2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
24 #include "transaction.h"
25 #include "print-tree.h"
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 *root, struct btrfs_key *ins_key,
32 struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
35 struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 struct extent_buffer *eb);
44 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
46 struct btrfs_path *btrfs_alloc_path(void)
48 struct btrfs_path *path;
49 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
54 * set all locked nodes in the path to blocking locks. This should
55 * be done before scheduling
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61 if (!p->nodes[i] || !p->locks[i])
63 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64 if (p->locks[i] == BTRFS_READ_LOCK)
65 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66 else if (p->locks[i] == BTRFS_WRITE_LOCK)
67 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
72 * reset all the locked nodes in the patch to spinning locks.
74 * held is used to keep lockdep happy, when lockdep is enabled
75 * we set held to a blocking lock before we go around and
76 * retake all the spinlocks in the path. You can safely use NULL
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80 struct extent_buffer *held, int held_rw)
84 #ifdef CONFIG_DEBUG_LOCK_ALLOC
85 /* lockdep really cares that we take all of these spinlocks
86 * in the right order. If any of the locks in the path are not
87 * currently blocking, it is going to complain. So, make really
88 * really sure by forcing the path to blocking before we clear
92 btrfs_set_lock_blocking_rw(held, held_rw);
93 if (held_rw == BTRFS_WRITE_LOCK)
94 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
95 else if (held_rw == BTRFS_READ_LOCK)
96 held_rw = BTRFS_READ_LOCK_BLOCKING;
98 btrfs_set_path_blocking(p);
101 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
102 if (p->nodes[i] && p->locks[i]) {
103 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
104 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
105 p->locks[i] = BTRFS_WRITE_LOCK;
106 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
107 p->locks[i] = BTRFS_READ_LOCK;
111 #ifdef CONFIG_DEBUG_LOCK_ALLOC
113 btrfs_clear_lock_blocking_rw(held, held_rw);
117 /* this also releases the path */
118 void btrfs_free_path(struct btrfs_path *p)
122 btrfs_release_path(p);
123 kmem_cache_free(btrfs_path_cachep, p);
127 * path release drops references on the extent buffers in the path
128 * and it drops any locks held by this path
130 * It is safe to call this on paths that no locks or extent buffers held.
132 noinline void btrfs_release_path(struct btrfs_path *p)
136 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
141 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
144 free_extent_buffer(p->nodes[i]);
150 * safely gets a reference on the root node of a tree. A lock
151 * is not taken, so a concurrent writer may put a different node
152 * at the root of the tree. See btrfs_lock_root_node for the
155 * The extent buffer returned by this has a reference taken, so
156 * it won't disappear. It may stop being the root of the tree
157 * at any time because there are no locks held.
159 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
161 struct extent_buffer *eb;
165 eb = rcu_dereference(root->node);
168 * RCU really hurts here, we could free up the root node because
169 * it was cow'ed but we may not get the new root node yet so do
170 * the inc_not_zero dance and if it doesn't work then
171 * synchronize_rcu and try again.
173 if (atomic_inc_not_zero(&eb->refs)) {
183 /* loop around taking references on and locking the root node of the
184 * tree until you end up with a lock on the root. A locked buffer
185 * is returned, with a reference held.
187 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
189 struct extent_buffer *eb;
192 eb = btrfs_root_node(root);
194 if (eb == root->node)
196 btrfs_tree_unlock(eb);
197 free_extent_buffer(eb);
202 /* loop around taking references on and locking the root node of the
203 * tree until you end up with a lock on the root. A locked buffer
204 * is returned, with a reference held.
206 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
208 struct extent_buffer *eb;
211 eb = btrfs_root_node(root);
212 btrfs_tree_read_lock(eb);
213 if (eb == root->node)
215 btrfs_tree_read_unlock(eb);
216 free_extent_buffer(eb);
221 /* cowonly root (everything not a reference counted cow subvolume), just get
222 * put onto a simple dirty list. transaction.c walks this to make sure they
223 * get properly updated on disk.
225 static void add_root_to_dirty_list(struct btrfs_root *root)
227 spin_lock(&root->fs_info->trans_lock);
228 if (root->track_dirty && list_empty(&root->dirty_list)) {
229 list_add(&root->dirty_list,
230 &root->fs_info->dirty_cowonly_roots);
232 spin_unlock(&root->fs_info->trans_lock);
236 * used by snapshot creation to make a copy of a root for a tree with
237 * a given objectid. The buffer with the new root node is returned in
238 * cow_ret, and this func returns zero on success or a negative error code.
240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 struct btrfs_root *root,
242 struct extent_buffer *buf,
243 struct extent_buffer **cow_ret, u64 new_root_objectid)
245 struct extent_buffer *cow;
248 struct btrfs_disk_key disk_key;
250 WARN_ON(root->ref_cows && trans->transid !=
251 root->fs_info->running_transaction->transid);
252 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
254 level = btrfs_header_level(buf);
256 btrfs_item_key(buf, &disk_key, 0);
258 btrfs_node_key(buf, &disk_key, 0);
260 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
261 new_root_objectid, &disk_key, level,
266 copy_extent_buffer(cow, buf, 0, 0, cow->len);
267 btrfs_set_header_bytenr(cow, cow->start);
268 btrfs_set_header_generation(cow, trans->transid);
269 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
270 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
271 BTRFS_HEADER_FLAG_RELOC);
272 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
273 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
275 btrfs_set_header_owner(cow, new_root_objectid);
277 write_extent_buffer(cow, root->fs_info->fsid,
278 (unsigned long)btrfs_header_fsid(cow),
281 WARN_ON(btrfs_header_generation(buf) > trans->transid);
282 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
283 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
285 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
290 btrfs_mark_buffer_dirty(cow);
299 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
300 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
302 MOD_LOG_ROOT_REPLACE,
305 struct tree_mod_move {
310 struct tree_mod_root {
315 struct tree_mod_elem {
317 u64 index; /* shifted logical */
321 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
324 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
327 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
328 struct btrfs_disk_key key;
331 /* this is used for op == MOD_LOG_MOVE_KEYS */
332 struct tree_mod_move move;
334 /* this is used for op == MOD_LOG_ROOT_REPLACE */
335 struct tree_mod_root old_root;
338 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
340 read_lock(&fs_info->tree_mod_log_lock);
343 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
345 read_unlock(&fs_info->tree_mod_log_lock);
348 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
350 write_lock(&fs_info->tree_mod_log_lock);
353 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
355 write_unlock(&fs_info->tree_mod_log_lock);
359 * Increment the upper half of tree_mod_seq, set lower half zero.
361 * Must be called with fs_info->tree_mod_seq_lock held.
363 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
365 u64 seq = atomic64_read(&fs_info->tree_mod_seq);
366 seq &= 0xffffffff00000000ull;
368 atomic64_set(&fs_info->tree_mod_seq, seq);
373 * Increment the lower half of tree_mod_seq.
375 * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
376 * are generated should not technically require a spin lock here. (Rationale:
377 * incrementing the minor while incrementing the major seq number is between its
378 * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
379 * just returns a unique sequence number as usual.) We have decided to leave
380 * that requirement in here and rethink it once we notice it really imposes a
381 * problem on some workload.
383 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
385 return atomic64_inc_return(&fs_info->tree_mod_seq);
389 * return the last minor in the previous major tree_mod_seq number
391 u64 btrfs_tree_mod_seq_prev(u64 seq)
393 return (seq & 0xffffffff00000000ull) - 1ull;
397 * This adds a new blocker to the tree mod log's blocker list if the @elem
398 * passed does not already have a sequence number set. So when a caller expects
399 * to record tree modifications, it should ensure to set elem->seq to zero
400 * before calling btrfs_get_tree_mod_seq.
401 * Returns a fresh, unused tree log modification sequence number, even if no new
404 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
405 struct seq_list *elem)
409 tree_mod_log_write_lock(fs_info);
410 spin_lock(&fs_info->tree_mod_seq_lock);
412 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
413 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
415 seq = btrfs_inc_tree_mod_seq_minor(fs_info);
416 spin_unlock(&fs_info->tree_mod_seq_lock);
417 tree_mod_log_write_unlock(fs_info);
422 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
423 struct seq_list *elem)
425 struct rb_root *tm_root;
426 struct rb_node *node;
427 struct rb_node *next;
428 struct seq_list *cur_elem;
429 struct tree_mod_elem *tm;
430 u64 min_seq = (u64)-1;
431 u64 seq_putting = elem->seq;
436 spin_lock(&fs_info->tree_mod_seq_lock);
437 list_del(&elem->list);
440 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
441 if (cur_elem->seq < min_seq) {
442 if (seq_putting > cur_elem->seq) {
444 * blocker with lower sequence number exists, we
445 * cannot remove anything from the log
447 spin_unlock(&fs_info->tree_mod_seq_lock);
450 min_seq = cur_elem->seq;
453 spin_unlock(&fs_info->tree_mod_seq_lock);
456 * anything that's lower than the lowest existing (read: blocked)
457 * sequence number can be removed from the tree.
459 tree_mod_log_write_lock(fs_info);
460 tm_root = &fs_info->tree_mod_log;
461 for (node = rb_first(tm_root); node; node = next) {
462 next = rb_next(node);
463 tm = container_of(node, struct tree_mod_elem, node);
464 if (tm->seq > min_seq)
466 rb_erase(node, tm_root);
469 tree_mod_log_write_unlock(fs_info);
473 * key order of the log:
476 * the index is the shifted logical of the *new* root node for root replace
477 * operations, or the shifted logical of the affected block for all other
481 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
483 struct rb_root *tm_root;
484 struct rb_node **new;
485 struct rb_node *parent = NULL;
486 struct tree_mod_elem *cur;
488 BUG_ON(!tm || !tm->seq);
490 tm_root = &fs_info->tree_mod_log;
491 new = &tm_root->rb_node;
493 cur = container_of(*new, struct tree_mod_elem, node);
495 if (cur->index < tm->index)
496 new = &((*new)->rb_left);
497 else if (cur->index > tm->index)
498 new = &((*new)->rb_right);
499 else if (cur->seq < tm->seq)
500 new = &((*new)->rb_left);
501 else if (cur->seq > tm->seq)
502 new = &((*new)->rb_right);
509 rb_link_node(&tm->node, parent, new);
510 rb_insert_color(&tm->node, tm_root);
515 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
516 * returns zero with the tree_mod_log_lock acquired. The caller must hold
517 * this until all tree mod log insertions are recorded in the rb tree and then
518 * call tree_mod_log_write_unlock() to release.
520 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
521 struct extent_buffer *eb) {
523 if (list_empty(&(fs_info)->tree_mod_seq_list))
525 if (eb && btrfs_header_level(eb) == 0)
528 tree_mod_log_write_lock(fs_info);
529 if (list_empty(&fs_info->tree_mod_seq_list)) {
531 * someone emptied the list while we were waiting for the lock.
532 * we must not add to the list when no blocker exists.
534 tree_mod_log_write_unlock(fs_info);
542 * This allocates memory and gets a tree modification sequence number.
544 * Returns <0 on error.
545 * Returns >0 (the added sequence number) on success.
547 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
548 struct tree_mod_elem **tm_ret)
550 struct tree_mod_elem *tm;
553 * once we switch from spin locks to something different, we should
554 * honor the flags parameter here.
556 tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
560 spin_lock(&fs_info->tree_mod_seq_lock);
561 tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
562 spin_unlock(&fs_info->tree_mod_seq_lock);
568 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
569 struct extent_buffer *eb, int slot,
570 enum mod_log_op op, gfp_t flags)
573 struct tree_mod_elem *tm;
575 ret = tree_mod_alloc(fs_info, flags, &tm);
579 tm->index = eb->start >> PAGE_CACHE_SHIFT;
580 if (op != MOD_LOG_KEY_ADD) {
581 btrfs_node_key(eb, &tm->key, slot);
582 tm->blockptr = btrfs_node_blockptr(eb, slot);
586 tm->generation = btrfs_node_ptr_generation(eb, slot);
588 return __tree_mod_log_insert(fs_info, tm);
592 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
593 struct extent_buffer *eb, int slot,
594 enum mod_log_op op, gfp_t flags)
598 if (tree_mod_dont_log(fs_info, eb))
601 ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
603 tree_mod_log_write_unlock(fs_info);
608 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
609 int slot, enum mod_log_op op)
611 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
615 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
616 struct extent_buffer *eb, int slot,
619 return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
623 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
624 struct extent_buffer *eb, int dst_slot, int src_slot,
625 int nr_items, gfp_t flags)
627 struct tree_mod_elem *tm;
631 if (tree_mod_dont_log(fs_info, eb))
635 * When we override something during the move, we log these removals.
636 * This can only happen when we move towards the beginning of the
637 * buffer, i.e. dst_slot < src_slot.
639 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
640 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
641 MOD_LOG_KEY_REMOVE_WHILE_MOVING);
645 ret = tree_mod_alloc(fs_info, flags, &tm);
649 tm->index = eb->start >> PAGE_CACHE_SHIFT;
651 tm->move.dst_slot = dst_slot;
652 tm->move.nr_items = nr_items;
653 tm->op = MOD_LOG_MOVE_KEYS;
655 ret = __tree_mod_log_insert(fs_info, tm);
657 tree_mod_log_write_unlock(fs_info);
662 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
668 if (btrfs_header_level(eb) == 0)
671 nritems = btrfs_header_nritems(eb);
672 for (i = nritems - 1; i >= 0; i--) {
673 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
674 MOD_LOG_KEY_REMOVE_WHILE_FREEING);
680 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
681 struct extent_buffer *old_root,
682 struct extent_buffer *new_root, gfp_t flags,
685 struct tree_mod_elem *tm;
688 if (tree_mod_dont_log(fs_info, NULL))
692 __tree_mod_log_free_eb(fs_info, old_root);
694 ret = tree_mod_alloc(fs_info, flags, &tm);
698 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
699 tm->old_root.logical = old_root->start;
700 tm->old_root.level = btrfs_header_level(old_root);
701 tm->generation = btrfs_header_generation(old_root);
702 tm->op = MOD_LOG_ROOT_REPLACE;
704 ret = __tree_mod_log_insert(fs_info, tm);
706 tree_mod_log_write_unlock(fs_info);
710 static struct tree_mod_elem *
711 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
714 struct rb_root *tm_root;
715 struct rb_node *node;
716 struct tree_mod_elem *cur = NULL;
717 struct tree_mod_elem *found = NULL;
718 u64 index = start >> PAGE_CACHE_SHIFT;
720 tree_mod_log_read_lock(fs_info);
721 tm_root = &fs_info->tree_mod_log;
722 node = tm_root->rb_node;
724 cur = container_of(node, struct tree_mod_elem, node);
725 if (cur->index < index) {
726 node = node->rb_left;
727 } else if (cur->index > index) {
728 node = node->rb_right;
729 } else if (cur->seq < min_seq) {
730 node = node->rb_left;
731 } else if (!smallest) {
732 /* we want the node with the highest seq */
734 BUG_ON(found->seq > cur->seq);
736 node = node->rb_left;
737 } else if (cur->seq > min_seq) {
738 /* we want the node with the smallest seq */
740 BUG_ON(found->seq < cur->seq);
742 node = node->rb_right;
748 tree_mod_log_read_unlock(fs_info);
754 * this returns the element from the log with the smallest time sequence
755 * value that's in the log (the oldest log item). any element with a time
756 * sequence lower than min_seq will be ignored.
758 static struct tree_mod_elem *
759 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
762 return __tree_mod_log_search(fs_info, start, min_seq, 1);
766 * this returns the element from the log with the largest time sequence
767 * value that's in the log (the most recent log item). any element with
768 * a time sequence lower than min_seq will be ignored.
