Btrfs: change how we track dirty roots
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41                     int level, int slot);
42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43                                  struct extent_buffer *eb);
44
45 struct btrfs_path *btrfs_alloc_path(void)
46 {
47         struct btrfs_path *path;
48         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49         return path;
50 }
51
52 /*
53  * set all locked nodes in the path to blocking locks.  This should
54  * be done before scheduling
55  */
56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57 {
58         int i;
59         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60                 if (!p->nodes[i] || !p->locks[i])
61                         continue;
62                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63                 if (p->locks[i] == BTRFS_READ_LOCK)
64                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67         }
68 }
69
70 /*
71  * reset all the locked nodes in the patch to spinning locks.
72  *
73  * held is used to keep lockdep happy, when lockdep is enabled
74  * we set held to a blocking lock before we go around and
75  * retake all the spinlocks in the path.  You can safely use NULL
76  * for held
77  */
78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79                                         struct extent_buffer *held, int held_rw)
80 {
81         int i;
82
83         if (held) {
84                 btrfs_set_lock_blocking_rw(held, held_rw);
85                 if (held_rw == BTRFS_WRITE_LOCK)
86                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87                 else if (held_rw == BTRFS_READ_LOCK)
88                         held_rw = BTRFS_READ_LOCK_BLOCKING;
89         }
90         btrfs_set_path_blocking(p);
91
92         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
93                 if (p->nodes[i] && p->locks[i]) {
94                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96                                 p->locks[i] = BTRFS_WRITE_LOCK;
97                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98                                 p->locks[i] = BTRFS_READ_LOCK;
99                 }
100         }
101
102         if (held)
103                 btrfs_clear_lock_blocking_rw(held, held_rw);
104 }
105
106 /* this also releases the path */
107 void btrfs_free_path(struct btrfs_path *p)
108 {
109         if (!p)
110                 return;
111         btrfs_release_path(p);
112         kmem_cache_free(btrfs_path_cachep, p);
113 }
114
115 /*
116  * path release drops references on the extent buffers in the path
117  * and it drops any locks held by this path
118  *
119  * It is safe to call this on paths that no locks or extent buffers held.
120  */
121 noinline void btrfs_release_path(struct btrfs_path *p)
122 {
123         int i;
124
125         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
126                 p->slots[i] = 0;
127                 if (!p->nodes[i])
128                         continue;
129                 if (p->locks[i]) {
130                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
131                         p->locks[i] = 0;
132                 }
133                 free_extent_buffer(p->nodes[i]);
134                 p->nodes[i] = NULL;
135         }
136 }
137
138 /*
139  * safely gets a reference on the root node of a tree.  A lock
140  * is not taken, so a concurrent writer may put a different node
141  * at the root of the tree.  See btrfs_lock_root_node for the
142  * looping required.
143  *
144  * The extent buffer returned by this has a reference taken, so
145  * it won't disappear.  It may stop being the root of the tree
146  * at any time because there are no locks held.
147  */
148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149 {
150         struct extent_buffer *eb;
151
152         while (1) {
153                 rcu_read_lock();
154                 eb = rcu_dereference(root->node);
155
156                 /*
157                  * RCU really hurts here, we could free up the root node because
158                  * it was cow'ed but we may not get the new root node yet so do
159                  * the inc_not_zero dance and if it doesn't work then
160                  * synchronize_rcu and try again.
161                  */
162                 if (atomic_inc_not_zero(&eb->refs)) {
163                         rcu_read_unlock();
164                         break;
165                 }
166                 rcu_read_unlock();
167                 synchronize_rcu();
168         }
169         return eb;
170 }
171
172 /* loop around taking references on and locking the root node of the
173  * tree until you end up with a lock on the root.  A locked buffer
174  * is returned, with a reference held.
175  */
176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
177 {
178         struct extent_buffer *eb;
179
180         while (1) {
181                 eb = btrfs_root_node(root);
182                 btrfs_tree_lock(eb);
183                 if (eb == root->node)
184                         break;
185                 btrfs_tree_unlock(eb);
186                 free_extent_buffer(eb);
187         }
188         return eb;
189 }
190
191 /* loop around taking references on and locking the root node of the
192  * tree until you end up with a lock on the root.  A locked buffer
193  * is returned, with a reference held.
194  */
195 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
196 {
197         struct extent_buffer *eb;
198
199         while (1) {
200                 eb = btrfs_root_node(root);
201                 btrfs_tree_read_lock(eb);
202                 if (eb == root->node)
203                         break;
204                 btrfs_tree_read_unlock(eb);
205                 free_extent_buffer(eb);
206         }
207         return eb;
208 }
209
210 /* cowonly root (everything not a reference counted cow subvolume), just get
211  * put onto a simple dirty list.  transaction.c walks this to make sure they
212  * get properly updated on disk.
213  */
214 static void add_root_to_dirty_list(struct btrfs_root *root)
215 {
216         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
217             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
218                 return;
219
220         spin_lock(&root->fs_info->trans_lock);
221         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
222                 /* Want the extent tree to be the last on the list */
223                 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
224                         list_move_tail(&root->dirty_list,
225                                        &root->fs_info->dirty_cowonly_roots);
226                 else
227                         list_move(&root->dirty_list,
228                                   &root->fs_info->dirty_cowonly_roots);
229         }
230         spin_unlock(&root->fs_info->trans_lock);
231 }
232
233 /*
234  * used by snapshot creation to make a copy of a root for a tree with
235  * a given objectid.  The buffer with the new root node is returned in
236  * cow_ret, and this func returns zero on success or a negative error code.
237  */
238 int btrfs_copy_root(struct btrfs_trans_handle *trans,
239                       struct btrfs_root *root,
240                       struct extent_buffer *buf,
241                       struct extent_buffer **cow_ret, u64 new_root_objectid)
242 {
243         struct extent_buffer *cow;
244         int ret = 0;
245         int level;
246         struct btrfs_disk_key disk_key;
247
248         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
249                 trans->transid != root->fs_info->running_transaction->transid);
250         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
251                 trans->transid != root->last_trans);
252
253         level = btrfs_header_level(buf);
254         if (level == 0)
255                 btrfs_item_key(buf, &disk_key, 0);
256         else
257                 btrfs_node_key(buf, &disk_key, 0);
258
259         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
260                         &disk_key, level, buf->start, 0);
261         if (IS_ERR(cow))
262                 return PTR_ERR(cow);
263
264         copy_extent_buffer(cow, buf, 0, 0, cow->len);
265         btrfs_set_header_bytenr(cow, cow->start);
266         btrfs_set_header_generation(cow, trans->transid);
267         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
268         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
269                                      BTRFS_HEADER_FLAG_RELOC);
270         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
271                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
272         else
273                 btrfs_set_header_owner(cow, new_root_objectid);
274
275         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
276                             BTRFS_FSID_SIZE);
277
278         WARN_ON(btrfs_header_generation(buf) > trans->transid);
279         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
280                 ret = btrfs_inc_ref(trans, root, cow, 1);
281         else
282                 ret = btrfs_inc_ref(trans, root, cow, 0);
283
284         if (ret)
285                 return ret;
286
287         btrfs_mark_buffer_dirty(cow);
288         *cow_ret = cow;
289         return 0;
290 }
291
292 enum mod_log_op {
293         MOD_LOG_KEY_REPLACE,
294         MOD_LOG_KEY_ADD,
295         MOD_LOG_KEY_REMOVE,
296         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
297         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
298         MOD_LOG_MOVE_KEYS,
299         MOD_LOG_ROOT_REPLACE,
300 };
301
302 struct tree_mod_move {
303         int dst_slot;
304         int nr_items;
305 };
306
307 struct tree_mod_root {
308         u64 logical;
309         u8 level;
310 };
311
312 struct tree_mod_elem {
313         struct rb_node node;
314         u64 index;              /* shifted logical */
315         u64 seq;
316         enum mod_log_op op;
317
318         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
319         int slot;
320
321         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
322         u64 generation;
323
324         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
325         struct btrfs_disk_key key;
326         u64 blockptr;
327
328         /* this is used for op == MOD_LOG_MOVE_KEYS */
329         struct tree_mod_move move;
330
331         /* this is used for op == MOD_LOG_ROOT_REPLACE */
332         struct tree_mod_root old_root;
333 };
334
335 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
336 {
337         read_lock(&fs_info->tree_mod_log_lock);
338 }
339
340 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
341 {
342         read_unlock(&fs_info->tree_mod_log_lock);
343 }
344
345 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
346 {
347         write_lock(&fs_info->tree_mod_log_lock);
348 }
349
350 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
351 {
352         write_unlock(&fs_info->tree_mod_log_lock);
353 }
354
355 /*
356  * Pull a new tree mod seq number for our operation.
357  */
358 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
359 {
360         return atomic64_inc_return(&fs_info->tree_mod_seq);
361 }
362
363 /*
364  * This adds a new blocker to the tree mod log's blocker list if the @elem
365  * passed does not already have a sequence number set. So when a caller expects
366  * to record tree modifications, it should ensure to set elem->seq to zero
367  * before calling btrfs_get_tree_mod_seq.
368  * Returns a fresh, unused tree log modification sequence number, even if no new
369  * blocker was added.
370  */
371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372                            struct seq_list *elem)
373 {
374         tree_mod_log_write_lock(fs_info);
375         spin_lock(&fs_info->tree_mod_seq_lock);
376         if (!elem->seq) {
377                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
378                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
379         }
380         spin_unlock(&fs_info->tree_mod_seq_lock);
381         tree_mod_log_write_unlock(fs_info);
382
383         return elem->seq;
384 }
385
386 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
387                             struct seq_list *elem)
388 {
389         struct rb_root *tm_root;
390         struct rb_node *node;
391         struct rb_node *next;
392         struct seq_list *cur_elem;
393         struct tree_mod_elem *tm;
394         u64 min_seq = (u64)-1;
395         u64 seq_putting = elem->seq;
396
397         if (!seq_putting)
398                 return;
399
400         spin_lock(&fs_info->tree_mod_seq_lock);
401         list_del(&elem->list);
402         elem->seq = 0;
403
404         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
405                 if (cur_elem->seq < min_seq) {
406                         if (seq_putting > cur_elem->seq) {
407                                 /*
408                                  * blocker with lower sequence number exists, we
409                                  * cannot remove anything from the log
410                                  */
411                                 spin_unlock(&fs_info->tree_mod_seq_lock);
412                                 return;
413                         }
414                         min_seq = cur_elem->seq;
415                 }
416         }
417         spin_unlock(&fs_info->tree_mod_seq_lock);
418
419         /*
420          * anything that's lower than the lowest existing (read: blocked)
421          * sequence number can be removed from the tree.
422          */
423         tree_mod_log_write_lock(fs_info);
424         tm_root = &fs_info->tree_mod_log;
425         for (node = rb_first(tm_root); node; node = next) {
426                 next = rb_next(node);
427                 tm = container_of(node, struct tree_mod_elem, node);
428                 if (tm->seq > min_seq)
429                         continue;
430                 rb_erase(node, tm_root);
431                 kfree(tm);
432         }
433         tree_mod_log_write_unlock(fs_info);
434 }
435
436 /*
437  * key order of the log:
438  *       index -> sequence
439  *
440  * the index is the shifted logical of the *new* root node for root replace
441  * operations, or the shifted logical of the affected block for all other
442  * operations.
443  *
444  * Note: must be called with write lock (tree_mod_log_write_lock).
445  */
446 static noinline int
447 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
448 {
449         struct rb_root *tm_root;
450         struct rb_node **new;
451         struct rb_node *parent = NULL;
452         struct tree_mod_elem *cur;
453
454         BUG_ON(!tm);
455
456         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
457
458         tm_root = &fs_info->tree_mod_log;
459         new = &tm_root->rb_node;
460         while (*new) {
461                 cur = container_of(*new, struct tree_mod_elem, node);
462                 parent = *new;
463                 if (cur->index < tm->index)
464                         new = &((*new)->rb_left);
465                 else if (cur->index > tm->index)
466                         new = &((*new)->rb_right);
467                 else if (cur->seq < tm->seq)
468                         new = &((*new)->rb_left);
469                 else if (cur->seq > tm->seq)
470                         new = &((*new)->rb_right);
471                 else
472                         return -EEXIST;
473         }
474
475         rb_link_node(&tm->node, parent, new);
476         rb_insert_color(&tm->node, tm_root);
477         return 0;
478 }
479
480 /*
481  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
482  * returns zero with the tree_mod_log_lock acquired. The caller must hold
483  * this until all tree mod log insertions are recorded in the rb tree and then
484  * call tree_mod_log_write_unlock() to release.
485  */
486 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
487                                     struct extent_buffer *eb) {
488         smp_mb();
489         if (list_empty(&(fs_info)->tree_mod_seq_list))
490                 return 1;
491         if (eb && btrfs_header_level(eb) == 0)
492                 return 1;
493
494         tree_mod_log_write_lock(fs_info);
495         if (list_empty(&(fs_info)->tree_mod_seq_list)) {
496                 tree_mod_log_write_unlock(fs_info);
497                 return 1;
498         }
499
500         return 0;
501 }
502
503 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
504 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
505                                     struct extent_buffer *eb)
506 {
507         smp_mb();
508         if (list_empty(&(fs_info)->tree_mod_seq_list))
509                 return 0;
510         if (eb && btrfs_header_level(eb) == 0)
511                 return 0;
512
513         return 1;
514 }
515
516 static struct tree_mod_elem *
517 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
518                     enum mod_log_op op, gfp_t flags)
519 {
520         struct tree_mod_elem *tm;
521
522         tm = kzalloc(sizeof(*tm), flags);
523         if (!tm)
524                 return NULL;
525
526         tm->index = eb->start >> PAGE_CACHE_SHIFT;
527         if (op != MOD_LOG_KEY_ADD) {
528                 btrfs_node_key(eb, &tm->key, slot);
529                 tm->blockptr = btrfs_node_blockptr(eb, slot);
530         }
531         tm->op = op;
532         tm->slot = slot;
533         tm->generation = btrfs_node_ptr_generation(eb, slot);
534         RB_CLEAR_NODE(&tm->node);
535
536         return tm;
537 }
538
539 static noinline int
540 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
541                         struct extent_buffer *eb, int slot,
542                         enum mod_log_op op, gfp_t flags)
543 {
544         struct tree_mod_elem *tm;
545         int ret;
546
547         if (!tree_mod_need_log(fs_info, eb))
548                 return 0;
549
550         tm = alloc_tree_mod_elem(eb, slot, op, flags);
551         if (!tm)
552                 return -ENOMEM;
553
554         if (tree_mod_dont_log(fs_info, eb)) {
555                 kfree(tm);
556                 return 0;
557         }
558
559         ret = __tree_mod_log_insert(fs_info, tm);
560         tree_mod_log_write_unlock(fs_info);
561         if (ret)
562                 kfree(tm);
563
564         return ret;
565 }
566
567 static noinline int
568 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
569                          struct extent_buffer *eb, int dst_slot, int src_slot,
570                          int nr_items, gfp_t flags)
571 {
572         struct tree_mod_elem *tm = NULL;
573         struct tree_mod_elem **tm_list = NULL;
574         int ret = 0;
575         int i;
576         int locked = 0;
577
578         if (!tree_mod_need_log(fs_info, eb))
579                 return 0;
580
581         tm_list = kzalloc(nr_items * sizeof(struct tree_mod_elem *), flags);
582         if (!tm_list)
583                 return -ENOMEM;
584
585         tm = kzalloc(sizeof(*tm), flags);
586         if (!tm) {
587                 ret = -ENOMEM;
588                 goto free_tms;
589         }
590
591         tm->index = eb->start >> PAGE_CACHE_SHIFT;
592         tm->slot = src_slot;
593         tm->move.dst_slot = dst_slot;
594         tm->move.nr_items = nr_items;
595         tm->op = MOD_LOG_MOVE_KEYS;
596
597         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
598                 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
599                     MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
600                 if (!tm_list[i]) {
601                         ret = -ENOMEM;
602                         goto free_tms;
603                 }
604         }
605
606         if (tree_mod_dont_log(fs_info, eb))
607                 goto free_tms;
608         locked = 1;
609
610         /*
611          * When we override something during the move, we log these removals.
612          * This can only happen when we move towards the beginning of the
613          * buffer, i.e. dst_slot < src_slot.
614          */
615         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
616                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
617                 if (ret)
618                         goto free_tms;
619         }
620
621         ret = __tree_mod_log_insert(fs_info, tm);
622         if (ret)
623                 goto free_tms;
624         tree_mod_log_write_unlock(fs_info);
625         kfree(tm_list);
626
627         return 0;
628 free_tms:
629         for (i = 0; i < nr_items; i++) {
630                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
631                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
632                 kfree(tm_list[i]);
633         }
634         if (locked)
635                 tree_mod_log_write_unlock(fs_info);
636         kfree(tm_list);
637         kfree(tm);
638
639         return ret;
640 }
641
642 static inline int
643 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
644                        struct tree_mod_elem **tm_list,
645                        int nritems)
646 {
647         int i, j;
648         int ret;
649
650         for (i = nritems - 1; i >= 0; i--) {
651                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
652                 if (ret) {
653                         for (j = nritems - 1; j > i; j--)
654                                 rb_erase(&tm_list[j]->node,
655                                          &fs_info->tree_mod_log);
656                         return ret;
657                 }
658         }
659
660         return 0;
661 }
662
663 static noinline int
664 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
665                          struct extent_buffer *old_root,
666                          struct extent_buffer *new_root, gfp_t flags,
667                          int log_removal)
668 {
669         struct tree_mod_elem *tm = NULL;
670         struct tree_mod_elem **tm_list = NULL;
671         int nritems = 0;
672         int ret = 0;
673         int i;
674
675         if (!tree_mod_need_log(fs_info, NULL))
676                 return 0;
677
678         if (log_removal && btrfs_header_level(old_root) > 0) {
679                 nritems = btrfs_header_nritems(old_root);
680                 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
681                                   flags);
682                 if (!tm_list) {
683                         ret = -ENOMEM;
684                         goto free_tms;
685                 }
686                 for (i = 0; i < nritems; i++) {
687                         tm_list[i] = alloc_tree_mod_elem(old_root, i,
688                             MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
689                         if (!tm_list[i]) {
690                                 ret = -ENOMEM;
691                                 goto free_tms;
692                         }
693                 }
694         }
695
696         tm = kzalloc(sizeof(*tm), flags);
697         if (!tm) {
698                 ret = -ENOMEM;
699                 goto free_tms;
700         }
701
702         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
703         tm->old_root.logical = old_root->start;
704         tm->old_root.level = btrfs_header_level(old_root);
705         tm->generation = btrfs_header_generation(old_root);
706         tm->op = MOD_LOG_ROOT_REPLACE;
707
708         if (tree_mod_dont_log(fs_info, NULL))
709                 goto free_tms;
710
711         if (tm_list)
712                 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
713         if (!ret)
714                 ret = __tree_mod_log_insert(fs_info, tm);
715
716         tree_mod_log_write_unlock(fs_info);
717         if (ret)
718                 goto free_tms;
719         kfree(tm_list);
720
721         return ret;
722
723 free_tms:
724         if (tm_list) {
725                 for (i = 0; i < nritems; i++)
726                         kfree(tm_list[i]);
727                 kfree(tm_list);
728         }
729         kfree(tm);
730
731         return ret;
732 }
733
734 static struct tree_mod_elem *
735 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
736                       int smallest)
737 {
738         struct rb_root *tm_root;
739         struct rb_node *node;
740         struct tree_mod_elem *cur = NULL;
741         struct tree_mod_elem *found = NULL;
742         u64 index = start >> PAGE_CACHE_SHIFT;
743
744         tree_mod_log_read_lock(fs_info);
745         tm_root = &fs_info->tree_mod_log;
746         node = tm_root->rb_node;
747         while (node) {
748                 cur = container_of(node, struct tree_mod_elem, node);
749                 if (cur->index < index) {
750                         node = node->rb_left;
751                 } else if (cur->index > index) {
752                         node = node->rb_right;
753                 } else if (cur->seq < min_seq) {
754                         node = node->rb_left;
755                 } else if (!smallest) {
756                         /* we want the node with the highest seq */
757                         if (found)
758                                 BUG_ON(found->seq > cur->seq);
759                         found = cur;
760                         node = node->rb_left;
761                 } else if (cur->seq > min_seq) {
762                         /* we want the node with the smallest seq */
763                         if (found)
764                                 BUG_ON(found->seq < cur->seq);
765                         found = cur;
766                         node = node->rb_right;
767                 } else {
768                         found = cur;
769                         break;
770                 }
771         }
772         tree_mod_log_read_unlock(fs_info);
773
774         return found;
775 }
776
777 /*
778  * this returns the element from the log with the smallest time sequence
779  * value that's in the log (the oldest log item). any element with a time
780  * sequence lower than min_seq will be ignored.
781  */
782 static struct tree_mod_elem *
783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
784                            u64 min_seq)
785 {
786         return __tree_mod_log_search(fs_info, start, min_seq, 1);
787 }
788
789 /*
790  * this returns the element from the log with the largest time sequence
791  * value that's in the log (the most recent log item). any element with
792  * a time sequence lower than min_seq will be ignored.
