Btrfs: add a sanity test for btrfs_split_item
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <linux/semaphore.h>
35 #include <asm/unaligned.h>
36 #include "compat.h"
37 #include "ctree.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "btrfs_inode.h"
41 #include "volumes.h"
42 #include "print-tree.h"
43 #include "async-thread.h"
44 #include "locking.h"
45 #include "tree-log.h"
46 #include "free-space-cache.h"
47 #include "inode-map.h"
48 #include "check-integrity.h"
49 #include "rcu-string.h"
50 #include "dev-replace.h"
51 #include "raid56.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63                                              struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66                                       struct btrfs_root *root);
67 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
68 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
69 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
70                                         struct extent_io_tree *dirty_pages,
71                                         int mark);
72 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
73                                        struct extent_io_tree *pinned_extents);
74 static int btrfs_cleanup_transaction(struct btrfs_root *root);
75 static void btrfs_error_commit_super(struct btrfs_root *root);
76
77 /*
78  * end_io_wq structs are used to do processing in task context when an IO is
79  * complete.  This is used during reads to verify checksums, and it is used
80  * by writes to insert metadata for new file extents after IO is complete.
81  */
82 struct end_io_wq {
83         struct bio *bio;
84         bio_end_io_t *end_io;
85         void *private;
86         struct btrfs_fs_info *info;
87         int error;
88         int metadata;
89         struct list_head list;
90         struct btrfs_work work;
91 };
92
93 /*
94  * async submit bios are used to offload expensive checksumming
95  * onto the worker threads.  They checksum file and metadata bios
96  * just before they are sent down the IO stack.
97  */
98 struct async_submit_bio {
99         struct inode *inode;
100         struct bio *bio;
101         struct list_head list;
102         extent_submit_bio_hook_t *submit_bio_start;
103         extent_submit_bio_hook_t *submit_bio_done;
104         int rw;
105         int mirror_num;
106         unsigned long bio_flags;
107         /*
108          * bio_offset is optional, can be used if the pages in the bio
109          * can't tell us where in the file the bio should go
110          */
111         u64 bio_offset;
112         struct btrfs_work work;
113         int error;
114 };
115
116 /*
117  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
118  * eb, the lockdep key is determined by the btrfs_root it belongs to and
119  * the level the eb occupies in the tree.
120  *
121  * Different roots are used for different purposes and may nest inside each
122  * other and they require separate keysets.  As lockdep keys should be
123  * static, assign keysets according to the purpose of the root as indicated
124  * by btrfs_root->objectid.  This ensures that all special purpose roots
125  * have separate keysets.
126  *
127  * Lock-nesting across peer nodes is always done with the immediate parent
128  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
129  * subclass to avoid triggering lockdep warning in such cases.
130  *
131  * The key is set by the readpage_end_io_hook after the buffer has passed
132  * csum validation but before the pages are unlocked.  It is also set by
133  * btrfs_init_new_buffer on freshly allocated blocks.
134  *
135  * We also add a check to make sure the highest level of the tree is the
136  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
137  * needs update as well.
138  */
139 #ifdef CONFIG_DEBUG_LOCK_ALLOC
140 # if BTRFS_MAX_LEVEL != 8
141 #  error
142 # endif
143
144 static struct btrfs_lockdep_keyset {
145         u64                     id;             /* root objectid */
146         const char              *name_stem;     /* lock name stem */
147         char                    names[BTRFS_MAX_LEVEL + 1][20];
148         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
149 } btrfs_lockdep_keysets[] = {
150         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
151         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
152         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
153         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
154         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
155         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
156         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
157         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
158         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
159         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
160         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
161         { .id = 0,                              .name_stem = "tree"     },
162 };
163
164 void __init btrfs_init_lockdep(void)
165 {
166         int i, j;
167
168         /* initialize lockdep class names */
169         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
170                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
171
172                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
173                         snprintf(ks->names[j], sizeof(ks->names[j]),
174                                  "btrfs-%s-%02d", ks->name_stem, j);
175         }
176 }
177
178 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
179                                     int level)
180 {
181         struct btrfs_lockdep_keyset *ks;
182
183         BUG_ON(level >= ARRAY_SIZE(ks->keys));
184
185         /* find the matching keyset, id 0 is the default entry */
186         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
187                 if (ks->id == objectid)
188                         break;
189
190         lockdep_set_class_and_name(&eb->lock,
191                                    &ks->keys[level], ks->names[level]);
192 }
193
194 #endif
195
196 /*
197  * extents on the btree inode are pretty simple, there's one extent
198  * that covers the entire device
199  */
200 static struct extent_map *btree_get_extent(struct inode *inode,
201                 struct page *page, size_t pg_offset, u64 start, u64 len,
202                 int create)
203 {
204         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
205         struct extent_map *em;
206         int ret;
207
208         read_lock(&em_tree->lock);
209         em = lookup_extent_mapping(em_tree, start, len);
210         if (em) {
211                 em->bdev =
212                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
213                 read_unlock(&em_tree->lock);
214                 goto out;
215         }
216         read_unlock(&em_tree->lock);
217
218         em = alloc_extent_map();
219         if (!em) {
220                 em = ERR_PTR(-ENOMEM);
221                 goto out;
222         }
223         em->start = 0;
224         em->len = (u64)-1;
225         em->block_len = (u64)-1;
226         em->block_start = 0;
227         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
228
229         write_lock(&em_tree->lock);
230         ret = add_extent_mapping(em_tree, em, 0);
231         if (ret == -EEXIST) {
232                 free_extent_map(em);
233                 em = lookup_extent_mapping(em_tree, start, len);
234                 if (!em)
235                         em = ERR_PTR(-EIO);
236         } else if (ret) {
237                 free_extent_map(em);
238                 em = ERR_PTR(ret);
239         }
240         write_unlock(&em_tree->lock);
241
242 out:
243         return em;
244 }
245
246 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
247 {
248         return crc32c(seed, data, len);
249 }
250
251 void btrfs_csum_final(u32 crc, char *result)
252 {
253         put_unaligned_le32(~crc, result);
254 }
255
256 /*
257  * compute the csum for a btree block, and either verify it or write it
258  * into the csum field of the block.
259  */
260 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
261                            int verify)
262 {
263         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
264         char *result = NULL;
265         unsigned long len;
266         unsigned long cur_len;
267         unsigned long offset = BTRFS_CSUM_SIZE;
268         char *kaddr;
269         unsigned long map_start;
270         unsigned long map_len;
271         int err;
272         u32 crc = ~(u32)0;
273         unsigned long inline_result;
274
275         len = buf->len - offset;
276         while (len > 0) {
277                 err = map_private_extent_buffer(buf, offset, 32,
278                                         &kaddr, &map_start, &map_len);
279                 if (err)
280                         return 1;
281                 cur_len = min(len, map_len - (offset - map_start));
282                 crc = btrfs_csum_data(kaddr + offset - map_start,
283                                       crc, cur_len);
284                 len -= cur_len;
285                 offset += cur_len;
286         }
287         if (csum_size > sizeof(inline_result)) {
288                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
289                 if (!result)
290                         return 1;
291         } else {
292                 result = (char *)&inline_result;
293         }
294
295         btrfs_csum_final(crc, result);
296
297         if (verify) {
298                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
299                         u32 val;
300                         u32 found = 0;
301                         memcpy(&found, result, csum_size);
302
303                         read_extent_buffer(buf, &val, 0, csum_size);
304                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
305                                        "failed on %llu wanted %X found %X "
306                                        "level %d\n",
307                                        root->fs_info->sb->s_id, buf->start,
308                                        val, found, btrfs_header_level(buf));
309                         if (result != (char *)&inline_result)
310                                 kfree(result);
311                         return 1;
312                 }
313         } else {
314                 write_extent_buffer(buf, result, 0, csum_size);
315         }
316         if (result != (char *)&inline_result)
317                 kfree(result);
318         return 0;
319 }
320
321 /*
322  * we can't consider a given block up to date unless the transid of the
323  * block matches the transid in the parent node's pointer.  This is how we
324  * detect blocks that either didn't get written at all or got written
325  * in the wrong place.
326  */
327 static int verify_parent_transid(struct extent_io_tree *io_tree,
328                                  struct extent_buffer *eb, u64 parent_transid,
329                                  int atomic)
330 {
331         struct extent_state *cached_state = NULL;
332         int ret;
333
334         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
335                 return 0;
336
337         if (atomic)
338                 return -EAGAIN;
339
340         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
341                          0, &cached_state);
342         if (extent_buffer_uptodate(eb) &&
343             btrfs_header_generation(eb) == parent_transid) {
344                 ret = 0;
345                 goto out;
346         }
347         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
348                        "found %llu\n",
349                        eb->start, parent_transid, btrfs_header_generation(eb));
350         ret = 1;
351         clear_extent_buffer_uptodate(eb);
352 out:
353         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
354                              &cached_state, GFP_NOFS);
355         return ret;
356 }
357
358 /*
359  * Return 0 if the superblock checksum type matches the checksum value of that
360  * algorithm. Pass the raw disk superblock data.
361  */
362 static int btrfs_check_super_csum(char *raw_disk_sb)
363 {
364         struct btrfs_super_block *disk_sb =
365                 (struct btrfs_super_block *)raw_disk_sb;
366         u16 csum_type = btrfs_super_csum_type(disk_sb);
367         int ret = 0;
368
369         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
370                 u32 crc = ~(u32)0;
371                 const int csum_size = sizeof(crc);
372                 char result[csum_size];
373
374                 /*
375                  * The super_block structure does not span the whole
376                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
377                  * is filled with zeros and is included in the checkum.
378                  */
379                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
380                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
381                 btrfs_csum_final(crc, result);
382
383                 if (memcmp(raw_disk_sb, result, csum_size))
384                         ret = 1;
385
386                 if (ret && btrfs_super_generation(disk_sb) < 10) {
387                         printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
388                         ret = 0;
389                 }
390         }
391
392         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
393                 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
394                                 csum_type);
395                 ret = 1;
396         }
397
398         return ret;
399 }
400
401 /*
402  * helper to read a given tree block, doing retries as required when
403  * the checksums don't match and we have alternate mirrors to try.
404  */
405 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
406                                           struct extent_buffer *eb,
407                                           u64 start, u64 parent_transid)
408 {
409         struct extent_io_tree *io_tree;
410         int failed = 0;
411         int ret;
412         int num_copies = 0;
413         int mirror_num = 0;
414         int failed_mirror = 0;
415
416         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
417         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
418         while (1) {
419                 ret = read_extent_buffer_pages(io_tree, eb, start,
420                                                WAIT_COMPLETE,
421                                                btree_get_extent, mirror_num);
422                 if (!ret) {
423                         if (!verify_parent_transid(io_tree, eb,
424                                                    parent_transid, 0))
425                                 break;
426                         else
427                                 ret = -EIO;
428                 }
429
430                 /*
431                  * This buffer's crc is fine, but its contents are corrupted, so
432                  * there is no reason to read the other copies, they won't be
433                  * any less wrong.
434                  */
435                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
436                         break;
437
438                 num_copies = btrfs_num_copies(root->fs_info,
439                                               eb->start, eb->len);
440                 if (num_copies == 1)
441                         break;
442
443                 if (!failed_mirror) {
444                         failed = 1;
445                         failed_mirror = eb->read_mirror;
446                 }
447
448                 mirror_num++;
449                 if (mirror_num == failed_mirror)
450                         mirror_num++;
451
452                 if (mirror_num > num_copies)
453                         break;
454         }
455
456         if (failed && !ret && failed_mirror)
457                 repair_eb_io_failure(root, eb, failed_mirror);
458
459         return ret;
460 }
461
462 /*
463  * checksum a dirty tree block before IO.  This has extra checks to make sure
464  * we only fill in the checksum field in the first page of a multi-page block
465  */
466
467 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
468 {
469         struct extent_io_tree *tree;
470         u64 start = page_offset(page);
471         u64 found_start;
472         struct extent_buffer *eb;
473
474         tree = &BTRFS_I(page->mapping->host)->io_tree;
475
476         eb = (struct extent_buffer *)page->private;
477         if (page != eb->pages[0])
478                 return 0;
479         found_start = btrfs_header_bytenr(eb);
480         if (found_start != start) {
481                 WARN_ON(1);
482                 return 0;
483         }
484         if (!PageUptodate(page)) {
485                 WARN_ON(1);
486                 return 0;
487         }
488         csum_tree_block(root, eb, 0);
489         return 0;
490 }
491
492 static int check_tree_block_fsid(struct btrfs_root *root,
493                                  struct extent_buffer *eb)
494 {
495         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
496         u8 fsid[BTRFS_UUID_SIZE];
497         int ret = 1;
498
499         read_extent_buffer(eb, fsid, btrfs_header_fsid(eb), BTRFS_FSID_SIZE);
500         while (fs_devices) {
501                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
502                         ret = 0;
503                         break;
504                 }
505                 fs_devices = fs_devices->seed;
506         }
507         return ret;
508 }
509
510 #define CORRUPT(reason, eb, root, slot)                         \
511         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
512                "root=%llu, slot=%d\n", reason,                  \
513                btrfs_header_bytenr(eb), root->objectid, slot)
514
515 static noinline int check_leaf(struct btrfs_root *root,
516                                struct extent_buffer *leaf)
517 {
518         struct btrfs_key key;
519         struct btrfs_key leaf_key;
520         u32 nritems = btrfs_header_nritems(leaf);
521         int slot;
522
523         if (nritems == 0)
524                 return 0;
525
526         /* Check the 0 item */
527         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
528             BTRFS_LEAF_DATA_SIZE(root)) {
529                 CORRUPT("invalid item offset size pair", leaf, root, 0);
530                 return -EIO;
531         }
532
533         /*
534          * Check to make sure each items keys are in the correct order and their
535          * offsets make sense.  We only have to loop through nritems-1 because
536          * we check the current slot against the next slot, which verifies the
537          * next slot's offset+size makes sense and that the current's slot
538          * offset is correct.