770 static struct tree_mod_elem *
771 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
773 return __tree_mod_log_search(fs_info, start, min_seq, 0);
777 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
778 struct extent_buffer *src, unsigned long dst_offset,
779 unsigned long src_offset, int nr_items)
784 if (tree_mod_dont_log(fs_info, NULL))
787 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
788 tree_mod_log_write_unlock(fs_info);
792 for (i = 0; i < nr_items; i++) {
793 ret = tree_mod_log_insert_key_locked(fs_info, src,
797 ret = tree_mod_log_insert_key_locked(fs_info, dst,
803 tree_mod_log_write_unlock(fs_info);
807 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
808 int dst_offset, int src_offset, int nr_items)
811 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
817 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
818 struct extent_buffer *eb, int slot, int atomic)
822 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
824 atomic ? GFP_ATOMIC : GFP_NOFS);
829 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
831 if (tree_mod_dont_log(fs_info, eb))
834 __tree_mod_log_free_eb(fs_info, eb);
836 tree_mod_log_write_unlock(fs_info);
840 tree_mod_log_set_root_pointer(struct btrfs_root *root,
841 struct extent_buffer *new_root_node,
845 ret = tree_mod_log_insert_root(root->fs_info, root->node,
846 new_root_node, GFP_NOFS, log_removal);
851 * check if the tree block can be shared by multiple trees
853 int btrfs_block_can_be_shared(struct btrfs_root *root,
854 struct extent_buffer *buf)
857 * Tree blocks not in refernece counted trees and tree roots
858 * are never shared. If a block was allocated after the last
859 * snapshot and the block was not allocated by tree relocation,
860 * we know the block is not shared.
862 if (root->ref_cows &&
863 buf != root->node && buf != root->commit_root &&
864 (btrfs_header_generation(buf) <=
865 btrfs_root_last_snapshot(&root->root_item) ||
866 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
868 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
869 if (root->ref_cows &&
870 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
876 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
877 struct btrfs_root *root,
878 struct extent_buffer *buf,
879 struct extent_buffer *cow,
889 * Backrefs update rules:
891 * Always use full backrefs for extent pointers in tree block
892 * allocated by tree relocation.
894 * If a shared tree block is no longer referenced by its owner
895 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
896 * use full backrefs for extent pointers in tree block.
898 * If a tree block is been relocating
899 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
900 * use full backrefs for extent pointers in tree block.
901 * The reason for this is some operations (such as drop tree)
902 * are only allowed for blocks use full backrefs.
905 if (btrfs_block_can_be_shared(root, buf)) {
906 ret = btrfs_lookup_extent_info(trans, root, buf->start,
907 btrfs_header_level(buf), 1,
913 btrfs_std_error(root->fs_info, ret);
918 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
919 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
920 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
925 owner = btrfs_header_owner(buf);
926 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
927 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
930 if ((owner == root->root_key.objectid ||
931 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
932 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
933 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
934 BUG_ON(ret); /* -ENOMEM */
936 if (root->root_key.objectid ==
937 BTRFS_TREE_RELOC_OBJECTID) {
938 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
939 BUG_ON(ret); /* -ENOMEM */
940 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
941 BUG_ON(ret); /* -ENOMEM */
943 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
946 if (root->root_key.objectid ==
947 BTRFS_TREE_RELOC_OBJECTID)
948 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
950 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
951 BUG_ON(ret); /* -ENOMEM */
953 if (new_flags != 0) {
954 ret = btrfs_set_disk_extent_flags(trans, root,
962 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
963 if (root->root_key.objectid ==
964 BTRFS_TREE_RELOC_OBJECTID)
965 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
967 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
968 BUG_ON(ret); /* -ENOMEM */
969 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
970 BUG_ON(ret); /* -ENOMEM */
972 clean_tree_block(trans, root, buf);
979 * does the dirty work in cow of a single block. The parent block (if
980 * supplied) is updated to point to the new cow copy. The new buffer is marked
981 * dirty and returned locked. If you modify the block it needs to be marked
984 * search_start -- an allocation hint for the new block
986 * empty_size -- a hint that you plan on doing more cow. This is the size in
987 * bytes the allocator should try to find free next to the block it returns.
988 * This is just a hint and may be ignored by the allocator.
990 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
991 struct btrfs_root *root,
992 struct extent_buffer *buf,
993 struct extent_buffer *parent, int parent_slot,
994 struct extent_buffer **cow_ret,
995 u64 search_start, u64 empty_size)
997 struct btrfs_disk_key disk_key;
998 struct extent_buffer *cow;
1001 int unlock_orig = 0;
1004 if (*cow_ret == buf)
1007 btrfs_assert_tree_locked(buf);
1009 WARN_ON(root->ref_cows && trans->transid !=
1010 root->fs_info->running_transaction->transid);
1011 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
1013 level = btrfs_header_level(buf);
1016 btrfs_item_key(buf, &disk_key, 0);
1018 btrfs_node_key(buf, &disk_key, 0);
1020 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1022 parent_start = parent->start;
1028 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
1029 root->root_key.objectid, &disk_key,
1030 level, search_start, empty_size);
1032 return PTR_ERR(cow);
1034 /* cow is set to blocking by btrfs_init_new_buffer */
1036 copy_extent_buffer(cow, buf, 0, 0, cow->len);
1037 btrfs_set_header_bytenr(cow, cow->start);
1038 btrfs_set_header_generation(cow, trans->transid);
1039 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1040 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1041 BTRFS_HEADER_FLAG_RELOC);
1042 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1043 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1045 btrfs_set_header_owner(cow, root->root_key.objectid);
1047 write_extent_buffer(cow, root->fs_info->fsid,
1048 (unsigned long)btrfs_header_fsid(cow),
1051 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1053 btrfs_abort_transaction(trans, root, ret);
1058 btrfs_reloc_cow_block(trans, root, buf, cow);
1060 if (buf == root->node) {
1061 WARN_ON(parent && parent != buf);
1062 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1063 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1064 parent_start = buf->start;
1068 extent_buffer_get(cow);
1069 tree_mod_log_set_root_pointer(root, cow, 1);
1070 rcu_assign_pointer(root->node, cow);
1072 btrfs_free_tree_block(trans, root, buf, parent_start,
1074 free_extent_buffer(buf);
1075 add_root_to_dirty_list(root);
1077 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1078 parent_start = parent->start;
1082 WARN_ON(trans->transid != btrfs_header_generation(parent));
1083 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1084 MOD_LOG_KEY_REPLACE);
1085 btrfs_set_node_blockptr(parent, parent_slot,
1087 btrfs_set_node_ptr_generation(parent, parent_slot,
1089 btrfs_mark_buffer_dirty(parent);
1090 tree_mod_log_free_eb(root->fs_info, buf);
1091 btrfs_free_tree_block(trans, root, buf, parent_start,
1095 btrfs_tree_unlock(buf);
1096 free_extent_buffer_stale(buf);
1097 btrfs_mark_buffer_dirty(cow);
1103 * returns the logical address of the oldest predecessor of the given root.
1104 * entries older than time_seq are ignored.
1106 static struct tree_mod_elem *
1107 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1108 struct extent_buffer *eb_root, u64 time_seq)
1110 struct tree_mod_elem *tm;
1111 struct tree_mod_elem *found = NULL;
1112 u64 root_logical = eb_root->start;
1119 * the very last operation that's logged for a root is the replacement
1120 * operation (if it is replaced at all). this has the index of the *new*
1121 * root, making it the very first operation that's logged for this root.
1124 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1129 * if there are no tree operation for the oldest root, we simply
1130 * return it. this should only happen if that (old) root is at
1137 * if there's an operation that's not a root replacement, we
1138 * found the oldest version of our root. normally, we'll find a
1139 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1141 if (tm->op != MOD_LOG_ROOT_REPLACE)
1145 root_logical = tm->old_root.logical;
1149 /* if there's no old root to return, return what we found instead */
1157 * tm is a pointer to the first operation to rewind within eb. then, all
1158 * previous operations will be rewinded (until we reach something older than
1162 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1163 struct tree_mod_elem *first_tm)
1166 struct rb_node *next;
1167 struct tree_mod_elem *tm = first_tm;
1168 unsigned long o_dst;
1169 unsigned long o_src;
1170 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1172 n = btrfs_header_nritems(eb);
1173 while (tm && tm->seq >= time_seq) {
1175 * all the operations are recorded with the operator used for
1176 * the modification. as we're going backwards, we do the
1177 * opposite of each operation here.
1180 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1181 BUG_ON(tm->slot < n);
1183 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1184 case MOD_LOG_KEY_REMOVE:
1185 btrfs_set_node_key(eb, &tm->key, tm->slot);
1186 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1187 btrfs_set_node_ptr_generation(eb, tm->slot,
1191 case MOD_LOG_KEY_REPLACE:
1192 BUG_ON(tm->slot >= n);
1193 btrfs_set_node_key(eb, &tm->key, tm->slot);
1194 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1195 btrfs_set_node_ptr_generation(eb, tm->slot,
1198 case MOD_LOG_KEY_ADD:
1199 /* if a move operation is needed it's in the log */
1202 case MOD_LOG_MOVE_KEYS:
1203 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1204 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1205 memmove_extent_buffer(eb, o_dst, o_src,
1206 tm->move.nr_items * p_size);
1208 case MOD_LOG_ROOT_REPLACE:
1210 * this operation is special. for roots, this must be
1211 * handled explicitly before rewinding.
1212 * for non-roots, this operation may exist if the node
1213 * was a root: root A -> child B; then A gets empty and
1214 * B is promoted to the new root. in the mod log, we'll
1215 * have a root-replace operation for B, a tree block
1216 * that is no root. we simply ignore that operation.
1220 next = rb_next(&tm->node);
1223 tm = container_of(next, struct tree_mod_elem, node);
1224 if (tm->index != first_tm->index)
1227 btrfs_set_header_nritems(eb, n);
1231 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1232 * is returned. If rewind operations happen, a fresh buffer is returned. The
1233 * returned buffer is always read-locked. If the returned buffer is not the
1234 * input buffer, the lock on the input buffer is released and the input buffer
1235 * is freed (its refcount is decremented).
1237 static struct extent_buffer *
1238 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1241 struct extent_buffer *eb_rewin;
1242 struct tree_mod_elem *tm;
1247 if (btrfs_header_level(eb) == 0)
1250 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1254 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1255 BUG_ON(tm->slot != 0);
1256 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1257 fs_info->tree_root->nodesize);
1259 btrfs_set_header_bytenr(eb_rewin, eb->start);
1260 btrfs_set_header_backref_rev(eb_rewin,
1261 btrfs_header_backref_rev(eb));
1262 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1263 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1265 eb_rewin = btrfs_clone_extent_buffer(eb);
1269 extent_buffer_get(eb_rewin);
1270 btrfs_tree_read_unlock(eb);
1271 free_extent_buffer(eb);
1273 extent_buffer_get(eb_rewin);
1274 btrfs_tree_read_lock(eb_rewin);
1275 __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1276 WARN_ON(btrfs_header_nritems(eb_rewin) >
1277 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1283 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1284 * value. If there are no changes, the current root->root_node is returned. If
1285 * anything changed in between, there's a fresh buffer allocated on which the
1286 * rewind operations are done. In any case, the returned buffer is read locked.
1287 * Returns NULL on error (with no locks held).
1289 static inline struct extent_buffer *
1290 get_old_root(struct btrfs_root *root, u64 time_seq)
1292 struct tree_mod_elem *tm;
1293 struct extent_buffer *eb = NULL;
1294 struct extent_buffer *eb_root;
1295 struct extent_buffer *old;
1296 struct tree_mod_root *old_root = NULL;
1297 u64 old_generation = 0;
1301 eb_root = btrfs_read_lock_root_node(root);
1302 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1306 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1307 old_root = &tm->old_root;
1308 old_generation = tm->generation;
1309 logical = old_root->logical;
1311 logical = eb_root->start;
1314 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1315 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1316 btrfs_tree_read_unlock(eb_root);
1317 free_extent_buffer(eb_root);
1318 blocksize = btrfs_level_size(root, old_root->level);
1319 old = read_tree_block(root, logical, blocksize, 0);
1320 if (!old || !extent_buffer_uptodate(old)) {
1321 free_extent_buffer(old);
1322 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1326 eb = btrfs_clone_extent_buffer(old);
1327 free_extent_buffer(old);
1329 } else if (old_root) {
1330 btrfs_tree_read_unlock(eb_root);
1331 free_extent_buffer(eb_root);
1332 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1334 eb = btrfs_clone_extent_buffer(eb_root);
1335 btrfs_tree_read_unlock(eb_root);
1336 free_extent_buffer(eb_root);
1341 extent_buffer_get(eb);
1342 btrfs_tree_read_lock(eb);
1344 btrfs_set_header_bytenr(eb, eb->start);
1345 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1346 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1347 btrfs_set_header_level(eb, old_root->level);
1348 btrfs_set_header_generation(eb, old_generation);
1351 __tree_mod_log_rewind(eb, time_seq, tm);
1353 WARN_ON(btrfs_header_level(eb) != 0);
1354 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1359 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1361 struct tree_mod_elem *tm;
1363 struct extent_buffer *eb_root = btrfs_root_node(root);
1365 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1366 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1367 level = tm->old_root.level;
1369 level = btrfs_header_level(eb_root);
1371 free_extent_buffer(eb_root);
1376 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1377 struct btrfs_root *root,
1378 struct extent_buffer *buf)
1380 /* ensure we can see the force_cow */
1384 * We do not need to cow a block if
1385 * 1) this block is not created or changed in this transaction;
1386 * 2) this block does not belong to TREE_RELOC tree;
1387 * 3) the root is not forced COW.
1389 * What is forced COW:
1390 * when we create snapshot during commiting the transaction,
1391 * after we've finished coping src root, we must COW the shared
1392 * block to ensure the metadata consistency.
1394 if (btrfs_header_generation(buf) == trans->transid &&
1395 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1396 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1397 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1404 * cows a single block, see __btrfs_cow_block for the real work.
1405 * This version of it has extra checks so that a block isn't cow'd more than
1406 * once per transaction, as long as it hasn't been written yet
1408 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1409 struct btrfs_root *root, struct extent_buffer *buf,
1410 struct extent_buffer *parent, int parent_slot,
1411 struct extent_buffer **cow_ret)
1416 if (trans->transaction != root->fs_info->running_transaction)
1417 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1418 (unsigned long long)trans->transid,
1419 (unsigned long long)
1420 root->fs_info->running_transaction->transid);
1422 if (trans->transid != root->fs_info->generation)
1423 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1424 (unsigned long long)trans->transid,
1425 (unsigned long long)root->fs_info->generation);
1427 if (!should_cow_block(trans, root, buf)) {
1432 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1435 btrfs_set_lock_blocking(parent);
1436 btrfs_set_lock_blocking(buf);
1438 ret = __btrfs_cow_block(trans, root, buf, parent,
1439 parent_slot, cow_ret, search_start, 0);
1441 trace_btrfs_cow_block(root, buf, *cow_ret);
1447 * helper function for defrag to decide if two blocks pointed to by a
1448 * node are actually close by
1450 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1452 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1454 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1460 * compare two keys in a memcmp fashion
1462 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1464 struct btrfs_key k1;
1466 btrfs_disk_key_to_cpu(&k1, disk);
1468 return btrfs_comp_cpu_keys(&k1, k2);
1472 * same as comp_keys only with two btrfs_key's
1474 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1476 if (k1->objectid > k2->objectid)
1478 if (k1->objectid < k2->objectid)
1480 if (k1->type > k2->type)
1482 if (k1->type < k2->type)
1484 if (k1->offset > k2->offset)
1486 if (k1->offset < k2->offset)
1492 * this is used by the defrag code to go through all the
1493 * leaves pointed to by a node and reallocate them so that
1494 * disk order is close to key order
1496 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1497 struct btrfs_root *root, struct extent_buffer *parent,
1498 int start_slot, u64 *last_ret,
1499 struct btrfs_key *progress)
1501 struct extent_buffer *cur;
1504 u64 search_start = *last_ret;
1514 int progress_passed = 0;
1515 struct btrfs_disk_key disk_key;
1517 parent_level = btrfs_header_level(parent);
1519 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1520 WARN_ON(trans->transid != root->fs_info->generation);
1522 parent_nritems = btrfs_header_nritems(parent);
1523 blocksize = btrfs_level_size(root, parent_level - 1);
1524 end_slot = parent_nritems;
1526 if (parent_nritems == 1)
1529 btrfs_set_lock_blocking(parent);
1531 for (i = start_slot; i < end_slot; i++) {
1534 btrfs_node_key(parent, &disk_key, i);
1535 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1538 progress_passed = 1;
1539 blocknr = btrfs_node_blockptr(parent, i);
1540 gen = btrfs_node_ptr_generation(parent, i);
1541 if (last_block == 0)
1542 last_block = blocknr;
1545 other = btrfs_node_blockptr(parent, i - 1);
1546 close = close_blocks(blocknr, other, blocksize);
1548 if (!close && i < end_slot - 2) {
1549 other = btrfs_node_blockptr(parent, i + 1);
1550 close = close_blocks(blocknr, other, blocksize);
1553 last_block = blocknr;
1557 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1559 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1562 if (!cur || !uptodate) {
1564 cur = read_tree_block(root, blocknr,
1566 if (!cur || !extent_buffer_uptodate(cur)) {
1567 free_extent_buffer(cur);
1570 } else if (!uptodate) {
1571 err = btrfs_read_buffer(cur, gen);
1573 free_extent_buffer(cur);
1578 if (search_start == 0)
1579 search_start = last_block;
1581 btrfs_tree_lock(cur);
1582 btrfs_set_lock_blocking(cur);
1583 err = __btrfs_cow_block(trans, root, cur, parent, i,
1586 (end_slot - i) * blocksize));
1588 btrfs_tree_unlock(cur);
1589 free_extent_buffer(cur);
1592 search_start = cur->start;
1593 last_block = cur->start;
1594 *last_ret = search_start;
1595 btrfs_tree_unlock(cur);
1596 free_extent_buffer(cur);
1602 * The leaf data grows from end-to-front in the node.
