Btrfs: patch queue: fix corruption when splitting large items
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / ctree.c
1 #include <linux/module.h>
2 #include "ctree.h"
3 #include "disk-io.h"
4 #include "transaction.h"
5
6 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
7                       *root, struct btrfs_path *path, int level);
8 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
9                       *root, struct btrfs_key *ins_key,
10                       struct btrfs_path *path, int data_size);
11 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
12                           *root, struct buffer_head *dst, struct buffer_head
13                           *src);
14 static int balance_node_right(struct btrfs_trans_handle *trans, struct
15                               btrfs_root *root, struct buffer_head *dst_buf,
16                               struct buffer_head *src_buf);
17 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
18                    struct btrfs_path *path, int level, int slot);
19
20 inline void btrfs_init_path(struct btrfs_path *p)
21 {
22         memset(p, 0, sizeof(*p));
23 }
24
25 struct btrfs_path *btrfs_alloc_path(void)
26 {
27         struct btrfs_path *path;
28         path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
29         if (path)
30                 btrfs_init_path(path);
31         return path;
32 }
33
34 void btrfs_free_path(struct btrfs_path *p)
35 {
36         btrfs_release_path(NULL, p);
37         kmem_cache_free(btrfs_path_cachep, p);
38 }
39
40 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
41 {
42         int i;
43         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
44                 if (!p->nodes[i])
45                         break;
46                 btrfs_block_release(root, p->nodes[i]);
47         }
48         memset(p, 0, sizeof(*p));
49 }
50
51 static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
52                            *root, struct buffer_head *buf, struct buffer_head
53                            *parent, int parent_slot, struct buffer_head
54                            **cow_ret)
55 {
56         struct buffer_head *cow;
57         struct btrfs_node *cow_node;
58
59         if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
60                                     trans->transid) {
61                 *cow_ret = buf;
62                 return 0;
63         }
64         cow = btrfs_alloc_free_block(trans, root, buf->b_blocknr);
65         cow_node = btrfs_buffer_node(cow);
66         if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
67                 WARN_ON(1);
68         memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
69         btrfs_set_header_blocknr(&cow_node->header, bh_blocknr(cow));
70         btrfs_set_header_generation(&cow_node->header, trans->transid);
71         btrfs_set_header_owner(&cow_node->header, root->root_key.objectid);
72         btrfs_inc_ref(trans, root, buf);
73         if (buf == root->node) {
74                 root->node = cow;
75                 get_bh(cow);
76                 if (buf != root->commit_root) {
77                         btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
78                 }
79                 btrfs_block_release(root, buf);
80         } else {
81                 btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
82                                         bh_blocknr(cow));
83                 btrfs_mark_buffer_dirty(parent);
84                 btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
85         }
86         btrfs_block_release(root, buf);
87         mark_buffer_dirty(cow);
88         *cow_ret = cow;
89         return 0;
90 }
91
92 /*
93  * The leaf data grows from end-to-front in the node.
94  * this returns the address of the start of the last item,
95  * which is the stop of the leaf data stack
96  */
97 static inline unsigned int leaf_data_end(struct btrfs_root *root,
98                                          struct btrfs_leaf *leaf)
99 {
100         u32 nr = btrfs_header_nritems(&leaf->header);
101         if (nr == 0)
102                 return BTRFS_LEAF_DATA_SIZE(root);
103         return btrfs_item_offset(leaf->items + nr - 1);
104 }
105
106 /*
107  * compare two keys in a memcmp fashion
108  */
109 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
110 {
111         struct btrfs_key k1;
112
113         btrfs_disk_key_to_cpu(&k1, disk);
114
115         if (k1.objectid > k2->objectid)
116                 return 1;
117         if (k1.objectid < k2->objectid)
118                 return -1;
119         if (k1.flags > k2->flags)
120                 return 1;
121         if (k1.flags < k2->flags)
122                 return -1;
123         if (k1.offset > k2->offset)
124                 return 1;
125         if (k1.offset < k2->offset)
126                 return -1;
127         return 0;
128 }
129
130 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
131                       int level)
132 {
133         struct btrfs_node *parent = NULL;
134         struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
135         int parent_slot;
136         int slot;
137         struct btrfs_key cpukey;
138         u32 nritems = btrfs_header_nritems(&node->header);
139
140         if (path->nodes[level + 1])
141                 parent = btrfs_buffer_node(path->nodes[level + 1]);
142         parent_slot = path->slots[level + 1];
143         slot = path->slots[level];
144         BUG_ON(nritems == 0);
145         if (parent) {
146                 struct btrfs_disk_key *parent_key;
147                 parent_key = &parent->ptrs[parent_slot].key;
148                 BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
149                               sizeof(struct btrfs_disk_key)));
150                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
151                        btrfs_header_blocknr(&node->header));
152         }
153         BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
154         if (slot != 0) {
155                 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot - 1].key);
156                 BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) <= 0);
157         }
158         if (slot < nritems - 1) {
159                 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot + 1].key);
160                 BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) >= 0);
161         }
162         return 0;
163 }
164
165 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
166                       int level)
167 {
168         struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
169         struct btrfs_node *parent = NULL;
170         int parent_slot;
171         int slot = path->slots[0];
172         struct btrfs_key cpukey;
173
174         u32 nritems = btrfs_header_nritems(&leaf->header);
175
176         if (path->nodes[level + 1])
177                 parent = btrfs_buffer_node(path->nodes[level + 1]);
178         parent_slot = path->slots[level + 1];
179         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
180
181         if (nritems == 0)
182                 return 0;
183
184         if (parent) {
185                 struct btrfs_disk_key *parent_key;
186                 parent_key = &parent->ptrs[parent_slot].key;
187                 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
188                        sizeof(struct btrfs_disk_key)));
189                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
190                        btrfs_header_blocknr(&leaf->header));
191         }
192         if (slot != 0) {
193                 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot - 1].key);
194                 BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) <= 0);
195                 BUG_ON(btrfs_item_offset(leaf->items + slot - 1) !=
196                         btrfs_item_end(leaf->items + slot));
197         }
198         if (slot < nritems - 1) {
199                 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot + 1].key);
200                 BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) >= 0);
201                 BUG_ON(btrfs_item_offset(leaf->items + slot) !=
202                         btrfs_item_end(leaf->items + slot + 1));
203         }
204         BUG_ON(btrfs_item_offset(leaf->items) +
205                btrfs_item_size(leaf->items) != BTRFS_LEAF_DATA_SIZE(root));
206         return 0;
207 }
208
209 static int check_block(struct btrfs_root *root, struct btrfs_path *path,
210                         int level)
211 {
212         struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
213         if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
214                    sizeof(node->header.fsid)))
215                 BUG();
216         if (level == 0)
217                 return check_leaf(root, path, level);
218         return check_node(root, path, level);
219 }
220
221 /*
222  * search for key in the array p.  items p are item_size apart
223  * and there are 'max' items in p
224  * the slot in the array is returned via slot, and it points to
225  * the place where you would insert key if it is not found in
226  * the array.