539          */
540         for (slot = 0; slot < nritems - 1; slot++) {
541                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
542                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
543
544                 /* Make sure the keys are in the right order */
545                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
546                         CORRUPT("bad key order", leaf, root, slot);
547                         return -EIO;
548                 }
549
550                 /*
551                  * Make sure the offset and ends are right, remember that the
552                  * item data starts at the end of the leaf and grows towards the
553                  * front.
554                  */
555                 if (btrfs_item_offset_nr(leaf, slot) !=
556                         btrfs_item_end_nr(leaf, slot + 1)) {
557                         CORRUPT("slot offset bad", leaf, root, slot);
558                         return -EIO;
559                 }
560
561                 /*
562                  * Check to make sure that we don't point outside of the leaf,
563                  * just incase all the items are consistent to eachother, but
564                  * all point outside of the leaf.
565                  */
566                 if (btrfs_item_end_nr(leaf, slot) >
567                     BTRFS_LEAF_DATA_SIZE(root)) {
568                         CORRUPT("slot end outside of leaf", leaf, root, slot);
569                         return -EIO;
570                 }
571         }
572
573         return 0;
574 }
575
576 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
577                                       u64 phy_offset, struct page *page,
578                                       u64 start, u64 end, int mirror)
579 {
580         struct extent_io_tree *tree;
581         u64 found_start;
582         int found_level;
583         struct extent_buffer *eb;
584         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
585         int ret = 0;
586         int reads_done;
587
588         if (!page->private)
589                 goto out;
590
591         tree = &BTRFS_I(page->mapping->host)->io_tree;
592         eb = (struct extent_buffer *)page->private;
593
594         /* the pending IO might have been the only thing that kept this buffer
595          * in memory.  Make sure we have a ref for all this other checks
596          */
597         extent_buffer_get(eb);
598
599         reads_done = atomic_dec_and_test(&eb->io_pages);
600         if (!reads_done)
601                 goto err;
602
603         eb->read_mirror = mirror;
604         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
605                 ret = -EIO;
606                 goto err;
607         }
608
609         found_start = btrfs_header_bytenr(eb);
610         if (found_start != eb->start) {
611                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
612                                "%llu %llu\n",
613                                found_start, eb->start);
614                 ret = -EIO;
615                 goto err;
616         }
617         if (check_tree_block_fsid(root, eb)) {
618                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
619                                eb->start);
620                 ret = -EIO;
621                 goto err;
622         }
623         found_level = btrfs_header_level(eb);
624         if (found_level >= BTRFS_MAX_LEVEL) {
625                 btrfs_info(root->fs_info, "bad tree block level %d\n",
626                            (int)btrfs_header_level(eb));
627                 ret = -EIO;
628                 goto err;
629         }
630
631         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
632                                        eb, found_level);
633
634         ret = csum_tree_block(root, eb, 1);
635         if (ret) {
636                 ret = -EIO;
637                 goto err;
638         }
639
640         /*
641          * If this is a leaf block and it is corrupt, set the corrupt bit so
642          * that we don't try and read the other copies of this block, just
643          * return -EIO.
644          */
645         if (found_level == 0 && check_leaf(root, eb)) {
646                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
647                 ret = -EIO;
648         }
649
650         if (!ret)
651                 set_extent_buffer_uptodate(eb);
652 err:
653         if (reads_done &&
654             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
655                 btree_readahead_hook(root, eb, eb->start, ret);
656
657         if (ret) {
658                 /*
659                  * our io error hook is going to dec the io pages
660                  * again, we have to make sure it has something
661                  * to decrement
662                  */
663                 atomic_inc(&eb->io_pages);
664                 clear_extent_buffer_uptodate(eb);
665         }
666         free_extent_buffer(eb);
667 out:
668         return ret;
669 }
670
671 static int btree_io_failed_hook(struct page *page, int failed_mirror)
672 {
673         struct extent_buffer *eb;
674         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
675
676         eb = (struct extent_buffer *)page->private;
677         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
678         eb->read_mirror = failed_mirror;
679         atomic_dec(&eb->io_pages);
680         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
681                 btree_readahead_hook(root, eb, eb->start, -EIO);
682         return -EIO;    /* we fixed nothing */
683 }
684
685 static void end_workqueue_bio(struct bio *bio, int err)
686 {
687         struct end_io_wq *end_io_wq = bio->bi_private;
688         struct btrfs_fs_info *fs_info;
689
690         fs_info = end_io_wq->info;
691         end_io_wq->error = err;
692         end_io_wq->work.func = end_workqueue_fn;
693         end_io_wq->work.flags = 0;
694
695         if (bio->bi_rw & REQ_WRITE) {
696                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
697                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
698                                            &end_io_wq->work);
699                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
700                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
701                                            &end_io_wq->work);
702                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
703                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
704                                            &end_io_wq->work);
705                 else
706                         btrfs_queue_worker(&fs_info->endio_write_workers,
707                                            &end_io_wq->work);
708         } else {
709                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
710                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
711                                            &end_io_wq->work);
712                 else if (end_io_wq->metadata)
713                         btrfs_queue_worker(&fs_info->endio_meta_workers,
714                                            &end_io_wq->work);
715                 else
716                         btrfs_queue_worker(&fs_info->endio_workers,
717                                            &end_io_wq->work);
718         }
719 }
720
721 /*
722  * For the metadata arg you want
723  *
724  * 0 - if data
725  * 1 - if normal metadta
726  * 2 - if writing to the free space cache area
727  * 3 - raid parity work
728  */
729 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
730                         int metadata)
731 {
732         struct end_io_wq *end_io_wq;
733         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
734         if (!end_io_wq)
735                 return -ENOMEM;
736
737         end_io_wq->private = bio->bi_private;
738         end_io_wq->end_io = bio->bi_end_io;
739         end_io_wq->info = info;
740         end_io_wq->error = 0;
741         end_io_wq->bio = bio;
742         end_io_wq->metadata = metadata;
743
744         bio->bi_private = end_io_wq;
745         bio->bi_end_io = end_workqueue_bio;
746         return 0;
747 }
748
749 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
750 {
751         unsigned long limit = min_t(unsigned long,
752                                     info->workers.max_workers,
753                                     info->fs_devices->open_devices);
754         return 256 * limit;
755 }
756
757 static void run_one_async_start(struct btrfs_work *work)
758 {
759         struct async_submit_bio *async;
760         int ret;
761
762         async = container_of(work, struct  async_submit_bio, work);
763         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
764                                       async->mirror_num, async->bio_flags,
765                                       async->bio_offset);
766         if (ret)
767                 async->error = ret;
768 }
769
770 static void run_one_async_done(struct btrfs_work *work)
771 {
772         struct btrfs_fs_info *fs_info;
773         struct async_submit_bio *async;
774         int limit;
775
776         async = container_of(work, struct  async_submit_bio, work);
777         fs_info = BTRFS_I(async->inode)->root->fs_info;
778
779         limit = btrfs_async_submit_limit(fs_info);
780         limit = limit * 2 / 3;
781
782         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
783             waitqueue_active(&fs_info->async_submit_wait))
784                 wake_up(&fs_info->async_submit_wait);
785
786         /* If an error occured we just want to clean up the bio and move on */
787         if (async->error) {
788                 bio_endio(async->bio, async->error);
789                 return;
790         }
791
792         async->submit_bio_done(async->inode, async->rw, async->bio,
793                                async->mirror_num, async->bio_flags,
794                                async->bio_offset);
795 }
796
797 static void run_one_async_free(struct btrfs_work *work)
798 {
799         struct async_submit_bio *async;
800
801         async = container_of(work, struct  async_submit_bio, work);
802         kfree(async);
803 }
804
805 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
806                         int rw, struct bio *bio, int mirror_num,
807                         unsigned long bio_flags,
808                         u64 bio_offset,
809                         extent_submit_bio_hook_t *submit_bio_start,
810                         extent_submit_bio_hook_t *submit_bio_done)
811 {
812         struct async_submit_bio *async;
813
814         async = kmalloc(sizeof(*async), GFP_NOFS);
815         if (!async)
816                 return -ENOMEM;
817
818         async->inode = inode;
819         async->rw = rw;
820         async->bio = bio;
821         async->mirror_num = mirror_num;
822         async->submit_bio_start = submit_bio_start;
823         async->submit_bio_done = submit_bio_done;
824
825         async->work.func = run_one_async_start;
826         async->work.ordered_func = run_one_async_done;
827         async->work.ordered_free = run_one_async_free;
828
829         async->work.flags = 0;
830         async->bio_flags = bio_flags;
831         async->bio_offset = bio_offset;
832
833         async->error = 0;
834
835         atomic_inc(&fs_info->nr_async_submits);
836
837         if (rw & REQ_SYNC)
838                 btrfs_set_work_high_prio(&async->work);
839
840         btrfs_queue_worker(&fs_info->workers, &async->work);
841
842         while (atomic_read(&fs_info->async_submit_draining) &&
843               atomic_read(&fs_info->nr_async_submits)) {
844                 wait_event(fs_info->async_submit_wait,
845                            (atomic_read(&fs_info->nr_async_submits) == 0));
846         }
847
848         return 0;
849 }
850
851 static int btree_csum_one_bio(struct bio *bio)
852 {
853         struct bio_vec *bvec = bio->bi_io_vec;
854         int bio_index = 0;
855         struct btrfs_root *root;
856         int ret = 0;
857
858         WARN_ON(bio->bi_vcnt <= 0);
859         while (bio_index < bio->bi_vcnt) {
860                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
861                 ret = csum_dirty_buffer(root, bvec->bv_page);
862                 if (ret)
863                         break;
864                 bio_index++;
865                 bvec++;
866         }
867         return ret;
868 }
869
870 static int __btree_submit_bio_start(struct inode *inode, int rw,
871                                     struct bio *bio, int mirror_num,
872                                     unsigned long bio_flags,
873                                     u64 bio_offset)
874 {
875         /*
876          * when we're called for a write, we're already in the async
877          * submission context.  Just jump into btrfs_map_bio
878          */
879         return btree_csum_one_bio(bio);
880 }
881
882 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
883                                  int mirror_num, unsigned long bio_flags,
884                                  u64 bio_offset)
885 {
886         int ret;
887
888         /*
889          * when we're called for a write, we're already in the async
890          * submission context.  Just jump into btrfs_map_bio
891          */
892         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
893         if (ret)
894                 bio_endio(bio, ret);
895         return ret;
896 }
897
898 static int check_async_write(struct inode *inode, unsigned long bio_flags)
899 {
900         if (bio_flags & EXTENT_BIO_TREE_LOG)
901                 return 0;
902 #ifdef CONFIG_X86
903         if (cpu_has_xmm4_2)
904                 return 0;
905 #endif
906         return 1;
907 }
908
909 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
910                                  int mirror_num, unsigned long bio_flags,
911                                  u64 bio_offset)
912 {
913         int async = check_async_write(inode, bio_flags);
914         int ret;
915
916         if (!(rw & REQ_WRITE)) {
917                 /*
918                  * called for a read, do the setup so that checksum validation
919                  * can happen in the async kernel threads
920                  */
921                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
922                                           bio, 1);
923                 if (ret)
924                         goto out_w_error;
925                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
926                                     mirror_num, 0);
927         } else if (!async) {
928                 ret = btree_csum_one_bio(bio);
929                 if (ret)
930                         goto out_w_error;
931                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
932                                     mirror_num, 0);
933         } else {
934                 /*
935                  * kthread helpers are used to submit writes so that
936                  * checksumming can happen in parallel across all CPUs
937                  */
938                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
939                                           inode, rw, bio, mirror_num, 0,
940                                           bio_offset,
941                                           __btree_submit_bio_start,
942                                           __btree_submit_bio_done);
943         }
944
945         if (ret) {
946 out_w_error:
947                 bio_endio(bio, ret);
948         }
949         return ret;
950 }
951
952 #ifdef CONFIG_MIGRATION
953 static int btree_migratepage(struct address_space *mapping,
954                         struct page *newpage, struct page *page,
955                         enum migrate_mode mode)
956 {
957         /*
958          * we can't safely write a btree page from here,
959          * we haven't done the locking hook
960          */
961         if (PageDirty(page))
962                 return -EAGAIN;
963         /*
964          * Buffers may be managed in a filesystem specific way.
