btrfs: remove blocksize from btrfs_alloc_free_block and rename
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41                     int level, int slot);
42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43                                  struct extent_buffer *eb);
44
45 struct btrfs_path *btrfs_alloc_path(void)
46 {
47         struct btrfs_path *path;
48         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49         return path;
50 }
51
52 /*
53  * set all locked nodes in the path to blocking locks.  This should
54  * be done before scheduling
55  */
56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57 {
58         int i;
59         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60                 if (!p->nodes[i] || !p->locks[i])
61                         continue;
62                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63                 if (p->locks[i] == BTRFS_READ_LOCK)
64                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67         }
68 }
69
70 /*
71  * reset all the locked nodes in the patch to spinning locks.
72  *
73  * held is used to keep lockdep happy, when lockdep is enabled
74  * we set held to a blocking lock before we go around and
75  * retake all the spinlocks in the path.  You can safely use NULL
76  * for held
77  */
78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79                                         struct extent_buffer *held, int held_rw)
80 {
81         int i;
82
83 #ifdef CONFIG_DEBUG_LOCK_ALLOC
84         /* lockdep really cares that we take all of these spinlocks
85          * in the right order.  If any of the locks in the path are not
86          * currently blocking, it is going to complain.  So, make really
87          * really sure by forcing the path to blocking before we clear
88          * the path blocking.
89          */
90         if (held) {
91                 btrfs_set_lock_blocking_rw(held, held_rw);
92                 if (held_rw == BTRFS_WRITE_LOCK)
93                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
94                 else if (held_rw == BTRFS_READ_LOCK)
95                         held_rw = BTRFS_READ_LOCK_BLOCKING;
96         }
97         btrfs_set_path_blocking(p);
98 #endif
99
100         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
101                 if (p->nodes[i] && p->locks[i]) {
102                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
103                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
104                                 p->locks[i] = BTRFS_WRITE_LOCK;
105                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
106                                 p->locks[i] = BTRFS_READ_LOCK;
107                 }
108         }
109
110 #ifdef CONFIG_DEBUG_LOCK_ALLOC
111         if (held)
112                 btrfs_clear_lock_blocking_rw(held, held_rw);
113 #endif
114 }
115
116 /* this also releases the path */
117 void btrfs_free_path(struct btrfs_path *p)
118 {
119         if (!p)
120                 return;
121         btrfs_release_path(p);
122         kmem_cache_free(btrfs_path_cachep, p);
123 }
124
125 /*
126  * path release drops references on the extent buffers in the path
127  * and it drops any locks held by this path
128  *
129  * It is safe to call this on paths that no locks or extent buffers held.
130  */
131 noinline void btrfs_release_path(struct btrfs_path *p)
132 {
133         int i;
134
135         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
136                 p->slots[i] = 0;
137                 if (!p->nodes[i])
138                         continue;
139                 if (p->locks[i]) {
140                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
141                         p->locks[i] = 0;
142                 }
143                 free_extent_buffer(p->nodes[i]);
144                 p->nodes[i] = NULL;
145         }
146 }
147
148 /*
149  * safely gets a reference on the root node of a tree.  A lock
150  * is not taken, so a concurrent writer may put a different node
151  * at the root of the tree.  See btrfs_lock_root_node for the
152  * looping required.
153  *
154  * The extent buffer returned by this has a reference taken, so
155  * it won't disappear.  It may stop being the root of the tree
156  * at any time because there are no locks held.
157  */
158 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
159 {
160         struct extent_buffer *eb;
161
162         while (1) {
163                 rcu_read_lock();
164                 eb = rcu_dereference(root->node);
165
166                 /*
167                  * RCU really hurts here, we could free up the root node because
168                  * it was cow'ed but we may not get the new root node yet so do
169                  * the inc_not_zero dance and if it doesn't work then
170                  * synchronize_rcu and try again.
171                  */
172                 if (atomic_inc_not_zero(&eb->refs)) {
173                         rcu_read_unlock();
174                         break;
175                 }
176                 rcu_read_unlock();
177                 synchronize_rcu();
178         }
179         return eb;
180 }
181
182 /* loop around taking references on and locking the root node of the
183  * tree until you end up with a lock on the root.  A locked buffer
184  * is returned, with a reference held.
185  */
186 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
187 {
188         struct extent_buffer *eb;
189
190         while (1) {
191                 eb = btrfs_root_node(root);
192                 btrfs_tree_lock(eb);
193                 if (eb == root->node)
194                         break;
195                 btrfs_tree_unlock(eb);
196                 free_extent_buffer(eb);
197         }
198         return eb;
199 }
200
201 /* loop around taking references on and locking the root node of the
202  * tree until you end up with a lock on the root.  A locked buffer
203  * is returned, with a reference held.
204  */
205 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
206 {
207         struct extent_buffer *eb;
208
209         while (1) {
210                 eb = btrfs_root_node(root);
211                 btrfs_tree_read_lock(eb);
212                 if (eb == root->node)
213                         break;
214                 btrfs_tree_read_unlock(eb);
215                 free_extent_buffer(eb);
216         }
217         return eb;
218 }
219
220 /* cowonly root (everything not a reference counted cow subvolume), just get
221  * put onto a simple dirty list.  transaction.c walks this to make sure they
222  * get properly updated on disk.
223  */
224 static void add_root_to_dirty_list(struct btrfs_root *root)
225 {
226         spin_lock(&root->fs_info->trans_lock);
227         if (test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state) &&
228             list_empty(&root->dirty_list)) {
229                 list_add(&root->dirty_list,
230                          &root->fs_info->dirty_cowonly_roots);
231         }
232         spin_unlock(&root->fs_info->trans_lock);
233 }
234
235 /*
236  * used by snapshot creation to make a copy of a root for a tree with
237  * a given objectid.  The buffer with the new root node is returned in
238  * cow_ret, and this func returns zero on success or a negative error code.
239  */
240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241                       struct btrfs_root *root,
242                       struct extent_buffer *buf,
243                       struct extent_buffer **cow_ret, u64 new_root_objectid)
244 {
245         struct extent_buffer *cow;
246         int ret = 0;
247         int level;
248         struct btrfs_disk_key disk_key;
249
250         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
251                 trans->transid != root->fs_info->running_transaction->transid);
252         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
253                 trans->transid != root->last_trans);
254
255         level = btrfs_header_level(buf);
256         if (level == 0)
257                 btrfs_item_key(buf, &disk_key, 0);
258         else
259                 btrfs_node_key(buf, &disk_key, 0);
260
261         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
262                         &disk_key, level, buf->start, 0);
263         if (IS_ERR(cow))
264                 return PTR_ERR(cow);
265
266         copy_extent_buffer(cow, buf, 0, 0, cow->len);
267         btrfs_set_header_bytenr(cow, cow->start);
268         btrfs_set_header_generation(cow, trans->transid);
269         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
270         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
271                                      BTRFS_HEADER_FLAG_RELOC);
272         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
273                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
274         else
275                 btrfs_set_header_owner(cow, new_root_objectid);
276
277         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
278                             BTRFS_FSID_SIZE);
279
280         WARN_ON(btrfs_header_generation(buf) > trans->transid);
281         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
282                 ret = btrfs_inc_ref(trans, root, cow, 1);
283         else
284                 ret = btrfs_inc_ref(trans, root, cow, 0);
285
286         if (ret)
287                 return ret;
288
289         btrfs_mark_buffer_dirty(cow);
290         *cow_ret = cow;
291         return 0;
292 }
293
294 enum mod_log_op {
295         MOD_LOG_KEY_REPLACE,
296         MOD_LOG_KEY_ADD,
297         MOD_LOG_KEY_REMOVE,
298         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
299         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
300         MOD_LOG_MOVE_KEYS,
301         MOD_LOG_ROOT_REPLACE,
302 };
303
304 struct tree_mod_move {
305         int dst_slot;
306         int nr_items;
307 };
308
309 struct tree_mod_root {
310         u64 logical;
311         u8 level;
312 };
313
314 struct tree_mod_elem {
315         struct rb_node node;
316         u64 index;              /* shifted logical */
317         u64 seq;
318         enum mod_log_op op;
319
320         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
321         int slot;
322
323         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
324         u64 generation;
325
326         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
327         struct btrfs_disk_key key;
328         u64 blockptr;
329
330         /* this is used for op == MOD_LOG_MOVE_KEYS */
331         struct tree_mod_move move;
332
333         /* this is used for op == MOD_LOG_ROOT_REPLACE */
334         struct tree_mod_root old_root;
335 };
336
337 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
338 {
339         read_lock(&fs_info->tree_mod_log_lock);
340 }
341
342 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
343 {
344         read_unlock(&fs_info->tree_mod_log_lock);
345 }
346
347 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
348 {
349         write_lock(&fs_info->tree_mod_log_lock);
350 }
351
352 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
353 {
354         write_unlock(&fs_info->tree_mod_log_lock);
355 }
356
357 /*
358  * Pull a new tree mod seq number for our operation.
359  */
360 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
361 {
362         return atomic64_inc_return(&fs_info->tree_mod_seq);
363 }
364
365 /*
366  * This adds a new blocker to the tree mod log's blocker list if the @elem
367  * passed does not already have a sequence number set. So when a caller expects
368  * to record tree modifications, it should ensure to set elem->seq to zero
369  * before calling btrfs_get_tree_mod_seq.
370  * Returns a fresh, unused tree log modification sequence number, even if no new
371  * blocker was added.
372  */
373 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
374                            struct seq_list *elem)
375 {
376         tree_mod_log_write_lock(fs_info);
377         spin_lock(&fs_info->tree_mod_seq_lock);
378         if (!elem->seq) {
379                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381         }
382         spin_unlock(&fs_info->tree_mod_seq_lock);
383         tree_mod_log_write_unlock(fs_info);
384
385         return elem->seq;
386 }
387
388 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
389                             struct seq_list *elem)
390 {
391         struct rb_root *tm_root;
392         struct rb_node *node;
393         struct rb_node *next;
394         struct seq_list *cur_elem;
395         struct tree_mod_elem *tm;
396         u64 min_seq = (u64)-1;
397         u64 seq_putting = elem->seq;
398
399         if (!seq_putting)
400                 return;
401
402         spin_lock(&fs_info->tree_mod_seq_lock);
403         list_del(&elem->list);
404         elem->seq = 0;
405
406         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
407                 if (cur_elem->seq < min_seq) {
408                         if (seq_putting > cur_elem->seq) {
409                                 /*
410                                  * blocker with lower sequence number exists, we
411                                  * cannot remove anything from the log
412                                  */
413                                 spin_unlock(&fs_info->tree_mod_seq_lock);
414                                 return;
415                         }
416                         min_seq = cur_elem->seq;
417                 }
418         }
419         spin_unlock(&fs_info->tree_mod_seq_lock);
420
421         /*
422          * anything that's lower than the lowest existing (read: blocked)
423          * sequence number can be removed from the tree.
424          */
425         tree_mod_log_write_lock(fs_info);
426         tm_root = &fs_info->tree_mod_log;
427         for (node = rb_first(tm_root); node; node = next) {
428                 next = rb_next(node);
429                 tm = container_of(node, struct tree_mod_elem, node);
430                 if (tm->seq > min_seq)
431                         continue;
432                 rb_erase(node, tm_root);
433                 kfree(tm);
434         }
435         tree_mod_log_write_unlock(fs_info);
436 }
437
438 /*
439  * key order of the log:
440  *       index -> sequence
441  *
442  * the index is the shifted logical of the *new* root node for root replace
443  * operations, or the shifted logical of the affected block for all other
444  * operations.
445  *
446  * Note: must be called with write lock (tree_mod_log_write_lock).
447  */
448 static noinline int
449 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
450 {
451         struct rb_root *tm_root;
452         struct rb_node **new;
453         struct rb_node *parent = NULL;
454         struct tree_mod_elem *cur;
455
456         BUG_ON(!tm);
457
458         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
459
460         tm_root = &fs_info->tree_mod_log;
461         new = &tm_root->rb_node;
462         while (*new) {
463                 cur = container_of(*new, struct tree_mod_elem, node);
464                 parent = *new;
465                 if (cur->index < tm->index)
466                         new = &((*new)->rb_left);
467                 else if (cur->index > tm->index)
468                         new = &((*new)->rb_right);
469                 else if (cur->seq < tm->seq)
470                         new = &((*new)->rb_left);
471                 else if (cur->seq > tm->seq)
472                         new = &((*new)->rb_right);
473                 else
474                         return -EEXIST;
475         }
476
477         rb_link_node(&tm->node, parent, new);
478         rb_insert_color(&tm->node, tm_root);
479         return 0;
480 }
481
482 /*
483  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
484  * returns zero with the tree_mod_log_lock acquired. The caller must hold
485  * this until all tree mod log insertions are recorded in the rb tree and then
486  * call tree_mod_log_write_unlock() to release.
487  */
488 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
489                                     struct extent_buffer *eb) {
490         smp_mb();
491         if (list_empty(&(fs_info)->tree_mod_seq_list))
492                 return 1;
493         if (eb && btrfs_header_level(eb) == 0)
494                 return 1;
495
496         tree_mod_log_write_lock(fs_info);
497         if (list_empty(&(fs_info)->tree_mod_seq_list)) {
498                 tree_mod_log_write_unlock(fs_info);
499                 return 1;
500         }
501
502         return 0;
503 }
504
505 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
506 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
507                                     struct extent_buffer *eb)
508 {
509         smp_mb();
510         if (list_empty(&(fs_info)->tree_mod_seq_list))
511                 return 0;
512         if (eb && btrfs_header_level(eb) == 0)
513                 return 0;
514
515         return 1;
516 }
517
518 static struct tree_mod_elem *
519 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
520                     enum mod_log_op op, gfp_t flags)
521 {
522         struct tree_mod_elem *tm;
523
524         tm = kzalloc(sizeof(*tm), flags);
525         if (!tm)
526                 return NULL;
527
528         tm->index = eb->start >> PAGE_CACHE_SHIFT;
529         if (op != MOD_LOG_KEY_ADD) {
530                 btrfs_node_key(eb, &tm->key, slot);
531                 tm->blockptr = btrfs_node_blockptr(eb, slot);
532         }
533         tm->op = op;
534         tm->slot = slot;
535         tm->generation = btrfs_node_ptr_generation(eb, slot);
536         RB_CLEAR_NODE(&tm->node);
537
538         return tm;
539 }
540
541 static noinline int
542 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
543                         struct extent_buffer *eb, int slot,
544                         enum mod_log_op op, gfp_t flags)
545 {
546         struct tree_mod_elem *tm;
547         int ret;
548
549         if (!tree_mod_need_log(fs_info, eb))
550                 return 0;
551
552         tm = alloc_tree_mod_elem(eb, slot, op, flags);
553         if (!tm)
554                 return -ENOMEM;
555
556         if (tree_mod_dont_log(fs_info, eb)) {
557                 kfree(tm);
558                 return 0;
559         }
560
561         ret = __tree_mod_log_insert(fs_info, tm);
562         tree_mod_log_write_unlock(fs_info);
563         if (ret)
564                 kfree(tm);
565
566         return ret;
567 }
568
569 static noinline int
570 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
571                          struct extent_buffer *eb, int dst_slot, int src_slot,
572                          int nr_items, gfp_t flags)
573 {
574         struct tree_mod_elem *tm = NULL;
575         struct tree_mod_elem **tm_list = NULL;
576         int ret = 0;
577         int i;
578         int locked = 0;
579
580         if (!tree_mod_need_log(fs_info, eb))
581                 return 0;
582
583         tm_list = kzalloc(nr_items * sizeof(struct tree_mod_elem *), flags);
584         if (!tm_list)
585                 return -ENOMEM;
586
587         tm = kzalloc(sizeof(*tm), flags);
588         if (!tm) {
589                 ret = -ENOMEM;
590                 goto free_tms;
591         }
592
593         tm->index = eb->start >> PAGE_CACHE_SHIFT;
594         tm->slot = src_slot;
595         tm->move.dst_slot = dst_slot;
596         tm->move.nr_items = nr_items;
597         tm->op = MOD_LOG_MOVE_KEYS;
598
599         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
600                 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
601                     MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
602                 if (!tm_list[i]) {
603                         ret = -ENOMEM;
604                         goto free_tms;
605                 }
606         }
607
608         if (tree_mod_dont_log(fs_info, eb))
609                 goto free_tms;
610         locked = 1;
611
612         /*
613          * When we override something during the move, we log these removals.
614          * This can only happen when we move towards the beginning of the
615          * buffer, i.e. dst_slot < src_slot.
616          */
617         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
618                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
619                 if (ret)
620                         goto free_tms;
621         }
622
623         ret = __tree_mod_log_insert(fs_info, tm);
624         if (ret)
625                 goto free_tms;
626         tree_mod_log_write_unlock(fs_info);
627         kfree(tm_list);
628
629         return 0;
630 free_tms:
631         for (i = 0; i < nr_items; i++) {
632                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
633                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
634                 kfree(tm_list[i]);
635         }
636         if (locked)
637                 tree_mod_log_write_unlock(fs_info);
638         kfree(tm_list);
639         kfree(tm);
640
641         return ret;
642 }
643
644 static inline int
645 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
646                        struct tree_mod_elem **tm_list,
647                        int nritems)
648 {
649         int i, j;
650         int ret;
651
652         for (i = nritems - 1; i >= 0; i--) {
653                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
654                 if (ret) {
655                         for (j = nritems - 1; j > i; j--)
656                                 rb_erase(&tm_list[j]->node,
657                                          &fs_info->tree_mod_log);
658                         return ret;
659                 }
660         }
661
662         return 0;
663 }
664
665 static noinline int
666 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
667                          struct extent_buffer *old_root,
668                          struct extent_buffer *new_root, gfp_t flags,
669                          int log_removal)
670 {
671         struct tree_mod_elem *tm = NULL;
672         struct tree_mod_elem **tm_list = NULL;
673         int nritems = 0;
674         int ret = 0;
675         int i;
676
677         if (!tree_mod_need_log(fs_info, NULL))
678                 return 0;
679
680         if (log_removal && btrfs_header_level(old_root) > 0) {
681                 nritems = btrfs_header_nritems(old_root);
682                 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
683                                   flags);
684                 if (!tm_list) {
685                         ret = -ENOMEM;
686                         goto free_tms;
687                 }
688                 for (i = 0; i < nritems; i++) {
689                         tm_list[i] = alloc_tree_mod_elem(old_root, i,
690                             MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
691                         if (!tm_list[i]) {
692                                 ret = -ENOMEM;
693                                 goto free_tms;
694                         }
695                 }
696         }
697
698         tm = kzalloc(sizeof(*tm), flags);
699         if (!tm) {
700                 ret = -ENOMEM;
701                 goto free_tms;
702         }
703
704         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
705         tm->old_root.logical = old_root->start;
706         tm->old_root.level = btrfs_header_level(old_root);
707         tm->generation = btrfs_header_generation(old_root);
708         tm->op = MOD_LOG_ROOT_REPLACE;
709
710         if (tree_mod_dont_log(fs_info, NULL))
711                 goto free_tms;
712
713         if (tm_list)
714                 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
715         if (!ret)
716                 ret = __tree_mod_log_insert(fs_info, tm);
717
718         tree_mod_log_write_unlock(fs_info);
719         if (ret)
720                 goto free_tms;
721         kfree(tm_list);
722
723         return ret;
724
725 free_tms:
726         if (tm_list) {
727                 for (i = 0; i < nritems; i++)
728                         kfree(tm_list[i]);
729                 kfree(tm_list);
730         }
731         kfree(tm);
732
733         return ret;
734 }
735
736 static struct tree_mod_elem *
737 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
738                       int smallest)
739 {
740         struct rb_root *tm_root;
741         struct rb_node *node;
742         struct tree_mod_elem *cur = NULL;
743         struct tree_mod_elem *found = NULL;
744         u64 index = start >> PAGE_CACHE_SHIFT;
745
746         tree_mod_log_read_lock(fs_info);
747         tm_root = &fs_info->tree_mod_log;
748         node = tm_root->rb_node;
749         while (node) {
750                 cur = container_of(node, struct tree_mod_elem, node);
751                 if (cur->index < index) {
752                         node = node->rb_left;
753                 } else if (cur->index > index) {
754                         node = node->rb_right;
755                 } else if (cur->seq < min_seq) {
756                         node = node->rb_left;
757                 } else if (!smallest) {
758                         /* we want the node with the highest seq */
759                         if (found)
760                                 BUG_ON(found->seq > cur->seq);
761                         found = cur;
762                         node = node->rb_left;
763                 } else if (cur->seq > min_seq) {
764                         /* we want the node with the smallest seq */
765                         if (found)
766                                 BUG_ON(found->seq < cur->seq);
767                         found = cur;
768                         node = node->rb_right;
769                 } else {
770                         found = cur;
771                         break;
772                 }
773         }
774         tree_mod_log_read_unlock(fs_info);
775
776         return found;
777 }
778
779 /*
780  * this returns the element from the log with the smallest time sequence
781  * value that's in the log (the oldest log item). any element with a time
782  * sequence lower than min_seq will be ignored.
783  */
784 static struct tree_mod_elem *
785 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
786                            u64 min_seq)
787 {
788         return __tree_mod_log_search(fs_info, start, min_seq, 1);
789 }
790
791 /*
792  * this returns the element from the log with the largest time sequence
793  * value that's in the log (the most recent log item). any element with
794  * a time sequence lower than min_seq will be ignored.
