4269                          u32 new_size, int from_end)
4270 {
4271         int slot;
4272         struct extent_buffer *leaf;
4273         struct btrfs_item *item;
4274         u32 nritems;
4275         unsigned int data_end;
4276         unsigned int old_data_start;
4277         unsigned int old_size;
4278         unsigned int size_diff;
4279         int i;
4280         struct btrfs_map_token token;
4281
4282         btrfs_init_map_token(&token);
4283
4284         leaf = path->nodes[0];
4285         slot = path->slots[0];
4286
4287         old_size = btrfs_item_size_nr(leaf, slot);
4288         if (old_size == new_size)
4289                 return;
4290
4291         nritems = btrfs_header_nritems(leaf);
4292         data_end = leaf_data_end(root, leaf);
4293
4294         old_data_start = btrfs_item_offset_nr(leaf, slot);
4295
4296         size_diff = old_size - new_size;
4297
4298         BUG_ON(slot < 0);
4299         BUG_ON(slot >= nritems);
4300
4301         /*
4302          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4303          */
4304         /* first correct the data pointers */
4305         for (i = slot; i < nritems; i++) {
4306                 u32 ioff;
4307                 item = btrfs_item_nr(leaf, i);
4308
4309                 ioff = btrfs_token_item_offset(leaf, item, &token);
4310                 btrfs_set_token_item_offset(leaf, item,
4311                                             ioff + size_diff, &token);
4312         }
4313
4314         /* shift the data */
4315         if (from_end) {
4316                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4317                               data_end + size_diff, btrfs_leaf_data(leaf) +
4318                               data_end, old_data_start + new_size - data_end);
4319         } else {
4320                 struct btrfs_disk_key disk_key;
4321                 u64 offset;
4322
4323                 btrfs_item_key(leaf, &disk_key, slot);
4324
4325                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4326                         unsigned long ptr;
4327                         struct btrfs_file_extent_item *fi;
4328
4329                         fi = btrfs_item_ptr(leaf, slot,
4330                                             struct btrfs_file_extent_item);
4331                         fi = (struct btrfs_file_extent_item *)(
4332                              (unsigned long)fi - size_diff);
4333
4334                         if (btrfs_file_extent_type(leaf, fi) ==
4335                             BTRFS_FILE_EXTENT_INLINE) {
4336                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4337                                 memmove_extent_buffer(leaf, ptr,
4338                                       (unsigned long)fi,
4339                                       offsetof(struct btrfs_file_extent_item,
4340                                                  disk_bytenr));
4341                         }
4342                 }
4343
4344                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4345                               data_end + size_diff, btrfs_leaf_data(leaf) +
4346                               data_end, old_data_start - data_end);
4347
4348                 offset = btrfs_disk_key_offset(&disk_key);
4349                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4350                 btrfs_set_item_key(leaf, &disk_key, slot);
4351                 if (slot == 0)
4352                         fixup_low_keys(trans, root, path, &disk_key, 1);
4353         }
4354
4355         item = btrfs_item_nr(leaf, slot);
4356         btrfs_set_item_size(leaf, item, new_size);
4357         btrfs_mark_buffer_dirty(leaf);
4358
4359         if (btrfs_leaf_free_space(root, leaf) < 0) {
4360                 btrfs_print_leaf(root, leaf);
4361                 BUG();
4362         }
4363 }
4364
4365 /*
4366  * make the item pointed to by the path bigger, data_size is the new size.
4367  */
4368 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4369                        struct btrfs_root *root, struct btrfs_path *path,
4370                        u32 data_size)
4371 {
4372         int slot;
4373         struct extent_buffer *leaf;
4374         struct btrfs_item *item;
4375         u32 nritems;
4376         unsigned int data_end;
4377         unsigned int old_data;
4378         unsigned int old_size;
4379         int i;
4380         struct btrfs_map_token token;
4381
4382         btrfs_init_map_token(&token);
4383
4384         leaf = path->nodes[0];
4385
4386         nritems = btrfs_header_nritems(leaf);
4387         data_end = leaf_data_end(root, leaf);
4388
4389         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4390                 btrfs_print_leaf(root, leaf);
4391                 BUG();
4392         }
4393         slot = path->slots[0];
4394         old_data = btrfs_item_end_nr(leaf, slot);
4395
4396         BUG_ON(slot < 0);
4397         if (slot >= nritems) {
4398                 btrfs_print_leaf(root, leaf);
4399                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4400                        slot, nritems);
4401                 BUG_ON(1);
4402         }
4403
4404         /*
4405          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4406          */
4407         /* first correct the data pointers */
4408         for (i = slot; i < nritems; i++) {
4409                 u32 ioff;
4410                 item = btrfs_item_nr(leaf, i);
4411
4412                 ioff = btrfs_token_item_offset(leaf, item, &token);
4413                 btrfs_set_token_item_offset(leaf, item,
4414                                             ioff - data_size, &token);
4415         }
4416
4417         /* shift the data */
4418         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4419                       data_end - data_size, btrfs_leaf_data(leaf) +
4420                       data_end, old_data - data_end);
4421
4422         data_end = old_data;
4423         old_size = btrfs_item_size_nr(leaf, slot);
4424         item = btrfs_item_nr(leaf, slot);
4425         btrfs_set_item_size(leaf, item, old_size + data_size);
4426         btrfs_mark_buffer_dirty(leaf);
4427
4428         if (btrfs_leaf_free_space(root, leaf) < 0) {
4429                 btrfs_print_leaf(root, leaf);
4430                 BUG();
4431         }
4432 }
4433
4434 /*
4435  * this is a helper for btrfs_insert_empty_items, the main goal here is
4436  * to save stack depth by doing the bulk of the work in a function
4437  * that doesn't call btrfs_search_slot
4438  */
4439 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4440                             struct btrfs_root *root, struct btrfs_path *path,
4441                             struct btrfs_key *cpu_key, u32 *data_size,
4442                             u32 total_data, u32 total_size, int nr)
4443 {
4444         struct btrfs_item *item;
4445         int i;
4446         u32 nritems;
4447         unsigned int data_end;
4448         struct btrfs_disk_key disk_key;
4449         struct extent_buffer *leaf;
4450         int slot;
4451         struct btrfs_map_token token;
4452
4453         btrfs_init_map_token(&token);
4454
4455         leaf = path->nodes[0];
4456         slot = path->slots[0];
4457
4458         nritems = btrfs_header_nritems(leaf);