793  */
794 static struct tree_mod_elem *
795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
796 {
797         return __tree_mod_log_search(fs_info, start, min_seq, 0);
798 }
799
800 static noinline int
801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
802                      struct extent_buffer *src, unsigned long dst_offset,
803                      unsigned long src_offset, int nr_items)
804 {
805         int ret = 0;
806         struct tree_mod_elem **tm_list = NULL;
807         struct tree_mod_elem **tm_list_add, **tm_list_rem;
808         int i;
809         int locked = 0;
810
811         if (!tree_mod_need_log(fs_info, NULL))
812                 return 0;
813
814         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
815                 return 0;
816
817         tm_list = kzalloc(nr_items * 2 * sizeof(struct tree_mod_elem *),
818                           GFP_NOFS);
819         if (!tm_list)
820                 return -ENOMEM;
821
822         tm_list_add = tm_list;
823         tm_list_rem = tm_list + nr_items;
824         for (i = 0; i < nr_items; i++) {
825                 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
826                     MOD_LOG_KEY_REMOVE, GFP_NOFS);
827                 if (!tm_list_rem[i]) {
828                         ret = -ENOMEM;
829                         goto free_tms;
830                 }
831
832                 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
833                     MOD_LOG_KEY_ADD, GFP_NOFS);
834                 if (!tm_list_add[i]) {
835                         ret = -ENOMEM;
836                         goto free_tms;
837                 }
838         }
839
840         if (tree_mod_dont_log(fs_info, NULL))
841                 goto free_tms;
842         locked = 1;
843
844         for (i = 0; i < nr_items; i++) {
845                 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
846                 if (ret)
847                         goto free_tms;
848                 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
849                 if (ret)
850                         goto free_tms;
851         }
852
853         tree_mod_log_write_unlock(fs_info);
854         kfree(tm_list);
855
856         return 0;
857
858 free_tms:
859         for (i = 0; i < nr_items * 2; i++) {
860                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
861                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
862                 kfree(tm_list[i]);
863         }
864         if (locked)
865                 tree_mod_log_write_unlock(fs_info);
866         kfree(tm_list);
867
868         return ret;
869 }
870
871 static inline void
872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
873                      int dst_offset, int src_offset, int nr_items)
874 {
875         int ret;
876         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
877                                        nr_items, GFP_NOFS);
878         BUG_ON(ret < 0);
879 }
880
881 static noinline void
882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
883                           struct extent_buffer *eb, int slot, int atomic)
884 {
885         int ret;
886
887         ret = tree_mod_log_insert_key(fs_info, eb, slot,
888                                         MOD_LOG_KEY_REPLACE,
889                                         atomic ? GFP_ATOMIC : GFP_NOFS);
890         BUG_ON(ret < 0);
891 }
892
893 static noinline int
894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
895 {
896         struct tree_mod_elem **tm_list = NULL;
897         int nritems = 0;
898         int i;
899         int ret = 0;
900
901         if (btrfs_header_level(eb) == 0)
902                 return 0;
903
904         if (!tree_mod_need_log(fs_info, NULL))
905                 return 0;
906
907         nritems = btrfs_header_nritems(eb);
908         tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
909                           GFP_NOFS);
910         if (!tm_list)
911                 return -ENOMEM;
912
913         for (i = 0; i < nritems; i++) {
914                 tm_list[i] = alloc_tree_mod_elem(eb, i,
915                     MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
916                 if (!tm_list[i]) {
917                         ret = -ENOMEM;
918                         goto free_tms;
919                 }
920         }
921
922         if (tree_mod_dont_log(fs_info, eb))
923                 goto free_tms;
924
925         ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
926         tree_mod_log_write_unlock(fs_info);
927         if (ret)
928                 goto free_tms;
929         kfree(tm_list);
930
931         return 0;
932
933 free_tms:
934         for (i = 0; i < nritems; i++)
935                 kfree(tm_list[i]);
936         kfree(tm_list);
937
938         return ret;
939 }
940
941 static noinline void
942 tree_mod_log_set_root_pointer(struct btrfs_root *root,
943                               struct extent_buffer *new_root_node,
944                               int log_removal)
945 {
946         int ret;
947         ret = tree_mod_log_insert_root(root->fs_info, root->node,
948                                        new_root_node, GFP_NOFS, log_removal);
949         BUG_ON(ret < 0);
950 }
951
952 /*
953  * check if the tree block can be shared by multiple trees
954  */
955 int btrfs_block_can_be_shared(struct btrfs_root *root,
956                               struct extent_buffer *buf)
957 {
958         /*
959          * Tree blocks not in refernece counted trees and tree roots
960          * are never shared. If a block was allocated after the last
961          * snapshot and the block was not allocated by tree relocation,
962          * we know the block is not shared.
963          */
964         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
965             buf != root->node && buf != root->commit_root &&
966             (btrfs_header_generation(buf) <=
967              btrfs_root_last_snapshot(&root->root_item) ||
968              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
969                 return 1;
970 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
971         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
972             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
973                 return 1;
974 #endif
975         return 0;
976 }
977
978 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
979                                        struct btrfs_root *root,
980                                        struct extent_buffer *buf,
981                                        struct extent_buffer *cow,
982                                        int *last_ref)
983 {
984         u64 refs;
985         u64 owner;
986         u64 flags;
987         u64 new_flags = 0;
988         int ret;
989
990         /*
991          * Backrefs update rules:
992          *
993          * Always use full backrefs for extent pointers in tree block
994          * allocated by tree relocation.
995          *
996          * If a shared tree block is no longer referenced by its owner
997          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
998          * use full backrefs for extent pointers in tree block.
999          *
1000          * If a tree block is been relocating
1001          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1002          * use full backrefs for extent pointers in tree block.
1003          * The reason for this is some operations (such as drop tree)
1004          * are only allowed for blocks use full backrefs.
1005          */
1006
1007         if (btrfs_block_can_be_shared(root, buf)) {
1008                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1009                                                btrfs_header_level(buf), 1,
1010                                                &refs, &flags);
1011                 if (ret)
1012                         return ret;
1013                 if (refs == 0) {
1014                         ret = -EROFS;
1015                         btrfs_std_error(root->fs_info, ret);
1016                         return ret;
1017                 }
1018         } else {
1019                 refs = 1;
1020                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1021                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1022                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1023                 else
1024                         flags = 0;
1025         }
1026
1027         owner = btrfs_header_owner(buf);
1028         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1029                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1030
1031         if (refs > 1) {
1032                 if ((owner == root->root_key.objectid ||
1033                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1034                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1035                         ret = btrfs_inc_ref(trans, root, buf, 1);
1036                         BUG_ON(ret); /* -ENOMEM */
1037
1038                         if (root->root_key.objectid ==
1039                             BTRFS_TREE_RELOC_OBJECTID) {
1040                                 ret = btrfs_dec_ref(trans, root, buf, 0);
1041                                 BUG_ON(ret); /* -ENOMEM */
1042                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1043                                 BUG_ON(ret); /* -ENOMEM */
1044                         }
1045                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1046                 } else {
1047
1048                         if (root->root_key.objectid ==
1049                             BTRFS_TREE_RELOC_OBJECTID)
1050                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1051                         else
1052                                 ret = btrfs_inc_ref(trans, root, cow, 0);
1053                         BUG_ON(ret); /* -ENOMEM */
1054                 }
1055                 if (new_flags != 0) {
1056                         int level = btrfs_header_level(buf);
1057
1058                         ret = btrfs_set_disk_extent_flags(trans, root,
1059                                                           buf->start,
1060                                                           buf->len,
1061                                                           new_flags, level, 0);
1062                         if (ret)
1063                                 return ret;
1064                 }
1065         } else {
1066                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1067                         if (root->root_key.objectid ==
1068                             BTRFS_TREE_RELOC_OBJECTID)
1069                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1070                         else
1071                                 ret = btrfs_inc_ref(trans, root, cow, 0);
1072                         BUG_ON(ret); /* -ENOMEM */
1073                         ret = btrfs_dec_ref(trans, root, buf, 1);
1074                         BUG_ON(ret); /* -ENOMEM */
1075                 }
1076                 clean_tree_block(trans, root, buf);
1077                 *last_ref = 1;
1078         }
1079         return 0;
1080 }
1081
1082 /*
1083  * does the dirty work in cow of a single block.  The parent block (if
1084  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1085  * dirty and returned locked.  If you modify the block it needs to be marked
1086  * dirty again.
1087  *
1088  * search_start -- an allocation hint for the new block
1089  *
1090  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1091  * bytes the allocator should try to find free next to the block it returns.
1092  * This is just a hint and may be ignored by the allocator.
1093  */
1094 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1095                              struct btrfs_root *root,
1096                              struct extent_buffer *buf,
1097                              struct extent_buffer *parent, int parent_slot,
1098                              struct extent_buffer **cow_ret,
1099                              u64 search_start, u64 empty_size)
1100 {
1101         struct btrfs_disk_key disk_key;
1102         struct extent_buffer *cow;
1103         int level, ret;
1104         int last_ref = 0;
1105         int unlock_orig = 0;
1106         u64 parent_start;
1107
1108         if (*cow_ret == buf)
1109                 unlock_orig = 1;
1110
1111         btrfs_assert_tree_locked(buf);
1112
1113         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1114                 trans->transid != root->fs_info->running_transaction->transid);
1115         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1116                 trans->transid != root->last_trans);
1117
1118         level = btrfs_header_level(buf);
1119
1120         if (level == 0)
1121                 btrfs_item_key(buf, &disk_key, 0);
1122         else
1123                 btrfs_node_key(buf, &disk_key, 0);
1124
1125         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1126                 if (parent)
1127                         parent_start = parent->start;
1128                 else
1129                         parent_start = 0;
1130         } else
1131                 parent_start = 0;
1132
1133         cow = btrfs_alloc_tree_block(trans, root, parent_start,
1134                         root->root_key.objectid, &disk_key, level,
1135                         search_start, empty_size);
1136         if (IS_ERR(cow))
1137                 return PTR_ERR(cow);
1138
1139         /* cow is set to blocking by btrfs_init_new_buffer */
1140
1141         copy_extent_buffer(cow, buf, 0, 0, cow->len);
1142         btrfs_set_header_bytenr(cow, cow->start);
1143         btrfs_set_header_generation(cow, trans->transid);
1144         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1145         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1146                                      BTRFS_HEADER_FLAG_RELOC);
1147         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1148                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1149         else
1150                 btrfs_set_header_owner(cow, root->root_key.objectid);
1151
1152         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1153                             BTRFS_FSID_SIZE);
1154
1155         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1156         if (ret) {
1157                 btrfs_abort_transaction(trans, root, ret);
1158                 return ret;
1159         }
1160
1161         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1162                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1163                 if (ret)
1164                         return ret;
1165         }
1166
1167         if (buf == root->node) {
1168                 WARN_ON(parent && parent != buf);
1169                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1170                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1171                         parent_start = buf->start;
1172                 else
1173                         parent_start = 0;
1174
1175                 extent_buffer_get(cow);
1176                 tree_mod_log_set_root_pointer(root, cow, 1);
1177                 rcu_assign_pointer(root->node, cow);
1178
1179                 btrfs_free_tree_block(trans, root, buf, parent_start,
1180                                       last_ref);
1181                 free_extent_buffer(buf);
1182                 add_root_to_dirty_list(root);
1183         } else {
1184                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1185                         parent_start = parent->start;
1186                 else
1187                         parent_start = 0;
1188
1189                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1190                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1191                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1192                 btrfs_set_node_blockptr(parent, parent_slot,
1193                                         cow->start);
1194                 btrfs_set_node_ptr_generation(parent, parent_slot,
1195                                               trans->transid);
1196                 btrfs_mark_buffer_dirty(parent);
1197                 if (last_ref) {
1198                         ret = tree_mod_log_free_eb(root->fs_info, buf);
1199                         if (ret) {
1200                                 btrfs_abort_transaction(trans, root, ret);
1201                                 return ret;
1202                         }
1203                 }
1204                 btrfs_free_tree_block(trans, root, buf, parent_start,
1205                                       last_ref);
1206         }
1207         if (unlock_orig)
1208                 btrfs_tree_unlock(buf);
1209         free_extent_buffer_stale(buf);
1210         btrfs_mark_buffer_dirty(cow);
1211         *cow_ret = cow;
1212         return 0;
1213 }
1214
1215 /*
1216  * returns the logical address of the oldest predecessor of the given root.
1217  * entries older than time_seq are ignored.
1218  */
1219 static struct tree_mod_elem *
1220 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1221                            struct extent_buffer *eb_root, u64 time_seq)
1222 {
1223         struct tree_mod_elem *tm;
1224         struct tree_mod_elem *found = NULL;
1225         u64 root_logical = eb_root->start;
1226         int looped = 0;
1227
1228         if (!time_seq)
1229                 return NULL;
1230
1231         /*
1232          * the very last operation that's logged for a root is the replacement
1233          * operation (if it is replaced at all). this has the index of the *new*
1234          * root, making it the very first operation that's logged for this root.
1235          */
1236         while (1) {
1237                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1238                                                 time_seq);
1239                 if (!looped && !tm)
1240                         return NULL;
1241                 /*
1242                  * if there are no tree operation for the oldest root, we simply
1243                  * return it. this should only happen if that (old) root is at
1244                  * level 0.
1245                  */
1246                 if (!tm)
1247                         break;
1248
1249                 /*
1250                  * if there's an operation that's not a root replacement, we
1251                  * found the oldest version of our root. normally, we'll find a
1252                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1253                  */
1254                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1255                         break;
1256
1257                 found = tm;
1258                 root_logical = tm->old_root.logical;
1259                 looped = 1;
1260         }
1261
1262         /* if there's no old root to return, return what we found instead */
1263         if (!found)
1264                 found = tm;
1265
1266         return found;
1267 }
1268
1269 /*
1270  * tm is a pointer to the first operation to rewind within eb. then, all
1271  * previous operations will be rewinded (until we reach something older than
1272  * time_seq).
1273  */
1274 static void
1275 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1276                       u64 time_seq, struct tree_mod_elem *first_tm)
1277 {
1278         u32 n;
1279         struct rb_node *next;
1280         struct tree_mod_elem *tm = first_tm;
1281         unsigned long o_dst;
1282         unsigned long o_src;
1283         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1284
1285         n = btrfs_header_nritems(eb);
1286         tree_mod_log_read_lock(fs_info);
1287         while (tm && tm->seq >= time_seq) {
1288                 /*
1289                  * all the operations are recorded with the operator used for
1290                  * the modification. as we're going backwards, we do the
1291                  * opposite of each operation here.
1292                  */
1293                 switch (tm->op) {
1294                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1295                         BUG_ON(tm->slot < n);
1296                         /* Fallthrough */
1297                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1298                 case MOD_LOG_KEY_REMOVE:
1299                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1300                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1301                         btrfs_set_node_ptr_generation(eb, tm->slot,
1302                                                       tm->generation);
1303                         n++;
1304                         break;
1305                 case MOD_LOG_KEY_REPLACE:
1306                         BUG_ON(tm->slot >= n);
1307                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1308                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1309                         btrfs_set_node_ptr_generation(eb, tm->slot,
1310                                                       tm->generation);
1311                         break;
1312                 case MOD_LOG_KEY_ADD:
1313                         /* if a move operation is needed it's in the log */
1314                         n--;
1315                         break;
1316                 case MOD_LOG_MOVE_KEYS:
1317                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1318                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1319                         memmove_extent_buffer(eb, o_dst, o_src,
1320                                               tm->move.nr_items * p_size);
1321                         break;
1322                 case MOD_LOG_ROOT_REPLACE:
1323                         /*
1324                          * this operation is special. for roots, this must be
1325                          * handled explicitly before rewinding.
1326                          * for non-roots, this operation may exist if the node
1327                          * was a root: root A -> child B; then A gets empty and
1328                          * B is promoted to the new root. in the mod log, we'll
1329                          * have a root-replace operation for B, a tree block
1330                          * that is no root. we simply ignore that operation.
1331                          */
1332                         break;
1333                 }
1334                 next = rb_next(&tm->node);
1335                 if (!next)
1336                         break;
1337                 tm = container_of(next, struct tree_mod_elem, node);
1338                 if (tm->index != first_tm->index)
1339                         break;
1340         }
1341         tree_mod_log_read_unlock(fs_info);
1342         btrfs_set_header_nritems(eb, n);
1343 }
1344
1345 /*
1346  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1347  * is returned. If rewind operations happen, a fresh buffer is returned. The
1348  * returned buffer is always read-locked. If the returned buffer is not the
1349  * input buffer, the lock on the input buffer is released and the input buffer
1350  * is freed (its refcount is decremented).
1351  */
1352 static struct extent_buffer *
1353 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1354                     struct extent_buffer *eb, u64 time_seq)
1355 {
1356         struct extent_buffer *eb_rewin;
1357         struct tree_mod_elem *tm;
1358
1359         if (!time_seq)
1360                 return eb;
1361
1362         if (btrfs_header_level(eb) == 0)
1363                 return eb;
1364
1365         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1366         if (!tm)
1367                 return eb;
1368
1369         btrfs_set_path_blocking(path);
1370         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1371
1372         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1373                 BUG_ON(tm->slot != 0);
1374                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1375                                                 fs_info->tree_root->nodesize);
1376                 if (!eb_rewin) {
1377                         btrfs_tree_read_unlock_blocking(eb);
1378                         free_extent_buffer(eb);
1379                         return NULL;
1380                 }
1381                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1382                 btrfs_set_header_backref_rev(eb_rewin,
1383                                              btrfs_header_backref_rev(eb));
1384                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1385                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1386         } else {
1387                 eb_rewin = btrfs_clone_extent_buffer(eb);
1388                 if (!eb_rewin) {
1389                         btrfs_tree_read_unlock_blocking(eb);
1390                         free_extent_buffer(eb);
1391                         return NULL;
1392                 }
1393         }
1394
1395         btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1396         btrfs_tree_read_unlock_blocking(eb);
1397         free_extent_buffer(eb);
1398
1399         extent_buffer_get(eb_rewin);
1400         btrfs_tree_read_lock(eb_rewin);
1401         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1402         WARN_ON(btrfs_header_nritems(eb_rewin) >
1403                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1404
1405         return eb_rewin;
1406 }
1407
1408 /*
1409  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1410  * value. If there are no changes, the current root->root_node is returned. If
1411  * anything changed in between, there's a fresh buffer allocated on which the
1412  * rewind operations are done. In any case, the returned buffer is read locked.
1413  * Returns NULL on error (with no locks held).
1414  */
1415 static inline struct extent_buffer *
1416 get_old_root(struct btrfs_root *root, u64 time_seq)
1417 {
1418         struct tree_mod_elem *tm;
1419         struct extent_buffer *eb = NULL;
1420         struct extent_buffer *eb_root;
1421         struct extent_buffer *old;
1422         struct tree_mod_root *old_root = NULL;
1423         u64 old_generation = 0;
1424         u64 logical;
1425
1426         eb_root = btrfs_read_lock_root_node(root);
1427         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1428         if (!tm)
1429                 return eb_root;
1430
1431         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1432                 old_root = &tm->old_root;
1433                 old_generation = tm->generation;
1434                 logical = old_root->logical;
1435         } else {
1436                 logical = eb_root->start;
1437         }
1438
1439         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1440         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1441                 btrfs_tree_read_unlock(eb_root);
1442                 free_extent_buffer(eb_root);
1443                 old = read_tree_block(root, logical, 0);
1444                 if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
1445                         free_extent_buffer(old);
1446                         btrfs_warn(root->fs_info,
1447                                 "failed to read tree block %llu from get_old_root", logical);
1448                 } else {
1449                         eb = btrfs_clone_extent_buffer(old);
1450                         free_extent_buffer(old);
1451                 }
1452         } else if (old_root) {
1453                 btrfs_tree_read_unlock(eb_root);
1454                 free_extent_buffer(eb_root);
1455                 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1456         } else {
1457                 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1458                 eb = btrfs_clone_extent_buffer(eb_root);
1459                 btrfs_tree_read_unlock_blocking(eb_root);
1460                 free_extent_buffer(eb_root);
1461         }
1462
1463         if (!eb)
1464                 return NULL;
1465         extent_buffer_get(eb);
1466         btrfs_tree_read_lock(eb);
1467         if (old_root) {
1468                 btrfs_set_header_bytenr(eb, eb->start);
1469                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1470                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1471                 btrfs_set_header_level(eb, old_root->level);
1472                 btrfs_set_header_generation(eb, old_generation);
1473         }
1474         if (tm)
1475                 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1476         else
1477                 WARN_ON(btrfs_header_level(eb) != 0);
1478         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1479
1480         return eb;
1481 }
1482
1483 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1484 {
1485         struct tree_mod_elem *tm;
1486         int level;
1487         struct extent_buffer *eb_root = btrfs_root_node(root);
1488
1489         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1490         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1491                 level = tm->old_root.level;
1492         } else {
1493                 level = btrfs_header_level(eb_root);
1494         }
1495         free_extent_buffer(eb_root);
1496
1497         return level;
1498 }
1499
1500 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1501                                    struct btrfs_root *root,
1502                                    struct extent_buffer *buf)
1503 {
1504         if (btrfs_test_is_dummy_root(root))
1505                 return 0;
1506
1507         /* ensure we can see the force_cow */
1508         smp_rmb();
1509
1510         /*
1511          * We do not need to cow a block if
1512          * 1) this block is not created or changed in this transaction;
1513          * 2) this block does not belong to TREE_RELOC tree;
1514          * 3) the root is not forced COW.
1515          *
1516          * What is forced COW:
1517          *    when we create snapshot during commiting the transaction,
1518          *    after we've finished coping src root, we must COW the shared
1519          *    block to ensure the metadata consistency.
1520          */
1521         if (btrfs_header_generation(buf) == trans->transid &&
1522             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1523             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1524               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1525             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1526                 return 0;
1527         return 1;
1528 }
1529
1530 /*
1531  * cows a single block, see __btrfs_cow_block for the real work.