227  *
228  * slot may point to max if the key is bigger than all of the keys
229  */
230 static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
231                        int max, int *slot)
232 {
233         int low = 0;
234         int high = max;
235         int mid;
236         int ret;
237         struct btrfs_disk_key *tmp;
238
239         while(low < high) {
240                 mid = (low + high) / 2;
241                 tmp = (struct btrfs_disk_key *)(p + mid * item_size);
242                 ret = comp_keys(tmp, key);
243
244                 if (ret < 0)
245                         low = mid + 1;
246                 else if (ret > 0)
247                         high = mid;
248                 else {
249                         *slot = mid;
250                         return 0;
251                 }
252         }
253         *slot = low;
254         return 1;
255 }
256
257 /*
258  * simple bin_search frontend that does the right thing for
259  * leaves vs nodes
260  */
261 static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
262 {
263         if (btrfs_is_leaf(c)) {
264                 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
265                 return generic_bin_search((void *)l->items,
266                                           sizeof(struct btrfs_item),
267                                           key, btrfs_header_nritems(&c->header),
268                                           slot);
269         } else {
270                 return generic_bin_search((void *)c->ptrs,
271                                           sizeof(struct btrfs_key_ptr),
272                                           key, btrfs_header_nritems(&c->header),
273                                           slot);
274         }
275         return -1;
276 }
277
278 static struct buffer_head *read_node_slot(struct btrfs_root *root,
279                                    struct buffer_head *parent_buf,
280                                    int slot)
281 {
282         struct btrfs_node *node = btrfs_buffer_node(parent_buf);
283         if (slot < 0)
284                 return NULL;
285         if (slot >= btrfs_header_nritems(&node->header))
286                 return NULL;
287         return read_tree_block(root, btrfs_node_blockptr(node, slot));
288 }
289
290 static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
291                          *root, struct btrfs_path *path, int level)
292 {
293         struct buffer_head *right_buf;
294         struct buffer_head *mid_buf;
295         struct buffer_head *left_buf;
296         struct buffer_head *parent_buf = NULL;
297         struct btrfs_node *right = NULL;
298         struct btrfs_node *mid;
299         struct btrfs_node *left = NULL;
300         struct btrfs_node *parent = NULL;
301         int ret = 0;
302         int wret;
303         int pslot;
304         int orig_slot = path->slots[level];
305         u64 orig_ptr;
306
307         if (level == 0)
308                 return 0;
309
310         mid_buf = path->nodes[level];
311         mid = btrfs_buffer_node(mid_buf);
312         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
313
314         if (level < BTRFS_MAX_LEVEL - 1)
315                 parent_buf = path->nodes[level + 1];
316         pslot = path->slots[level + 1];
317
318         /*
319          * deal with the case where there is only one pointer in the root
320          * by promoting the node below to a root
321          */
322         if (!parent_buf) {
323                 struct buffer_head *child;
324                 u64 blocknr = bh_blocknr(mid_buf);
325
326                 if (btrfs_header_nritems(&mid->header) != 1)
327                         return 0;
328
329                 /* promote the child to a root */
330                 child = read_node_slot(root, mid_buf, 0);
331                 BUG_ON(!child);
332                 root->node = child;
333                 path->nodes[level] = NULL;
334                 clean_tree_block(trans, root, mid_buf);
335                 wait_on_buffer(mid_buf);
336                 /* once for the path */
337                 btrfs_block_release(root, mid_buf);
338                 /* once for the root ptr */
339                 btrfs_block_release(root, mid_buf);
340                 return btrfs_free_extent(trans, root, blocknr, 1, 1);
341         }
342         parent = btrfs_buffer_node(parent_buf);
343
344         if (btrfs_header_nritems(&mid->header) >
345             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
346                 return 0;
347
348         left_buf = read_node_slot(root, parent_buf, pslot - 1);
349         right_buf = read_node_slot(root, parent_buf, pslot + 1);
350
351         /* first, try to make some room in the middle buffer */
352         if (left_buf) {
353                 btrfs_cow_block(trans, root, left_buf, parent_buf, pslot - 1,
354                                 &left_buf);
355                 left = btrfs_buffer_node(left_buf);
356                 orig_slot += btrfs_header_nritems(&left->header);
357                 wret = push_node_left(trans, root, left_buf, mid_buf);
358                 if (wret < 0)
359                         ret = wret;
360         }
361
362         /*
363          * then try to empty the right most buffer into the middle
364          */
365         if (right_buf) {
366                 btrfs_cow_block(trans, root, right_buf, parent_buf, pslot + 1,
367                                 &right_buf);
368                 right = btrfs_buffer_node(right_buf);
369                 wret = push_node_left(trans, root, mid_buf, right_buf);
370                 if (wret < 0)
371                         ret = wret;
372                 if (btrfs_header_nritems(&right->header) == 0) {
373                         u64 blocknr = bh_blocknr(right_buf);
374                         clean_tree_block(trans, root, right_buf);
375                         wait_on_buffer(right_buf);
376                         btrfs_block_release(root, right_buf);
377                         right_buf = NULL;
378                         right = NULL;
379                         wret = del_ptr(trans, root, path, level + 1, pslot +
380                                        1);
381                         if (wret)
382                                 ret = wret;
383                         wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
384                         if (wret)
385                                 ret = wret;
386                 } else {
387                         btrfs_memcpy(root, parent,
388                                      &parent->ptrs[pslot + 1].key,
389                                      &right->ptrs[0].key,
390                                      sizeof(struct btrfs_disk_key));
391                         btrfs_mark_buffer_dirty(parent_buf);
392                 }
393         }
394         if (btrfs_header_nritems(&mid->header) == 1) {
395                 /*
396                  * we're not allowed to leave a node with one item in the
397                  * tree during a delete.  A deletion from lower in the tree
398                  * could try to delete the only pointer in this node.
399                  * So, pull some keys from the left.
400                  * There has to be a left pointer at this point because
401                  * otherwise we would have pulled some pointers from the
402                  * right
403                  */
404                 BUG_ON(!left_buf);
405                 wret = balance_node_right(trans, root, mid_buf, left_buf);
406                 if (wret < 0)
407                         ret = wret;
408                 BUG_ON(wret == 1);
409         }
410         if (btrfs_header_nritems(&mid->header) == 0) {
411                 /* we've managed to empty the middle node, drop it */
412                 u64 blocknr = bh_blocknr(mid_buf);
413                 clean_tree_block(trans, root, mid_buf);
414                 wait_on_buffer(mid_buf);
415                 btrfs_block_release(root, mid_buf);
416                 mid_buf = NULL;
417                 mid = NULL;
418                 wret = del_ptr(trans, root, path, level + 1, pslot);
419                 if (wret)
420                         ret = wret;
421                 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
422                 if (wret)
423                         ret = wret;
424         } else {
425                 /* update the parent key to reflect our changes */
426                 btrfs_memcpy(root, parent,
427                              &parent->ptrs[pslot].key, &mid->ptrs[0].key,
428                              sizeof(struct btrfs_disk_key));
429                 btrfs_mark_buffer_dirty(parent_buf);
430         }
431
432         /* update the path */
433         if (left_buf) {
434                 if (btrfs_header_nritems(&left->header) > orig_slot) {
435                         get_bh(left_buf);
436                         path->nodes[level] = left_buf;
437                         path->slots[level + 1] -= 1;
438                         path->slots[level] = orig_slot;
439                         if (mid_buf)
440                                 btrfs_block_release(root, mid_buf);
441                 } else {
442                         orig_slot -= btrfs_header_nritems(&left->header);
443                         path->slots[level] = orig_slot;
444                 }
445         }
446         /* double check we haven't messed things up */
447         check_block(root, path, level);
448         if (orig_ptr !=
449             btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
450                                 path->slots[level]))
451                 BUG();
452
453         if (right_buf)
454                 btrfs_block_release(root, right_buf);
455         if (left_buf)
456                 btrfs_block_release(root, left_buf);
457         return ret;
458 }
459
460 /* returns zero if the push worked, non-zero otherwise */
461 static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
462                                 struct btrfs_root *root,
463                                 struct btrfs_path *path, int level)
464 {
465         struct buffer_head *right_buf;
466         struct buffer_head *mid_buf;
467         struct buffer_head *left_buf;
468         struct buffer_head *parent_buf = NULL;
469         struct btrfs_node *right = NULL;
470         struct btrfs_node *mid;
471         struct btrfs_node *left = NULL;
472         struct btrfs_node *parent = NULL;
473         int ret = 0;
474         int wret;
475         int pslot;
476         int orig_slot = path->slots[level];
477         u64 orig_ptr;
478
479         if (level == 0)
480                 return 1;
481
482         mid_buf = path->nodes[level];
483         mid = btrfs_buffer_node(mid_buf);
484         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
485
486         if (level < BTRFS_MAX_LEVEL - 1)
487                 parent_buf = path->nodes[level + 1];
488         pslot = path->slots[level + 1];
489
490         if (!parent_buf)
491                 return 1;
492         parent = btrfs_buffer_node(parent_buf);
493
494         left_buf = read_node_slot(root, parent_buf, pslot - 1);
495
496         /* first, try to make some room in the middle buffer */
497         if (left_buf) {
498                 u32 left_nr;
499                 left = btrfs_buffer_node(left_buf);
500                 left_nr = btrfs_header_nritems(&left->header);