4459         data_end = leaf_data_end(root, leaf);
4460
4461         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4462                 btrfs_print_leaf(root, leaf);
4463                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4464                        total_size, btrfs_leaf_free_space(root, leaf));
4465                 BUG();
4466         }
4467
4468         if (slot != nritems) {
4469                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4470
4471                 if (old_data < data_end) {
4472                         btrfs_print_leaf(root, leaf);
4473                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4474                                slot, old_data, data_end);
4475                         BUG_ON(1);
4476                 }
4477                 /*
4478                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4479                  */
4480                 /* first correct the data pointers */
4481                 for (i = slot; i < nritems; i++) {
4482                         u32 ioff;
4483
4484                         item = btrfs_item_nr(leaf, i);
4485                         ioff = btrfs_token_item_offset(leaf, item, &token);
4486                         btrfs_set_token_item_offset(leaf, item,
4487                                                     ioff - total_data, &token);
4488                 }
4489                 /* shift the items */
4490                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4491                               btrfs_item_nr_offset(slot),
4492                               (nritems - slot) * sizeof(struct btrfs_item));
4493
4494                 /* shift the data */
4495                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4496                               data_end - total_data, btrfs_leaf_data(leaf) +
4497                               data_end, old_data - data_end);
4498                 data_end = old_data;
4499         }
4500
4501         /* setup the item for the new data */
4502         for (i = 0; i < nr; i++) {
4503                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4504                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4505                 item = btrfs_item_nr(leaf, slot + i);
4506                 btrfs_set_token_item_offset(leaf, item,
4507                                             data_end - data_size[i], &token);
4508                 data_end -= data_size[i];
4509                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4510         }
4511
4512         btrfs_set_header_nritems(leaf, nritems + nr);
4513
4514         if (slot == 0) {
4515                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4516                 fixup_low_keys(trans, root, path, &disk_key, 1);
4517         }
4518         btrfs_unlock_up_safe(path, 1);
4519         btrfs_mark_buffer_dirty(leaf);
4520
4521         if (btrfs_leaf_free_space(root, leaf) < 0) {
4522                 btrfs_print_leaf(root, leaf);
4523                 BUG();
4524         }
4525 }
4526
4527 /*
4528  * Given a key and some data, insert items into the tree.
4529  * This does all the path init required, making room in the tree if needed.
4530  */
4531 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4532                             struct btrfs_root *root,
4533                             struct btrfs_path *path,
4534                             struct btrfs_key *cpu_key, u32 *data_size,
4535                             int nr)
4536 {
4537         int ret = 0;
4538         int slot;
4539         int i;
4540         u32 total_size = 0;
4541         u32 total_data = 0;
4542
4543         for (i = 0; i < nr; i++)
4544                 total_data += data_size[i];
4545
4546         total_size = total_data + (nr * sizeof(struct btrfs_item));
4547         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4548         if (ret == 0)
4549                 return -EEXIST;
4550         if (ret < 0)
4551                 return ret;
4552
4553         slot = path->slots[0];
4554         BUG_ON(slot < 0);
4555
4556         setup_items_for_insert(trans, root, path, cpu_key, data_size,
4557                                total_data, total_size, nr);
4558         return 0;
4559 }
4560
4561 /*
4562  * Given a key and some data, insert an item into the tree.
4563  * This does all the path init required, making room in the tree if needed.
4564  */
4565 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4566                       *root, struct btrfs_key *cpu_key, void *data, u32
4567                       data_size)
4568 {
4569         int ret = 0;
4570         struct btrfs_path *path;
4571         struct extent_buffer *leaf;
4572         unsigned long ptr;
4573
4574         path = btrfs_alloc_path();
4575         if (!path)
4576                 return -ENOMEM;
4577         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4578         if (!ret) {
4579                 leaf = path->nodes[0];
4580                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4581                 write_extent_buffer(leaf, data, ptr, data_size);
4582                 btrfs_mark_buffer_dirty(leaf);
4583         }
4584         btrfs_free_path(path);
4585         return ret;
4586 }
4587
4588 /*
4589  * delete the pointer from a given node.
4590  *
4591  * the tree should have been previously balanced so the deletion does not
4592  * empty a node.
4593  */
4594 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4595                     struct btrfs_path *path, int level, int slot)
4596 {
4597         struct extent_buffer *parent = path->nodes[level];
4598         u32 nritems;
4599         int ret;
4600
4601         if (level) {
4602                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4603                                               MOD_LOG_KEY_REMOVE);
4604                 BUG_ON(ret < 0);
4605         }
4606
4607         nritems = btrfs_header_nritems(parent);
4608         if (slot != nritems - 1) {
4609                 if (level)
4610                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4611                                              slot + 1, nritems - slot - 1);
4612                 memmove_extent_buffer(parent,
4613                               btrfs_node_key_ptr_offset(slot),
4614                               btrfs_node_key_ptr_offset(slot + 1),
4615                               sizeof(struct btrfs_key_ptr) *
4616                               (nritems - slot - 1));
4617         }
4618
4619         nritems--;
4620         btrfs_set_header_nritems(parent, nritems);
4621         if (nritems == 0 && parent == root->node) {
4622                 BUG_ON(btrfs_header_level(root->node) != 1);
4623                 /* just turn the root into a leaf and break */
4624                 btrfs_set_header_level(root->node, 0);
4625         } else if (slot == 0) {
4626                 struct btrfs_disk_key disk_key;
4627
4628                 btrfs_node_key(parent, &disk_key, 0);
4629                 fixup_low_keys(trans, root, path, &disk_key, level + 1);
4630         }
4631         btrfs_mark_buffer_dirty(parent);
4632 }
4633
4634 /*
4635  * a helper function to delete the leaf pointed to by path->slots[1] and
4636  * path->nodes[1].