1603 * this returns the address of the start of the last item,
1604 * which is the stop of the leaf data stack
1606 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1607 struct extent_buffer *leaf)
1609 u32 nr = btrfs_header_nritems(leaf);
1611 return BTRFS_LEAF_DATA_SIZE(root);
1612 return btrfs_item_offset_nr(leaf, nr - 1);
1617 * search for key in the extent_buffer. The items start at offset p,
1618 * and they are item_size apart. There are 'max' items in p.
1620 * the slot in the array is returned via slot, and it points to
1621 * the place where you would insert key if it is not found in
1624 * slot may point to max if the key is bigger than all of the keys
1626 static noinline int generic_bin_search(struct extent_buffer *eb,
1628 int item_size, struct btrfs_key *key,
1635 struct btrfs_disk_key *tmp = NULL;
1636 struct btrfs_disk_key unaligned;
1637 unsigned long offset;
1639 unsigned long map_start = 0;
1640 unsigned long map_len = 0;
1643 while (low < high) {
1644 mid = (low + high) / 2;
1645 offset = p + mid * item_size;
1647 if (!kaddr || offset < map_start ||
1648 (offset + sizeof(struct btrfs_disk_key)) >
1649 map_start + map_len) {
1651 err = map_private_extent_buffer(eb, offset,
1652 sizeof(struct btrfs_disk_key),
1653 &kaddr, &map_start, &map_len);
1656 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1659 read_extent_buffer(eb, &unaligned,
1660 offset, sizeof(unaligned));
1665 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1668 ret = comp_keys(tmp, key);
1684 * simple bin_search frontend that does the right thing for
1687 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1688 int level, int *slot)
1691 return generic_bin_search(eb,
1692 offsetof(struct btrfs_leaf, items),
1693 sizeof(struct btrfs_item),
1694 key, btrfs_header_nritems(eb),
1697 return generic_bin_search(eb,
1698 offsetof(struct btrfs_node, ptrs),
1699 sizeof(struct btrfs_key_ptr),
1700 key, btrfs_header_nritems(eb),
1704 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1705 int level, int *slot)
1707 return bin_search(eb, key, level, slot);
1710 static void root_add_used(struct btrfs_root *root, u32 size)
1712 spin_lock(&root->accounting_lock);
1713 btrfs_set_root_used(&root->root_item,
1714 btrfs_root_used(&root->root_item) + size);
1715 spin_unlock(&root->accounting_lock);
1718 static void root_sub_used(struct btrfs_root *root, u32 size)
1720 spin_lock(&root->accounting_lock);
1721 btrfs_set_root_used(&root->root_item,
1722 btrfs_root_used(&root->root_item) - size);
1723 spin_unlock(&root->accounting_lock);
1726 /* given a node and slot number, this reads the blocks it points to. The
1727 * extent buffer is returned with a reference taken (but unlocked).
1728 * NULL is returned on error.
1730 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1731 struct extent_buffer *parent, int slot)
1733 int level = btrfs_header_level(parent);
1734 struct extent_buffer *eb;
1738 if (slot >= btrfs_header_nritems(parent))
1743 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1744 btrfs_level_size(root, level - 1),
1745 btrfs_node_ptr_generation(parent, slot));
1746 if (eb && !extent_buffer_uptodate(eb)) {
1747 free_extent_buffer(eb);
1755 * node level balancing, used to make sure nodes are in proper order for
1756 * item deletion. We balance from the top down, so we have to make sure
1757 * that a deletion won't leave an node completely empty later on.
1759 static noinline int balance_level(struct btrfs_trans_handle *trans,
1760 struct btrfs_root *root,
1761 struct btrfs_path *path, int level)
1763 struct extent_buffer *right = NULL;
1764 struct extent_buffer *mid;
1765 struct extent_buffer *left = NULL;
1766 struct extent_buffer *parent = NULL;
1770 int orig_slot = path->slots[level];
1776 mid = path->nodes[level];
1778 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1779 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1780 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1782 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1784 if (level < BTRFS_MAX_LEVEL - 1) {
1785 parent = path->nodes[level + 1];
1786 pslot = path->slots[level + 1];
1790 * deal with the case where there is only one pointer in the root
1791 * by promoting the node below to a root
1794 struct extent_buffer *child;
1796 if (btrfs_header_nritems(mid) != 1)
1799 /* promote the child to a root */
1800 child = read_node_slot(root, mid, 0);
1803 btrfs_std_error(root->fs_info, ret);
1807 btrfs_tree_lock(child);
1808 btrfs_set_lock_blocking(child);
1809 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1811 btrfs_tree_unlock(child);
1812 free_extent_buffer(child);
1816 tree_mod_log_set_root_pointer(root, child, 1);
1817 rcu_assign_pointer(root->node, child);
1819 add_root_to_dirty_list(root);
1820 btrfs_tree_unlock(child);
1822 path->locks[level] = 0;
1823 path->nodes[level] = NULL;
1824 clean_tree_block(trans, root, mid);
1825 btrfs_tree_unlock(mid);
1826 /* once for the path */
1827 free_extent_buffer(mid);
1829 root_sub_used(root, mid->len);
1830 btrfs_free_tree_block(trans, root, mid, 0, 1);
1831 /* once for the root ptr */
1832 free_extent_buffer_stale(mid);
1835 if (btrfs_header_nritems(mid) >
1836 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1839 left = read_node_slot(root, parent, pslot - 1);
1841 btrfs_tree_lock(left);
1842 btrfs_set_lock_blocking(left);
1843 wret = btrfs_cow_block(trans, root, left,
1844 parent, pslot - 1, &left);
1850 right = read_node_slot(root, parent, pslot + 1);
1852 btrfs_tree_lock(right);
1853 btrfs_set_lock_blocking(right);
1854 wret = btrfs_cow_block(trans, root, right,
1855 parent, pslot + 1, &right);
1862 /* first, try to make some room in the middle buffer */
1864 orig_slot += btrfs_header_nritems(left);
1865 wret = push_node_left(trans, root, left, mid, 1);
1871 * then try to empty the right most buffer into the middle
1874 wret = push_node_left(trans, root, mid, right, 1);
1875 if (wret < 0 && wret != -ENOSPC)
1877 if (btrfs_header_nritems(right) == 0) {
1878 clean_tree_block(trans, root, right);
1879 btrfs_tree_unlock(right);
1880 del_ptr(root, path, level + 1, pslot + 1);
1881 root_sub_used(root, right->len);
1882 btrfs_free_tree_block(trans, root, right, 0, 1);
1883 free_extent_buffer_stale(right);
1886 struct btrfs_disk_key right_key;
1887 btrfs_node_key(right, &right_key, 0);
1888 tree_mod_log_set_node_key(root->fs_info, parent,
1890 btrfs_set_node_key(parent, &right_key, pslot + 1);
1891 btrfs_mark_buffer_dirty(parent);
1894 if (btrfs_header_nritems(mid) == 1) {
1896 * we're not allowed to leave a node with one item in the
1897 * tree during a delete. A deletion from lower in the tree
1898 * could try to delete the only pointer in this node.
1899 * So, pull some keys from the left.
1900 * There has to be a left pointer at this point because
1901 * otherwise we would have pulled some pointers from the
1906 btrfs_std_error(root->fs_info, ret);
1909 wret = balance_node_right(trans, root, mid, left);
1915 wret = push_node_left(trans, root, left, mid, 1);
1921 if (btrfs_header_nritems(mid) == 0) {
1922 clean_tree_block(trans, root, mid);
1923 btrfs_tree_unlock(mid);
1924 del_ptr(root, path, level + 1, pslot);
1925 root_sub_used(root, mid->len);
1926 btrfs_free_tree_block(trans, root, mid, 0, 1);
1927 free_extent_buffer_stale(mid);
1930 /* update the parent key to reflect our changes */
1931 struct btrfs_disk_key mid_key;
1932 btrfs_node_key(mid, &mid_key, 0);
1933 tree_mod_log_set_node_key(root->fs_info, parent,
1935 btrfs_set_node_key(parent, &mid_key, pslot);
1936 btrfs_mark_buffer_dirty(parent);
1939 /* update the path */
1941 if (btrfs_header_nritems(left) > orig_slot) {
1942 extent_buffer_get(left);
1943 /* left was locked after cow */
1944 path->nodes[level] = left;
1945 path->slots[level + 1] -= 1;
1946 path->slots[level] = orig_slot;
1948 btrfs_tree_unlock(mid);
1949 free_extent_buffer(mid);
1952 orig_slot -= btrfs_header_nritems(left);
1953 path->slots[level] = orig_slot;
1956 /* double check we haven't messed things up */
1958 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1962 btrfs_tree_unlock(right);
1963 free_extent_buffer(right);
1966 if (path->nodes[level] != left)
1967 btrfs_tree_unlock(left);
1968 free_extent_buffer(left);
1973 /* Node balancing for insertion. Here we only split or push nodes around
1974 * when they are completely full. This is also done top down, so we
1975 * have to be pessimistic.
1977 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1978 struct btrfs_root *root,
1979 struct btrfs_path *path, int level)
1981 struct extent_buffer *right = NULL;
1982 struct extent_buffer *mid;
1983 struct extent_buffer *left = NULL;
1984 struct extent_buffer *parent = NULL;
1988 int orig_slot = path->slots[level];
1993 mid = path->nodes[level];
1994 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1996 if (level < BTRFS_MAX_LEVEL - 1) {
1997 parent = path->nodes[level + 1];
1998 pslot = path->slots[level + 1];
2004 left = read_node_slot(root, parent, pslot - 1);
2006 /* first, try to make some room in the middle buffer */
2010 btrfs_tree_lock(left);
2011 btrfs_set_lock_blocking(left);
2013 left_nr = btrfs_header_nritems(left);
2014 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2017 ret = btrfs_cow_block(trans, root, left, parent,
2022 wret = push_node_left(trans, root,
2029 struct btrfs_disk_key disk_key;
2030 orig_slot += left_nr;
2031 btrfs_node_key(mid, &disk_key, 0);
2032 tree_mod_log_set_node_key(root->fs_info, parent,
2034 btrfs_set_node_key(parent, &disk_key, pslot);
2035 btrfs_mark_buffer_dirty(parent);
2036 if (btrfs_header_nritems(left) > orig_slot) {
2037 path->nodes[level] = left;
2038 path->slots[level + 1] -= 1;
2039 path->slots[level] = orig_slot;
2040 btrfs_tree_unlock(mid);
2041 free_extent_buffer(mid);
2044 btrfs_header_nritems(left);
2045 path->slots[level] = orig_slot;
2046 btrfs_tree_unlock(left);
2047 free_extent_buffer(left);
2051 btrfs_tree_unlock(left);
2052 free_extent_buffer(left);
2054 right = read_node_slot(root, parent, pslot + 1);
2057 * then try to empty the right most buffer into the middle
2062 btrfs_tree_lock(right);
2063 btrfs_set_lock_blocking(right);
2065 right_nr = btrfs_header_nritems(right);
2066 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2069 ret = btrfs_cow_block(trans, root, right,
2075 wret = balance_node_right(trans, root,
2082 struct btrfs_disk_key disk_key;
2084 btrfs_node_key(right, &disk_key, 0);
2085 tree_mod_log_set_node_key(root->fs_info, parent,
2087 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2088 btrfs_mark_buffer_dirty(parent);
2090 if (btrfs_header_nritems(mid) <= orig_slot) {
2091 path->nodes[level] = right;
2092 path->slots[level + 1] += 1;
2093 path->slots[level] = orig_slot -
2094 btrfs_header_nritems(mid);
2095 btrfs_tree_unlock(mid);
2096 free_extent_buffer(mid);
2098 btrfs_tree_unlock(right);
2099 free_extent_buffer(right);
2103 btrfs_tree_unlock(right);
2104 free_extent_buffer(right);
2110 * readahead one full node of leaves, finding things that are close
2111 * to the block in 'slot', and triggering ra on them.
2113 static void reada_for_search(struct btrfs_root *root,
2114 struct btrfs_path *path,
2115 int level, int slot, u64 objectid)
2117 struct extent_buffer *node;
2118 struct btrfs_disk_key disk_key;
2124 int direction = path->reada;
2125 struct extent_buffer *eb;
2133 if (!path->nodes[level])
2136 node = path->nodes[level];
2138 search = btrfs_node_blockptr(node, slot);
2139 blocksize = btrfs_level_size(root, level - 1);
2140 eb = btrfs_find_tree_block(root, search, blocksize);
2142 free_extent_buffer(eb);
2148 nritems = btrfs_header_nritems(node);
2152 if (direction < 0) {
2156 } else if (direction > 0) {
2161 if (path->reada < 0 && objectid) {
2162 btrfs_node_key(node, &disk_key, nr);
2163 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2166 search = btrfs_node_blockptr(node, nr);
2167 if ((search <= target && target - search <= 65536) ||
2168 (search > target && search - target <= 65536)) {
2169 gen = btrfs_node_ptr_generation(node, nr);
2170 readahead_tree_block(root, search, blocksize, gen);
2174 if ((nread > 65536 || nscan > 32))
2180 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2183 static noinline int reada_for_balance(struct btrfs_root *root,
2184 struct btrfs_path *path, int level)
2188 struct extent_buffer *parent;
2189 struct extent_buffer *eb;
2196 parent = path->nodes[level + 1];
2200 nritems = btrfs_header_nritems(parent);
2201 slot = path->slots[level + 1];
2202 blocksize = btrfs_level_size(root, level);
2205 block1 = btrfs_node_blockptr(parent, slot - 1);
2206 gen = btrfs_node_ptr_generation(parent, slot - 1);
2207 eb = btrfs_find_tree_block(root, block1, blocksize);
2209 * if we get -eagain from btrfs_buffer_uptodate, we
2210 * don't want to return eagain here. That will loop
2213 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2215 free_extent_buffer(eb);
2217 if (slot + 1 < nritems) {
2218 block2 = btrfs_node_blockptr(parent, slot + 1);
2219 gen = btrfs_node_ptr_generation(parent, slot + 1);
2220 eb = btrfs_find_tree_block(root, block2, blocksize);
2221 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2223 free_extent_buffer(eb);
2225 if (block1 || block2) {
2228 /* release the whole path */
2229 btrfs_release_path(path);
2231 /* read the blocks */
2233 readahead_tree_block(root, block1, blocksize, 0);
2235 readahead_tree_block(root, block2, blocksize, 0);
2238 eb = read_tree_block(root, block1, blocksize, 0);
2239 free_extent_buffer(eb);
2242 eb = read_tree_block(root, block2, blocksize, 0);
2243 free_extent_buffer(eb);
2251 * when we walk down the tree, it is usually safe to unlock the higher layers
2252 * in the tree. The exceptions are when our path goes through slot 0, because
2253 * operations on the tree might require changing key pointers higher up in the
2256 * callers might also have set path->keep_locks, which tells this code to keep
2257 * the lock if the path points to the last slot in the block. This is part of
2258 * walking through the tree, and selecting the next slot in the higher block.