501                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
502                         wret = 1;
503                 } else {
504                         btrfs_cow_block(trans, root, left_buf, parent_buf,
505                                         pslot - 1, &left_buf);
506                         left = btrfs_buffer_node(left_buf);
507                         wret = push_node_left(trans, root, left_buf, mid_buf);
508                 }
509                 if (wret < 0)
510                         ret = wret;
511                 if (wret == 0) {
512                         orig_slot += left_nr;
513                         btrfs_memcpy(root, parent,
514                                      &parent->ptrs[pslot].key,
515                                      &mid->ptrs[0].key,
516                                      sizeof(struct btrfs_disk_key));
517                         btrfs_mark_buffer_dirty(parent_buf);
518                         if (btrfs_header_nritems(&left->header) > orig_slot) {
519                                 path->nodes[level] = left_buf;
520                                 path->slots[level + 1] -= 1;
521                                 path->slots[level] = orig_slot;
522                                 btrfs_block_release(root, mid_buf);
523                         } else {
524                                 orig_slot -=
525                                         btrfs_header_nritems(&left->header);
526                                 path->slots[level] = orig_slot;
527                                 btrfs_block_release(root, left_buf);
528                         }
529                         check_node(root, path, level);
530                         return 0;
531                 }
532                 btrfs_block_release(root, left_buf);
533         }
534         right_buf = read_node_slot(root, parent_buf, pslot + 1);
535
536         /*
537          * then try to empty the right most buffer into the middle
538          */
539         if (right_buf) {
540                 u32 right_nr;
541                 right = btrfs_buffer_node(right_buf);
542                 right_nr = btrfs_header_nritems(&right->header);
543                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
544                         wret = 1;
545                 } else {
546                         btrfs_cow_block(trans, root, right_buf,
547                                         parent_buf, pslot + 1, &right_buf);
548                         right = btrfs_buffer_node(right_buf);
549                         wret = balance_node_right(trans, root,
550                                                   right_buf, mid_buf);
551                 }
552                 if (wret < 0)
553                         ret = wret;
554                 if (wret == 0) {
555                         btrfs_memcpy(root, parent,
556                                      &parent->ptrs[pslot + 1].key,
557                                      &right->ptrs[0].key,
558                                      sizeof(struct btrfs_disk_key));
559                         btrfs_mark_buffer_dirty(parent_buf);
560                         if (btrfs_header_nritems(&mid->header) <= orig_slot) {
561                                 path->nodes[level] = right_buf;
562                                 path->slots[level + 1] += 1;
563                                 path->slots[level] = orig_slot -
564                                         btrfs_header_nritems(&mid->header);
565                                 btrfs_block_release(root, mid_buf);
566                         } else {
567                                 btrfs_block_release(root, right_buf);
568                         }
569                         check_node(root, path, level);
570                         return 0;
571                 }
572                 btrfs_block_release(root, right_buf);
573         }
574         check_node(root, path, level);
575         return 1;
576 }
577
578 /*
579  * look for key in the tree.  path is filled in with nodes along the way
580  * if key is found, we return zero and you can find the item in the leaf
581  * level of the path (level 0)
582  *
583  * If the key isn't found, the path points to the slot where it should
584  * be inserted, and 1 is returned.  If there are other errors during the
585  * search a negative error number is returned.
586  *
587  * if ins_len > 0, nodes and leaves will be split as we walk down the
588  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
589  * possible)
590  */
591 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
592                       *root, struct btrfs_key *key, struct btrfs_path *p, int
593                       ins_len, int cow)
594 {
595         struct buffer_head *b;
596         struct buffer_head *cow_buf;
597         struct btrfs_node *c;
598         int slot;
599         int ret;
600         int level;
601
602         WARN_ON(p->nodes[0] != NULL);
603         WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
604 again:
605         b = root->node;
606         get_bh(b);
607         while (b) {
608                 c = btrfs_buffer_node(b);
609                 level = btrfs_header_level(&c->header);
610                 if (cow) {
611                         int wret;
612                         wret = btrfs_cow_block(trans, root, b,
613                                                p->nodes[level + 1],
614                                                p->slots[level + 1],
615                                                &cow_buf);
616                         b = cow_buf;
617                         c = btrfs_buffer_node(b);
618                 }
619                 BUG_ON(!cow && ins_len);
620                 if (level != btrfs_header_level(&c->header))
621                         WARN_ON(1);
622                 level = btrfs_header_level(&c->header);
623                 p->nodes[level] = b;
624                 ret = check_block(root, p, level);
625                 if (ret)
626                         return -1;
627                 ret = bin_search(c, key, &slot);
628                 if (!btrfs_is_leaf(c)) {
629                         if (ret && slot > 0)
630                                 slot -= 1;
631                         p->slots[level] = slot;
632                         if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
633                             BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
634                                 int sret = split_node(trans, root, p, level);
635                                 BUG_ON(sret > 0);
636                                 if (sret)
637                                         return sret;
638                                 b = p->nodes[level];
639                                 c = btrfs_buffer_node(b);
640                                 slot = p->slots[level];
641                         } else if (ins_len < 0) {
642                                 int sret = balance_level(trans, root, p,
643                                                          level);
644                                 if (sret)
645                                         return sret;
646                                 b = p->nodes[level];
647                                 if (!b)
648                                         goto again;
649                                 c = btrfs_buffer_node(b);
650                                 slot = p->slots[level];
651                                 BUG_ON(btrfs_header_nritems(&c->header) == 1);
652                         }
653                         b = read_tree_block(root, btrfs_node_blockptr(c, slot));
654                 } else {
655                         struct btrfs_leaf *l = (struct btrfs_leaf *)c;
656                         p->slots[level] = slot;
657                         if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
658                             sizeof(struct btrfs_item) + ins_len) {
659                                 int sret = split_leaf(trans, root, key,
660                                                       p, ins_len);
661                                 BUG_ON(sret > 0);
662                                 if (sret)
663                                         return sret;
664                         }
665                         return ret;
666                 }
667         }
668         return 1;
669 }
670
671 /*
672  * adjust the pointers going up the tree, starting at level
673  * making sure the right key of each node is points to 'key'.
674  * This is used after shifting pointers to the left, so it stops
675  * fixing up pointers when a given leaf/node is not in slot 0 of the
676  * higher levels
677  *
678  * If this fails to write a tree block, it returns -1, but continues
679  * fixing up the blocks in ram so the tree is consistent.
680  */
681 static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
682                           *root, struct btrfs_path *path, struct btrfs_disk_key
683                           *key, int level)
684 {
685         int i;
686         int ret = 0;
687         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
688                 struct btrfs_node *t;
689                 int tslot = path->slots[i];
690                 if (!path->nodes[i])
691                         break;
692                 t = btrfs_buffer_node(path->nodes[i]);
693                 btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
694                 btrfs_mark_buffer_dirty(path->nodes[i]);
695                 if (tslot != 0)
696                         break;
697         }
698         return ret;
699 }
700
701 /*
702  * try to push data from one node into the next node left in the
703  * tree.
704  *
705  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
706  * error, and > 0 if there was no room in the left hand block.
707  */
708 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
709                           *root, struct buffer_head *dst_buf, struct
710                           buffer_head *src_buf)
711 {
712         struct btrfs_node *src = btrfs_buffer_node(src_buf);
713         struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
714         int push_items = 0;
715         int src_nritems;
716         int dst_nritems;
717         int ret = 0;
718
719         src_nritems = btrfs_header_nritems(&src->header);
720         dst_nritems = btrfs_header_nritems(&dst->header);
721         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
722         if (push_items <= 0) {
723                 return 1;
724         }
725
726         if (src_nritems < push_items)
727                 push_items = src_nritems;
728
729         btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
730                      push_items * sizeof(struct btrfs_key_ptr));
731         if (push_items < src_nritems) {
732                 btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
733                         (src_nritems - push_items) *
734                         sizeof(struct btrfs_key_ptr));
735         }
736         btrfs_set_header_nritems(&src->header, src_nritems - push_items);
737         btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
738         btrfs_mark_buffer_dirty(src_buf);
739         btrfs_mark_buffer_dirty(dst_buf);
740         return ret;
741 }
742
743 /*
744  * try to push data from one node into the next node right in the
745  * tree.