795  */
796 static struct tree_mod_elem *
797 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
798 {
799         return __tree_mod_log_search(fs_info, start, min_seq, 0);
800 }
801
802 static noinline int
803 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
804                      struct extent_buffer *src, unsigned long dst_offset,
805                      unsigned long src_offset, int nr_items)
806 {
807         int ret = 0;
808         struct tree_mod_elem **tm_list = NULL;
809         struct tree_mod_elem **tm_list_add, **tm_list_rem;
810         int i;
811         int locked = 0;
812
813         if (!tree_mod_need_log(fs_info, NULL))
814                 return 0;
815
816         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
817                 return 0;
818
819         tm_list = kzalloc(nr_items * 2 * sizeof(struct tree_mod_elem *),
820                           GFP_NOFS);
821         if (!tm_list)
822                 return -ENOMEM;
823
824         tm_list_add = tm_list;
825         tm_list_rem = tm_list + nr_items;
826         for (i = 0; i < nr_items; i++) {
827                 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
828                     MOD_LOG_KEY_REMOVE, GFP_NOFS);
829                 if (!tm_list_rem[i]) {
830                         ret = -ENOMEM;
831                         goto free_tms;
832                 }
833
834                 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
835                     MOD_LOG_KEY_ADD, GFP_NOFS);
836                 if (!tm_list_add[i]) {
837                         ret = -ENOMEM;
838                         goto free_tms;
839                 }
840         }
841
842         if (tree_mod_dont_log(fs_info, NULL))
843                 goto free_tms;
844         locked = 1;
845
846         for (i = 0; i < nr_items; i++) {
847                 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
848                 if (ret)
849                         goto free_tms;
850                 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
851                 if (ret)
852                         goto free_tms;
853         }
854
855         tree_mod_log_write_unlock(fs_info);
856         kfree(tm_list);
857
858         return 0;
859
860 free_tms:
861         for (i = 0; i < nr_items * 2; i++) {
862                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
863                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
864                 kfree(tm_list[i]);
865         }
866         if (locked)
867                 tree_mod_log_write_unlock(fs_info);
868         kfree(tm_list);
869
870         return ret;
871 }
872
873 static inline void
874 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
875                      int dst_offset, int src_offset, int nr_items)
876 {
877         int ret;
878         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
879                                        nr_items, GFP_NOFS);
880         BUG_ON(ret < 0);
881 }
882
883 static noinline void
884 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
885                           struct extent_buffer *eb, int slot, int atomic)
886 {
887         int ret;
888
889         ret = tree_mod_log_insert_key(fs_info, eb, slot,
890                                         MOD_LOG_KEY_REPLACE,
891                                         atomic ? GFP_ATOMIC : GFP_NOFS);
892         BUG_ON(ret < 0);
893 }
894
895 static noinline int
896 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
897 {
898         struct tree_mod_elem **tm_list = NULL;
899         int nritems = 0;
900         int i;
901         int ret = 0;
902
903         if (btrfs_header_level(eb) == 0)
904                 return 0;
905
906         if (!tree_mod_need_log(fs_info, NULL))
907                 return 0;
908
909         nritems = btrfs_header_nritems(eb);
910         tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
911                           GFP_NOFS);
912         if (!tm_list)
913                 return -ENOMEM;
914
915         for (i = 0; i < nritems; i++) {
916                 tm_list[i] = alloc_tree_mod_elem(eb, i,
917                     MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
918                 if (!tm_list[i]) {
919                         ret = -ENOMEM;
920                         goto free_tms;
921                 }
922         }
923
924         if (tree_mod_dont_log(fs_info, eb))
925                 goto free_tms;
926
927         ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
928         tree_mod_log_write_unlock(fs_info);
929         if (ret)
930                 goto free_tms;
931         kfree(tm_list);
932
933         return 0;
934
935 free_tms:
936         for (i = 0; i < nritems; i++)
937                 kfree(tm_list[i]);
938         kfree(tm_list);
939
940         return ret;
941 }
942
943 static noinline void
944 tree_mod_log_set_root_pointer(struct btrfs_root *root,
945                               struct extent_buffer *new_root_node,
946                               int log_removal)
947 {
948         int ret;
949         ret = tree_mod_log_insert_root(root->fs_info, root->node,
950                                        new_root_node, GFP_NOFS, log_removal);
951         BUG_ON(ret < 0);
952 }
953
954 /*
955  * check if the tree block can be shared by multiple trees
956  */
957 int btrfs_block_can_be_shared(struct btrfs_root *root,
958                               struct extent_buffer *buf)
959 {
960         /*
961          * Tree blocks not in refernece counted trees and tree roots
962          * are never shared. If a block was allocated after the last
963          * snapshot and the block was not allocated by tree relocation,
964          * we know the block is not shared.
965          */
966         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
967             buf != root->node && buf != root->commit_root &&
968             (btrfs_header_generation(buf) <=
969              btrfs_root_last_snapshot(&root->root_item) ||
970              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
971                 return 1;
972 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
973         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
974             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
975                 return 1;
976 #endif
977         return 0;
978 }
979
980 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
981                                        struct btrfs_root *root,
982                                        struct extent_buffer *buf,
983                                        struct extent_buffer *cow,
984                                        int *last_ref)
985 {
986         u64 refs;
987         u64 owner;
988         u64 flags;
989         u64 new_flags = 0;
990         int ret;
991
992         /*
993          * Backrefs update rules:
994          *
995          * Always use full backrefs for extent pointers in tree block
996          * allocated by tree relocation.
997          *
998          * If a shared tree block is no longer referenced by its owner
999          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
1000          * use full backrefs for extent pointers in tree block.
1001          *
1002          * If a tree block is been relocating
1003          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1004          * use full backrefs for extent pointers in tree block.
1005          * The reason for this is some operations (such as drop tree)
1006          * are only allowed for blocks use full backrefs.
1007          */
1008
1009         if (btrfs_block_can_be_shared(root, buf)) {
1010                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1011                                                btrfs_header_level(buf), 1,
1012                                                &refs, &flags);
1013                 if (ret)
1014                         return ret;
1015                 if (refs == 0) {
1016                         ret = -EROFS;
1017                         btrfs_std_error(root->fs_info, ret);
1018                         return ret;
1019                 }
1020         } else {
1021                 refs = 1;
1022                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1023                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1024                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1025                 else
1026                         flags = 0;
1027         }
1028
1029         owner = btrfs_header_owner(buf);
1030         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1031                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1032
1033         if (refs > 1) {
1034                 if ((owner == root->root_key.objectid ||
1035                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1036                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1037                         ret = btrfs_inc_ref(trans, root, buf, 1);
1038                         BUG_ON(ret); /* -ENOMEM */
1039
1040                         if (root->root_key.objectid ==
1041                             BTRFS_TREE_RELOC_OBJECTID) {
1042                                 ret = btrfs_dec_ref(trans, root, buf, 0);
1043                                 BUG_ON(ret); /* -ENOMEM */
1044                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1045                                 BUG_ON(ret); /* -ENOMEM */
1046                         }
1047                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1048                 } else {
1049
1050                         if (root->root_key.objectid ==
1051                             BTRFS_TREE_RELOC_OBJECTID)
1052                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1053                         else
1054                                 ret = btrfs_inc_ref(trans, root, cow, 0);
1055                         BUG_ON(ret); /* -ENOMEM */
1056                 }
1057                 if (new_flags != 0) {
1058                         int level = btrfs_header_level(buf);
1059
1060                         ret = btrfs_set_disk_extent_flags(trans, root,
1061                                                           buf->start,
1062                                                           buf->len,
1063                                                           new_flags, level, 0);
1064                         if (ret)
1065                                 return ret;
1066                 }
1067         } else {
1068                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1069                         if (root->root_key.objectid ==
1070                             BTRFS_TREE_RELOC_OBJECTID)
1071                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1072                         else
1073                                 ret = btrfs_inc_ref(trans, root, cow, 0);
1074                         BUG_ON(ret); /* -ENOMEM */
1075                         ret = btrfs_dec_ref(trans, root, buf, 1);
1076                         BUG_ON(ret); /* -ENOMEM */
1077                 }
1078                 clean_tree_block(trans, root, buf);
1079                 *last_ref = 1;
1080         }
1081         return 0;
1082 }
1083
1084 /*
1085  * does the dirty work in cow of a single block.  The parent block (if
1086  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1087  * dirty and returned locked.  If you modify the block it needs to be marked
1088  * dirty again.
1089  *
1090  * search_start -- an allocation hint for the new block
1091  *
1092  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1093  * bytes the allocator should try to find free next to the block it returns.
1094  * This is just a hint and may be ignored by the allocator.
1095  */
1096 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1097                              struct btrfs_root *root,
1098                              struct extent_buffer *buf,
1099                              struct extent_buffer *parent, int parent_slot,
1100                              struct extent_buffer **cow_ret,
1101                              u64 search_start, u64 empty_size)
1102 {
1103         struct btrfs_disk_key disk_key;
1104         struct extent_buffer *cow;
1105         int level, ret;
1106         int last_ref = 0;
1107         int unlock_orig = 0;
1108         u64 parent_start;
1109
1110         if (*cow_ret == buf)
1111                 unlock_orig = 1;
1112
1113         btrfs_assert_tree_locked(buf);
1114
1115         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1116                 trans->transid != root->fs_info->running_transaction->transid);
1117         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1118                 trans->transid != root->last_trans);
1119
1120         level = btrfs_header_level(buf);
1121
1122         if (level == 0)
1123                 btrfs_item_key(buf, &disk_key, 0);
1124         else
1125                 btrfs_node_key(buf, &disk_key, 0);
1126
1127         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1128                 if (parent)
1129                         parent_start = parent->start;
1130                 else
1131                         parent_start = 0;
1132         } else
1133                 parent_start = 0;
1134
1135         cow = btrfs_alloc_tree_block(trans, root, parent_start,
1136                         root->root_key.objectid, &disk_key, level,
1137                         search_start, empty_size);
1138         if (IS_ERR(cow))
1139                 return PTR_ERR(cow);
1140
1141         /* cow is set to blocking by btrfs_init_new_buffer */
1142
1143         copy_extent_buffer(cow, buf, 0, 0, cow->len);
1144         btrfs_set_header_bytenr(cow, cow->start);
1145         btrfs_set_header_generation(cow, trans->transid);
1146         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1147         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1148                                      BTRFS_HEADER_FLAG_RELOC);
1149         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1150                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1151         else
1152                 btrfs_set_header_owner(cow, root->root_key.objectid);
1153
1154         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1155                             BTRFS_FSID_SIZE);
1156
1157         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1158         if (ret) {
1159                 btrfs_abort_transaction(trans, root, ret);
1160                 return ret;
1161         }
1162
1163         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1164                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1165                 if (ret)
1166                         return ret;
1167         }
1168
1169         if (buf == root->node) {
1170                 WARN_ON(parent && parent != buf);
1171                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1172                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1173                         parent_start = buf->start;
1174                 else
1175                         parent_start = 0;
1176
1177                 extent_buffer_get(cow);
1178                 tree_mod_log_set_root_pointer(root, cow, 1);
1179                 rcu_assign_pointer(root->node, cow);
1180
1181                 btrfs_free_tree_block(trans, root, buf, parent_start,
1182                                       last_ref);
1183                 free_extent_buffer(buf);
1184                 add_root_to_dirty_list(root);
1185         } else {
1186                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1187                         parent_start = parent->start;
1188                 else
1189                         parent_start = 0;
1190
1191                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1192                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1193                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1194                 btrfs_set_node_blockptr(parent, parent_slot,
1195                                         cow->start);
1196                 btrfs_set_node_ptr_generation(parent, parent_slot,
1197                                               trans->transid);
1198                 btrfs_mark_buffer_dirty(parent);
1199                 if (last_ref) {
1200                         ret = tree_mod_log_free_eb(root->fs_info, buf);
1201                         if (ret) {
1202                                 btrfs_abort_transaction(trans, root, ret);
1203                                 return ret;
1204                         }
1205                 }
1206                 btrfs_free_tree_block(trans, root, buf, parent_start,
1207                                       last_ref);
1208         }
1209         if (unlock_orig)
1210                 btrfs_tree_unlock(buf);
1211         free_extent_buffer_stale(buf);
1212         btrfs_mark_buffer_dirty(cow);
1213         *cow_ret = cow;
1214         return 0;
1215 }
1216
1217 /*
1218  * returns the logical address of the oldest predecessor of the given root.
1219  * entries older than time_seq are ignored.
1220  */
1221 static struct tree_mod_elem *
1222 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1223                            struct extent_buffer *eb_root, u64 time_seq)
1224 {
1225         struct tree_mod_elem *tm;
1226         struct tree_mod_elem *found = NULL;
1227         u64 root_logical = eb_root->start;
1228         int looped = 0;
1229
1230         if (!time_seq)
1231                 return NULL;
1232
1233         /*
1234          * the very last operation that's logged for a root is the replacement
1235          * operation (if it is replaced at all). this has the index of the *new*
1236          * root, making it the very first operation that's logged for this root.
1237          */
1238         while (1) {
1239                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1240                                                 time_seq);
1241                 if (!looped && !tm)
1242                         return NULL;
1243                 /*
1244                  * if there are no tree operation for the oldest root, we simply
1245                  * return it. this should only happen if that (old) root is at
1246                  * level 0.
1247                  */
1248                 if (!tm)
1249                         break;
1250
1251                 /*
1252                  * if there's an operation that's not a root replacement, we
1253                  * found the oldest version of our root. normally, we'll find a
1254                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1255                  */
1256                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1257                         break;
1258
1259                 found = tm;
1260                 root_logical = tm->old_root.logical;
1261                 looped = 1;
1262         }
1263
1264         /* if there's no old root to return, return what we found instead */
1265         if (!found)
1266                 found = tm;
1267
1268         return found;
1269 }
1270
1271 /*
1272  * tm is a pointer to the first operation to rewind within eb. then, all
1273  * previous operations will be rewinded (until we reach something older than
1274  * time_seq).
1275  */
1276 static void
1277 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1278                       u64 time_seq, struct tree_mod_elem *first_tm)
1279 {
1280         u32 n;
1281         struct rb_node *next;
1282         struct tree_mod_elem *tm = first_tm;
1283         unsigned long o_dst;
1284         unsigned long o_src;
1285         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1286
1287         n = btrfs_header_nritems(eb);
1288         tree_mod_log_read_lock(fs_info);
1289         while (tm && tm->seq >= time_seq) {
1290                 /*
1291                  * all the operations are recorded with the operator used for
1292                  * the modification. as we're going backwards, we do the
1293                  * opposite of each operation here.
1294                  */
1295                 switch (tm->op) {
1296                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1297                         BUG_ON(tm->slot < n);
1298                         /* Fallthrough */
1299                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1300                 case MOD_LOG_KEY_REMOVE:
1301                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1302                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1303                         btrfs_set_node_ptr_generation(eb, tm->slot,
1304                                                       tm->generation);
1305                         n++;
1306                         break;
1307                 case MOD_LOG_KEY_REPLACE:
1308                         BUG_ON(tm->slot >= n);
1309                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1310                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1311                         btrfs_set_node_ptr_generation(eb, tm->slot,
1312                                                       tm->generation);
1313                         break;
1314                 case MOD_LOG_KEY_ADD:
1315                         /* if a move operation is needed it's in the log */
1316                         n--;
1317                         break;
1318                 case MOD_LOG_MOVE_KEYS:
1319                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1320                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1321                         memmove_extent_buffer(eb, o_dst, o_src,
1322                                               tm->move.nr_items * p_size);
1323                         break;
1324                 case MOD_LOG_ROOT_REPLACE:
1325                         /*
1326                          * this operation is special. for roots, this must be
1327                          * handled explicitly before rewinding.
1328                          * for non-roots, this operation may exist if the node
1329                          * was a root: root A -> child B; then A gets empty and
1330                          * B is promoted to the new root. in the mod log, we'll
1331                          * have a root-replace operation for B, a tree block
1332                          * that is no root. we simply ignore that operation.
1333                          */
1334                         break;
1335                 }
1336                 next = rb_next(&tm->node);
1337                 if (!next)
1338                         break;
1339                 tm = container_of(next, struct tree_mod_elem, node);
1340                 if (tm->index != first_tm->index)
1341                         break;
1342         }
1343         tree_mod_log_read_unlock(fs_info);
1344         btrfs_set_header_nritems(eb, n);
1345 }
1346
1347 /*
1348  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1349  * is returned. If rewind operations happen, a fresh buffer is returned. The
1350  * returned buffer is always read-locked. If the returned buffer is not the
1351  * input buffer, the lock on the input buffer is released and the input buffer
1352  * is freed (its refcount is decremented).
1353  */
1354 static struct extent_buffer *
1355 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1356                     struct extent_buffer *eb, u64 time_seq)
1357 {
1358         struct extent_buffer *eb_rewin;
1359         struct tree_mod_elem *tm;
1360
1361         if (!time_seq)
1362                 return eb;
1363
1364         if (btrfs_header_level(eb) == 0)
1365                 return eb;
1366
1367         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1368         if (!tm)
1369                 return eb;
1370
1371         btrfs_set_path_blocking(path);
1372         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1373
1374         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1375                 BUG_ON(tm->slot != 0);
1376                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1377                                                 fs_info->tree_root->nodesize);
1378                 if (!eb_rewin) {
1379                         btrfs_tree_read_unlock_blocking(eb);
1380                         free_extent_buffer(eb);
1381                         return NULL;
1382                 }
1383                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1384                 btrfs_set_header_backref_rev(eb_rewin,
1385                                              btrfs_header_backref_rev(eb));
1386                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1387                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1388         } else {
1389                 eb_rewin = btrfs_clone_extent_buffer(eb);
1390                 if (!eb_rewin) {
1391                         btrfs_tree_read_unlock_blocking(eb);
1392                         free_extent_buffer(eb);
1393                         return NULL;
1394                 }
1395         }
1396
1397         btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1398         btrfs_tree_read_unlock_blocking(eb);
1399         free_extent_buffer(eb);
1400
1401         extent_buffer_get(eb_rewin);
1402         btrfs_tree_read_lock(eb_rewin);
1403         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1404         WARN_ON(btrfs_header_nritems(eb_rewin) >
1405                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1406
1407         return eb_rewin;
1408 }
1409
1410 /*
1411  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1412  * value. If there are no changes, the current root->root_node is returned. If
1413  * anything changed in between, there's a fresh buffer allocated on which the
1414  * rewind operations are done. In any case, the returned buffer is read locked.
1415  * Returns NULL on error (with no locks held).
1416  */
1417 static inline struct extent_buffer *
1418 get_old_root(struct btrfs_root *root, u64 time_seq)
1419 {
1420         struct tree_mod_elem *tm;
1421         struct extent_buffer *eb = NULL;
1422         struct extent_buffer *eb_root;
1423         struct extent_buffer *old;
1424         struct tree_mod_root *old_root = NULL;
1425         u64 old_generation = 0;
1426         u64 logical;
1427
1428         eb_root = btrfs_read_lock_root_node(root);
1429         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1430         if (!tm)
1431                 return eb_root;
1432
1433         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1434                 old_root = &tm->old_root;
1435                 old_generation = tm->generation;
1436                 logical = old_root->logical;
1437         } else {
1438                 logical = eb_root->start;
1439         }
1440
1441         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1442         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1443                 btrfs_tree_read_unlock(eb_root);
1444                 free_extent_buffer(eb_root);
1445                 old = read_tree_block(root, logical, 0);
1446                 if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
1447                         free_extent_buffer(old);
1448                         btrfs_warn(root->fs_info,
1449                                 "failed to read tree block %llu from get_old_root", logical);
1450                 } else {
1451                         eb = btrfs_clone_extent_buffer(old);
1452                         free_extent_buffer(old);
1453                 }
1454         } else if (old_root) {
1455                 btrfs_tree_read_unlock(eb_root);
1456                 free_extent_buffer(eb_root);
1457                 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1458         } else {
1459                 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1460                 eb = btrfs_clone_extent_buffer(eb_root);
1461                 btrfs_tree_read_unlock_blocking(eb_root);
1462                 free_extent_buffer(eb_root);
1463         }
1464
1465         if (!eb)
1466                 return NULL;
1467         extent_buffer_get(eb);
1468         btrfs_tree_read_lock(eb);
1469         if (old_root) {
1470                 btrfs_set_header_bytenr(eb, eb->start);
1471                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1472                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1473                 btrfs_set_header_level(eb, old_root->level);
1474                 btrfs_set_header_generation(eb, old_generation);
1475         }
1476         if (tm)
1477                 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1478         else
1479                 WARN_ON(btrfs_header_level(eb) != 0);
1480         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1481
1482         return eb;
1483 }
1484
1485 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1486 {
1487         struct tree_mod_elem *tm;
1488         int level;
1489         struct extent_buffer *eb_root = btrfs_root_node(root);
1490
1491         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1492         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1493                 level = tm->old_root.level;
1494         } else {
1495                 level = btrfs_header_level(eb_root);
1496         }
1497         free_extent_buffer(eb_root);
1498
1499         return level;
1500 }
1501
1502 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1503                                    struct btrfs_root *root,
1504                                    struct extent_buffer *buf)
1505 {
1506 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1507         if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1508                 return 0;
1509 #endif
1510         /* ensure we can see the force_cow */
1511         smp_rmb();
1512
1513         /*
1514          * We do not need to cow a block if
1515          * 1) this block is not created or changed in this transaction;
1516          * 2) this block does not belong to TREE_RELOC tree;
1517          * 3) the root is not forced COW.
1518          *
1519          * What is forced COW:
1520          *    when we create snapshot during commiting the transaction,
1521          *    after we've finished coping src root, we must COW the shared
1522          *    block to ensure the metadata consistency.
1523          */
1524         if (btrfs_header_generation(buf) == trans->transid &&
1525             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1526             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1527               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1528             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1529                 return 0;
1530         return 1;
1531 }
1532
1533 /*
1534  * cows a single block, see __btrfs_cow_block for the real work.