2260 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2261 * if lowest_unlock is 1, level 0 won't be unlocked
2263 static noinline void unlock_up(struct btrfs_path *path, int level,
2264 int lowest_unlock, int min_write_lock_level,
2265 int *write_lock_level)
2268 int skip_level = level;
2270 struct extent_buffer *t;
2272 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2273 if (!path->nodes[i])
2275 if (!path->locks[i])
2277 if (!no_skips && path->slots[i] == 0) {
2281 if (!no_skips && path->keep_locks) {
2284 nritems = btrfs_header_nritems(t);
2285 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2290 if (skip_level < i && i >= lowest_unlock)
2294 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2295 btrfs_tree_unlock_rw(t, path->locks[i]);
2297 if (write_lock_level &&
2298 i > min_write_lock_level &&
2299 i <= *write_lock_level) {
2300 *write_lock_level = i - 1;
2307 * This releases any locks held in the path starting at level and
2308 * going all the way up to the root.
2310 * btrfs_search_slot will keep the lock held on higher nodes in a few
2311 * corner cases, such as COW of the block at slot zero in the node. This
2312 * ignores those rules, and it should only be called when there are no
2313 * more updates to be done higher up in the tree.
2315 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2319 if (path->keep_locks)
2322 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2323 if (!path->nodes[i])
2325 if (!path->locks[i])
2327 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2333 * helper function for btrfs_search_slot. The goal is to find a block
2334 * in cache without setting the path to blocking. If we find the block
2335 * we return zero and the path is unchanged.
2337 * If we can't find the block, we set the path blocking and do some
2338 * reada. -EAGAIN is returned and the search must be repeated.
2341 read_block_for_search(struct btrfs_trans_handle *trans,
2342 struct btrfs_root *root, struct btrfs_path *p,
2343 struct extent_buffer **eb_ret, int level, int slot,
2344 struct btrfs_key *key, u64 time_seq)
2349 struct extent_buffer *b = *eb_ret;
2350 struct extent_buffer *tmp;
2353 blocknr = btrfs_node_blockptr(b, slot);
2354 gen = btrfs_node_ptr_generation(b, slot);
2355 blocksize = btrfs_level_size(root, level - 1);
2357 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2359 /* first we do an atomic uptodate check */
2360 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2361 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2363 * we found an up to date block without
2370 /* the pages were up to date, but we failed
2371 * the generation number check. Do a full
2372 * read for the generation number that is correct.
2373 * We must do this without dropping locks so
2374 * we can trust our generation number
2376 free_extent_buffer(tmp);
2377 btrfs_set_path_blocking(p);
2379 /* now we're allowed to do a blocking uptodate check */
2380 tmp = read_tree_block(root, blocknr, blocksize, gen);
2381 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2385 free_extent_buffer(tmp);
2386 btrfs_release_path(p);
2392 * reduce lock contention at high levels
2393 * of the btree by dropping locks before
2394 * we read. Don't release the lock on the current
2395 * level because we need to walk this node to figure
2396 * out which blocks to read.
2398 btrfs_unlock_up_safe(p, level + 1);
2399 btrfs_set_path_blocking(p);
2401 free_extent_buffer(tmp);
2403 reada_for_search(root, p, level, slot, key->objectid);
2405 btrfs_release_path(p);
2408 tmp = read_tree_block(root, blocknr, blocksize, 0);
2411 * If the read above didn't mark this buffer up to date,
2412 * it will never end up being up to date. Set ret to EIO now
2413 * and give up so that our caller doesn't loop forever
2416 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2418 free_extent_buffer(tmp);
2424 * helper function for btrfs_search_slot. This does all of the checks
2425 * for node-level blocks and does any balancing required based on
2428 * If no extra work was required, zero is returned. If we had to
2429 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2433 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2434 struct btrfs_root *root, struct btrfs_path *p,
2435 struct extent_buffer *b, int level, int ins_len,
2436 int *write_lock_level)
2439 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2440 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2443 if (*write_lock_level < level + 1) {
2444 *write_lock_level = level + 1;
2445 btrfs_release_path(p);
2449 sret = reada_for_balance(root, p, level);
2453 btrfs_set_path_blocking(p);
2454 sret = split_node(trans, root, p, level);
2455 btrfs_clear_path_blocking(p, NULL, 0);
2462 b = p->nodes[level];
2463 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2464 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2467 if (*write_lock_level < level + 1) {
2468 *write_lock_level = level + 1;
2469 btrfs_release_path(p);
2473 sret = reada_for_balance(root, p, level);
2477 btrfs_set_path_blocking(p);
2478 sret = balance_level(trans, root, p, level);
2479 btrfs_clear_path_blocking(p, NULL, 0);
2485 b = p->nodes[level];
2487 btrfs_release_path(p);
2490 BUG_ON(btrfs_header_nritems(b) == 1);
2501 * look for key in the tree. path is filled in with nodes along the way
2502 * if key is found, we return zero and you can find the item in the leaf
2503 * level of the path (level 0)
2505 * If the key isn't found, the path points to the slot where it should
2506 * be inserted, and 1 is returned. If there are other errors during the
2507 * search a negative error number is returned.
2509 * if ins_len > 0, nodes and leaves will be split as we walk down the
2510 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2513 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2514 *root, struct btrfs_key *key, struct btrfs_path *p, int
2517 struct extent_buffer *b;
2522 int lowest_unlock = 1;
2524 /* everything at write_lock_level or lower must be write locked */
2525 int write_lock_level = 0;
2526 u8 lowest_level = 0;
2527 int min_write_lock_level;
2529 lowest_level = p->lowest_level;
2530 WARN_ON(lowest_level && ins_len > 0);
2531 WARN_ON(p->nodes[0] != NULL);
2536 /* when we are removing items, we might have to go up to level
2537 * two as we update tree pointers Make sure we keep write
2538 * for those levels as well
2540 write_lock_level = 2;
2541 } else if (ins_len > 0) {
2543 * for inserting items, make sure we have a write lock on
2544 * level 1 so we can update keys
2546 write_lock_level = 1;
2550 write_lock_level = -1;
2552 if (cow && (p->keep_locks || p->lowest_level))
2553 write_lock_level = BTRFS_MAX_LEVEL;
2555 min_write_lock_level = write_lock_level;
2559 * we try very hard to do read locks on the root
2561 root_lock = BTRFS_READ_LOCK;
2563 if (p->search_commit_root) {
2565 * the commit roots are read only
2566 * so we always do read locks
2568 b = root->commit_root;
2569 extent_buffer_get(b);
2570 level = btrfs_header_level(b);
2571 if (!p->skip_locking)
2572 btrfs_tree_read_lock(b);
2574 if (p->skip_locking) {
2575 b = btrfs_root_node(root);
2576 level = btrfs_header_level(b);
2578 /* we don't know the level of the root node
2579 * until we actually have it read locked
2581 b = btrfs_read_lock_root_node(root);
2582 level = btrfs_header_level(b);
2583 if (level <= write_lock_level) {
2584 /* whoops, must trade for write lock */
2585 btrfs_tree_read_unlock(b);
2586 free_extent_buffer(b);
2587 b = btrfs_lock_root_node(root);
2588 root_lock = BTRFS_WRITE_LOCK;
2590 /* the level might have changed, check again */
2591 level = btrfs_header_level(b);
2595 p->nodes[level] = b;
2596 if (!p->skip_locking)
2597 p->locks[level] = root_lock;
2600 level = btrfs_header_level(b);
2603 * setup the path here so we can release it under lock
2604 * contention with the cow code
2608 * if we don't really need to cow this block
2609 * then we don't want to set the path blocking,
2610 * so we test it here
2612 if (!should_cow_block(trans, root, b))
2615 btrfs_set_path_blocking(p);
2618 * must have write locks on this node and the
2621 if (level > write_lock_level ||
2622 (level + 1 > write_lock_level &&
2623 level + 1 < BTRFS_MAX_LEVEL &&
2624 p->nodes[level + 1])) {
2625 write_lock_level = level + 1;
2626 btrfs_release_path(p);
2630 err = btrfs_cow_block(trans, root, b,
2631 p->nodes[level + 1],
2632 p->slots[level + 1], &b);
2639 BUG_ON(!cow && ins_len);
2641 p->nodes[level] = b;
2642 btrfs_clear_path_blocking(p, NULL, 0);
2645 * we have a lock on b and as long as we aren't changing
2646 * the tree, there is no way to for the items in b to change.
2647 * It is safe to drop the lock on our parent before we
2648 * go through the expensive btree search on b.
2650 * If cow is true, then we might be changing slot zero,
2651 * which may require changing the parent. So, we can't
2652 * drop the lock until after we know which slot we're
2656 btrfs_unlock_up_safe(p, level + 1);
2658 ret = bin_search(b, key, level, &slot);
2662 if (ret && slot > 0) {
2666 p->slots[level] = slot;
2667 err = setup_nodes_for_search(trans, root, p, b, level,
2668 ins_len, &write_lock_level);
2675 b = p->nodes[level];
2676 slot = p->slots[level];
2679 * slot 0 is special, if we change the key
2680 * we have to update the parent pointer
2681 * which means we must have a write lock
2684 if (slot == 0 && cow &&
2685 write_lock_level < level + 1) {
2686 write_lock_level = level + 1;
2687 btrfs_release_path(p);
2691 unlock_up(p, level, lowest_unlock,
2692 min_write_lock_level, &write_lock_level);
2694 if (level == lowest_level) {
2700 err = read_block_for_search(trans, root, p,
2701 &b, level, slot, key, 0);
2709 if (!p->skip_locking) {
2710 level = btrfs_header_level(b);
2711 if (level <= write_lock_level) {
2712 err = btrfs_try_tree_write_lock(b);
2714 btrfs_set_path_blocking(p);
2716 btrfs_clear_path_blocking(p, b,
2719 p->locks[level] = BTRFS_WRITE_LOCK;
2721 err = btrfs_try_tree_read_lock(b);
2723 btrfs_set_path_blocking(p);
2724 btrfs_tree_read_lock(b);
2725 btrfs_clear_path_blocking(p, b,
2728 p->locks[level] = BTRFS_READ_LOCK;
2730 p->nodes[level] = b;
2733 p->slots[level] = slot;
2735 btrfs_leaf_free_space(root, b) < ins_len) {
2736 if (write_lock_level < 1) {
2737 write_lock_level = 1;
2738 btrfs_release_path(p);
2742 btrfs_set_path_blocking(p);
2743 err = split_leaf(trans, root, key,
2744 p, ins_len, ret == 0);
2745 btrfs_clear_path_blocking(p, NULL, 0);
2753 if (!p->search_for_split)
2754 unlock_up(p, level, lowest_unlock,
2755 min_write_lock_level, &write_lock_level);
2762 * we don't really know what they plan on doing with the path
2763 * from here on, so for now just mark it as blocking
2765 if (!p->leave_spinning)
2766 btrfs_set_path_blocking(p);
2768 btrfs_release_path(p);
2773 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2774 * current state of the tree together with the operations recorded in the tree
2775 * modification log to search for the key in a previous version of this tree, as
2776 * denoted by the time_seq parameter.
2778 * Naturally, there is no support for insert, delete or cow operations.
2780 * The resulting path and return value will be set up as if we called
2781 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2783 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2784 struct btrfs_path *p, u64 time_seq)
2786 struct extent_buffer *b;
2791 int lowest_unlock = 1;
2792 u8 lowest_level = 0;
2794 lowest_level = p->lowest_level;
2795 WARN_ON(p->nodes[0] != NULL);
2797 if (p->search_commit_root) {
2799 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2803 b = get_old_root(root, time_seq);
2804 level = btrfs_header_level(b);
2805 p->locks[level] = BTRFS_READ_LOCK;
2808 level = btrfs_header_level(b);
2809 p->nodes[level] = b;
2810 btrfs_clear_path_blocking(p, NULL, 0);
2813 * we have a lock on b and as long as we aren't changing
2814 * the tree, there is no way to for the items in b to change.
2815 * It is safe to drop the lock on our parent before we
2816 * go through the expensive btree search on b.
2818 btrfs_unlock_up_safe(p, level + 1);
2820 ret = bin_search(b, key, level, &slot);
2824 if (ret && slot > 0) {
2828 p->slots[level] = slot;
2829 unlock_up(p, level, lowest_unlock, 0, NULL);
2831 if (level == lowest_level) {
2837 err = read_block_for_search(NULL, root, p, &b, level,
2838 slot, key, time_seq);
2846 level = btrfs_header_level(b);
2847 err = btrfs_try_tree_read_lock(b);
2849 btrfs_set_path_blocking(p);
2850 btrfs_tree_read_lock(b);
2851 btrfs_clear_path_blocking(p, b,
2854 b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2855 p->locks[level] = BTRFS_READ_LOCK;
2856 p->nodes[level] = b;
2858 p->slots[level] = slot;
2859 unlock_up(p, level, lowest_unlock, 0, NULL);
2865 if (!p->leave_spinning)
2866 btrfs_set_path_blocking(p);
2868 btrfs_release_path(p);
2874 * helper to use instead of search slot if no exact match is needed but
2875 * instead the next or previous item should be returned.
2876 * When find_higher is true, the next higher item is returned, the next lower
2878 * When return_any and find_higher are both true, and no higher item is found,
2879 * return the next lower instead.
2880 * When return_any is true and find_higher is false, and no lower item is found,
2881 * return the next higher instead.
2882 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2885 int btrfs_search_slot_for_read(struct btrfs_root *root,
2886 struct btrfs_key *key, struct btrfs_path *p,
2887 int find_higher, int return_any)
2890 struct extent_buffer *leaf;
2893 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2897 * a return value of 1 means the path is at the position where the
2898 * item should be inserted. Normally this is the next bigger item,
2899 * but in case the previous item is the last in a leaf, path points
2900 * to the first free slot in the previous leaf, i.e. at an invalid
2906 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2907 ret = btrfs_next_leaf(root, p);
2913 * no higher item found, return the next
2918 btrfs_release_path(p);
2922 if (p->slots[0] == 0) {
2923 ret = btrfs_prev_leaf(root, p);
2927 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2933 * no lower item found, return the next
2938 btrfs_release_path(p);
2948 * adjust the pointers going up the tree, starting at level
2949 * making sure the right key of each node is points to 'key'.
2950 * This is used after shifting pointers to the left, so it stops
2951 * fixing up pointers when a given leaf/node is not in slot 0 of the
2955 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
2956 struct btrfs_disk_key *key, int level)
2959 struct extent_buffer *t;
2961 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2962 int tslot = path->slots[i];
2963 if (!path->nodes[i])
2966 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2967 btrfs_set_node_key(t, key, tslot);
2968 btrfs_mark_buffer_dirty(path->nodes[i]);
2977 * This function isn't completely safe. It's the caller's responsibility
2978 * that the new key won't break the order
2980 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
2981 struct btrfs_key *new_key)
2983 struct btrfs_disk_key disk_key;
2984 struct extent_buffer *eb;
2987 eb = path->nodes[0];
2988 slot = path->slots[0];
2990 btrfs_item_key(eb, &disk_key, slot - 1);
2991 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2993 if (slot < btrfs_header_nritems(eb) - 1) {
2994 btrfs_item_key(eb, &disk_key, slot + 1);
2995 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2998 btrfs_cpu_key_to_disk(&disk_key, new_key);
2999 btrfs_set_item_key(eb, &disk_key, slot);
3000 btrfs_mark_buffer_dirty(eb);
3002 fixup_low_keys(root, path, &disk_key, 1);
3006 * try to push data from one node into the next node left in the
3009 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3010 * error, and > 0 if there was no room in the left hand block.