746  *
747  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
748  * error, and > 0 if there was no room in the right hand block.
749  *
750  * this will  only push up to 1/2 the contents of the left node over
751  */
752 static int balance_node_right(struct btrfs_trans_handle *trans, struct
753                               btrfs_root *root, struct buffer_head *dst_buf,
754                               struct buffer_head *src_buf)
755 {
756         struct btrfs_node *src = btrfs_buffer_node(src_buf);
757         struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
758         int push_items = 0;
759         int max_push;
760         int src_nritems;
761         int dst_nritems;
762         int ret = 0;
763
764         src_nritems = btrfs_header_nritems(&src->header);
765         dst_nritems = btrfs_header_nritems(&dst->header);
766         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
767         if (push_items <= 0) {
768                 return 1;
769         }
770
771         max_push = src_nritems / 2 + 1;
772         /* don't try to empty the node */
773         if (max_push > src_nritems)
774                 return 1;
775         if (max_push < push_items)
776                 push_items = max_push;
777
778         btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
779                       dst_nritems * sizeof(struct btrfs_key_ptr));
780
781         btrfs_memcpy(root, dst, dst->ptrs,
782                      src->ptrs + src_nritems - push_items,
783                      push_items * sizeof(struct btrfs_key_ptr));
784
785         btrfs_set_header_nritems(&src->header, src_nritems - push_items);
786         btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
787
788         btrfs_mark_buffer_dirty(src_buf);
789         btrfs_mark_buffer_dirty(dst_buf);
790         return ret;
791 }
792
793 /*
794  * helper function to insert a new root level in the tree.
795  * A new node is allocated, and a single item is inserted to
796  * point to the existing root
797  *
798  * returns zero on success or < 0 on failure.
799  */
800 static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
801                            *root, struct btrfs_path *path, int level)
802 {
803         struct buffer_head *t;
804         struct btrfs_node *lower;
805         struct btrfs_node *c;
806         struct btrfs_disk_key *lower_key;
807
808         BUG_ON(path->nodes[level]);
809         BUG_ON(path->nodes[level-1] != root->node);
810
811         t = btrfs_alloc_free_block(trans, root, root->node->b_blocknr);
812         c = btrfs_buffer_node(t);
813         memset(c, 0, root->blocksize);
814         btrfs_set_header_nritems(&c->header, 1);
815         btrfs_set_header_level(&c->header, level);
816         btrfs_set_header_blocknr(&c->header, bh_blocknr(t));
817         btrfs_set_header_generation(&c->header, trans->transid);
818         btrfs_set_header_owner(&c->header, root->root_key.objectid);
819         lower = btrfs_buffer_node(path->nodes[level-1]);
820         memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
821                sizeof(c->header.fsid));
822         if (btrfs_is_leaf(lower))
823                 lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
824         else
825                 lower_key = &lower->ptrs[0].key;
826         btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
827                      sizeof(struct btrfs_disk_key));
828         btrfs_set_node_blockptr(c, 0, bh_blocknr(path->nodes[level - 1]));
829
830         btrfs_mark_buffer_dirty(t);
831
832         /* the super has an extra ref to root->node */
833         btrfs_block_release(root, root->node);
834         root->node = t;
835         get_bh(t);
836         path->nodes[level] = t;
837         path->slots[level] = 0;
838         return 0;
839 }
840
841 /*
842  * worker function to insert a single pointer in a node.
843  * the node should have enough room for the pointer already
844  *
845  * slot and level indicate where you want the key to go, and
846  * blocknr is the block the key points to.
847  *
848  * returns zero on success and < 0 on any error
849  */
850 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
851                       *root, struct btrfs_path *path, struct btrfs_disk_key
852                       *key, u64 blocknr, int slot, int level)
853 {
854         struct btrfs_node *lower;
855         int nritems;
856
857         BUG_ON(!path->nodes[level]);
858         lower = btrfs_buffer_node(path->nodes[level]);
859         nritems = btrfs_header_nritems(&lower->header);
860         if (slot > nritems)
861                 BUG();
862         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
863                 BUG();
864         if (slot != nritems) {
865                 btrfs_memmove(root, lower, lower->ptrs + slot + 1,
866                               lower->ptrs + slot,
867                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
868         }
869         btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
870                      key, sizeof(struct btrfs_disk_key));
871         btrfs_set_node_blockptr(lower, slot, blocknr);
872         btrfs_set_header_nritems(&lower->header, nritems + 1);
873         btrfs_mark_buffer_dirty(path->nodes[level]);
874         check_node(root, path, level);
875         return 0;
876 }
877
878 /*
879  * split the node at the specified level in path in two.
880  * The path is corrected to point to the appropriate node after the split
881  *
882  * Before splitting this tries to make some room in the node by pushing
883  * left and right, if either one works, it returns right away.
884  *
885  * returns 0 on success and < 0 on failure
886  */
887 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
888                       *root, struct btrfs_path *path, int level)
889 {
890         struct buffer_head *t;
891         struct btrfs_node *c;
892         struct buffer_head *split_buffer;
893         struct btrfs_node *split;
894         int mid;
895         int ret;
896         int wret;
897         u32 c_nritems;
898
899         t = path->nodes[level];
900         c = btrfs_buffer_node(t);
901         if (t == root->node) {
902                 /* trying to split the root, lets make a new one */
903                 ret = insert_new_root(trans, root, path, level + 1);
904                 if (ret)
905                         return ret;
906         } else {
907                 ret = push_nodes_for_insert(trans, root, path, level);
908                 t = path->nodes[level];
909                 c = btrfs_buffer_node(t);
910                 if (!ret &&
911                     btrfs_header_nritems(&c->header) <
912                     BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
913                         return 0;
914         }
915
916         c_nritems = btrfs_header_nritems(&c->header);
917         split_buffer = btrfs_alloc_free_block(trans, root, t->b_blocknr);
918         split = btrfs_buffer_node(split_buffer);
919         btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
920         btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
921         btrfs_set_header_blocknr(&split->header, bh_blocknr(split_buffer));
922         btrfs_set_header_generation(&split->header, trans->transid);
923         btrfs_set_header_owner(&split->header, root->root_key.objectid);
924         memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
925                sizeof(split->header.fsid));
926         mid = (c_nritems + 1) / 2;
927         btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
928                      (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
929         btrfs_set_header_nritems(&split->header, c_nritems - mid);
930         btrfs_set_header_nritems(&c->header, mid);
931         ret = 0;
932
933         btrfs_mark_buffer_dirty(t);
934         btrfs_mark_buffer_dirty(split_buffer);
935         wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
936                           bh_blocknr(split_buffer), path->slots[level + 1] + 1,
937                           level + 1);
938         if (wret)
939                 ret = wret;
940
941         if (path->slots[level] >= mid) {
942                 path->slots[level] -= mid;
943                 btrfs_block_release(root, t);
944                 path->nodes[level] = split_buffer;
945                 path->slots[level + 1] += 1;
946         } else {
947                 btrfs_block_release(root, split_buffer);
948         }
949         return ret;
950 }
951
952 /*
953  * how many bytes are required to store the items in a leaf.  start
954  * and nr indicate which items in the leaf to check.  This totals up the
955  * space used both by the item structs and the item data
956  */
957 static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
958 {
959         int data_len;
960         int nritems = btrfs_header_nritems(&l->header);
961         int end = min(nritems, start + nr) - 1;
962
963         if (!nr)
964                 return 0;
965         data_len = btrfs_item_end(l->items + start);
966         data_len = data_len - btrfs_item_offset(l->items + end);
967         data_len += sizeof(struct btrfs_item) * nr;
968         WARN_ON(data_len < 0);
969         return data_len;
970 }
971
972 /*
973  * The space between the end of the leaf items and
974  * the start of the leaf data.  IOW, how much room
975  * the leaf has left for both items and data
976  */
977 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
978 {
979         int nritems = btrfs_header_nritems(&leaf->header);
980         return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
981 }
982
983 /*
984  * push some data in the path leaf to the right, trying to free up at
985  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
986  *
987  * returns 1 if the push failed because the other node didn't have enough
988  * room, 0 if everything worked out and < 0 if there were major errors.