1535  * This version of it has extra checks so that a block isn't cow'd more than
1536  * once per transaction, as long as it hasn't been written yet
1537  */
1538 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1539                     struct btrfs_root *root, struct extent_buffer *buf,
1540                     struct extent_buffer *parent, int parent_slot,
1541                     struct extent_buffer **cow_ret)
1542 {
1543         u64 search_start;
1544         int ret;
1545
1546         if (trans->transaction != root->fs_info->running_transaction)
1547                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1548                        trans->transid,
1549                        root->fs_info->running_transaction->transid);
1550
1551         if (trans->transid != root->fs_info->generation)
1552                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1553                        trans->transid, root->fs_info->generation);
1554
1555         if (!should_cow_block(trans, root, buf)) {
1556                 *cow_ret = buf;
1557                 return 0;
1558         }
1559
1560         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1561
1562         if (parent)
1563                 btrfs_set_lock_blocking(parent);
1564         btrfs_set_lock_blocking(buf);
1565
1566         ret = __btrfs_cow_block(trans, root, buf, parent,
1567                                  parent_slot, cow_ret, search_start, 0);
1568
1569         trace_btrfs_cow_block(root, buf, *cow_ret);
1570
1571         return ret;
1572 }
1573
1574 /*
1575  * helper function for defrag to decide if two blocks pointed to by a
1576  * node are actually close by
1577  */
1578 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1579 {
1580         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1581                 return 1;
1582         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1583                 return 1;
1584         return 0;
1585 }
1586
1587 /*
1588  * compare two keys in a memcmp fashion
1589  */
1590 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1591 {
1592         struct btrfs_key k1;
1593
1594         btrfs_disk_key_to_cpu(&k1, disk);
1595
1596         return btrfs_comp_cpu_keys(&k1, k2);
1597 }
1598
1599 /*
1600  * same as comp_keys only with two btrfs_key's
1601  */
1602 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1603 {
1604         if (k1->objectid > k2->objectid)
1605                 return 1;
1606         if (k1->objectid < k2->objectid)
1607                 return -1;
1608         if (k1->type > k2->type)
1609                 return 1;
1610         if (k1->type < k2->type)
1611                 return -1;
1612         if (k1->offset > k2->offset)
1613                 return 1;
1614         if (k1->offset < k2->offset)
1615                 return -1;
1616         return 0;
1617 }
1618
1619 /*
1620  * this is used by the defrag code to go through all the
1621  * leaves pointed to by a node and reallocate them so that
1622  * disk order is close to key order
1623  */
1624 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1625                        struct btrfs_root *root, struct extent_buffer *parent,
1626                        int start_slot, u64 *last_ret,
1627                        struct btrfs_key *progress)
1628 {
1629         struct extent_buffer *cur;
1630         u64 blocknr;
1631         u64 gen;
1632         u64 search_start = *last_ret;
1633         u64 last_block = 0;
1634         u64 other;
1635         u32 parent_nritems;
1636         int end_slot;
1637         int i;
1638         int err = 0;
1639         int parent_level;
1640         int uptodate;
1641         u32 blocksize;
1642         int progress_passed = 0;
1643         struct btrfs_disk_key disk_key;
1644
1645         parent_level = btrfs_header_level(parent);
1646
1647         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1648         WARN_ON(trans->transid != root->fs_info->generation);
1649
1650         parent_nritems = btrfs_header_nritems(parent);
1651         blocksize = root->nodesize;
1652         end_slot = parent_nritems;
1653
1654         if (parent_nritems == 1)
1655                 return 0;
1656
1657         btrfs_set_lock_blocking(parent);
1658
1659         for (i = start_slot; i < end_slot; i++) {
1660                 int close = 1;
1661
1662                 btrfs_node_key(parent, &disk_key, i);
1663                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1664                         continue;
1665
1666                 progress_passed = 1;
1667                 blocknr = btrfs_node_blockptr(parent, i);
1668                 gen = btrfs_node_ptr_generation(parent, i);
1669                 if (last_block == 0)
1670                         last_block = blocknr;
1671
1672                 if (i > 0) {
1673                         other = btrfs_node_blockptr(parent, i - 1);
1674                         close = close_blocks(blocknr, other, blocksize);
1675                 }
1676                 if (!close && i < end_slot - 2) {
1677                         other = btrfs_node_blockptr(parent, i + 1);
1678                         close = close_blocks(blocknr, other, blocksize);
1679                 }
1680                 if (close) {
1681                         last_block = blocknr;
1682                         continue;
1683                 }
1684
1685                 cur = btrfs_find_tree_block(root, blocknr);
1686                 if (cur)
1687                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1688                 else
1689                         uptodate = 0;
1690                 if (!cur || !uptodate) {
1691                         if (!cur) {
1692                                 cur = read_tree_block(root, blocknr, gen);
1693                                 if (!cur || !extent_buffer_uptodate(cur)) {
1694                                         free_extent_buffer(cur);
1695                                         return -EIO;
1696                                 }
1697                         } else if (!uptodate) {
1698                                 err = btrfs_read_buffer(cur, gen);
1699                                 if (err) {
1700                                         free_extent_buffer(cur);
1701                                         return err;
1702                                 }
1703                         }
1704                 }
1705                 if (search_start == 0)
1706                         search_start = last_block;
1707
1708                 btrfs_tree_lock(cur);
1709                 btrfs_set_lock_blocking(cur);
1710                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1711                                         &cur, search_start,
1712                                         min(16 * blocksize,
1713                                             (end_slot - i) * blocksize));
1714                 if (err) {
1715                         btrfs_tree_unlock(cur);
1716                         free_extent_buffer(cur);
1717                         break;
1718                 }
1719                 search_start = cur->start;
1720                 last_block = cur->start;
1721                 *last_ret = search_start;
1722                 btrfs_tree_unlock(cur);
1723                 free_extent_buffer(cur);
1724         }
1725         return err;
1726 }
1727
1728 /*
1729  * The leaf data grows from end-to-front in the node.
1730  * this returns the address of the start of the last item,
1731  * which is the stop of the leaf data stack
1732  */
1733 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1734                                          struct extent_buffer *leaf)
1735 {
1736         u32 nr = btrfs_header_nritems(leaf);
1737         if (nr == 0)
1738                 return BTRFS_LEAF_DATA_SIZE(root);
1739         return btrfs_item_offset_nr(leaf, nr - 1);
1740 }
1741
1742
1743 /*
1744  * search for key in the extent_buffer.  The items start at offset p,
1745  * and they are item_size apart.  There are 'max' items in p.
1746  *
1747  * the slot in the array is returned via slot, and it points to
1748  * the place where you would insert key if it is not found in
1749  * the array.
1750  *
1751  * slot may point to max if the key is bigger than all of the keys
1752  */
1753 static noinline int generic_bin_search(struct extent_buffer *eb,
1754                                        unsigned long p,
1755                                        int item_size, struct btrfs_key *key,
1756                                        int max, int *slot)
1757 {
1758         int low = 0;
1759         int high = max;
1760         int mid;
1761         int ret;
1762         struct btrfs_disk_key *tmp = NULL;
1763         struct btrfs_disk_key unaligned;
1764         unsigned long offset;
1765         char *kaddr = NULL;
1766         unsigned long map_start = 0;
1767         unsigned long map_len = 0;
1768         int err;
1769
1770         while (low < high) {
1771                 mid = (low + high) / 2;
1772                 offset = p + mid * item_size;
1773
1774                 if (!kaddr || offset < map_start ||
1775                     (offset + sizeof(struct btrfs_disk_key)) >
1776                     map_start + map_len) {
1777
1778                         err = map_private_extent_buffer(eb, offset,
1779                                                 sizeof(struct btrfs_disk_key),
1780                                                 &kaddr, &map_start, &map_len);
1781
1782                         if (!err) {
1783                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1784                                                         map_start);
1785                         } else {
1786                                 read_extent_buffer(eb, &unaligned,
1787                                                    offset, sizeof(unaligned));
1788                                 tmp = &unaligned;
1789                         }
1790
1791                 } else {
1792                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1793                                                         map_start);
1794                 }
1795                 ret = comp_keys(tmp, key);
1796
1797                 if (ret < 0)
1798                         low = mid + 1;
1799                 else if (ret > 0)
1800                         high = mid;
1801                 else {
1802                         *slot = mid;
1803                         return 0;
1804                 }
1805         }
1806         *slot = low;
1807         return 1;
1808 }
1809
1810 /*
1811  * simple bin_search frontend that does the right thing for
1812  * leaves vs nodes
1813  */
1814 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1815                       int level, int *slot)
1816 {
1817         if (level == 0)
1818                 return generic_bin_search(eb,
1819                                           offsetof(struct btrfs_leaf, items),
1820                                           sizeof(struct btrfs_item),
1821                                           key, btrfs_header_nritems(eb),
1822                                           slot);
1823         else
1824                 return generic_bin_search(eb,
1825                                           offsetof(struct btrfs_node, ptrs),
1826                                           sizeof(struct btrfs_key_ptr),
1827                                           key, btrfs_header_nritems(eb),
1828                                           slot);
1829 }
1830
1831 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1832                      int level, int *slot)
1833 {
1834         return bin_search(eb, key, level, slot);
1835 }
1836
1837 static void root_add_used(struct btrfs_root *root, u32 size)
1838 {
1839         spin_lock(&root->accounting_lock);
1840         btrfs_set_root_used(&root->root_item,
1841                             btrfs_root_used(&root->root_item) + size);
1842         spin_unlock(&root->accounting_lock);
1843 }
1844
1845 static void root_sub_used(struct btrfs_root *root, u32 size)
1846 {
1847         spin_lock(&root->accounting_lock);
1848         btrfs_set_root_used(&root->root_item,
1849                             btrfs_root_used(&root->root_item) - size);
1850         spin_unlock(&root->accounting_lock);
1851 }
1852
1853 /* given a node and slot number, this reads the blocks it points to.  The
1854  * extent buffer is returned with a reference taken (but unlocked).
1855  * NULL is returned on error.
1856  */
1857 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1858                                    struct extent_buffer *parent, int slot)
1859 {
1860         int level = btrfs_header_level(parent);
1861         struct extent_buffer *eb;
1862
1863         if (slot < 0)
1864                 return NULL;
1865         if (slot >= btrfs_header_nritems(parent))
1866                 return NULL;
1867
1868         BUG_ON(level == 0);
1869
1870         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1871                              btrfs_node_ptr_generation(parent, slot));
1872         if (eb && !extent_buffer_uptodate(eb)) {
1873                 free_extent_buffer(eb);
1874                 eb = NULL;
1875         }
1876
1877         return eb;
1878 }
1879
1880 /*
1881  * node level balancing, used to make sure nodes are in proper order for
1882  * item deletion.  We balance from the top down, so we have to make sure
1883  * that a deletion won't leave an node completely empty later on.
1884  */
1885 static noinline int balance_level(struct btrfs_trans_handle *trans,
1886                          struct btrfs_root *root,
1887                          struct btrfs_path *path, int level)
1888 {
1889         struct extent_buffer *right = NULL;
1890         struct extent_buffer *mid;
1891         struct extent_buffer *left = NULL;
1892         struct extent_buffer *parent = NULL;
1893         int ret = 0;
1894         int wret;
1895         int pslot;
1896         int orig_slot = path->slots[level];
1897         u64 orig_ptr;
1898
1899         if (level == 0)
1900                 return 0;
1901
1902         mid = path->nodes[level];
1903
1904         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1905                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1906         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1907
1908         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1909
1910         if (level < BTRFS_MAX_LEVEL - 1) {
1911                 parent = path->nodes[level + 1];
1912                 pslot = path->slots[level + 1];
1913         }
1914
1915         /*
1916          * deal with the case where there is only one pointer in the root
1917          * by promoting the node below to a root
1918          */
1919         if (!parent) {
1920                 struct extent_buffer *child;
1921
1922                 if (btrfs_header_nritems(mid) != 1)
1923                         return 0;
1924
1925                 /* promote the child to a root */
1926                 child = read_node_slot(root, mid, 0);
1927                 if (!child) {
1928                         ret = -EROFS;
1929                         btrfs_std_error(root->fs_info, ret);
1930                         goto enospc;
1931                 }
1932
1933                 btrfs_tree_lock(child);
1934                 btrfs_set_lock_blocking(child);
1935                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1936                 if (ret) {
1937                         btrfs_tree_unlock(child);
1938                         free_extent_buffer(child);
1939                         goto enospc;
1940                 }
1941
1942                 tree_mod_log_set_root_pointer(root, child, 1);
1943                 rcu_assign_pointer(root->node, child);
1944
1945                 add_root_to_dirty_list(root);
1946                 btrfs_tree_unlock(child);
1947
1948                 path->locks[level] = 0;
1949                 path->nodes[level] = NULL;
1950                 clean_tree_block(trans, root, mid);
1951                 btrfs_tree_unlock(mid);
1952                 /* once for the path */
1953                 free_extent_buffer(mid);
1954
1955                 root_sub_used(root, mid->len);
1956                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1957                 /* once for the root ptr */
1958                 free_extent_buffer_stale(mid);
1959                 return 0;
1960         }
1961         if (btrfs_header_nritems(mid) >
1962             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1963                 return 0;
1964
1965         left = read_node_slot(root, parent, pslot - 1);
1966         if (left) {
1967                 btrfs_tree_lock(left);
1968                 btrfs_set_lock_blocking(left);
1969                 wret = btrfs_cow_block(trans, root, left,
1970                                        parent, pslot - 1, &left);
1971                 if (wret) {
1972                         ret = wret;
1973                         goto enospc;
1974                 }
1975         }
1976         right = read_node_slot(root, parent, pslot + 1);
1977         if (right) {
1978                 btrfs_tree_lock(right);
1979                 btrfs_set_lock_blocking(right);
1980                 wret = btrfs_cow_block(trans, root, right,
1981                                        parent, pslot + 1, &right);
1982                 if (wret) {
1983                         ret = wret;
1984                         goto enospc;
1985                 }
1986         }
1987
1988         /* first, try to make some room in the middle buffer */
1989         if (left) {
1990                 orig_slot += btrfs_header_nritems(left);
1991                 wret = push_node_left(trans, root, left, mid, 1);
1992                 if (wret < 0)
1993                         ret = wret;
1994         }
1995
1996         /*
1997          * then try to empty the right most buffer into the middle
1998          */
1999         if (right) {
2000                 wret = push_node_left(trans, root, mid, right, 1);
2001                 if (wret < 0 && wret != -ENOSPC)
2002                         ret = wret;
2003                 if (btrfs_header_nritems(right) == 0) {
2004                         clean_tree_block(trans, root, right);
2005                         btrfs_tree_unlock(right);
2006                         del_ptr(root, path, level + 1, pslot + 1);
2007                         root_sub_used(root, right->len);
2008                         btrfs_free_tree_block(trans, root, right, 0, 1);
2009                         free_extent_buffer_stale(right);
2010                         right = NULL;
2011                 } else {
2012                         struct btrfs_disk_key right_key;
2013                         btrfs_node_key(right, &right_key, 0);
2014                         tree_mod_log_set_node_key(root->fs_info, parent,
2015                                                   pslot + 1, 0);
2016                         btrfs_set_node_key(parent, &right_key, pslot + 1);
2017                         btrfs_mark_buffer_dirty(parent);
2018                 }
2019         }
2020         if (btrfs_header_nritems(mid) == 1) {
2021                 /*
2022                  * we're not allowed to leave a node with one item in the
2023                  * tree during a delete.  A deletion from lower in the tree
2024                  * could try to delete the only pointer in this node.
2025                  * So, pull some keys from the left.
2026                  * There has to be a left pointer at this point because
2027                  * otherwise we would have pulled some pointers from the
2028                  * right
2029                  */
2030                 if (!left) {
2031                         ret = -EROFS;
2032                         btrfs_std_error(root->fs_info, ret);
2033                         goto enospc;
2034                 }
2035                 wret = balance_node_right(trans, root, mid, left);
2036                 if (wret < 0) {
2037                         ret = wret;
2038                         goto enospc;
2039                 }
2040                 if (wret == 1) {
2041                         wret = push_node_left(trans, root, left, mid, 1);
2042                         if (wret < 0)
2043                                 ret = wret;
2044                 }
2045                 BUG_ON(wret == 1);
2046         }
2047         if (btrfs_header_nritems(mid) == 0) {
2048                 clean_tree_block(trans, root, mid);
2049                 btrfs_tree_unlock(mid);
2050                 del_ptr(root, path, level + 1, pslot);
2051                 root_sub_used(root, mid->len);
2052                 btrfs_free_tree_block(trans, root, mid, 0, 1);
2053                 free_extent_buffer_stale(mid);
2054                 mid = NULL;
2055         } else {
2056                 /* update the parent key to reflect our changes */
2057                 struct btrfs_disk_key mid_key;
2058                 btrfs_node_key(mid, &mid_key, 0);
2059                 tree_mod_log_set_node_key(root->fs_info, parent,
2060                                           pslot, 0);
2061                 btrfs_set_node_key(parent, &mid_key, pslot);
2062                 btrfs_mark_buffer_dirty(parent);
2063         }
2064
2065         /* update the path */
2066         if (left) {
2067                 if (btrfs_header_nritems(left) > orig_slot) {
2068                         extent_buffer_get(left);
2069                         /* left was locked after cow */
2070                         path->nodes[level] = left;
2071                         path->slots[level + 1] -= 1;
2072                         path->slots[level] = orig_slot;
2073                         if (mid) {
2074                                 btrfs_tree_unlock(mid);
2075                                 free_extent_buffer(mid);
2076                         }
2077                 } else {
2078                         orig_slot -= btrfs_header_nritems(left);
2079                         path->slots[level] = orig_slot;
2080                 }
2081         }
2082         /* double check we haven't messed things up */
2083         if (orig_ptr !=
2084             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2085                 BUG();
2086 enospc:
2087         if (right) {
2088                 btrfs_tree_unlock(right);
2089                 free_extent_buffer(right);
2090         }
2091         if (left) {
2092                 if (path->nodes[level] != left)
2093                         btrfs_tree_unlock(left);
2094                 free_extent_buffer(left);
2095         }
2096         return ret;
2097 }
2098
2099 /* Node balancing for insertion.  Here we only split or push nodes around
2100  * when they are completely full.  This is also done top down, so we
2101  * have to be pessimistic.
2102  */
2103 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2104                                           struct btrfs_root *root,
2105                                           struct btrfs_path *path, int level)
2106 {
2107         struct extent_buffer *right = NULL;
2108         struct extent_buffer *mid;
2109         struct extent_buffer *left = NULL;
2110         struct extent_buffer *parent = NULL;
2111         int ret = 0;
2112         int wret;
2113         int pslot;
2114         int orig_slot = path->slots[level];
2115
2116         if (level == 0)
2117                 return 1;
2118
2119         mid = path->nodes[level];
2120         WARN_ON(btrfs_header_generation(mid) != trans->transid);
2121
2122         if (level < BTRFS_MAX_LEVEL - 1) {
2123                 parent = path->nodes[level + 1];
2124                 pslot = path->slots[level + 1];
2125         }
2126
2127         if (!parent)
2128                 return 1;
2129
2130         left = read_node_slot(root, parent, pslot - 1);
2131
2132         /* first, try to make some room in the middle buffer */
2133         if (left) {
2134                 u32 left_nr;
2135
2136                 btrfs_tree_lock(left);
2137                 btrfs_set_lock_blocking(left);
2138
2139                 left_nr = btrfs_header_nritems(left);
2140                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2141                         wret = 1;
2142                 } else {
2143                         ret = btrfs_cow_block(trans, root, left, parent,
2144                                               pslot - 1, &left);
2145                         if (ret)
2146                                 wret = 1;
2147                         else {
2148                                 wret = push_node_left(trans, root,
2149                                                       left, mid, 0);
2150                         }
2151                 }
2152                 if (wret < 0)
2153                         ret = wret;
2154                 if (wret == 0) {
2155                         struct btrfs_disk_key disk_key;
2156                         orig_slot += left_nr;
2157                         btrfs_node_key(mid, &disk_key, 0);
2158                         tree_mod_log_set_node_key(root->fs_info, parent,
2159                                                   pslot, 0);
2160                         btrfs_set_node_key(parent, &disk_key, pslot);
2161                         btrfs_mark_buffer_dirty(parent);
2162                         if (btrfs_header_nritems(left) > orig_slot) {
2163                                 path->nodes[level] = left;
2164                                 path->slots[level + 1] -= 1;
2165                                 path->slots[level] = orig_slot;
2166                                 btrfs_tree_unlock(mid);
2167                                 free_extent_buffer(mid);
2168                         } else {
2169                                 orig_slot -=
2170                                         btrfs_header_nritems(left);
2171                                 path->slots[level] = orig_slot;
2172                                 btrfs_tree_unlock(left);
2173                                 free_extent_buffer(left);
2174                         }
2175                         return 0;
2176                 }
2177                 btrfs_tree_unlock(left);
2178                 free_extent_buffer(left);
2179         }
2180         right = read_node_slot(root, parent, pslot + 1);
2181
2182         /*
2183          * then try to empty the right most buffer into the middle
2184          */
2185         if (right) {
2186                 u32 right_nr;
2187
2188                 btrfs_tree_lock(right);
2189                 btrfs_set_lock_blocking(right);
2190
2191                 right_nr = btrfs_header_nritems(right);
2192                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2193                         wret = 1;
2194                 } else {
2195                         ret = btrfs_cow_block(trans, root, right,
2196                                               parent, pslot + 1,
2197                                               &right);
2198                         if (ret)
2199                                 wret = 1;
2200                         else {
2201                                 wret = balance_node_right(trans, root,
2202                                                           right, mid);
2203                         }
2204                 }
2205                 if (wret < 0)
2206                         ret = wret;
2207                 if (wret == 0) {
2208                         struct btrfs_disk_key disk_key;
2209
2210                         btrfs_node_key(right, &disk_key, 0);
2211                         tree_mod_log_set_node_key(root->fs_info, parent,
2212                                                   pslot + 1, 0);
2213                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2214                         btrfs_mark_buffer_dirty(parent);
2215
2216                         if (btrfs_header_nritems(mid) <= orig_slot) {
2217                                 path->nodes[level] = right;
2218                                 path->slots[level + 1] += 1;
2219                                 path->slots[level] = orig_slot -
2220                                         btrfs_header_nritems(mid);
2221                                 btrfs_tree_unlock(mid);
2222                                 free_extent_buffer(mid);
2223                         } else {
2224                                 btrfs_tree_unlock(right);
2225                                 free_extent_buffer(right);
2226                         }
2227                         return 0;
2228                 }
2229                 btrfs_tree_unlock(right);
2230                 free_extent_buffer(right);
2231         }
2232         return 1;
2233 }
2234
2235 /*
2236  * readahead one full node of leaves, finding things that are close
2237  * to the block in 'slot', and triggering ra on them.
2238  */
2239 static void reada_for_search(struct btrfs_root *root,
2240                              struct btrfs_path *path,
2241                              int level, int slot, u64 objectid)
2242 {
2243         struct extent_buffer *node;
2244         struct btrfs_disk_key disk_key;
2245         u32 nritems;
2246         u64 search;
2247         u64 target;
2248         u64 nread = 0;
2249         u64 gen;
2250         int direction = path->reada;
2251         struct extent_buffer *eb;
2252         u32 nr;
2253         u32 blocksize;
2254         u32 nscan = 0;
2255
2256         if (level != 1)
2257                 return;
2258
2259         if (!path->nodes[level])
2260                 return;
2261
2262         node = path->nodes[level];
2263
2264         search = btrfs_node_blockptr(node, slot);
2265         blocksize = root->nodesize;
2266         eb = btrfs_find_tree_block(root, search);
2267         if (eb) {
2268                 free_extent_buffer(eb);
2269                 return;
2270         }
2271
2272         target = search;
2273
2274         nritems = btrfs_header_nritems(node);
2275         nr = slot;
2276
2277         while (1) {
2278                 if (direction < 0) {
2279                         if (nr == 0)
2280                                 break;
2281                         nr--;
2282                 } else if (direction > 0) {
2283                         nr++;
2284                         if (nr >= nritems)
2285                                 break;
2286                 }
2287                 if (path->reada < 0 && objectid) {
2288                         btrfs_node_key(node, &disk_key, nr);
2289                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2290                                 break;
2291                 }
2292                 search = btrfs_node_blockptr(node, nr);
2293                 if ((search <= target && target - search <= 65536) ||
2294                     (search > target && search - target <= 65536)) {
2295                         gen = btrfs_node_ptr_generation(node, nr);
2296                         readahead_tree_block(root, search, blocksize);
2297                         nread += blocksize;
2298                 }
2299                 nscan++;
2300                 if ((nread > 65536 || nscan > 32))
2301                         break;
2302         }
2303 }
2304
2305 static noinline void reada_for_balance(struct btrfs_root *root,
2306                                        struct btrfs_path *path, int level)
2307 {
2308         int slot;
2309         int nritems;
2310         struct extent_buffer *parent;
2311         struct extent_buffer *eb;
2312         u64 gen;
2313         u64 block1 = 0;
2314         u64 block2 = 0;
2315         int blocksize;
2316
2317         parent = path->nodes[level + 1];
2318         if (!parent)
2319                 return;
2320
2321         nritems = btrfs_header_nritems(parent);
2322         slot = path->slots[level + 1];
2323         blocksize = root->nodesize;
2324
2325         if (slot > 0) {
2326                 block1 = btrfs_node_blockptr(parent, slot - 1);
2327                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2328                 eb = btrfs_find_tree_block(root, block1);
2329                 /*
2330                  * if we get -eagain from btrfs_buffer_uptodate, we
2331                  * don't want to return eagain here.  That will loop
2332                  * forever
2333                  */
2334                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2335                         block1 = 0;
2336                 free_extent_buffer(eb);
2337         }
2338         if (slot + 1 < nritems) {
2339                 block2 = btrfs_node_blockptr(parent, slot + 1);
2340                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2341                 eb = btrfs_find_tree_block(root, block2);
2342                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2343                         block2 = 0;
2344                 free_extent_buffer(eb);
2345         }
2346
2347         if (block1)
2348                 readahead_tree_block(root, block1, blocksize);
2349         if (block2)
2350                 readahead_tree_block(root, block2, blocksize);
2351 }
2352
2353
2354 /*
2355  * when we walk down the tree, it is usually safe to unlock the higher layers
2356  * in the tree.  The exceptions are when our path goes through slot 0, because
2357  * operations on the tree might require changing key pointers higher up in the
2358  * tree.