3012 static int push_node_left(struct btrfs_trans_handle *trans,
3013 struct btrfs_root *root, struct extent_buffer *dst,
3014 struct extent_buffer *src, int empty)
3021 src_nritems = btrfs_header_nritems(src);
3022 dst_nritems = btrfs_header_nritems(dst);
3023 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3024 WARN_ON(btrfs_header_generation(src) != trans->transid);
3025 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3027 if (!empty && src_nritems <= 8)
3030 if (push_items <= 0)
3034 push_items = min(src_nritems, push_items);
3035 if (push_items < src_nritems) {
3036 /* leave at least 8 pointers in the node if
3037 * we aren't going to empty it
3039 if (src_nritems - push_items < 8) {
3040 if (push_items <= 8)
3046 push_items = min(src_nritems - 8, push_items);
3048 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3050 copy_extent_buffer(dst, src,
3051 btrfs_node_key_ptr_offset(dst_nritems),
3052 btrfs_node_key_ptr_offset(0),
3053 push_items * sizeof(struct btrfs_key_ptr));
3055 if (push_items < src_nritems) {
3057 * don't call tree_mod_log_eb_move here, key removal was already
3058 * fully logged by tree_mod_log_eb_copy above.
3060 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3061 btrfs_node_key_ptr_offset(push_items),
3062 (src_nritems - push_items) *
3063 sizeof(struct btrfs_key_ptr));
3065 btrfs_set_header_nritems(src, src_nritems - push_items);
3066 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3067 btrfs_mark_buffer_dirty(src);
3068 btrfs_mark_buffer_dirty(dst);
3074 * try to push data from one node into the next node right in the
3077 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3078 * error, and > 0 if there was no room in the right hand block.
3080 * this will only push up to 1/2 the contents of the left node over
3082 static int balance_node_right(struct btrfs_trans_handle *trans,
3083 struct btrfs_root *root,
3084 struct extent_buffer *dst,
3085 struct extent_buffer *src)
3093 WARN_ON(btrfs_header_generation(src) != trans->transid);
3094 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3096 src_nritems = btrfs_header_nritems(src);
3097 dst_nritems = btrfs_header_nritems(dst);
3098 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3099 if (push_items <= 0)
3102 if (src_nritems < 4)
3105 max_push = src_nritems / 2 + 1;
3106 /* don't try to empty the node */
3107 if (max_push >= src_nritems)
3110 if (max_push < push_items)
3111 push_items = max_push;
3113 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3114 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3115 btrfs_node_key_ptr_offset(0),
3117 sizeof(struct btrfs_key_ptr));
3119 tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3120 src_nritems - push_items, push_items);
3121 copy_extent_buffer(dst, src,
3122 btrfs_node_key_ptr_offset(0),
3123 btrfs_node_key_ptr_offset(src_nritems - push_items),
3124 push_items * sizeof(struct btrfs_key_ptr));
3126 btrfs_set_header_nritems(src, src_nritems - push_items);
3127 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3129 btrfs_mark_buffer_dirty(src);
3130 btrfs_mark_buffer_dirty(dst);
3136 * helper function to insert a new root level in the tree.
3137 * A new node is allocated, and a single item is inserted to
3138 * point to the existing root
3140 * returns zero on success or < 0 on failure.
3142 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3143 struct btrfs_root *root,
3144 struct btrfs_path *path, int level, int log_removal)
3147 struct extent_buffer *lower;
3148 struct extent_buffer *c;
3149 struct extent_buffer *old;
3150 struct btrfs_disk_key lower_key;
3152 BUG_ON(path->nodes[level]);
3153 BUG_ON(path->nodes[level-1] != root->node);
3155 lower = path->nodes[level-1];
3157 btrfs_item_key(lower, &lower_key, 0);
3159 btrfs_node_key(lower, &lower_key, 0);
3161 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3162 root->root_key.objectid, &lower_key,
3163 level, root->node->start, 0);
3167 root_add_used(root, root->nodesize);
3169 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3170 btrfs_set_header_nritems(c, 1);
3171 btrfs_set_header_level(c, level);
3172 btrfs_set_header_bytenr(c, c->start);
3173 btrfs_set_header_generation(c, trans->transid);
3174 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3175 btrfs_set_header_owner(c, root->root_key.objectid);
3177 write_extent_buffer(c, root->fs_info->fsid,
3178 (unsigned long)btrfs_header_fsid(c),
3181 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3182 (unsigned long)btrfs_header_chunk_tree_uuid(c),
3185 btrfs_set_node_key(c, &lower_key, 0);
3186 btrfs_set_node_blockptr(c, 0, lower->start);
3187 lower_gen = btrfs_header_generation(lower);
3188 WARN_ON(lower_gen != trans->transid);
3190 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3192 btrfs_mark_buffer_dirty(c);
3195 tree_mod_log_set_root_pointer(root, c, log_removal);
3196 rcu_assign_pointer(root->node, c);
3198 /* the super has an extra ref to root->node */
3199 free_extent_buffer(old);
3201 add_root_to_dirty_list(root);
3202 extent_buffer_get(c);
3203 path->nodes[level] = c;
3204 path->locks[level] = BTRFS_WRITE_LOCK;
3205 path->slots[level] = 0;
3210 * worker function to insert a single pointer in a node.
3211 * the node should have enough room for the pointer already
3213 * slot and level indicate where you want the key to go, and
3214 * blocknr is the block the key points to.
3216 static void insert_ptr(struct btrfs_trans_handle *trans,
3217 struct btrfs_root *root, struct btrfs_path *path,
3218 struct btrfs_disk_key *key, u64 bytenr,
3219 int slot, int level)
3221 struct extent_buffer *lower;
3225 BUG_ON(!path->nodes[level]);
3226 btrfs_assert_tree_locked(path->nodes[level]);
3227 lower = path->nodes[level];
3228 nritems = btrfs_header_nritems(lower);
3229 BUG_ON(slot > nritems);
3230 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3231 if (slot != nritems) {
3233 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3234 slot, nritems - slot);
3235 memmove_extent_buffer(lower,
3236 btrfs_node_key_ptr_offset(slot + 1),
3237 btrfs_node_key_ptr_offset(slot),
3238 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3241 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3245 btrfs_set_node_key(lower, key, slot);
3246 btrfs_set_node_blockptr(lower, slot, bytenr);
3247 WARN_ON(trans->transid == 0);
3248 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3249 btrfs_set_header_nritems(lower, nritems + 1);
3250 btrfs_mark_buffer_dirty(lower);
3254 * split the node at the specified level in path in two.
3255 * The path is corrected to point to the appropriate node after the split
3257 * Before splitting this tries to make some room in the node by pushing
3258 * left and right, if either one works, it returns right away.
3260 * returns 0 on success and < 0 on failure
3262 static noinline int split_node(struct btrfs_trans_handle *trans,
3263 struct btrfs_root *root,
3264 struct btrfs_path *path, int level)
3266 struct extent_buffer *c;
3267 struct extent_buffer *split;
3268 struct btrfs_disk_key disk_key;
3273 c = path->nodes[level];
3274 WARN_ON(btrfs_header_generation(c) != trans->transid);
3275 if (c == root->node) {
3277 * trying to split the root, lets make a new one
3279 * tree mod log: We pass 0 as log_removal parameter to
3280 * insert_new_root, because that root buffer will be kept as a
3281 * normal node. We are going to log removal of half of the
3282 * elements below with tree_mod_log_eb_copy. We're holding a
3283 * tree lock on the buffer, which is why we cannot race with
3284 * other tree_mod_log users.
3286 ret = insert_new_root(trans, root, path, level + 1, 0);
3290 ret = push_nodes_for_insert(trans, root, path, level);
3291 c = path->nodes[level];
3292 if (!ret && btrfs_header_nritems(c) <
3293 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3299 c_nritems = btrfs_header_nritems(c);
3300 mid = (c_nritems + 1) / 2;
3301 btrfs_node_key(c, &disk_key, mid);
3303 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3304 root->root_key.objectid,
3305 &disk_key, level, c->start, 0);
3307 return PTR_ERR(split);
3309 root_add_used(root, root->nodesize);
3311 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3312 btrfs_set_header_level(split, btrfs_header_level(c));
3313 btrfs_set_header_bytenr(split, split->start);
3314 btrfs_set_header_generation(split, trans->transid);
3315 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3316 btrfs_set_header_owner(split, root->root_key.objectid);
3317 write_extent_buffer(split, root->fs_info->fsid,
3318 (unsigned long)btrfs_header_fsid(split),
3320 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3321 (unsigned long)btrfs_header_chunk_tree_uuid(split),
3324 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3325 copy_extent_buffer(split, c,
3326 btrfs_node_key_ptr_offset(0),
3327 btrfs_node_key_ptr_offset(mid),
3328 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3329 btrfs_set_header_nritems(split, c_nritems - mid);
3330 btrfs_set_header_nritems(c, mid);
3333 btrfs_mark_buffer_dirty(c);
3334 btrfs_mark_buffer_dirty(split);
3336 insert_ptr(trans, root, path, &disk_key, split->start,
3337 path->slots[level + 1] + 1, level + 1);
3339 if (path->slots[level] >= mid) {
3340 path->slots[level] -= mid;
3341 btrfs_tree_unlock(c);
3342 free_extent_buffer(c);
3343 path->nodes[level] = split;
3344 path->slots[level + 1] += 1;
3346 btrfs_tree_unlock(split);
3347 free_extent_buffer(split);
3353 * how many bytes are required to store the items in a leaf. start
3354 * and nr indicate which items in the leaf to check. This totals up the
3355 * space used both by the item structs and the item data
3357 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3359 struct btrfs_item *start_item;
3360 struct btrfs_item *end_item;
3361 struct btrfs_map_token token;
3363 int nritems = btrfs_header_nritems(l);
3364 int end = min(nritems, start + nr) - 1;
3368 btrfs_init_map_token(&token);
3369 start_item = btrfs_item_nr(l, start);
3370 end_item = btrfs_item_nr(l, end);
3371 data_len = btrfs_token_item_offset(l, start_item, &token) +
3372 btrfs_token_item_size(l, start_item, &token);
3373 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3374 data_len += sizeof(struct btrfs_item) * nr;
3375 WARN_ON(data_len < 0);
3380 * The space between the end of the leaf items and
3381 * the start of the leaf data. IOW, how much room
3382 * the leaf has left for both items and data
3384 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3385 struct extent_buffer *leaf)
3387 int nritems = btrfs_header_nritems(leaf);
3389 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3391 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3392 "used %d nritems %d\n",
3393 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3394 leaf_space_used(leaf, 0, nritems), nritems);
3400 * min slot controls the lowest index we're willing to push to the
3401 * right. We'll push up to and including min_slot, but no lower
3403 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3404 struct btrfs_root *root,
3405 struct btrfs_path *path,
3406 int data_size, int empty,
3407 struct extent_buffer *right,
3408 int free_space, u32 left_nritems,
3411 struct extent_buffer *left = path->nodes[0];
3412 struct extent_buffer *upper = path->nodes[1];
3413 struct btrfs_map_token token;
3414 struct btrfs_disk_key disk_key;
3419 struct btrfs_item *item;
3425 btrfs_init_map_token(&token);
3430 nr = max_t(u32, 1, min_slot);
3432 if (path->slots[0] >= left_nritems)
3433 push_space += data_size;
3435 slot = path->slots[1];
3436 i = left_nritems - 1;
3438 item = btrfs_item_nr(left, i);
3440 if (!empty && push_items > 0) {
3441 if (path->slots[0] > i)
3443 if (path->slots[0] == i) {
3444 int space = btrfs_leaf_free_space(root, left);
3445 if (space + push_space * 2 > free_space)
3450 if (path->slots[0] == i)
3451 push_space += data_size;
3453 this_item_size = btrfs_item_size(left, item);
3454 if (this_item_size + sizeof(*item) + push_space > free_space)
3458 push_space += this_item_size + sizeof(*item);
3464 if (push_items == 0)
3467 WARN_ON(!empty && push_items == left_nritems);
3469 /* push left to right */
3470 right_nritems = btrfs_header_nritems(right);
3472 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3473 push_space -= leaf_data_end(root, left);
3475 /* make room in the right data area */
3476 data_end = leaf_data_end(root, right);
3477 memmove_extent_buffer(right,
3478 btrfs_leaf_data(right) + data_end - push_space,
3479 btrfs_leaf_data(right) + data_end,
3480 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3482 /* copy from the left data area */
3483 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3484 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3485 btrfs_leaf_data(left) + leaf_data_end(root, left),
3488 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3489 btrfs_item_nr_offset(0),
3490 right_nritems * sizeof(struct btrfs_item));
3492 /* copy the items from left to right */
3493 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3494 btrfs_item_nr_offset(left_nritems - push_items),
3495 push_items * sizeof(struct btrfs_item));
3497 /* update the item pointers */
3498 right_nritems += push_items;
3499 btrfs_set_header_nritems(right, right_nritems);
3500 push_space = BTRFS_LEAF_DATA_SIZE(root);
3501 for (i = 0; i < right_nritems; i++) {
3502 item = btrfs_item_nr(right, i);
3503 push_space -= btrfs_token_item_size(right, item, &token);
3504 btrfs_set_token_item_offset(right, item, push_space, &token);
3507 left_nritems -= push_items;
3508 btrfs_set_header_nritems(left, left_nritems);
3511 btrfs_mark_buffer_dirty(left);
3513 clean_tree_block(trans, root, left);
3515 btrfs_mark_buffer_dirty(right);
3517 btrfs_item_key(right, &disk_key, 0);
3518 btrfs_set_node_key(upper, &disk_key, slot + 1);
3519 btrfs_mark_buffer_dirty(upper);
3521 /* then fixup the leaf pointer in the path */
3522 if (path->slots[0] >= left_nritems) {
3523 path->slots[0] -= left_nritems;
3524 if (btrfs_header_nritems(path->nodes[0]) == 0)
3525 clean_tree_block(trans, root, path->nodes[0]);
3526 btrfs_tree_unlock(path->nodes[0]);
3527 free_extent_buffer(path->nodes[0]);
3528 path->nodes[0] = right;
3529 path->slots[1] += 1;
3531 btrfs_tree_unlock(right);
3532 free_extent_buffer(right);
3537 btrfs_tree_unlock(right);
3538 free_extent_buffer(right);
3543 * push some data in the path leaf to the right, trying to free up at
3544 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3546 * returns 1 if the push failed because the other node didn't have enough
3547 * room, 0 if everything worked out and < 0 if there were major errors.