4637  *
4638  * This deletes the pointer in path->nodes[1] and frees the leaf
4639  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4640  *
4641  * The path must have already been setup for deleting the leaf, including
4642  * all the proper balancing.  path->nodes[1] must be locked.
4643  */
4644 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4645                                     struct btrfs_root *root,
4646                                     struct btrfs_path *path,
4647                                     struct extent_buffer *leaf)
4648 {
4649         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4650         del_ptr(trans, root, path, 1, path->slots[1]);
4651
4652         /*
4653          * btrfs_free_extent is expensive, we want to make sure we
4654          * aren't holding any locks when we call it
4655          */
4656         btrfs_unlock_up_safe(path, 0);
4657
4658         root_sub_used(root, leaf->len);
4659
4660         extent_buffer_get(leaf);
4661         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4662         free_extent_buffer_stale(leaf);
4663 }
4664 /*
4665  * delete the item at the leaf level in path.  If that empties
4666  * the leaf, remove it from the tree
4667  */
4668 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4669                     struct btrfs_path *path, int slot, int nr)
4670 {
4671         struct extent_buffer *leaf;
4672         struct btrfs_item *item;
4673         int last_off;
4674         int dsize = 0;
4675         int ret = 0;
4676         int wret;
4677         int i;
4678         u32 nritems;
4679         struct btrfs_map_token token;
4680
4681         btrfs_init_map_token(&token);
4682
4683         leaf = path->nodes[0];
4684         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4685
4686         for (i = 0; i < nr; i++)
4687                 dsize += btrfs_item_size_nr(leaf, slot + i);
4688
4689         nritems = btrfs_header_nritems(leaf);
4690
4691         if (slot + nr != nritems) {
4692                 int data_end = leaf_data_end(root, leaf);
4693
4694                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4695                               data_end + dsize,
4696                               btrfs_leaf_data(leaf) + data_end,
4697                               last_off - data_end);
4698
4699                 for (i = slot + nr; i < nritems; i++) {
4700                         u32 ioff;
4701
4702                         item = btrfs_item_nr(leaf, i);
4703                         ioff = btrfs_token_item_offset(leaf, item, &token);
4704                         btrfs_set_token_item_offset(leaf, item,
4705                                                     ioff + dsize, &token);
4706                 }
4707
4708                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4709                               btrfs_item_nr_offset(slot + nr),
4710                               sizeof(struct btrfs_item) *
4711                               (nritems - slot - nr));
4712         }
4713         btrfs_set_header_nritems(leaf, nritems - nr);
4714         nritems -= nr;
4715
4716         /* delete the leaf if we've emptied it */
4717         if (nritems == 0) {
4718                 if (leaf == root->node) {
4719                         btrfs_set_header_level(leaf, 0);
4720                 } else {
4721                         btrfs_set_path_blocking(path);
4722                         clean_tree_block(trans, root, leaf);
4723                         btrfs_del_leaf(trans, root, path, leaf);
4724                 }
4725         } else {
4726                 int used = leaf_space_used(leaf, 0, nritems);
4727                 if (slot == 0) {
4728                         struct btrfs_disk_key disk_key;
4729
4730                         btrfs_item_key(leaf, &disk_key, 0);
4731                         fixup_low_keys(trans, root, path, &disk_key, 1);
4732                 }
4733
4734                 /* delete the leaf if it is mostly empty */
4735                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4736                         /* push_leaf_left fixes the path.
4737                          * make sure the path still points to our leaf
4738                          * for possible call to del_ptr below
4739                          */
4740                         slot = path->slots[1];
4741                         extent_buffer_get(leaf);
4742
4743                         btrfs_set_path_blocking(path);
4744                         wret = push_leaf_left(trans, root, path, 1, 1,
4745                                               1, (u32)-1);
4746                         if (wret < 0 && wret != -ENOSPC)
4747                                 ret = wret;
4748
4749                         if (path->nodes[0] == leaf &&
4750                             btrfs_header_nritems(leaf)) {
4751                                 wret = push_leaf_right(trans, root, path, 1,
4752                                                        1, 1, 0);
4753                                 if (wret < 0 && wret != -ENOSPC)
4754                                         ret = wret;
4755                         }
4756
4757                         if (btrfs_header_nritems(leaf) == 0) {
4758                                 path->slots[1] = slot;
4759                                 btrfs_del_leaf(trans, root, path, leaf);
4760                                 free_extent_buffer(leaf);
4761                                 ret = 0;
4762                         } else {
4763                                 /* if we're still in the path, make sure
4764                                  * we're dirty.  Otherwise, one of the
4765                                  * push_leaf functions must have already
4766                                  * dirtied this buffer
4767                                  */
4768                                 if (path->nodes[0] == leaf)
4769                                         btrfs_mark_buffer_dirty(leaf);
4770                                 free_extent_buffer(leaf);
4771                         }
4772                 } else {
4773                         btrfs_mark_buffer_dirty(leaf);
4774                 }
4775         }
4776         return ret;
4777 }
4778
4779 /*
4780  * search the tree again to find a leaf with lesser keys
4781  * returns 0 if it found something or 1 if there are no lesser leaves.
4782  * returns < 0 on io errors.
4783  *
4784  * This may release the path, and so you may lose any locks held at the
4785  * time you call it.