1532  * This version of it has extra checks so that a block isn't cow'd more than
1533  * once per transaction, as long as it hasn't been written yet
1534  */
1535 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1536                     struct btrfs_root *root, struct extent_buffer *buf,
1537                     struct extent_buffer *parent, int parent_slot,
1538                     struct extent_buffer **cow_ret)
1539 {
1540         u64 search_start;
1541         int ret;
1542
1543         if (trans->transaction != root->fs_info->running_transaction)
1544                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1545                        trans->transid,
1546                        root->fs_info->running_transaction->transid);
1547
1548         if (trans->transid != root->fs_info->generation)
1549                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1550                        trans->transid, root->fs_info->generation);
1551
1552         if (!should_cow_block(trans, root, buf)) {
1553                 *cow_ret = buf;
1554                 return 0;
1555         }
1556
1557         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1558
1559         if (parent)
1560                 btrfs_set_lock_blocking(parent);
1561         btrfs_set_lock_blocking(buf);
1562
1563         ret = __btrfs_cow_block(trans, root, buf, parent,
1564                                  parent_slot, cow_ret, search_start, 0);
1565
1566         trace_btrfs_cow_block(root, buf, *cow_ret);
1567
1568         return ret;
1569 }
1570
1571 /*
1572  * helper function for defrag to decide if two blocks pointed to by a
1573  * node are actually close by
1574  */
1575 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1576 {
1577         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1578                 return 1;
1579         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1580                 return 1;
1581         return 0;
1582 }
1583
1584 /*
1585  * compare two keys in a memcmp fashion
1586  */
1587 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1588 {
1589         struct btrfs_key k1;
1590
1591         btrfs_disk_key_to_cpu(&k1, disk);
1592
1593         return btrfs_comp_cpu_keys(&k1, k2);
1594 }
1595
1596 /*
1597  * same as comp_keys only with two btrfs_key's
1598  */
1599 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1600 {
1601         if (k1->objectid > k2->objectid)
1602                 return 1;
1603         if (k1->objectid < k2->objectid)
1604                 return -1;
1605         if (k1->type > k2->type)
1606                 return 1;
1607         if (k1->type < k2->type)
1608                 return -1;
1609         if (k1->offset > k2->offset)
1610                 return 1;
1611         if (k1->offset < k2->offset)
1612                 return -1;
1613         return 0;
1614 }
1615
1616 /*
1617  * this is used by the defrag code to go through all the
1618  * leaves pointed to by a node and reallocate them so that
1619  * disk order is close to key order
1620  */
1621 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1622                        struct btrfs_root *root, struct extent_buffer *parent,
1623                        int start_slot, u64 *last_ret,
1624                        struct btrfs_key *progress)
1625 {
1626         struct extent_buffer *cur;
1627         u64 blocknr;
1628         u64 gen;
1629         u64 search_start = *last_ret;
1630         u64 last_block = 0;
1631         u64 other;
1632         u32 parent_nritems;
1633         int end_slot;
1634         int i;
1635         int err = 0;
1636         int parent_level;
1637         int uptodate;
1638         u32 blocksize;
1639         int progress_passed = 0;
1640         struct btrfs_disk_key disk_key;
1641
1642         parent_level = btrfs_header_level(parent);
1643
1644         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1645         WARN_ON(trans->transid != root->fs_info->generation);
1646
1647         parent_nritems = btrfs_header_nritems(parent);
1648         blocksize = root->nodesize;
1649         end_slot = parent_nritems;
1650
1651         if (parent_nritems == 1)
1652                 return 0;
1653
1654         btrfs_set_lock_blocking(parent);
1655
1656         for (i = start_slot; i < end_slot; i++) {
1657                 int close = 1;
1658
1659                 btrfs_node_key(parent, &disk_key, i);
1660                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1661                         continue;
1662
1663                 progress_passed = 1;
1664                 blocknr = btrfs_node_blockptr(parent, i);
1665                 gen = btrfs_node_ptr_generation(parent, i);
1666                 if (last_block == 0)
1667                         last_block = blocknr;
1668
1669                 if (i > 0) {
1670                         other = btrfs_node_blockptr(parent, i - 1);
1671                         close = close_blocks(blocknr, other, blocksize);
1672                 }
1673                 if (!close && i < end_slot - 2) {
1674                         other = btrfs_node_blockptr(parent, i + 1);
1675                         close = close_blocks(blocknr, other, blocksize);
1676                 }
1677                 if (close) {
1678                         last_block = blocknr;
1679                         continue;
1680                 }
1681
1682                 cur = btrfs_find_tree_block(root, blocknr);
1683                 if (cur)
1684                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1685                 else
1686                         uptodate = 0;
1687                 if (!cur || !uptodate) {
1688                         if (!cur) {
1689                                 cur = read_tree_block(root, blocknr, gen);
1690                                 if (!cur || !extent_buffer_uptodate(cur)) {
1691                                         free_extent_buffer(cur);
1692                                         return -EIO;
1693                                 }
1694                         } else if (!uptodate) {
1695                                 err = btrfs_read_buffer(cur, gen);
1696                                 if (err) {
1697                                         free_extent_buffer(cur);
1698                                         return err;
1699                                 }
1700                         }
1701                 }
1702                 if (search_start == 0)
1703                         search_start = last_block;
1704
1705                 btrfs_tree_lock(cur);
1706                 btrfs_set_lock_blocking(cur);
1707                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1708                                         &cur, search_start,
1709                                         min(16 * blocksize,
1710                                             (end_slot - i) * blocksize));
1711                 if (err) {
1712                         btrfs_tree_unlock(cur);
1713                         free_extent_buffer(cur);
1714                         break;
1715                 }
1716                 search_start = cur->start;
1717                 last_block = cur->start;
1718                 *last_ret = search_start;
1719                 btrfs_tree_unlock(cur);
1720                 free_extent_buffer(cur);
1721         }
1722         return err;
1723 }
1724
1725 /*
1726  * The leaf data grows from end-to-front in the node.
1727  * this returns the address of the start of the last item,
1728  * which is the stop of the leaf data stack
1729  */
1730 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1731                                          struct extent_buffer *leaf)
1732 {
1733         u32 nr = btrfs_header_nritems(leaf);
1734         if (nr == 0)
1735                 return BTRFS_LEAF_DATA_SIZE(root);
1736         return btrfs_item_offset_nr(leaf, nr - 1);
1737 }
1738
1739
1740 /*
1741  * search for key in the extent_buffer.  The items start at offset p,
1742  * and they are item_size apart.  There are 'max' items in p.
1743  *
1744  * the slot in the array is returned via slot, and it points to
1745  * the place where you would insert key if it is not found in
1746  * the array.
1747  *
1748  * slot may point to max if the key is bigger than all of the keys
1749  */
1750 static noinline int generic_bin_search(struct extent_buffer *eb,
1751                                        unsigned long p,
1752                                        int item_size, struct btrfs_key *key,
1753                                        int max, int *slot)
1754 {
1755         int low = 0;
1756         int high = max;
1757         int mid;
1758         int ret;
1759         struct btrfs_disk_key *tmp = NULL;
1760         struct btrfs_disk_key unaligned;
1761         unsigned long offset;
1762         char *kaddr = NULL;
1763         unsigned long map_start = 0;
1764         unsigned long map_len = 0;
1765         int err;
1766
1767         while (low < high) {
1768                 mid = (low + high) / 2;
1769                 offset = p + mid * item_size;
1770
1771                 if (!kaddr || offset < map_start ||
1772                     (offset + sizeof(struct btrfs_disk_key)) >
1773                     map_start + map_len) {
1774
1775                         err = map_private_extent_buffer(eb, offset,
1776                                                 sizeof(struct btrfs_disk_key),
1777                                                 &kaddr, &map_start, &map_len);
1778
1779                         if (!err) {
1780                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1781                                                         map_start);
1782                         } else {
1783                                 read_extent_buffer(eb, &unaligned,
1784                                                    offset, sizeof(unaligned));
1785                                 tmp = &unaligned;
1786                         }
1787
1788                 } else {
1789                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1790                                                         map_start);
1791                 }
1792                 ret = comp_keys(tmp, key);
1793
1794                 if (ret < 0)
1795                         low = mid + 1;
1796                 else if (ret > 0)
1797                         high = mid;
1798                 else {
1799                         *slot = mid;
1800                         return 0;
1801                 }
1802         }
1803         *slot = low;
1804         return 1;
1805 }
1806
1807 /*
1808  * simple bin_search frontend that does the right thing for
1809  * leaves vs nodes
1810  */
1811 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1812                       int level, int *slot)
1813 {
1814         if (level == 0)
1815                 return generic_bin_search(eb,
1816                                           offsetof(struct btrfs_leaf, items),
1817                                           sizeof(struct btrfs_item),
1818                                           key, btrfs_header_nritems(eb),
1819                                           slot);
1820         else
1821                 return generic_bin_search(eb,
1822                                           offsetof(struct btrfs_node, ptrs),
1823                                           sizeof(struct btrfs_key_ptr),
1824                                           key, btrfs_header_nritems(eb),
1825                                           slot);
1826 }
1827
1828 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1829                      int level, int *slot)
1830 {
1831         return bin_search(eb, key, level, slot);
1832 }
1833
1834 static void root_add_used(struct btrfs_root *root, u32 size)
1835 {
1836         spin_lock(&root->accounting_lock);
1837         btrfs_set_root_used(&root->root_item,
1838                             btrfs_root_used(&root->root_item) + size);
1839         spin_unlock(&root->accounting_lock);
1840 }
1841
1842 static void root_sub_used(struct btrfs_root *root, u32 size)
1843 {
1844         spin_lock(&root->accounting_lock);
1845         btrfs_set_root_used(&root->root_item,
1846                             btrfs_root_used(&root->root_item) - size);
1847         spin_unlock(&root->accounting_lock);
1848 }
1849
1850 /* given a node and slot number, this reads the blocks it points to.  The
1851  * extent buffer is returned with a reference taken (but unlocked).
1852  * NULL is returned on error.
1853  */
1854 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1855                                    struct extent_buffer *parent, int slot)
1856 {
1857         int level = btrfs_header_level(parent);
1858         struct extent_buffer *eb;
1859
1860         if (slot < 0)
1861                 return NULL;
1862         if (slot >= btrfs_header_nritems(parent))
1863                 return NULL;
1864
1865         BUG_ON(level == 0);
1866
1867         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1868                              btrfs_node_ptr_generation(parent, slot));
1869         if (eb && !extent_buffer_uptodate(eb)) {
1870                 free_extent_buffer(eb);
1871                 eb = NULL;
1872         }
1873
1874         return eb;
1875 }
1876
1877 /*
1878  * node level balancing, used to make sure nodes are in proper order for
1879  * item deletion.  We balance from the top down, so we have to make sure
1880  * that a deletion won't leave an node completely empty later on.
1881  */
1882 static noinline int balance_level(struct btrfs_trans_handle *trans,
1883                          struct btrfs_root *root,
1884                          struct btrfs_path *path, int level)
1885 {
1886         struct extent_buffer *right = NULL;
1887         struct extent_buffer *mid;
1888         struct extent_buffer *left = NULL;
1889         struct extent_buffer *parent = NULL;
1890         int ret = 0;
1891         int wret;
1892         int pslot;
1893         int orig_slot = path->slots[level];
1894         u64 orig_ptr;
1895
1896         if (level == 0)
1897                 return 0;
1898
1899         mid = path->nodes[level];
1900
1901         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1902                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1903         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1904
1905         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1906
1907         if (level < BTRFS_MAX_LEVEL - 1) {
1908                 parent = path->nodes[level + 1];
1909                 pslot = path->slots[level + 1];
1910         }
1911
1912         /*
1913          * deal with the case where there is only one pointer in the root
1914          * by promoting the node below to a root
1915          */
1916         if (!parent) {
1917                 struct extent_buffer *child;
1918
1919                 if (btrfs_header_nritems(mid) != 1)
1920                         return 0;
1921
1922                 /* promote the child to a root */
1923                 child = read_node_slot(root, mid, 0);
1924                 if (!child) {
1925                         ret = -EROFS;
1926                         btrfs_std_error(root->fs_info, ret);
1927                         goto enospc;
1928                 }
1929
1930                 btrfs_tree_lock(child);
1931                 btrfs_set_lock_blocking(child);
1932                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1933                 if (ret) {
1934                         btrfs_tree_unlock(child);
1935                         free_extent_buffer(child);
1936                         goto enospc;
1937                 }
1938
1939                 tree_mod_log_set_root_pointer(root, child, 1);
1940                 rcu_assign_pointer(root->node, child);
1941
1942                 add_root_to_dirty_list(root);
1943                 btrfs_tree_unlock(child);
1944
1945                 path->locks[level] = 0;
1946                 path->nodes[level] = NULL;
1947                 clean_tree_block(trans, root, mid);
1948                 btrfs_tree_unlock(mid);
1949                 /* once for the path */
1950                 free_extent_buffer(mid);
1951
1952                 root_sub_used(root, mid->len);
1953                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1954                 /* once for the root ptr */
1955                 free_extent_buffer_stale(mid);
1956                 return 0;
1957         }
1958         if (btrfs_header_nritems(mid) >
1959             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1960                 return 0;
1961
1962         left = read_node_slot(root, parent, pslot - 1);
1963         if (left) {
1964                 btrfs_tree_lock(left);
1965                 btrfs_set_lock_blocking(left);
1966                 wret = btrfs_cow_block(trans, root, left,
1967                                        parent, pslot - 1, &left);
1968                 if (wret) {
1969                         ret = wret;
1970                         goto enospc;
1971                 }
1972         }
1973         right = read_node_slot(root, parent, pslot + 1);
1974         if (right) {
1975                 btrfs_tree_lock(right);
1976                 btrfs_set_lock_blocking(right);
1977                 wret = btrfs_cow_block(trans, root, right,
1978                                        parent, pslot + 1, &right);
1979                 if (wret) {
1980                         ret = wret;
1981                         goto enospc;
1982                 }
1983         }
1984
1985         /* first, try to make some room in the middle buffer */
1986         if (left) {
1987                 orig_slot += btrfs_header_nritems(left);
1988                 wret = push_node_left(trans, root, left, mid, 1);
1989                 if (wret < 0)
1990                         ret = wret;
1991         }
1992
1993         /*
1994          * then try to empty the right most buffer into the middle
1995          */
1996         if (right) {
1997                 wret = push_node_left(trans, root, mid, right, 1);
1998                 if (wret < 0 && wret != -ENOSPC)
1999                         ret = wret;
2000                 if (btrfs_header_nritems(right) == 0) {
2001                         clean_tree_block(trans, root, right);
2002                         btrfs_tree_unlock(right);
2003                         del_ptr(root, path, level + 1, pslot + 1);
2004                         root_sub_used(root, right->len);
2005                         btrfs_free_tree_block(trans, root, right, 0, 1);
2006                         free_extent_buffer_stale(right);
2007                         right = NULL;
2008                 } else {
2009                         struct btrfs_disk_key right_key;
2010                         btrfs_node_key(right, &right_key, 0);
2011                         tree_mod_log_set_node_key(root->fs_info, parent,
2012                                                   pslot + 1, 0);
2013                         btrfs_set_node_key(parent, &right_key, pslot + 1);
2014                         btrfs_mark_buffer_dirty(parent);
2015                 }
2016         }
2017         if (btrfs_header_nritems(mid) == 1) {
2018                 /*
2019                  * we're not allowed to leave a node with one item in the
2020                  * tree during a delete.  A deletion from lower in the tree
2021                  * could try to delete the only pointer in this node.
2022                  * So, pull some keys from the left.
2023                  * There has to be a left pointer at this point because
2024                  * otherwise we would have pulled some pointers from the
2025                  * right
2026                  */
2027                 if (!left) {
2028                         ret = -EROFS;
2029                         btrfs_std_error(root->fs_info, ret);
2030                         goto enospc;
2031                 }
2032                 wret = balance_node_right(trans, root, mid, left);
2033                 if (wret < 0) {
2034                         ret = wret;
2035                         goto enospc;
2036                 }
2037                 if (wret == 1) {
2038                         wret = push_node_left(trans, root, left, mid, 1);
2039                         if (wret < 0)
2040                                 ret = wret;
2041                 }
2042                 BUG_ON(wret == 1);
2043         }
2044         if (btrfs_header_nritems(mid) == 0) {
2045                 clean_tree_block(trans, root, mid);
2046                 btrfs_tree_unlock(mid);
2047                 del_ptr(root, path, level + 1, pslot);
2048                 root_sub_used(root, mid->len);
2049                 btrfs_free_tree_block(trans, root, mid, 0, 1);
2050                 free_extent_buffer_stale(mid);
2051                 mid = NULL;
2052         } else {
2053                 /* update the parent key to reflect our changes */
2054                 struct btrfs_disk_key mid_key;
2055                 btrfs_node_key(mid, &mid_key, 0);
2056                 tree_mod_log_set_node_key(root->fs_info, parent,
2057                                           pslot, 0);
2058                 btrfs_set_node_key(parent, &mid_key, pslot);
2059                 btrfs_mark_buffer_dirty(parent);
2060         }
2061
2062         /* update the path */
2063         if (left) {
2064                 if (btrfs_header_nritems(left) > orig_slot) {
2065                         extent_buffer_get(left);
2066                         /* left was locked after cow */
2067                         path->nodes[level] = left;
2068                         path->slots[level + 1] -= 1;
2069                         path->slots[level] = orig_slot;
2070                         if (mid) {
2071                                 btrfs_tree_unlock(mid);
2072                                 free_extent_buffer(mid);
2073                         }
2074                 } else {
2075                         orig_slot -= btrfs_header_nritems(left);
2076                         path->slots[level] = orig_slot;
2077                 }
2078         }
2079         /* double check we haven't messed things up */
2080         if (orig_ptr !=
2081             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2082                 BUG();
2083 enospc:
2084         if (right) {
2085                 btrfs_tree_unlock(right);
2086                 free_extent_buffer(right);
2087         }
2088         if (left) {
2089                 if (path->nodes[level] != left)
2090                         btrfs_tree_unlock(left);
2091                 free_extent_buffer(left);
2092         }
2093         return ret;
2094 }
2095
2096 /* Node balancing for insertion.  Here we only split or push nodes around
2097  * when they are completely full.  This is also done top down, so we
2098  * have to be pessimistic.
2099  */
2100 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2101                                           struct btrfs_root *root,
2102                                           struct btrfs_path *path, int level)
2103 {
2104         struct extent_buffer *right = NULL;
2105         struct extent_buffer *mid;
2106         struct extent_buffer *left = NULL;
2107         struct extent_buffer *parent = NULL;
2108         int ret = 0;
2109         int wret;
2110         int pslot;
2111         int orig_slot = path->slots[level];
2112
2113         if (level == 0)
2114                 return 1;
2115
2116         mid = path->nodes[level];
2117         WARN_ON(btrfs_header_generation(mid) != trans->transid);
2118
2119         if (level < BTRFS_MAX_LEVEL - 1) {
2120                 parent = path->nodes[level + 1];
2121                 pslot = path->slots[level + 1];
2122         }
2123
2124         if (!parent)
2125                 return 1;
2126
2127         left = read_node_slot(root, parent, pslot - 1);
2128
2129         /* first, try to make some room in the middle buffer */
2130         if (left) {
2131                 u32 left_nr;
2132
2133                 btrfs_tree_lock(left);
2134                 btrfs_set_lock_blocking(left);
2135
2136                 left_nr = btrfs_header_nritems(left);
2137                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2138                         wret = 1;
2139                 } else {
2140                         ret = btrfs_cow_block(trans, root, left, parent,
2141                                               pslot - 1, &left);
2142                         if (ret)
2143                                 wret = 1;
2144                         else {
2145                                 wret = push_node_left(trans, root,
2146                                                       left, mid, 0);
2147                         }
2148                 }
2149                 if (wret < 0)
2150                         ret = wret;
2151                 if (wret == 0) {
2152                         struct btrfs_disk_key disk_key;
2153                         orig_slot += left_nr;
2154                         btrfs_node_key(mid, &disk_key, 0);
2155                         tree_mod_log_set_node_key(root->fs_info, parent,
2156                                                   pslot, 0);
2157                         btrfs_set_node_key(parent, &disk_key, pslot);
2158                         btrfs_mark_buffer_dirty(parent);
2159                         if (btrfs_header_nritems(left) > orig_slot) {
2160                                 path->nodes[level] = left;
2161                                 path->slots[level + 1] -= 1;
2162                                 path->slots[level] = orig_slot;
2163                                 btrfs_tree_unlock(mid);
2164                                 free_extent_buffer(mid);
2165                         } else {
2166                                 orig_slot -=
2167                                         btrfs_header_nritems(left);
2168                                 path->slots[level] = orig_slot;
2169                                 btrfs_tree_unlock(left);
2170                                 free_extent_buffer(left);
2171                         }
2172                         return 0;
2173                 }
2174                 btrfs_tree_unlock(left);
2175                 free_extent_buffer(left);
2176         }
2177         right = read_node_slot(root, parent, pslot + 1);
2178
2179         /*
2180          * then try to empty the right most buffer into the middle
2181          */
2182         if (right) {
2183                 u32 right_nr;
2184
2185                 btrfs_tree_lock(right);
2186                 btrfs_set_lock_blocking(right);
2187
2188                 right_nr = btrfs_header_nritems(right);
2189                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2190                         wret = 1;
2191                 } else {
2192                         ret = btrfs_cow_block(trans, root, right,
2193                                               parent, pslot + 1,
2194                                               &right);
2195                         if (ret)
2196                                 wret = 1;
2197                         else {
2198                                 wret = balance_node_right(trans, root,
2199                                                           right, mid);
2200                         }
2201                 }
2202                 if (wret < 0)
2203                         ret = wret;
2204                 if (wret == 0) {
2205                         struct btrfs_disk_key disk_key;
2206
2207                         btrfs_node_key(right, &disk_key, 0);
2208                         tree_mod_log_set_node_key(root->fs_info, parent,
2209                                                   pslot + 1, 0);
2210                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2211                         btrfs_mark_buffer_dirty(parent);
2212
2213                         if (btrfs_header_nritems(mid) <= orig_slot) {
2214                                 path->nodes[level] = right;
2215                                 path->slots[level + 1] += 1;
2216                                 path->slots[level] = orig_slot -
2217                                         btrfs_header_nritems(mid);
2218                                 btrfs_tree_unlock(mid);
2219                                 free_extent_buffer(mid);
2220                         } else {
2221                                 btrfs_tree_unlock(right);
2222                                 free_extent_buffer(right);
2223                         }
2224                         return 0;
2225                 }
2226                 btrfs_tree_unlock(right);
2227                 free_extent_buffer(right);
2228         }
2229         return 1;
2230 }
2231
2232 /*
2233  * readahead one full node of leaves, finding things that are close
2234  * to the block in 'slot', and triggering ra on them.
2235  */
2236 static void reada_for_search(struct btrfs_root *root,
2237                              struct btrfs_path *path,
2238                              int level, int slot, u64 objectid)
2239 {
2240         struct extent_buffer *node;
2241         struct btrfs_disk_key disk_key;
2242         u32 nritems;
2243         u64 search;
2244         u64 target;
2245         u64 nread = 0;
2246         u64 gen;
2247         int direction = path->reada;
2248         struct extent_buffer *eb;
2249         u32 nr;
2250         u32 blocksize;
2251         u32 nscan = 0;
2252
2253         if (level != 1)
2254                 return;
2255
2256         if (!path->nodes[level])
2257                 return;
2258
2259         node = path->nodes[level];
2260
2261         search = btrfs_node_blockptr(node, slot);
2262         blocksize = root->nodesize;
2263         eb = btrfs_find_tree_block(root, search);
2264         if (eb) {
2265                 free_extent_buffer(eb);
2266                 return;
2267         }
2268
2269         target = search;
2270
2271         nritems = btrfs_header_nritems(node);
2272         nr = slot;
2273
2274         while (1) {
2275                 if (direction < 0) {
2276                         if (nr == 0)
2277                                 break;
2278                         nr--;
2279                 } else if (direction > 0) {
2280                         nr++;
2281                         if (nr >= nritems)
2282                                 break;
2283                 }
2284                 if (path->reada < 0 && objectid) {
2285                         btrfs_node_key(node, &disk_key, nr);
2286                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2287                                 break;
2288                 }
2289                 search = btrfs_node_blockptr(node, nr);
2290                 if ((search <= target && target - search <= 65536) ||
2291                     (search > target && search - target <= 65536)) {
2292                         gen = btrfs_node_ptr_generation(node, nr);
2293                         readahead_tree_block(root, search, blocksize);
2294                         nread += blocksize;
2295                 }
2296                 nscan++;
2297                 if ((nread > 65536 || nscan > 32))
2298                         break;
2299         }
2300 }
2301
2302 static noinline void reada_for_balance(struct btrfs_root *root,
2303                                        struct btrfs_path *path, int level)
2304 {
2305         int slot;
2306         int nritems;
2307         struct extent_buffer *parent;
2308         struct extent_buffer *eb;
2309         u64 gen;
2310         u64 block1 = 0;
2311         u64 block2 = 0;
2312         int blocksize;
2313
2314         parent = path->nodes[level + 1];
2315         if (!parent)
2316                 return;
2317
2318         nritems = btrfs_header_nritems(parent);
2319         slot = path->slots[level + 1];
2320         blocksize = root->nodesize;
2321
2322         if (slot > 0) {
2323                 block1 = btrfs_node_blockptr(parent, slot - 1);
2324                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2325                 eb = btrfs_find_tree_block(root, block1);
2326                 /*
2327                  * if we get -eagain from btrfs_buffer_uptodate, we
2328                  * don't want to return eagain here.  That will loop
2329                  * forever
2330                  */
2331                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2332                         block1 = 0;
2333                 free_extent_buffer(eb);
2334         }
2335         if (slot + 1 < nritems) {
2336                 block2 = btrfs_node_blockptr(parent, slot + 1);
2337                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2338                 eb = btrfs_find_tree_block(root, block2);
2339                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2340                         block2 = 0;
2341                 free_extent_buffer(eb);
2342         }
2343
2344         if (block1)
2345                 readahead_tree_block(root, block1, blocksize);
2346         if (block2)
2347                 readahead_tree_block(root, block2, blocksize);
2348 }
2349
2350
2351 /*
2352  * when we walk down the tree, it is usually safe to unlock the higher layers
2353  * in the tree.  The exceptions are when our path goes through slot 0, because
2354  * operations on the tree might require changing key pointers higher up in the
2355  * tree.