965          * We must have no buffers or drop them.
966          */
967         if (page_has_private(page) &&
968             !try_to_release_page(page, GFP_KERNEL))
969                 return -EAGAIN;
970         return migrate_page(mapping, newpage, page, mode);
971 }
972 #endif
973
974
975 static int btree_writepages(struct address_space *mapping,
976                             struct writeback_control *wbc)
977 {
978         struct extent_io_tree *tree;
979         struct btrfs_fs_info *fs_info;
980         int ret;
981
982         tree = &BTRFS_I(mapping->host)->io_tree;
983         if (wbc->sync_mode == WB_SYNC_NONE) {
984
985                 if (wbc->for_kupdate)
986                         return 0;
987
988                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
989                 /* this is a bit racy, but that's ok */
990                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
991                                              BTRFS_DIRTY_METADATA_THRESH);
992                 if (ret < 0)
993                         return 0;
994         }
995         return btree_write_cache_pages(mapping, wbc);
996 }
997
998 static int btree_readpage(struct file *file, struct page *page)
999 {
1000         struct extent_io_tree *tree;
1001         tree = &BTRFS_I(page->mapping->host)->io_tree;
1002         return extent_read_full_page(tree, page, btree_get_extent, 0);
1003 }
1004
1005 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1006 {
1007         if (PageWriteback(page) || PageDirty(page))
1008                 return 0;
1009
1010         return try_release_extent_buffer(page);
1011 }
1012
1013 static void btree_invalidatepage(struct page *page, unsigned int offset,
1014                                  unsigned int length)
1015 {
1016         struct extent_io_tree *tree;
1017         tree = &BTRFS_I(page->mapping->host)->io_tree;
1018         extent_invalidatepage(tree, page, offset);
1019         btree_releasepage(page, GFP_NOFS);
1020         if (PagePrivate(page)) {
1021                 printk(KERN_WARNING "btrfs warning page private not zero "
1022                        "on page %llu\n", (unsigned long long)page_offset(page));
1023                 ClearPagePrivate(page);
1024                 set_page_private(page, 0);
1025                 page_cache_release(page);
1026         }
1027 }
1028
1029 static int btree_set_page_dirty(struct page *page)
1030 {
1031 #ifdef DEBUG
1032         struct extent_buffer *eb;
1033
1034         BUG_ON(!PagePrivate(page));
1035         eb = (struct extent_buffer *)page->private;
1036         BUG_ON(!eb);
1037         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1038         BUG_ON(!atomic_read(&eb->refs));
1039         btrfs_assert_tree_locked(eb);
1040 #endif
1041         return __set_page_dirty_nobuffers(page);
1042 }
1043
1044 static const struct address_space_operations btree_aops = {
1045         .readpage       = btree_readpage,
1046         .writepages     = btree_writepages,
1047         .releasepage    = btree_releasepage,
1048         .invalidatepage = btree_invalidatepage,
1049 #ifdef CONFIG_MIGRATION
1050         .migratepage    = btree_migratepage,
1051 #endif
1052         .set_page_dirty = btree_set_page_dirty,
1053 };
1054
1055 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1056                          u64 parent_transid)
1057 {
1058         struct extent_buffer *buf = NULL;
1059         struct inode *btree_inode = root->fs_info->btree_inode;
1060         int ret = 0;
1061
1062         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1063         if (!buf)
1064                 return 0;
1065         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1066                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1067         free_extent_buffer(buf);
1068         return ret;
1069 }
1070
1071 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1072                          int mirror_num, struct extent_buffer **eb)
1073 {
1074         struct extent_buffer *buf = NULL;
1075         struct inode *btree_inode = root->fs_info->btree_inode;
1076         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1077         int ret;
1078
1079         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1080         if (!buf)
1081                 return 0;
1082
1083         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1084
1085         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1086                                        btree_get_extent, mirror_num);
1087         if (ret) {
1088                 free_extent_buffer(buf);
1089                 return ret;
1090         }
1091
1092         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1093                 free_extent_buffer(buf);
1094                 return -EIO;
1095         } else if (extent_buffer_uptodate(buf)) {
1096                 *eb = buf;
1097         } else {
1098                 free_extent_buffer(buf);
1099         }
1100         return 0;
1101 }
1102
1103 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1104                                             u64 bytenr, u32 blocksize)
1105 {
1106         struct inode *btree_inode = root->fs_info->btree_inode;
1107         struct extent_buffer *eb;
1108         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1109                                 bytenr, blocksize);
1110         return eb;
1111 }
1112
1113 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1114                                                  u64 bytenr, u32 blocksize)
1115 {
1116         struct inode *btree_inode = root->fs_info->btree_inode;
1117         struct extent_buffer *eb;
1118
1119         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1120                                  bytenr, blocksize);
1121         return eb;
1122 }
1123
1124
1125 int btrfs_write_tree_block(struct extent_buffer *buf)
1126 {
1127         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1128                                         buf->start + buf->len - 1);
1129 }
1130
1131 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1132 {
1133         return filemap_fdatawait_range(buf->pages[0]->mapping,
1134                                        buf->start, buf->start + buf->len - 1);
1135 }
1136
1137 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1138                                       u32 blocksize, u64 parent_transid)
1139 {
1140         struct extent_buffer *buf = NULL;
1141         int ret;
1142
1143         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1144         if (!buf)
1145                 return NULL;
1146
1147         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1148         if (ret) {
1149                 free_extent_buffer(buf);
1150                 return NULL;
1151         }
1152         return buf;
1153
1154 }
1155
1156 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1157                       struct extent_buffer *buf)
1158 {
1159         struct btrfs_fs_info *fs_info = root->fs_info;
1160
1161         if (btrfs_header_generation(buf) ==
1162             fs_info->running_transaction->transid) {
1163                 btrfs_assert_tree_locked(buf);
1164
1165                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1166                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1167                                              -buf->len,
1168                                              fs_info->dirty_metadata_batch);
1169                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1170                         btrfs_set_lock_blocking(buf);
1171                         clear_extent_buffer_dirty(buf);
1172                 }
1173         }
1174 }
1175
1176 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1177                          u32 stripesize, struct btrfs_root *root,
1178                          struct btrfs_fs_info *fs_info,
1179                          u64 objectid)
1180 {
1181         root->node = NULL;
1182         root->commit_root = NULL;
1183         root->sectorsize = sectorsize;
1184         root->nodesize = nodesize;
1185         root->leafsize = leafsize;
1186         root->stripesize = stripesize;
1187         root->ref_cows = 0;
1188         root->track_dirty = 0;
1189         root->in_radix = 0;
1190         root->orphan_item_inserted = 0;
1191         root->orphan_cleanup_state = 0;
1192
1193         root->objectid = objectid;
1194         root->last_trans = 0;
1195         root->highest_objectid = 0;
1196         root->nr_delalloc_inodes = 0;
1197         root->nr_ordered_extents = 0;
1198         root->name = NULL;
1199         root->inode_tree = RB_ROOT;
1200         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1201         root->block_rsv = NULL;
1202         root->orphan_block_rsv = NULL;
1203
1204         INIT_LIST_HEAD(&root->dirty_list);
1205         INIT_LIST_HEAD(&root->root_list);
1206         INIT_LIST_HEAD(&root->delalloc_inodes);
1207         INIT_LIST_HEAD(&root->delalloc_root);
1208         INIT_LIST_HEAD(&root->ordered_extents);
1209         INIT_LIST_HEAD(&root->ordered_root);
1210         INIT_LIST_HEAD(&root->logged_list[0]);
1211         INIT_LIST_HEAD(&root->logged_list[1]);
1212         spin_lock_init(&root->orphan_lock);
1213         spin_lock_init(&root->inode_lock);
1214         spin_lock_init(&root->delalloc_lock);
1215         spin_lock_init(&root->ordered_extent_lock);
1216         spin_lock_init(&root->accounting_lock);
1217         spin_lock_init(&root->log_extents_lock[0]);
1218         spin_lock_init(&root->log_extents_lock[1]);
1219         mutex_init(&root->objectid_mutex);
1220         mutex_init(&root->log_mutex);
1221         init_waitqueue_head(&root->log_writer_wait);
1222         init_waitqueue_head(&root->log_commit_wait[0]);
1223         init_waitqueue_head(&root->log_commit_wait[1]);
1224         atomic_set(&root->log_commit[0], 0);
1225         atomic_set(&root->log_commit[1], 0);
1226         atomic_set(&root->log_writers, 0);
1227         atomic_set(&root->log_batch, 0);
1228         atomic_set(&root->orphan_inodes, 0);
1229         atomic_set(&root->refs, 1);
1230         root->log_transid = 0;
1231         root->last_log_commit = 0;
1232         if (fs_info)
1233                 extent_io_tree_init(&root->dirty_log_pages,
1234                                      fs_info->btree_inode->i_mapping);
1235
1236         memset(&root->root_key, 0, sizeof(root->root_key));
1237         memset(&root->root_item, 0, sizeof(root->root_item));
1238         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1239         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1240         if (fs_info)
1241                 root->defrag_trans_start = fs_info->generation;
1242         else
1243                 root->defrag_trans_start = 0;
1244         init_completion(&root->kobj_unregister);
1245         root->defrag_running = 0;
1246         root->root_key.objectid = objectid;
1247         root->anon_dev = 0;
1248
1249         spin_lock_init(&root->root_item_lock);
1250 }
1251
1252 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1253 {
1254         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1255         if (root)
1256                 root->fs_info = fs_info;
1257         return root;
1258 }
1259
1260 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1261 /* Should only be used by the testing infrastructure */
1262 struct btrfs_root *btrfs_alloc_dummy_root(void)
1263 {
1264         struct btrfs_root *root;
1265
1266         root = btrfs_alloc_root(NULL);
1267         if (!root)
1268                 return ERR_PTR(-ENOMEM);
1269         __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1270         root->dummy_root = 1;
1271
1272         return root;
1273 }
1274 #endif
1275
1276 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1277                                      struct btrfs_fs_info *fs_info,
1278                                      u64 objectid)
1279 {
1280         struct extent_buffer *leaf;
1281         struct btrfs_root *tree_root = fs_info->tree_root;
1282         struct btrfs_root *root;
1283         struct btrfs_key key;
1284         int ret = 0;
1285         u64 bytenr;
1286         uuid_le uuid;
1287
1288         root = btrfs_alloc_root(fs_info);
1289         if (!root)
1290                 return ERR_PTR(-ENOMEM);
1291
1292         __setup_root(tree_root->nodesize, tree_root->leafsize,
1293                      tree_root->sectorsize, tree_root->stripesize,
1294                      root, fs_info, objectid);
1295         root->root_key.objectid = objectid;
1296         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1297         root->root_key.offset = 0;
1298
1299         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1300                                       0, objectid, NULL, 0, 0, 0);
1301         if (IS_ERR(leaf)) {
1302                 ret = PTR_ERR(leaf);
1303                 leaf = NULL;
1304                 goto fail;
1305         }
1306
1307         bytenr = leaf->start;
1308         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1309         btrfs_set_header_bytenr(leaf, leaf->start);
1310         btrfs_set_header_generation(leaf, trans->transid);
1311         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1312         btrfs_set_header_owner(leaf, objectid);
1313         root->node = leaf;
1314
1315         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(leaf),
1316                             BTRFS_FSID_SIZE);
1317         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1318                             btrfs_header_chunk_tree_uuid(leaf),
1319                             BTRFS_UUID_SIZE);
1320         btrfs_mark_buffer_dirty(leaf);
1321
1322         root->commit_root = btrfs_root_node(root);
1323         root->track_dirty = 1;
1324
1325
1326         root->root_item.flags = 0;
1327         root->root_item.byte_limit = 0;
1328         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1329         btrfs_set_root_generation(&root->root_item, trans->transid);
1330         btrfs_set_root_level(&root->root_item, 0);
1331         btrfs_set_root_refs(&root->root_item, 1);
1332         btrfs_set_root_used(&root->root_item, leaf->len);
1333         btrfs_set_root_last_snapshot(&root->root_item, 0);
1334         btrfs_set_root_dirid(&root->root_item, 0);
1335         uuid_le_gen(&uuid);
1336         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1337         root->root_item.drop_level = 0;
1338
1339         key.objectid = objectid;
1340         key.type = BTRFS_ROOT_ITEM_KEY;
1341         key.offset = 0;
1342         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1343         if (ret)
1344                 goto fail;
1345
1346         btrfs_tree_unlock(leaf);
1347
1348         return root;
1349
1350 fail:
1351         if (leaf) {
1352                 btrfs_tree_unlock(leaf);
1353                 free_extent_buffer(leaf);
1354         }
1355         kfree(root);
1356
1357         return ERR_PTR(ret);
1358 }
1359
1360 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1361                                          struct btrfs_fs_info *fs_info)
1362 {
1363         struct btrfs_root *root;
1364         struct btrfs_root *tree_root = fs_info->tree_root;
1365         struct extent_buffer *leaf;
1366
1367         root = btrfs_alloc_root(fs_info);
1368         if (!root)
1369                 return ERR_PTR(-ENOMEM);
1370
1371         __setup_root(tree_root->nodesize, tree_root->leafsize,
1372                      tree_root->sectorsize, tree_root->stripesize,
1373                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1374
1375         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1376         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1377         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1378         /*
1379          * log trees do not get reference counted because they go away
1380          * before a real commit is actually done.  They do store pointers
1381          * to file data extents, and those reference counts still get
1382          * updated (along with back refs to the log tree).