4786  */
4787 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4788 {
4789         struct btrfs_key key;
4790         struct btrfs_disk_key found_key;
4791         int ret;
4792
4793         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4794
4795         if (key.offset > 0)
4796                 key.offset--;
4797         else if (key.type > 0)
4798                 key.type--;
4799         else if (key.objectid > 0)
4800                 key.objectid--;
4801         else
4802                 return 1;
4803
4804         btrfs_release_path(path);
4805         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4806         if (ret < 0)
4807                 return ret;
4808         btrfs_item_key(path->nodes[0], &found_key, 0);
4809         ret = comp_keys(&found_key, &key);
4810         if (ret < 0)
4811                 return 0;
4812         return 1;
4813 }
4814
4815 /*
4816  * A helper function to walk down the tree starting at min_key, and looking
4817  * for nodes or leaves that are either in cache or have a minimum
4818  * transaction id.  This is used by the btree defrag code, and tree logging
4819  *
4820  * This does not cow, but it does stuff the starting key it finds back
4821  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4822  * key and get a writable path.
4823  *
4824  * This does lock as it descends, and path->keep_locks should be set
4825  * to 1 by the caller.
4826  *
4827  * This honors path->lowest_level to prevent descent past a given level
4828  * of the tree.
4829  *
4830  * min_trans indicates the oldest transaction that you are interested
4831  * in walking through.  Any nodes or leaves older than min_trans are
4832  * skipped over (without reading them).
4833  *
4834  * returns zero if something useful was found, < 0 on error and 1 if there
4835  * was nothing in the tree that matched the search criteria.
4836  */
4837 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4838                          struct btrfs_key *max_key,
4839                          struct btrfs_path *path, int cache_only,
4840                          u64 min_trans)
4841 {
4842         struct extent_buffer *cur;
4843         struct btrfs_key found_key;
4844         int slot;
4845         int sret;
4846         u32 nritems;
4847         int level;
4848         int ret = 1;
4849
4850         WARN_ON(!path->keep_locks);
4851 again:
4852         cur = btrfs_read_lock_root_node(root);
4853         level = btrfs_header_level(cur);
4854         WARN_ON(path->nodes[level]);
4855         path->nodes[level] = cur;
4856         path->locks[level] = BTRFS_READ_LOCK;
4857
4858         if (btrfs_header_generation(cur) < min_trans) {
4859                 ret = 1;
4860                 goto out;
4861         }
4862         while (1) {
4863                 nritems = btrfs_header_nritems(cur);
4864                 level = btrfs_header_level(cur);
4865                 sret = bin_search(cur, min_key, level, &slot);
4866
4867                 /* at the lowest level, we're done, setup the path and exit */
4868                 if (level == path->lowest_level) {
4869                         if (slot >= nritems)
4870                                 goto find_next_key;
4871                         ret = 0;
4872                         path->slots[level] = slot;
4873                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4874                         goto out;
4875                 }
4876                 if (sret && slot > 0)
4877                         slot--;
4878                 /*
4879                  * check this node pointer against the cache_only and
4880                  * min_trans parameters.  If it isn't in cache or is too
4881                  * old, skip to the next one.
4882                  */
4883                 while (slot < nritems) {
4884                         u64 blockptr;
4885                         u64 gen;
4886                         struct extent_buffer *tmp;
4887                         struct btrfs_disk_key disk_key;
4888
4889                         blockptr = btrfs_node_blockptr(cur, slot);
4890                         gen = btrfs_node_ptr_generation(cur, slot);
4891                         if (gen < min_trans) {
4892                                 slot++;
4893                                 continue;
4894                         }
4895                         if (!cache_only)
4896                                 break;
4897
4898                         if (max_key) {
4899                                 btrfs_node_key(cur, &disk_key, slot);
4900                                 if (comp_keys(&disk_key, max_key) >= 0) {
4901                                         ret = 1;
4902                                         goto out;
4903                                 }
4904                         }
4905
4906                         tmp = btrfs_find_tree_block(root, blockptr,
4907                                             btrfs_level_size(root, level - 1));
4908
4909                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
4910                                 free_extent_buffer(tmp);
4911                                 break;
4912                         }
4913                         if (tmp)
4914                                 free_extent_buffer(tmp);
4915                         slot++;
4916                 }
4917 find_next_key:
4918                 /*
4919                  * we didn't find a candidate key in this node, walk forward
4920                  * and find another one
4921                  */
4922                 if (slot >= nritems) {
4923                         path->slots[level] = slot;
4924                         btrfs_set_path_blocking(path);
4925                         sret = btrfs_find_next_key(root, path, min_key, level,
4926                                                   cache_only, min_trans);
4927                         if (sret == 0) {
4928                                 btrfs_release_path(path);
4929                                 goto again;
4930                         } else {
4931                                 goto out;
4932                         }
4933                 }
4934                 /* save our key for returning back */
4935                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4936                 path->slots[level] = slot;
4937                 if (level == path->lowest_level) {
4938                         ret = 0;
4939                         unlock_up(path, level, 1, 0, NULL);
4940                         goto out;
4941                 }
4942                 btrfs_set_path_blocking(path);
4943                 cur = read_node_slot(root, cur, slot);
4944                 BUG_ON(!cur); /* -ENOMEM */
4945
4946                 btrfs_tree_read_lock(cur);
4947
4948                 path->locks[level - 1] = BTRFS_READ_LOCK;
4949                 path->nodes[level - 1] = cur;
4950                 unlock_up(path, level, 1, 0, NULL);
4951                 btrfs_clear_path_blocking(path, NULL, 0);
4952         }
4953 out:
4954         if (ret == 0)
4955                 memcpy(min_key, &found_key, sizeof(found_key));
4956         btrfs_set_path_blocking(path);
4957         return ret;
4958 }
4959
4960 static void tree_move_down(struct btrfs_root *root,
4961                            struct btrfs_path *path,
4962                            int *level, int root_level)
4963 {
4964         BUG_ON(*level == 0);
4965         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4966                                         path->slots[*level]);
4967         path->slots[*level - 1] = 0;
4968         (*level)--;
4969 }
4970
4971 static int tree_move_next_or_upnext(struct btrfs_root *root,
4972                                     struct btrfs_path *path,
4973                                     int *level, int root_level)
4974 {
4975         int ret = 0;
4976         int nritems;
4977         nritems = btrfs_header_nritems(path->nodes[*level]);
4978
4979         path->slots[*level]++;
4980
4981         while (path->slots[*level] >= nritems) {
4982                 if (*level == root_level)
4983                         return -1;
4984
4985                 /* move upnext */
4986                 path->slots[*level] = 0;
4987                 free_extent_buffer(path->nodes[*level]);
4988                 path->nodes[*level] = NULL;
4989                 (*level)++;
4990                 path->slots[*level]++;
4991
4992                 nritems = btrfs_header_nritems(path->nodes[*level]);
4993                 ret = 1;
4994         }
4995         return ret;
4996 }
4997
4998 /*
4999  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5000  * or down.