2356  *
2357  * callers might also have set path->keep_locks, which tells this code to keep
2358  * the lock if the path points to the last slot in the block.  This is part of
2359  * walking through the tree, and selecting the next slot in the higher block.
2360  *
2361  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2362  * if lowest_unlock is 1, level 0 won't be unlocked
2363  */
2364 static noinline void unlock_up(struct btrfs_path *path, int level,
2365                                int lowest_unlock, int min_write_lock_level,
2366                                int *write_lock_level)
2367 {
2368         int i;
2369         int skip_level = level;
2370         int no_skips = 0;
2371         struct extent_buffer *t;
2372
2373         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2374                 if (!path->nodes[i])
2375                         break;
2376                 if (!path->locks[i])
2377                         break;
2378                 if (!no_skips && path->slots[i] == 0) {
2379                         skip_level = i + 1;
2380                         continue;
2381                 }
2382                 if (!no_skips && path->keep_locks) {
2383                         u32 nritems;
2384                         t = path->nodes[i];
2385                         nritems = btrfs_header_nritems(t);
2386                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2387                                 skip_level = i + 1;
2388                                 continue;
2389                         }
2390                 }
2391                 if (skip_level < i && i >= lowest_unlock)
2392                         no_skips = 1;
2393
2394                 t = path->nodes[i];
2395                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2396                         btrfs_tree_unlock_rw(t, path->locks[i]);
2397                         path->locks[i] = 0;
2398                         if (write_lock_level &&
2399                             i > min_write_lock_level &&
2400                             i <= *write_lock_level) {
2401                                 *write_lock_level = i - 1;
2402                         }
2403                 }
2404         }
2405 }
2406
2407 /*
2408  * This releases any locks held in the path starting at level and
2409  * going all the way up to the root.
2410  *
2411  * btrfs_search_slot will keep the lock held on higher nodes in a few
2412  * corner cases, such as COW of the block at slot zero in the node.  This
2413  * ignores those rules, and it should only be called when there are no
2414  * more updates to be done higher up in the tree.
2415  */
2416 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2417 {
2418         int i;
2419
2420         if (path->keep_locks)
2421                 return;
2422
2423         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2424                 if (!path->nodes[i])
2425                         continue;
2426                 if (!path->locks[i])
2427                         continue;
2428                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2429                 path->locks[i] = 0;
2430         }
2431 }
2432
2433 /*
2434  * helper function for btrfs_search_slot.  The goal is to find a block
2435  * in cache without setting the path to blocking.  If we find the block
2436  * we return zero and the path is unchanged.
2437  *
2438  * If we can't find the block, we set the path blocking and do some
2439  * reada.  -EAGAIN is returned and the search must be repeated.
2440  */
2441 static int
2442 read_block_for_search(struct btrfs_trans_handle *trans,
2443                        struct btrfs_root *root, struct btrfs_path *p,
2444                        struct extent_buffer **eb_ret, int level, int slot,
2445                        struct btrfs_key *key, u64 time_seq)
2446 {
2447         u64 blocknr;
2448         u64 gen;
2449         struct extent_buffer *b = *eb_ret;
2450         struct extent_buffer *tmp;
2451         int ret;
2452
2453         blocknr = btrfs_node_blockptr(b, slot);
2454         gen = btrfs_node_ptr_generation(b, slot);
2455
2456         tmp = btrfs_find_tree_block(root, blocknr);
2457         if (tmp) {
2458                 /* first we do an atomic uptodate check */
2459                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2460                         *eb_ret = tmp;
2461                         return 0;
2462                 }
2463
2464                 /* the pages were up to date, but we failed
2465                  * the generation number check.  Do a full
2466                  * read for the generation number that is correct.
2467                  * We must do this without dropping locks so
2468                  * we can trust our generation number
2469                  */
2470                 btrfs_set_path_blocking(p);
2471
2472                 /* now we're allowed to do a blocking uptodate check */
2473                 ret = btrfs_read_buffer(tmp, gen);
2474                 if (!ret) {
2475                         *eb_ret = tmp;
2476                         return 0;
2477                 }
2478                 free_extent_buffer(tmp);
2479                 btrfs_release_path(p);
2480                 return -EIO;
2481         }
2482
2483         /*
2484          * reduce lock contention at high levels
2485          * of the btree by dropping locks before
2486          * we read.  Don't release the lock on the current
2487          * level because we need to walk this node to figure
2488          * out which blocks to read.
2489          */
2490         btrfs_unlock_up_safe(p, level + 1);
2491         btrfs_set_path_blocking(p);
2492
2493         free_extent_buffer(tmp);
2494         if (p->reada)
2495                 reada_for_search(root, p, level, slot, key->objectid);
2496
2497         btrfs_release_path(p);
2498
2499         ret = -EAGAIN;
2500         tmp = read_tree_block(root, blocknr, 0);
2501         if (tmp) {
2502                 /*
2503                  * If the read above didn't mark this buffer up to date,
2504                  * it will never end up being up to date.  Set ret to EIO now
2505                  * and give up so that our caller doesn't loop forever
2506                  * on our EAGAINs.
2507                  */
2508                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2509                         ret = -EIO;
2510                 free_extent_buffer(tmp);
2511         }
2512         return ret;
2513 }
2514
2515 /*
2516  * helper function for btrfs_search_slot.  This does all of the checks
2517  * for node-level blocks and does any balancing required based on
2518  * the ins_len.
2519  *
2520  * If no extra work was required, zero is returned.  If we had to
2521  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2522  * start over
2523  */
2524 static int
2525 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2526                        struct btrfs_root *root, struct btrfs_path *p,
2527                        struct extent_buffer *b, int level, int ins_len,
2528                        int *write_lock_level)
2529 {
2530         int ret;
2531         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2532             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2533                 int sret;
2534
2535                 if (*write_lock_level < level + 1) {
2536                         *write_lock_level = level + 1;
2537                         btrfs_release_path(p);
2538                         goto again;
2539                 }
2540
2541                 btrfs_set_path_blocking(p);
2542                 reada_for_balance(root, p, level);
2543                 sret = split_node(trans, root, p, level);
2544                 btrfs_clear_path_blocking(p, NULL, 0);
2545
2546                 BUG_ON(sret > 0);
2547                 if (sret) {
2548                         ret = sret;
2549                         goto done;
2550                 }
2551                 b = p->nodes[level];
2552         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2553                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2554                 int sret;
2555
2556                 if (*write_lock_level < level + 1) {
2557                         *write_lock_level = level + 1;
2558                         btrfs_release_path(p);
2559                         goto again;
2560                 }
2561
2562                 btrfs_set_path_blocking(p);
2563                 reada_for_balance(root, p, level);
2564                 sret = balance_level(trans, root, p, level);
2565                 btrfs_clear_path_blocking(p, NULL, 0);
2566
2567                 if (sret) {
2568                         ret = sret;
2569                         goto done;
2570                 }
2571                 b = p->nodes[level];
2572                 if (!b) {
2573                         btrfs_release_path(p);
2574                         goto again;
2575                 }
2576                 BUG_ON(btrfs_header_nritems(b) == 1);
2577         }
2578         return 0;
2579
2580 again:
2581         ret = -EAGAIN;
2582 done:
2583         return ret;
2584 }
2585
2586 static void key_search_validate(struct extent_buffer *b,
2587                                 struct btrfs_key *key,
2588                                 int level)
2589 {
2590 #ifdef CONFIG_BTRFS_ASSERT
2591         struct btrfs_disk_key disk_key;
2592
2593         btrfs_cpu_key_to_disk(&disk_key, key);
2594
2595         if (level == 0)
2596                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2597                     offsetof(struct btrfs_leaf, items[0].key),
2598                     sizeof(disk_key)));
2599         else
2600                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2601                     offsetof(struct btrfs_node, ptrs[0].key),
2602                     sizeof(disk_key)));
2603 #endif
2604 }
2605
2606 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2607                       int level, int *prev_cmp, int *slot)
2608 {
2609         if (*prev_cmp != 0) {
2610                 *prev_cmp = bin_search(b, key, level, slot);
2611                 return *prev_cmp;
2612         }
2613
2614         key_search_validate(b, key, level);
2615         *slot = 0;
2616
2617         return 0;
2618 }
2619
2620 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
2621                 u64 iobjectid, u64 ioff, u8 key_type,
2622                 struct btrfs_key *found_key)
2623 {
2624         int ret;
2625         struct btrfs_key key;
2626         struct extent_buffer *eb;
2627         struct btrfs_path *path;
2628
2629         key.type = key_type;
2630         key.objectid = iobjectid;
2631         key.offset = ioff;
2632
2633         if (found_path == NULL) {
2634                 path = btrfs_alloc_path();
2635                 if (!path)
2636                         return -ENOMEM;
2637         } else
2638                 path = found_path;
2639
2640         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2641         if ((ret < 0) || (found_key == NULL)) {
2642                 if (path != found_path)
2643                         btrfs_free_path(path);
2644                 return ret;
2645         }
2646
2647         eb = path->nodes[0];
2648         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2649                 ret = btrfs_next_leaf(fs_root, path);
2650                 if (ret)
2651                         return ret;
2652                 eb = path->nodes[0];
2653         }
2654
2655         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2656         if (found_key->type != key.type ||
2657                         found_key->objectid != key.objectid)
2658                 return 1;
2659
2660         return 0;
2661 }
2662
2663 /*
2664  * look for key in the tree.  path is filled in with nodes along the way
2665  * if key is found, we return zero and you can find the item in the leaf
2666  * level of the path (level 0)
2667  *
2668  * If the key isn't found, the path points to the slot where it should
2669  * be inserted, and 1 is returned.  If there are other errors during the
2670  * search a negative error number is returned.
2671  *
2672  * if ins_len > 0, nodes and leaves will be split as we walk down the
2673  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2674  * possible)
2675  */
2676 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2677                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2678                       ins_len, int cow)
2679 {
2680         struct extent_buffer *b;
2681         int slot;
2682         int ret;
2683         int err;
2684         int level;
2685         int lowest_unlock = 1;
2686         int root_lock;
2687         /* everything at write_lock_level or lower must be write locked */
2688         int write_lock_level = 0;
2689         u8 lowest_level = 0;
2690         int min_write_lock_level;
2691         int prev_cmp;
2692
2693         lowest_level = p->lowest_level;
2694         WARN_ON(lowest_level && ins_len > 0);
2695         WARN_ON(p->nodes[0] != NULL);
2696         BUG_ON(!cow && ins_len);
2697
2698         if (ins_len < 0) {
2699                 lowest_unlock = 2;
2700
2701                 /* when we are removing items, we might have to go up to level
2702                  * two as we update tree pointers  Make sure we keep write
2703                  * for those levels as well
2704                  */
2705                 write_lock_level = 2;
2706         } else if (ins_len > 0) {
2707                 /*
2708                  * for inserting items, make sure we have a write lock on
2709                  * level 1 so we can update keys
2710                  */
2711                 write_lock_level = 1;
2712         }
2713
2714         if (!cow)
2715                 write_lock_level = -1;
2716
2717         if (cow && (p->keep_locks || p->lowest_level))
2718                 write_lock_level = BTRFS_MAX_LEVEL;
2719
2720         min_write_lock_level = write_lock_level;
2721
2722 again:
2723         prev_cmp = -1;
2724         /*
2725          * we try very hard to do read locks on the root
2726          */
2727         root_lock = BTRFS_READ_LOCK;
2728         level = 0;
2729         if (p->search_commit_root) {
2730                 /*
2731                  * the commit roots are read only
2732                  * so we always do read locks
2733                  */
2734                 if (p->need_commit_sem)
2735                         down_read(&root->fs_info->commit_root_sem);
2736                 b = root->commit_root;
2737                 extent_buffer_get(b);
2738                 level = btrfs_header_level(b);
2739                 if (p->need_commit_sem)
2740                         up_read(&root->fs_info->commit_root_sem);
2741                 if (!p->skip_locking)
2742                         btrfs_tree_read_lock(b);
2743         } else {
2744                 if (p->skip_locking) {
2745                         b = btrfs_root_node(root);
2746                         level = btrfs_header_level(b);
2747                 } else {
2748                         /* we don't know the level of the root node
2749                          * until we actually have it read locked
2750                          */
2751                         b = btrfs_read_lock_root_node(root);
2752                         level = btrfs_header_level(b);
2753                         if (level <= write_lock_level) {
2754                                 /* whoops, must trade for write lock */
2755                                 btrfs_tree_read_unlock(b);
2756                                 free_extent_buffer(b);
2757                                 b = btrfs_lock_root_node(root);
2758                                 root_lock = BTRFS_WRITE_LOCK;
2759
2760                                 /* the level might have changed, check again */
2761                                 level = btrfs_header_level(b);
2762                         }
2763                 }
2764         }
2765         p->nodes[level] = b;
2766         if (!p->skip_locking)
2767                 p->locks[level] = root_lock;
2768
2769         while (b) {
2770                 level = btrfs_header_level(b);
2771
2772                 /*
2773                  * setup the path here so we can release it under lock
2774                  * contention with the cow code
2775                  */
2776                 if (cow) {
2777                         /*
2778                          * if we don't really need to cow this block
2779                          * then we don't want to set the path blocking,
2780                          * so we test it here
2781                          */
2782                         if (!should_cow_block(trans, root, b))
2783                                 goto cow_done;
2784
2785                         /*
2786                          * must have write locks on this node and the
2787                          * parent
2788                          */
2789                         if (level > write_lock_level ||
2790                             (level + 1 > write_lock_level &&
2791                             level + 1 < BTRFS_MAX_LEVEL &&
2792                             p->nodes[level + 1])) {
2793                                 write_lock_level = level + 1;
2794                                 btrfs_release_path(p);
2795                                 goto again;
2796                         }
2797
2798                         btrfs_set_path_blocking(p);
2799                         err = btrfs_cow_block(trans, root, b,
2800                                               p->nodes[level + 1],
2801                                               p->slots[level + 1], &b);
2802                         if (err) {
2803                                 ret = err;
2804                                 goto done;
2805                         }
2806                 }
2807 cow_done:
2808                 p->nodes[level] = b;
2809                 btrfs_clear_path_blocking(p, NULL, 0);
2810
2811                 /*
2812                  * we have a lock on b and as long as we aren't changing
2813                  * the tree, there is no way to for the items in b to change.
2814                  * It is safe to drop the lock on our parent before we
2815                  * go through the expensive btree search on b.
2816                  *
2817                  * If we're inserting or deleting (ins_len != 0), then we might
2818                  * be changing slot zero, which may require changing the parent.
2819                  * So, we can't drop the lock until after we know which slot
2820                  * we're operating on.
2821                  */
2822                 if (!ins_len && !p->keep_locks) {
2823                         int u = level + 1;
2824
2825                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2826                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2827                                 p->locks[u] = 0;
2828                         }
2829                 }
2830
2831                 ret = key_search(b, key, level, &prev_cmp, &slot);
2832
2833                 if (level != 0) {
2834                         int dec = 0;
2835                         if (ret && slot > 0) {
2836                                 dec = 1;
2837                                 slot -= 1;
2838                         }
2839                         p->slots[level] = slot;
2840                         err = setup_nodes_for_search(trans, root, p, b, level,
2841                                              ins_len, &write_lock_level);
2842                         if (err == -EAGAIN)
2843                                 goto again;
2844                         if (err) {
2845                                 ret = err;
2846                                 goto done;
2847                         }
2848                         b = p->nodes[level];
2849                         slot = p->slots[level];
2850
2851                         /*
2852                          * slot 0 is special, if we change the key
2853                          * we have to update the parent pointer
2854                          * which means we must have a write lock
2855                          * on the parent
2856                          */
2857                         if (slot == 0 && ins_len &&
2858                             write_lock_level < level + 1) {
2859                                 write_lock_level = level + 1;
2860                                 btrfs_release_path(p);
2861                                 goto again;
2862                         }
2863
2864                         unlock_up(p, level, lowest_unlock,
2865                                   min_write_lock_level, &write_lock_level);
2866
2867                         if (level == lowest_level) {
2868                                 if (dec)
2869                                         p->slots[level]++;
2870                                 goto done;
2871                         }
2872
2873                         err = read_block_for_search(trans, root, p,
2874                                                     &b, level, slot, key, 0);
2875                         if (err == -EAGAIN)
2876                                 goto again;
2877                         if (err) {
2878                                 ret = err;
2879                                 goto done;
2880                         }
2881
2882                         if (!p->skip_locking) {
2883                                 level = btrfs_header_level(b);
2884                                 if (level <= write_lock_level) {
2885                                         err = btrfs_try_tree_write_lock(b);
2886                                         if (!err) {
2887                                                 btrfs_set_path_blocking(p);
2888                                                 btrfs_tree_lock(b);
2889                                                 btrfs_clear_path_blocking(p, b,
2890                                                                   BTRFS_WRITE_LOCK);
2891                                         }
2892                                         p->locks[level] = BTRFS_WRITE_LOCK;
2893                                 } else {
2894                                         err = btrfs_tree_read_lock_atomic(b);
2895                                         if (!err) {
2896                                                 btrfs_set_path_blocking(p);
2897                                                 btrfs_tree_read_lock(b);
2898                                                 btrfs_clear_path_blocking(p, b,
2899                                                                   BTRFS_READ_LOCK);
2900                                         }
2901                                         p->locks[level] = BTRFS_READ_LOCK;
2902                                 }
2903                                 p->nodes[level] = b;
2904                         }
2905                 } else {
2906                         p->slots[level] = slot;
2907                         if (ins_len > 0 &&
2908                             btrfs_leaf_free_space(root, b) < ins_len) {
2909                                 if (write_lock_level < 1) {
2910                                         write_lock_level = 1;
2911                                         btrfs_release_path(p);
2912                                         goto again;
2913                                 }
2914
2915                                 btrfs_set_path_blocking(p);
2916                                 err = split_leaf(trans, root, key,
2917                                                  p, ins_len, ret == 0);
2918                                 btrfs_clear_path_blocking(p, NULL, 0);
2919
2920                                 BUG_ON(err > 0);
2921                                 if (err) {
2922                                         ret = err;
2923                                         goto done;
2924                                 }
2925                         }
2926                         if (!p->search_for_split)
2927                                 unlock_up(p, level, lowest_unlock,
2928                                           min_write_lock_level, &write_lock_level);
2929                         goto done;
2930                 }
2931         }
2932         ret = 1;
2933 done:
2934         /*
2935          * we don't really know what they plan on doing with the path
2936          * from here on, so for now just mark it as blocking
2937          */
2938         if (!p->leave_spinning)
2939                 btrfs_set_path_blocking(p);
2940         if (ret < 0 && !p->skip_release_on_error)
2941                 btrfs_release_path(p);
2942         return ret;
2943 }
2944
2945 /*
2946  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2947  * current state of the tree together with the operations recorded in the tree
2948  * modification log to search for the key in a previous version of this tree, as
2949  * denoted by the time_seq parameter.
2950  *
2951  * Naturally, there is no support for insert, delete or cow operations.
2952  *
2953  * The resulting path and return value will be set up as if we called
2954  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2955  */
2956 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2957                           struct btrfs_path *p, u64 time_seq)
2958 {
2959         struct extent_buffer *b;
2960         int slot;
2961         int ret;
2962         int err;
2963         int level;
2964         int lowest_unlock = 1;
2965         u8 lowest_level = 0;
2966         int prev_cmp = -1;
2967
2968         lowest_level = p->lowest_level;
2969         WARN_ON(p->nodes[0] != NULL);
2970
2971         if (p->search_commit_root) {
2972                 BUG_ON(time_seq);
2973                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2974         }
2975
2976 again:
2977         b = get_old_root(root, time_seq);
2978         level = btrfs_header_level(b);
2979         p->locks[level] = BTRFS_READ_LOCK;
2980
2981         while (b) {
2982                 level = btrfs_header_level(b);
2983                 p->nodes[level] = b;
2984                 btrfs_clear_path_blocking(p, NULL, 0);
2985
2986                 /*
2987                  * we have a lock on b and as long as we aren't changing
2988                  * the tree, there is no way to for the items in b to change.
2989                  * It is safe to drop the lock on our parent before we
2990                  * go through the expensive btree search on b.
2991                  */
2992                 btrfs_unlock_up_safe(p, level + 1);
2993
2994                 /*
2995                  * Since we can unwind eb's we want to do a real search every
2996                  * time.
2997                  */
2998                 prev_cmp = -1;
2999                 ret = key_search(b, key, level, &prev_cmp, &slot);
3000
3001                 if (level != 0) {
3002                         int dec = 0;
3003                         if (ret && slot > 0) {
3004                                 dec = 1;
3005                                 slot -= 1;
3006                         }
3007                         p->slots[level] = slot;
3008                         unlock_up(p, level, lowest_unlock, 0, NULL);
3009
3010                         if (level == lowest_level) {
3011                                 if (dec)
3012                                         p->slots[level]++;
3013                                 goto done;
3014                         }
3015
3016                         err = read_block_for_search(NULL, root, p, &b, level,
3017                                                     slot, key, time_seq);
3018                         if (err == -EAGAIN)
3019                                 goto again;
3020                         if (err) {
3021                                 ret = err;
3022                                 goto done;
3023                         }
3024
3025                         level = btrfs_header_level(b);
3026                         err = btrfs_tree_read_lock_atomic(b);
3027                         if (!err) {
3028                                 btrfs_set_path_blocking(p);
3029                                 btrfs_tree_read_lock(b);
3030                                 btrfs_clear_path_blocking(p, b,
3031                                                           BTRFS_READ_LOCK);
3032                         }
3033                         b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3034                         if (!b) {
3035                                 ret = -ENOMEM;
3036                                 goto done;
3037                         }
3038                         p->locks[level] = BTRFS_READ_LOCK;
3039                         p->nodes[level] = b;
3040                 } else {
3041                         p->slots[level] = slot;
3042                         unlock_up(p, level, lowest_unlock, 0, NULL);
3043                         goto done;
3044                 }
3045         }
3046         ret = 1;
3047 done:
3048         if (!p->leave_spinning)
3049                 btrfs_set_path_blocking(p);
3050         if (ret < 0)
3051                 btrfs_release_path(p);
3052
3053         return ret;
3054 }
3055
3056 /*
3057  * helper to use instead of search slot if no exact match is needed but
3058  * instead the next or previous item should be returned.
3059  * When find_higher is true, the next higher item is returned, the next lower
3060  * otherwise.