2359  *
2360  * callers might also have set path->keep_locks, which tells this code to keep
2361  * the lock if the path points to the last slot in the block.  This is part of
2362  * walking through the tree, and selecting the next slot in the higher block.
2363  *
2364  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2365  * if lowest_unlock is 1, level 0 won't be unlocked
2366  */
2367 static noinline void unlock_up(struct btrfs_path *path, int level,
2368                                int lowest_unlock, int min_write_lock_level,
2369                                int *write_lock_level)
2370 {
2371         int i;
2372         int skip_level = level;
2373         int no_skips = 0;
2374         struct extent_buffer *t;
2375
2376         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2377                 if (!path->nodes[i])
2378                         break;
2379                 if (!path->locks[i])
2380                         break;
2381                 if (!no_skips && path->slots[i] == 0) {
2382                         skip_level = i + 1;
2383                         continue;
2384                 }
2385                 if (!no_skips && path->keep_locks) {
2386                         u32 nritems;
2387                         t = path->nodes[i];
2388                         nritems = btrfs_header_nritems(t);
2389                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2390                                 skip_level = i + 1;
2391                                 continue;
2392                         }
2393                 }
2394                 if (skip_level < i && i >= lowest_unlock)
2395                         no_skips = 1;
2396
2397                 t = path->nodes[i];
2398                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2399                         btrfs_tree_unlock_rw(t, path->locks[i]);
2400                         path->locks[i] = 0;
2401                         if (write_lock_level &&
2402                             i > min_write_lock_level &&
2403                             i <= *write_lock_level) {
2404                                 *write_lock_level = i - 1;
2405                         }
2406                 }
2407         }
2408 }
2409
2410 /*
2411  * This releases any locks held in the path starting at level and
2412  * going all the way up to the root.
2413  *
2414  * btrfs_search_slot will keep the lock held on higher nodes in a few
2415  * corner cases, such as COW of the block at slot zero in the node.  This
2416  * ignores those rules, and it should only be called when there are no
2417  * more updates to be done higher up in the tree.
2418  */
2419 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2420 {
2421         int i;
2422
2423         if (path->keep_locks)
2424                 return;
2425
2426         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2427                 if (!path->nodes[i])
2428                         continue;
2429                 if (!path->locks[i])
2430                         continue;
2431                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2432                 path->locks[i] = 0;
2433         }
2434 }
2435
2436 /*
2437  * helper function for btrfs_search_slot.  The goal is to find a block
2438  * in cache without setting the path to blocking.  If we find the block
2439  * we return zero and the path is unchanged.
2440  *
2441  * If we can't find the block, we set the path blocking and do some
2442  * reada.  -EAGAIN is returned and the search must be repeated.
2443  */
2444 static int
2445 read_block_for_search(struct btrfs_trans_handle *trans,
2446                        struct btrfs_root *root, struct btrfs_path *p,
2447                        struct extent_buffer **eb_ret, int level, int slot,
2448                        struct btrfs_key *key, u64 time_seq)
2449 {
2450         u64 blocknr;
2451         u64 gen;
2452         struct extent_buffer *b = *eb_ret;
2453         struct extent_buffer *tmp;
2454         int ret;
2455
2456         blocknr = btrfs_node_blockptr(b, slot);
2457         gen = btrfs_node_ptr_generation(b, slot);
2458
2459         tmp = btrfs_find_tree_block(root, blocknr);
2460         if (tmp) {
2461                 /* first we do an atomic uptodate check */
2462                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2463                         *eb_ret = tmp;
2464                         return 0;
2465                 }
2466
2467                 /* the pages were up to date, but we failed
2468                  * the generation number check.  Do a full
2469                  * read for the generation number that is correct.
2470                  * We must do this without dropping locks so
2471                  * we can trust our generation number
2472                  */
2473                 btrfs_set_path_blocking(p);
2474
2475                 /* now we're allowed to do a blocking uptodate check */
2476                 ret = btrfs_read_buffer(tmp, gen);
2477                 if (!ret) {
2478                         *eb_ret = tmp;
2479                         return 0;
2480                 }
2481                 free_extent_buffer(tmp);
2482                 btrfs_release_path(p);
2483                 return -EIO;
2484         }
2485
2486         /*
2487          * reduce lock contention at high levels
2488          * of the btree by dropping locks before
2489          * we read.  Don't release the lock on the current
2490          * level because we need to walk this node to figure
2491          * out which blocks to read.
2492          */
2493         btrfs_unlock_up_safe(p, level + 1);
2494         btrfs_set_path_blocking(p);
2495
2496         free_extent_buffer(tmp);
2497         if (p->reada)
2498                 reada_for_search(root, p, level, slot, key->objectid);
2499
2500         btrfs_release_path(p);
2501
2502         ret = -EAGAIN;
2503         tmp = read_tree_block(root, blocknr, 0);
2504         if (tmp) {
2505                 /*
2506                  * If the read above didn't mark this buffer up to date,
2507                  * it will never end up being up to date.  Set ret to EIO now
2508                  * and give up so that our caller doesn't loop forever
2509                  * on our EAGAINs.
2510                  */
2511                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2512                         ret = -EIO;
2513                 free_extent_buffer(tmp);
2514         }
2515         return ret;
2516 }
2517
2518 /*
2519  * helper function for btrfs_search_slot.  This does all of the checks
2520  * for node-level blocks and does any balancing required based on
2521  * the ins_len.
2522  *
2523  * If no extra work was required, zero is returned.  If we had to
2524  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2525  * start over
2526  */
2527 static int
2528 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2529                        struct btrfs_root *root, struct btrfs_path *p,
2530                        struct extent_buffer *b, int level, int ins_len,
2531                        int *write_lock_level)
2532 {
2533         int ret;
2534         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2535             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2536                 int sret;
2537
2538                 if (*write_lock_level < level + 1) {
2539                         *write_lock_level = level + 1;
2540                         btrfs_release_path(p);
2541                         goto again;
2542                 }
2543
2544                 btrfs_set_path_blocking(p);
2545                 reada_for_balance(root, p, level);
2546                 sret = split_node(trans, root, p, level);
2547                 btrfs_clear_path_blocking(p, NULL, 0);
2548
2549                 BUG_ON(sret > 0);
2550                 if (sret) {
2551                         ret = sret;
2552                         goto done;
2553                 }
2554                 b = p->nodes[level];
2555         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2556                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2557                 int sret;
2558
2559                 if (*write_lock_level < level + 1) {
2560                         *write_lock_level = level + 1;
2561                         btrfs_release_path(p);
2562                         goto again;
2563                 }
2564
2565                 btrfs_set_path_blocking(p);
2566                 reada_for_balance(root, p, level);
2567                 sret = balance_level(trans, root, p, level);
2568                 btrfs_clear_path_blocking(p, NULL, 0);
2569
2570                 if (sret) {
2571                         ret = sret;
2572                         goto done;
2573                 }
2574                 b = p->nodes[level];
2575                 if (!b) {
2576                         btrfs_release_path(p);
2577                         goto again;
2578                 }
2579                 BUG_ON(btrfs_header_nritems(b) == 1);
2580         }
2581         return 0;
2582
2583 again:
2584         ret = -EAGAIN;
2585 done:
2586         return ret;
2587 }
2588
2589 static void key_search_validate(struct extent_buffer *b,
2590                                 struct btrfs_key *key,
2591                                 int level)
2592 {
2593 #ifdef CONFIG_BTRFS_ASSERT
2594         struct btrfs_disk_key disk_key;
2595
2596         btrfs_cpu_key_to_disk(&disk_key, key);
2597
2598         if (level == 0)
2599                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2600                     offsetof(struct btrfs_leaf, items[0].key),
2601                     sizeof(disk_key)));
2602         else
2603                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2604                     offsetof(struct btrfs_node, ptrs[0].key),
2605                     sizeof(disk_key)));
2606 #endif
2607 }
2608
2609 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2610                       int level, int *prev_cmp, int *slot)
2611 {
2612         if (*prev_cmp != 0) {
2613                 *prev_cmp = bin_search(b, key, level, slot);
2614                 return *prev_cmp;
2615         }
2616
2617         key_search_validate(b, key, level);
2618         *slot = 0;
2619
2620         return 0;
2621 }
2622
2623 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
2624                 u64 iobjectid, u64 ioff, u8 key_type,
2625                 struct btrfs_key *found_key)
2626 {
2627         int ret;
2628         struct btrfs_key key;
2629         struct extent_buffer *eb;
2630         struct btrfs_path *path;
2631
2632         key.type = key_type;
2633         key.objectid = iobjectid;
2634         key.offset = ioff;
2635
2636         if (found_path == NULL) {
2637                 path = btrfs_alloc_path();
2638                 if (!path)
2639                         return -ENOMEM;
2640         } else
2641                 path = found_path;
2642
2643         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2644         if ((ret < 0) || (found_key == NULL)) {
2645                 if (path != found_path)
2646                         btrfs_free_path(path);
2647                 return ret;
2648         }
2649
2650         eb = path->nodes[0];
2651         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2652                 ret = btrfs_next_leaf(fs_root, path);
2653                 if (ret)
2654                         return ret;
2655                 eb = path->nodes[0];
2656         }
2657
2658         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2659         if (found_key->type != key.type ||
2660                         found_key->objectid != key.objectid)
2661                 return 1;
2662
2663         return 0;
2664 }
2665
2666 /*
2667  * look for key in the tree.  path is filled in with nodes along the way
2668  * if key is found, we return zero and you can find the item in the leaf
2669  * level of the path (level 0)
2670  *
2671  * If the key isn't found, the path points to the slot where it should
2672  * be inserted, and 1 is returned.  If there are other errors during the
2673  * search a negative error number is returned.
2674  *
2675  * if ins_len > 0, nodes and leaves will be split as we walk down the
2676  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2677  * possible)
2678  */
2679 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2680                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2681                       ins_len, int cow)
2682 {
2683         struct extent_buffer *b;
2684         int slot;
2685         int ret;
2686         int err;
2687         int level;
2688         int lowest_unlock = 1;
2689         int root_lock;
2690         /* everything at write_lock_level or lower must be write locked */
2691         int write_lock_level = 0;
2692         u8 lowest_level = 0;
2693         int min_write_lock_level;
2694         int prev_cmp;
2695
2696         lowest_level = p->lowest_level;
2697         WARN_ON(lowest_level && ins_len > 0);
2698         WARN_ON(p->nodes[0] != NULL);
2699         BUG_ON(!cow && ins_len);
2700
2701         if (ins_len < 0) {
2702                 lowest_unlock = 2;
2703
2704                 /* when we are removing items, we might have to go up to level
2705                  * two as we update tree pointers  Make sure we keep write
2706                  * for those levels as well
2707                  */
2708                 write_lock_level = 2;
2709         } else if (ins_len > 0) {
2710                 /*
2711                  * for inserting items, make sure we have a write lock on
2712                  * level 1 so we can update keys
2713                  */
2714                 write_lock_level = 1;
2715         }
2716
2717         if (!cow)
2718                 write_lock_level = -1;
2719
2720         if (cow && (p->keep_locks || p->lowest_level))
2721                 write_lock_level = BTRFS_MAX_LEVEL;
2722
2723         min_write_lock_level = write_lock_level;
2724
2725 again:
2726         prev_cmp = -1;
2727         /*
2728          * we try very hard to do read locks on the root
2729          */
2730         root_lock = BTRFS_READ_LOCK;
2731         level = 0;
2732         if (p->search_commit_root) {
2733                 /*
2734                  * the commit roots are read only
2735                  * so we always do read locks
2736                  */
2737                 if (p->need_commit_sem)
2738                         down_read(&root->fs_info->commit_root_sem);
2739                 b = root->commit_root;
2740                 extent_buffer_get(b);
2741                 level = btrfs_header_level(b);
2742                 if (p->need_commit_sem)
2743                         up_read(&root->fs_info->commit_root_sem);
2744                 if (!p->skip_locking)
2745                         btrfs_tree_read_lock(b);
2746         } else {
2747                 if (p->skip_locking) {
2748                         b = btrfs_root_node(root);
2749                         level = btrfs_header_level(b);
2750                 } else {
2751                         /* we don't know the level of the root node
2752                          * until we actually have it read locked
2753                          */
2754                         b = btrfs_read_lock_root_node(root);
2755                         level = btrfs_header_level(b);
2756                         if (level <= write_lock_level) {
2757                                 /* whoops, must trade for write lock */
2758                                 btrfs_tree_read_unlock(b);
2759                                 free_extent_buffer(b);
2760                                 b = btrfs_lock_root_node(root);
2761                                 root_lock = BTRFS_WRITE_LOCK;
2762
2763                                 /* the level might have changed, check again */
2764                                 level = btrfs_header_level(b);
2765                         }
2766                 }
2767         }
2768         p->nodes[level] = b;
2769         if (!p->skip_locking)
2770                 p->locks[level] = root_lock;
2771
2772         while (b) {
2773                 level = btrfs_header_level(b);
2774
2775                 /*
2776                  * setup the path here so we can release it under lock
2777                  * contention with the cow code
2778                  */
2779                 if (cow) {
2780                         /*
2781                          * if we don't really need to cow this block
2782                          * then we don't want to set the path blocking,
2783                          * so we test it here
2784                          */
2785                         if (!should_cow_block(trans, root, b))
2786                                 goto cow_done;
2787
2788                         /*
2789                          * must have write locks on this node and the
2790                          * parent
2791                          */
2792                         if (level > write_lock_level ||
2793                             (level + 1 > write_lock_level &&
2794                             level + 1 < BTRFS_MAX_LEVEL &&
2795                             p->nodes[level + 1])) {
2796                                 write_lock_level = level + 1;
2797                                 btrfs_release_path(p);
2798                                 goto again;
2799                         }
2800
2801                         btrfs_set_path_blocking(p);
2802                         err = btrfs_cow_block(trans, root, b,
2803                                               p->nodes[level + 1],
2804                                               p->slots[level + 1], &b);
2805                         if (err) {
2806                                 ret = err;
2807                                 goto done;
2808                         }
2809                 }
2810 cow_done:
2811                 p->nodes[level] = b;
2812                 btrfs_clear_path_blocking(p, NULL, 0);
2813
2814                 /*
2815                  * we have a lock on b and as long as we aren't changing
2816                  * the tree, there is no way to for the items in b to change.
2817                  * It is safe to drop the lock on our parent before we
2818                  * go through the expensive btree search on b.
2819                  *
2820                  * If we're inserting or deleting (ins_len != 0), then we might
2821                  * be changing slot zero, which may require changing the parent.
2822                  * So, we can't drop the lock until after we know which slot
2823                  * we're operating on.
2824                  */
2825                 if (!ins_len && !p->keep_locks) {
2826                         int u = level + 1;
2827
2828                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2829                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2830                                 p->locks[u] = 0;
2831                         }
2832                 }
2833
2834                 ret = key_search(b, key, level, &prev_cmp, &slot);
2835
2836                 if (level != 0) {
2837                         int dec = 0;
2838                         if (ret && slot > 0) {
2839                                 dec = 1;
2840                                 slot -= 1;
2841                         }
2842                         p->slots[level] = slot;
2843                         err = setup_nodes_for_search(trans, root, p, b, level,
2844                                              ins_len, &write_lock_level);
2845                         if (err == -EAGAIN)
2846                                 goto again;
2847                         if (err) {
2848                                 ret = err;
2849                                 goto done;
2850                         }
2851                         b = p->nodes[level];
2852                         slot = p->slots[level];
2853
2854                         /*
2855                          * slot 0 is special, if we change the key
2856                          * we have to update the parent pointer
2857                          * which means we must have a write lock
2858                          * on the parent
2859                          */
2860                         if (slot == 0 && ins_len &&
2861                             write_lock_level < level + 1) {
2862                                 write_lock_level = level + 1;
2863                                 btrfs_release_path(p);
2864                                 goto again;
2865                         }
2866
2867                         unlock_up(p, level, lowest_unlock,
2868                                   min_write_lock_level, &write_lock_level);
2869
2870                         if (level == lowest_level) {
2871                                 if (dec)
2872                                         p->slots[level]++;
2873                                 goto done;
2874                         }
2875
2876                         err = read_block_for_search(trans, root, p,
2877                                                     &b, level, slot, key, 0);
2878                         if (err == -EAGAIN)
2879                                 goto again;
2880                         if (err) {
2881                                 ret = err;
2882                                 goto done;
2883                         }
2884
2885                         if (!p->skip_locking) {
2886                                 level = btrfs_header_level(b);
2887                                 if (level <= write_lock_level) {
2888                                         err = btrfs_try_tree_write_lock(b);
2889                                         if (!err) {
2890                                                 btrfs_set_path_blocking(p);
2891                                                 btrfs_tree_lock(b);
2892                                                 btrfs_clear_path_blocking(p, b,
2893                                                                   BTRFS_WRITE_LOCK);
2894                                         }
2895                                         p->locks[level] = BTRFS_WRITE_LOCK;
2896                                 } else {
2897                                         err = btrfs_try_tree_read_lock(b);
2898                                         if (!err) {
2899                                                 btrfs_set_path_blocking(p);
2900                                                 btrfs_tree_read_lock(b);
2901                                                 btrfs_clear_path_blocking(p, b,
2902                                                                   BTRFS_READ_LOCK);
2903                                         }
2904                                         p->locks[level] = BTRFS_READ_LOCK;
2905                                 }
2906                                 p->nodes[level] = b;
2907                         }
2908                 } else {
2909                         p->slots[level] = slot;
2910                         if (ins_len > 0 &&
2911                             btrfs_leaf_free_space(root, b) < ins_len) {
2912                                 if (write_lock_level < 1) {
2913                                         write_lock_level = 1;
2914                                         btrfs_release_path(p);
2915                                         goto again;
2916                                 }
2917
2918                                 btrfs_set_path_blocking(p);
2919                                 err = split_leaf(trans, root, key,
2920                                                  p, ins_len, ret == 0);
2921                                 btrfs_clear_path_blocking(p, NULL, 0);
2922
2923                                 BUG_ON(err > 0);
2924                                 if (err) {
2925                                         ret = err;
2926                                         goto done;
2927                                 }
2928                         }
2929                         if (!p->search_for_split)
2930                                 unlock_up(p, level, lowest_unlock,
2931                                           min_write_lock_level, &write_lock_level);
2932                         goto done;
2933                 }
2934         }
2935         ret = 1;
2936 done:
2937         /*
2938          * we don't really know what they plan on doing with the path
2939          * from here on, so for now just mark it as blocking
2940          */
2941         if (!p->leave_spinning)
2942                 btrfs_set_path_blocking(p);
2943         if (ret < 0)
2944                 btrfs_release_path(p);
2945         return ret;
2946 }
2947
2948 /*
2949  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2950  * current state of the tree together with the operations recorded in the tree
2951  * modification log to search for the key in a previous version of this tree, as
2952  * denoted by the time_seq parameter.
2953  *
2954  * Naturally, there is no support for insert, delete or cow operations.
2955  *
2956  * The resulting path and return value will be set up as if we called
2957  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2958  */
2959 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2960                           struct btrfs_path *p, u64 time_seq)
2961 {
2962         struct extent_buffer *b;
2963         int slot;
2964         int ret;
2965         int err;
2966         int level;
2967         int lowest_unlock = 1;
2968         u8 lowest_level = 0;
2969         int prev_cmp = -1;
2970
2971         lowest_level = p->lowest_level;
2972         WARN_ON(p->nodes[0] != NULL);
2973
2974         if (p->search_commit_root) {
2975                 BUG_ON(time_seq);
2976                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2977         }
2978
2979 again:
2980         b = get_old_root(root, time_seq);
2981         level = btrfs_header_level(b);
2982         p->locks[level] = BTRFS_READ_LOCK;
2983
2984         while (b) {
2985                 level = btrfs_header_level(b);
2986                 p->nodes[level] = b;
2987                 btrfs_clear_path_blocking(p, NULL, 0);
2988
2989                 /*
2990                  * we have a lock on b and as long as we aren't changing
2991                  * the tree, there is no way to for the items in b to change.
2992                  * It is safe to drop the lock on our parent before we
2993                  * go through the expensive btree search on b.
2994                  */
2995                 btrfs_unlock_up_safe(p, level + 1);
2996
2997                 /*
2998                  * Since we can unwind eb's we want to do a real search every
2999                  * time.
3000                  */
3001                 prev_cmp = -1;
3002                 ret = key_search(b, key, level, &prev_cmp, &slot);
3003
3004                 if (level != 0) {
3005                         int dec = 0;
3006                         if (ret && slot > 0) {
3007                                 dec = 1;
3008                                 slot -= 1;
3009                         }
3010                         p->slots[level] = slot;
3011                         unlock_up(p, level, lowest_unlock, 0, NULL);
3012
3013                         if (level == lowest_level) {
3014                                 if (dec)
3015                                         p->slots[level]++;
3016                                 goto done;
3017                         }
3018
3019                         err = read_block_for_search(NULL, root, p, &b, level,
3020                                                     slot, key, time_seq);
3021                         if (err == -EAGAIN)
3022                                 goto again;
3023                         if (err) {
3024                                 ret = err;
3025                                 goto done;
3026                         }
3027
3028                         level = btrfs_header_level(b);
3029                         err = btrfs_try_tree_read_lock(b);
3030                         if (!err) {
3031                                 btrfs_set_path_blocking(p);
3032                                 btrfs_tree_read_lock(b);
3033                                 btrfs_clear_path_blocking(p, b,
3034                                                           BTRFS_READ_LOCK);
3035                         }
3036                         b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3037                         if (!b) {
3038                                 ret = -ENOMEM;
3039                                 goto done;
3040                         }
3041                         p->locks[level] = BTRFS_READ_LOCK;
3042                         p->nodes[level] = b;
3043                 } else {
3044                         p->slots[level] = slot;
3045                         unlock_up(p, level, lowest_unlock, 0, NULL);
3046                         goto done;
3047                 }
3048         }
3049         ret = 1;
3050 done:
3051         if (!p->leave_spinning)
3052                 btrfs_set_path_blocking(p);
3053         if (ret < 0)
3054                 btrfs_release_path(p);
3055
3056         return ret;
3057 }
3058
3059 /*
3060  * helper to use instead of search slot if no exact match is needed but
3061  * instead the next or previous item should be returned.