3549 * this will push starting from min_slot to the end of the leaf. It won't
3550 * push any slot lower than min_slot
3552 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3553 *root, struct btrfs_path *path,
3554 int min_data_size, int data_size,
3555 int empty, u32 min_slot)
3557 struct extent_buffer *left = path->nodes[0];
3558 struct extent_buffer *right;
3559 struct extent_buffer *upper;
3565 if (!path->nodes[1])
3568 slot = path->slots[1];
3569 upper = path->nodes[1];
3570 if (slot >= btrfs_header_nritems(upper) - 1)
3573 btrfs_assert_tree_locked(path->nodes[1]);
3575 right = read_node_slot(root, upper, slot + 1);
3579 btrfs_tree_lock(right);
3580 btrfs_set_lock_blocking(right);
3582 free_space = btrfs_leaf_free_space(root, right);
3583 if (free_space < data_size)
3586 /* cow and double check */
3587 ret = btrfs_cow_block(trans, root, right, upper,
3592 free_space = btrfs_leaf_free_space(root, right);
3593 if (free_space < data_size)
3596 left_nritems = btrfs_header_nritems(left);
3597 if (left_nritems == 0)
3600 return __push_leaf_right(trans, root, path, min_data_size, empty,
3601 right, free_space, left_nritems, min_slot);
3603 btrfs_tree_unlock(right);
3604 free_extent_buffer(right);
3609 * push some data in the path leaf to the left, trying to free up at
3610 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3612 * max_slot can put a limit on how far into the leaf we'll push items. The
3613 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3616 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3617 struct btrfs_root *root,
3618 struct btrfs_path *path, int data_size,
3619 int empty, struct extent_buffer *left,
3620 int free_space, u32 right_nritems,
3623 struct btrfs_disk_key disk_key;
3624 struct extent_buffer *right = path->nodes[0];
3628 struct btrfs_item *item;
3629 u32 old_left_nritems;
3633 u32 old_left_item_size;
3634 struct btrfs_map_token token;
3636 btrfs_init_map_token(&token);
3639 nr = min(right_nritems, max_slot);
3641 nr = min(right_nritems - 1, max_slot);
3643 for (i = 0; i < nr; i++) {
3644 item = btrfs_item_nr(right, i);
3646 if (!empty && push_items > 0) {
3647 if (path->slots[0] < i)
3649 if (path->slots[0] == i) {
3650 int space = btrfs_leaf_free_space(root, right);
3651 if (space + push_space * 2 > free_space)
3656 if (path->slots[0] == i)
3657 push_space += data_size;
3659 this_item_size = btrfs_item_size(right, item);
3660 if (this_item_size + sizeof(*item) + push_space > free_space)
3664 push_space += this_item_size + sizeof(*item);
3667 if (push_items == 0) {
3671 if (!empty && push_items == btrfs_header_nritems(right))
3674 /* push data from right to left */
3675 copy_extent_buffer(left, right,
3676 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3677 btrfs_item_nr_offset(0),
3678 push_items * sizeof(struct btrfs_item));
3680 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3681 btrfs_item_offset_nr(right, push_items - 1);
3683 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3684 leaf_data_end(root, left) - push_space,
3685 btrfs_leaf_data(right) +
3686 btrfs_item_offset_nr(right, push_items - 1),
3688 old_left_nritems = btrfs_header_nritems(left);
3689 BUG_ON(old_left_nritems <= 0);
3691 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3692 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3695 item = btrfs_item_nr(left, i);
3697 ioff = btrfs_token_item_offset(left, item, &token);
3698 btrfs_set_token_item_offset(left, item,
3699 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3702 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3704 /* fixup right node */
3705 if (push_items > right_nritems)
3706 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3709 if (push_items < right_nritems) {
3710 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3711 leaf_data_end(root, right);
3712 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3713 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3714 btrfs_leaf_data(right) +
3715 leaf_data_end(root, right), push_space);
3717 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3718 btrfs_item_nr_offset(push_items),
3719 (btrfs_header_nritems(right) - push_items) *
3720 sizeof(struct btrfs_item));
3722 right_nritems -= push_items;
3723 btrfs_set_header_nritems(right, right_nritems);
3724 push_space = BTRFS_LEAF_DATA_SIZE(root);
3725 for (i = 0; i < right_nritems; i++) {
3726 item = btrfs_item_nr(right, i);
3728 push_space = push_space - btrfs_token_item_size(right,
3730 btrfs_set_token_item_offset(right, item, push_space, &token);
3733 btrfs_mark_buffer_dirty(left);
3735 btrfs_mark_buffer_dirty(right);
3737 clean_tree_block(trans, root, right);
3739 btrfs_item_key(right, &disk_key, 0);
3740 fixup_low_keys(root, path, &disk_key, 1);
3742 /* then fixup the leaf pointer in the path */
3743 if (path->slots[0] < push_items) {
3744 path->slots[0] += old_left_nritems;
3745 btrfs_tree_unlock(path->nodes[0]);
3746 free_extent_buffer(path->nodes[0]);
3747 path->nodes[0] = left;
3748 path->slots[1] -= 1;
3750 btrfs_tree_unlock(left);
3751 free_extent_buffer(left);
3752 path->slots[0] -= push_items;
3754 BUG_ON(path->slots[0] < 0);
3757 btrfs_tree_unlock(left);
3758 free_extent_buffer(left);
3763 * push some data in the path leaf to the left, trying to free up at
3764 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3766 * max_slot can put a limit on how far into the leaf we'll push items. The
3767 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3770 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3771 *root, struct btrfs_path *path, int min_data_size,
3772 int data_size, int empty, u32 max_slot)
3774 struct extent_buffer *right = path->nodes[0];
3775 struct extent_buffer *left;
3781 slot = path->slots[1];
3784 if (!path->nodes[1])
3787 right_nritems = btrfs_header_nritems(right);
3788 if (right_nritems == 0)
3791 btrfs_assert_tree_locked(path->nodes[1]);
3793 left = read_node_slot(root, path->nodes[1], slot - 1);
3797 btrfs_tree_lock(left);
3798 btrfs_set_lock_blocking(left);
3800 free_space = btrfs_leaf_free_space(root, left);
3801 if (free_space < data_size) {
3806 /* cow and double check */
3807 ret = btrfs_cow_block(trans, root, left,
3808 path->nodes[1], slot - 1, &left);
3810 /* we hit -ENOSPC, but it isn't fatal here */
3816 free_space = btrfs_leaf_free_space(root, left);
3817 if (free_space < data_size) {
3822 return __push_leaf_left(trans, root, path, min_data_size,
3823 empty, left, free_space, right_nritems,
3826 btrfs_tree_unlock(left);
3827 free_extent_buffer(left);
3832 * split the path's leaf in two, making sure there is at least data_size
3833 * available for the resulting leaf level of the path.
3835 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3836 struct btrfs_root *root,
3837 struct btrfs_path *path,
3838 struct extent_buffer *l,
3839 struct extent_buffer *right,
3840 int slot, int mid, int nritems)
3845 struct btrfs_disk_key disk_key;
3846 struct btrfs_map_token token;
3848 btrfs_init_map_token(&token);
3850 nritems = nritems - mid;
3851 btrfs_set_header_nritems(right, nritems);
3852 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3854 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3855 btrfs_item_nr_offset(mid),
3856 nritems * sizeof(struct btrfs_item));
3858 copy_extent_buffer(right, l,
3859 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3860 data_copy_size, btrfs_leaf_data(l) +
3861 leaf_data_end(root, l), data_copy_size);
3863 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3864 btrfs_item_end_nr(l, mid);
3866 for (i = 0; i < nritems; i++) {
3867 struct btrfs_item *item = btrfs_item_nr(right, i);
3870 ioff = btrfs_token_item_offset(right, item, &token);
3871 btrfs_set_token_item_offset(right, item,
3872 ioff + rt_data_off, &token);
3875 btrfs_set_header_nritems(l, mid);
3876 btrfs_item_key(right, &disk_key, 0);
3877 insert_ptr(trans, root, path, &disk_key, right->start,
3878 path->slots[1] + 1, 1);
3880 btrfs_mark_buffer_dirty(right);
3881 btrfs_mark_buffer_dirty(l);
3882 BUG_ON(path->slots[0] != slot);
3885 btrfs_tree_unlock(path->nodes[0]);
3886 free_extent_buffer(path->nodes[0]);
3887 path->nodes[0] = right;
3888 path->slots[0] -= mid;
3889 path->slots[1] += 1;
3891 btrfs_tree_unlock(right);
3892 free_extent_buffer(right);
3895 BUG_ON(path->slots[0] < 0);
3899 * double splits happen when we need to insert a big item in the middle
3900 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3901 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3904 * We avoid this by trying to push the items on either side of our target
3905 * into the adjacent leaves. If all goes well we can avoid the double split
3908 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3909 struct btrfs_root *root,
3910 struct btrfs_path *path,
3918 slot = path->slots[0];
3921 * try to push all the items after our slot into the
3924 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3931 nritems = btrfs_header_nritems(path->nodes[0]);
3933 * our goal is to get our slot at the start or end of a leaf. If
3934 * we've done so we're done
3936 if (path->slots[0] == 0 || path->slots[0] == nritems)
3939 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3942 /* try to push all the items before our slot into the next leaf */
3943 slot = path->slots[0];
3944 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3957 * split the path's leaf in two, making sure there is at least data_size
3958 * available for the resulting leaf level of the path.
3960 * returns 0 if all went well and < 0 on failure.
3962 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3963 struct btrfs_root *root,
3964 struct btrfs_key *ins_key,
3965 struct btrfs_path *path, int data_size,
3968 struct btrfs_disk_key disk_key;
3969 struct extent_buffer *l;
3973 struct extent_buffer *right;
3977 int num_doubles = 0;
3978 int tried_avoid_double = 0;
3981 slot = path->slots[0];
3982 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3983 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3986 /* first try to make some room by pushing left and right */
3988 wret = push_leaf_right(trans, root, path, data_size,
3993 wret = push_leaf_left(trans, root, path, data_size,
3994 data_size, 0, (u32)-1);
4000 /* did the pushes work? */
4001 if (btrfs_leaf_free_space(root, l) >= data_size)
4005 if (!path->nodes[1]) {
4006 ret = insert_new_root(trans, root, path, 1, 1);
4013 slot = path->slots[0];
4014 nritems = btrfs_header_nritems(l);
4015 mid = (nritems + 1) / 2;
4019 leaf_space_used(l, mid, nritems - mid) + data_size >
4020 BTRFS_LEAF_DATA_SIZE(root)) {
4021 if (slot >= nritems) {
4025 if (mid != nritems &&
4026 leaf_space_used(l, mid, nritems - mid) +
4027 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4028 if (data_size && !tried_avoid_double)
4029 goto push_for_double;
4035 if (leaf_space_used(l, 0, mid) + data_size >
4036 BTRFS_LEAF_DATA_SIZE(root)) {
4037 if (!extend && data_size && slot == 0) {
4039 } else if ((extend || !data_size) && slot == 0) {
4043 if (mid != nritems &&
4044 leaf_space_used(l, mid, nritems - mid) +
4045 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4046 if (data_size && !tried_avoid_double)
4047 goto push_for_double;
4055 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4057 btrfs_item_key(l, &disk_key, mid);
4059 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4060 root->root_key.objectid,
4061 &disk_key, 0, l->start, 0);
4063 return PTR_ERR(right);
4065 root_add_used(root, root->leafsize);
4067 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4068 btrfs_set_header_bytenr(right, right->start);
4069 btrfs_set_header_generation(right, trans->transid);
4070 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4071 btrfs_set_header_owner(right, root->root_key.objectid);
4072 btrfs_set_header_level(right, 0);
4073 write_extent_buffer(right, root->fs_info->fsid,
4074 (unsigned long)btrfs_header_fsid(right),
4077 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4078 (unsigned long)btrfs_header_chunk_tree_uuid(right),
4083 btrfs_set_header_nritems(right, 0);
4084 insert_ptr(trans, root, path, &disk_key, right->start,
4085 path->slots[1] + 1, 1);
4086 btrfs_tree_unlock(path->nodes[0]);
4087 free_extent_buffer(path->nodes[0]);
4088 path->nodes[0] = right;
4090 path->slots[1] += 1;
4092 btrfs_set_header_nritems(right, 0);
4093 insert_ptr(trans, root, path, &disk_key, right->start,
4095 btrfs_tree_unlock(path->nodes[0]);
4096 free_extent_buffer(path->nodes[0]);
4097 path->nodes[0] = right;
4099 if (path->slots[1] == 0)
4100 fixup_low_keys(root, path, &disk_key, 1);
4102 btrfs_mark_buffer_dirty(right);
4106 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4109 BUG_ON(num_doubles != 0);
4117 push_for_double_split(trans, root, path, data_size);
4118 tried_avoid_double = 1;
4119 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4124 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4125 struct btrfs_root *root,
4126 struct btrfs_path *path, int ins_len)
4128 struct btrfs_key key;
4129 struct extent_buffer *leaf;
4130 struct btrfs_file_extent_item *fi;
4135 leaf = path->nodes[0];
4136 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4138 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4139 key.type != BTRFS_EXTENT_CSUM_KEY);
4141 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4144 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4145 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4146 fi = btrfs_item_ptr(leaf, path->slots[0],
4147 struct btrfs_file_extent_item);
4148 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4150 btrfs_release_path(path);
4152 path->keep_locks = 1;
4153 path->search_for_split = 1;
4154 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4155 path->search_for_split = 0;
4160 leaf = path->nodes[0];
4161 /* if our item isn't there or got smaller, return now */
4162 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4165 /* the leaf has changed, it now has room. return now */
4166 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4169 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4170 fi = btrfs_item_ptr(leaf, path->slots[0],
4171 struct btrfs_file_extent_item);
4172 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4176 btrfs_set_path_blocking(path);
4177 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4181 path->keep_locks = 0;
4182 btrfs_unlock_up_safe(path, 1);
4185 path->keep_locks = 0;
4189 static noinline int split_item(struct btrfs_trans_handle *trans,
4190 struct btrfs_root *root,
4191 struct btrfs_path *path,
4192 struct btrfs_key *new_key,
4193 unsigned long split_offset)
4195 struct extent_buffer *leaf;
4196 struct btrfs_item *item;
4197 struct btrfs_item *new_item;
4203 struct btrfs_disk_key disk_key;
4205 leaf = path->nodes[0];
4206 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4208 btrfs_set_path_blocking(path);
4210 item = btrfs_item_nr(leaf, path->slots[0]);
4211 orig_offset = btrfs_item_offset(leaf, item);
4212 item_size = btrfs_item_size(leaf, item);
4214 buf = kmalloc(item_size, GFP_NOFS);
4218 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4219 path->slots[0]), item_size);
4221 slot = path->slots[0] + 1;
4222 nritems = btrfs_header_nritems(leaf);
4223 if (slot != nritems) {
4224 /* shift the items */
4225 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4226 btrfs_item_nr_offset(slot),
4227 (nritems - slot) * sizeof(struct btrfs_item));
4230 btrfs_cpu_key_to_disk(&disk_key, new_key);
4231 btrfs_set_item_key(leaf, &disk_key, slot);
4233 new_item = btrfs_item_nr(leaf, slot);
4235 btrfs_set_item_offset(leaf, new_item, orig_offset);
4236 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4238 btrfs_set_item_offset(leaf, item,
4239 orig_offset + item_size - split_offset);
4240 btrfs_set_item_size(leaf, item, split_offset);
4242 btrfs_set_header_nritems(leaf, nritems + 1);
4244 /* write the data for the start of the original item */
4245 write_extent_buffer(leaf, buf,
4246 btrfs_item_ptr_offset(leaf, path->slots[0]),
4249 /* write the data for the new item */
4250 write_extent_buffer(leaf, buf + split_offset,
4251 btrfs_item_ptr_offset(leaf, slot),
4252 item_size - split_offset);
4253 btrfs_mark_buffer_dirty(leaf);
4255 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4261 * This function splits a single item into two items,
4262 * giving 'new_key' to the new item and splitting the
4263 * old one at split_offset (from the start of the item).
4265 * The path may be released by this operation. After
4266 * the split, the path is pointing to the old item. The
4267 * new item is going to be in the same node as the old one.
4269 * Note, the item being split must be smaller enough to live alone on
4270 * a tree block with room for one extra struct btrfs_item
4272 * This allows us to split the item in place, keeping a lock on the
4273 * leaf the entire time.
4275 int btrfs_split_item(struct btrfs_trans_handle *trans,
4276 struct btrfs_root *root,
4277 struct btrfs_path *path,
4278 struct btrfs_key *new_key,
4279 unsigned long split_offset)
4282 ret = setup_leaf_for_split(trans, root, path,
4283 sizeof(struct btrfs_item));
4287 ret = split_item(trans, root, path, new_key, split_offset);
4292 * This function duplicate a item, giving 'new_key' to the new item.
4293 * It guarantees both items live in the same tree leaf and the new item
4294 * is contiguous with the original item.
4296 * This allows us to split file extent in place, keeping a lock on the
4297 * leaf the entire time.