989  */
990 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
991                            *root, struct btrfs_path *path, int data_size)
992 {
993         struct buffer_head *left_buf = path->nodes[0];
994         struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
995         struct btrfs_leaf *right;
996         struct buffer_head *right_buf;
997         struct buffer_head *upper;
998         struct btrfs_node *upper_node;
999         int slot;
1000         int i;
1001         int free_space;
1002         int push_space = 0;
1003         int push_items = 0;
1004         struct btrfs_item *item;
1005         u32 left_nritems;
1006         u32 right_nritems;
1007
1008         slot = path->slots[1];
1009         if (!path->nodes[1]) {
1010                 return 1;
1011         }
1012         upper = path->nodes[1];
1013         upper_node = btrfs_buffer_node(upper);
1014         if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
1015                 return 1;
1016         }
1017         right_buf = read_tree_block(root,
1018                     btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
1019         right = btrfs_buffer_leaf(right_buf);
1020         free_space = btrfs_leaf_free_space(root, right);
1021         if (free_space < data_size + sizeof(struct btrfs_item)) {
1022                 btrfs_block_release(root, right_buf);
1023                 return 1;
1024         }
1025         /* cow and double check */
1026         btrfs_cow_block(trans, root, right_buf, upper, slot + 1, &right_buf);
1027         right = btrfs_buffer_leaf(right_buf);
1028         free_space = btrfs_leaf_free_space(root, right);
1029         if (free_space < data_size + sizeof(struct btrfs_item)) {
1030                 btrfs_block_release(root, right_buf);
1031                 return 1;
1032         }
1033
1034         left_nritems = btrfs_header_nritems(&left->header);
1035         if (left_nritems == 0) {
1036                 btrfs_block_release(root, right_buf);
1037                 return 1;
1038         }
1039         for (i = left_nritems - 1; i >= 1; i--) {
1040                 item = left->items + i;
1041                 if (path->slots[0] == i)
1042                         push_space += data_size + sizeof(*item);
1043                 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1044                     free_space)
1045                         break;
1046                 push_items++;
1047                 push_space += btrfs_item_size(item) + sizeof(*item);
1048         }
1049         if (push_items == 0) {
1050                 btrfs_block_release(root, right_buf);
1051                 return 1;
1052         }
1053         if (push_items == left_nritems)
1054                 WARN_ON(1);
1055         right_nritems = btrfs_header_nritems(&right->header);
1056         /* push left to right */
1057         push_space = btrfs_item_end(left->items + left_nritems - push_items);
1058         push_space -= leaf_data_end(root, left);
1059         /* make room in the right data area */
1060         btrfs_memmove(root, right, btrfs_leaf_data(right) +
1061                       leaf_data_end(root, right) - push_space,
1062                       btrfs_leaf_data(right) +
1063                       leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
1064                       leaf_data_end(root, right));
1065         /* copy from the left data area */
1066         btrfs_memcpy(root, right, btrfs_leaf_data(right) +
1067                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
1068                      btrfs_leaf_data(left) + leaf_data_end(root, left),
1069                      push_space);
1070         btrfs_memmove(root, right, right->items + push_items, right->items,
1071                 right_nritems * sizeof(struct btrfs_item));
1072         /* copy the items from left to right */
1073         btrfs_memcpy(root, right, right->items, left->items +
1074                      left_nritems - push_items,
1075                      push_items * sizeof(struct btrfs_item));
1076
1077         /* update the item pointers */
1078         right_nritems += push_items;
1079         btrfs_set_header_nritems(&right->header, right_nritems);
1080         push_space = BTRFS_LEAF_DATA_SIZE(root);
1081         for (i = 0; i < right_nritems; i++) {
1082                 btrfs_set_item_offset(right->items + i, push_space -
1083                                       btrfs_item_size(right->items + i));
1084                 push_space = btrfs_item_offset(right->items + i);
1085         }
1086         left_nritems -= push_items;
1087         btrfs_set_header_nritems(&left->header, left_nritems);
1088
1089         btrfs_mark_buffer_dirty(left_buf);
1090         btrfs_mark_buffer_dirty(right_buf);
1091
1092         btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
1093                 &right->items[0].key, sizeof(struct btrfs_disk_key));
1094         btrfs_mark_buffer_dirty(upper);
1095
1096         /* then fixup the leaf pointer in the path */
1097         if (path->slots[0] >= left_nritems) {
1098                 path->slots[0] -= left_nritems;
1099                 btrfs_block_release(root, path->nodes[0]);
1100                 path->nodes[0] = right_buf;
1101                 path->slots[1] += 1;
1102         } else {
1103                 btrfs_block_release(root, right_buf);
1104         }
1105         if (path->nodes[1])
1106                 check_node(root, path, 1);
1107         return 0;
1108 }
1109 /*
1110  * push some data in the path leaf to the left, trying to free up at
1111  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
1112  */
1113 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
1114                           *root, struct btrfs_path *path, int data_size)
1115 {
1116         struct buffer_head *right_buf = path->nodes[0];
1117         struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
1118         struct buffer_head *t;
1119         struct btrfs_leaf *left;
1120         int slot;
1121         int i;
1122         int free_space;
1123         int push_space = 0;
1124         int push_items = 0;
1125         struct btrfs_item *item;
1126         u32 old_left_nritems;
1127         int ret = 0;
1128         int wret;
1129
1130         slot = path->slots[1];
1131         if (slot == 0) {
1132                 return 1;
1133         }
1134         if (!path->nodes[1]) {
1135                 return 1;
1136         }
1137         t = read_tree_block(root,
1138             btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
1139         left = btrfs_buffer_leaf(t);
1140         free_space = btrfs_leaf_free_space(root, left);
1141         if (free_space < data_size + sizeof(struct btrfs_item)) {
1142                 btrfs_block_release(root, t);
1143                 return 1;
1144         }
1145
1146         /* cow and double check */
1147         btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
1148         left = btrfs_buffer_leaf(t);
1149         free_space = btrfs_leaf_free_space(root, left);
1150         if (free_space < data_size + sizeof(struct btrfs_item)) {
1151                 btrfs_block_release(root, t);
1152                 return 1;
1153         }
1154
1155         if (btrfs_header_nritems(&right->header) == 0) {
1156                 btrfs_block_release(root, t);
1157                 return 1;
1158         }
1159
1160         for (i = 0; i < btrfs_header_nritems(&right->header) - 1; i++) {
1161                 item = right->items + i;
1162                 if (path->slots[0] == i)
1163                         push_space += data_size + sizeof(*item);
1164                 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1165                     free_space)
1166                         break;
1167                 push_items++;
1168                 push_space += btrfs_item_size(item) + sizeof(*item);
1169         }
1170         if (push_items == 0) {
1171                 btrfs_block_release(root, t);
1172                 return 1;
1173         }
1174         if (push_items == btrfs_header_nritems(&right->header))
1175                 WARN_ON(1);
1176         /* push data from right to left */
1177         btrfs_memcpy(root, left, left->items +
1178                      btrfs_header_nritems(&left->header),
1179                      right->items, push_items * sizeof(struct btrfs_item));
1180         push_space = BTRFS_LEAF_DATA_SIZE(root) -
1181                      btrfs_item_offset(right->items + push_items -1);
1182         btrfs_memcpy(root, left, btrfs_leaf_data(left) +
1183                      leaf_data_end(root, left) - push_space,
1184                      btrfs_leaf_data(right) +
1185                      btrfs_item_offset(right->items + push_items - 1),
1186                      push_space);
1187         old_left_nritems = btrfs_header_nritems(&left->header);
1188         BUG_ON(old_left_nritems < 0);
1189
1190         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
1191                 u32 ioff = btrfs_item_offset(left->items + i);
1192                 btrfs_set_item_offset(left->items + i, ioff -
1193                                      (BTRFS_LEAF_DATA_SIZE(root) -
1194                                       btrfs_item_offset(left->items +
1195                                                         old_left_nritems - 1)));
1196         }
1197         btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
1198
1199         /* fixup right node */
1200         push_space = btrfs_item_offset(right->items + push_items - 1) -
1201                      leaf_data_end(root, right);
1202         btrfs_memmove(root, right, btrfs_leaf_data(right) +
1203                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
1204                       btrfs_leaf_data(right) +
1205                       leaf_data_end(root, right), push_space);
1206         btrfs_memmove(root, right, right->items, right->items + push_items,
1207                 (btrfs_header_nritems(&right->header) - push_items) *
1208                 sizeof(struct btrfs_item));
1209         btrfs_set_header_nritems(&right->header,
1210                                  btrfs_header_nritems(&right->header) -
1211                                  push_items);
1212         push_space = BTRFS_LEAF_DATA_SIZE(root);
1213
1214         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1215                 btrfs_set_item_offset(right->items + i, push_space -
1216                                       btrfs_item_size(right->items + i));
1217                 push_space = btrfs_item_offset(right->items + i);
1218         }
1219
1220         btrfs_mark_buffer_dirty(t);
1221         btrfs_mark_buffer_dirty(right_buf);
1222
1223         wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
1224         if (wret)
1225                 ret = wret;
1226
1227         /* then fixup the leaf pointer in the path */
1228         if (path->slots[0] < push_items) {
1229                 path->slots[0] += old_left_nritems;
1230                 btrfs_block_release(root, path->nodes[0]);
1231                 path->nodes[0] = t;
1232                 path->slots[1] -= 1;
1233         } else {
1234                 btrfs_block_release(root, t);
1235                 path->slots[0] -= push_items;
1236         }
1237         BUG_ON(path->slots[0] < 0);
1238         if (path->nodes[1])
1239                 check_node(root, path, 1);
1240         return ret;
1241 }
1242
1243 /*
1244  * split the path's leaf in two, making sure there is at least data_size
1245  * available for the resulting leaf level of the path.