1383          */
1384         root->ref_cows = 0;
1385
1386         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1387                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1388                                       0, 0, 0);
1389         if (IS_ERR(leaf)) {
1390                 kfree(root);
1391                 return ERR_CAST(leaf);
1392         }
1393
1394         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1395         btrfs_set_header_bytenr(leaf, leaf->start);
1396         btrfs_set_header_generation(leaf, trans->transid);
1397         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1398         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1399         root->node = leaf;
1400
1401         write_extent_buffer(root->node, root->fs_info->fsid,
1402                             btrfs_header_fsid(root->node), BTRFS_FSID_SIZE);
1403         btrfs_mark_buffer_dirty(root->node);
1404         btrfs_tree_unlock(root->node);
1405         return root;
1406 }
1407
1408 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1409                              struct btrfs_fs_info *fs_info)
1410 {
1411         struct btrfs_root *log_root;
1412
1413         log_root = alloc_log_tree(trans, fs_info);
1414         if (IS_ERR(log_root))
1415                 return PTR_ERR(log_root);
1416         WARN_ON(fs_info->log_root_tree);
1417         fs_info->log_root_tree = log_root;
1418         return 0;
1419 }
1420
1421 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1422                        struct btrfs_root *root)
1423 {
1424         struct btrfs_root *log_root;
1425         struct btrfs_inode_item *inode_item;
1426
1427         log_root = alloc_log_tree(trans, root->fs_info);
1428         if (IS_ERR(log_root))
1429                 return PTR_ERR(log_root);
1430
1431         log_root->last_trans = trans->transid;
1432         log_root->root_key.offset = root->root_key.objectid;
1433
1434         inode_item = &log_root->root_item.inode;
1435         btrfs_set_stack_inode_generation(inode_item, 1);
1436         btrfs_set_stack_inode_size(inode_item, 3);
1437         btrfs_set_stack_inode_nlink(inode_item, 1);
1438         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1439         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1440
1441         btrfs_set_root_node(&log_root->root_item, log_root->node);
1442
1443         WARN_ON(root->log_root);
1444         root->log_root = log_root;
1445         root->log_transid = 0;
1446         root->last_log_commit = 0;
1447         return 0;
1448 }
1449
1450 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1451                                                struct btrfs_key *key)
1452 {
1453         struct btrfs_root *root;
1454         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1455         struct btrfs_path *path;
1456         u64 generation;
1457         u32 blocksize;
1458         int ret;
1459
1460         path = btrfs_alloc_path();
1461         if (!path)
1462                 return ERR_PTR(-ENOMEM);
1463
1464         root = btrfs_alloc_root(fs_info);
1465         if (!root) {
1466                 ret = -ENOMEM;
1467                 goto alloc_fail;
1468         }
1469
1470         __setup_root(tree_root->nodesize, tree_root->leafsize,
1471                      tree_root->sectorsize, tree_root->stripesize,
1472                      root, fs_info, key->objectid);
1473
1474         ret = btrfs_find_root(tree_root, key, path,
1475                               &root->root_item, &root->root_key);
1476         if (ret) {
1477                 if (ret > 0)
1478                         ret = -ENOENT;
1479                 goto find_fail;
1480         }
1481
1482         generation = btrfs_root_generation(&root->root_item);
1483         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1484         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1485                                      blocksize, generation);
1486         if (!root->node) {
1487                 ret = -ENOMEM;
1488                 goto find_fail;
1489         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1490                 ret = -EIO;
1491                 goto read_fail;
1492         }
1493         root->commit_root = btrfs_root_node(root);
1494 out:
1495         btrfs_free_path(path);
1496         return root;
1497
1498 read_fail:
1499         free_extent_buffer(root->node);
1500 find_fail:
1501         kfree(root);
1502 alloc_fail:
1503         root = ERR_PTR(ret);
1504         goto out;
1505 }
1506
1507 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1508                                       struct btrfs_key *location)
1509 {
1510         struct btrfs_root *root;
1511
1512         root = btrfs_read_tree_root(tree_root, location);
1513         if (IS_ERR(root))
1514                 return root;
1515
1516         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1517                 root->ref_cows = 1;
1518                 btrfs_check_and_init_root_item(&root->root_item);
1519         }
1520
1521         return root;
1522 }
1523
1524 int btrfs_init_fs_root(struct btrfs_root *root)
1525 {
1526         int ret;
1527
1528         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1529         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1530                                         GFP_NOFS);
1531         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1532                 ret = -ENOMEM;
1533                 goto fail;
1534         }
1535
1536         btrfs_init_free_ino_ctl(root);
1537         mutex_init(&root->fs_commit_mutex);
1538         spin_lock_init(&root->cache_lock);
1539         init_waitqueue_head(&root->cache_wait);
1540
1541         ret = get_anon_bdev(&root->anon_dev);
1542         if (ret)
1543                 goto fail;
1544         return 0;
1545 fail:
1546         kfree(root->free_ino_ctl);
1547         kfree(root->free_ino_pinned);
1548         return ret;
1549 }
1550
1551 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1552                                                u64 root_id)
1553 {
1554         struct btrfs_root *root;
1555
1556         spin_lock(&fs_info->fs_roots_radix_lock);
1557         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1558                                  (unsigned long)root_id);
1559         spin_unlock(&fs_info->fs_roots_radix_lock);
1560         return root;
1561 }
1562
1563 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1564                          struct btrfs_root *root)
1565 {
1566         int ret;
1567
1568         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1569         if (ret)
1570                 return ret;
1571
1572         spin_lock(&fs_info->fs_roots_radix_lock);
1573         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1574                                 (unsigned long)root->root_key.objectid,
1575                                 root);
1576         if (ret == 0)
1577                 root->in_radix = 1;
1578         spin_unlock(&fs_info->fs_roots_radix_lock);
1579         radix_tree_preload_end();
1580
1581         return ret;
1582 }
1583
1584 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1585                                      struct btrfs_key *location,
1586                                      bool check_ref)
1587 {
1588         struct btrfs_root *root;
1589         int ret;
1590
1591         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1592                 return fs_info->tree_root;
1593         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1594                 return fs_info->extent_root;
1595         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1596                 return fs_info->chunk_root;
1597         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1598                 return fs_info->dev_root;
1599         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1600                 return fs_info->csum_root;
1601         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1602                 return fs_info->quota_root ? fs_info->quota_root :
1603                                              ERR_PTR(-ENOENT);
1604         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1605                 return fs_info->uuid_root ? fs_info->uuid_root :
1606                                             ERR_PTR(-ENOENT);
1607 again:
1608         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1609         if (root) {
1610                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1611                         return ERR_PTR(-ENOENT);
1612                 return root;
1613         }
1614
1615         root = btrfs_read_fs_root(fs_info->tree_root, location);
1616         if (IS_ERR(root))
1617                 return root;
1618
1619         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1620                 ret = -ENOENT;
1621                 goto fail;
1622         }
1623
1624         ret = btrfs_init_fs_root(root);
1625         if (ret)
1626                 goto fail;
1627
1628         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1629         if (ret < 0)
1630                 goto fail;
1631         if (ret == 0)
1632                 root->orphan_item_inserted = 1;
1633
1634         ret = btrfs_insert_fs_root(fs_info, root);
1635         if (ret) {
1636                 if (ret == -EEXIST) {
1637                         free_fs_root(root);
1638                         goto again;
1639                 }
1640                 goto fail;
1641         }
1642         return root;
1643 fail:
1644         free_fs_root(root);
1645         return ERR_PTR(ret);
1646 }
1647
1648 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1649 {
1650         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1651         int ret = 0;
1652         struct btrfs_device *device;
1653         struct backing_dev_info *bdi;
1654
1655         rcu_read_lock();
1656         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1657                 if (!device->bdev)
1658                         continue;
1659                 bdi = blk_get_backing_dev_info(device->bdev);
1660                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1661                         ret = 1;
1662                         break;
1663                 }
1664         }
1665         rcu_read_unlock();
1666         return ret;
1667 }
1668
1669 /*
1670  * If this fails, caller must call bdi_destroy() to get rid of the
1671  * bdi again.
1672  */
1673 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1674 {
1675         int err;
1676
1677         bdi->capabilities = BDI_CAP_MAP_COPY;
1678         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1679         if (err)
1680                 return err;
1681
1682         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1683         bdi->congested_fn       = btrfs_congested_fn;
1684         bdi->congested_data     = info;
1685         return 0;
1686 }
1687
1688 /*
1689  * called by the kthread helper functions to finally call the bio end_io
1690  * functions.  This is where read checksum verification actually happens
1691  */
1692 static void end_workqueue_fn(struct btrfs_work *work)
1693 {
1694         struct bio *bio;
1695         struct end_io_wq *end_io_wq;
1696         struct btrfs_fs_info *fs_info;
1697         int error;
1698
1699         end_io_wq = container_of(work, struct end_io_wq, work);
1700         bio = end_io_wq->bio;
1701         fs_info = end_io_wq->info;
1702
1703         error = end_io_wq->error;
1704         bio->bi_private = end_io_wq->private;
1705         bio->bi_end_io = end_io_wq->end_io;
1706         kfree(end_io_wq);
1707         bio_endio(bio, error);
1708 }
1709
1710 static int cleaner_kthread(void *arg)
1711 {
1712         struct btrfs_root *root = arg;
1713         int again;
1714
1715         do {
1716                 again = 0;
1717
1718                 /* Make the cleaner go to sleep early. */
1719                 if (btrfs_need_cleaner_sleep(root))
1720                         goto sleep;
1721
1722                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1723                         goto sleep;
1724
1725                 /*
1726                  * Avoid the problem that we change the status of the fs
1727                  * during the above check and trylock.
1728                  */
1729                 if (btrfs_need_cleaner_sleep(root)) {
1730                         mutex_unlock(&root->fs_info->cleaner_mutex);
1731                         goto sleep;
1732                 }
1733
1734                 btrfs_run_delayed_iputs(root);
1735                 again = btrfs_clean_one_deleted_snapshot(root);
1736                 mutex_unlock(&root->fs_info->cleaner_mutex);
1737
1738                 /*
1739                  * The defragger has dealt with the R/O remount and umount,
1740                  * needn't do anything special here.
1741                  */
1742                 btrfs_run_defrag_inodes(root->fs_info);
1743 sleep:
1744                 if (!try_to_freeze() && !again) {
1745                         set_current_state(TASK_INTERRUPTIBLE);
1746                         if (!kthread_should_stop())
1747                                 schedule();
1748                         __set_current_state(TASK_RUNNING);
1749                 }
1750         } while (!kthread_should_stop());
1751         return 0;
1752 }
1753
1754 static int transaction_kthread(void *arg)
1755 {
1756         struct btrfs_root *root = arg;
1757         struct btrfs_trans_handle *trans;
1758         struct btrfs_transaction *cur;
1759         u64 transid;
1760         unsigned long now;
1761         unsigned long delay;
1762         bool cannot_commit;
1763
1764         do {
1765                 cannot_commit = false;
1766                 delay = HZ * root->fs_info->commit_interval;
1767                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1768
1769                 spin_lock(&root->fs_info->trans_lock);
1770                 cur = root->fs_info->running_transaction;
1771                 if (!cur) {
1772                         spin_unlock(&root->fs_info->trans_lock);
1773                         goto sleep;
1774                 }
1775
1776                 now = get_seconds();
1777                 if (cur->state < TRANS_STATE_BLOCKED &&
1778                     (now < cur->start_time ||
1779                      now - cur->start_time < root->fs_info->commit_interval)) {
1780                         spin_unlock(&root->fs_info->trans_lock);
1781                         delay = HZ * 5;
1782                         goto sleep;
1783                 }
1784                 transid = cur->transid;
1785                 spin_unlock(&root->fs_info->trans_lock);
1786
1787                 /* If the file system is aborted, this will always fail. */
1788                 trans = btrfs_attach_transaction(root);
1789                 if (IS_ERR(trans)) {
1790                         if (PTR_ERR(trans) != -ENOENT)
1791                                 cannot_commit = true;
1792                         goto sleep;
1793                 }
1794                 if (transid == trans->transid) {
1795                         btrfs_commit_transaction(trans, root);
1796                 } else {
1797                         btrfs_end_transaction(trans, root);
1798                 }
1799 sleep:
1800                 wake_up_process(root->fs_info->cleaner_kthread);
1801                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1802
1803                 if (!try_to_freeze()) {
1804                         set_current_state(TASK_INTERRUPTIBLE);
1805                         if (!kthread_should_stop() &&
1806                             (!btrfs_transaction_blocked(root->fs_info) ||
1807                              cannot_commit))
1808                                 schedule_timeout(delay);
1809                         __set_current_state(TASK_RUNNING);
1810                 }
1811         } while (!kthread_should_stop());
1812         return 0;
1813 }
1814
1815 /*
1816  * this will find the highest generation in the array of
1817  * root backups.  The index of the highest array is returned,
1818  * or -1 if we can't find anything.