3061  * When return_any and find_higher are both true, and no higher item is found,
3062  * return the next lower instead.
3063  * When return_any is true and find_higher is false, and no lower item is found,
3064  * return the next higher instead.
3065  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3066  * < 0 on error
3067  */
3068 int btrfs_search_slot_for_read(struct btrfs_root *root,
3069                                struct btrfs_key *key, struct btrfs_path *p,
3070                                int find_higher, int return_any)
3071 {
3072         int ret;
3073         struct extent_buffer *leaf;
3074
3075 again:
3076         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3077         if (ret <= 0)
3078                 return ret;
3079         /*
3080          * a return value of 1 means the path is at the position where the
3081          * item should be inserted. Normally this is the next bigger item,
3082          * but in case the previous item is the last in a leaf, path points
3083          * to the first free slot in the previous leaf, i.e. at an invalid
3084          * item.
3085          */
3086         leaf = p->nodes[0];
3087
3088         if (find_higher) {
3089                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3090                         ret = btrfs_next_leaf(root, p);
3091                         if (ret <= 0)
3092                                 return ret;
3093                         if (!return_any)
3094                                 return 1;
3095                         /*
3096                          * no higher item found, return the next
3097                          * lower instead
3098                          */
3099                         return_any = 0;
3100                         find_higher = 0;
3101                         btrfs_release_path(p);
3102                         goto again;
3103                 }
3104         } else {
3105                 if (p->slots[0] == 0) {
3106                         ret = btrfs_prev_leaf(root, p);
3107                         if (ret < 0)
3108                                 return ret;
3109                         if (!ret) {
3110                                 leaf = p->nodes[0];
3111                                 if (p->slots[0] == btrfs_header_nritems(leaf))
3112                                         p->slots[0]--;
3113                                 return 0;
3114                         }
3115                         if (!return_any)
3116                                 return 1;
3117                         /*
3118                          * no lower item found, return the next
3119                          * higher instead
3120                          */
3121                         return_any = 0;
3122                         find_higher = 1;
3123                         btrfs_release_path(p);
3124                         goto again;
3125                 } else {
3126                         --p->slots[0];
3127                 }
3128         }
3129         return 0;
3130 }
3131
3132 /*
3133  * adjust the pointers going up the tree, starting at level
3134  * making sure the right key of each node is points to 'key'.
3135  * This is used after shifting pointers to the left, so it stops
3136  * fixing up pointers when a given leaf/node is not in slot 0 of the
3137  * higher levels
3138  *
3139  */
3140 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
3141                            struct btrfs_disk_key *key, int level)
3142 {
3143         int i;
3144         struct extent_buffer *t;
3145
3146         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3147                 int tslot = path->slots[i];
3148                 if (!path->nodes[i])
3149                         break;
3150                 t = path->nodes[i];
3151                 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
3152                 btrfs_set_node_key(t, key, tslot);
3153                 btrfs_mark_buffer_dirty(path->nodes[i]);
3154                 if (tslot != 0)
3155                         break;
3156         }
3157 }
3158
3159 /*
3160  * update item key.
3161  *
3162  * This function isn't completely safe. It's the caller's responsibility
3163  * that the new key won't break the order
3164  */
3165 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3166                              struct btrfs_key *new_key)
3167 {
3168         struct btrfs_disk_key disk_key;
3169         struct extent_buffer *eb;
3170         int slot;
3171
3172         eb = path->nodes[0];
3173         slot = path->slots[0];
3174         if (slot > 0) {
3175                 btrfs_item_key(eb, &disk_key, slot - 1);
3176                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3177         }
3178         if (slot < btrfs_header_nritems(eb) - 1) {
3179                 btrfs_item_key(eb, &disk_key, slot + 1);
3180                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3181         }
3182
3183         btrfs_cpu_key_to_disk(&disk_key, new_key);
3184         btrfs_set_item_key(eb, &disk_key, slot);
3185         btrfs_mark_buffer_dirty(eb);
3186         if (slot == 0)
3187                 fixup_low_keys(root, path, &disk_key, 1);
3188 }
3189
3190 /*
3191  * try to push data from one node into the next node left in the
3192  * tree.
3193  *
3194  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3195  * error, and > 0 if there was no room in the left hand block.
3196  */
3197 static int push_node_left(struct btrfs_trans_handle *trans,
3198                           struct btrfs_root *root, struct extent_buffer *dst,
3199                           struct extent_buffer *src, int empty)
3200 {
3201         int push_items = 0;
3202         int src_nritems;
3203         int dst_nritems;
3204         int ret = 0;
3205
3206         src_nritems = btrfs_header_nritems(src);
3207         dst_nritems = btrfs_header_nritems(dst);
3208         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3209         WARN_ON(btrfs_header_generation(src) != trans->transid);
3210         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3211
3212         if (!empty && src_nritems <= 8)
3213                 return 1;
3214
3215         if (push_items <= 0)
3216                 return 1;
3217
3218         if (empty) {
3219                 push_items = min(src_nritems, push_items);
3220                 if (push_items < src_nritems) {
3221                         /* leave at least 8 pointers in the node if
3222                          * we aren't going to empty it
3223                          */
3224                         if (src_nritems - push_items < 8) {
3225                                 if (push_items <= 8)
3226                                         return 1;
3227                                 push_items -= 8;
3228                         }
3229                 }
3230         } else
3231                 push_items = min(src_nritems - 8, push_items);
3232
3233         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3234                                    push_items);
3235         if (ret) {
3236                 btrfs_abort_transaction(trans, root, ret);
3237                 return ret;
3238         }
3239         copy_extent_buffer(dst, src,
3240                            btrfs_node_key_ptr_offset(dst_nritems),
3241                            btrfs_node_key_ptr_offset(0),
3242                            push_items * sizeof(struct btrfs_key_ptr));
3243
3244         if (push_items < src_nritems) {
3245                 /*
3246                  * don't call tree_mod_log_eb_move here, key removal was already
3247                  * fully logged by tree_mod_log_eb_copy above.
3248                  */
3249                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3250                                       btrfs_node_key_ptr_offset(push_items),
3251                                       (src_nritems - push_items) *
3252                                       sizeof(struct btrfs_key_ptr));
3253         }
3254         btrfs_set_header_nritems(src, src_nritems - push_items);
3255         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3256         btrfs_mark_buffer_dirty(src);
3257         btrfs_mark_buffer_dirty(dst);
3258
3259         return ret;
3260 }
3261
3262 /*
3263  * try to push data from one node into the next node right in the
3264  * tree.
3265  *
3266  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3267  * error, and > 0 if there was no room in the right hand block.
3268  *
3269  * this will  only push up to 1/2 the contents of the left node over
3270  */
3271 static int balance_node_right(struct btrfs_trans_handle *trans,
3272                               struct btrfs_root *root,
3273                               struct extent_buffer *dst,
3274                               struct extent_buffer *src)
3275 {
3276         int push_items = 0;
3277         int max_push;
3278         int src_nritems;
3279         int dst_nritems;
3280         int ret = 0;
3281
3282         WARN_ON(btrfs_header_generation(src) != trans->transid);
3283         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3284
3285         src_nritems = btrfs_header_nritems(src);
3286         dst_nritems = btrfs_header_nritems(dst);
3287         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3288         if (push_items <= 0)
3289                 return 1;
3290
3291         if (src_nritems < 4)
3292                 return 1;
3293
3294         max_push = src_nritems / 2 + 1;
3295         /* don't try to empty the node */
3296         if (max_push >= src_nritems)
3297                 return 1;
3298
3299         if (max_push < push_items)
3300                 push_items = max_push;
3301
3302         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3303         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3304                                       btrfs_node_key_ptr_offset(0),
3305                                       (dst_nritems) *
3306                                       sizeof(struct btrfs_key_ptr));
3307
3308         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3309                                    src_nritems - push_items, push_items);
3310         if (ret) {
3311                 btrfs_abort_transaction(trans, root, ret);
3312                 return ret;
3313         }
3314         copy_extent_buffer(dst, src,
3315                            btrfs_node_key_ptr_offset(0),
3316                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3317                            push_items * sizeof(struct btrfs_key_ptr));
3318
3319         btrfs_set_header_nritems(src, src_nritems - push_items);
3320         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3321
3322         btrfs_mark_buffer_dirty(src);
3323         btrfs_mark_buffer_dirty(dst);
3324
3325         return ret;
3326 }
3327
3328 /*
3329  * helper function to insert a new root level in the tree.
3330  * A new node is allocated, and a single item is inserted to
3331  * point to the existing root
3332  *
3333  * returns zero on success or < 0 on failure.
3334  */
3335 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3336                            struct btrfs_root *root,
3337                            struct btrfs_path *path, int level)
3338 {
3339         u64 lower_gen;
3340         struct extent_buffer *lower;
3341         struct extent_buffer *c;
3342         struct extent_buffer *old;
3343         struct btrfs_disk_key lower_key;
3344
3345         BUG_ON(path->nodes[level]);
3346         BUG_ON(path->nodes[level-1] != root->node);
3347
3348         lower = path->nodes[level-1];
3349         if (level == 1)
3350                 btrfs_item_key(lower, &lower_key, 0);
3351         else
3352                 btrfs_node_key(lower, &lower_key, 0);
3353
3354         c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3355                                    &lower_key, level, root->node->start, 0);
3356         if (IS_ERR(c))
3357                 return PTR_ERR(c);
3358
3359         root_add_used(root, root->nodesize);
3360
3361         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3362         btrfs_set_header_nritems(c, 1);
3363         btrfs_set_header_level(c, level);
3364         btrfs_set_header_bytenr(c, c->start);
3365         btrfs_set_header_generation(c, trans->transid);
3366         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3367         btrfs_set_header_owner(c, root->root_key.objectid);
3368
3369         write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3370                             BTRFS_FSID_SIZE);
3371
3372         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3373                             btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3374
3375         btrfs_set_node_key(c, &lower_key, 0);
3376         btrfs_set_node_blockptr(c, 0, lower->start);
3377         lower_gen = btrfs_header_generation(lower);
3378         WARN_ON(lower_gen != trans->transid);
3379
3380         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3381
3382         btrfs_mark_buffer_dirty(c);
3383
3384         old = root->node;
3385         tree_mod_log_set_root_pointer(root, c, 0);
3386         rcu_assign_pointer(root->node, c);
3387
3388         /* the super has an extra ref to root->node */
3389         free_extent_buffer(old);
3390
3391         add_root_to_dirty_list(root);
3392         extent_buffer_get(c);
3393         path->nodes[level] = c;
3394         path->locks[level] = BTRFS_WRITE_LOCK;
3395         path->slots[level] = 0;
3396         return 0;
3397 }
3398
3399 /*
3400  * worker function to insert a single pointer in a node.
3401  * the node should have enough room for the pointer already
3402  *
3403  * slot and level indicate where you want the key to go, and
3404  * blocknr is the block the key points to.
3405  */
3406 static void insert_ptr(struct btrfs_trans_handle *trans,
3407                        struct btrfs_root *root, struct btrfs_path *path,
3408                        struct btrfs_disk_key *key, u64 bytenr,
3409                        int slot, int level)
3410 {
3411         struct extent_buffer *lower;
3412         int nritems;
3413         int ret;
3414
3415         BUG_ON(!path->nodes[level]);
3416         btrfs_assert_tree_locked(path->nodes[level]);
3417         lower = path->nodes[level];
3418         nritems = btrfs_header_nritems(lower);
3419         BUG_ON(slot > nritems);
3420         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3421         if (slot != nritems) {
3422                 if (level)
3423                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3424                                              slot, nritems - slot);
3425                 memmove_extent_buffer(lower,
3426                               btrfs_node_key_ptr_offset(slot + 1),
3427                               btrfs_node_key_ptr_offset(slot),
3428                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3429         }
3430         if (level) {
3431                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3432                                               MOD_LOG_KEY_ADD, GFP_NOFS);
3433                 BUG_ON(ret < 0);
3434         }
3435         btrfs_set_node_key(lower, key, slot);
3436         btrfs_set_node_blockptr(lower, slot, bytenr);
3437         WARN_ON(trans->transid == 0);
3438         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3439         btrfs_set_header_nritems(lower, nritems + 1);
3440         btrfs_mark_buffer_dirty(lower);
3441 }
3442
3443 /*
3444  * split the node at the specified level in path in two.
3445  * The path is corrected to point to the appropriate node after the split
3446  *
3447  * Before splitting this tries to make some room in the node by pushing
3448  * left and right, if either one works, it returns right away.
3449  *
3450  * returns 0 on success and < 0 on failure
3451  */
3452 static noinline int split_node(struct btrfs_trans_handle *trans,
3453                                struct btrfs_root *root,
3454                                struct btrfs_path *path, int level)
3455 {
3456         struct extent_buffer *c;
3457         struct extent_buffer *split;
3458         struct btrfs_disk_key disk_key;
3459         int mid;
3460         int ret;
3461         u32 c_nritems;
3462
3463         c = path->nodes[level];
3464         WARN_ON(btrfs_header_generation(c) != trans->transid);
3465         if (c == root->node) {
3466                 /*
3467                  * trying to split the root, lets make a new one
3468                  *
3469                  * tree mod log: We don't log_removal old root in
3470                  * insert_new_root, because that root buffer will be kept as a
3471                  * normal node. We are going to log removal of half of the
3472                  * elements below with tree_mod_log_eb_copy. We're holding a
3473                  * tree lock on the buffer, which is why we cannot race with
3474                  * other tree_mod_log users.
3475                  */
3476                 ret = insert_new_root(trans, root, path, level + 1);
3477                 if (ret)
3478                         return ret;
3479         } else {
3480                 ret = push_nodes_for_insert(trans, root, path, level);
3481                 c = path->nodes[level];
3482                 if (!ret && btrfs_header_nritems(c) <
3483                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3484                         return 0;
3485                 if (ret < 0)
3486                         return ret;
3487         }
3488
3489         c_nritems = btrfs_header_nritems(c);
3490         mid = (c_nritems + 1) / 2;
3491         btrfs_node_key(c, &disk_key, mid);
3492
3493         split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3494                         &disk_key, level, c->start, 0);
3495         if (IS_ERR(split))
3496                 return PTR_ERR(split);
3497
3498         root_add_used(root, root->nodesize);
3499
3500         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3501         btrfs_set_header_level(split, btrfs_header_level(c));
3502         btrfs_set_header_bytenr(split, split->start);
3503         btrfs_set_header_generation(split, trans->transid);
3504         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3505         btrfs_set_header_owner(split, root->root_key.objectid);
3506         write_extent_buffer(split, root->fs_info->fsid,
3507                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
3508         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3509                             btrfs_header_chunk_tree_uuid(split),
3510                             BTRFS_UUID_SIZE);
3511
3512         ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3513                                    mid, c_nritems - mid);
3514         if (ret) {
3515                 btrfs_abort_transaction(trans, root, ret);
3516                 return ret;
3517         }
3518         copy_extent_buffer(split, c,
3519                            btrfs_node_key_ptr_offset(0),
3520                            btrfs_node_key_ptr_offset(mid),
3521                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3522         btrfs_set_header_nritems(split, c_nritems - mid);
3523         btrfs_set_header_nritems(c, mid);
3524         ret = 0;
3525
3526         btrfs_mark_buffer_dirty(c);
3527         btrfs_mark_buffer_dirty(split);
3528
3529         insert_ptr(trans, root, path, &disk_key, split->start,
3530                    path->slots[level + 1] + 1, level + 1);
3531
3532         if (path->slots[level] >= mid) {
3533                 path->slots[level] -= mid;
3534                 btrfs_tree_unlock(c);
3535                 free_extent_buffer(c);
3536                 path->nodes[level] = split;
3537                 path->slots[level + 1] += 1;
3538         } else {
3539                 btrfs_tree_unlock(split);
3540                 free_extent_buffer(split);
3541         }
3542         return ret;
3543 }
3544
3545 /*
3546  * how many bytes are required to store the items in a leaf.  start
3547  * and nr indicate which items in the leaf to check.  This totals up the
3548  * space used both by the item structs and the item data
3549  */
3550 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3551 {
3552         struct btrfs_item *start_item;
3553         struct btrfs_item *end_item;
3554         struct btrfs_map_token token;
3555         int data_len;
3556         int nritems = btrfs_header_nritems(l);
3557         int end = min(nritems, start + nr) - 1;
3558
3559         if (!nr)
3560                 return 0;
3561         btrfs_init_map_token(&token);
3562         start_item = btrfs_item_nr(start);
3563         end_item = btrfs_item_nr(end);
3564         data_len = btrfs_token_item_offset(l, start_item, &token) +
3565                 btrfs_token_item_size(l, start_item, &token);
3566         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3567         data_len += sizeof(struct btrfs_item) * nr;
3568         WARN_ON(data_len < 0);
3569         return data_len;
3570 }
3571
3572 /*
3573  * The space between the end of the leaf items and
3574  * the start of the leaf data.  IOW, how much room
3575  * the leaf has left for both items and data
3576  */
3577 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3578                                    struct extent_buffer *leaf)
3579 {
3580         int nritems = btrfs_header_nritems(leaf);
3581         int ret;
3582         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3583         if (ret < 0) {
3584                 btrfs_crit(root->fs_info,
3585                         "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3586                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3587                        leaf_space_used(leaf, 0, nritems), nritems);
3588         }
3589         return ret;
3590 }
3591
3592 /*
3593  * min slot controls the lowest index we're willing to push to the
3594  * right.  We'll push up to and including min_slot, but no lower
3595  */
3596 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3597                                       struct btrfs_root *root,
3598                                       struct btrfs_path *path,
3599                                       int data_size, int empty,
3600                                       struct extent_buffer *right,
3601                                       int free_space, u32 left_nritems,
3602                                       u32 min_slot)
3603 {
3604         struct extent_buffer *left = path->nodes[0];
3605         struct extent_buffer *upper = path->nodes[1];
3606         struct btrfs_map_token token;
3607         struct btrfs_disk_key disk_key;
3608         int slot;
3609         u32 i;
3610         int push_space = 0;
3611         int push_items = 0;
3612         struct btrfs_item *item;
3613         u32 nr;
3614         u32 right_nritems;
3615         u32 data_end;
3616         u32 this_item_size;
3617
3618         btrfs_init_map_token(&token);
3619
3620         if (empty)
3621                 nr = 0;
3622         else
3623                 nr = max_t(u32, 1, min_slot);
3624
3625         if (path->slots[0] >= left_nritems)
3626                 push_space += data_size;
3627
3628         slot = path->slots[1];
3629         i = left_nritems - 1;
3630         while (i >= nr) {
3631                 item = btrfs_item_nr(i);
3632
3633                 if (!empty && push_items > 0) {
3634                         if (path->slots[0] > i)
3635                                 break;
3636                         if (path->slots[0] == i) {
3637                                 int space = btrfs_leaf_free_space(root, left);
3638                                 if (space + push_space * 2 > free_space)
3639                                         break;
3640                         }
3641                 }
3642
3643                 if (path->slots[0] == i)
3644                         push_space += data_size;
3645
3646                 this_item_size = btrfs_item_size(left, item);
3647                 if (this_item_size + sizeof(*item) + push_space > free_space)
3648                         break;
3649
3650                 push_items++;
3651                 push_space += this_item_size + sizeof(*item);
3652                 if (i == 0)
3653                         break;
3654                 i--;
3655         }
3656
3657         if (push_items == 0)
3658                 goto out_unlock;
3659
3660         WARN_ON(!empty && push_items == left_nritems);
3661
3662         /* push left to right */
3663         right_nritems = btrfs_header_nritems(right);
3664
3665         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3666         push_space -= leaf_data_end(root, left);
3667
3668         /* make room in the right data area */
3669         data_end = leaf_data_end(root, right);
3670         memmove_extent_buffer(right,
3671                               btrfs_leaf_data(right) + data_end - push_space,
3672                               btrfs_leaf_data(right) + data_end,
3673                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3674
3675         /* copy from the left data area */
3676         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3677                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3678                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3679                      push_space);
3680
3681         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3682                               btrfs_item_nr_offset(0),
3683                               right_nritems * sizeof(struct btrfs_item));
3684
3685         /* copy the items from left to right */
3686         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3687                    btrfs_item_nr_offset(left_nritems - push_items),
3688                    push_items * sizeof(struct btrfs_item));
3689
3690         /* update the item pointers */
3691         right_nritems += push_items;
3692         btrfs_set_header_nritems(right, right_nritems);
3693         push_space = BTRFS_LEAF_DATA_SIZE(root);
3694         for (i = 0; i < right_nritems; i++) {
3695                 item = btrfs_item_nr(i);
3696                 push_space -= btrfs_token_item_size(right, item, &token);
3697                 btrfs_set_token_item_offset(right, item, push_space, &token);
3698         }
3699
3700         left_nritems -= push_items;
3701         btrfs_set_header_nritems(left, left_nritems);
3702
3703         if (left_nritems)
3704                 btrfs_mark_buffer_dirty(left);
3705         else
3706                 clean_tree_block(trans, root, left);
3707
3708         btrfs_mark_buffer_dirty(right);
3709
3710         btrfs_item_key(right, &disk_key, 0);
3711         btrfs_set_node_key(upper, &disk_key, slot + 1);
3712         btrfs_mark_buffer_dirty(upper);
3713
3714         /* then fixup the leaf pointer in the path */
3715         if (path->slots[0] >= left_nritems) {
3716                 path->slots[0] -= left_nritems;
3717                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3718                         clean_tree_block(trans, root, path->nodes[0]);
3719                 btrfs_tree_unlock(path->nodes[0]);
3720                 free_extent_buffer(path->nodes[0]);
3721                 path->nodes[0] = right;
3722                 path->slots[1] += 1;
3723         } else {
3724                 btrfs_tree_unlock(right);
3725                 free_extent_buffer(right);
3726         }
3727         return 0;
3728
3729 out_unlock:
3730         btrfs_tree_unlock(right);
3731         free_extent_buffer(right);
3732         return 1;
3733 }
3734
3735 /*
3736  * push some data in the path leaf to the right, trying to free up at
3737  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3738  *
3739  * returns 1 if the push failed because the other node didn't have enough
3740  * room, 0 if everything worked out and < 0 if there were major errors.