5001  */
5002 static int tree_advance(struct btrfs_root *root,
5003                         struct btrfs_path *path,
5004                         int *level, int root_level,
5005                         int allow_down,
5006                         struct btrfs_key *key)
5007 {
5008         int ret;
5009
5010         if (*level == 0 || !allow_down) {
5011                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5012         } else {
5013                 tree_move_down(root, path, level, root_level);
5014                 ret = 0;
5015         }
5016         if (ret >= 0) {
5017                 if (*level == 0)
5018                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5019                                         path->slots[*level]);
5020                 else
5021                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5022                                         path->slots[*level]);
5023         }
5024         return ret;
5025 }
5026
5027 static int tree_compare_item(struct btrfs_root *left_root,
5028                              struct btrfs_path *left_path,
5029                              struct btrfs_path *right_path,
5030                              char *tmp_buf)
5031 {
5032         int cmp;
5033         int len1, len2;
5034         unsigned long off1, off2;
5035
5036         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5037         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5038         if (len1 != len2)
5039                 return 1;
5040
5041         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5042         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5043                                 right_path->slots[0]);
5044
5045         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5046
5047         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5048         if (cmp)
5049                 return 1;
5050         return 0;
5051 }
5052
5053 #define ADVANCE 1
5054 #define ADVANCE_ONLY_NEXT -1
5055
5056 /*
5057  * This function compares two trees and calls the provided callback for
5058  * every changed/new/deleted item it finds.
5059  * If shared tree blocks are encountered, whole subtrees are skipped, making
5060  * the compare pretty fast on snapshotted subvolumes.
5061  *
5062  * This currently works on commit roots only. As commit roots are read only,
5063  * we don't do any locking. The commit roots are protected with transactions.
5064  * Transactions are ended and rejoined when a commit is tried in between.
5065  *
5066  * This function checks for modifications done to the trees while comparing.
5067  * If it detects a change, it aborts immediately.
5068  */
5069 int btrfs_compare_trees(struct btrfs_root *left_root,
5070                         struct btrfs_root *right_root,
5071                         btrfs_changed_cb_t changed_cb, void *ctx)
5072 {
5073         int ret;
5074         int cmp;
5075         struct btrfs_trans_handle *trans = NULL;
5076         struct btrfs_path *left_path = NULL;
5077         struct btrfs_path *right_path = NULL;
5078         struct btrfs_key left_key;
5079         struct btrfs_key right_key;
5080         char *tmp_buf = NULL;
5081         int left_root_level;
5082         int right_root_level;
5083         int left_level;
5084         int right_level;
5085         int left_end_reached;
5086         int right_end_reached;
5087         int advance_left;
5088         int advance_right;
5089         u64 left_blockptr;
5090         u64 right_blockptr;
5091         u64 left_start_ctransid;
5092         u64 right_start_ctransid;
5093         u64 ctransid;
5094
5095         left_path = btrfs_alloc_path();
5096         if (!left_path) {
5097                 ret = -ENOMEM;
5098                 goto out;
5099         }
5100         right_path = btrfs_alloc_path();
5101         if (!right_path) {
5102                 ret = -ENOMEM;
5103                 goto out;
5104         }
5105
5106         tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5107         if (!tmp_buf) {
5108                 ret = -ENOMEM;
5109                 goto out;
5110         }
5111
5112         left_path->search_commit_root = 1;
5113         left_path->skip_locking = 1;
5114         right_path->search_commit_root = 1;
5115         right_path->skip_locking = 1;
5116
5117         spin_lock(&left_root->root_times_lock);
5118         left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5119         spin_unlock(&left_root->root_times_lock);
5120
5121         spin_lock(&right_root->root_times_lock);
5122         right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5123         spin_unlock(&right_root->root_times_lock);
5124
5125         trans = btrfs_join_transaction(left_root);
5126         if (IS_ERR(trans)) {
5127                 ret = PTR_ERR(trans);
5128                 trans = NULL;
5129                 goto out;
5130         }
5131
5132         /*
5133          * Strategy: Go to the first items of both trees. Then do
5134          *
5135          * If both trees are at level 0
5136          *   Compare keys of current items
5137          *     If left < right treat left item as new, advance left tree
5138          *       and repeat
5139          *     If left > right treat right item as deleted, advance right tree
5140          *       and repeat
5141          *     If left == right do deep compare of items, treat as changed if
5142          *       needed, advance both trees and repeat
5143          * If both trees are at the same level but not at level 0
5144          *   Compare keys of current nodes/leafs
5145          *     If left < right advance left tree and repeat
5146          *     If left > right advance right tree and repeat
5147          *     If left == right compare blockptrs of the next nodes/leafs
5148          *       If they match advance both trees but stay at the same level
5149          *         and repeat
5150          *       If they don't match advance both trees while allowing to go
5151          *         deeper and repeat
5152          * If tree levels are different
5153          *   Advance the tree that needs it and repeat
5154          *
5155          * Advancing a tree means:
5156          *   If we are at level 0, try to go to the next slot. If that's not
5157          *   possible, go one level up and repeat. Stop when we found a level
5158          *   where we could go to the next slot. We may at this point be on a
5159          *   node or a leaf.