3062  * When find_higher is true, the next higher item is returned, the next lower
3063  * otherwise.
3064  * When return_any and find_higher are both true, and no higher item is found,
3065  * return the next lower instead.
3066  * When return_any is true and find_higher is false, and no lower item is found,
3067  * return the next higher instead.
3068  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3069  * < 0 on error
3070  */
3071 int btrfs_search_slot_for_read(struct btrfs_root *root,
3072                                struct btrfs_key *key, struct btrfs_path *p,
3073                                int find_higher, int return_any)
3074 {
3075         int ret;
3076         struct extent_buffer *leaf;
3077
3078 again:
3079         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3080         if (ret <= 0)
3081                 return ret;
3082         /*
3083          * a return value of 1 means the path is at the position where the
3084          * item should be inserted. Normally this is the next bigger item,
3085          * but in case the previous item is the last in a leaf, path points
3086          * to the first free slot in the previous leaf, i.e. at an invalid
3087          * item.
3088          */
3089         leaf = p->nodes[0];
3090
3091         if (find_higher) {
3092                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3093                         ret = btrfs_next_leaf(root, p);
3094                         if (ret <= 0)
3095                                 return ret;
3096                         if (!return_any)
3097                                 return 1;
3098                         /*
3099                          * no higher item found, return the next
3100                          * lower instead
3101                          */
3102                         return_any = 0;
3103                         find_higher = 0;
3104                         btrfs_release_path(p);
3105                         goto again;
3106                 }
3107         } else {
3108                 if (p->slots[0] == 0) {
3109                         ret = btrfs_prev_leaf(root, p);
3110                         if (ret < 0)
3111                                 return ret;
3112                         if (!ret) {
3113                                 leaf = p->nodes[0];
3114                                 if (p->slots[0] == btrfs_header_nritems(leaf))
3115                                         p->slots[0]--;
3116                                 return 0;
3117                         }
3118                         if (!return_any)
3119                                 return 1;
3120                         /*
3121                          * no lower item found, return the next
3122                          * higher instead
3123                          */
3124                         return_any = 0;
3125                         find_higher = 1;
3126                         btrfs_release_path(p);
3127                         goto again;
3128                 } else {
3129                         --p->slots[0];
3130                 }
3131         }
3132         return 0;
3133 }
3134
3135 /*
3136  * adjust the pointers going up the tree, starting at level
3137  * making sure the right key of each node is points to 'key'.
3138  * This is used after shifting pointers to the left, so it stops
3139  * fixing up pointers when a given leaf/node is not in slot 0 of the
3140  * higher levels
3141  *
3142  */
3143 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
3144                            struct btrfs_disk_key *key, int level)
3145 {
3146         int i;
3147         struct extent_buffer *t;
3148
3149         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3150                 int tslot = path->slots[i];
3151                 if (!path->nodes[i])
3152                         break;
3153                 t = path->nodes[i];
3154                 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
3155                 btrfs_set_node_key(t, key, tslot);
3156                 btrfs_mark_buffer_dirty(path->nodes[i]);
3157                 if (tslot != 0)
3158                         break;
3159         }
3160 }
3161
3162 /*
3163  * update item key.
3164  *
3165  * This function isn't completely safe. It's the caller's responsibility
3166  * that the new key won't break the order
3167  */
3168 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3169                              struct btrfs_key *new_key)
3170 {
3171         struct btrfs_disk_key disk_key;
3172         struct extent_buffer *eb;
3173         int slot;
3174
3175         eb = path->nodes[0];
3176         slot = path->slots[0];
3177         if (slot > 0) {
3178                 btrfs_item_key(eb, &disk_key, slot - 1);
3179                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3180         }
3181         if (slot < btrfs_header_nritems(eb) - 1) {
3182                 btrfs_item_key(eb, &disk_key, slot + 1);
3183                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3184         }
3185
3186         btrfs_cpu_key_to_disk(&disk_key, new_key);
3187         btrfs_set_item_key(eb, &disk_key, slot);
3188         btrfs_mark_buffer_dirty(eb);
3189         if (slot == 0)
3190                 fixup_low_keys(root, path, &disk_key, 1);
3191 }
3192
3193 /*
3194  * try to push data from one node into the next node left in the
3195  * tree.
3196  *
3197  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3198  * error, and > 0 if there was no room in the left hand block.
3199  */
3200 static int push_node_left(struct btrfs_trans_handle *trans,
3201                           struct btrfs_root *root, struct extent_buffer *dst,
3202                           struct extent_buffer *src, int empty)
3203 {
3204         int push_items = 0;
3205         int src_nritems;
3206         int dst_nritems;
3207         int ret = 0;
3208
3209         src_nritems = btrfs_header_nritems(src);
3210         dst_nritems = btrfs_header_nritems(dst);
3211         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3212         WARN_ON(btrfs_header_generation(src) != trans->transid);
3213         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3214
3215         if (!empty && src_nritems <= 8)
3216                 return 1;
3217
3218         if (push_items <= 0)
3219                 return 1;
3220
3221         if (empty) {
3222                 push_items = min(src_nritems, push_items);
3223                 if (push_items < src_nritems) {
3224                         /* leave at least 8 pointers in the node if
3225                          * we aren't going to empty it
3226                          */
3227                         if (src_nritems - push_items < 8) {
3228                                 if (push_items <= 8)
3229                                         return 1;
3230                                 push_items -= 8;
3231                         }
3232                 }
3233         } else
3234                 push_items = min(src_nritems - 8, push_items);
3235
3236         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3237                                    push_items);
3238         if (ret) {
3239                 btrfs_abort_transaction(trans, root, ret);
3240                 return ret;
3241         }
3242         copy_extent_buffer(dst, src,
3243                            btrfs_node_key_ptr_offset(dst_nritems),
3244                            btrfs_node_key_ptr_offset(0),
3245                            push_items * sizeof(struct btrfs_key_ptr));
3246
3247         if (push_items < src_nritems) {
3248                 /*
3249                  * don't call tree_mod_log_eb_move here, key removal was already
3250                  * fully logged by tree_mod_log_eb_copy above.
3251                  */
3252                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3253                                       btrfs_node_key_ptr_offset(push_items),
3254                                       (src_nritems - push_items) *
3255                                       sizeof(struct btrfs_key_ptr));
3256         }
3257         btrfs_set_header_nritems(src, src_nritems - push_items);
3258         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3259         btrfs_mark_buffer_dirty(src);
3260         btrfs_mark_buffer_dirty(dst);
3261
3262         return ret;
3263 }
3264
3265 /*
3266  * try to push data from one node into the next node right in the
3267  * tree.
3268  *
3269  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3270  * error, and > 0 if there was no room in the right hand block.
3271  *
3272  * this will  only push up to 1/2 the contents of the left node over
3273  */
3274 static int balance_node_right(struct btrfs_trans_handle *trans,
3275                               struct btrfs_root *root,
3276                               struct extent_buffer *dst,
3277                               struct extent_buffer *src)
3278 {
3279         int push_items = 0;
3280         int max_push;
3281         int src_nritems;
3282         int dst_nritems;
3283         int ret = 0;
3284
3285         WARN_ON(btrfs_header_generation(src) != trans->transid);
3286         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3287
3288         src_nritems = btrfs_header_nritems(src);
3289         dst_nritems = btrfs_header_nritems(dst);
3290         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3291         if (push_items <= 0)
3292                 return 1;
3293
3294         if (src_nritems < 4)
3295                 return 1;
3296
3297         max_push = src_nritems / 2 + 1;
3298         /* don't try to empty the node */
3299         if (max_push >= src_nritems)
3300                 return 1;
3301
3302         if (max_push < push_items)
3303                 push_items = max_push;
3304
3305         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3306         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3307                                       btrfs_node_key_ptr_offset(0),
3308                                       (dst_nritems) *
3309                                       sizeof(struct btrfs_key_ptr));
3310
3311         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3312                                    src_nritems - push_items, push_items);
3313         if (ret) {
3314                 btrfs_abort_transaction(trans, root, ret);
3315                 return ret;
3316         }
3317         copy_extent_buffer(dst, src,
3318                            btrfs_node_key_ptr_offset(0),
3319                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3320                            push_items * sizeof(struct btrfs_key_ptr));
3321
3322         btrfs_set_header_nritems(src, src_nritems - push_items);
3323         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3324
3325         btrfs_mark_buffer_dirty(src);
3326         btrfs_mark_buffer_dirty(dst);
3327
3328         return ret;
3329 }
3330
3331 /*
3332  * helper function to insert a new root level in the tree.
3333  * A new node is allocated, and a single item is inserted to
3334  * point to the existing root
3335  *
3336  * returns zero on success or < 0 on failure.
3337  */
3338 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3339                            struct btrfs_root *root,
3340                            struct btrfs_path *path, int level)
3341 {
3342         u64 lower_gen;
3343         struct extent_buffer *lower;
3344         struct extent_buffer *c;
3345         struct extent_buffer *old;
3346         struct btrfs_disk_key lower_key;
3347
3348         BUG_ON(path->nodes[level]);
3349         BUG_ON(path->nodes[level-1] != root->node);
3350
3351         lower = path->nodes[level-1];
3352         if (level == 1)
3353                 btrfs_item_key(lower, &lower_key, 0);
3354         else
3355                 btrfs_node_key(lower, &lower_key, 0);
3356
3357         c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3358                                    &lower_key, level, root->node->start, 0);
3359         if (IS_ERR(c))
3360                 return PTR_ERR(c);
3361
3362         root_add_used(root, root->nodesize);
3363
3364         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3365         btrfs_set_header_nritems(c, 1);
3366         btrfs_set_header_level(c, level);
3367         btrfs_set_header_bytenr(c, c->start);
3368         btrfs_set_header_generation(c, trans->transid);
3369         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3370         btrfs_set_header_owner(c, root->root_key.objectid);
3371
3372         write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3373                             BTRFS_FSID_SIZE);
3374
3375         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3376                             btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3377
3378         btrfs_set_node_key(c, &lower_key, 0);
3379         btrfs_set_node_blockptr(c, 0, lower->start);
3380         lower_gen = btrfs_header_generation(lower);
3381         WARN_ON(lower_gen != trans->transid);
3382
3383         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3384
3385         btrfs_mark_buffer_dirty(c);
3386
3387         old = root->node;
3388         tree_mod_log_set_root_pointer(root, c, 0);
3389         rcu_assign_pointer(root->node, c);
3390
3391         /* the super has an extra ref to root->node */
3392         free_extent_buffer(old);
3393
3394         add_root_to_dirty_list(root);
3395         extent_buffer_get(c);
3396         path->nodes[level] = c;
3397         path->locks[level] = BTRFS_WRITE_LOCK;
3398         path->slots[level] = 0;
3399         return 0;
3400 }
3401
3402 /*
3403  * worker function to insert a single pointer in a node.
3404  * the node should have enough room for the pointer already
3405  *
3406  * slot and level indicate where you want the key to go, and
3407  * blocknr is the block the key points to.
3408  */
3409 static void insert_ptr(struct btrfs_trans_handle *trans,
3410                        struct btrfs_root *root, struct btrfs_path *path,
3411                        struct btrfs_disk_key *key, u64 bytenr,
3412                        int slot, int level)
3413 {
3414         struct extent_buffer *lower;
3415         int nritems;
3416         int ret;
3417
3418         BUG_ON(!path->nodes[level]);
3419         btrfs_assert_tree_locked(path->nodes[level]);
3420         lower = path->nodes[level];
3421         nritems = btrfs_header_nritems(lower);
3422         BUG_ON(slot > nritems);
3423         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3424         if (slot != nritems) {
3425                 if (level)
3426                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3427                                              slot, nritems - slot);
3428                 memmove_extent_buffer(lower,
3429                               btrfs_node_key_ptr_offset(slot + 1),
3430                               btrfs_node_key_ptr_offset(slot),
3431                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3432         }
3433         if (level) {
3434                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3435                                               MOD_LOG_KEY_ADD, GFP_NOFS);
3436                 BUG_ON(ret < 0);
3437         }
3438         btrfs_set_node_key(lower, key, slot);
3439         btrfs_set_node_blockptr(lower, slot, bytenr);
3440         WARN_ON(trans->transid == 0);
3441         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3442         btrfs_set_header_nritems(lower, nritems + 1);
3443         btrfs_mark_buffer_dirty(lower);
3444 }
3445
3446 /*
3447  * split the node at the specified level in path in two.
3448  * The path is corrected to point to the appropriate node after the split
3449  *
3450  * Before splitting this tries to make some room in the node by pushing
3451  * left and right, if either one works, it returns right away.
3452  *
3453  * returns 0 on success and < 0 on failure
3454  */
3455 static noinline int split_node(struct btrfs_trans_handle *trans,
3456                                struct btrfs_root *root,
3457                                struct btrfs_path *path, int level)
3458 {
3459         struct extent_buffer *c;
3460         struct extent_buffer *split;
3461         struct btrfs_disk_key disk_key;
3462         int mid;
3463         int ret;
3464         u32 c_nritems;
3465
3466         c = path->nodes[level];
3467         WARN_ON(btrfs_header_generation(c) != trans->transid);
3468         if (c == root->node) {
3469                 /*
3470                  * trying to split the root, lets make a new one
3471                  *
3472                  * tree mod log: We don't log_removal old root in
3473                  * insert_new_root, because that root buffer will be kept as a
3474                  * normal node. We are going to log removal of half of the
3475                  * elements below with tree_mod_log_eb_copy. We're holding a
3476                  * tree lock on the buffer, which is why we cannot race with
3477                  * other tree_mod_log users.
3478                  */
3479                 ret = insert_new_root(trans, root, path, level + 1);
3480                 if (ret)
3481                         return ret;
3482         } else {
3483                 ret = push_nodes_for_insert(trans, root, path, level);
3484                 c = path->nodes[level];
3485                 if (!ret && btrfs_header_nritems(c) <
3486                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3487                         return 0;
3488                 if (ret < 0)
3489                         return ret;
3490         }
3491
3492         c_nritems = btrfs_header_nritems(c);
3493         mid = (c_nritems + 1) / 2;
3494         btrfs_node_key(c, &disk_key, mid);
3495
3496         split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3497                         &disk_key, level, c->start, 0);
3498         if (IS_ERR(split))
3499                 return PTR_ERR(split);
3500
3501         root_add_used(root, root->nodesize);
3502
3503         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3504         btrfs_set_header_level(split, btrfs_header_level(c));
3505         btrfs_set_header_bytenr(split, split->start);
3506         btrfs_set_header_generation(split, trans->transid);
3507         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3508         btrfs_set_header_owner(split, root->root_key.objectid);
3509         write_extent_buffer(split, root->fs_info->fsid,
3510                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
3511         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3512                             btrfs_header_chunk_tree_uuid(split),
3513                             BTRFS_UUID_SIZE);
3514
3515         ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3516                                    mid, c_nritems - mid);
3517         if (ret) {
3518                 btrfs_abort_transaction(trans, root, ret);
3519                 return ret;
3520         }
3521         copy_extent_buffer(split, c,
3522                            btrfs_node_key_ptr_offset(0),
3523                            btrfs_node_key_ptr_offset(mid),
3524                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3525         btrfs_set_header_nritems(split, c_nritems - mid);
3526         btrfs_set_header_nritems(c, mid);
3527         ret = 0;
3528
3529         btrfs_mark_buffer_dirty(c);
3530         btrfs_mark_buffer_dirty(split);
3531
3532         insert_ptr(trans, root, path, &disk_key, split->start,
3533                    path->slots[level + 1] + 1, level + 1);
3534
3535         if (path->slots[level] >= mid) {
3536                 path->slots[level] -= mid;
3537                 btrfs_tree_unlock(c);
3538                 free_extent_buffer(c);
3539                 path->nodes[level] = split;
3540                 path->slots[level + 1] += 1;
3541         } else {
3542                 btrfs_tree_unlock(split);
3543                 free_extent_buffer(split);
3544         }
3545         return ret;
3546 }
3547
3548 /*
3549  * how many bytes are required to store the items in a leaf.  start
3550  * and nr indicate which items in the leaf to check.  This totals up the
3551  * space used both by the item structs and the item data
3552  */
3553 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3554 {
3555         struct btrfs_item *start_item;
3556         struct btrfs_item *end_item;
3557         struct btrfs_map_token token;
3558         int data_len;
3559         int nritems = btrfs_header_nritems(l);
3560         int end = min(nritems, start + nr) - 1;
3561
3562         if (!nr)
3563                 return 0;
3564         btrfs_init_map_token(&token);
3565         start_item = btrfs_item_nr(start);
3566         end_item = btrfs_item_nr(end);
3567         data_len = btrfs_token_item_offset(l, start_item, &token) +
3568                 btrfs_token_item_size(l, start_item, &token);
3569         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3570         data_len += sizeof(struct btrfs_item) * nr;
3571         WARN_ON(data_len < 0);
3572         return data_len;
3573 }
3574
3575 /*
3576  * The space between the end of the leaf items and
3577  * the start of the leaf data.  IOW, how much room
3578  * the leaf has left for both items and data
3579  */
3580 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3581                                    struct extent_buffer *leaf)
3582 {
3583         int nritems = btrfs_header_nritems(leaf);
3584         int ret;
3585         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3586         if (ret < 0) {
3587                 btrfs_crit(root->fs_info,
3588                         "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3589                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3590                        leaf_space_used(leaf, 0, nritems), nritems);
3591         }
3592         return ret;
3593 }
3594
3595 /*
3596  * min slot controls the lowest index we're willing to push to the
3597  * right.  We'll push up to and including min_slot, but no lower
3598  */
3599 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3600                                       struct btrfs_root *root,
3601                                       struct btrfs_path *path,
3602                                       int data_size, int empty,
3603                                       struct extent_buffer *right,
3604                                       int free_space, u32 left_nritems,
3605                                       u32 min_slot)
3606 {
3607         struct extent_buffer *left = path->nodes[0];
3608         struct extent_buffer *upper = path->nodes[1];
3609         struct btrfs_map_token token;
3610         struct btrfs_disk_key disk_key;
3611         int slot;
3612         u32 i;
3613         int push_space = 0;
3614         int push_items = 0;
3615         struct btrfs_item *item;
3616         u32 nr;
3617         u32 right_nritems;
3618         u32 data_end;
3619         u32 this_item_size;
3620
3621         btrfs_init_map_token(&token);
3622
3623         if (empty)
3624                 nr = 0;
3625         else
3626                 nr = max_t(u32, 1, min_slot);
3627
3628         if (path->slots[0] >= left_nritems)
3629                 push_space += data_size;
3630
3631         slot = path->slots[1];
3632         i = left_nritems - 1;
3633         while (i >= nr) {
3634                 item = btrfs_item_nr(i);
3635
3636                 if (!empty && push_items > 0) {
3637                         if (path->slots[0] > i)
3638                                 break;
3639                         if (path->slots[0] == i) {
3640                                 int space = btrfs_leaf_free_space(root, left);
3641                                 if (space + push_space * 2 > free_space)
3642                                         break;
3643                         }
3644                 }
3645
3646                 if (path->slots[0] == i)
3647                         push_space += data_size;
3648
3649                 this_item_size = btrfs_item_size(left, item);
3650                 if (this_item_size + sizeof(*item) + push_space > free_space)
3651                         break;
3652
3653                 push_items++;
3654                 push_space += this_item_size + sizeof(*item);
3655                 if (i == 0)
3656                         break;
3657                 i--;
3658         }
3659
3660         if (push_items == 0)
3661                 goto out_unlock;
3662
3663         WARN_ON(!empty && push_items == left_nritems);
3664
3665         /* push left to right */
3666         right_nritems = btrfs_header_nritems(right);
3667
3668         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3669         push_space -= leaf_data_end(root, left);
3670
3671         /* make room in the right data area */
3672         data_end = leaf_data_end(root, right);
3673         memmove_extent_buffer(right,
3674                               btrfs_leaf_data(right) + data_end - push_space,
3675                               btrfs_leaf_data(right) + data_end,
3676                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3677
3678         /* copy from the left data area */
3679         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3680                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3681                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3682                      push_space);
3683
3684         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3685                               btrfs_item_nr_offset(0),
3686                               right_nritems * sizeof(struct btrfs_item));
3687
3688         /* copy the items from left to right */
3689         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3690                    btrfs_item_nr_offset(left_nritems - push_items),
3691                    push_items * sizeof(struct btrfs_item));
3692
3693         /* update the item pointers */
3694         right_nritems += push_items;
3695         btrfs_set_header_nritems(right, right_nritems);
3696         push_space = BTRFS_LEAF_DATA_SIZE(root);
3697         for (i = 0; i < right_nritems; i++) {
3698                 item = btrfs_item_nr(i);
3699                 push_space -= btrfs_token_item_size(right, item, &token);
3700                 btrfs_set_token_item_offset(right, item, push_space, &token);
3701         }
3702
3703         left_nritems -= push_items;
3704         btrfs_set_header_nritems(left, left_nritems);
3705
3706         if (left_nritems)
3707                 btrfs_mark_buffer_dirty(left);
3708         else
3709                 clean_tree_block(trans, root, left);
3710
3711         btrfs_mark_buffer_dirty(right);
3712
3713         btrfs_item_key(right, &disk_key, 0);
3714         btrfs_set_node_key(upper, &disk_key, slot + 1);
3715         btrfs_mark_buffer_dirty(upper);
3716
3717         /* then fixup the leaf pointer in the path */
3718         if (path->slots[0] >= left_nritems) {
3719                 path->slots[0] -= left_nritems;
3720                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3721                         clean_tree_block(trans, root, path->nodes[0]);
3722                 btrfs_tree_unlock(path->nodes[0]);
3723                 free_extent_buffer(path->nodes[0]);
3724                 path->nodes[0] = right;
3725                 path->slots[1] += 1;
3726         } else {
3727                 btrfs_tree_unlock(right);
3728                 free_extent_buffer(right);
3729         }
3730         return 0;
3731
3732 out_unlock:
3733         btrfs_tree_unlock(right);
3734         free_extent_buffer(right);
3735         return 1;
3736 }
3737
3738 /*
3739  * push some data in the path leaf to the right, trying to free up at
3740  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3741  *
3742  * returns 1 if the push failed because the other node didn't have enough
3743  * room, 0 if everything worked out and < 0 if there were major errors.