4299 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4300 struct btrfs_root *root,
4301 struct btrfs_path *path,
4302 struct btrfs_key *new_key)
4304 struct extent_buffer *leaf;
4308 leaf = path->nodes[0];
4309 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4310 ret = setup_leaf_for_split(trans, root, path,
4311 item_size + sizeof(struct btrfs_item));
4316 setup_items_for_insert(root, path, new_key, &item_size,
4317 item_size, item_size +
4318 sizeof(struct btrfs_item), 1);
4319 leaf = path->nodes[0];
4320 memcpy_extent_buffer(leaf,
4321 btrfs_item_ptr_offset(leaf, path->slots[0]),
4322 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4328 * make the item pointed to by the path smaller. new_size indicates
4329 * how small to make it, and from_end tells us if we just chop bytes
4330 * off the end of the item or if we shift the item to chop bytes off
4333 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4334 u32 new_size, int from_end)
4337 struct extent_buffer *leaf;
4338 struct btrfs_item *item;
4340 unsigned int data_end;
4341 unsigned int old_data_start;
4342 unsigned int old_size;
4343 unsigned int size_diff;
4345 struct btrfs_map_token token;
4347 btrfs_init_map_token(&token);
4349 leaf = path->nodes[0];
4350 slot = path->slots[0];
4352 old_size = btrfs_item_size_nr(leaf, slot);
4353 if (old_size == new_size)
4356 nritems = btrfs_header_nritems(leaf);
4357 data_end = leaf_data_end(root, leaf);
4359 old_data_start = btrfs_item_offset_nr(leaf, slot);
4361 size_diff = old_size - new_size;
4364 BUG_ON(slot >= nritems);
4367 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4369 /* first correct the data pointers */
4370 for (i = slot; i < nritems; i++) {
4372 item = btrfs_item_nr(leaf, i);
4374 ioff = btrfs_token_item_offset(leaf, item, &token);
4375 btrfs_set_token_item_offset(leaf, item,
4376 ioff + size_diff, &token);
4379 /* shift the data */
4381 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4382 data_end + size_diff, btrfs_leaf_data(leaf) +
4383 data_end, old_data_start + new_size - data_end);
4385 struct btrfs_disk_key disk_key;
4388 btrfs_item_key(leaf, &disk_key, slot);
4390 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4392 struct btrfs_file_extent_item *fi;
4394 fi = btrfs_item_ptr(leaf, slot,
4395 struct btrfs_file_extent_item);
4396 fi = (struct btrfs_file_extent_item *)(
4397 (unsigned long)fi - size_diff);
4399 if (btrfs_file_extent_type(leaf, fi) ==
4400 BTRFS_FILE_EXTENT_INLINE) {
4401 ptr = btrfs_item_ptr_offset(leaf, slot);
4402 memmove_extent_buffer(leaf, ptr,
4404 offsetof(struct btrfs_file_extent_item,
4409 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4410 data_end + size_diff, btrfs_leaf_data(leaf) +
4411 data_end, old_data_start - data_end);
4413 offset = btrfs_disk_key_offset(&disk_key);
4414 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4415 btrfs_set_item_key(leaf, &disk_key, slot);
4417 fixup_low_keys(root, path, &disk_key, 1);
4420 item = btrfs_item_nr(leaf, slot);
4421 btrfs_set_item_size(leaf, item, new_size);
4422 btrfs_mark_buffer_dirty(leaf);
4424 if (btrfs_leaf_free_space(root, leaf) < 0) {
4425 btrfs_print_leaf(root, leaf);
4431 * make the item pointed to by the path bigger, data_size is the new size.
4433 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4437 struct extent_buffer *leaf;
4438 struct btrfs_item *item;
4440 unsigned int data_end;
4441 unsigned int old_data;
4442 unsigned int old_size;
4444 struct btrfs_map_token token;
4446 btrfs_init_map_token(&token);
4448 leaf = path->nodes[0];
4450 nritems = btrfs_header_nritems(leaf);
4451 data_end = leaf_data_end(root, leaf);
4453 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4454 btrfs_print_leaf(root, leaf);
4457 slot = path->slots[0];
4458 old_data = btrfs_item_end_nr(leaf, slot);
4461 if (slot >= nritems) {
4462 btrfs_print_leaf(root, leaf);
4463 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4469 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4471 /* first correct the data pointers */
4472 for (i = slot; i < nritems; i++) {
4474 item = btrfs_item_nr(leaf, i);
4476 ioff = btrfs_token_item_offset(leaf, item, &token);
4477 btrfs_set_token_item_offset(leaf, item,
4478 ioff - data_size, &token);
4481 /* shift the data */
4482 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4483 data_end - data_size, btrfs_leaf_data(leaf) +
4484 data_end, old_data - data_end);
4486 data_end = old_data;
4487 old_size = btrfs_item_size_nr(leaf, slot);
4488 item = btrfs_item_nr(leaf, slot);
4489 btrfs_set_item_size(leaf, item, old_size + data_size);
4490 btrfs_mark_buffer_dirty(leaf);
4492 if (btrfs_leaf_free_space(root, leaf) < 0) {
4493 btrfs_print_leaf(root, leaf);
4499 * this is a helper for btrfs_insert_empty_items, the main goal here is
4500 * to save stack depth by doing the bulk of the work in a function
4501 * that doesn't call btrfs_search_slot
4503 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4504 struct btrfs_key *cpu_key, u32 *data_size,
4505 u32 total_data, u32 total_size, int nr)
4507 struct btrfs_item *item;
4510 unsigned int data_end;
4511 struct btrfs_disk_key disk_key;
4512 struct extent_buffer *leaf;
4514 struct btrfs_map_token token;
4516 btrfs_init_map_token(&token);
4518 leaf = path->nodes[0];
4519 slot = path->slots[0];
4521 nritems = btrfs_header_nritems(leaf);
4522 data_end = leaf_data_end(root, leaf);
4524 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4525 btrfs_print_leaf(root, leaf);
4526 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4527 total_size, btrfs_leaf_free_space(root, leaf));
4531 if (slot != nritems) {
4532 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4534 if (old_data < data_end) {
4535 btrfs_print_leaf(root, leaf);
4536 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4537 slot, old_data, data_end);
4541 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4543 /* first correct the data pointers */
4544 for (i = slot; i < nritems; i++) {
4547 item = btrfs_item_nr(leaf, i);
4548 ioff = btrfs_token_item_offset(leaf, item, &token);
4549 btrfs_set_token_item_offset(leaf, item,
4550 ioff - total_data, &token);
4552 /* shift the items */
4553 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4554 btrfs_item_nr_offset(slot),
4555 (nritems - slot) * sizeof(struct btrfs_item));
4557 /* shift the data */
4558 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4559 data_end - total_data, btrfs_leaf_data(leaf) +
4560 data_end, old_data - data_end);
4561 data_end = old_data;
4564 /* setup the item for the new data */
4565 for (i = 0; i < nr; i++) {
4566 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4567 btrfs_set_item_key(leaf, &disk_key, slot + i);
4568 item = btrfs_item_nr(leaf, slot + i);
4569 btrfs_set_token_item_offset(leaf, item,
4570 data_end - data_size[i], &token);
4571 data_end -= data_size[i];
4572 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4575 btrfs_set_header_nritems(leaf, nritems + nr);
4578 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4579 fixup_low_keys(root, path, &disk_key, 1);
4581 btrfs_unlock_up_safe(path, 1);
4582 btrfs_mark_buffer_dirty(leaf);
4584 if (btrfs_leaf_free_space(root, leaf) < 0) {
4585 btrfs_print_leaf(root, leaf);
4591 * Given a key and some data, insert items into the tree.
4592 * This does all the path init required, making room in the tree if needed.
4594 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4595 struct btrfs_root *root,
4596 struct btrfs_path *path,
4597 struct btrfs_key *cpu_key, u32 *data_size,
4606 for (i = 0; i < nr; i++)
4607 total_data += data_size[i];
4609 total_size = total_data + (nr * sizeof(struct btrfs_item));
4610 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4616 slot = path->slots[0];
4619 setup_items_for_insert(root, path, cpu_key, data_size,
4620 total_data, total_size, nr);
4625 * Given a key and some data, insert an item into the tree.
4626 * This does all the path init required, making room in the tree if needed.
4628 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4629 *root, struct btrfs_key *cpu_key, void *data, u32
4633 struct btrfs_path *path;
4634 struct extent_buffer *leaf;
4637 path = btrfs_alloc_path();
4640 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4642 leaf = path->nodes[0];
4643 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4644 write_extent_buffer(leaf, data, ptr, data_size);
4645 btrfs_mark_buffer_dirty(leaf);
4647 btrfs_free_path(path);
4652 * delete the pointer from a given node.
4654 * the tree should have been previously balanced so the deletion does not
4657 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4658 int level, int slot)
4660 struct extent_buffer *parent = path->nodes[level];
4664 nritems = btrfs_header_nritems(parent);
4665 if (slot != nritems - 1) {
4667 tree_mod_log_eb_move(root->fs_info, parent, slot,
4668 slot + 1, nritems - slot - 1);
4669 memmove_extent_buffer(parent,
4670 btrfs_node_key_ptr_offset(slot),
4671 btrfs_node_key_ptr_offset(slot + 1),
4672 sizeof(struct btrfs_key_ptr) *
4673 (nritems - slot - 1));
4675 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4676 MOD_LOG_KEY_REMOVE);
4681 btrfs_set_header_nritems(parent, nritems);
4682 if (nritems == 0 && parent == root->node) {
4683 BUG_ON(btrfs_header_level(root->node) != 1);
4684 /* just turn the root into a leaf and break */
4685 btrfs_set_header_level(root->node, 0);
4686 } else if (slot == 0) {
4687 struct btrfs_disk_key disk_key;
4689 btrfs_node_key(parent, &disk_key, 0);
4690 fixup_low_keys(root, path, &disk_key, level + 1);
4692 btrfs_mark_buffer_dirty(parent);
4696 * a helper function to delete the leaf pointed to by path->slots[1] and
4699 * This deletes the pointer in path->nodes[1] and frees the leaf
4700 * block extent. zero is returned if it all worked out, < 0 otherwise.
4702 * The path must have already been setup for deleting the leaf, including
4703 * all the proper balancing. path->nodes[1] must be locked.
4705 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4706 struct btrfs_root *root,
4707 struct btrfs_path *path,
4708 struct extent_buffer *leaf)
4710 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4711 del_ptr(root, path, 1, path->slots[1]);
4714 * btrfs_free_extent is expensive, we want to make sure we
4715 * aren't holding any locks when we call it
4717 btrfs_unlock_up_safe(path, 0);
4719 root_sub_used(root, leaf->len);
4721 extent_buffer_get(leaf);
4722 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4723 free_extent_buffer_stale(leaf);
4726 * delete the item at the leaf level in path. If that empties
4727 * the leaf, remove it from the tree
4729 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4730 struct btrfs_path *path, int slot, int nr)
4732 struct extent_buffer *leaf;
4733 struct btrfs_item *item;
4740 struct btrfs_map_token token;
4742 btrfs_init_map_token(&token);
4744 leaf = path->nodes[0];
4745 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4747 for (i = 0; i < nr; i++)
4748 dsize += btrfs_item_size_nr(leaf, slot + i);
4750 nritems = btrfs_header_nritems(leaf);
4752 if (slot + nr != nritems) {
4753 int data_end = leaf_data_end(root, leaf);
4755 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4757 btrfs_leaf_data(leaf) + data_end,
4758 last_off - data_end);
4760 for (i = slot + nr; i < nritems; i++) {
4763 item = btrfs_item_nr(leaf, i);
4764 ioff = btrfs_token_item_offset(leaf, item, &token);
4765 btrfs_set_token_item_offset(leaf, item,
4766 ioff + dsize, &token);
4769 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4770 btrfs_item_nr_offset(slot + nr),
4771 sizeof(struct btrfs_item) *
4772 (nritems - slot - nr));
4774 btrfs_set_header_nritems(leaf, nritems - nr);
4777 /* delete the leaf if we've emptied it */
4779 if (leaf == root->node) {
4780 btrfs_set_header_level(leaf, 0);
4782 btrfs_set_path_blocking(path);
4783 clean_tree_block(trans, root, leaf);
4784 btrfs_del_leaf(trans, root, path, leaf);
4787 int used = leaf_space_used(leaf, 0, nritems);
4789 struct btrfs_disk_key disk_key;
4791 btrfs_item_key(leaf, &disk_key, 0);
4792 fixup_low_keys(root, path, &disk_key, 1);
4795 /* delete the leaf if it is mostly empty */
4796 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4797 /* push_leaf_left fixes the path.
4798 * make sure the path still points to our leaf
4799 * for possible call to del_ptr below
4801 slot = path->slots[1];
4802 extent_buffer_get(leaf);
4804 btrfs_set_path_blocking(path);
4805 wret = push_leaf_left(trans, root, path, 1, 1,
4807 if (wret < 0 && wret != -ENOSPC)
4810 if (path->nodes[0] == leaf &&
4811 btrfs_header_nritems(leaf)) {
4812 wret = push_leaf_right(trans, root, path, 1,
4814 if (wret < 0 && wret != -ENOSPC)
4818 if (btrfs_header_nritems(leaf) == 0) {
4819 path->slots[1] = slot;
4820 btrfs_del_leaf(trans, root, path, leaf);
4821 free_extent_buffer(leaf);
4824 /* if we're still in the path, make sure
4825 * we're dirty. Otherwise, one of the
4826 * push_leaf functions must have already
4827 * dirtied this buffer
4829 if (path->nodes[0] == leaf)
4830 btrfs_mark_buffer_dirty(leaf);
4831 free_extent_buffer(leaf);
4834 btrfs_mark_buffer_dirty(leaf);
4841 * search the tree again to find a leaf with lesser keys
4842 * returns 0 if it found something or 1 if there are no lesser leaves.
4843 * returns < 0 on io errors.
4845 * This may release the path, and so you may lose any locks held at the
4848 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4850 struct btrfs_key key;
4851 struct btrfs_disk_key found_key;
4854 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4858 else if (key.type > 0)
4860 else if (key.objectid > 0)
4865 btrfs_release_path(path);
4866 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4869 btrfs_item_key(path->nodes[0], &found_key, 0);
4870 ret = comp_keys(&found_key, &key);
4877 * A helper function to walk down the tree starting at min_key, and looking
4878 * for nodes or leaves that are have a minimum transaction id.
4879 * This is used by the btree defrag code, and tree logging
4881 * This does not cow, but it does stuff the starting key it finds back
4882 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4883 * key and get a writable path.
4885 * This does lock as it descends, and path->keep_locks should be set
4886 * to 1 by the caller.
4888 * This honors path->lowest_level to prevent descent past a given level
4891 * min_trans indicates the oldest transaction that you are interested
4892 * in walking through. Any nodes or leaves older than min_trans are
4893 * skipped over (without reading them).
4895 * returns zero if something useful was found, < 0 on error and 1 if there
4896 * was nothing in the tree that matched the search criteria.
4898 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4899 struct btrfs_key *max_key,
4900 struct btrfs_path *path,
4903 struct extent_buffer *cur;
4904 struct btrfs_key found_key;
4911 WARN_ON(!path->keep_locks);
4913 cur = btrfs_read_lock_root_node(root);
4914 level = btrfs_header_level(cur);
4915 WARN_ON(path->nodes[level]);
4916 path->nodes[level] = cur;
4917 path->locks[level] = BTRFS_READ_LOCK;
4919 if (btrfs_header_generation(cur) < min_trans) {
4924 nritems = btrfs_header_nritems(cur);
4925 level = btrfs_header_level(cur);
4926 sret = bin_search(cur, min_key, level, &slot);
4928 /* at the lowest level, we're done, setup the path and exit */
4929 if (level == path->lowest_level) {
4930 if (slot >= nritems)
4933 path->slots[level] = slot;
4934 btrfs_item_key_to_cpu(cur, &found_key, slot);
4937 if (sret && slot > 0)
4940 * check this node pointer against the min_trans parameters.
4941 * If it is too old, old, skip to the next one.