5160          *
5161          *   If we are not at level 0 and not on shared tree blocks, go one
5162          *   level deeper.
5163          *
5164          *   If we are not at level 0 and on shared tree blocks, go one slot to
5165          *   the right if possible or go up and right.
5166          */
5167
5168         left_level = btrfs_header_level(left_root->commit_root);
5169         left_root_level = left_level;
5170         left_path->nodes[left_level] = left_root->commit_root;
5171         extent_buffer_get(left_path->nodes[left_level]);
5172
5173         right_level = btrfs_header_level(right_root->commit_root);
5174         right_root_level = right_level;
5175         right_path->nodes[right_level] = right_root->commit_root;
5176         extent_buffer_get(right_path->nodes[right_level]);
5177
5178         if (left_level == 0)
5179                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5180                                 &left_key, left_path->slots[left_level]);
5181         else
5182                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5183                                 &left_key, left_path->slots[left_level]);
5184         if (right_level == 0)
5185                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5186                                 &right_key, right_path->slots[right_level]);
5187         else
5188                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5189                                 &right_key, right_path->slots[right_level]);
5190
5191         left_end_reached = right_end_reached = 0;
5192         advance_left = advance_right = 0;
5193
5194         while (1) {
5195                 /*
5196                  * We need to make sure the transaction does not get committed
5197                  * while we do anything on commit roots. This means, we need to
5198                  * join and leave transactions for every item that we process.
5199                  */
5200                 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5201                         btrfs_release_path(left_path);
5202                         btrfs_release_path(right_path);
5203
5204                         ret = btrfs_end_transaction(trans, left_root);
5205                         trans = NULL;
5206                         if (ret < 0)
5207                                 goto out;
5208                 }
5209                 /* now rejoin the transaction */
5210                 if (!trans) {
5211                         trans = btrfs_join_transaction(left_root);
5212                         if (IS_ERR(trans)) {
5213                                 ret = PTR_ERR(trans);
5214                                 trans = NULL;
5215                                 goto out;
5216                         }
5217
5218                         spin_lock(&left_root->root_times_lock);
5219                         ctransid = btrfs_root_ctransid(&left_root->root_item);
5220                         spin_unlock(&left_root->root_times_lock);
5221                         if (ctransid != left_start_ctransid)
5222                                 left_start_ctransid = 0;
5223
5224                         spin_lock(&right_root->root_times_lock);
5225                         ctransid = btrfs_root_ctransid(&right_root->root_item);
5226                         spin_unlock(&right_root->root_times_lock);
5227                         if (ctransid != right_start_ctransid)
5228                                 right_start_ctransid = 0;
5229
5230                         if (!left_start_ctransid || !right_start_ctransid) {
5231                                 WARN(1, KERN_WARNING
5232                                         "btrfs: btrfs_compare_tree detected "
5233                                         "a change in one of the trees while "
5234                                         "iterating. This is probably a "
5235                                         "bug.\n");
5236                                 ret = -EIO;
5237                                 goto out;
5238                         }
5239
5240                         /*
5241                          * the commit root may have changed, so start again
5242                          * where we stopped
5243                          */
5244                         left_path->lowest_level = left_level;
5245                         right_path->lowest_level = right_level;
5246                         ret = btrfs_search_slot(NULL, left_root,
5247                                         &left_key, left_path, 0, 0);
5248                         if (ret < 0)
5249                                 goto out;
5250                         ret = btrfs_search_slot(NULL, right_root,
5251                                         &right_key, right_path, 0, 0);
5252                         if (ret < 0)
5253                                 goto out;
5254                 }
5255
5256                 if (advance_left && !left_end_reached) {
5257                         ret = tree_advance(left_root, left_path, &left_level,
5258                                         left_root_level,
5259                                         advance_left != ADVANCE_ONLY_NEXT,
5260                                         &left_key);
5261                         if (ret < 0)
5262                                 left_end_reached = ADVANCE;
5263                         advance_left = 0;
5264                 }
5265                 if (advance_right && !right_end_reached) {
5266                         ret = tree_advance(right_root, right_path, &right_level,
5267                                         right_root_level,
5268                                         advance_right != ADVANCE_ONLY_NEXT,
5269                                         &right_key);
5270                         if (ret < 0)
5271                                 right_end_reached = ADVANCE;
5272                         advance_right = 0;
5273                 }
5274
5275                 if (left_end_reached && right_end_reached) {
5276                         ret = 0;
5277                         goto out;
5278                 } else if (left_end_reached) {
5279                         if (right_level == 0) {
5280                                 ret = changed_cb(left_root, right_root,
5281                                                 left_path, right_path,
5282                                                 &right_key,
5283                                                 BTRFS_COMPARE_TREE_DELETED,
5284                                                 ctx);
5285                                 if (ret < 0)
5286                                         goto out;
5287                         }
5288                         advance_right = ADVANCE;
5289                         continue;
5290                 } else if (right_end_reached) {
5291                         if (left_level == 0) {
5292                                 ret = changed_cb(left_root, right_root,
5293                                                 left_path, right_path,
5294                                                 &left_key,
5295                                                 BTRFS_COMPARE_TREE_NEW,
5296                                                 ctx);
5297                                 if (ret < 0)
5298                                         goto out;
5299                         }
5300                         advance_left = ADVANCE;
5301                         continue;
5302                 }
5303
5304                 if (left_level == 0 && right_level == 0) {
5305                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5306                         if (cmp < 0) {
5307                                 ret = changed_cb(left_root, right_root,
5308                                                 left_path, right_path,
5309                                                 &left_key,
5310                                                 BTRFS_COMPARE_TREE_NEW,
5311                                                 ctx);
5312                                 if (ret < 0)
5313                                         goto out;
5314                                 advance_left = ADVANCE;
5315                         } else if (cmp > 0) {
5316                                 ret = changed_cb(left_root, right_root,
5317                                                 left_path, right_path,
5318                                                 &right_key,
5319                                                 BTRFS_COMPARE_TREE_DELETED,
5320                                                 ctx);
5321                                 if (ret < 0)
5322                                         goto out;
5323                                 advance_right = ADVANCE;
5324                         } else {
5325                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5326                                 ret = tree_compare_item(left_root, left_path,
5327                                                 right_path, tmp_buf);
5328                                 if (ret) {
5329                                         WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5330                                         ret = changed_cb(left_root, right_root,
5331                                                 left_path, right_path,
5332                                                 &left_key,
5333                                                 BTRFS_COMPARE_TREE_CHANGED,
5334                                                 ctx);
5335                                         if (ret < 0)
5336                                                 goto out;
5337                                 }
5338                                 advance_left = ADVANCE;
5339                                 advance_right = ADVANCE;
5340                         }
5341                 } else if (left_level == right_level) {
5342                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5343                         if (cmp < 0) {
5344                                 advance_left = ADVANCE;
5345                         } else if (cmp > 0) {
5346                                 advance_right = ADVANCE;
5347                         } else {
5348                                 left_blockptr = btrfs_node_blockptr(
5349                                                 left_path->nodes[left_level],
5350                                                 left_path->slots[left_level]);
5351                                 right_blockptr = btrfs_node_blockptr(
5352                                                 right_path->nodes[right_level],
5353                                                 right_path->slots[right_level]);
5354                                 if (left_blockptr == right_blockptr) {
5355                                         /*
5356                                          * As we're on a shared block, don't
5357                                          * allow to go deeper.