3744  *
3745  * this will push starting from min_slot to the end of the leaf.  It won't
3746  * push any slot lower than min_slot
3747  */
3748 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3749                            *root, struct btrfs_path *path,
3750                            int min_data_size, int data_size,
3751                            int empty, u32 min_slot)
3752 {
3753         struct extent_buffer *left = path->nodes[0];
3754         struct extent_buffer *right;
3755         struct extent_buffer *upper;
3756         int slot;
3757         int free_space;
3758         u32 left_nritems;
3759         int ret;
3760
3761         if (!path->nodes[1])
3762                 return 1;
3763
3764         slot = path->slots[1];
3765         upper = path->nodes[1];
3766         if (slot >= btrfs_header_nritems(upper) - 1)
3767                 return 1;
3768
3769         btrfs_assert_tree_locked(path->nodes[1]);
3770
3771         right = read_node_slot(root, upper, slot + 1);
3772         if (right == NULL)
3773                 return 1;
3774
3775         btrfs_tree_lock(right);
3776         btrfs_set_lock_blocking(right);
3777
3778         free_space = btrfs_leaf_free_space(root, right);
3779         if (free_space < data_size)
3780                 goto out_unlock;
3781
3782         /* cow and double check */
3783         ret = btrfs_cow_block(trans, root, right, upper,
3784                               slot + 1, &right);
3785         if (ret)
3786                 goto out_unlock;
3787
3788         free_space = btrfs_leaf_free_space(root, right);
3789         if (free_space < data_size)
3790                 goto out_unlock;
3791
3792         left_nritems = btrfs_header_nritems(left);
3793         if (left_nritems == 0)
3794                 goto out_unlock;
3795
3796         if (path->slots[0] == left_nritems && !empty) {
3797                 /* Key greater than all keys in the leaf, right neighbor has
3798                  * enough room for it and we're not emptying our leaf to delete
3799                  * it, therefore use right neighbor to insert the new item and
3800                  * no need to touch/dirty our left leaft. */
3801                 btrfs_tree_unlock(left);
3802                 free_extent_buffer(left);
3803                 path->nodes[0] = right;
3804                 path->slots[0] = 0;
3805                 path->slots[1]++;
3806                 return 0;
3807         }
3808
3809         return __push_leaf_right(trans, root, path, min_data_size, empty,
3810                                 right, free_space, left_nritems, min_slot);
3811 out_unlock:
3812         btrfs_tree_unlock(right);
3813         free_extent_buffer(right);
3814         return 1;
3815 }
3816
3817 /*
3818  * push some data in the path leaf to the left, trying to free up at
3819  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3820  *
3821  * max_slot can put a limit on how far into the leaf we'll push items.  The
3822  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3823  * items
3824  */
3825 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3826                                      struct btrfs_root *root,
3827                                      struct btrfs_path *path, int data_size,
3828                                      int empty, struct extent_buffer *left,
3829                                      int free_space, u32 right_nritems,
3830                                      u32 max_slot)
3831 {
3832         struct btrfs_disk_key disk_key;
3833         struct extent_buffer *right = path->nodes[0];
3834         int i;
3835         int push_space = 0;
3836         int push_items = 0;
3837         struct btrfs_item *item;
3838         u32 old_left_nritems;
3839         u32 nr;
3840         int ret = 0;
3841         u32 this_item_size;
3842         u32 old_left_item_size;
3843         struct btrfs_map_token token;
3844
3845         btrfs_init_map_token(&token);
3846
3847         if (empty)
3848                 nr = min(right_nritems, max_slot);
3849         else
3850                 nr = min(right_nritems - 1, max_slot);
3851
3852         for (i = 0; i < nr; i++) {
3853                 item = btrfs_item_nr(i);
3854
3855                 if (!empty && push_items > 0) {
3856                         if (path->slots[0] < i)
3857                                 break;
3858                         if (path->slots[0] == i) {
3859                                 int space = btrfs_leaf_free_space(root, right);
3860                                 if (space + push_space * 2 > free_space)
3861                                         break;
3862                         }
3863                 }
3864
3865                 if (path->slots[0] == i)
3866                         push_space += data_size;
3867
3868                 this_item_size = btrfs_item_size(right, item);
3869                 if (this_item_size + sizeof(*item) + push_space > free_space)
3870                         break;
3871
3872                 push_items++;
3873                 push_space += this_item_size + sizeof(*item);
3874         }
3875
3876         if (push_items == 0) {
3877                 ret = 1;
3878                 goto out;
3879         }
3880         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3881
3882         /* push data from right to left */
3883         copy_extent_buffer(left, right,
3884                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3885                            btrfs_item_nr_offset(0),
3886                            push_items * sizeof(struct btrfs_item));
3887
3888         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3889                      btrfs_item_offset_nr(right, push_items - 1);
3890
3891         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3892                      leaf_data_end(root, left) - push_space,
3893                      btrfs_leaf_data(right) +
3894                      btrfs_item_offset_nr(right, push_items - 1),
3895                      push_space);
3896         old_left_nritems = btrfs_header_nritems(left);
3897         BUG_ON(old_left_nritems <= 0);
3898
3899         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3900         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3901                 u32 ioff;
3902
3903                 item = btrfs_item_nr(i);
3904
3905                 ioff = btrfs_token_item_offset(left, item, &token);
3906                 btrfs_set_token_item_offset(left, item,
3907                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3908                       &token);
3909         }
3910         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3911
3912         /* fixup right node */
3913         if (push_items > right_nritems)
3914                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3915                        right_nritems);
3916
3917         if (push_items < right_nritems) {
3918                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3919                                                   leaf_data_end(root, right);
3920                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3921                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3922                                       btrfs_leaf_data(right) +
3923                                       leaf_data_end(root, right), push_space);
3924
3925                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3926                               btrfs_item_nr_offset(push_items),
3927                              (btrfs_header_nritems(right) - push_items) *
3928                              sizeof(struct btrfs_item));
3929         }
3930         right_nritems -= push_items;
3931         btrfs_set_header_nritems(right, right_nritems);
3932         push_space = BTRFS_LEAF_DATA_SIZE(root);
3933         for (i = 0; i < right_nritems; i++) {
3934                 item = btrfs_item_nr(i);
3935
3936                 push_space = push_space - btrfs_token_item_size(right,
3937                                                                 item, &token);
3938                 btrfs_set_token_item_offset(right, item, push_space, &token);
3939         }
3940
3941         btrfs_mark_buffer_dirty(left);
3942         if (right_nritems)
3943                 btrfs_mark_buffer_dirty(right);
3944         else
3945                 clean_tree_block(trans, root, right);
3946
3947         btrfs_item_key(right, &disk_key, 0);
3948         fixup_low_keys(root, path, &disk_key, 1);
3949
3950         /* then fixup the leaf pointer in the path */
3951         if (path->slots[0] < push_items) {
3952                 path->slots[0] += old_left_nritems;
3953                 btrfs_tree_unlock(path->nodes[0]);
3954                 free_extent_buffer(path->nodes[0]);
3955                 path->nodes[0] = left;
3956                 path->slots[1] -= 1;
3957         } else {
3958                 btrfs_tree_unlock(left);
3959                 free_extent_buffer(left);
3960                 path->slots[0] -= push_items;
3961         }
3962         BUG_ON(path->slots[0] < 0);
3963         return ret;
3964 out:
3965         btrfs_tree_unlock(left);
3966         free_extent_buffer(left);
3967         return ret;
3968 }
3969
3970 /*
3971  * push some data in the path leaf to the left, trying to free up at
3972  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3973  *
3974  * max_slot can put a limit on how far into the leaf we'll push items.  The
3975  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3976  * items
3977  */
3978 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3979                           *root, struct btrfs_path *path, int min_data_size,
3980                           int data_size, int empty, u32 max_slot)
3981 {
3982         struct extent_buffer *right = path->nodes[0];
3983         struct extent_buffer *left;
3984         int slot;
3985         int free_space;
3986         u32 right_nritems;
3987         int ret = 0;
3988
3989         slot = path->slots[1];
3990         if (slot == 0)
3991                 return 1;
3992         if (!path->nodes[1])
3993                 return 1;
3994
3995         right_nritems = btrfs_header_nritems(right);
3996         if (right_nritems == 0)
3997                 return 1;
3998
3999         btrfs_assert_tree_locked(path->nodes[1]);
4000
4001         left = read_node_slot(root, path->nodes[1], slot - 1);
4002         if (left == NULL)
4003                 return 1;
4004
4005         btrfs_tree_lock(left);
4006         btrfs_set_lock_blocking(left);
4007
4008         free_space = btrfs_leaf_free_space(root, left);
4009         if (free_space < data_size) {
4010                 ret = 1;
4011                 goto out;
4012         }
4013
4014         /* cow and double check */
4015         ret = btrfs_cow_block(trans, root, left,
4016                               path->nodes[1], slot - 1, &left);
4017         if (ret) {
4018                 /* we hit -ENOSPC, but it isn't fatal here */
4019                 if (ret == -ENOSPC)
4020                         ret = 1;
4021                 goto out;
4022         }
4023
4024         free_space = btrfs_leaf_free_space(root, left);
4025         if (free_space < data_size) {
4026                 ret = 1;
4027                 goto out;
4028         }
4029
4030         return __push_leaf_left(trans, root, path, min_data_size,
4031                                empty, left, free_space, right_nritems,
4032                                max_slot);
4033 out:
4034         btrfs_tree_unlock(left);
4035         free_extent_buffer(left);
4036         return ret;
4037 }
4038
4039 /*
4040  * split the path's leaf in two, making sure there is at least data_size
4041  * available for the resulting leaf level of the path.
4042  */
4043 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4044                                     struct btrfs_root *root,
4045                                     struct btrfs_path *path,
4046                                     struct extent_buffer *l,
4047                                     struct extent_buffer *right,
4048                                     int slot, int mid, int nritems)
4049 {
4050         int data_copy_size;
4051         int rt_data_off;
4052         int i;
4053         struct btrfs_disk_key disk_key;
4054         struct btrfs_map_token token;
4055
4056         btrfs_init_map_token(&token);
4057
4058         nritems = nritems - mid;
4059         btrfs_set_header_nritems(right, nritems);
4060         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4061
4062         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4063                            btrfs_item_nr_offset(mid),
4064                            nritems * sizeof(struct btrfs_item));
4065
4066         copy_extent_buffer(right, l,
4067                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4068                      data_copy_size, btrfs_leaf_data(l) +
4069                      leaf_data_end(root, l), data_copy_size);
4070
4071         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4072                       btrfs_item_end_nr(l, mid);
4073
4074         for (i = 0; i < nritems; i++) {
4075                 struct btrfs_item *item = btrfs_item_nr(i);
4076                 u32 ioff;
4077
4078                 ioff = btrfs_token_item_offset(right, item, &token);
4079                 btrfs_set_token_item_offset(right, item,
4080                                             ioff + rt_data_off, &token);
4081         }
4082
4083         btrfs_set_header_nritems(l, mid);
4084         btrfs_item_key(right, &disk_key, 0);
4085         insert_ptr(trans, root, path, &disk_key, right->start,
4086                    path->slots[1] + 1, 1);
4087
4088         btrfs_mark_buffer_dirty(right);
4089         btrfs_mark_buffer_dirty(l);
4090         BUG_ON(path->slots[0] != slot);
4091
4092         if (mid <= slot) {
4093                 btrfs_tree_unlock(path->nodes[0]);
4094                 free_extent_buffer(path->nodes[0]);
4095                 path->nodes[0] = right;
4096                 path->slots[0] -= mid;
4097                 path->slots[1] += 1;
4098         } else {
4099                 btrfs_tree_unlock(right);
4100                 free_extent_buffer(right);
4101         }
4102
4103         BUG_ON(path->slots[0] < 0);
4104 }
4105
4106 /*
4107  * double splits happen when we need to insert a big item in the middle
4108  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4109  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4110  *          A                 B                 C
4111  *
4112  * We avoid this by trying to push the items on either side of our target
4113  * into the adjacent leaves.  If all goes well we can avoid the double split
4114  * completely.
4115  */
4116 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4117                                           struct btrfs_root *root,
4118                                           struct btrfs_path *path,
4119                                           int data_size)
4120 {
4121         int ret;
4122         int progress = 0;
4123         int slot;
4124         u32 nritems;
4125         int space_needed = data_size;
4126
4127         slot = path->slots[0];
4128         if (slot < btrfs_header_nritems(path->nodes[0]))
4129                 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4130
4131         /*
4132          * try to push all the items after our slot into the
4133          * right leaf
4134          */
4135         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4136         if (ret < 0)
4137                 return ret;
4138
4139         if (ret == 0)
4140                 progress++;
4141
4142         nritems = btrfs_header_nritems(path->nodes[0]);
4143         /*
4144          * our goal is to get our slot at the start or end of a leaf.  If
4145          * we've done so we're done
4146          */
4147         if (path->slots[0] == 0 || path->slots[0] == nritems)
4148                 return 0;
4149
4150         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4151                 return 0;
4152
4153         /* try to push all the items before our slot into the next leaf */
4154         slot = path->slots[0];
4155         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4156         if (ret < 0)
4157                 return ret;
4158
4159         if (ret == 0)
4160                 progress++;
4161
4162         if (progress)
4163                 return 0;
4164         return 1;
4165 }
4166
4167 /*
4168  * split the path's leaf in two, making sure there is at least data_size
4169  * available for the resulting leaf level of the path.
4170  *
4171  * returns 0 if all went well and < 0 on failure.
4172  */
4173 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4174                                struct btrfs_root *root,
4175                                struct btrfs_key *ins_key,
4176                                struct btrfs_path *path, int data_size,
4177                                int extend)
4178 {
4179         struct btrfs_disk_key disk_key;
4180         struct extent_buffer *l;
4181         u32 nritems;
4182         int mid;
4183         int slot;
4184         struct extent_buffer *right;
4185         int ret = 0;
4186         int wret;
4187         int split;
4188         int num_doubles = 0;
4189         int tried_avoid_double = 0;
4190
4191         l = path->nodes[0];
4192         slot = path->slots[0];
4193         if (extend && data_size + btrfs_item_size_nr(l, slot) +
4194             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4195                 return -EOVERFLOW;
4196
4197         /* first try to make some room by pushing left and right */
4198         if (data_size && path->nodes[1]) {
4199                 int space_needed = data_size;
4200
4201                 if (slot < btrfs_header_nritems(l))
4202                         space_needed -= btrfs_leaf_free_space(root, l);
4203
4204                 wret = push_leaf_right(trans, root, path, space_needed,
4205                                        space_needed, 0, 0);
4206                 if (wret < 0)
4207                         return wret;
4208                 if (wret) {
4209                         wret = push_leaf_left(trans, root, path, space_needed,
4210                                               space_needed, 0, (u32)-1);
4211                         if (wret < 0)
4212                                 return wret;
4213                 }
4214                 l = path->nodes[0];
4215
4216                 /* did the pushes work? */
4217                 if (btrfs_leaf_free_space(root, l) >= data_size)
4218                         return 0;
4219         }
4220
4221         if (!path->nodes[1]) {
4222                 ret = insert_new_root(trans, root, path, 1);
4223                 if (ret)
4224                         return ret;
4225         }
4226 again:
4227         split = 1;
4228         l = path->nodes[0];
4229         slot = path->slots[0];
4230         nritems = btrfs_header_nritems(l);
4231         mid = (nritems + 1) / 2;
4232
4233         if (mid <= slot) {
4234                 if (nritems == 1 ||
4235                     leaf_space_used(l, mid, nritems - mid) + data_size >
4236                         BTRFS_LEAF_DATA_SIZE(root)) {
4237                         if (slot >= nritems) {
4238                                 split = 0;
4239                         } else {
4240                                 mid = slot;
4241                                 if (mid != nritems &&
4242                                     leaf_space_used(l, mid, nritems - mid) +
4243                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4244                                         if (data_size && !tried_avoid_double)
4245                                                 goto push_for_double;
4246                                         split = 2;
4247                                 }
4248                         }
4249                 }
4250         } else {
4251                 if (leaf_space_used(l, 0, mid) + data_size >
4252                         BTRFS_LEAF_DATA_SIZE(root)) {
4253                         if (!extend && data_size && slot == 0) {
4254                                 split = 0;
4255                         } else if ((extend || !data_size) && slot == 0) {
4256                                 mid = 1;
4257                         } else {
4258                                 mid = slot;
4259                                 if (mid != nritems &&
4260                                     leaf_space_used(l, mid, nritems - mid) +
4261                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4262                                         if (data_size && !tried_avoid_double)
4263                                                 goto push_for_double;
4264                                         split = 2;
4265                                 }
4266                         }
4267                 }
4268         }
4269
4270         if (split == 0)
4271                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4272         else
4273                 btrfs_item_key(l, &disk_key, mid);
4274
4275         right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4276                         &disk_key, 0, l->start, 0);
4277         if (IS_ERR(right))
4278                 return PTR_ERR(right);
4279
4280         root_add_used(root, root->nodesize);
4281
4282         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4283         btrfs_set_header_bytenr(right, right->start);
4284         btrfs_set_header_generation(right, trans->transid);
4285         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4286         btrfs_set_header_owner(right, root->root_key.objectid);
4287         btrfs_set_header_level(right, 0);
4288         write_extent_buffer(right, root->fs_info->fsid,
4289                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
4290
4291         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4292                             btrfs_header_chunk_tree_uuid(right),
4293                             BTRFS_UUID_SIZE);
4294
4295         if (split == 0) {
4296                 if (mid <= slot) {
4297                         btrfs_set_header_nritems(right, 0);
4298                         insert_ptr(trans, root, path, &disk_key, right->start,
4299                                    path->slots[1] + 1, 1);
4300                         btrfs_tree_unlock(path->nodes[0]);
4301                         free_extent_buffer(path->nodes[0]);
4302                         path->nodes[0] = right;
4303                         path->slots[0] = 0;
4304                         path->slots[1] += 1;
4305                 } else {
4306                         btrfs_set_header_nritems(right, 0);
4307                         insert_ptr(trans, root, path, &disk_key, right->start,
4308                                           path->slots[1], 1);
4309                         btrfs_tree_unlock(path->nodes[0]);
4310                         free_extent_buffer(path->nodes[0]);
4311                         path->nodes[0] = right;
4312                         path->slots[0] = 0;
4313                         if (path->slots[1] == 0)
4314                                 fixup_low_keys(root, path, &disk_key, 1);
4315                 }
4316                 btrfs_mark_buffer_dirty(right);
4317                 return ret;
4318         }
4319
4320         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4321
4322         if (split == 2) {
4323                 BUG_ON(num_doubles != 0);
4324                 num_doubles++;
4325                 goto again;
4326         }
4327
4328         return 0;
4329
4330 push_for_double:
4331         push_for_double_split(trans, root, path, data_size);
4332         tried_avoid_double = 1;
4333         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4334                 return 0;
4335         goto again;
4336 }
4337
4338 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4339                                          struct btrfs_root *root,
4340                                          struct btrfs_path *path, int ins_len)
4341 {
4342         struct btrfs_key key;
4343         struct extent_buffer *leaf;
4344         struct btrfs_file_extent_item *fi;
4345         u64 extent_len = 0;
4346         u32 item_size;
4347         int ret;
4348
4349         leaf = path->nodes[0];
4350         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4351
4352         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4353                key.type != BTRFS_EXTENT_CSUM_KEY);
4354
4355         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4356                 return 0;
4357
4358         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4359         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4360                 fi = btrfs_item_ptr(leaf, path->slots[0],
4361                                     struct btrfs_file_extent_item);
4362                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4363         }
4364         btrfs_release_path(path);
4365
4366         path->keep_locks = 1;
4367         path->search_for_split = 1;
4368         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4369         path->search_for_split = 0;
4370         if (ret < 0)
4371                 goto err;
4372
4373         ret = -EAGAIN;
4374         leaf = path->nodes[0];
4375         /* if our item isn't there or got smaller, return now */
4376         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4377                 goto err;
4378
4379         /* the leaf has  changed, it now has room.  return now */
4380         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4381                 goto err;
4382
4383         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4384                 fi = btrfs_item_ptr(leaf, path->slots[0],
4385                                     struct btrfs_file_extent_item);
4386                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4387                         goto err;
4388         }
4389
4390         btrfs_set_path_blocking(path);
4391         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4392         if (ret)
4393                 goto err;
4394
4395         path->keep_locks = 0;
4396         btrfs_unlock_up_safe(path, 1);
4397         return 0;
4398 err:
4399         path->keep_locks = 0;
4400         return ret;
4401 }
4402
4403 static noinline int split_item(struct btrfs_trans_handle *trans,
4404                                struct btrfs_root *root,
4405                                struct btrfs_path *path,
4406                                struct btrfs_key *new_key,
4407                                unsigned long split_offset)
4408 {
4409         struct extent_buffer *leaf;
4410         struct btrfs_item *item;
4411         struct btrfs_item *new_item;
4412         int slot;
4413         char *buf;
4414         u32 nritems;
4415         u32 item_size;
4416         u32 orig_offset;
4417         struct btrfs_disk_key disk_key;
4418
4419         leaf = path->nodes[0];
4420         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4421
4422         btrfs_set_path_blocking(path);
4423
4424         item = btrfs_item_nr(path->slots[0]);
4425         orig_offset = btrfs_item_offset(leaf, item);
4426         item_size = btrfs_item_size(leaf, item);
4427
4428         buf = kmalloc(item_size, GFP_NOFS);
4429         if (!buf)
4430                 return -ENOMEM;
4431
4432         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4433                             path->slots[0]), item_size);
4434
4435         slot = path->slots[0] + 1;
4436         nritems = btrfs_header_nritems(leaf);
4437         if (slot != nritems) {
4438                 /* shift the items */
4439                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4440                                 btrfs_item_nr_offset(slot),
4441                                 (nritems - slot) * sizeof(struct btrfs_item));
4442         }
4443
4444         btrfs_cpu_key_to_disk(&disk_key, new_key);
4445         btrfs_set_item_key(leaf, &disk_key, slot);
4446
4447         new_item = btrfs_item_nr(slot);
4448
4449         btrfs_set_item_offset(leaf, new_item, orig_offset);
4450         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4451
4452         btrfs_set_item_offset(leaf, item,
4453                               orig_offset + item_size - split_offset);
4454         btrfs_set_item_size(leaf, item, split_offset);
4455
4456         btrfs_set_header_nritems(leaf, nritems + 1);
4457
4458         /* write the data for the start of the original item */
4459         write_extent_buffer(leaf, buf,
4460                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4461                             split_offset);
4462
4463         /* write the data for the new item */
4464         write_extent_buffer(leaf, buf + split_offset,
4465                             btrfs_item_ptr_offset(leaf, slot),
4466                             item_size - split_offset);
4467         btrfs_mark_buffer_dirty(leaf);
4468
4469         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4470         kfree(buf);
4471         return 0;
4472 }
4473
4474 /*
4475  * This function splits a single item into two items,
4476  * giving 'new_key' to the new item and splitting the
4477  * old one at split_offset (from the start of the item).
4478  *
4479  * The path may be released by this operation.  After
4480  * the split, the path is pointing to the old item.  The
4481  * new item is going to be in the same node as the old one.
4482  *
4483  * Note, the item being split must be smaller enough to live alone on
4484  * a tree block with room for one extra struct btrfs_item
4485  *
4486  * This allows us to split the item in place, keeping a lock on the
4487  * leaf the entire time.
4488  */
4489 int btrfs_split_item(struct btrfs_trans_handle *trans,
4490                      struct btrfs_root *root,
4491                      struct btrfs_path *path,
4492                      struct btrfs_key *new_key,
4493                      unsigned long split_offset)
4494 {
4495         int ret;
4496         ret = setup_leaf_for_split(trans, root, path,
4497                                    sizeof(struct btrfs_item));
4498         if (ret)
4499                 return ret;
4500
4501         ret = split_item(trans, root, path, new_key, split_offset);
4502         return ret;
4503 }
4504
4505 /*
4506  * This function duplicate a item, giving 'new_key' to the new item.