1246  *
1247  * returns 0 if all went well and < 0 on failure.
1248  */
1249 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
1250                       *root, struct btrfs_key *ins_key,
1251                       struct btrfs_path *path, int data_size)
1252 {
1253         struct buffer_head *l_buf;
1254         struct btrfs_leaf *l;
1255         u32 nritems;
1256         int mid;
1257         int slot;
1258         struct btrfs_leaf *right;
1259         struct buffer_head *right_buffer;
1260         int space_needed = data_size + sizeof(struct btrfs_item);
1261         int data_copy_size;
1262         int rt_data_off;
1263         int i;
1264         int ret = 0;
1265         int wret;
1266         int double_split = 0;
1267         struct btrfs_disk_key disk_key;
1268
1269         /* first try to make some room by pushing left and right */
1270         wret = push_leaf_left(trans, root, path, data_size);
1271         if (wret < 0)
1272                 return wret;
1273         if (wret) {
1274                 wret = push_leaf_right(trans, root, path, data_size);
1275                 if (wret < 0)
1276                         return wret;
1277         }
1278         l_buf = path->nodes[0];
1279         l = btrfs_buffer_leaf(l_buf);
1280
1281         /* did the pushes work? */
1282         if (btrfs_leaf_free_space(root, l) >=
1283             sizeof(struct btrfs_item) + data_size)
1284                 return 0;
1285
1286         if (!path->nodes[1]) {
1287                 ret = insert_new_root(trans, root, path, 1);
1288                 if (ret)
1289                         return ret;
1290         }
1291         slot = path->slots[0];
1292         nritems = btrfs_header_nritems(&l->header);
1293         mid = (nritems + 1)/ 2;
1294         right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr);
1295         BUG_ON(!right_buffer);
1296         right = btrfs_buffer_leaf(right_buffer);
1297         memset(&right->header, 0, sizeof(right->header));
1298         btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1299         btrfs_set_header_generation(&right->header, trans->transid);
1300         btrfs_set_header_owner(&right->header, root->root_key.objectid);
1301         btrfs_set_header_level(&right->header, 0);
1302         memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1303                sizeof(right->header.fsid));
1304         if (mid <= slot) {
1305                 if (nritems == 1 ||
1306                     leaf_space_used(l, mid, nritems - mid) + space_needed >
1307                         BTRFS_LEAF_DATA_SIZE(root)) {
1308                         if (slot >= nritems) {
1309                                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1310                                 btrfs_set_header_nritems(&right->header, 0);
1311                                 wret = insert_ptr(trans, root, path,
1312                                                   &disk_key,
1313                                                   bh_blocknr(right_buffer),
1314                                                   path->slots[1] + 1, 1);
1315                                 if (wret)
1316                                         ret = wret;
1317                                 btrfs_block_release(root, path->nodes[0]);
1318                                 path->nodes[0] = right_buffer;
1319                                 path->slots[0] = 0;
1320                                 path->slots[1] += 1;
1321                                 return ret;
1322                         }
1323                         mid = slot;
1324                         double_split = 1;
1325                 }
1326         } else {
1327                 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1328                         BTRFS_LEAF_DATA_SIZE(root)) {
1329                         if (slot == 0) {
1330                                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1331                                 btrfs_set_header_nritems(&right->header, 0);
1332                                 wret = insert_ptr(trans, root, path,
1333                                                   &disk_key,
1334                                                   bh_blocknr(right_buffer),
1335                                                   path->slots[1], 1);
1336                                 if (wret)
1337                                         ret = wret;
1338                                 btrfs_block_release(root, path->nodes[0]);
1339                                 path->nodes[0] = right_buffer;
1340                                 path->slots[0] = 0;
1341                                 if (path->slots[1] == 0) {
1342                                         wret = fixup_low_keys(trans, root,
1343                                                    path, &disk_key, 1);
1344                                         if (wret)
1345                                                 ret = wret;
1346                                 }
1347                                 return ret;
1348                         }
1349                         mid = slot;
1350                         double_split = 1;
1351                 }
1352         }
1353         btrfs_set_header_nritems(&right->header, nritems - mid);
1354         data_copy_size = btrfs_item_end(l->items + mid) -
1355                          leaf_data_end(root, l);
1356         btrfs_memcpy(root, right, right->items, l->items + mid,
1357                      (nritems - mid) * sizeof(struct btrfs_item));
1358         btrfs_memcpy(root, right,
1359                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1360                      data_copy_size, btrfs_leaf_data(l) +
1361                      leaf_data_end(root, l), data_copy_size);
1362         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1363                       btrfs_item_end(l->items + mid);
1364
1365         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1366                 u32 ioff = btrfs_item_offset(right->items + i);
1367                 btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
1368         }
1369
1370         btrfs_set_header_nritems(&l->header, mid);
1371         ret = 0;
1372         wret = insert_ptr(trans, root, path, &right->items[0].key,
1373                           bh_blocknr(right_buffer), path->slots[1] + 1, 1);
1374         if (wret)
1375                 ret = wret;
1376         btrfs_mark_buffer_dirty(right_buffer);
1377         btrfs_mark_buffer_dirty(l_buf);
1378         BUG_ON(path->slots[0] != slot);
1379         if (mid <= slot) {
1380                 btrfs_block_release(root, path->nodes[0]);
1381                 path->nodes[0] = right_buffer;
1382                 path->slots[0] -= mid;
1383                 path->slots[1] += 1;
1384         } else
1385                 btrfs_block_release(root, right_buffer);
1386         BUG_ON(path->slots[0] < 0);
1387         check_node(root, path, 1);
1388
1389         if (!double_split)
1390                 return ret;
1391         right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr);
1392         BUG_ON(!right_buffer);
1393         right = btrfs_buffer_leaf(right_buffer);
1394         memset(&right->header, 0, sizeof(right->header));
1395         btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1396         btrfs_set_header_generation(&right->header, trans->transid);
1397         btrfs_set_header_owner(&right->header, root->root_key.objectid);
1398         btrfs_set_header_level(&right->header, 0);
1399         memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1400                sizeof(right->header.fsid));
1401         btrfs_cpu_key_to_disk(&disk_key, ins_key);
1402         btrfs_set_header_nritems(&right->header, 0);
1403         wret = insert_ptr(trans, root, path,
1404                           &disk_key,
1405                           bh_blocknr(right_buffer),
1406                           path->slots[1], 1);
1407         if (wret)
1408                 ret = wret;