3741  *
3742  * this will push starting from min_slot to the end of the leaf.  It won't
3743  * push any slot lower than min_slot
3744  */
3745 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3746                            *root, struct btrfs_path *path,
3747                            int min_data_size, int data_size,
3748                            int empty, u32 min_slot)
3749 {
3750         struct extent_buffer *left = path->nodes[0];
3751         struct extent_buffer *right;
3752         struct extent_buffer *upper;
3753         int slot;
3754         int free_space;
3755         u32 left_nritems;
3756         int ret;
3757
3758         if (!path->nodes[1])
3759                 return 1;
3760
3761         slot = path->slots[1];
3762         upper = path->nodes[1];
3763         if (slot >= btrfs_header_nritems(upper) - 1)
3764                 return 1;
3765
3766         btrfs_assert_tree_locked(path->nodes[1]);
3767
3768         right = read_node_slot(root, upper, slot + 1);
3769         if (right == NULL)
3770                 return 1;
3771
3772         btrfs_tree_lock(right);
3773         btrfs_set_lock_blocking(right);
3774
3775         free_space = btrfs_leaf_free_space(root, right);
3776         if (free_space < data_size)
3777                 goto out_unlock;
3778
3779         /* cow and double check */
3780         ret = btrfs_cow_block(trans, root, right, upper,
3781                               slot + 1, &right);
3782         if (ret)
3783                 goto out_unlock;
3784
3785         free_space = btrfs_leaf_free_space(root, right);
3786         if (free_space < data_size)
3787                 goto out_unlock;
3788
3789         left_nritems = btrfs_header_nritems(left);
3790         if (left_nritems == 0)
3791                 goto out_unlock;
3792
3793         if (path->slots[0] == left_nritems && !empty) {
3794                 /* Key greater than all keys in the leaf, right neighbor has
3795                  * enough room for it and we're not emptying our leaf to delete
3796                  * it, therefore use right neighbor to insert the new item and
3797                  * no need to touch/dirty our left leaft. */
3798                 btrfs_tree_unlock(left);
3799                 free_extent_buffer(left);
3800                 path->nodes[0] = right;
3801                 path->slots[0] = 0;
3802                 path->slots[1]++;
3803                 return 0;
3804         }
3805
3806         return __push_leaf_right(trans, root, path, min_data_size, empty,
3807                                 right, free_space, left_nritems, min_slot);
3808 out_unlock:
3809         btrfs_tree_unlock(right);
3810         free_extent_buffer(right);
3811         return 1;
3812 }
3813
3814 /*
3815  * push some data in the path leaf to the left, trying to free up at
3816  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3817  *
3818  * max_slot can put a limit on how far into the leaf we'll push items.  The
3819  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3820  * items
3821  */
3822 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3823                                      struct btrfs_root *root,
3824                                      struct btrfs_path *path, int data_size,
3825                                      int empty, struct extent_buffer *left,
3826                                      int free_space, u32 right_nritems,
3827                                      u32 max_slot)
3828 {
3829         struct btrfs_disk_key disk_key;
3830         struct extent_buffer *right = path->nodes[0];
3831         int i;
3832         int push_space = 0;
3833         int push_items = 0;
3834         struct btrfs_item *item;
3835         u32 old_left_nritems;
3836         u32 nr;
3837         int ret = 0;
3838         u32 this_item_size;
3839         u32 old_left_item_size;
3840         struct btrfs_map_token token;
3841
3842         btrfs_init_map_token(&token);
3843
3844         if (empty)
3845                 nr = min(right_nritems, max_slot);
3846         else
3847                 nr = min(right_nritems - 1, max_slot);
3848
3849         for (i = 0; i < nr; i++) {
3850                 item = btrfs_item_nr(i);
3851
3852                 if (!empty && push_items > 0) {
3853                         if (path->slots[0] < i)
3854                                 break;
3855                         if (path->slots[0] == i) {
3856                                 int space = btrfs_leaf_free_space(root, right);
3857                                 if (space + push_space * 2 > free_space)
3858                                         break;
3859                         }
3860                 }
3861
3862                 if (path->slots[0] == i)
3863                         push_space += data_size;
3864
3865                 this_item_size = btrfs_item_size(right, item);
3866                 if (this_item_size + sizeof(*item) + push_space > free_space)
3867                         break;
3868
3869                 push_items++;
3870                 push_space += this_item_size + sizeof(*item);
3871         }
3872
3873         if (push_items == 0) {
3874                 ret = 1;
3875                 goto out;
3876         }
3877         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3878
3879         /* push data from right to left */
3880         copy_extent_buffer(left, right,
3881                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3882                            btrfs_item_nr_offset(0),
3883                            push_items * sizeof(struct btrfs_item));
3884
3885         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3886                      btrfs_item_offset_nr(right, push_items - 1);
3887
3888         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3889                      leaf_data_end(root, left) - push_space,
3890                      btrfs_leaf_data(right) +
3891                      btrfs_item_offset_nr(right, push_items - 1),
3892                      push_space);
3893         old_left_nritems = btrfs_header_nritems(left);
3894         BUG_ON(old_left_nritems <= 0);
3895
3896         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3897         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3898                 u32 ioff;
3899
3900                 item = btrfs_item_nr(i);
3901
3902                 ioff = btrfs_token_item_offset(left, item, &token);
3903                 btrfs_set_token_item_offset(left, item,
3904                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3905                       &token);
3906         }
3907         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3908
3909         /* fixup right node */
3910         if (push_items > right_nritems)
3911                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3912                        right_nritems);
3913
3914         if (push_items < right_nritems) {
3915                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3916                                                   leaf_data_end(root, right);
3917                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3918                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3919                                       btrfs_leaf_data(right) +
3920                                       leaf_data_end(root, right), push_space);
3921
3922                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3923                               btrfs_item_nr_offset(push_items),
3924                              (btrfs_header_nritems(right) - push_items) *
3925                              sizeof(struct btrfs_item));
3926         }
3927         right_nritems -= push_items;
3928         btrfs_set_header_nritems(right, right_nritems);
3929         push_space = BTRFS_LEAF_DATA_SIZE(root);
3930         for (i = 0; i < right_nritems; i++) {
3931                 item = btrfs_item_nr(i);
3932
3933                 push_space = push_space - btrfs_token_item_size(right,
3934                                                                 item, &token);
3935                 btrfs_set_token_item_offset(right, item, push_space, &token);
3936         }
3937
3938         btrfs_mark_buffer_dirty(left);
3939         if (right_nritems)
3940                 btrfs_mark_buffer_dirty(right);
3941         else
3942                 clean_tree_block(trans, root, right);
3943
3944         btrfs_item_key(right, &disk_key, 0);
3945         fixup_low_keys(root, path, &disk_key, 1);
3946
3947         /* then fixup the leaf pointer in the path */
3948         if (path->slots[0] < push_items) {
3949                 path->slots[0] += old_left_nritems;
3950                 btrfs_tree_unlock(path->nodes[0]);
3951                 free_extent_buffer(path->nodes[0]);
3952                 path->nodes[0] = left;
3953                 path->slots[1] -= 1;
3954         } else {
3955                 btrfs_tree_unlock(left);
3956                 free_extent_buffer(left);
3957                 path->slots[0] -= push_items;
3958         }
3959         BUG_ON(path->slots[0] < 0);
3960         return ret;
3961 out:
3962         btrfs_tree_unlock(left);
3963         free_extent_buffer(left);
3964         return ret;
3965 }
3966
3967 /*
3968  * push some data in the path leaf to the left, trying to free up at
3969  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3970  *
3971  * max_slot can put a limit on how far into the leaf we'll push items.  The
3972  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3973  * items
3974  */
3975 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3976                           *root, struct btrfs_path *path, int min_data_size,
3977                           int data_size, int empty, u32 max_slot)
3978 {
3979         struct extent_buffer *right = path->nodes[0];
3980         struct extent_buffer *left;
3981         int slot;
3982         int free_space;
3983         u32 right_nritems;
3984         int ret = 0;
3985
3986         slot = path->slots[1];
3987         if (slot == 0)
3988                 return 1;
3989         if (!path->nodes[1])
3990                 return 1;
3991
3992         right_nritems = btrfs_header_nritems(right);
3993         if (right_nritems == 0)
3994                 return 1;
3995
3996         btrfs_assert_tree_locked(path->nodes[1]);
3997
3998         left = read_node_slot(root, path->nodes[1], slot - 1);
3999         if (left == NULL)
4000                 return 1;
4001
4002         btrfs_tree_lock(left);
4003         btrfs_set_lock_blocking(left);
4004
4005         free_space = btrfs_leaf_free_space(root, left);
4006         if (free_space < data_size) {
4007                 ret = 1;
4008                 goto out;
4009         }
4010
4011         /* cow and double check */
4012         ret = btrfs_cow_block(trans, root, left,
4013                               path->nodes[1], slot - 1, &left);
4014         if (ret) {
4015                 /* we hit -ENOSPC, but it isn't fatal here */
4016                 if (ret == -ENOSPC)
4017                         ret = 1;
4018                 goto out;
4019         }
4020
4021         free_space = btrfs_leaf_free_space(root, left);
4022         if (free_space < data_size) {
4023                 ret = 1;
4024                 goto out;
4025         }
4026
4027         return __push_leaf_left(trans, root, path, min_data_size,
4028                                empty, left, free_space, right_nritems,
4029                                max_slot);
4030 out:
4031         btrfs_tree_unlock(left);
4032         free_extent_buffer(left);
4033         return ret;
4034 }
4035
4036 /*
4037  * split the path's leaf in two, making sure there is at least data_size
4038  * available for the resulting leaf level of the path.
4039  */
4040 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4041                                     struct btrfs_root *root,
4042                                     struct btrfs_path *path,
4043                                     struct extent_buffer *l,
4044                                     struct extent_buffer *right,
4045                                     int slot, int mid, int nritems)
4046 {
4047         int data_copy_size;
4048         int rt_data_off;
4049         int i;
4050         struct btrfs_disk_key disk_key;
4051         struct btrfs_map_token token;
4052
4053         btrfs_init_map_token(&token);
4054
4055         nritems = nritems - mid;
4056         btrfs_set_header_nritems(right, nritems);
4057         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4058
4059         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4060                            btrfs_item_nr_offset(mid),
4061                            nritems * sizeof(struct btrfs_item));
4062
4063         copy_extent_buffer(right, l,
4064                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4065                      data_copy_size, btrfs_leaf_data(l) +
4066                      leaf_data_end(root, l), data_copy_size);
4067
4068         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4069                       btrfs_item_end_nr(l, mid);
4070
4071         for (i = 0; i < nritems; i++) {
4072                 struct btrfs_item *item = btrfs_item_nr(i);
4073                 u32 ioff;
4074
4075                 ioff = btrfs_token_item_offset(right, item, &token);
4076                 btrfs_set_token_item_offset(right, item,
4077                                             ioff + rt_data_off, &token);
4078         }
4079
4080         btrfs_set_header_nritems(l, mid);
4081         btrfs_item_key(right, &disk_key, 0);
4082         insert_ptr(trans, root, path, &disk_key, right->start,
4083                    path->slots[1] + 1, 1);
4084
4085         btrfs_mark_buffer_dirty(right);
4086         btrfs_mark_buffer_dirty(l);
4087         BUG_ON(path->slots[0] != slot);
4088
4089         if (mid <= slot) {
4090                 btrfs_tree_unlock(path->nodes[0]);
4091                 free_extent_buffer(path->nodes[0]);
4092                 path->nodes[0] = right;
4093                 path->slots[0] -= mid;
4094                 path->slots[1] += 1;
4095         } else {
4096                 btrfs_tree_unlock(right);
4097                 free_extent_buffer(right);
4098         }
4099
4100         BUG_ON(path->slots[0] < 0);
4101 }
4102
4103 /*
4104  * double splits happen when we need to insert a big item in the middle
4105  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4106  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4107  *          A                 B                 C
4108  *
4109  * We avoid this by trying to push the items on either side of our target
4110  * into the adjacent leaves.  If all goes well we can avoid the double split
4111  * completely.
4112  */
4113 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4114                                           struct btrfs_root *root,
4115                                           struct btrfs_path *path,
4116                                           int data_size)
4117 {
4118         int ret;
4119         int progress = 0;
4120         int slot;
4121         u32 nritems;
4122         int space_needed = data_size;
4123
4124         slot = path->slots[0];
4125         if (slot < btrfs_header_nritems(path->nodes[0]))
4126                 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4127
4128         /*
4129          * try to push all the items after our slot into the
4130          * right leaf
4131          */
4132         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4133         if (ret < 0)
4134                 return ret;
4135
4136         if (ret == 0)
4137                 progress++;
4138
4139         nritems = btrfs_header_nritems(path->nodes[0]);
4140         /*
4141          * our goal is to get our slot at the start or end of a leaf.  If
4142          * we've done so we're done
4143          */
4144         if (path->slots[0] == 0 || path->slots[0] == nritems)
4145                 return 0;
4146
4147         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4148                 return 0;
4149
4150         /* try to push all the items before our slot into the next leaf */
4151         slot = path->slots[0];
4152         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4153         if (ret < 0)
4154                 return ret;
4155
4156         if (ret == 0)
4157                 progress++;
4158
4159         if (progress)
4160                 return 0;
4161         return 1;
4162 }
4163
4164 /*
4165  * split the path's leaf in two, making sure there is at least data_size
4166  * available for the resulting leaf level of the path.
4167  *
4168  * returns 0 if all went well and < 0 on failure.
4169  */
4170 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4171                                struct btrfs_root *root,
4172                                struct btrfs_key *ins_key,
4173                                struct btrfs_path *path, int data_size,
4174                                int extend)
4175 {
4176         struct btrfs_disk_key disk_key;
4177         struct extent_buffer *l;
4178         u32 nritems;
4179         int mid;
4180         int slot;
4181         struct extent_buffer *right;
4182         int ret = 0;
4183         int wret;
4184         int split;
4185         int num_doubles = 0;
4186         int tried_avoid_double = 0;
4187
4188         l = path->nodes[0];
4189         slot = path->slots[0];
4190         if (extend && data_size + btrfs_item_size_nr(l, slot) +
4191             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4192                 return -EOVERFLOW;
4193
4194         /* first try to make some room by pushing left and right */
4195         if (data_size && path->nodes[1]) {
4196                 int space_needed = data_size;
4197
4198                 if (slot < btrfs_header_nritems(l))
4199                         space_needed -= btrfs_leaf_free_space(root, l);
4200
4201                 wret = push_leaf_right(trans, root, path, space_needed,
4202                                        space_needed, 0, 0);
4203                 if (wret < 0)
4204                         return wret;
4205                 if (wret) {
4206                         wret = push_leaf_left(trans, root, path, space_needed,
4207                                               space_needed, 0, (u32)-1);
4208                         if (wret < 0)
4209                                 return wret;
4210                 }
4211                 l = path->nodes[0];
4212
4213                 /* did the pushes work? */
4214                 if (btrfs_leaf_free_space(root, l) >= data_size)
4215                         return 0;
4216         }
4217
4218         if (!path->nodes[1]) {
4219                 ret = insert_new_root(trans, root, path, 1);
4220                 if (ret)
4221                         return ret;
4222         }
4223 again:
4224         split = 1;
4225         l = path->nodes[0];
4226         slot = path->slots[0];
4227         nritems = btrfs_header_nritems(l);
4228         mid = (nritems + 1) / 2;
4229
4230         if (mid <= slot) {
4231                 if (nritems == 1 ||
4232                     leaf_space_used(l, mid, nritems - mid) + data_size >
4233                         BTRFS_LEAF_DATA_SIZE(root)) {
4234                         if (slot >= nritems) {
4235                                 split = 0;
4236                         } else {
4237                                 mid = slot;
4238                                 if (mid != nritems &&
4239                                     leaf_space_used(l, mid, nritems - mid) +
4240                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4241                                         if (data_size && !tried_avoid_double)
4242                                                 goto push_for_double;
4243                                         split = 2;
4244                                 }
4245                         }
4246                 }
4247         } else {
4248                 if (leaf_space_used(l, 0, mid) + data_size >
4249                         BTRFS_LEAF_DATA_SIZE(root)) {
4250                         if (!extend && data_size && slot == 0) {
4251                                 split = 0;
4252                         } else if ((extend || !data_size) && slot == 0) {
4253                                 mid = 1;
4254                         } else {
4255                                 mid = slot;
4256                                 if (mid != nritems &&
4257                                     leaf_space_used(l, mid, nritems - mid) +
4258                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4259                                         if (data_size && !tried_avoid_double)
4260                                                 goto push_for_double;
4261                                         split = 2;
4262                                 }
4263                         }
4264                 }
4265         }
4266
4267         if (split == 0)
4268                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4269         else
4270                 btrfs_item_key(l, &disk_key, mid);
4271
4272         right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4273                         &disk_key, 0, l->start, 0);
4274         if (IS_ERR(right))
4275                 return PTR_ERR(right);
4276
4277         root_add_used(root, root->nodesize);
4278
4279         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4280         btrfs_set_header_bytenr(right, right->start);
4281         btrfs_set_header_generation(right, trans->transid);
4282         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4283         btrfs_set_header_owner(right, root->root_key.objectid);
4284         btrfs_set_header_level(right, 0);
4285         write_extent_buffer(right, root->fs_info->fsid,
4286                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
4287
4288         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4289                             btrfs_header_chunk_tree_uuid(right),
4290                             BTRFS_UUID_SIZE);
4291
4292         if (split == 0) {
4293                 if (mid <= slot) {
4294                         btrfs_set_header_nritems(right, 0);
4295                         insert_ptr(trans, root, path, &disk_key, right->start,
4296                                    path->slots[1] + 1, 1);
4297                         btrfs_tree_unlock(path->nodes[0]);
4298                         free_extent_buffer(path->nodes[0]);
4299                         path->nodes[0] = right;
4300                         path->slots[0] = 0;
4301                         path->slots[1] += 1;
4302                 } else {
4303                         btrfs_set_header_nritems(right, 0);
4304                         insert_ptr(trans, root, path, &disk_key, right->start,
4305                                           path->slots[1], 1);
4306                         btrfs_tree_unlock(path->nodes[0]);
4307                         free_extent_buffer(path->nodes[0]);
4308                         path->nodes[0] = right;
4309                         path->slots[0] = 0;
4310                         if (path->slots[1] == 0)
4311                                 fixup_low_keys(root, path, &disk_key, 1);
4312                 }
4313                 btrfs_mark_buffer_dirty(right);
4314                 return ret;
4315         }
4316
4317         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4318
4319         if (split == 2) {
4320                 BUG_ON(num_doubles != 0);
4321                 num_doubles++;
4322                 goto again;
4323         }
4324
4325         return 0;
4326
4327 push_for_double:
4328         push_for_double_split(trans, root, path, data_size);
4329         tried_avoid_double = 1;
4330         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4331                 return 0;
4332         goto again;
4333 }
4334
4335 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4336                                          struct btrfs_root *root,
4337                                          struct btrfs_path *path, int ins_len)
4338 {
4339         struct btrfs_key key;
4340         struct extent_buffer *leaf;
4341         struct btrfs_file_extent_item *fi;
4342         u64 extent_len = 0;
4343         u32 item_size;
4344         int ret;
4345
4346         leaf = path->nodes[0];
4347         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4348
4349         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4350                key.type != BTRFS_EXTENT_CSUM_KEY);
4351
4352         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4353                 return 0;
4354
4355         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4356         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4357                 fi = btrfs_item_ptr(leaf, path->slots[0],
4358                                     struct btrfs_file_extent_item);
4359                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4360         }
4361         btrfs_release_path(path);
4362
4363         path->keep_locks = 1;
4364         path->search_for_split = 1;
4365         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4366         path->search_for_split = 0;
4367         if (ret < 0)
4368                 goto err;
4369
4370         ret = -EAGAIN;
4371         leaf = path->nodes[0];
4372         /* if our item isn't there or got smaller, return now */
4373         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4374                 goto err;
4375
4376         /* the leaf has  changed, it now has room.  return now */
4377         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4378                 goto err;
4379
4380         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4381                 fi = btrfs_item_ptr(leaf, path->slots[0],
4382                                     struct btrfs_file_extent_item);
4383                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4384                         goto err;
4385         }
4386
4387         btrfs_set_path_blocking(path);
4388         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4389         if (ret)
4390                 goto err;
4391
4392         path->keep_locks = 0;
4393         btrfs_unlock_up_safe(path, 1);
4394         return 0;
4395 err:
4396         path->keep_locks = 0;
4397         return ret;
4398 }
4399
4400 static noinline int split_item(struct btrfs_trans_handle *trans,
4401                                struct btrfs_root *root,
4402                                struct btrfs_path *path,
4403                                struct btrfs_key *new_key,
4404                                unsigned long split_offset)
4405 {
4406         struct extent_buffer *leaf;
4407         struct btrfs_item *item;
4408         struct btrfs_item *new_item;
4409         int slot;
4410         char *buf;
4411         u32 nritems;
4412         u32 item_size;
4413         u32 orig_offset;
4414         struct btrfs_disk_key disk_key;
4415
4416         leaf = path->nodes[0];
4417         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4418
4419         btrfs_set_path_blocking(path);
4420
4421         item = btrfs_item_nr(path->slots[0]);
4422         orig_offset = btrfs_item_offset(leaf, item);
4423         item_size = btrfs_item_size(leaf, item);
4424
4425         buf = kmalloc(item_size, GFP_NOFS);
4426         if (!buf)
4427                 return -ENOMEM;
4428
4429         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4430                             path->slots[0]), item_size);
4431
4432         slot = path->slots[0] + 1;
4433         nritems = btrfs_header_nritems(leaf);
4434         if (slot != nritems) {
4435                 /* shift the items */
4436                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4437                                 btrfs_item_nr_offset(slot),
4438                                 (nritems - slot) * sizeof(struct btrfs_item));
4439         }
4440
4441         btrfs_cpu_key_to_disk(&disk_key, new_key);
4442         btrfs_set_item_key(leaf, &disk_key, slot);
4443
4444         new_item = btrfs_item_nr(slot);
4445
4446         btrfs_set_item_offset(leaf, new_item, orig_offset);
4447         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4448
4449         btrfs_set_item_offset(leaf, item,
4450                               orig_offset + item_size - split_offset);
4451         btrfs_set_item_size(leaf, item, split_offset);
4452
4453         btrfs_set_header_nritems(leaf, nritems + 1);
4454
4455         /* write the data for the start of the original item */
4456         write_extent_buffer(leaf, buf,
4457                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4458                             split_offset);
4459
4460         /* write the data for the new item */
4461         write_extent_buffer(leaf, buf + split_offset,
4462                             btrfs_item_ptr_offset(leaf, slot),
4463                             item_size - split_offset);
4464         btrfs_mark_buffer_dirty(leaf);
4465
4466         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4467         kfree(buf);
4468         return 0;
4469 }
4470
4471 /*
4472  * This function splits a single item into two items,
4473  * giving 'new_key' to the new item and splitting the
4474  * old one at split_offset (from the start of the item).
4475  *
4476  * The path may be released by this operation.  After
4477  * the split, the path is pointing to the old item.  The
4478  * new item is going to be in the same node as the old one.
4479  *
4480  * Note, the item being split must be smaller enough to live alone on
4481  * a tree block with room for one extra struct btrfs_item
4482  *
4483  * This allows us to split the item in place, keeping a lock on the
4484  * leaf the entire time.
4485  */
4486 int btrfs_split_item(struct btrfs_trans_handle *trans,
4487                      struct btrfs_root *root,
4488                      struct btrfs_path *path,
4489                      struct btrfs_key *new_key,
4490                      unsigned long split_offset)
4491 {
4492         int ret;
4493         ret = setup_leaf_for_split(trans, root, path,
4494                                    sizeof(struct btrfs_item));
4495         if (ret)
4496                 return ret;
4497
4498         ret = split_item(trans, root, path, new_key, split_offset);
4499         return ret;
4500 }
4501
4502 /*
4503  * This function duplicate a item, giving 'new_key' to the new item.