4507  * It guarantees both items live in the same tree leaf and the new item
4508  * is contiguous with the original item.
4509  *
4510  * This allows us to split file extent in place, keeping a lock on the
4511  * leaf the entire time.
4512  */
4513 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4514                          struct btrfs_root *root,
4515                          struct btrfs_path *path,
4516                          struct btrfs_key *new_key)
4517 {
4518         struct extent_buffer *leaf;
4519         int ret;
4520         u32 item_size;
4521
4522         leaf = path->nodes[0];
4523         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4524         ret = setup_leaf_for_split(trans, root, path,
4525                                    item_size + sizeof(struct btrfs_item));
4526         if (ret)
4527                 return ret;
4528
4529         path->slots[0]++;
4530         setup_items_for_insert(root, path, new_key, &item_size,
4531                                item_size, item_size +
4532                                sizeof(struct btrfs_item), 1);
4533         leaf = path->nodes[0];
4534         memcpy_extent_buffer(leaf,
4535                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4536                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4537                              item_size);
4538         return 0;
4539 }
4540
4541 /*
4542  * make the item pointed to by the path smaller.  new_size indicates
4543  * how small to make it, and from_end tells us if we just chop bytes
4544  * off the end of the item or if we shift the item to chop bytes off
4545  * the front.
4546  */
4547 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4548                          u32 new_size, int from_end)
4549 {
4550         int slot;
4551         struct extent_buffer *leaf;
4552         struct btrfs_item *item;
4553         u32 nritems;
4554         unsigned int data_end;
4555         unsigned int old_data_start;
4556         unsigned int old_size;
4557         unsigned int size_diff;
4558         int i;
4559         struct btrfs_map_token token;
4560
4561         btrfs_init_map_token(&token);
4562
4563         leaf = path->nodes[0];
4564         slot = path->slots[0];
4565
4566         old_size = btrfs_item_size_nr(leaf, slot);
4567         if (old_size == new_size)
4568                 return;
4569
4570         nritems = btrfs_header_nritems(leaf);
4571         data_end = leaf_data_end(root, leaf);
4572
4573         old_data_start = btrfs_item_offset_nr(leaf, slot);
4574
4575         size_diff = old_size - new_size;
4576
4577         BUG_ON(slot < 0);
4578         BUG_ON(slot >= nritems);
4579
4580         /*
4581          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4582          */
4583         /* first correct the data pointers */
4584         for (i = slot; i < nritems; i++) {
4585                 u32 ioff;
4586                 item = btrfs_item_nr(i);
4587
4588                 ioff = btrfs_token_item_offset(leaf, item, &token);
4589                 btrfs_set_token_item_offset(leaf, item,
4590                                             ioff + size_diff, &token);
4591         }
4592
4593         /* shift the data */
4594         if (from_end) {
4595                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4596                               data_end + size_diff, btrfs_leaf_data(leaf) +
4597                               data_end, old_data_start + new_size - data_end);
4598         } else {
4599                 struct btrfs_disk_key disk_key;
4600                 u64 offset;
4601
4602                 btrfs_item_key(leaf, &disk_key, slot);
4603
4604                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4605                         unsigned long ptr;
4606                         struct btrfs_file_extent_item *fi;
4607
4608                         fi = btrfs_item_ptr(leaf, slot,
4609                                             struct btrfs_file_extent_item);
4610                         fi = (struct btrfs_file_extent_item *)(
4611                              (unsigned long)fi - size_diff);
4612
4613                         if (btrfs_file_extent_type(leaf, fi) ==
4614                             BTRFS_FILE_EXTENT_INLINE) {
4615                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4616                                 memmove_extent_buffer(leaf, ptr,
4617                                       (unsigned long)fi,
4618                                       offsetof(struct btrfs_file_extent_item,
4619                                                  disk_bytenr));
4620                         }
4621                 }
4622
4623                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4624                               data_end + size_diff, btrfs_leaf_data(leaf) +
4625                               data_end, old_data_start - data_end);
4626
4627                 offset = btrfs_disk_key_offset(&disk_key);
4628                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4629                 btrfs_set_item_key(leaf, &disk_key, slot);
4630                 if (slot == 0)
4631                         fixup_low_keys(root, path, &disk_key, 1);
4632         }
4633
4634         item = btrfs_item_nr(slot);
4635         btrfs_set_item_size(leaf, item, new_size);
4636         btrfs_mark_buffer_dirty(leaf);
4637
4638         if (btrfs_leaf_free_space(root, leaf) < 0) {
4639                 btrfs_print_leaf(root, leaf);
4640                 BUG();
4641         }
4642 }
4643
4644 /*
4645  * make the item pointed to by the path bigger, data_size is the added size.
4646  */
4647 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4648                        u32 data_size)
4649 {
4650         int slot;
4651         struct extent_buffer *leaf;
4652         struct btrfs_item *item;
4653         u32 nritems;
4654         unsigned int data_end;
4655         unsigned int old_data;
4656         unsigned int old_size;
4657         int i;
4658         struct btrfs_map_token token;
4659
4660         btrfs_init_map_token(&token);
4661
4662         leaf = path->nodes[0];
4663
4664         nritems = btrfs_header_nritems(leaf);
4665         data_end = leaf_data_end(root, leaf);
4666
4667         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4668                 btrfs_print_leaf(root, leaf);
4669                 BUG();
4670         }
4671         slot = path->slots[0];
4672         old_data = btrfs_item_end_nr(leaf, slot);
4673
4674         BUG_ON(slot < 0);
4675         if (slot >= nritems) {
4676                 btrfs_print_leaf(root, leaf);
4677                 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4678                        slot, nritems);
4679                 BUG_ON(1);
4680         }
4681
4682         /*
4683          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4684          */
4685         /* first correct the data pointers */
4686         for (i = slot; i < nritems; i++) {
4687                 u32 ioff;
4688                 item = btrfs_item_nr(i);
4689
4690                 ioff = btrfs_token_item_offset(leaf, item, &token);
4691                 btrfs_set_token_item_offset(leaf, item,
4692                                             ioff - data_size, &token);
4693         }
4694
4695         /* shift the data */
4696         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4697                       data_end - data_size, btrfs_leaf_data(leaf) +
4698                       data_end, old_data - data_end);
4699
4700         data_end = old_data;
4701         old_size = btrfs_item_size_nr(leaf, slot);
4702         item = btrfs_item_nr(slot);
4703         btrfs_set_item_size(leaf, item, old_size + data_size);
4704         btrfs_mark_buffer_dirty(leaf);
4705
4706         if (btrfs_leaf_free_space(root, leaf) < 0) {
4707                 btrfs_print_leaf(root, leaf);
4708                 BUG();
4709         }
4710 }
4711
4712 /*
4713  * this is a helper for btrfs_insert_empty_items, the main goal here is
4714  * to save stack depth by doing the bulk of the work in a function
4715  * that doesn't call btrfs_search_slot
4716  */
4717 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4718                             struct btrfs_key *cpu_key, u32 *data_size,
4719                             u32 total_data, u32 total_size, int nr)
4720 {
4721         struct btrfs_item *item;
4722         int i;
4723         u32 nritems;
4724         unsigned int data_end;
4725         struct btrfs_disk_key disk_key;
4726         struct extent_buffer *leaf;
4727         int slot;
4728         struct btrfs_map_token token;
4729
4730         if (path->slots[0] == 0) {
4731                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4732                 fixup_low_keys(root, path, &disk_key, 1);
4733         }
4734         btrfs_unlock_up_safe(path, 1);
4735
4736         btrfs_init_map_token(&token);
4737
4738         leaf = path->nodes[0];
4739         slot = path->slots[0];
4740
4741         nritems = btrfs_header_nritems(leaf);
4742         data_end = leaf_data_end(root, leaf);
4743
4744         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4745                 btrfs_print_leaf(root, leaf);
4746                 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4747                        total_size, btrfs_leaf_free_space(root, leaf));
4748                 BUG();
4749         }
4750
4751         if (slot != nritems) {
4752                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4753
4754                 if (old_data < data_end) {
4755                         btrfs_print_leaf(root, leaf);
4756                         btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4757                                slot, old_data, data_end);
4758                         BUG_ON(1);
4759                 }
4760                 /*
4761                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4762                  */
4763                 /* first correct the data pointers */
4764                 for (i = slot; i < nritems; i++) {
4765                         u32 ioff;
4766
4767                         item = btrfs_item_nr( i);
4768                         ioff = btrfs_token_item_offset(leaf, item, &token);
4769                         btrfs_set_token_item_offset(leaf, item,
4770                                                     ioff - total_data, &token);
4771                 }
4772                 /* shift the items */
4773                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4774                               btrfs_item_nr_offset(slot),
4775                               (nritems - slot) * sizeof(struct btrfs_item));
4776
4777                 /* shift the data */
4778                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4779                               data_end - total_data, btrfs_leaf_data(leaf) +
4780                               data_end, old_data - data_end);
4781                 data_end = old_data;
4782         }
4783
4784         /* setup the item for the new data */
4785         for (i = 0; i < nr; i++) {
4786                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4787                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4788                 item = btrfs_item_nr(slot + i);
4789                 btrfs_set_token_item_offset(leaf, item,
4790                                             data_end - data_size[i], &token);
4791                 data_end -= data_size[i];
4792                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4793         }
4794
4795         btrfs_set_header_nritems(leaf, nritems + nr);
4796         btrfs_mark_buffer_dirty(leaf);
4797
4798         if (btrfs_leaf_free_space(root, leaf) < 0) {
4799                 btrfs_print_leaf(root, leaf);
4800                 BUG();
4801         }
4802 }
4803
4804 /*
4805  * Given a key and some data, insert items into the tree.
4806  * This does all the path init required, making room in the tree if needed.
4807  */
4808 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4809                             struct btrfs_root *root,
4810                             struct btrfs_path *path,
4811                             struct btrfs_key *cpu_key, u32 *data_size,
4812                             int nr)
4813 {
4814         int ret = 0;
4815         int slot;
4816         int i;
4817         u32 total_size = 0;
4818         u32 total_data = 0;
4819
4820         for (i = 0; i < nr; i++)
4821                 total_data += data_size[i];
4822
4823         total_size = total_data + (nr * sizeof(struct btrfs_item));
4824         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4825         if (ret == 0)
4826                 return -EEXIST;
4827         if (ret < 0)
4828                 return ret;
4829
4830         slot = path->slots[0];
4831         BUG_ON(slot < 0);
4832
4833         setup_items_for_insert(root, path, cpu_key, data_size,
4834                                total_data, total_size, nr);
4835         return 0;
4836 }
4837
4838 /*
4839  * Given a key and some data, insert an item into the tree.
4840  * This does all the path init required, making room in the tree if needed.
4841  */
4842 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4843                       *root, struct btrfs_key *cpu_key, void *data, u32
4844                       data_size)
4845 {
4846         int ret = 0;
4847         struct btrfs_path *path;
4848         struct extent_buffer *leaf;
4849         unsigned long ptr;
4850
4851         path = btrfs_alloc_path();
4852         if (!path)
4853                 return -ENOMEM;
4854         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4855         if (!ret) {
4856                 leaf = path->nodes[0];
4857                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4858                 write_extent_buffer(leaf, data, ptr, data_size);
4859                 btrfs_mark_buffer_dirty(leaf);
4860         }
4861         btrfs_free_path(path);
4862         return ret;
4863 }
4864
4865 /*
4866  * delete the pointer from a given node.
4867  *
4868  * the tree should have been previously balanced so the deletion does not
4869  * empty a node.
4870  */
4871 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4872                     int level, int slot)
4873 {
4874         struct extent_buffer *parent = path->nodes[level];
4875         u32 nritems;
4876         int ret;
4877
4878         nritems = btrfs_header_nritems(parent);
4879         if (slot != nritems - 1) {
4880                 if (level)
4881                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4882                                              slot + 1, nritems - slot - 1);
4883                 memmove_extent_buffer(parent,
4884                               btrfs_node_key_ptr_offset(slot),
4885                               btrfs_node_key_ptr_offset(slot + 1),
4886                               sizeof(struct btrfs_key_ptr) *
4887                               (nritems - slot - 1));
4888         } else if (level) {
4889                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4890                                               MOD_LOG_KEY_REMOVE, GFP_NOFS);
4891                 BUG_ON(ret < 0);
4892         }
4893
4894         nritems--;
4895         btrfs_set_header_nritems(parent, nritems);
4896         if (nritems == 0 && parent == root->node) {
4897                 BUG_ON(btrfs_header_level(root->node) != 1);
4898                 /* just turn the root into a leaf and break */
4899                 btrfs_set_header_level(root->node, 0);
4900         } else if (slot == 0) {
4901                 struct btrfs_disk_key disk_key;
4902
4903                 btrfs_node_key(parent, &disk_key, 0);
4904                 fixup_low_keys(root, path, &disk_key, level + 1);
4905         }
4906         btrfs_mark_buffer_dirty(parent);
4907 }
4908
4909 /*
4910  * a helper function to delete the leaf pointed to by path->slots[1] and
4911  * path->nodes[1].
4912  *
4913  * This deletes the pointer in path->nodes[1] and frees the leaf
4914  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4915  *
4916  * The path must have already been setup for deleting the leaf, including
4917  * all the proper balancing.  path->nodes[1] must be locked.
4918  */
4919 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4920                                     struct btrfs_root *root,
4921                                     struct btrfs_path *path,
4922                                     struct extent_buffer *leaf)
4923 {
4924         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4925         del_ptr(root, path, 1, path->slots[1]);
4926
4927         /*
4928          * btrfs_free_extent is expensive, we want to make sure we
4929          * aren't holding any locks when we call it
4930          */
4931         btrfs_unlock_up_safe(path, 0);
4932
4933         root_sub_used(root, leaf->len);
4934
4935         extent_buffer_get(leaf);
4936         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4937         free_extent_buffer_stale(leaf);
4938 }
4939 /*
4940  * delete the item at the leaf level in path.  If that empties
4941  * the leaf, remove it from the tree
4942  */
4943 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4944                     struct btrfs_path *path, int slot, int nr)
4945 {
4946         struct extent_buffer *leaf;
4947         struct btrfs_item *item;
4948         int last_off;
4949         int dsize = 0;
4950         int ret = 0;
4951         int wret;
4952         int i;
4953         u32 nritems;
4954         struct btrfs_map_token token;
4955
4956         btrfs_init_map_token(&token);
4957
4958         leaf = path->nodes[0];
4959         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4960
4961         for (i = 0; i < nr; i++)
4962                 dsize += btrfs_item_size_nr(leaf, slot + i);
4963
4964         nritems = btrfs_header_nritems(leaf);
4965
4966         if (slot + nr != nritems) {
4967                 int data_end = leaf_data_end(root, leaf);
4968
4969                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4970                               data_end + dsize,
4971                               btrfs_leaf_data(leaf) + data_end,
4972                               last_off - data_end);
4973
4974                 for (i = slot + nr; i < nritems; i++) {
4975                         u32 ioff;
4976
4977                         item = btrfs_item_nr(i);
4978                         ioff = btrfs_token_item_offset(leaf, item, &token);
4979                         btrfs_set_token_item_offset(leaf, item,
4980                                                     ioff + dsize, &token);
4981                 }
4982
4983                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4984                               btrfs_item_nr_offset(slot + nr),
4985                               sizeof(struct btrfs_item) *
4986                               (nritems - slot - nr));
4987         }
4988         btrfs_set_header_nritems(leaf, nritems - nr);
4989         nritems -= nr;
4990
4991         /* delete the leaf if we've emptied it */
4992         if (nritems == 0) {
4993                 if (leaf == root->node) {
4994                         btrfs_set_header_level(leaf, 0);
4995                 } else {
4996                         btrfs_set_path_blocking(path);
4997                         clean_tree_block(trans, root, leaf);
4998                         btrfs_del_leaf(trans, root, path, leaf);
4999                 }
5000         } else {
5001                 int used = leaf_space_used(leaf, 0, nritems);
5002                 if (slot == 0) {
5003                         struct btrfs_disk_key disk_key;
5004
5005                         btrfs_item_key(leaf, &disk_key, 0);
5006                         fixup_low_keys(root, path, &disk_key, 1);
5007                 }
5008
5009                 /* delete the leaf if it is mostly empty */
5010                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5011                         /* push_leaf_left fixes the path.
5012                          * make sure the path still points to our leaf
5013                          * for possible call to del_ptr below
5014                          */
5015                         slot = path->slots[1];
5016                         extent_buffer_get(leaf);
5017
5018                         btrfs_set_path_blocking(path);
5019                         wret = push_leaf_left(trans, root, path, 1, 1,
5020                                               1, (u32)-1);
5021                         if (wret < 0 && wret != -ENOSPC)
5022                                 ret = wret;
5023
5024                         if (path->nodes[0] == leaf &&
5025                             btrfs_header_nritems(leaf)) {
5026                                 wret = push_leaf_right(trans, root, path, 1,
5027                                                        1, 1, 0);
5028                                 if (wret < 0 && wret != -ENOSPC)
5029                                         ret = wret;
5030                         }
5031
5032                         if (btrfs_header_nritems(leaf) == 0) {
5033                                 path->slots[1] = slot;
5034                                 btrfs_del_leaf(trans, root, path, leaf);
5035                                 free_extent_buffer(leaf);
5036                                 ret = 0;
5037                         } else {
5038                                 /* if we're still in the path, make sure
5039                                  * we're dirty.  Otherwise, one of the
5040                                  * push_leaf functions must have already
5041                                  * dirtied this buffer
5042                                  */
5043                                 if (path->nodes[0] == leaf)
5044                                         btrfs_mark_buffer_dirty(leaf);
5045                                 free_extent_buffer(leaf);
5046                         }
5047                 } else {
5048                         btrfs_mark_buffer_dirty(leaf);
5049                 }
5050         }
5051         return ret;
5052 }
5053
5054 /*
5055  * search the tree again to find a leaf with lesser keys
5056  * returns 0 if it found something or 1 if there are no lesser leaves.
5057  * returns < 0 on io errors.
5058  *
5059  * This may release the path, and so you may lose any locks held at the
5060  * time you call it.
5061  */
5062 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5063 {
5064         struct btrfs_key key;
5065         struct btrfs_disk_key found_key;
5066         int ret;
5067
5068         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5069
5070         if (key.offset > 0) {
5071                 key.offset--;
5072         } else if (key.type > 0) {
5073                 key.type--;
5074                 key.offset = (u64)-1;
5075         } else if (key.objectid > 0) {
5076                 key.objectid--;
5077                 key.type = (u8)-1;
5078                 key.offset = (u64)-1;
5079         } else {
5080                 return 1;
5081         }
5082
5083         btrfs_release_path(path);
5084         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5085         if (ret < 0)
5086                 return ret;
5087         btrfs_item_key(path->nodes[0], &found_key, 0);
5088         ret = comp_keys(&found_key, &key);
5089         /*
5090          * We might have had an item with the previous key in the tree right
5091          * before we released our path. And after we released our path, that
5092          * item might have been pushed to the first slot (0) of the leaf we
5093          * were holding due to a tree balance. Alternatively, an item with the
5094          * previous key can exist as the only element of a leaf (big fat item).
5095          * Therefore account for these 2 cases, so that our callers (like
5096          * btrfs_previous_item) don't miss an existing item with a key matching
5097          * the previous key we computed above.
5098          */
5099         if (ret <= 0)
5100                 return 0;
5101         return 1;
5102 }
5103
5104 /*
5105  * A helper function to walk down the tree starting at min_key, and looking
5106  * for nodes or leaves that are have a minimum transaction id.
5107  * This is used by the btree defrag code, and tree logging
5108  *
5109  * This does not cow, but it does stuff the starting key it finds back
5110  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5111  * key and get a writable path.
5112  *
5113  * This does lock as it descends, and path->keep_locks should be set
5114  * to 1 by the caller.
5115  *
5116  * This honors path->lowest_level to prevent descent past a given level
5117  * of the tree.
5118  *
5119  * min_trans indicates the oldest transaction that you are interested
5120  * in walking through.  Any nodes or leaves older than min_trans are
5121  * skipped over (without reading them).
5122  *
5123  * returns zero if something useful was found, < 0 on error and 1 if there
5124  * was nothing in the tree that matched the search criteria.
5125  */
5126 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5127                          struct btrfs_path *path,
5128                          u64 min_trans)
5129 {
5130         struct extent_buffer *cur;
5131         struct btrfs_key found_key;
5132         int slot;
5133         int sret;
5134         u32 nritems;
5135         int level;
5136         int ret = 1;
5137         int keep_locks = path->keep_locks;
5138
5139         path->keep_locks = 1;
5140 again:
5141         cur = btrfs_read_lock_root_node(root);
5142         level = btrfs_header_level(cur);
5143         WARN_ON(path->nodes[level]);
5144         path->nodes[level] = cur;
5145         path->locks[level] = BTRFS_READ_LOCK;
5146
5147         if (btrfs_header_generation(cur) < min_trans) {
5148                 ret = 1;
5149                 goto out;
5150         }
5151         while (1) {
5152                 nritems = btrfs_header_nritems(cur);
5153                 level = btrfs_header_level(cur);
5154                 sret = bin_search(cur, min_key, level, &slot);
5155
5156                 /* at the lowest level, we're done, setup the path and exit */
5157                 if (level == path->lowest_level) {
5158                         if (slot >= nritems)
5159                                 goto find_next_key;
5160                         ret = 0;
5161                         path->slots[level] = slot;
5162                         btrfs_item_key_to_cpu(cur, &found_key, slot);
5163                         goto out;
5164                 }
5165                 if (sret && slot > 0)
5166                         slot--;
5167                 /*
5168                  * check this node pointer against the min_trans parameters.
5169                  * If it is too old, old, skip to the next one.