1409         if (path->slots[1] == 0) {
1410                 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
1411                 if (wret)
1412                         ret = wret;
1413         }
1414         btrfs_block_release(root, path->nodes[0]);
1415         path->nodes[0] = right_buffer;
1416         path->slots[0] = 0;
1417         check_node(root, path, 1);
1418         check_leaf(root, path, 0);
1419         return ret;
1420 }
1421
1422 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1423                         struct btrfs_root *root,
1424                         struct btrfs_path *path,
1425                         u32 new_size)
1426 {
1427         int ret = 0;
1428         int slot;
1429         int slot_orig;
1430         struct btrfs_leaf *leaf;
1431         struct buffer_head *leaf_buf;
1432         u32 nritems;
1433         unsigned int data_end;
1434         unsigned int old_data_start;
1435         unsigned int old_size;
1436         unsigned int size_diff;
1437         int i;
1438
1439         slot_orig = path->slots[0];
1440         leaf_buf = path->nodes[0];
1441         leaf = btrfs_buffer_leaf(leaf_buf);
1442
1443         nritems = btrfs_header_nritems(&leaf->header);
1444         data_end = leaf_data_end(root, leaf);
1445
1446         slot = path->slots[0];
1447         old_data_start = btrfs_item_offset(leaf->items + slot);
1448         old_size = btrfs_item_size(leaf->items + slot);
1449         BUG_ON(old_size <= new_size);
1450         size_diff = old_size - new_size;
1451
1452         BUG_ON(slot < 0);
1453         BUG_ON(slot >= nritems);
1454
1455         /*
1456          * item0..itemN ... dataN.offset..dataN.size .. data0.size
1457          */
1458         /* first correct the data pointers */
1459         for (i = slot; i < nritems; i++) {
1460                 u32 ioff = btrfs_item_offset(leaf->items + i);
1461                 btrfs_set_item_offset(leaf->items + i,
1462                                       ioff + size_diff);
1463         }
1464         /* shift the data */
1465         btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1466                       data_end + size_diff, btrfs_leaf_data(leaf) +
1467                       data_end, old_data_start + new_size - data_end);
1468         btrfs_set_item_size(leaf->items + slot, new_size);
1469         btrfs_mark_buffer_dirty(leaf_buf);
1470
1471         ret = 0;
1472         if (btrfs_leaf_free_space(root, leaf) < 0)
1473                 BUG();
1474         check_leaf(root, path, 0);
1475         return ret;
1476 }
1477
1478 int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1479                       *root, struct btrfs_path *path, u32 data_size)
1480 {
1481         int ret = 0;
1482         int slot;
1483         int slot_orig;
1484         struct btrfs_leaf *leaf;
1485         struct buffer_head *leaf_buf;
1486         u32 nritems;
1487         unsigned int data_end;
1488         unsigned int old_data;
1489         unsigned int old_size;
1490         int i;
1491
1492         slot_orig = path->slots[0];
1493         leaf_buf = path->nodes[0];
1494         leaf = btrfs_buffer_leaf(leaf_buf);
1495
1496         nritems = btrfs_header_nritems(&leaf->header);
1497         data_end = leaf_data_end(root, leaf);
1498
1499         if (btrfs_leaf_free_space(root, leaf) < data_size)
1500                 BUG();
1501         slot = path->slots[0];
1502         old_data = btrfs_item_end(leaf->items + slot);
1503
1504         BUG_ON(slot < 0);
1505         BUG_ON(slot >= nritems);
1506
1507         /*
1508          * item0..itemN ... dataN.offset..dataN.size .. data0.size
1509          */
1510         /* first correct the data pointers */
1511         for (i = slot; i < nritems; i++) {
1512                 u32 ioff = btrfs_item_offset(leaf->items + i);
1513                 btrfs_set_item_offset(leaf->items + i,
1514                                       ioff - data_size);
1515         }
1516         /* shift the data */
1517         btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1518                       data_end - data_size, btrfs_leaf_data(leaf) +
1519                       data_end, old_data - data_end);
1520         data_end = old_data;
1521         old_size = btrfs_item_size(leaf->items + slot);
1522         btrfs_set_item_size(leaf->items + slot, old_size + data_size);
1523         btrfs_mark_buffer_dirty(leaf_buf);
1524
1525         ret = 0;
1526         if (btrfs_leaf_free_space(root, leaf) < 0)
1527                 BUG();
1528         check_leaf(root, path, 0);
1529         return ret;
1530 }
1531
1532 /*
1533  * Given a key and some data, insert an item into the tree.
1534  * This does all the path init required, making room in the tree if needed.
1535  */
1536 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1537                             *root, struct btrfs_path *path, struct btrfs_key
1538                             *cpu_key, u32 data_size)
1539 {
1540         int ret = 0;
1541         int slot;
1542         int slot_orig;
1543         struct btrfs_leaf *leaf;
1544         struct buffer_head *leaf_buf;
1545         u32 nritems;
1546         unsigned int data_end;
1547         struct btrfs_disk_key disk_key;
1548
1549         btrfs_cpu_key_to_disk(&disk_key, cpu_key);
1550
1551         /* create a root if there isn't one */
1552         if (!root->node)
1553                 BUG();
1554         ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
1555         if (ret == 0) {
1556                 return -EEXIST;
1557         }
1558         if (ret < 0)
1559                 goto out;
1560
1561         slot_orig = path->slots[0];
1562         leaf_buf = path->nodes[0];
1563         leaf = btrfs_buffer_leaf(leaf_buf);
1564
1565         nritems = btrfs_header_nritems(&leaf->header);
1566         data_end = leaf_data_end(root, leaf);
1567
1568         if (btrfs_leaf_free_space(root, leaf) <
1569             sizeof(struct btrfs_item) + data_size) {
1570                 BUG();
1571         }
1572         slot = path->slots[0];
1573         BUG_ON(slot < 0);
1574         if (slot != nritems) {
1575                 int i;
1576                 unsigned int old_data = btrfs_item_end(leaf->items + slot);
1577
1578                 /*
1579                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
1580                  */
1581                 /* first correct the data pointers */
1582                 for (i = slot; i < nritems; i++) {
1583                         u32 ioff = btrfs_item_offset(leaf->items + i);
1584                         btrfs_set_item_offset(leaf->items + i,
1585                                               ioff - data_size);
1586                 }
1587
1588                 /* shift the items */
1589                 btrfs_memmove(root, leaf, leaf->items + slot + 1,
1590                               leaf->items + slot,
1591                               (nritems - slot) * sizeof(struct btrfs_item));
1592
1593                 /* shift the data */
1594                 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1595                               data_end - data_size, btrfs_leaf_data(leaf) +
1596                               data_end, old_data - data_end);
1597                 data_end = old_data;
1598         }
1599         /* setup the item for the new data */
1600         btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
1601                      sizeof(struct btrfs_disk_key));
1602         btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
1603         btrfs_set_item_size(leaf->items + slot, data_size);
1604         btrfs_set_header_nritems(&leaf->header, nritems + 1);
1605         btrfs_mark_buffer_dirty(leaf_buf);
1606
1607         ret = 0;
1608         if (slot == 0)
1609                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
1610
1611         if (btrfs_leaf_free_space(root, leaf) < 0)
1612                 BUG();
1613         check_leaf(root, path, 0);
1614 out:
1615         return ret;
1616 }
1617
1618 /*
1619  * Given a key and some data, insert an item into the tree.