1819  *
1820  * We check to make sure the array is valid by comparing the
1821  * generation of the latest  root in the array with the generation
1822  * in the super block.  If they don't match we pitch it.
1823  */
1824 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1825 {
1826         u64 cur;
1827         int newest_index = -1;
1828         struct btrfs_root_backup *root_backup;
1829         int i;
1830
1831         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1832                 root_backup = info->super_copy->super_roots + i;
1833                 cur = btrfs_backup_tree_root_gen(root_backup);
1834                 if (cur == newest_gen)
1835                         newest_index = i;
1836         }
1837
1838         /* check to see if we actually wrapped around */
1839         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1840                 root_backup = info->super_copy->super_roots;
1841                 cur = btrfs_backup_tree_root_gen(root_backup);
1842                 if (cur == newest_gen)
1843                         newest_index = 0;
1844         }
1845         return newest_index;
1846 }
1847
1848
1849 /*
1850  * find the oldest backup so we know where to store new entries
1851  * in the backup array.  This will set the backup_root_index
1852  * field in the fs_info struct
1853  */
1854 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1855                                      u64 newest_gen)
1856 {
1857         int newest_index = -1;
1858
1859         newest_index = find_newest_super_backup(info, newest_gen);
1860         /* if there was garbage in there, just move along */
1861         if (newest_index == -1) {
1862                 info->backup_root_index = 0;
1863         } else {
1864                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1865         }
1866 }
1867
1868 /*
1869  * copy all the root pointers into the super backup array.
1870  * this will bump the backup pointer by one when it is
1871  * done
1872  */
1873 static void backup_super_roots(struct btrfs_fs_info *info)
1874 {
1875         int next_backup;
1876         struct btrfs_root_backup *root_backup;
1877         int last_backup;
1878
1879         next_backup = info->backup_root_index;
1880         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1881                 BTRFS_NUM_BACKUP_ROOTS;
1882
1883         /*
1884          * just overwrite the last backup if we're at the same generation
1885          * this happens only at umount
1886          */
1887         root_backup = info->super_for_commit->super_roots + last_backup;
1888         if (btrfs_backup_tree_root_gen(root_backup) ==
1889             btrfs_header_generation(info->tree_root->node))
1890                 next_backup = last_backup;
1891
1892         root_backup = info->super_for_commit->super_roots + next_backup;
1893
1894         /*
1895          * make sure all of our padding and empty slots get zero filled
1896          * regardless of which ones we use today
1897          */
1898         memset(root_backup, 0, sizeof(*root_backup));
1899
1900         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1901
1902         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1903         btrfs_set_backup_tree_root_gen(root_backup,
1904                                btrfs_header_generation(info->tree_root->node));
1905
1906         btrfs_set_backup_tree_root_level(root_backup,
1907                                btrfs_header_level(info->tree_root->node));
1908
1909         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1910         btrfs_set_backup_chunk_root_gen(root_backup,
1911                                btrfs_header_generation(info->chunk_root->node));
1912         btrfs_set_backup_chunk_root_level(root_backup,
1913                                btrfs_header_level(info->chunk_root->node));
1914
1915         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1916         btrfs_set_backup_extent_root_gen(root_backup,
1917                                btrfs_header_generation(info->extent_root->node));
1918         btrfs_set_backup_extent_root_level(root_backup,
1919                                btrfs_header_level(info->extent_root->node));
1920
1921         /*
1922          * we might commit during log recovery, which happens before we set
1923          * the fs_root.  Make sure it is valid before we fill it in.
1924          */
1925         if (info->fs_root && info->fs_root->node) {
1926                 btrfs_set_backup_fs_root(root_backup,
1927                                          info->fs_root->node->start);
1928                 btrfs_set_backup_fs_root_gen(root_backup,
1929                                btrfs_header_generation(info->fs_root->node));
1930                 btrfs_set_backup_fs_root_level(root_backup,
1931                                btrfs_header_level(info->fs_root->node));
1932         }
1933
1934         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1935         btrfs_set_backup_dev_root_gen(root_backup,
1936                                btrfs_header_generation(info->dev_root->node));
1937         btrfs_set_backup_dev_root_level(root_backup,
1938                                        btrfs_header_level(info->dev_root->node));
1939
1940         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1941         btrfs_set_backup_csum_root_gen(root_backup,
1942                                btrfs_header_generation(info->csum_root->node));
1943         btrfs_set_backup_csum_root_level(root_backup,
1944                                btrfs_header_level(info->csum_root->node));
1945
1946         btrfs_set_backup_total_bytes(root_backup,
1947                              btrfs_super_total_bytes(info->super_copy));
1948         btrfs_set_backup_bytes_used(root_backup,
1949                              btrfs_super_bytes_used(info->super_copy));
1950         btrfs_set_backup_num_devices(root_backup,
1951                              btrfs_super_num_devices(info->super_copy));
1952
1953         /*
1954          * if we don't copy this out to the super_copy, it won't get remembered
1955          * for the next commit
1956          */
1957         memcpy(&info->super_copy->super_roots,
1958                &info->super_for_commit->super_roots,
1959                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1960 }
1961
1962 /*
1963  * this copies info out of the root backup array and back into
1964  * the in-memory super block.  It is meant to help iterate through
1965  * the array, so you send it the number of backups you've already
1966  * tried and the last backup index you used.
1967  *
1968  * this returns -1 when it has tried all the backups
1969  */
1970 static noinline int next_root_backup(struct btrfs_fs_info *info,
1971                                      struct btrfs_super_block *super,
1972                                      int *num_backups_tried, int *backup_index)
1973 {
1974         struct btrfs_root_backup *root_backup;
1975         int newest = *backup_index;
1976
1977         if (*num_backups_tried == 0) {
1978                 u64 gen = btrfs_super_generation(super);
1979
1980                 newest = find_newest_super_backup(info, gen);
1981                 if (newest == -1)
1982                         return -1;
1983
1984                 *backup_index = newest;
1985                 *num_backups_tried = 1;
1986         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1987                 /* we've tried all the backups, all done */
1988                 return -1;
1989         } else {
1990                 /* jump to the next oldest backup */
1991                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1992                         BTRFS_NUM_BACKUP_ROOTS;
1993                 *backup_index = newest;
1994                 *num_backups_tried += 1;
1995         }
1996         root_backup = super->super_roots + newest;
1997
1998         btrfs_set_super_generation(super,
1999                                    btrfs_backup_tree_root_gen(root_backup));
2000         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2001         btrfs_set_super_root_level(super,
2002                                    btrfs_backup_tree_root_level(root_backup));
2003         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2004
2005         /*
2006          * fixme: the total bytes and num_devices need to match or we should
2007          * need a fsck
2008          */
2009         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2010         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2011         return 0;
2012 }
2013
2014 /* helper to cleanup workers */
2015 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2016 {
2017         btrfs_stop_workers(&fs_info->generic_worker);
2018         btrfs_stop_workers(&fs_info->fixup_workers);
2019         btrfs_stop_workers(&fs_info->delalloc_workers);
2020         btrfs_stop_workers(&fs_info->workers);
2021         btrfs_stop_workers(&fs_info->endio_workers);
2022         btrfs_stop_workers(&fs_info->endio_meta_workers);
2023         btrfs_stop_workers(&fs_info->endio_raid56_workers);
2024         btrfs_stop_workers(&fs_info->rmw_workers);
2025         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2026         btrfs_stop_workers(&fs_info->endio_write_workers);
2027         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2028         btrfs_stop_workers(&fs_info->submit_workers);
2029         btrfs_stop_workers(&fs_info->delayed_workers);
2030         btrfs_stop_workers(&fs_info->caching_workers);
2031         btrfs_stop_workers(&fs_info->readahead_workers);
2032         btrfs_stop_workers(&fs_info->flush_workers);
2033         btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2034 }
2035
2036 /* helper to cleanup tree roots */
2037 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2038 {
2039         free_extent_buffer(info->tree_root->node);
2040         free_extent_buffer(info->tree_root->commit_root);
2041         info->tree_root->node = NULL;
2042         info->tree_root->commit_root = NULL;
2043
2044         if (info->dev_root) {
2045                 free_extent_buffer(info->dev_root->node);
2046                 free_extent_buffer(info->dev_root->commit_root);
2047                 info->dev_root->node = NULL;
2048                 info->dev_root->commit_root = NULL;
2049         }
2050         if (info->extent_root) {
2051                 free_extent_buffer(info->extent_root->node);
2052                 free_extent_buffer(info->extent_root->commit_root);
2053                 info->extent_root->node = NULL;
2054                 info->extent_root->commit_root = NULL;
2055         }
2056         if (info->csum_root) {
2057                 free_extent_buffer(info->csum_root->node);
2058                 free_extent_buffer(info->csum_root->commit_root);
2059                 info->csum_root->node = NULL;
2060                 info->csum_root->commit_root = NULL;
2061         }
2062         if (info->quota_root) {
2063                 free_extent_buffer(info->quota_root->node);
2064                 free_extent_buffer(info->quota_root->commit_root);
2065                 info->quota_root->node = NULL;
2066                 info->quota_root->commit_root = NULL;
2067         }
2068         if (info->uuid_root) {
2069                 free_extent_buffer(info->uuid_root->node);
2070                 free_extent_buffer(info->uuid_root->commit_root);
2071                 info->uuid_root->node = NULL;
2072                 info->uuid_root->commit_root = NULL;
2073         }
2074         if (chunk_root) {
2075                 free_extent_buffer(info->chunk_root->node);
2076                 free_extent_buffer(info->chunk_root->commit_root);
2077                 info->chunk_root->node = NULL;
2078                 info->chunk_root->commit_root = NULL;
2079         }
2080 }
2081
2082 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2083 {
2084         int ret;
2085         struct btrfs_root *gang[8];
2086         int i;
2087
2088         while (!list_empty(&fs_info->dead_roots)) {
2089                 gang[0] = list_entry(fs_info->dead_roots.next,
2090                                      struct btrfs_root, root_list);
2091                 list_del(&gang[0]->root_list);
2092
2093                 if (gang[0]->in_radix) {
2094                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2095                 } else {
2096                         free_extent_buffer(gang[0]->node);
2097                         free_extent_buffer(gang[0]->commit_root);
2098                         btrfs_put_fs_root(gang[0]);
2099                 }
2100         }
2101
2102         while (1) {
2103                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2104                                              (void **)gang, 0,
2105                                              ARRAY_SIZE(gang));
2106                 if (!ret)
2107                         break;
2108                 for (i = 0; i < ret; i++)
2109                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2110         }
2111 }
2112
2113 int open_ctree(struct super_block *sb,
2114                struct btrfs_fs_devices *fs_devices,
2115                char *options)
2116 {
2117         u32 sectorsize;
2118         u32 nodesize;
2119         u32 leafsize;
2120         u32 blocksize;
2121         u32 stripesize;
2122         u64 generation;
2123         u64 features;
2124         struct btrfs_key location;
2125         struct buffer_head *bh;
2126         struct btrfs_super_block *disk_super;
2127         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2128         struct btrfs_root *tree_root;
2129         struct btrfs_root *extent_root;
2130         struct btrfs_root *csum_root;
2131         struct btrfs_root *chunk_root;
2132         struct btrfs_root *dev_root;
2133         struct btrfs_root *quota_root;
2134         struct btrfs_root *uuid_root;
2135         struct btrfs_root *log_tree_root;
2136         int ret;
2137         int err = -EINVAL;
2138         int num_backups_tried = 0;
2139         int backup_index = 0;
2140         bool create_uuid_tree;
2141         bool check_uuid_tree;
2142
2143         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2144         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2145         if (!tree_root || !chunk_root) {
2146                 err = -ENOMEM;
2147                 goto fail;
2148         }
2149
2150         ret = init_srcu_struct(&fs_info->subvol_srcu);
2151         if (ret) {
2152                 err = ret;
2153                 goto fail;
2154         }
2155
2156         ret = setup_bdi(fs_info, &fs_info->bdi);
2157         if (ret) {
2158                 err = ret;
2159                 goto fail_srcu;