4943 while (slot < nritems) {
4947 blockptr = btrfs_node_blockptr(cur, slot);
4948 gen = btrfs_node_ptr_generation(cur, slot);
4949 if (gen < min_trans) {
4957 * we didn't find a candidate key in this node, walk forward
4958 * and find another one
4960 if (slot >= nritems) {
4961 path->slots[level] = slot;
4962 btrfs_set_path_blocking(path);
4963 sret = btrfs_find_next_key(root, path, min_key, level,
4966 btrfs_release_path(path);
4972 /* save our key for returning back */
4973 btrfs_node_key_to_cpu(cur, &found_key, slot);
4974 path->slots[level] = slot;
4975 if (level == path->lowest_level) {
4977 unlock_up(path, level, 1, 0, NULL);
4980 btrfs_set_path_blocking(path);
4981 cur = read_node_slot(root, cur, slot);
4982 BUG_ON(!cur); /* -ENOMEM */
4984 btrfs_tree_read_lock(cur);
4986 path->locks[level - 1] = BTRFS_READ_LOCK;
4987 path->nodes[level - 1] = cur;
4988 unlock_up(path, level, 1, 0, NULL);
4989 btrfs_clear_path_blocking(path, NULL, 0);
4993 memcpy(min_key, &found_key, sizeof(found_key));
4994 btrfs_set_path_blocking(path);
4998 static void tree_move_down(struct btrfs_root *root,
4999 struct btrfs_path *path,
5000 int *level, int root_level)
5002 BUG_ON(*level == 0);
5003 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5004 path->slots[*level]);
5005 path->slots[*level - 1] = 0;
5009 static int tree_move_next_or_upnext(struct btrfs_root *root,
5010 struct btrfs_path *path,
5011 int *level, int root_level)
5015 nritems = btrfs_header_nritems(path->nodes[*level]);
5017 path->slots[*level]++;
5019 while (path->slots[*level] >= nritems) {
5020 if (*level == root_level)
5024 path->slots[*level] = 0;
5025 free_extent_buffer(path->nodes[*level]);
5026 path->nodes[*level] = NULL;
5028 path->slots[*level]++;
5030 nritems = btrfs_header_nritems(path->nodes[*level]);
5037 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5040 static int tree_advance(struct btrfs_root *root,
5041 struct btrfs_path *path,
5042 int *level, int root_level,
5044 struct btrfs_key *key)
5048 if (*level == 0 || !allow_down) {
5049 ret = tree_move_next_or_upnext(root, path, level, root_level);
5051 tree_move_down(root, path, level, root_level);
5056 btrfs_item_key_to_cpu(path->nodes[*level], key,
5057 path->slots[*level]);
5059 btrfs_node_key_to_cpu(path->nodes[*level], key,
5060 path->slots[*level]);
5065 static int tree_compare_item(struct btrfs_root *left_root,
5066 struct btrfs_path *left_path,
5067 struct btrfs_path *right_path,
5072 unsigned long off1, off2;
5074 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5075 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5079 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5080 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5081 right_path->slots[0]);
5083 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5085 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5092 #define ADVANCE_ONLY_NEXT -1
5095 * This function compares two trees and calls the provided callback for
5096 * every changed/new/deleted item it finds.
5097 * If shared tree blocks are encountered, whole subtrees are skipped, making
5098 * the compare pretty fast on snapshotted subvolumes.
5100 * This currently works on commit roots only. As commit roots are read only,
5101 * we don't do any locking. The commit roots are protected with transactions.
5102 * Transactions are ended and rejoined when a commit is tried in between.
5104 * This function checks for modifications done to the trees while comparing.
5105 * If it detects a change, it aborts immediately.
5107 int btrfs_compare_trees(struct btrfs_root *left_root,
5108 struct btrfs_root *right_root,
5109 btrfs_changed_cb_t changed_cb, void *ctx)
5113 struct btrfs_trans_handle *trans = NULL;
5114 struct btrfs_path *left_path = NULL;
5115 struct btrfs_path *right_path = NULL;
5116 struct btrfs_key left_key;
5117 struct btrfs_key right_key;
5118 char *tmp_buf = NULL;
5119 int left_root_level;
5120 int right_root_level;
5123 int left_end_reached;
5124 int right_end_reached;
5129 u64 left_start_ctransid;
5130 u64 right_start_ctransid;
5133 left_path = btrfs_alloc_path();
5138 right_path = btrfs_alloc_path();
5144 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5150 left_path->search_commit_root = 1;
5151 left_path->skip_locking = 1;
5152 right_path->search_commit_root = 1;
5153 right_path->skip_locking = 1;
5155 spin_lock(&left_root->root_item_lock);
5156 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5157 spin_unlock(&left_root->root_item_lock);
5159 spin_lock(&right_root->root_item_lock);
5160 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5161 spin_unlock(&right_root->root_item_lock);
5163 trans = btrfs_join_transaction(left_root);
5164 if (IS_ERR(trans)) {
5165 ret = PTR_ERR(trans);
5171 * Strategy: Go to the first items of both trees. Then do
5173 * If both trees are at level 0
5174 * Compare keys of current items
5175 * If left < right treat left item as new, advance left tree
5177 * If left > right treat right item as deleted, advance right tree
5179 * If left == right do deep compare of items, treat as changed if
5180 * needed, advance both trees and repeat
5181 * If both trees are at the same level but not at level 0
5182 * Compare keys of current nodes/leafs
5183 * If left < right advance left tree and repeat
5184 * If left > right advance right tree and repeat
5185 * If left == right compare blockptrs of the next nodes/leafs
5186 * If they match advance both trees but stay at the same level
5188 * If they don't match advance both trees while allowing to go
5190 * If tree levels are different
5191 * Advance the tree that needs it and repeat
5193 * Advancing a tree means:
5194 * If we are at level 0, try to go to the next slot. If that's not
5195 * possible, go one level up and repeat. Stop when we found a level
5196 * where we could go to the next slot. We may at this point be on a
5199 * If we are not at level 0 and not on shared tree blocks, go one
5202 * If we are not at level 0 and on shared tree blocks, go one slot to
5203 * the right if possible or go up and right.
5206 left_level = btrfs_header_level(left_root->commit_root);
5207 left_root_level = left_level;
5208 left_path->nodes[left_level] = left_root->commit_root;
5209 extent_buffer_get(left_path->nodes[left_level]);
5211 right_level = btrfs_header_level(right_root->commit_root);
5212 right_root_level = right_level;
5213 right_path->nodes[right_level] = right_root->commit_root;
5214 extent_buffer_get(right_path->nodes[right_level]);
5216 if (left_level == 0)
5217 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5218 &left_key, left_path->slots[left_level]);
5220 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5221 &left_key, left_path->slots[left_level]);
5222 if (right_level == 0)
5223 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5224 &right_key, right_path->slots[right_level]);
5226 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5227 &right_key, right_path->slots[right_level]);
5229 left_end_reached = right_end_reached = 0;
5230 advance_left = advance_right = 0;
5234 * We need to make sure the transaction does not get committed
5235 * while we do anything on commit roots. This means, we need to
5236 * join and leave transactions for every item that we process.
5238 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5239 btrfs_release_path(left_path);
5240 btrfs_release_path(right_path);
5242 ret = btrfs_end_transaction(trans, left_root);
5247 /* now rejoin the transaction */
5249 trans = btrfs_join_transaction(left_root);
5250 if (IS_ERR(trans)) {
5251 ret = PTR_ERR(trans);
5256 spin_lock(&left_root->root_item_lock);
5257 ctransid = btrfs_root_ctransid(&left_root->root_item);
5258 spin_unlock(&left_root->root_item_lock);
5259 if (ctransid != left_start_ctransid)
5260 left_start_ctransid = 0;
5262 spin_lock(&right_root->root_item_lock);
5263 ctransid = btrfs_root_ctransid(&right_root->root_item);
5264 spin_unlock(&right_root->root_item_lock);
5265 if (ctransid != right_start_ctransid)
5266 right_start_ctransid = 0;
5268 if (!left_start_ctransid || !right_start_ctransid) {
5269 WARN(1, KERN_WARNING
5270 "btrfs: btrfs_compare_tree detected "
5271 "a change in one of the trees while "
5272 "iterating. This is probably a "
5279 * the commit root may have changed, so start again
5282 left_path->lowest_level = left_level;
5283 right_path->lowest_level = right_level;
5284 ret = btrfs_search_slot(NULL, left_root,
5285 &left_key, left_path, 0, 0);
5288 ret = btrfs_search_slot(NULL, right_root,
5289 &right_key, right_path, 0, 0);
5294 if (advance_left && !left_end_reached) {
5295 ret = tree_advance(left_root, left_path, &left_level,
5297 advance_left != ADVANCE_ONLY_NEXT,
5300 left_end_reached = ADVANCE;
5303 if (advance_right && !right_end_reached) {
5304 ret = tree_advance(right_root, right_path, &right_level,
5306 advance_right != ADVANCE_ONLY_NEXT,
5309 right_end_reached = ADVANCE;
5313 if (left_end_reached && right_end_reached) {
5316 } else if (left_end_reached) {
5317 if (right_level == 0) {
5318 ret = changed_cb(left_root, right_root,
5319 left_path, right_path,
5321 BTRFS_COMPARE_TREE_DELETED,
5326 advance_right = ADVANCE;
5328 } else if (right_end_reached) {
5329 if (left_level == 0) {
5330 ret = changed_cb(left_root, right_root,
5331 left_path, right_path,
5333 BTRFS_COMPARE_TREE_NEW,
5338 advance_left = ADVANCE;
5342 if (left_level == 0 && right_level == 0) {
5343 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5345 ret = changed_cb(left_root, right_root,
5346 left_path, right_path,
5348 BTRFS_COMPARE_TREE_NEW,
5352 advance_left = ADVANCE;
5353 } else if (cmp > 0) {
5354 ret = changed_cb(left_root, right_root,
5355 left_path, right_path,
5357 BTRFS_COMPARE_TREE_DELETED,
5361 advance_right = ADVANCE;
5363 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5364 ret = tree_compare_item(left_root, left_path,
5365 right_path, tmp_buf);
5367 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5368 ret = changed_cb(left_root, right_root,
5369 left_path, right_path,
5371 BTRFS_COMPARE_TREE_CHANGED,
5376 advance_left = ADVANCE;
5377 advance_right = ADVANCE;
5379 } else if (left_level == right_level) {
5380 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5382 advance_left = ADVANCE;
5383 } else if (cmp > 0) {
5384 advance_right = ADVANCE;
5386 left_blockptr = btrfs_node_blockptr(
5387 left_path->nodes[left_level],
5388 left_path->slots[left_level]);
5389 right_blockptr = btrfs_node_blockptr(
5390 right_path->nodes[right_level],
5391 right_path->slots[right_level]);
5392 if (left_blockptr == right_blockptr) {
5394 * As we're on a shared block, don't
5395 * allow to go deeper.
5397 advance_left = ADVANCE_ONLY_NEXT;
5398 advance_right = ADVANCE_ONLY_NEXT;
5400 advance_left = ADVANCE;
5401 advance_right = ADVANCE;
5404 } else if (left_level < right_level) {
5405 advance_right = ADVANCE;
5407 advance_left = ADVANCE;
5412 btrfs_free_path(left_path);
5413 btrfs_free_path(right_path);
5418 ret = btrfs_end_transaction(trans, left_root);
5420 btrfs_end_transaction(trans, left_root);
5427 * this is similar to btrfs_next_leaf, but does not try to preserve
5428 * and fixup the path. It looks for and returns the next key in the
5429 * tree based on the current path and the min_trans parameters.
5431 * 0 is returned if another key is found, < 0 if there are any errors
5432 * and 1 is returned if there are no higher keys in the tree
5434 * path->keep_locks should be set to 1 on the search made before
5435 * calling this function.
5437 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5438 struct btrfs_key *key, int level, u64 min_trans)
5441 struct extent_buffer *c;
5443 WARN_ON(!path->keep_locks);
5444 while (level < BTRFS_MAX_LEVEL) {
5445 if (!path->nodes[level])
5448 slot = path->slots[level] + 1;
5449 c = path->nodes[level];
5451 if (slot >= btrfs_header_nritems(c)) {
5454 struct btrfs_key cur_key;
5455 if (level + 1 >= BTRFS_MAX_LEVEL ||
5456 !path->nodes[level + 1])
5459 if (path->locks[level + 1]) {
5464 slot = btrfs_header_nritems(c) - 1;
5466 btrfs_item_key_to_cpu(c, &cur_key, slot);
5468 btrfs_node_key_to_cpu(c, &cur_key, slot);
5470 orig_lowest = path->lowest_level;
5471 btrfs_release_path(path);
5472 path->lowest_level = level;
5473 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5475 path->lowest_level = orig_lowest;
5479 c = path->nodes[level];
5480 slot = path->slots[level];
5487 btrfs_item_key_to_cpu(c, key, slot);
5489 u64 gen = btrfs_node_ptr_generation(c, slot);
5491 if (gen < min_trans) {
5495 btrfs_node_key_to_cpu(c, key, slot);
5503 * search the tree again to find a leaf with greater keys
5504 * returns 0 if it found something or 1 if there are no greater leaves.
5505 * returns < 0 on io errors.
5507 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5509 return btrfs_next_old_leaf(root, path, 0);
5512 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5517 struct extent_buffer *c;
5518 struct extent_buffer *next;
5519 struct btrfs_key key;
5522 int old_spinning = path->leave_spinning;
5523 int next_rw_lock = 0;
5525 nritems = btrfs_header_nritems(path->nodes[0]);
5529 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5534 btrfs_release_path(path);
5536 path->keep_locks = 1;
5537 path->leave_spinning = 1;
5540 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5542 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5543 path->keep_locks = 0;
5548 nritems = btrfs_header_nritems(path->nodes[0]);
5550 * by releasing the path above we dropped all our locks. A balance
5551 * could have added more items next to the key that used to be
5552 * at the very end of the block. So, check again here and
5553 * advance the path if there are now more items available.
5555 if (nritems > 0 && path->slots[0] < nritems - 1) {
5562 while (level < BTRFS_MAX_LEVEL) {
5563 if (!path->nodes[level]) {
5568 slot = path->slots[level] + 1;
5569 c = path->nodes[level];
5570 if (slot >= btrfs_header_nritems(c)) {
5572 if (level == BTRFS_MAX_LEVEL) {
5580 btrfs_tree_unlock_rw(next, next_rw_lock);
5581 free_extent_buffer(next);
5585 next_rw_lock = path->locks[level];
5586 ret = read_block_for_search(NULL, root, path, &next, level,
5592 btrfs_release_path(path);
5596 if (!path->skip_locking) {
5597 ret = btrfs_try_tree_read_lock(next);
5598 if (!ret && time_seq) {
5600 * If we don't get the lock, we may be racing
5601 * with push_leaf_left, holding that lock while
5602 * itself waiting for the leaf we've currently
5603 * locked. To solve this situation, we give up
5604 * on our lock and cycle.
5606 free_extent_buffer(next);
5607 btrfs_release_path(path);
5612 btrfs_set_path_blocking(path);
5613 btrfs_tree_read_lock(next);
5614 btrfs_clear_path_blocking(path, next,
5617 next_rw_lock = BTRFS_READ_LOCK;
5621 path->slots[level] = slot;
5624 c = path->nodes[level];
5625 if (path->locks[level])
5626 btrfs_tree_unlock_rw(c, path->locks[level]);
5628 free_extent_buffer(c);
5629 path->nodes[level] = next;
5630 path->slots[level] = 0;
5631 if (!path->skip_locking)
5632 path->locks[level] = next_rw_lock;
5636 ret = read_block_for_search(NULL, root, path, &next, level,
5642 btrfs_release_path(path);
5646 if (!path->skip_locking) {
5647 ret = btrfs_try_tree_read_lock(next);
5649 btrfs_set_path_blocking(path);
5650 btrfs_tree_read_lock(next);
5651 btrfs_clear_path_blocking(path, next,
5654 next_rw_lock = BTRFS_READ_LOCK;
5659 unlock_up(path, 0, 1, 0, NULL);
5660 path->leave_spinning = old_spinning;
5662 btrfs_set_path_blocking(path);
5668 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5669 * searching until it gets past min_objectid or finds an item of 'type'
5671 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5673 int btrfs_previous_item(struct btrfs_root *root,
5674 struct btrfs_path *path, u64 min_objectid,
5677 struct btrfs_key found_key;
5678 struct extent_buffer *leaf;
5683 if (path->slots[0] == 0) {
5684 btrfs_set_path_blocking(path);
5685 ret = btrfs_prev_leaf(root, path);
5691 leaf = path->nodes[0];
5692 nritems = btrfs_header_nritems(leaf);
5695 if (path->slots[0] == nritems)
5698 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5699 if (found_key.objectid < min_objectid)
5701 if (found_key.type == type)
5703 if (found_key.objectid == min_objectid &&
5704 found_key.type < type)