5358                                          */
5359                                         advance_left = ADVANCE_ONLY_NEXT;
5360                                         advance_right = ADVANCE_ONLY_NEXT;
5361                                 } else {
5362                                         advance_left = ADVANCE;
5363                                         advance_right = ADVANCE;
5364                                 }
5365                         }
5366                 } else if (left_level < right_level) {
5367                         advance_right = ADVANCE;
5368                 } else {
5369                         advance_left = ADVANCE;
5370                 }
5371         }
5372
5373 out:
5374         btrfs_free_path(left_path);
5375         btrfs_free_path(right_path);
5376         kfree(tmp_buf);
5377
5378         if (trans) {
5379                 if (!ret)
5380                         ret = btrfs_end_transaction(trans, left_root);
5381                 else
5382                         btrfs_end_transaction(trans, left_root);
5383         }
5384
5385         return ret;
5386 }
5387
5388 /*
5389  * this is similar to btrfs_next_leaf, but does not try to preserve
5390  * and fixup the path.  It looks for and returns the next key in the
5391  * tree based on the current path and the cache_only and min_trans
5392  * parameters.
5393  *
5394  * 0 is returned if another key is found, < 0 if there are any errors
5395  * and 1 is returned if there are no higher keys in the tree
5396  *
5397  * path->keep_locks should be set to 1 on the search made before
5398  * calling this function.
5399  */
5400 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5401                         struct btrfs_key *key, int level,
5402                         int cache_only, u64 min_trans)
5403 {
5404         int slot;
5405         struct extent_buffer *c;
5406
5407         WARN_ON(!path->keep_locks);
5408         while (level < BTRFS_MAX_LEVEL) {
5409                 if (!path->nodes[level])
5410                         return 1;
5411
5412                 slot = path->slots[level] + 1;
5413                 c = path->nodes[level];
5414 next:
5415                 if (slot >= btrfs_header_nritems(c)) {
5416                         int ret;
5417                         int orig_lowest;
5418                         struct btrfs_key cur_key;
5419                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5420                             !path->nodes[level + 1])
5421                                 return 1;
5422
5423                         if (path->locks[level + 1]) {
5424                                 level++;
5425                                 continue;
5426                         }
5427
5428                         slot = btrfs_header_nritems(c) - 1;
5429                         if (level == 0)
5430                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5431                         else
5432                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5433
5434                         orig_lowest = path->lowest_level;
5435                         btrfs_release_path(path);
5436                         path->lowest_level = level;
5437                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5438                                                 0, 0);
5439                         path->lowest_level = orig_lowest;
5440                         if (ret < 0)
5441                                 return ret;
5442
5443                         c = path->nodes[level];
5444                         slot = path->slots[level];
5445                         if (ret == 0)
5446                                 slot++;
5447                         goto next;
5448                 }
5449
5450                 if (level == 0)
5451                         btrfs_item_key_to_cpu(c, key, slot);
5452                 else {
5453                         u64 blockptr = btrfs_node_blockptr(c, slot);
5454                         u64 gen = btrfs_node_ptr_generation(c, slot);
5455
5456                         if (cache_only) {
5457                                 struct extent_buffer *cur;
5458                                 cur = btrfs_find_tree_block(root, blockptr,
5459                                             btrfs_level_size(root, level - 1));
5460                                 if (!cur ||
5461                                     btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
5462                                         slot++;
5463                                         if (cur)
5464                                                 free_extent_buffer(cur);
5465                                         goto next;
5466                                 }
5467                                 free_extent_buffer(cur);
5468                         }
5469                         if (gen < min_trans) {
5470                                 slot++;
5471                                 goto next;
5472                         }
5473                         btrfs_node_key_to_cpu(c, key, slot);
5474                 }
5475                 return 0;
5476         }
5477         return 1;
5478 }
5479
5480 /*
5481  * search the tree again to find a leaf with greater keys
5482  * returns 0 if it found something or 1 if there are no greater leaves.
5483  * returns < 0 on io errors.