2160         }
2161
2162         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2163         if (ret) {
2164                 err = ret;
2165                 goto fail_bdi;
2166         }
2167         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2168                                         (1 + ilog2(nr_cpu_ids));
2169
2170         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2171         if (ret) {
2172                 err = ret;
2173                 goto fail_dirty_metadata_bytes;
2174         }
2175
2176         fs_info->btree_inode = new_inode(sb);
2177         if (!fs_info->btree_inode) {
2178                 err = -ENOMEM;
2179                 goto fail_delalloc_bytes;
2180         }
2181
2182         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2183
2184         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2185         INIT_LIST_HEAD(&fs_info->trans_list);
2186         INIT_LIST_HEAD(&fs_info->dead_roots);
2187         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2188         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2189         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2190         spin_lock_init(&fs_info->delalloc_root_lock);
2191         spin_lock_init(&fs_info->trans_lock);
2192         spin_lock_init(&fs_info->fs_roots_radix_lock);
2193         spin_lock_init(&fs_info->delayed_iput_lock);
2194         spin_lock_init(&fs_info->defrag_inodes_lock);
2195         spin_lock_init(&fs_info->free_chunk_lock);
2196         spin_lock_init(&fs_info->tree_mod_seq_lock);
2197         spin_lock_init(&fs_info->super_lock);
2198         rwlock_init(&fs_info->tree_mod_log_lock);
2199         mutex_init(&fs_info->reloc_mutex);
2200         seqlock_init(&fs_info->profiles_lock);
2201
2202         init_completion(&fs_info->kobj_unregister);
2203         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2204         INIT_LIST_HEAD(&fs_info->space_info);
2205         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2206         btrfs_mapping_init(&fs_info->mapping_tree);
2207         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2208                              BTRFS_BLOCK_RSV_GLOBAL);
2209         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2210                              BTRFS_BLOCK_RSV_DELALLOC);
2211         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2212         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2213         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2214         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2215                              BTRFS_BLOCK_RSV_DELOPS);
2216         atomic_set(&fs_info->nr_async_submits, 0);
2217         atomic_set(&fs_info->async_delalloc_pages, 0);
2218         atomic_set(&fs_info->async_submit_draining, 0);
2219         atomic_set(&fs_info->nr_async_bios, 0);
2220         atomic_set(&fs_info->defrag_running, 0);
2221         atomic64_set(&fs_info->tree_mod_seq, 0);
2222         fs_info->sb = sb;
2223         fs_info->max_inline = 8192 * 1024;
2224         fs_info->metadata_ratio = 0;
2225         fs_info->defrag_inodes = RB_ROOT;
2226         fs_info->free_chunk_space = 0;
2227         fs_info->tree_mod_log = RB_ROOT;
2228         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2229
2230         /* readahead state */
2231         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2232         spin_lock_init(&fs_info->reada_lock);
2233
2234         fs_info->thread_pool_size = min_t(unsigned long,
2235                                           num_online_cpus() + 2, 8);
2236
2237         INIT_LIST_HEAD(&fs_info->ordered_roots);
2238         spin_lock_init(&fs_info->ordered_root_lock);
2239         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2240                                         GFP_NOFS);
2241         if (!fs_info->delayed_root) {
2242                 err = -ENOMEM;
2243                 goto fail_iput;
2244         }
2245         btrfs_init_delayed_root(fs_info->delayed_root);
2246
2247         mutex_init(&fs_info->scrub_lock);
2248         atomic_set(&fs_info->scrubs_running, 0);
2249         atomic_set(&fs_info->scrub_pause_req, 0);
2250         atomic_set(&fs_info->scrubs_paused, 0);
2251         atomic_set(&fs_info->scrub_cancel_req, 0);
2252         init_waitqueue_head(&fs_info->scrub_pause_wait);
2253         init_rwsem(&fs_info->scrub_super_lock);
2254         fs_info->scrub_workers_refcnt = 0;
2255 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2256         fs_info->check_integrity_print_mask = 0;
2257 #endif
2258
2259         spin_lock_init(&fs_info->balance_lock);
2260         mutex_init(&fs_info->balance_mutex);
2261         atomic_set(&fs_info->balance_running, 0);
2262         atomic_set(&fs_info->balance_pause_req, 0);
2263         atomic_set(&fs_info->balance_cancel_req, 0);
2264         fs_info->balance_ctl = NULL;
2265         init_waitqueue_head(&fs_info->balance_wait_q);
2266
2267         sb->s_blocksize = 4096;
2268         sb->s_blocksize_bits = blksize_bits(4096);
2269         sb->s_bdi = &fs_info->bdi;
2270
2271         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2272         set_nlink(fs_info->btree_inode, 1);
2273         /*
2274          * we set the i_size on the btree inode to the max possible int.
2275          * the real end of the address space is determined by all of
2276          * the devices in the system
2277          */
2278         fs_info->btree_inode->i_size = OFFSET_MAX;
2279         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2280         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2281
2282         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2283         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2284                              fs_info->btree_inode->i_mapping);
2285         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2286         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2287
2288         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2289
2290         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2291         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2292                sizeof(struct btrfs_key));
2293         set_bit(BTRFS_INODE_DUMMY,
2294                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2295         insert_inode_hash(fs_info->btree_inode);
2296
2297         spin_lock_init(&fs_info->block_group_cache_lock);
2298         fs_info->block_group_cache_tree = RB_ROOT;
2299         fs_info->first_logical_byte = (u64)-1;
2300
2301         extent_io_tree_init(&fs_info->freed_extents[0],
2302                              fs_info->btree_inode->i_mapping);
2303         extent_io_tree_init(&fs_info->freed_extents[1],
2304                              fs_info->btree_inode->i_mapping);
2305         fs_info->pinned_extents = &fs_info->freed_extents[0];
2306         fs_info->do_barriers = 1;
2307
2308
2309         mutex_init(&fs_info->ordered_operations_mutex);
2310         mutex_init(&fs_info->ordered_extent_flush_mutex);
2311         mutex_init(&fs_info->tree_log_mutex);
2312         mutex_init(&fs_info->chunk_mutex);
2313         mutex_init(&fs_info->transaction_kthread_mutex);
2314         mutex_init(&fs_info->cleaner_mutex);
2315         mutex_init(&fs_info->volume_mutex);
2316         init_rwsem(&fs_info->extent_commit_sem);
2317         init_rwsem(&fs_info->cleanup_work_sem);
2318         init_rwsem(&fs_info->subvol_sem);
2319         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2320         fs_info->dev_replace.lock_owner = 0;
2321         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2322         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2323         mutex_init(&fs_info->dev_replace.lock_management_lock);
2324         mutex_init(&fs_info->dev_replace.lock);
2325
2326         spin_lock_init(&fs_info->qgroup_lock);
2327         mutex_init(&fs_info->qgroup_ioctl_lock);
2328         fs_info->qgroup_tree = RB_ROOT;
2329         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2330         fs_info->qgroup_seq = 1;
2331         fs_info->quota_enabled = 0;
2332         fs_info->pending_quota_state = 0;
2333         fs_info->qgroup_ulist = NULL;
2334         mutex_init(&fs_info->qgroup_rescan_lock);
2335
2336         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2337         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2338
2339         init_waitqueue_head(&fs_info->transaction_throttle);
2340         init_waitqueue_head(&fs_info->transaction_wait);
2341         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2342         init_waitqueue_head(&fs_info->async_submit_wait);
2343
2344         ret = btrfs_alloc_stripe_hash_table(fs_info);
2345         if (ret) {
2346                 err = ret;
2347                 goto fail_alloc;
2348         }
2349
2350         __setup_root(4096, 4096, 4096, 4096, tree_root,
2351                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2352
2353         invalidate_bdev(fs_devices->latest_bdev);
2354
2355         /*
2356          * Read super block and check the signature bytes only
2357          */
2358         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2359         if (!bh) {
2360                 err = -EINVAL;
2361                 goto fail_alloc;
2362         }
2363
2364         /*
2365          * We want to check superblock checksum, the type is stored inside.
2366          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2367          */
2368         if (btrfs_check_super_csum(bh->b_data)) {
2369                 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2370                 err = -EINVAL;
2371                 goto fail_alloc;
2372         }
2373
2374         /*
2375          * super_copy is zeroed at allocation time and we never touch the
2376          * following bytes up to INFO_SIZE, the checksum is calculated from
2377          * the whole block of INFO_SIZE
2378          */
2379         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2380         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2381                sizeof(*fs_info->super_for_commit));
2382         brelse(bh);
2383
2384         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2385
2386         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2387         if (ret) {
2388                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2389                 err = -EINVAL;
2390                 goto fail_alloc;
2391         }
2392
2393         disk_super = fs_info->super_copy;
2394         if (!btrfs_super_root(disk_super))
2395                 goto fail_alloc;
2396
2397         /* check FS state, whether FS is broken. */
2398         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2399                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2400
2401         /*
2402          * run through our array of backup supers and setup
2403          * our ring pointer to the oldest one
2404          */
2405         generation = btrfs_super_generation(disk_super);
2406         find_oldest_super_backup(fs_info, generation);
2407
2408         /*
2409          * In the long term, we'll store the compression type in the super
2410          * block, and it'll be used for per file compression control.
2411          */
2412         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2413
2414         ret = btrfs_parse_options(tree_root, options);
2415         if (ret) {
2416                 err = ret;
2417                 goto fail_alloc;
2418         }
2419
2420         features = btrfs_super_incompat_flags(disk_super) &
2421                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2422         if (features) {
2423                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2424                        "unsupported optional features (%Lx).\n",
2425                        features);
2426                 err = -EINVAL;
2427                 goto fail_alloc;
2428         }
2429
2430         if (btrfs_super_leafsize(disk_super) !=
2431             btrfs_super_nodesize(disk_super)) {
2432                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2433                        "blocksizes don't match.  node %d leaf %d\n",
2434                        btrfs_super_nodesize(disk_super),
2435                        btrfs_super_leafsize(disk_super));
2436                 err = -EINVAL;
2437                 goto fail_alloc;
2438         }
2439         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2440                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2441                        "blocksize (%d) was too large\n",
2442                        btrfs_super_leafsize(disk_super));
2443                 err = -EINVAL;
2444                 goto fail_alloc;
2445         }
2446
2447         features = btrfs_super_incompat_flags(disk_super);
2448         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2449         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2450                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2451
2452         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2453                 printk(KERN_ERR "btrfs: has skinny extents\n");
2454
2455         /*
2456          * flag our filesystem as having big metadata blocks if
2457          * they are bigger than the page size
2458          */
2459         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2460                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2461                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2462                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2463         }
2464
2465         nodesize = btrfs_super_nodesize(disk_super);
2466         leafsize = btrfs_super_leafsize(disk_super);
2467         sectorsize = btrfs_super_sectorsize(disk_super);
2468         stripesize = btrfs_super_stripesize(disk_super);
2469         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2470         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2471
2472         /*
2473          * mixed block groups end up with duplicate but slightly offset
2474          * extent buffers for the same range.  It leads to corruptions
2475          */
2476         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2477             (sectorsize != leafsize)) {
2478                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2479                                 "are not allowed for mixed block groups on %s\n",
2480                                 sb->s_id);
2481                 goto fail_alloc;
2482         }
2483
2484         /*
2485          * Needn't use the lock because there is no other task which will
2486          * update the flag.