4504  * It guarantees both items live in the same tree leaf and the new item
4505  * is contiguous with the original item.
4506  *
4507  * This allows us to split file extent in place, keeping a lock on the
4508  * leaf the entire time.
4509  */
4510 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4511                          struct btrfs_root *root,
4512                          struct btrfs_path *path,
4513                          struct btrfs_key *new_key)
4514 {
4515         struct extent_buffer *leaf;
4516         int ret;
4517         u32 item_size;
4518
4519         leaf = path->nodes[0];
4520         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4521         ret = setup_leaf_for_split(trans, root, path,
4522                                    item_size + sizeof(struct btrfs_item));
4523         if (ret)
4524                 return ret;
4525
4526         path->slots[0]++;
4527         setup_items_for_insert(root, path, new_key, &item_size,
4528                                item_size, item_size +
4529                                sizeof(struct btrfs_item), 1);
4530         leaf = path->nodes[0];
4531         memcpy_extent_buffer(leaf,
4532                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4533                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4534                              item_size);
4535         return 0;
4536 }
4537
4538 /*
4539  * make the item pointed to by the path smaller.  new_size indicates
4540  * how small to make it, and from_end tells us if we just chop bytes
4541  * off the end of the item or if we shift the item to chop bytes off
4542  * the front.
4543  */
4544 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4545                          u32 new_size, int from_end)
4546 {
4547         int slot;
4548         struct extent_buffer *leaf;
4549         struct btrfs_item *item;
4550         u32 nritems;
4551         unsigned int data_end;
4552         unsigned int old_data_start;
4553         unsigned int old_size;
4554         unsigned int size_diff;
4555         int i;
4556         struct btrfs_map_token token;
4557
4558         btrfs_init_map_token(&token);
4559
4560         leaf = path->nodes[0];
4561         slot = path->slots[0];
4562
4563         old_size = btrfs_item_size_nr(leaf, slot);
4564         if (old_size == new_size)
4565                 return;
4566
4567         nritems = btrfs_header_nritems(leaf);
4568         data_end = leaf_data_end(root, leaf);
4569
4570         old_data_start = btrfs_item_offset_nr(leaf, slot);
4571
4572         size_diff = old_size - new_size;
4573
4574         BUG_ON(slot < 0);
4575         BUG_ON(slot >= nritems);
4576
4577         /*
4578          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4579          */
4580         /* first correct the data pointers */
4581         for (i = slot; i < nritems; i++) {
4582                 u32 ioff;
4583                 item = btrfs_item_nr(i);
4584
4585                 ioff = btrfs_token_item_offset(leaf, item, &token);
4586                 btrfs_set_token_item_offset(leaf, item,
4587                                             ioff + size_diff, &token);
4588         }
4589
4590         /* shift the data */
4591         if (from_end) {
4592                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4593                               data_end + size_diff, btrfs_leaf_data(leaf) +
4594                               data_end, old_data_start + new_size - data_end);
4595         } else {
4596                 struct btrfs_disk_key disk_key;
4597                 u64 offset;
4598
4599                 btrfs_item_key(leaf, &disk_key, slot);
4600
4601                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4602                         unsigned long ptr;
4603                         struct btrfs_file_extent_item *fi;
4604
4605                         fi = btrfs_item_ptr(leaf, slot,
4606                                             struct btrfs_file_extent_item);
4607                         fi = (struct btrfs_file_extent_item *)(
4608                              (unsigned long)fi - size_diff);
4609
4610                         if (btrfs_file_extent_type(leaf, fi) ==
4611                             BTRFS_FILE_EXTENT_INLINE) {
4612                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4613                                 memmove_extent_buffer(leaf, ptr,
4614                                       (unsigned long)fi,
4615                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
4616                         }
4617                 }
4618
4619                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4620                               data_end + size_diff, btrfs_leaf_data(leaf) +
4621                               data_end, old_data_start - data_end);
4622
4623                 offset = btrfs_disk_key_offset(&disk_key);
4624                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4625                 btrfs_set_item_key(leaf, &disk_key, slot);
4626                 if (slot == 0)
4627                         fixup_low_keys(root, path, &disk_key, 1);
4628         }
4629
4630         item = btrfs_item_nr(slot);
4631         btrfs_set_item_size(leaf, item, new_size);
4632         btrfs_mark_buffer_dirty(leaf);
4633
4634         if (btrfs_leaf_free_space(root, leaf) < 0) {
4635                 btrfs_print_leaf(root, leaf);
4636                 BUG();
4637         }
4638 }
4639
4640 /*
4641  * make the item pointed to by the path bigger, data_size is the added size.
4642  */
4643 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4644                        u32 data_size)
4645 {
4646         int slot;
4647         struct extent_buffer *leaf;
4648         struct btrfs_item *item;
4649         u32 nritems;
4650         unsigned int data_end;
4651         unsigned int old_data;
4652         unsigned int old_size;
4653         int i;
4654         struct btrfs_map_token token;
4655
4656         btrfs_init_map_token(&token);
4657
4658         leaf = path->nodes[0];
4659
4660         nritems = btrfs_header_nritems(leaf);
4661         data_end = leaf_data_end(root, leaf);
4662
4663         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4664                 btrfs_print_leaf(root, leaf);
4665                 BUG();
4666         }
4667         slot = path->slots[0];
4668         old_data = btrfs_item_end_nr(leaf, slot);
4669
4670         BUG_ON(slot < 0);
4671         if (slot >= nritems) {
4672                 btrfs_print_leaf(root, leaf);
4673                 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4674                        slot, nritems);
4675                 BUG_ON(1);
4676         }
4677
4678         /*
4679          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4680          */
4681         /* first correct the data pointers */
4682         for (i = slot; i < nritems; i++) {
4683                 u32 ioff;
4684                 item = btrfs_item_nr(i);
4685
4686                 ioff = btrfs_token_item_offset(leaf, item, &token);
4687                 btrfs_set_token_item_offset(leaf, item,
4688                                             ioff - data_size, &token);
4689         }
4690
4691         /* shift the data */
4692         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4693                       data_end - data_size, btrfs_leaf_data(leaf) +
4694                       data_end, old_data - data_end);
4695
4696         data_end = old_data;
4697         old_size = btrfs_item_size_nr(leaf, slot);
4698         item = btrfs_item_nr(slot);
4699         btrfs_set_item_size(leaf, item, old_size + data_size);
4700         btrfs_mark_buffer_dirty(leaf);
4701
4702         if (btrfs_leaf_free_space(root, leaf) < 0) {
4703                 btrfs_print_leaf(root, leaf);
4704                 BUG();
4705         }
4706 }
4707
4708 /*
4709  * this is a helper for btrfs_insert_empty_items, the main goal here is
4710  * to save stack depth by doing the bulk of the work in a function
4711  * that doesn't call btrfs_search_slot
4712  */
4713 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4714                             struct btrfs_key *cpu_key, u32 *data_size,
4715                             u32 total_data, u32 total_size, int nr)
4716 {
4717         struct btrfs_item *item;
4718         int i;
4719         u32 nritems;
4720         unsigned int data_end;
4721         struct btrfs_disk_key disk_key;
4722         struct extent_buffer *leaf;
4723         int slot;
4724         struct btrfs_map_token token;
4725
4726         if (path->slots[0] == 0) {
4727                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4728                 fixup_low_keys(root, path, &disk_key, 1);
4729         }
4730         btrfs_unlock_up_safe(path, 1);
4731
4732         btrfs_init_map_token(&token);
4733
4734         leaf = path->nodes[0];
4735         slot = path->slots[0];
4736
4737         nritems = btrfs_header_nritems(leaf);
4738         data_end = leaf_data_end(root, leaf);
4739
4740         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4741                 btrfs_print_leaf(root, leaf);
4742                 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4743                        total_size, btrfs_leaf_free_space(root, leaf));
4744                 BUG();
4745         }
4746
4747         if (slot != nritems) {
4748                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4749
4750                 if (old_data < data_end) {
4751                         btrfs_print_leaf(root, leaf);
4752                         btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4753                                slot, old_data, data_end);
4754                         BUG_ON(1);
4755                 }
4756                 /*
4757                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4758                  */
4759                 /* first correct the data pointers */
4760                 for (i = slot; i < nritems; i++) {
4761                         u32 ioff;
4762
4763                         item = btrfs_item_nr( i);
4764                         ioff = btrfs_token_item_offset(leaf, item, &token);
4765                         btrfs_set_token_item_offset(leaf, item,
4766                                                     ioff - total_data, &token);
4767                 }
4768                 /* shift the items */
4769                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4770                               btrfs_item_nr_offset(slot),
4771                               (nritems - slot) * sizeof(struct btrfs_item));
4772
4773                 /* shift the data */
4774                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4775                               data_end - total_data, btrfs_leaf_data(leaf) +
4776                               data_end, old_data - data_end);
4777                 data_end = old_data;
4778         }
4779
4780         /* setup the item for the new data */
4781         for (i = 0; i < nr; i++) {
4782                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4783                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4784                 item = btrfs_item_nr(slot + i);
4785                 btrfs_set_token_item_offset(leaf, item,
4786                                             data_end - data_size[i], &token);
4787                 data_end -= data_size[i];
4788                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4789         }
4790
4791         btrfs_set_header_nritems(leaf, nritems + nr);
4792         btrfs_mark_buffer_dirty(leaf);
4793
4794         if (btrfs_leaf_free_space(root, leaf) < 0) {
4795                 btrfs_print_leaf(root, leaf);
4796                 BUG();
4797         }
4798 }
4799
4800 /*
4801  * Given a key and some data, insert items into the tree.
4802  * This does all the path init required, making room in the tree if needed.
4803  */
4804 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4805                             struct btrfs_root *root,
4806                             struct btrfs_path *path,
4807                             struct btrfs_key *cpu_key, u32 *data_size,
4808                             int nr)
4809 {
4810         int ret = 0;
4811         int slot;
4812         int i;
4813         u32 total_size = 0;
4814         u32 total_data = 0;
4815
4816         for (i = 0; i < nr; i++)
4817                 total_data += data_size[i];
4818
4819         total_size = total_data + (nr * sizeof(struct btrfs_item));
4820         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4821         if (ret == 0)
4822                 return -EEXIST;
4823         if (ret < 0)
4824                 return ret;
4825
4826         slot = path->slots[0];
4827         BUG_ON(slot < 0);
4828
4829         setup_items_for_insert(root, path, cpu_key, data_size,
4830                                total_data, total_size, nr);
4831         return 0;
4832 }
4833
4834 /*
4835  * Given a key and some data, insert an item into the tree.
4836  * This does all the path init required, making room in the tree if needed.
4837  */
4838 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4839                       *root, struct btrfs_key *cpu_key, void *data, u32
4840                       data_size)
4841 {
4842         int ret = 0;
4843         struct btrfs_path *path;
4844         struct extent_buffer *leaf;
4845         unsigned long ptr;
4846
4847         path = btrfs_alloc_path();
4848         if (!path)
4849                 return -ENOMEM;
4850         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4851         if (!ret) {
4852                 leaf = path->nodes[0];
4853                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4854                 write_extent_buffer(leaf, data, ptr, data_size);
4855                 btrfs_mark_buffer_dirty(leaf);
4856         }
4857         btrfs_free_path(path);
4858         return ret;
4859 }
4860
4861 /*
4862  * delete the pointer from a given node.
4863  *
4864  * the tree should have been previously balanced so the deletion does not
4865  * empty a node.
4866  */
4867 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4868                     int level, int slot)
4869 {
4870         struct extent_buffer *parent = path->nodes[level];
4871         u32 nritems;
4872         int ret;
4873
4874         nritems = btrfs_header_nritems(parent);
4875         if (slot != nritems - 1) {
4876                 if (level)
4877                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4878                                              slot + 1, nritems - slot - 1);
4879                 memmove_extent_buffer(parent,
4880                               btrfs_node_key_ptr_offset(slot),
4881                               btrfs_node_key_ptr_offset(slot + 1),
4882                               sizeof(struct btrfs_key_ptr) *
4883                               (nritems - slot - 1));
4884         } else if (level) {
4885                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4886                                               MOD_LOG_KEY_REMOVE, GFP_NOFS);
4887                 BUG_ON(ret < 0);
4888         }
4889
4890         nritems--;
4891         btrfs_set_header_nritems(parent, nritems);
4892         if (nritems == 0 && parent == root->node) {
4893                 BUG_ON(btrfs_header_level(root->node) != 1);
4894                 /* just turn the root into a leaf and break */
4895                 btrfs_set_header_level(root->node, 0);
4896         } else if (slot == 0) {
4897                 struct btrfs_disk_key disk_key;
4898
4899                 btrfs_node_key(parent, &disk_key, 0);
4900                 fixup_low_keys(root, path, &disk_key, level + 1);
4901         }
4902         btrfs_mark_buffer_dirty(parent);
4903 }
4904
4905 /*
4906  * a helper function to delete the leaf pointed to by path->slots[1] and
4907  * path->nodes[1].
4908  *
4909  * This deletes the pointer in path->nodes[1] and frees the leaf
4910  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4911  *
4912  * The path must have already been setup for deleting the leaf, including
4913  * all the proper balancing.  path->nodes[1] must be locked.
4914  */
4915 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4916                                     struct btrfs_root *root,
4917                                     struct btrfs_path *path,
4918                                     struct extent_buffer *leaf)
4919 {
4920         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4921         del_ptr(root, path, 1, path->slots[1]);
4922
4923         /*
4924          * btrfs_free_extent is expensive, we want to make sure we
4925          * aren't holding any locks when we call it
4926          */
4927         btrfs_unlock_up_safe(path, 0);
4928
4929         root_sub_used(root, leaf->len);
4930
4931         extent_buffer_get(leaf);
4932         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4933         free_extent_buffer_stale(leaf);
4934 }
4935 /*
4936  * delete the item at the leaf level in path.  If that empties
4937  * the leaf, remove it from the tree
4938  */
4939 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4940                     struct btrfs_path *path, int slot, int nr)
4941 {
4942         struct extent_buffer *leaf;
4943         struct btrfs_item *item;
4944         int last_off;
4945         int dsize = 0;
4946         int ret = 0;
4947         int wret;
4948         int i;
4949         u32 nritems;
4950         struct btrfs_map_token token;
4951
4952         btrfs_init_map_token(&token);
4953
4954         leaf = path->nodes[0];
4955         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4956
4957         for (i = 0; i < nr; i++)
4958                 dsize += btrfs_item_size_nr(leaf, slot + i);
4959
4960         nritems = btrfs_header_nritems(leaf);
4961
4962         if (slot + nr != nritems) {
4963                 int data_end = leaf_data_end(root, leaf);
4964
4965                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4966                               data_end + dsize,
4967                               btrfs_leaf_data(leaf) + data_end,
4968                               last_off - data_end);
4969
4970                 for (i = slot + nr; i < nritems; i++) {
4971                         u32 ioff;
4972
4973                         item = btrfs_item_nr(i);
4974                         ioff = btrfs_token_item_offset(leaf, item, &token);
4975                         btrfs_set_token_item_offset(leaf, item,
4976                                                     ioff + dsize, &token);
4977                 }
4978
4979                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4980                               btrfs_item_nr_offset(slot + nr),
4981                               sizeof(struct btrfs_item) *
4982                               (nritems - slot - nr));
4983         }
4984         btrfs_set_header_nritems(leaf, nritems - nr);
4985         nritems -= nr;
4986
4987         /* delete the leaf if we've emptied it */
4988         if (nritems == 0) {
4989                 if (leaf == root->node) {
4990                         btrfs_set_header_level(leaf, 0);
4991                 } else {
4992                         btrfs_set_path_blocking(path);
4993                         clean_tree_block(trans, root, leaf);
4994                         btrfs_del_leaf(trans, root, path, leaf);
4995                 }
4996         } else {
4997                 int used = leaf_space_used(leaf, 0, nritems);
4998                 if (slot == 0) {
4999                         struct btrfs_disk_key disk_key;
5000
5001                         btrfs_item_key(leaf, &disk_key, 0);
5002                         fixup_low_keys(root, path, &disk_key, 1);
5003                 }
5004
5005                 /* delete the leaf if it is mostly empty */
5006                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5007                         /* push_leaf_left fixes the path.
5008                          * make sure the path still points to our leaf
5009                          * for possible call to del_ptr below
5010                          */
5011                         slot = path->slots[1];
5012                         extent_buffer_get(leaf);
5013
5014                         btrfs_set_path_blocking(path);
5015                         wret = push_leaf_left(trans, root, path, 1, 1,
5016                                               1, (u32)-1);
5017                         if (wret < 0 && wret != -ENOSPC)
5018                                 ret = wret;
5019
5020                         if (path->nodes[0] == leaf &&
5021                             btrfs_header_nritems(leaf)) {
5022                                 wret = push_leaf_right(trans, root, path, 1,
5023                                                        1, 1, 0);
5024                                 if (wret < 0 && wret != -ENOSPC)
5025                                         ret = wret;
5026                         }
5027
5028                         if (btrfs_header_nritems(leaf) == 0) {
5029                                 path->slots[1] = slot;
5030                                 btrfs_del_leaf(trans, root, path, leaf);
5031                                 free_extent_buffer(leaf);
5032                                 ret = 0;
5033                         } else {
5034                                 /* if we're still in the path, make sure
5035                                  * we're dirty.  Otherwise, one of the
5036                                  * push_leaf functions must have already
5037                                  * dirtied this buffer
5038                                  */
5039                                 if (path->nodes[0] == leaf)
5040                                         btrfs_mark_buffer_dirty(leaf);
5041                                 free_extent_buffer(leaf);
5042                         }
5043                 } else {
5044                         btrfs_mark_buffer_dirty(leaf);
5045                 }
5046         }
5047         return ret;
5048 }
5049
5050 /*
5051  * search the tree again to find a leaf with lesser keys
5052  * returns 0 if it found something or 1 if there are no lesser leaves.
5053  * returns < 0 on io errors.
5054  *
5055  * This may release the path, and so you may lose any locks held at the
5056  * time you call it.
5057  */
5058 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5059 {
5060         struct btrfs_key key;
5061         struct btrfs_disk_key found_key;
5062         int ret;
5063
5064         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5065
5066         if (key.offset > 0) {
5067                 key.offset--;
5068         } else if (key.type > 0) {
5069                 key.type--;
5070                 key.offset = (u64)-1;
5071         } else if (key.objectid > 0) {
5072                 key.objectid--;
5073                 key.type = (u8)-1;
5074                 key.offset = (u64)-1;
5075         } else {
5076                 return 1;
5077         }
5078
5079         btrfs_release_path(path);
5080         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5081         if (ret < 0)
5082                 return ret;
5083         btrfs_item_key(path->nodes[0], &found_key, 0);
5084         ret = comp_keys(&found_key, &key);
5085         /*
5086          * We might have had an item with the previous key in the tree right
5087          * before we released our path. And after we released our path, that
5088          * item might have been pushed to the first slot (0) of the leaf we
5089          * were holding due to a tree balance. Alternatively, an item with the
5090          * previous key can exist as the only element of a leaf (big fat item).
5091          * Therefore account for these 2 cases, so that our callers (like
5092          * btrfs_previous_item) don't miss an existing item with a key matching
5093          * the previous key we computed above.
5094          */
5095         if (ret <= 0)
5096                 return 0;
5097         return 1;
5098 }
5099
5100 /*
5101  * A helper function to walk down the tree starting at min_key, and looking
5102  * for nodes or leaves that are have a minimum transaction id.
5103  * This is used by the btree defrag code, and tree logging
5104  *
5105  * This does not cow, but it does stuff the starting key it finds back
5106  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5107  * key and get a writable path.
5108  *
5109  * This does lock as it descends, and path->keep_locks should be set
5110  * to 1 by the caller.
5111  *
5112  * This honors path->lowest_level to prevent descent past a given level
5113  * of the tree.
5114  *
5115  * min_trans indicates the oldest transaction that you are interested
5116  * in walking through.  Any nodes or leaves older than min_trans are
5117  * skipped over (without reading them).
5118  *
5119  * returns zero if something useful was found, < 0 on error and 1 if there
5120  * was nothing in the tree that matched the search criteria.
5121  */
5122 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5123                          struct btrfs_path *path,
5124                          u64 min_trans)
5125 {
5126         struct extent_buffer *cur;
5127         struct btrfs_key found_key;
5128         int slot;
5129         int sret;
5130         u32 nritems;
5131         int level;
5132         int ret = 1;
5133         int keep_locks = path->keep_locks;
5134
5135         path->keep_locks = 1;
5136 again:
5137         cur = btrfs_read_lock_root_node(root);
5138         level = btrfs_header_level(cur);
5139         WARN_ON(path->nodes[level]);
5140         path->nodes[level] = cur;
5141         path->locks[level] = BTRFS_READ_LOCK;
5142
5143         if (btrfs_header_generation(cur) < min_trans) {
5144                 ret = 1;
5145                 goto out;
5146         }
5147         while (1) {
5148                 nritems = btrfs_header_nritems(cur);
5149                 level = btrfs_header_level(cur);
5150                 sret = bin_search(cur, min_key, level, &slot);
5151
5152                 /* at the lowest level, we're done, setup the path and exit */
5153                 if (level == path->lowest_level) {
5154                         if (slot >= nritems)
5155                                 goto find_next_key;
5156                         ret = 0;
5157                         path->slots[level] = slot;
5158                         btrfs_item_key_to_cpu(cur, &found_key, slot);
5159                         goto out;
5160                 }
5161                 if (sret && slot > 0)
5162                         slot--;
5163                 /*
5164                  * check this node pointer against the min_trans parameters.
5165                  * If it is too old, old, skip to the next one.