5484  */
5485 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5486 {
5487         return btrfs_next_old_leaf(root, path, 0);
5488 }
5489
5490 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5491                         u64 time_seq)
5492 {
5493         int slot;
5494         int level;
5495         struct extent_buffer *c;
5496         struct extent_buffer *next;
5497         struct btrfs_key key;
5498         u32 nritems;
5499         int ret;
5500         int old_spinning = path->leave_spinning;
5501         int next_rw_lock = 0;
5502
5503         nritems = btrfs_header_nritems(path->nodes[0]);
5504         if (nritems == 0)
5505                 return 1;
5506
5507         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5508 again:
5509         level = 1;
5510         next = NULL;
5511         next_rw_lock = 0;
5512         btrfs_release_path(path);
5513
5514         path->keep_locks = 1;
5515         path->leave_spinning = 1;
5516
5517         if (time_seq)
5518                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5519         else
5520                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5521         path->keep_locks = 0;
5522
5523         if (ret < 0)
5524                 return ret;
5525
5526         nritems = btrfs_header_nritems(path->nodes[0]);
5527         /*
5528          * by releasing the path above we dropped all our locks.  A balance
5529          * could have added more items next to the key that used to be
5530          * at the very end of the block.  So, check again here and
5531          * advance the path if there are now more items available.
5532          */
5533         if (nritems > 0 && path->slots[0] < nritems - 1) {
5534                 if (ret == 0)
5535                         path->slots[0]++;
5536                 ret = 0;
5537                 goto done;
5538         }
5539
5540         while (level < BTRFS_MAX_LEVEL) {
5541                 if (!path->nodes[level]) {
5542                         ret = 1;
5543                         goto done;
5544                 }
5545
5546                 slot = path->slots[level] + 1;
5547                 c = path->nodes[level];
5548                 if (slot >= btrfs_header_nritems(c)) {
5549                         level++;
5550                         if (level == BTRFS_MAX_LEVEL) {
5551                                 ret = 1;
5552                                 goto done;
5553                         }
5554                         continue;
5555                 }
5556
5557                 if (next) {
5558                         btrfs_tree_unlock_rw(next, next_rw_lock);
5559                         free_extent_buffer(next);
5560                 }
5561
5562                 next = c;
5563                 next_rw_lock = path->locks[level];
5564                 ret = read_block_for_search(NULL, root, path, &next, level,
5565                                             slot, &key, 0);
5566                 if (ret == -EAGAIN)
5567                         goto again;
5568
5569                 if (ret < 0) {
5570                         btrfs_release_path(path);
5571                         goto done;
5572                 }
5573
5574                 if (!path->skip_locking) {
5575                         ret = btrfs_try_tree_read_lock(next);
5576                         if (!ret && time_seq) {
5577                                 /*
5578                                  * If we don't get the lock, we may be racing
5579                                  * with push_leaf_left, holding that lock while
5580                                  * itself waiting for the leaf we've currently
5581                                  * locked. To solve this situation, we give up
5582                                  * on our lock and cycle.
5583                                  */
5584                                 free_extent_buffer(next);
5585                                 btrfs_release_path(path);
5586                                 cond_resched();
5587                                 goto again;
5588                         }
5589                         if (!ret) {
5590                                 btrfs_set_path_blocking(path);
5591                                 btrfs_tree_read_lock(next);
5592                                 btrfs_clear_path_blocking(path, next,
5593                                                           BTRFS_READ_LOCK);
5594                         }
5595                         next_rw_lock = BTRFS_READ_LOCK;
5596                 }
5597                 break;
5598         }
5599         path->slots[level] = slot;
5600         while (1) {
5601                 level--;
5602                 c = path->nodes[level];
5603                 if (path->locks[level])
5604                         btrfs_tree_unlock_rw(c, path->locks[level]);
5605
5606                 free_extent_buffer(c);
5607                 path->nodes[level] = next;
5608                 path->slots[level] = 0;
5609                 if (!path->skip_locking)
5610                         path->locks[level] = next_rw_lock;
5611                 if (!level)
5612                         break;
5613
5614                 ret = read_block_for_search(NULL, root, path, &next, level,
5615                                             0, &key, 0);
5616                 if (ret == -EAGAIN)
5617                         goto again;
5618
5619                 if (ret < 0) {
5620                         btrfs_release_path(path);
5621                         goto done;
5622                 }
5623
5624                 if (!path->skip_locking) {
5625                         ret = btrfs_try_tree_read_lock(next);
5626                         if (!ret) {
5627                                 btrfs_set_path_blocking(path);
5628                                 btrfs_tree_read_lock(next);
5629                                 btrfs_clear_path_blocking(path, next,
5630                                                           BTRFS_READ_LOCK);
5631                         }
5632                         next_rw_lock = BTRFS_READ_LOCK;
5633                 }
5634         }
5635         ret = 0;
5636 done:
5637         unlock_up(path, 0, 1, 0, NULL);
5638         path->leave_spinning = old_spinning;
5639         if (!old_spinning)
5640                 btrfs_set_path_blocking(path);
5641
5642         return ret;
5643 }
5644
5645 /*
5646  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5647  * searching until it gets past min_objectid or finds an item of 'type'
5648  *
5649  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5650  */
5651 int btrfs_previous_item(struct btrfs_root *root,
5652                         struct btrfs_path *path, u64 min_objectid,
5653                         int type)
5654 {
5655         struct btrfs_key found_key;
5656         struct extent_buffer *leaf;
5657         u32 nritems;
5658         int ret;
5659
5660         while (1) {
5661                 if (path->slots[0] == 0) {
5662                         btrfs_set_path_blocking(path);
5663                         ret = btrfs_prev_leaf(root, path);
5664                         if (ret != 0)
5665                                 return ret;
5666                 } else {
5667                         path->slots[0]--;
5668                 }
5669                 leaf = path->nodes[0];
5670                 nritems = btrfs_header_nritems(leaf);
5671                 if (nritems == 0)
5672                         return 1;
5673                 if (path->slots[0] == nritems)
5674                         path->slots[0]--;
5675
5676                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5677                 if (found_key.objectid < min_objectid)
5678                         break;
5679                 if (found_key.type == type)
5680                         return 0;
5681                 if (found_key.objectid == min_objectid &&
5682                     found_key.type < type)
5683                         break;
5684         }
5685         return 1;
5686 }