2487          */
2488         btrfs_set_super_incompat_flags(disk_super, features);
2489
2490         features = btrfs_super_compat_ro_flags(disk_super) &
2491                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2492         if (!(sb->s_flags & MS_RDONLY) && features) {
2493                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2494                        "unsupported option features (%Lx).\n",
2495                        features);
2496                 err = -EINVAL;
2497                 goto fail_alloc;
2498         }
2499
2500         btrfs_init_workers(&fs_info->generic_worker,
2501                            "genwork", 1, NULL);
2502
2503         btrfs_init_workers(&fs_info->workers, "worker",
2504                            fs_info->thread_pool_size,
2505                            &fs_info->generic_worker);
2506
2507         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2508                            fs_info->thread_pool_size, NULL);
2509
2510         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2511                            fs_info->thread_pool_size, NULL);
2512
2513         btrfs_init_workers(&fs_info->submit_workers, "submit",
2514                            min_t(u64, fs_devices->num_devices,
2515                            fs_info->thread_pool_size), NULL);
2516
2517         btrfs_init_workers(&fs_info->caching_workers, "cache",
2518                            fs_info->thread_pool_size, NULL);
2519
2520         /* a higher idle thresh on the submit workers makes it much more
2521          * likely that bios will be send down in a sane order to the
2522          * devices
2523          */
2524         fs_info->submit_workers.idle_thresh = 64;
2525
2526         fs_info->workers.idle_thresh = 16;
2527         fs_info->workers.ordered = 1;
2528
2529         fs_info->delalloc_workers.idle_thresh = 2;
2530         fs_info->delalloc_workers.ordered = 1;
2531
2532         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2533                            &fs_info->generic_worker);
2534         btrfs_init_workers(&fs_info->endio_workers, "endio",
2535                            fs_info->thread_pool_size,
2536                            &fs_info->generic_worker);
2537         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2538                            fs_info->thread_pool_size,
2539                            &fs_info->generic_worker);
2540         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2541                            "endio-meta-write", fs_info->thread_pool_size,
2542                            &fs_info->generic_worker);
2543         btrfs_init_workers(&fs_info->endio_raid56_workers,
2544                            "endio-raid56", fs_info->thread_pool_size,
2545                            &fs_info->generic_worker);
2546         btrfs_init_workers(&fs_info->rmw_workers,
2547                            "rmw", fs_info->thread_pool_size,
2548                            &fs_info->generic_worker);
2549         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2550                            fs_info->thread_pool_size,
2551                            &fs_info->generic_worker);
2552         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2553                            1, &fs_info->generic_worker);
2554         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2555                            fs_info->thread_pool_size,
2556                            &fs_info->generic_worker);
2557         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2558                            fs_info->thread_pool_size,
2559                            &fs_info->generic_worker);
2560         btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2561                            &fs_info->generic_worker);
2562
2563         /*
2564          * endios are largely parallel and should have a very
2565          * low idle thresh
2566          */
2567         fs_info->endio_workers.idle_thresh = 4;
2568         fs_info->endio_meta_workers.idle_thresh = 4;
2569         fs_info->endio_raid56_workers.idle_thresh = 4;
2570         fs_info->rmw_workers.idle_thresh = 2;
2571
2572         fs_info->endio_write_workers.idle_thresh = 2;
2573         fs_info->endio_meta_write_workers.idle_thresh = 2;
2574         fs_info->readahead_workers.idle_thresh = 2;
2575
2576         /*
2577          * btrfs_start_workers can really only fail because of ENOMEM so just
2578          * return -ENOMEM if any of these fail.
2579          */
2580         ret = btrfs_start_workers(&fs_info->workers);
2581         ret |= btrfs_start_workers(&fs_info->generic_worker);
2582         ret |= btrfs_start_workers(&fs_info->submit_workers);
2583         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2584         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2585         ret |= btrfs_start_workers(&fs_info->endio_workers);
2586         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2587         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2588         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2589         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2590         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2591         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2592         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2593         ret |= btrfs_start_workers(&fs_info->caching_workers);
2594         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2595         ret |= btrfs_start_workers(&fs_info->flush_workers);
2596         ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2597         if (ret) {
2598                 err = -ENOMEM;
2599                 goto fail_sb_buffer;
2600         }
2601
2602         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2603         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2604                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2605
2606         tree_root->nodesize = nodesize;
2607         tree_root->leafsize = leafsize;
2608         tree_root->sectorsize = sectorsize;
2609         tree_root->stripesize = stripesize;
2610
2611         sb->s_blocksize = sectorsize;
2612         sb->s_blocksize_bits = blksize_bits(sectorsize);
2613
2614         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2615                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2616                 goto fail_sb_buffer;
2617         }
2618
2619         if (sectorsize != PAGE_SIZE) {
2620                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2621                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2622                 goto fail_sb_buffer;
2623         }
2624
2625         mutex_lock(&fs_info->chunk_mutex);
2626         ret = btrfs_read_sys_array(tree_root);
2627         mutex_unlock(&fs_info->chunk_mutex);
2628         if (ret) {
2629                 printk(KERN_WARNING "btrfs: failed to read the system "
2630                        "array on %s\n", sb->s_id);
2631                 goto fail_sb_buffer;
2632         }
2633
2634         blocksize = btrfs_level_size(tree_root,
2635                                      btrfs_super_chunk_root_level(disk_super));
2636         generation = btrfs_super_chunk_root_generation(disk_super);
2637
2638         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2639                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2640
2641         chunk_root->node = read_tree_block(chunk_root,
2642                                            btrfs_super_chunk_root(disk_super),
2643                                            blocksize, generation);
2644         if (!chunk_root->node ||
2645             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2646                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2647                        sb->s_id);
2648                 goto fail_tree_roots;
2649         }
2650         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2651         chunk_root->commit_root = btrfs_root_node(chunk_root);
2652
2653         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2654            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2655
2656         ret = btrfs_read_chunk_tree(chunk_root);
2657         if (ret) {
2658                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2659                        sb->s_id);
2660                 goto fail_tree_roots;
2661         }
2662
2663         /*
2664          * keep the device that is marked to be the target device for the
2665          * dev_replace procedure
2666          */
2667         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2668
2669         if (!fs_devices->latest_bdev) {
2670                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2671                        sb->s_id);
2672                 goto fail_tree_roots;
2673         }
2674
2675 retry_root_backup:
2676         blocksize = btrfs_level_size(tree_root,
2677                                      btrfs_super_root_level(disk_super));
2678         generation = btrfs_super_generation(disk_super);
2679
2680         tree_root->node = read_tree_block(tree_root,
2681                                           btrfs_super_root(disk_super),
2682                                           blocksize, generation);
2683         if (!tree_root->node ||
2684             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2685                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2686                        sb->s_id);
2687
2688                 goto recovery_tree_root;
2689         }
2690
2691         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2692         tree_root->commit_root = btrfs_root_node(tree_root);
2693         btrfs_set_root_refs(&tree_root->root_item, 1);
2694
2695         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2696         location.type = BTRFS_ROOT_ITEM_KEY;
2697         location.offset = 0;
2698
2699         extent_root = btrfs_read_tree_root(tree_root, &location);
2700         if (IS_ERR(extent_root)) {
2701                 ret = PTR_ERR(extent_root);
2702                 goto recovery_tree_root;
2703         }
2704         extent_root->track_dirty = 1;
2705         fs_info->extent_root = extent_root;
2706
2707         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2708         dev_root = btrfs_read_tree_root(tree_root, &location);
2709         if (IS_ERR(dev_root)) {
2710                 ret = PTR_ERR(dev_root);
2711                 goto recovery_tree_root;
2712         }
2713         dev_root->track_dirty = 1;
2714         fs_info->dev_root = dev_root;
2715         btrfs_init_devices_late(fs_info);
2716
2717         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2718         csum_root = btrfs_read_tree_root(tree_root, &location);
2719         if (IS_ERR(csum_root)) {
2720                 ret = PTR_ERR(csum_root);
2721                 goto recovery_tree_root;
2722         }
2723         csum_root->track_dirty = 1;
2724         fs_info->csum_root = csum_root;
2725
2726         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2727         quota_root = btrfs_read_tree_root(tree_root, &location);
2728         if (!IS_ERR(quota_root)) {
2729                 quota_root->track_dirty = 1;
2730                 fs_info->quota_enabled = 1;
2731                 fs_info->pending_quota_state = 1;
2732                 fs_info->quota_root = quota_root;
2733         }
2734
2735         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2736         uuid_root = btrfs_read_tree_root(tree_root, &location);
2737         if (IS_ERR(uuid_root)) {
2738                 ret = PTR_ERR(uuid_root);
2739                 if (ret != -ENOENT)
2740                         goto recovery_tree_root;
2741                 create_uuid_tree = true;
2742                 check_uuid_tree = false;
2743         } else {
2744                 uuid_root->track_dirty = 1;
2745                 fs_info->uuid_root = uuid_root;
2746                 create_uuid_tree = false;
2747                 check_uuid_tree =
2748                     generation != btrfs_super_uuid_tree_generation(disk_super);
2749         }
2750
2751         fs_info->generation = generation;
2752         fs_info->last_trans_committed = generation;
2753
2754         ret = btrfs_recover_balance(fs_info);
2755         if (ret) {
2756                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2757                 goto fail_block_groups;
2758         }
2759
2760         ret = btrfs_init_dev_stats(fs_info);
2761         if (ret) {
2762                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2763                        ret);
2764                 goto fail_block_groups;
2765         }
2766
2767         ret = btrfs_init_dev_replace(fs_info);
2768         if (ret) {
2769                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2770                 goto fail_block_groups;
2771         }
2772
2773         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2774
2775         ret = btrfs_init_space_info(fs_info);
2776         if (ret) {
2777                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2778                 goto fail_block_groups;
2779         }
2780
2781         ret = btrfs_read_block_groups(extent_root);
2782         if (ret) {
2783                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2784                 goto fail_block_groups;
2785         }
2786         fs_info->num_tolerated_disk_barrier_failures =
2787                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2788         if (fs_info->fs_devices->missing_devices >
2789              fs_info->num_tolerated_disk_barrier_failures &&
2790             !(sb->s_flags & MS_RDONLY)) {
2791                 printk(KERN_WARNING
2792                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2793                 goto fail_block_groups;
2794         }
2795
2796         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2797                                                "btrfs-cleaner");
2798         if (IS_ERR(fs_info->cleaner_kthread))
2799                 goto fail_block_groups;
2800
2801         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2802                                                    tree_root,
2803                                                    "btrfs-transaction");
2804         if (IS_ERR(fs_info->transaction_kthread))
2805                 goto fail_cleaner;
2806
2807         if (!btrfs_test_opt(tree_root, SSD) &&
2808             !btrfs_test_opt(tree_root, NOSSD) &&
2809             !fs_info->fs_devices->rotating) {
2810                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2811                        "mode\n");
2812                 btrfs_set_opt(fs_info->mount_opt, SSD);
2813         }
2814
2815 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2816         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2817                 ret = btrfsic_mount(tree_root, fs_devices,
2818                                     btrfs_test_opt(tree_root,
2819                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2820                                     1 : 0,
2821                                     fs_info->check_integrity_print_mask);
2822                 if (ret)
2823                         printk(KERN_WARNING "btrfs: failed to initialize"
2824                                " integrity check module %s\n", sb->s_id);
2825         }
2826 #endif
2827         ret = btrfs_read_qgroup_config(fs_info);
2828         if (ret)
2829                 goto fail_trans_kthread;
2830
2831         /* do not make disk changes in broken FS */
2832         if (btrfs_super_log_root(disk_super) != 0) {
2833                 u64 bytenr = btrfs_super_log_root(disk_super);
2834
2835                 if (fs_devices->rw_devices == 0) {
2836                         printk(KERN_WARNING "Btrfs log replay required "
2837                                "on RO media\n");
2838                         err = -EIO;
2839                         goto fail_qgroup;
2840                 }
2841                 blocksize =
2842                      btrfs_level_size(tree_root,
2843                                       btrfs_super_log_root_level(disk_super));
2844
2845                 log_tree_root = btrfs_alloc_root(fs_info);
2846                 if (!log_tree_root) {
2847                         err = -ENOMEM;
2848                         goto fail_qgroup;
2849                 }
2850
2851                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2852                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2853
2854                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2855                                                       blocksize,
2856                                                       generation + 1);
2857                 if (!log_tree_root->node ||
2858                     !extent_buffer_uptodate(log_tree_root->node)) {
2859                         printk(KERN_ERR "btrfs: failed to read log tree\n");
2860                         free_extent_buffer(log_tree_root->node);
2861                         kfree(log_tree_root);
2862                         goto fail_trans_kthread;
2863                 }