5170                  */
5171                 while (slot < nritems) {
5172                         u64 gen;
5173
5174                         gen = btrfs_node_ptr_generation(cur, slot);
5175                         if (gen < min_trans) {
5176                                 slot++;
5177                                 continue;
5178                         }
5179                         break;
5180                 }
5181 find_next_key:
5182                 /*
5183                  * we didn't find a candidate key in this node, walk forward
5184                  * and find another one
5185                  */
5186                 if (slot >= nritems) {
5187                         path->slots[level] = slot;
5188                         btrfs_set_path_blocking(path);
5189                         sret = btrfs_find_next_key(root, path, min_key, level,
5190                                                   min_trans);
5191                         if (sret == 0) {
5192                                 btrfs_release_path(path);
5193                                 goto again;
5194                         } else {
5195                                 goto out;
5196                         }
5197                 }
5198                 /* save our key for returning back */
5199                 btrfs_node_key_to_cpu(cur, &found_key, slot);
5200                 path->slots[level] = slot;
5201                 if (level == path->lowest_level) {
5202                         ret = 0;
5203                         goto out;
5204                 }
5205                 btrfs_set_path_blocking(path);
5206                 cur = read_node_slot(root, cur, slot);
5207                 BUG_ON(!cur); /* -ENOMEM */
5208
5209                 btrfs_tree_read_lock(cur);
5210
5211                 path->locks[level - 1] = BTRFS_READ_LOCK;
5212                 path->nodes[level - 1] = cur;
5213                 unlock_up(path, level, 1, 0, NULL);
5214                 btrfs_clear_path_blocking(path, NULL, 0);
5215         }
5216 out:
5217         path->keep_locks = keep_locks;
5218         if (ret == 0) {
5219                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5220                 btrfs_set_path_blocking(path);
5221                 memcpy(min_key, &found_key, sizeof(found_key));
5222         }
5223         return ret;
5224 }
5225
5226 static void tree_move_down(struct btrfs_root *root,
5227                            struct btrfs_path *path,
5228                            int *level, int root_level)
5229 {
5230         BUG_ON(*level == 0);
5231         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5232                                         path->slots[*level]);
5233         path->slots[*level - 1] = 0;
5234         (*level)--;
5235 }
5236
5237 static int tree_move_next_or_upnext(struct btrfs_root *root,
5238                                     struct btrfs_path *path,
5239                                     int *level, int root_level)
5240 {
5241         int ret = 0;
5242         int nritems;
5243         nritems = btrfs_header_nritems(path->nodes[*level]);
5244
5245         path->slots[*level]++;
5246
5247         while (path->slots[*level] >= nritems) {
5248                 if (*level == root_level)
5249                         return -1;
5250
5251                 /* move upnext */
5252                 path->slots[*level] = 0;
5253                 free_extent_buffer(path->nodes[*level]);
5254                 path->nodes[*level] = NULL;
5255                 (*level)++;
5256                 path->slots[*level]++;
5257
5258                 nritems = btrfs_header_nritems(path->nodes[*level]);
5259                 ret = 1;
5260         }
5261         return ret;
5262 }
5263
5264 /*
5265  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5266  * or down.
5267  */
5268 static int tree_advance(struct btrfs_root *root,
5269                         struct btrfs_path *path,
5270                         int *level, int root_level,
5271                         int allow_down,
5272                         struct btrfs_key *key)
5273 {
5274         int ret;
5275
5276         if (*level == 0 || !allow_down) {
5277                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5278         } else {
5279                 tree_move_down(root, path, level, root_level);
5280                 ret = 0;
5281         }
5282         if (ret >= 0) {
5283                 if (*level == 0)
5284                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5285                                         path->slots[*level]);
5286                 else
5287                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5288                                         path->slots[*level]);
5289         }
5290         return ret;
5291 }
5292
5293 static int tree_compare_item(struct btrfs_root *left_root,
5294                              struct btrfs_path *left_path,
5295                              struct btrfs_path *right_path,
5296                              char *tmp_buf)
5297 {
5298         int cmp;
5299         int len1, len2;
5300         unsigned long off1, off2;
5301
5302         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5303         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5304         if (len1 != len2)
5305                 return 1;
5306
5307         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5308         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5309                                 right_path->slots[0]);
5310
5311         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5312
5313         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5314         if (cmp)
5315                 return 1;
5316         return 0;
5317 }
5318
5319 #define ADVANCE 1
5320 #define ADVANCE_ONLY_NEXT -1
5321
5322 /*
5323  * This function compares two trees and calls the provided callback for
5324  * every changed/new/deleted item it finds.
5325  * If shared tree blocks are encountered, whole subtrees are skipped, making
5326  * the compare pretty fast on snapshotted subvolumes.
5327  *
5328  * This currently works on commit roots only. As commit roots are read only,
5329  * we don't do any locking. The commit roots are protected with transactions.
5330  * Transactions are ended and rejoined when a commit is tried in between.
5331  *
5332  * This function checks for modifications done to the trees while comparing.
5333  * If it detects a change, it aborts immediately.
5334  */
5335 int btrfs_compare_trees(struct btrfs_root *left_root,
5336                         struct btrfs_root *right_root,
5337                         btrfs_changed_cb_t changed_cb, void *ctx)
5338 {
5339         int ret;
5340         int cmp;
5341         struct btrfs_path *left_path = NULL;
5342         struct btrfs_path *right_path = NULL;
5343         struct btrfs_key left_key;
5344         struct btrfs_key right_key;
5345         char *tmp_buf = NULL;
5346         int left_root_level;
5347         int right_root_level;
5348         int left_level;
5349         int right_level;
5350         int left_end_reached;
5351         int right_end_reached;
5352         int advance_left;
5353         int advance_right;
5354         u64 left_blockptr;
5355         u64 right_blockptr;
5356         u64 left_gen;
5357         u64 right_gen;
5358
5359         left_path = btrfs_alloc_path();
5360         if (!left_path) {
5361                 ret = -ENOMEM;
5362                 goto out;
5363         }
5364         right_path = btrfs_alloc_path();
5365         if (!right_path) {
5366                 ret = -ENOMEM;
5367                 goto out;
5368         }
5369
5370         tmp_buf = kmalloc(left_root->nodesize, GFP_NOFS);
5371         if (!tmp_buf) {
5372                 ret = -ENOMEM;
5373                 goto out;
5374         }
5375
5376         left_path->search_commit_root = 1;
5377         left_path->skip_locking = 1;
5378         right_path->search_commit_root = 1;
5379         right_path->skip_locking = 1;
5380
5381         /*
5382          * Strategy: Go to the first items of both trees. Then do
5383          *
5384          * If both trees are at level 0
5385          *   Compare keys of current items
5386          *     If left < right treat left item as new, advance left tree
5387          *       and repeat
5388          *     If left > right treat right item as deleted, advance right tree
5389          *       and repeat
5390          *     If left == right do deep compare of items, treat as changed if
5391          *       needed, advance both trees and repeat
5392          * If both trees are at the same level but not at level 0
5393          *   Compare keys of current nodes/leafs
5394          *     If left < right advance left tree and repeat
5395          *     If left > right advance right tree and repeat
5396          *     If left == right compare blockptrs of the next nodes/leafs
5397          *       If they match advance both trees but stay at the same level
5398          *         and repeat
5399          *       If they don't match advance both trees while allowing to go
5400          *         deeper and repeat
5401          * If tree levels are different
5402          *   Advance the tree that needs it and repeat
5403          *
5404          * Advancing a tree means:
5405          *   If we are at level 0, try to go to the next slot. If that's not
5406          *   possible, go one level up and repeat. Stop when we found a level
5407          *   where we could go to the next slot. We may at this point be on a
5408          *   node or a leaf.
5409          *
5410          *   If we are not at level 0 and not on shared tree blocks, go one
5411          *   level deeper.
5412          *
5413          *   If we are not at level 0 and on shared tree blocks, go one slot to
5414          *   the right if possible or go up and right.
5415          */
5416
5417         down_read(&left_root->fs_info->commit_root_sem);
5418         left_level = btrfs_header_level(left_root->commit_root);
5419         left_root_level = left_level;
5420         left_path->nodes[left_level] = left_root->commit_root;
5421         extent_buffer_get(left_path->nodes[left_level]);
5422
5423         right_level = btrfs_header_level(right_root->commit_root);
5424         right_root_level = right_level;
5425         right_path->nodes[right_level] = right_root->commit_root;
5426         extent_buffer_get(right_path->nodes[right_level]);
5427         up_read(&left_root->fs_info->commit_root_sem);
5428
5429         if (left_level == 0)
5430                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5431                                 &left_key, left_path->slots[left_level]);
5432         else
5433                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5434                                 &left_key, left_path->slots[left_level]);
5435         if (right_level == 0)
5436                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5437                                 &right_key, right_path->slots[right_level]);
5438         else
5439                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5440                                 &right_key, right_path->slots[right_level]);
5441
5442         left_end_reached = right_end_reached = 0;
5443         advance_left = advance_right = 0;
5444
5445         while (1) {
5446                 if (advance_left && !left_end_reached) {
5447                         ret = tree_advance(left_root, left_path, &left_level,
5448                                         left_root_level,
5449                                         advance_left != ADVANCE_ONLY_NEXT,
5450                                         &left_key);
5451                         if (ret < 0)
5452                                 left_end_reached = ADVANCE;
5453                         advance_left = 0;
5454                 }
5455                 if (advance_right && !right_end_reached) {
5456                         ret = tree_advance(right_root, right_path, &right_level,
5457                                         right_root_level,
5458                                         advance_right != ADVANCE_ONLY_NEXT,
5459                                         &right_key);
5460                         if (ret < 0)
5461                                 right_end_reached = ADVANCE;
5462                         advance_right = 0;
5463                 }
5464
5465                 if (left_end_reached && right_end_reached) {
5466                         ret = 0;
5467                         goto out;
5468                 } else if (left_end_reached) {
5469                         if (right_level == 0) {
5470                                 ret = changed_cb(left_root, right_root,
5471                                                 left_path, right_path,
5472                                                 &right_key,
5473                                                 BTRFS_COMPARE_TREE_DELETED,
5474                                                 ctx);
5475                                 if (ret < 0)
5476                                         goto out;
5477                         }
5478                         advance_right = ADVANCE;
5479                         continue;
5480                 } else if (right_end_reached) {
5481                         if (left_level == 0) {
5482                                 ret = changed_cb(left_root, right_root,
5483                                                 left_path, right_path,
5484                                                 &left_key,
5485                                                 BTRFS_COMPARE_TREE_NEW,
5486                                                 ctx);
5487                                 if (ret < 0)
5488                                         goto out;
5489                         }
5490                         advance_left = ADVANCE;
5491                         continue;
5492                 }
5493
5494                 if (left_level == 0 && right_level == 0) {
5495                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5496                         if (cmp < 0) {
5497                                 ret = changed_cb(left_root, right_root,
5498                                                 left_path, right_path,
5499                                                 &left_key,
5500                                                 BTRFS_COMPARE_TREE_NEW,
5501                                                 ctx);
5502                                 if (ret < 0)
5503                                         goto out;
5504                                 advance_left = ADVANCE;
5505                         } else if (cmp > 0) {
5506                                 ret = changed_cb(left_root, right_root,
5507                                                 left_path, right_path,
5508                                                 &right_key,
5509                                                 BTRFS_COMPARE_TREE_DELETED,
5510                                                 ctx);
5511                                 if (ret < 0)
5512                                         goto out;
5513                                 advance_right = ADVANCE;
5514                         } else {
5515                                 enum btrfs_compare_tree_result cmp;
5516
5517                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5518                                 ret = tree_compare_item(left_root, left_path,
5519                                                 right_path, tmp_buf);
5520                                 if (ret)
5521                                         cmp = BTRFS_COMPARE_TREE_CHANGED;
5522                                 else
5523                                         cmp = BTRFS_COMPARE_TREE_SAME;
5524                                 ret = changed_cb(left_root, right_root,
5525                                                  left_path, right_path,
5526                                                  &left_key, cmp, ctx);
5527                                 if (ret < 0)
5528                                         goto out;
5529                                 advance_left = ADVANCE;
5530                                 advance_right = ADVANCE;
5531                         }
5532                 } else if (left_level == right_level) {
5533                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5534                         if (cmp < 0) {
5535                                 advance_left = ADVANCE;
5536                         } else if (cmp > 0) {
5537                                 advance_right = ADVANCE;
5538                         } else {
5539                                 left_blockptr = btrfs_node_blockptr(
5540                                                 left_path->nodes[left_level],
5541                                                 left_path->slots[left_level]);
5542                                 right_blockptr = btrfs_node_blockptr(
5543                                                 right_path->nodes[right_level],
5544                                                 right_path->slots[right_level]);
5545                                 left_gen = btrfs_node_ptr_generation(
5546                                                 left_path->nodes[left_level],
5547                                                 left_path->slots[left_level]);
5548                                 right_gen = btrfs_node_ptr_generation(
5549                                                 right_path->nodes[right_level],
5550                                                 right_path->slots[right_level]);
5551                                 if (left_blockptr == right_blockptr &&
5552                                     left_gen == right_gen) {
5553                                         /*
5554                                          * As we're on a shared block, don't
5555                                          * allow to go deeper.
5556                                          */
5557                                         advance_left = ADVANCE_ONLY_NEXT;
5558                                         advance_right = ADVANCE_ONLY_NEXT;
5559                                 } else {
5560                                         advance_left = ADVANCE;
5561                                         advance_right = ADVANCE;
5562                                 }
5563                         }
5564                 } else if (left_level < right_level) {
5565                         advance_right = ADVANCE;
5566                 } else {
5567                         advance_left = ADVANCE;
5568                 }
5569         }
5570
5571 out:
5572         btrfs_free_path(left_path);
5573         btrfs_free_path(right_path);
5574         kfree(tmp_buf);
5575         return ret;
5576 }
5577
5578 /*
5579  * this is similar to btrfs_next_leaf, but does not try to preserve
5580  * and fixup the path.  It looks for and returns the next key in the
5581  * tree based on the current path and the min_trans parameters.
5582  *
5583  * 0 is returned if another key is found, < 0 if there are any errors
5584  * and 1 is returned if there are no higher keys in the tree
5585  *
5586  * path->keep_locks should be set to 1 on the search made before
5587  * calling this function.
5588  */
5589 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5590                         struct btrfs_key *key, int level, u64 min_trans)
5591 {
5592         int slot;
5593         struct extent_buffer *c;
5594
5595         WARN_ON(!path->keep_locks);
5596         while (level < BTRFS_MAX_LEVEL) {
5597                 if (!path->nodes[level])
5598                         return 1;
5599
5600                 slot = path->slots[level] + 1;
5601                 c = path->nodes[level];
5602 next:
5603                 if (slot >= btrfs_header_nritems(c)) {
5604                         int ret;
5605                         int orig_lowest;
5606                         struct btrfs_key cur_key;
5607                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5608                             !path->nodes[level + 1])
5609                                 return 1;
5610
5611                         if (path->locks[level + 1]) {
5612                                 level++;
5613                                 continue;
5614                         }
5615
5616                         slot = btrfs_header_nritems(c) - 1;
5617                         if (level == 0)
5618                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5619                         else
5620                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5621
5622                         orig_lowest = path->lowest_level;
5623                         btrfs_release_path(path);
5624                         path->lowest_level = level;
5625                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5626                                                 0, 0);
5627                         path->lowest_level = orig_lowest;
5628                         if (ret < 0)
5629                                 return ret;
5630
5631                         c = path->nodes[level];
5632                         slot = path->slots[level];
5633                         if (ret == 0)
5634                                 slot++;
5635                         goto next;
5636                 }
5637
5638                 if (level == 0)
5639                         btrfs_item_key_to_cpu(c, key, slot);
5640                 else {
5641                         u64 gen = btrfs_node_ptr_generation(c, slot);
5642
5643                         if (gen < min_trans) {
5644                                 slot++;
5645                                 goto next;
5646                         }
5647                         btrfs_node_key_to_cpu(c, key, slot);
5648                 }
5649                 return 0;
5650         }
5651         return 1;
5652 }
5653
5654 /*
5655  * search the tree again to find a leaf with greater keys
5656  * returns 0 if it found something or 1 if there are no greater leaves.
5657  * returns < 0 on io errors.
5658  */
5659 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5660 {
5661         return btrfs_next_old_leaf(root, path, 0);
5662 }
5663
5664 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5665                         u64 time_seq)
5666 {
5667         int slot;
5668         int level;
5669         struct extent_buffer *c;
5670         struct extent_buffer *next;
5671         struct btrfs_key key;
5672         u32 nritems;
5673         int ret;
5674         int old_spinning = path->leave_spinning;
5675         int next_rw_lock = 0;
5676
5677         nritems = btrfs_header_nritems(path->nodes[0]);
5678         if (nritems == 0)
5679                 return 1;
5680
5681         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5682 again:
5683         level = 1;
5684         next = NULL;
5685         next_rw_lock = 0;
5686         btrfs_release_path(path);
5687
5688         path->keep_locks = 1;
5689         path->leave_spinning = 1;
5690
5691         if (time_seq)
5692                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5693         else
5694                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5695         path->keep_locks = 0;
5696
5697         if (ret < 0)
5698                 return ret;
5699
5700         nritems = btrfs_header_nritems(path->nodes[0]);
5701         /*
5702          * by releasing the path above we dropped all our locks.  A balance
5703          * could have added more items next to the key that used to be
5704          * at the very end of the block.  So, check again here and
5705          * advance the path if there are now more items available.
5706          */
5707         if (nritems > 0 && path->slots[0] < nritems - 1) {
5708                 if (ret == 0)
5709                         path->slots[0]++;
5710                 ret = 0;
5711                 goto done;
5712         }
5713         /*
5714          * So the above check misses one case:
5715          * - after releasing the path above, someone has removed the item that
5716          *   used to be at the very end of the block, and balance between leafs
5717          *   gets another one with bigger key.offset to replace it.
5718          *
5719          * This one should be returned as well, or we can get leaf corruption
5720          * later(esp. in __btrfs_drop_extents()).
5721          *
5722          * And a bit more explanation about this check,
5723          * with ret > 0, the key isn't found, the path points to the slot
5724          * where it should be inserted, so the path->slots[0] item must be the
5725          * bigger one.
5726          */
5727         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5728                 ret = 0;
5729                 goto done;
5730         }
5731
5732         while (level < BTRFS_MAX_LEVEL) {
5733                 if (!path->nodes[level]) {
5734                         ret = 1;
5735                         goto done;
5736                 }
5737
5738                 slot = path->slots[level] + 1;
5739                 c = path->nodes[level];
5740                 if (slot >= btrfs_header_nritems(c)) {
5741                         level++;
5742                         if (level == BTRFS_MAX_LEVEL) {
5743                                 ret = 1;
5744                                 goto done;
5745                         }
5746                         continue;
5747                 }
5748
5749                 if (next) {
5750                         btrfs_tree_unlock_rw(next, next_rw_lock);
5751                         free_extent_buffer(next);
5752                 }
5753
5754                 next = c;
5755                 next_rw_lock = path->locks[level];
5756                 ret = read_block_for_search(NULL, root, path, &next, level,
5757                                             slot, &key, 0);
5758                 if (ret == -EAGAIN)
5759                         goto again;
5760
5761                 if (ret < 0) {
5762                         btrfs_release_path(path);
5763                         goto done;
5764                 }
5765
5766                 if (!path->skip_locking) {
5767                         ret = btrfs_try_tree_read_lock(next);
5768                         if (!ret && time_seq) {
5769                                 /*
5770                                  * If we don't get the lock, we may be racing
5771                                  * with push_leaf_left, holding that lock while
5772                                  * itself waiting for the leaf we've currently
5773                                  * locked. To solve this situation, we give up
5774                                  * on our lock and cycle.
5775                                  */
5776                                 free_extent_buffer(next);
5777                                 btrfs_release_path(path);
5778                                 cond_resched();
5779                                 goto again;
5780                         }
5781                         if (!ret) {
5782                                 btrfs_set_path_blocking(path);
5783                                 btrfs_tree_read_lock(next);
5784                                 btrfs_clear_path_blocking(path, next,
5785                                                           BTRFS_READ_LOCK);
5786                         }
5787                         next_rw_lock = BTRFS_READ_LOCK;
5788                 }
5789                 break;
5790         }
5791         path->slots[level] = slot;
5792         while (1) {
5793                 level--;
5794                 c = path->nodes[level];
5795                 if (path->locks[level])
5796                         btrfs_tree_unlock_rw(c, path->locks[level]);
5797
5798                 free_extent_buffer(c);
5799                 path->nodes[level] = next;
5800                 path->slots[level] = 0;
5801                 if (!path->skip_locking)
5802                         path->locks[level] = next_rw_lock;
5803                 if (!level)
5804                         break;
5805
5806                 ret = read_block_for_search(NULL, root, path, &next, level,
5807                                             0, &key, 0);
5808                 if (ret == -EAGAIN)
5809                         goto again;
5810
5811                 if (ret < 0) {
5812                         btrfs_release_path(path);
5813                         goto done;
5814                 }
5815
5816                 if (!path->skip_locking) {
5817                         ret = btrfs_try_tree_read_lock(next);
5818                         if (!ret) {
5819                                 btrfs_set_path_blocking(path);
5820                                 btrfs_tree_read_lock(next);
5821                                 btrfs_clear_path_blocking(path, next,
5822                                                           BTRFS_READ_LOCK);
5823                         }
5824                         next_rw_lock = BTRFS_READ_LOCK;
5825                 }
5826         }
5827         ret = 0;
5828 done:
5829         unlock_up(path, 0, 1, 0, NULL);
5830         path->leave_spinning = old_spinning;
5831         if (!old_spinning)
5832                 btrfs_set_path_blocking(path);
5833
5834         return ret;
5835 }
5836
5837 /*
5838  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5839  * searching until it gets past min_objectid or finds an item of 'type'
5840  *
5841  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5842  */
5843 int btrfs_previous_item(struct btrfs_root *root,
5844                         struct btrfs_path *path, u64 min_objectid,
5845                         int type)
5846 {
5847         struct btrfs_key found_key;
5848         struct extent_buffer *leaf;
5849         u32 nritems;
5850         int ret;
5851
5852         while (1) {
5853                 if (path->slots[0] == 0) {
5854                         btrfs_set_path_blocking(path);
5855                         ret = btrfs_prev_leaf(root, path);
5856                         if (ret != 0)
5857                                 return ret;
5858                 } else {
5859                         path->slots[0]--;
5860                 }
5861                 leaf = path->nodes[0];
5862                 nritems = btrfs_header_nritems(leaf);
5863                 if (nritems == 0)
5864                         return 1;
5865                 if (path->slots[0] == nritems)
5866                         path->slots[0]--;
5867
5868                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5869                 if (found_key.objectid < min_objectid)
5870                         break;
5871                 if (found_key.type == type)
5872                         return 0;
5873                 if (found_key.objectid == min_objectid &&
5874                     found_key.type < type)
5875                         break;
5876         }
5877         return 1;
5878 }
5879
5880 /*
5881  * search in extent tree to find a previous Metadata/Data extent item with
5882  * min objecitd.
5883  *
5884  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5885  */
5886 int btrfs_previous_extent_item(struct btrfs_root *root,
5887                         struct btrfs_path *path, u64 min_objectid)
5888 {
5889         struct btrfs_key found_key;
5890         struct extent_buffer *leaf;
5891         u32 nritems;
5892         int ret;
5893
5894         while (1) {
5895                 if (path->slots[0] == 0) {
5896                         btrfs_set_path_blocking(path);
5897                         ret = btrfs_prev_leaf(root, path);
5898                         if (ret != 0)
5899                                 return ret;
5900                 } else {
5901                         path->slots[0]--;
5902                 }
5903                 leaf = path->nodes[0];
5904                 nritems = btrfs_header_nritems(leaf);
5905                 if (nritems == 0)
5906                         return 1;
5907                 if (path->slots[0] == nritems)
5908                         path->slots[0]--;
5909
5910                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5911                 if (found_key.objectid < min_objectid)
5912                         break;
5913                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5914                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5915                         return 0;
5916                 if (found_key.objectid == min_objectid &&
5917                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5918                         break;
5919         }
5920         return 1;
5921 }