1620  * This does all the path init required, making room in the tree if needed.
1621  */
1622 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1623                       *root, struct btrfs_key *cpu_key, void *data, u32
1624                       data_size)
1625 {
1626         int ret = 0;
1627         struct btrfs_path *path;
1628         u8 *ptr;
1629
1630         path = btrfs_alloc_path();
1631         BUG_ON(!path);
1632         btrfs_init_path(path);
1633         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
1634         if (!ret) {
1635                 ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
1636                                      path->slots[0], u8);
1637                 btrfs_memcpy(root, path->nodes[0]->b_data,
1638                              ptr, data, data_size);
1639                 btrfs_mark_buffer_dirty(path->nodes[0]);
1640         }
1641         btrfs_release_path(root, path);
1642         btrfs_free_path(path);
1643         return ret;
1644 }
1645
1646 /*
1647  * delete the pointer from a given node.
1648  *
1649  * If the delete empties a node, the node is removed from the tree,
1650  * continuing all the way the root if required.  The root is converted into
1651  * a leaf if all the nodes are emptied.
1652  */
1653 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1654                    struct btrfs_path *path, int level, int slot)
1655 {
1656         struct btrfs_node *node;
1657         struct buffer_head *parent = path->nodes[level];
1658         u32 nritems;
1659         int ret = 0;
1660         int wret;
1661
1662         node = btrfs_buffer_node(parent);
1663         nritems = btrfs_header_nritems(&node->header);
1664         if (slot != nritems -1) {
1665                 btrfs_memmove(root, node, node->ptrs + slot,
1666                               node->ptrs + slot + 1,
1667                               sizeof(struct btrfs_key_ptr) *
1668                               (nritems - slot - 1));
1669         }
1670         nritems--;
1671         btrfs_set_header_nritems(&node->header, nritems);
1672         if (nritems == 0 && parent == root->node) {
1673                 struct btrfs_header *header = btrfs_buffer_header(root->node);
1674                 BUG_ON(btrfs_header_level(header) != 1);
1675                 /* just turn the root into a leaf and break */
1676                 btrfs_set_header_level(header, 0);
1677         } else if (slot == 0) {
1678                 wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
1679                                       level + 1);
1680                 if (wret)
1681                         ret = wret;
1682         }
1683         btrfs_mark_buffer_dirty(parent);
1684         return ret;
1685 }
1686
1687 /*
1688  * delete the item at the leaf level in path.  If that empties
1689  * the leaf, remove it from the tree
1690  */
1691 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1692                    struct btrfs_path *path)
1693 {
1694         int slot;
1695         struct btrfs_leaf *leaf;
1696         struct buffer_head *leaf_buf;
1697         int doff;
1698         int dsize;
1699         int ret = 0;
1700         int wret;
1701         u32 nritems;
1702
1703         leaf_buf = path->nodes[0];
1704         leaf = btrfs_buffer_leaf(leaf_buf);
1705         slot = path->slots[0];
1706         doff = btrfs_item_offset(leaf->items + slot);
1707         dsize = btrfs_item_size(leaf->items + slot);
1708         nritems = btrfs_header_nritems(&leaf->header);
1709
1710         if (slot != nritems - 1) {
1711                 int i;
1712                 int data_end = leaf_data_end(root, leaf);
1713                 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1714                               data_end + dsize,
1715                               btrfs_leaf_data(leaf) + data_end,
1716                               doff - data_end);
1717                 for (i = slot + 1; i < nritems; i++) {
1718                         u32 ioff = btrfs_item_offset(leaf->items + i);
1719                         btrfs_set_item_offset(leaf->items + i, ioff + dsize);
1720                 }
1721                 btrfs_memmove(root, leaf, leaf->items + slot,
1722                               leaf->items + slot + 1,
1723                               sizeof(struct btrfs_item) *
1724                               (nritems - slot - 1));
1725         }
1726         btrfs_set_header_nritems(&leaf->header, nritems - 1);
1727         nritems--;
1728         /* delete the leaf if we've emptied it */
1729         if (nritems == 0) {
1730                 if (leaf_buf == root->node) {
1731                         btrfs_set_header_level(&leaf->header, 0);
1732                 } else {
1733                         clean_tree_block(trans, root, leaf_buf);
1734                         wait_on_buffer(leaf_buf);
1735                         wret = del_ptr(trans, root, path, 1, path->slots[1]);
1736                         if (wret)
1737                                 ret = wret;
1738                         wret = btrfs_free_extent(trans, root,
1739                                                  bh_blocknr(leaf_buf), 1, 1);
1740                         if (wret)
1741                                 ret = wret;
1742                 }
1743         } else {
1744                 int used = leaf_space_used(leaf, 0, nritems);
1745                 if (slot == 0) {
1746                         wret = fixup_low_keys(trans, root, path,
1747                                               &leaf->items[0].key, 1);
1748                         if (wret)
1749                                 ret = wret;
1750                 }
1751
1752                 /* delete the leaf if it is mostly empty */
1753                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
1754                         /* push_leaf_left fixes the path.
1755                          * make sure the path still points to our leaf
1756                          * for possible call to del_ptr below
1757                          */
1758                         slot = path->slots[1];
1759                         get_bh(leaf_buf);
1760                         wret = push_leaf_left(trans, root, path, 1);
1761                         if (wret < 0)
1762                                 ret = wret;
1763                         if (path->nodes[0] == leaf_buf &&
1764                             btrfs_header_nritems(&leaf->header)) {
1765                                 wret = push_leaf_right(trans, root, path, 1);
1766                                 if (wret < 0)
1767                                         ret = wret;
1768                         }
1769                         if (btrfs_header_nritems(&leaf->header) == 0) {
1770                                 u64 blocknr = bh_blocknr(leaf_buf);
1771                                 clean_tree_block(trans, root, leaf_buf);
1772                                 wait_on_buffer(leaf_buf);
1773                                 wret = del_ptr(trans, root, path, 1, slot);
1774                                 if (wret)
1775                                         ret = wret;
1776                                 btrfs_block_release(root, leaf_buf);
1777                                 wret = btrfs_free_extent(trans, root, blocknr,
1778                                                          1, 1);
1779                                 if (wret)
1780                                         ret = wret;
1781                         } else {
1782                                 btrfs_mark_buffer_dirty(leaf_buf);
1783                                 btrfs_block_release(root, leaf_buf);
1784                         }
1785                 } else {
1786                         btrfs_mark_buffer_dirty(leaf_buf);
1787                 }
1788         }
1789         return ret;
1790 }
1791
1792 /*
1793  * walk up the tree as far as required to find the next leaf.
1794  * returns 0 if it found something or 1 if there are no greater leaves.
1795  * returns < 0 on io errors.
1796  */
1797 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
1798 {
1799         int slot;
1800         int level = 1;
1801         u64 blocknr;
1802         struct buffer_head *c;
1803         struct btrfs_node *c_node;
1804         struct buffer_head *next = NULL;
1805
1806         while(level < BTRFS_MAX_LEVEL) {
1807                 if (!path->nodes[level])
1808                         return 1;
1809                 slot = path->slots[level] + 1;
1810                 c = path->nodes[level];
1811                 c_node = btrfs_buffer_node(c);
1812                 if (slot >= btrfs_header_nritems(&c_node->header)) {
1813                         level++;
1814                         continue;
1815                 }
1816                 blocknr = btrfs_node_blockptr(c_node, slot);
1817                 if (next)
1818                         btrfs_block_release(root, next);
1819                 next = read_tree_block(root, blocknr);
1820                 break;
1821         }
1822         path->slots[level] = slot;
1823         while(1) {
1824                 level--;
1825                 c = path->nodes[level];
1826                 btrfs_block_release(root, c);
1827                 path->nodes[level] = next;
1828                 path->slots[level] = 0;
1829                 if (!level)
1830                         break;
1831                 next = read_tree_block(root,
1832                        btrfs_node_blockptr(btrfs_buffer_node(next), 0));
1833         }
1834         return 0;
1835 }