5166                  */
5167                 while (slot < nritems) {
5168                         u64 gen;
5169
5170                         gen = btrfs_node_ptr_generation(cur, slot);
5171                         if (gen < min_trans) {
5172                                 slot++;
5173                                 continue;
5174                         }
5175                         break;
5176                 }
5177 find_next_key:
5178                 /*
5179                  * we didn't find a candidate key in this node, walk forward
5180                  * and find another one
5181                  */
5182                 if (slot >= nritems) {
5183                         path->slots[level] = slot;
5184                         btrfs_set_path_blocking(path);
5185                         sret = btrfs_find_next_key(root, path, min_key, level,
5186                                                   min_trans);
5187                         if (sret == 0) {
5188                                 btrfs_release_path(path);
5189                                 goto again;
5190                         } else {
5191                                 goto out;
5192                         }
5193                 }
5194                 /* save our key for returning back */
5195                 btrfs_node_key_to_cpu(cur, &found_key, slot);
5196                 path->slots[level] = slot;
5197                 if (level == path->lowest_level) {
5198                         ret = 0;
5199                         goto out;
5200                 }
5201                 btrfs_set_path_blocking(path);
5202                 cur = read_node_slot(root, cur, slot);
5203                 BUG_ON(!cur); /* -ENOMEM */
5204
5205                 btrfs_tree_read_lock(cur);
5206
5207                 path->locks[level - 1] = BTRFS_READ_LOCK;
5208                 path->nodes[level - 1] = cur;
5209                 unlock_up(path, level, 1, 0, NULL);
5210                 btrfs_clear_path_blocking(path, NULL, 0);
5211         }
5212 out:
5213         path->keep_locks = keep_locks;
5214         if (ret == 0) {
5215                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5216                 btrfs_set_path_blocking(path);
5217                 memcpy(min_key, &found_key, sizeof(found_key));
5218         }
5219         return ret;
5220 }
5221
5222 static void tree_move_down(struct btrfs_root *root,
5223                            struct btrfs_path *path,
5224                            int *level, int root_level)
5225 {
5226         BUG_ON(*level == 0);
5227         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5228                                         path->slots[*level]);
5229         path->slots[*level - 1] = 0;
5230         (*level)--;
5231 }
5232
5233 static int tree_move_next_or_upnext(struct btrfs_root *root,
5234                                     struct btrfs_path *path,
5235                                     int *level, int root_level)
5236 {
5237         int ret = 0;
5238         int nritems;
5239         nritems = btrfs_header_nritems(path->nodes[*level]);
5240
5241         path->slots[*level]++;
5242
5243         while (path->slots[*level] >= nritems) {
5244                 if (*level == root_level)
5245                         return -1;
5246
5247                 /* move upnext */
5248                 path->slots[*level] = 0;
5249                 free_extent_buffer(path->nodes[*level]);
5250                 path->nodes[*level] = NULL;
5251                 (*level)++;
5252                 path->slots[*level]++;
5253
5254                 nritems = btrfs_header_nritems(path->nodes[*level]);
5255                 ret = 1;
5256         }
5257         return ret;
5258 }
5259
5260 /*
5261  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5262  * or down.
5263  */
5264 static int tree_advance(struct btrfs_root *root,
5265                         struct btrfs_path *path,
5266                         int *level, int root_level,
5267                         int allow_down,
5268                         struct btrfs_key *key)
5269 {
5270         int ret;
5271
5272         if (*level == 0 || !allow_down) {
5273                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5274         } else {
5275                 tree_move_down(root, path, level, root_level);
5276                 ret = 0;
5277         }
5278         if (ret >= 0) {
5279                 if (*level == 0)
5280                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5281                                         path->slots[*level]);
5282                 else
5283                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5284                                         path->slots[*level]);
5285         }
5286         return ret;
5287 }
5288
5289 static int tree_compare_item(struct btrfs_root *left_root,
5290                              struct btrfs_path *left_path,
5291                              struct btrfs_path *right_path,
5292                              char *tmp_buf)
5293 {
5294         int cmp;
5295         int len1, len2;
5296         unsigned long off1, off2;
5297
5298         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5299         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5300         if (len1 != len2)
5301                 return 1;
5302
5303         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5304         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5305                                 right_path->slots[0]);
5306
5307         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5308
5309         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5310         if (cmp)
5311                 return 1;
5312         return 0;
5313 }
5314
5315 #define ADVANCE 1
5316 #define ADVANCE_ONLY_NEXT -1
5317
5318 /*
5319  * This function compares two trees and calls the provided callback for
5320  * every changed/new/deleted item it finds.
5321  * If shared tree blocks are encountered, whole subtrees are skipped, making
5322  * the compare pretty fast on snapshotted subvolumes.
5323  *
5324  * This currently works on commit roots only. As commit roots are read only,
5325  * we don't do any locking. The commit roots are protected with transactions.
5326  * Transactions are ended and rejoined when a commit is tried in between.
5327  *
5328  * This function checks for modifications done to the trees while comparing.
5329  * If it detects a change, it aborts immediately.
5330  */
5331 int btrfs_compare_trees(struct btrfs_root *left_root,
5332                         struct btrfs_root *right_root,
5333                         btrfs_changed_cb_t changed_cb, void *ctx)
5334 {
5335         int ret;
5336         int cmp;
5337         struct btrfs_path *left_path = NULL;
5338         struct btrfs_path *right_path = NULL;
5339         struct btrfs_key left_key;
5340         struct btrfs_key right_key;
5341         char *tmp_buf = NULL;
5342         int left_root_level;
5343         int right_root_level;
5344         int left_level;
5345         int right_level;
5346         int left_end_reached;
5347         int right_end_reached;
5348         int advance_left;
5349         int advance_right;
5350         u64 left_blockptr;
5351         u64 right_blockptr;
5352         u64 left_gen;
5353         u64 right_gen;
5354
5355         left_path = btrfs_alloc_path();
5356         if (!left_path) {
5357                 ret = -ENOMEM;
5358                 goto out;
5359         }
5360         right_path = btrfs_alloc_path();
5361         if (!right_path) {
5362                 ret = -ENOMEM;
5363                 goto out;
5364         }
5365
5366         tmp_buf = kmalloc(left_root->nodesize, GFP_NOFS);
5367         if (!tmp_buf) {
5368                 ret = -ENOMEM;
5369                 goto out;
5370         }
5371
5372         left_path->search_commit_root = 1;
5373         left_path->skip_locking = 1;
5374         right_path->search_commit_root = 1;
5375         right_path->skip_locking = 1;
5376
5377         /*
5378          * Strategy: Go to the first items of both trees. Then do
5379          *
5380          * If both trees are at level 0
5381          *   Compare keys of current items
5382          *     If left < right treat left item as new, advance left tree
5383          *       and repeat
5384          *     If left > right treat right item as deleted, advance right tree
5385          *       and repeat
5386          *     If left == right do deep compare of items, treat as changed if
5387          *       needed, advance both trees and repeat
5388          * If both trees are at the same level but not at level 0
5389          *   Compare keys of current nodes/leafs
5390          *     If left < right advance left tree and repeat
5391          *     If left > right advance right tree and repeat
5392          *     If left == right compare blockptrs of the next nodes/leafs
5393          *       If they match advance both trees but stay at the same level
5394          *         and repeat
5395          *       If they don't match advance both trees while allowing to go
5396          *         deeper and repeat
5397          * If tree levels are different
5398          *   Advance the tree that needs it and repeat
5399          *
5400          * Advancing a tree means:
5401          *   If we are at level 0, try to go to the next slot. If that's not
5402          *   possible, go one level up and repeat. Stop when we found a level
5403          *   where we could go to the next slot. We may at this point be on a
5404          *   node or a leaf.
5405          *
5406          *   If we are not at level 0 and not on shared tree blocks, go one
5407          *   level deeper.
5408          *
5409          *   If we are not at level 0 and on shared tree blocks, go one slot to
5410          *   the right if possible or go up and right.
5411          */
5412
5413         down_read(&left_root->fs_info->commit_root_sem);
5414         left_level = btrfs_header_level(left_root->commit_root);
5415         left_root_level = left_level;
5416         left_path->nodes[left_level] = left_root->commit_root;
5417         extent_buffer_get(left_path->nodes[left_level]);
5418
5419         right_level = btrfs_header_level(right_root->commit_root);
5420         right_root_level = right_level;
5421         right_path->nodes[right_level] = right_root->commit_root;
5422         extent_buffer_get(right_path->nodes[right_level]);
5423         up_read(&left_root->fs_info->commit_root_sem);
5424
5425         if (left_level == 0)
5426                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5427                                 &left_key, left_path->slots[left_level]);
5428         else
5429                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5430                                 &left_key, left_path->slots[left_level]);
5431         if (right_level == 0)
5432                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5433                                 &right_key, right_path->slots[right_level]);
5434         else
5435                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5436                                 &right_key, right_path->slots[right_level]);
5437
5438         left_end_reached = right_end_reached = 0;
5439         advance_left = advance_right = 0;
5440
5441         while (1) {
5442                 if (advance_left && !left_end_reached) {
5443                         ret = tree_advance(left_root, left_path, &left_level,
5444                                         left_root_level,
5445                                         advance_left != ADVANCE_ONLY_NEXT,
5446                                         &left_key);
5447                         if (ret < 0)
5448                                 left_end_reached = ADVANCE;
5449                         advance_left = 0;
5450                 }
5451                 if (advance_right && !right_end_reached) {
5452                         ret = tree_advance(right_root, right_path, &right_level,
5453                                         right_root_level,
5454                                         advance_right != ADVANCE_ONLY_NEXT,
5455                                         &right_key);
5456                         if (ret < 0)
5457                                 right_end_reached = ADVANCE;
5458                         advance_right = 0;
5459                 }
5460
5461                 if (left_end_reached && right_end_reached) {
5462                         ret = 0;
5463                         goto out;
5464                 } else if (left_end_reached) {
5465                         if (right_level == 0) {
5466                                 ret = changed_cb(left_root, right_root,
5467                                                 left_path, right_path,
5468                                                 &right_key,
5469                                                 BTRFS_COMPARE_TREE_DELETED,
5470                                                 ctx);
5471                                 if (ret < 0)
5472                                         goto out;
5473                         }
5474                         advance_right = ADVANCE;
5475                         continue;
5476                 } else if (right_end_reached) {
5477                         if (left_level == 0) {
5478                                 ret = changed_cb(left_root, right_root,
5479                                                 left_path, right_path,
5480                                                 &left_key,
5481                                                 BTRFS_COMPARE_TREE_NEW,
5482                                                 ctx);
5483                                 if (ret < 0)
5484                                         goto out;
5485                         }
5486                         advance_left = ADVANCE;
5487                         continue;
5488                 }
5489
5490                 if (left_level == 0 && right_level == 0) {
5491                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5492                         if (cmp < 0) {
5493                                 ret = changed_cb(left_root, right_root,
5494                                                 left_path, right_path,
5495                                                 &left_key,
5496                                                 BTRFS_COMPARE_TREE_NEW,
5497                                                 ctx);
5498                                 if (ret < 0)
5499                                         goto out;
5500                                 advance_left = ADVANCE;
5501                         } else if (cmp > 0) {
5502                                 ret = changed_cb(left_root, right_root,
5503                                                 left_path, right_path,
5504                                                 &right_key,
5505                                                 BTRFS_COMPARE_TREE_DELETED,
5506                                                 ctx);
5507                                 if (ret < 0)
5508                                         goto out;
5509                                 advance_right = ADVANCE;
5510                         } else {
5511                                 enum btrfs_compare_tree_result result;
5512
5513                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5514                                 ret = tree_compare_item(left_root, left_path,
5515                                                 right_path, tmp_buf);
5516                                 if (ret)
5517                                         result = BTRFS_COMPARE_TREE_CHANGED;
5518                                 else
5519                                         result = BTRFS_COMPARE_TREE_SAME;
5520                                 ret = changed_cb(left_root, right_root,
5521                                                  left_path, right_path,
5522                                                  &left_key, result, ctx);
5523                                 if (ret < 0)
5524                                         goto out;
5525                                 advance_left = ADVANCE;
5526                                 advance_right = ADVANCE;
5527                         }
5528                 } else if (left_level == right_level) {
5529                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5530                         if (cmp < 0) {
5531                                 advance_left = ADVANCE;
5532                         } else if (cmp > 0) {
5533                                 advance_right = ADVANCE;
5534                         } else {
5535                                 left_blockptr = btrfs_node_blockptr(
5536                                                 left_path->nodes[left_level],
5537                                                 left_path->slots[left_level]);
5538                                 right_blockptr = btrfs_node_blockptr(
5539                                                 right_path->nodes[right_level],
5540                                                 right_path->slots[right_level]);
5541                                 left_gen = btrfs_node_ptr_generation(
5542                                                 left_path->nodes[left_level],
5543                                                 left_path->slots[left_level]);
5544                                 right_gen = btrfs_node_ptr_generation(
5545                                                 right_path->nodes[right_level],
5546                                                 right_path->slots[right_level]);
5547                                 if (left_blockptr == right_blockptr &&
5548                                     left_gen == right_gen) {
5549                                         /*
5550                                          * As we're on a shared block, don't
5551                                          * allow to go deeper.
5552                                          */
5553                                         advance_left = ADVANCE_ONLY_NEXT;
5554                                         advance_right = ADVANCE_ONLY_NEXT;
5555                                 } else {
5556                                         advance_left = ADVANCE;
5557                                         advance_right = ADVANCE;
5558                                 }
5559                         }
5560                 } else if (left_level < right_level) {
5561                         advance_right = ADVANCE;
5562                 } else {
5563                         advance_left = ADVANCE;
5564                 }
5565         }
5566
5567 out:
5568         btrfs_free_path(left_path);
5569         btrfs_free_path(right_path);
5570         kfree(tmp_buf);
5571         return ret;
5572 }
5573
5574 /*
5575  * this is similar to btrfs_next_leaf, but does not try to preserve
5576  * and fixup the path.  It looks for and returns the next key in the
5577  * tree based on the current path and the min_trans parameters.
5578  *
5579  * 0 is returned if another key is found, < 0 if there are any errors
5580  * and 1 is returned if there are no higher keys in the tree
5581  *
5582  * path->keep_locks should be set to 1 on the search made before
5583  * calling this function.
5584  */
5585 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5586                         struct btrfs_key *key, int level, u64 min_trans)
5587 {
5588         int slot;
5589         struct extent_buffer *c;
5590
5591         WARN_ON(!path->keep_locks);
5592         while (level < BTRFS_MAX_LEVEL) {
5593                 if (!path->nodes[level])
5594                         return 1;
5595
5596                 slot = path->slots[level] + 1;
5597                 c = path->nodes[level];
5598 next:
5599                 if (slot >= btrfs_header_nritems(c)) {
5600                         int ret;
5601                         int orig_lowest;
5602                         struct btrfs_key cur_key;
5603                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5604                             !path->nodes[level + 1])
5605                                 return 1;
5606
5607                         if (path->locks[level + 1]) {
5608                                 level++;
5609                                 continue;
5610                         }
5611
5612                         slot = btrfs_header_nritems(c) - 1;
5613                         if (level == 0)
5614                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5615                         else
5616                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5617
5618                         orig_lowest = path->lowest_level;
5619                         btrfs_release_path(path);
5620                         path->lowest_level = level;
5621                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5622                                                 0, 0);
5623                         path->lowest_level = orig_lowest;
5624                         if (ret < 0)
5625                                 return ret;
5626
5627                         c = path->nodes[level];
5628                         slot = path->slots[level];
5629                         if (ret == 0)
5630                                 slot++;
5631                         goto next;
5632                 }
5633
5634                 if (level == 0)
5635                         btrfs_item_key_to_cpu(c, key, slot);
5636                 else {
5637                         u64 gen = btrfs_node_ptr_generation(c, slot);
5638
5639                         if (gen < min_trans) {
5640                                 slot++;
5641                                 goto next;
5642                         }
5643                         btrfs_node_key_to_cpu(c, key, slot);
5644                 }
5645                 return 0;
5646         }
5647         return 1;
5648 }
5649
5650 /*
5651  * search the tree again to find a leaf with greater keys
5652  * returns 0 if it found something or 1 if there are no greater leaves.
5653  * returns < 0 on io errors.
5654  */
5655 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5656 {
5657         return btrfs_next_old_leaf(root, path, 0);
5658 }
5659
5660 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5661                         u64 time_seq)
5662 {
5663         int slot;
5664         int level;
5665         struct extent_buffer *c;
5666         struct extent_buffer *next;
5667         struct btrfs_key key;
5668         u32 nritems;
5669         int ret;
5670         int old_spinning = path->leave_spinning;
5671         int next_rw_lock = 0;
5672
5673         nritems = btrfs_header_nritems(path->nodes[0]);
5674         if (nritems == 0)
5675                 return 1;
5676
5677         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5678 again:
5679         level = 1;
5680         next = NULL;
5681         next_rw_lock = 0;
5682         btrfs_release_path(path);
5683
5684         path->keep_locks = 1;
5685         path->leave_spinning = 1;
5686
5687         if (time_seq)
5688                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5689         else
5690                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5691         path->keep_locks = 0;
5692
5693         if (ret < 0)
5694                 return ret;
5695
5696         nritems = btrfs_header_nritems(path->nodes[0]);
5697         /*
5698          * by releasing the path above we dropped all our locks.  A balance
5699          * could have added more items next to the key that used to be
5700          * at the very end of the block.  So, check again here and
5701          * advance the path if there are now more items available.
5702          */
5703         if (nritems > 0 && path->slots[0] < nritems - 1) {
5704                 if (ret == 0)
5705                         path->slots[0]++;
5706                 ret = 0;
5707                 goto done;
5708         }
5709         /*
5710          * So the above check misses one case:
5711          * - after releasing the path above, someone has removed the item that
5712          *   used to be at the very end of the block, and balance between leafs
5713          *   gets another one with bigger key.offset to replace it.
5714          *
5715          * This one should be returned as well, or we can get leaf corruption
5716          * later(esp. in __btrfs_drop_extents()).
5717          *
5718          * And a bit more explanation about this check,
5719          * with ret > 0, the key isn't found, the path points to the slot
5720          * where it should be inserted, so the path->slots[0] item must be the
5721          * bigger one.
5722          */
5723         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5724                 ret = 0;
5725                 goto done;
5726         }
5727
5728         while (level < BTRFS_MAX_LEVEL) {
5729                 if (!path->nodes[level]) {
5730                         ret = 1;
5731                         goto done;
5732                 }
5733
5734                 slot = path->slots[level] + 1;
5735                 c = path->nodes[level];
5736                 if (slot >= btrfs_header_nritems(c)) {
5737                         level++;
5738                         if (level == BTRFS_MAX_LEVEL) {
5739                                 ret = 1;
5740                                 goto done;
5741                         }
5742                         continue;
5743                 }
5744
5745                 if (next) {
5746                         btrfs_tree_unlock_rw(next, next_rw_lock);
5747                         free_extent_buffer(next);
5748                 }
5749
5750                 next = c;
5751                 next_rw_lock = path->locks[level];
5752                 ret = read_block_for_search(NULL, root, path, &next, level,
5753                                             slot, &key, 0);
5754                 if (ret == -EAGAIN)
5755                         goto again;
5756
5757                 if (ret < 0) {
5758                         btrfs_release_path(path);
5759                         goto done;
5760                 }
5761
5762                 if (!path->skip_locking) {
5763                         ret = btrfs_try_tree_read_lock(next);
5764                         if (!ret && time_seq) {
5765                                 /*
5766                                  * If we don't get the lock, we may be racing
5767                                  * with push_leaf_left, holding that lock while
5768                                  * itself waiting for the leaf we've currently
5769                                  * locked. To solve this situation, we give up
5770                                  * on our lock and cycle.
5771                                  */
5772                                 free_extent_buffer(next);
5773                                 btrfs_release_path(path);
5774                                 cond_resched();
5775                                 goto again;
5776                         }
5777                         if (!ret) {
5778                                 btrfs_set_path_blocking(path);
5779                                 btrfs_tree_read_lock(next);
5780                                 btrfs_clear_path_blocking(path, next,
5781                                                           BTRFS_READ_LOCK);
5782                         }
5783                         next_rw_lock = BTRFS_READ_LOCK;
5784                 }
5785                 break;
5786         }
5787         path->slots[level] = slot;
5788         while (1) {
5789                 level--;
5790                 c = path->nodes[level];
5791                 if (path->locks[level])
5792                         btrfs_tree_unlock_rw(c, path->locks[level]);
5793
5794                 free_extent_buffer(c);
5795                 path->nodes[level] = next;
5796                 path->slots[level] = 0;
5797                 if (!path->skip_locking)
5798                         path->locks[level] = next_rw_lock;
5799                 if (!level)
5800                         break;
5801
5802                 ret = read_block_for_search(NULL, root, path, &next, level,
5803                                             0, &key, 0);
5804                 if (ret == -EAGAIN)
5805                         goto again;
5806
5807                 if (ret < 0) {
5808                         btrfs_release_path(path);
5809                         goto done;
5810                 }
5811
5812                 if (!path->skip_locking) {
5813                         ret = btrfs_try_tree_read_lock(next);
5814                         if (!ret) {
5815                                 btrfs_set_path_blocking(path);
5816                                 btrfs_tree_read_lock(next);
5817                                 btrfs_clear_path_blocking(path, next,
5818                                                           BTRFS_READ_LOCK);
5819                         }
5820                         next_rw_lock = BTRFS_READ_LOCK;
5821                 }
5822         }
5823         ret = 0;
5824 done:
5825         unlock_up(path, 0, 1, 0, NULL);
5826         path->leave_spinning = old_spinning;
5827         if (!old_spinning)
5828                 btrfs_set_path_blocking(path);
5829
5830         return ret;
5831 }
5832
5833 /*
5834  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5835  * searching until it gets past min_objectid or finds an item of 'type'
5836  *
5837  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5838  */
5839 int btrfs_previous_item(struct btrfs_root *root,
5840                         struct btrfs_path *path, u64 min_objectid,
5841                         int type)
5842 {
5843         struct btrfs_key found_key;
5844         struct extent_buffer *leaf;
5845         u32 nritems;
5846         int ret;
5847
5848         while (1) {
5849                 if (path->slots[0] == 0) {
5850                         btrfs_set_path_blocking(path);
5851                         ret = btrfs_prev_leaf(root, path);
5852                         if (ret != 0)
5853                                 return ret;
5854                 } else {
5855                         path->slots[0]--;
5856                 }
5857                 leaf = path->nodes[0];
5858                 nritems = btrfs_header_nritems(leaf);
5859                 if (nritems == 0)
5860                         return 1;
5861                 if (path->slots[0] == nritems)
5862                         path->slots[0]--;
5863
5864                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5865                 if (found_key.objectid < min_objectid)
5866                         break;
5867                 if (found_key.type == type)
5868                         return 0;
5869                 if (found_key.objectid == min_objectid &&
5870                     found_key.type < type)
5871                         break;
5872         }
5873         return 1;
5874 }
5875
5876 /*
5877  * search in extent tree to find a previous Metadata/Data extent item with
5878  * min objecitd.
5879  *
5880  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5881  */
5882 int btrfs_previous_extent_item(struct btrfs_root *root,
5883                         struct btrfs_path *path, u64 min_objectid)
5884 {
5885         struct btrfs_key found_key;
5886         struct extent_buffer *leaf;
5887         u32 nritems;
5888         int ret;
5889
5890         while (1) {
5891                 if (path->slots[0] == 0) {
5892                         btrfs_set_path_blocking(path);
5893                         ret = btrfs_prev_leaf(root, path);
5894                         if (ret != 0)
5895                                 return ret;
5896                 } else {
5897                         path->slots[0]--;
5898                 }
5899                 leaf = path->nodes[0];
5900                 nritems = btrfs_header_nritems(leaf);
5901                 if (nritems == 0)
5902                         return 1;
5903                 if (path->slots[0] == nritems)
5904                         path->slots[0]--;
5905
5906                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5907                 if (found_key.objectid < min_objectid)
5908                         break;
5909                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5910                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5911                         return 0;
5912                 if (found_key.objectid == min_objectid &&
5913                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5914                         break;
5915         }
5916         return 1;
5917 }