2864                 /* returns with log_tree_root freed on success */
2865                 ret = btrfs_recover_log_trees(log_tree_root);
2866                 if (ret) {
2867                         btrfs_error(tree_root->fs_info, ret,
2868                                     "Failed to recover log tree");
2869                         free_extent_buffer(log_tree_root->node);
2870                         kfree(log_tree_root);
2871                         goto fail_trans_kthread;
2872                 }
2873
2874                 if (sb->s_flags & MS_RDONLY) {
2875                         ret = btrfs_commit_super(tree_root);
2876                         if (ret)
2877                                 goto fail_trans_kthread;
2878                 }
2879         }
2880
2881         ret = btrfs_find_orphan_roots(tree_root);
2882         if (ret)
2883                 goto fail_trans_kthread;
2884
2885         if (!(sb->s_flags & MS_RDONLY)) {
2886                 ret = btrfs_cleanup_fs_roots(fs_info);
2887                 if (ret)
2888                         goto fail_trans_kthread;
2889
2890                 ret = btrfs_recover_relocation(tree_root);
2891                 if (ret < 0) {
2892                         printk(KERN_WARNING
2893                                "btrfs: failed to recover relocation\n");
2894                         err = -EINVAL;
2895                         goto fail_qgroup;
2896                 }
2897         }
2898
2899         location.objectid = BTRFS_FS_TREE_OBJECTID;
2900         location.type = BTRFS_ROOT_ITEM_KEY;
2901         location.offset = 0;
2902
2903         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2904         if (IS_ERR(fs_info->fs_root)) {
2905                 err = PTR_ERR(fs_info->fs_root);
2906                 goto fail_qgroup;
2907         }
2908
2909         if (sb->s_flags & MS_RDONLY)
2910                 return 0;
2911
2912         down_read(&fs_info->cleanup_work_sem);
2913         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2914             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2915                 up_read(&fs_info->cleanup_work_sem);
2916                 close_ctree(tree_root);
2917                 return ret;
2918         }
2919         up_read(&fs_info->cleanup_work_sem);
2920
2921         ret = btrfs_resume_balance_async(fs_info);
2922         if (ret) {
2923                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2924                 close_ctree(tree_root);
2925                 return ret;
2926         }
2927
2928         ret = btrfs_resume_dev_replace_async(fs_info);
2929         if (ret) {
2930                 pr_warn("btrfs: failed to resume dev_replace\n");
2931                 close_ctree(tree_root);
2932                 return ret;
2933         }
2934
2935         btrfs_qgroup_rescan_resume(fs_info);
2936
2937         if (create_uuid_tree) {
2938                 pr_info("btrfs: creating UUID tree\n");
2939                 ret = btrfs_create_uuid_tree(fs_info);
2940                 if (ret) {
2941                         pr_warn("btrfs: failed to create the UUID tree %d\n",
2942                                 ret);
2943                         close_ctree(tree_root);
2944                         return ret;
2945                 }
2946         } else if (check_uuid_tree ||
2947                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2948                 pr_info("btrfs: checking UUID tree\n");
2949                 ret = btrfs_check_uuid_tree(fs_info);
2950                 if (ret) {
2951                         pr_warn("btrfs: failed to check the UUID tree %d\n",
2952                                 ret);
2953                         close_ctree(tree_root);
2954                         return ret;
2955                 }
2956         } else {
2957                 fs_info->update_uuid_tree_gen = 1;
2958         }
2959
2960         return 0;
2961
2962 fail_qgroup:
2963         btrfs_free_qgroup_config(fs_info);
2964 fail_trans_kthread:
2965         kthread_stop(fs_info->transaction_kthread);
2966         btrfs_cleanup_transaction(fs_info->tree_root);
2967         del_fs_roots(fs_info);
2968 fail_cleaner:
2969         kthread_stop(fs_info->cleaner_kthread);
2970
2971         /*
2972          * make sure we're done with the btree inode before we stop our
2973          * kthreads
2974          */
2975         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2976
2977 fail_block_groups:
2978         btrfs_put_block_group_cache(fs_info);
2979         btrfs_free_block_groups(fs_info);
2980
2981 fail_tree_roots:
2982         free_root_pointers(fs_info, 1);
2983         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2984
2985 fail_sb_buffer:
2986         btrfs_stop_all_workers(fs_info);
2987 fail_alloc:
2988 fail_iput:
2989         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2990
2991         iput(fs_info->btree_inode);
2992 fail_delalloc_bytes:
2993         percpu_counter_destroy(&fs_info->delalloc_bytes);
2994 fail_dirty_metadata_bytes:
2995         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2996 fail_bdi:
2997         bdi_destroy(&fs_info->bdi);
2998 fail_srcu:
2999         cleanup_srcu_struct(&fs_info->subvol_srcu);
3000 fail:
3001         btrfs_free_stripe_hash_table(fs_info);
3002         btrfs_close_devices(fs_info->fs_devices);
3003         return err;
3004
3005 recovery_tree_root:
3006         if (!btrfs_test_opt(tree_root, RECOVERY))
3007                 goto fail_tree_roots;
3008
3009         free_root_pointers(fs_info, 0);
3010
3011         /* don't use the log in recovery mode, it won't be valid */
3012         btrfs_set_super_log_root(disk_super, 0);
3013
3014         /* we can't trust the free space cache either */
3015         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3016
3017         ret = next_root_backup(fs_info, fs_info->super_copy,
3018                                &num_backups_tried, &backup_index);
3019         if (ret == -1)
3020                 goto fail_block_groups;
3021         goto retry_root_backup;
3022 }
3023
3024 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3025 {
3026         if (uptodate) {
3027                 set_buffer_uptodate(bh);
3028         } else {
3029                 struct btrfs_device *device = (struct btrfs_device *)
3030                         bh->b_private;
3031
3032                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
3033                                           "I/O error on %s\n",
3034                                           rcu_str_deref(device->name));
3035                 /* note, we dont' set_buffer_write_io_error because we have
3036                  * our own ways of dealing with the IO errors
3037                  */
3038                 clear_buffer_uptodate(bh);
3039                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3040         }
3041         unlock_buffer(bh);
3042         put_bh(bh);
3043 }
3044
3045 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3046 {
3047         struct buffer_head *bh;
3048         struct buffer_head *latest = NULL;
3049         struct btrfs_super_block *super;
3050         int i;
3051         u64 transid = 0;
3052         u64 bytenr;
3053
3054         /* we would like to check all the supers, but that would make
3055          * a btrfs mount succeed after a mkfs from a different FS.
3056          * So, we need to add a special mount option to scan for
3057          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3058          */
3059         for (i = 0; i < 1; i++) {
3060                 bytenr = btrfs_sb_offset(i);
3061                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3062                                         i_size_read(bdev->bd_inode))
3063                         break;
3064                 bh = __bread(bdev, bytenr / 4096,
3065                                         BTRFS_SUPER_INFO_SIZE);
3066                 if (!bh)
3067                         continue;
3068
3069                 super = (struct btrfs_super_block *)bh->b_data;
3070                 if (btrfs_super_bytenr(super) != bytenr ||
3071                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3072                         brelse(bh);
3073                         continue;
3074                 }
3075
3076                 if (!latest || btrfs_super_generation(super) > transid) {
3077                         brelse(latest);
3078                         latest = bh;
3079                         transid = btrfs_super_generation(super);
3080                 } else {
3081                         brelse(bh);
3082                 }
3083         }
3084         return latest;
3085 }
3086
3087 /*
3088  * this should be called twice, once with wait == 0 and
3089  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3090  * we write are pinned.
3091  *
3092  * They are released when wait == 1 is done.
3093  * max_mirrors must be the same for both runs, and it indicates how
3094  * many supers on this one device should be written.
3095  *
3096  * max_mirrors == 0 means to write them all.
3097  */
3098 static int write_dev_supers(struct btrfs_device *device,
3099                             struct btrfs_super_block *sb,
3100                             int do_barriers, int wait, int max_mirrors)
3101 {
3102         struct buffer_head *bh;
3103         int i;
3104         int ret;
3105         int errors = 0;
3106         u32 crc;
3107         u64 bytenr;
3108
3109         if (max_mirrors == 0)
3110                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3111
3112         for (i = 0; i < max_mirrors; i++) {
3113                 bytenr = btrfs_sb_offset(i);
3114                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3115                         break;
3116
3117                 if (wait) {
3118                         bh = __find_get_block(device->bdev, bytenr / 4096,
3119                                               BTRFS_SUPER_INFO_SIZE);
3120                         if (!bh) {
3121                                 errors++;
3122                                 continue;
3123                         }
3124                         wait_on_buffer(bh);
3125                         if (!buffer_uptodate(bh))
3126                                 errors++;
3127
3128                         /* drop our reference */
3129                         brelse(bh);
3130
3131                         /* drop the reference from the wait == 0 run */
3132                         brelse(bh);
3133                         continue;
3134                 } else {
3135                         btrfs_set_super_bytenr(sb, bytenr);
3136
3137                         crc = ~(u32)0;
3138                         crc = btrfs_csum_data((char *)sb +
3139                                               BTRFS_CSUM_SIZE, crc,
3140                                               BTRFS_SUPER_INFO_SIZE -
3141                                               BTRFS_CSUM_SIZE);
3142                         btrfs_csum_final(crc, sb->csum);
3143
3144                         /*
3145                          * one reference for us, and we leave it for the
3146                          * caller
3147                          */
3148                         bh = __getblk(device->bdev, bytenr / 4096,
3149                                       BTRFS_SUPER_INFO_SIZE);
3150                         if (!bh) {
3151                                 printk(KERN_ERR "btrfs: couldn't get super "
3152                                        "buffer head for bytenr %Lu\n", bytenr);
3153                                 errors++;
3154                                 continue;
3155                         }
3156
3157                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3158
3159                         /* one reference for submit_bh */
3160                         get_bh(bh);
3161
3162                         set_buffer_uptodate(bh);
3163                         lock_buffer(bh);
3164                         bh->b_end_io = btrfs_end_buffer_write_sync;
3165                         bh->b_private = device;
3166                 }
3167
3168                 /*
3169                  * we fua the first super.  The others we allow
3170                  * to go down lazy.
3171                  */
3172                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3173                 if (ret)
3174                         errors++;
3175         }
3176         return errors < i ? 0 : -1;
3177 }
3178
3179 /*
3180  * endio for the write_dev_flush, this will wake anyone waiting
3181  * for the barrier when it is done
3182  */
3183 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3184 {
3185         if (err) {
3186                 if (err == -EOPNOTSUPP)
3187                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3188                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3189         }
3190         if (bio->bi_private)
3191                 complete(bio->bi_private);
3192         bio_put(bio);
3193 }
3194
3195 /*
3196  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3197  * sent down.  With wait == 1, it waits for the previous flush.
3198  *
3199  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3200  * capable
3201  */
3202 static int write_dev_flush(struct btrfs_device *device, int wait)
3203 {
3204         struct bio *bio;
3205         int ret = 0;
3206
3207         if (device->nobarriers)
3208                 return 0;
3209
3210         if (wait) {
3211                 bio = device->flush_bio;
3212                 if (!bio)
3213                         return 0;
3214
3215                 wait_for_completion(&device->flush_wait);
3216
3217                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3218                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3219                                       rcu_str_deref(device->name));
3220                         device->nobarriers = 1;
3221                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3222                         ret = -EIO;
3223                         btrfs_dev_stat_inc_and_print(device,
3224                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3225                 }
3226
3227                 /* drop the reference from the wait == 0 run */
3228                 bio_put(bio);
3229                 device->flush_bio = NULL;
3230
3231                 return ret;
3232         }
3233
3234         /*
3235          * one reference for us, and we leave it for the
3236          * caller
3237          */
3238         device->flush_bio = NULL;
3239         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3240         if (!bio)
3241                 return -ENOMEM;
3242
3243         bio->bi_end_io = btrfs_end_empty_barrier;
3244         bio->bi_bdev = device->bdev;
3245         init_completion(&device->flush_wait);
3246         bio->bi_private = &device->flush_wait;
3247         device->flush_bio = bio;
3248
3249         bio_get(bio);
3250         btrfsic_submit_bio(WRITE_FLUSH, bio);
3251
3252         return 0;
3253 }
3254
3255 /*
3256  * send an empty flush down to each device in parallel,
3257  * then wait for them
3258  */
3259 static int barrier_all_devices(struct btrfs_fs_info *info)
3260 {
3261         struct list_head *head;
3262         struct btrfs_device *dev;
3263         int errors_send = 0;
3264         int errors_wait = 0;
3265         int ret;
3266
3267         /* send down all the barriers */
3268         head = &info->fs_devices->devices;
3269         list_for_each_entry_rcu(dev, head, dev_list) {
3270                 if (!dev->bdev) {
3271                         errors_send++;
3272                         continue;
3273                 }
3274                 if (!dev->in_fs_metadata || !dev->writeable)
3275                         continue;
3276
3277                 ret = write_dev_flush(dev, 0);
3278                 if (ret)
3279                         errors_send++;
3280         }
3281
3282         /* wait for all the barriers */
3283         list_for_each_entry_rcu(dev, head, dev_list) {
3284                 if (!dev->bdev) {
3285                         errors_wait++;
3286                         continue;
3287                 }
3288                 if (!dev->in_fs_metadata || !dev->writeable)
3289                         continue;
3290
3291                 ret = write_dev_flush(dev, 1);
3292                 if (ret)
3293                         errors_wait++;
3294         }
3295         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3296             errors_wait > info->num_tolerated_disk_barrier_failures)
3297                 return -EIO;
3298         return 0;
3299 }
3300
3301 int btrfs_calc_num_tolerated_disk_barrier_failures(
3302         struct btrfs_fs_info *fs_info)
3303 {
3304         struct btrfs_ioctl_space_info space;
3305         struct btrfs_space_info *sinfo;
3306         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3307                        BTRFS_BLOCK_GROUP_SYSTEM,
3308                        BTRFS_BLOCK_GROUP_METADATA,
3309                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3310         int num_types = 4;
3311         int i;
3312         int c;
3313         int num_tolerated_disk_barrier_failures =
3314                 (int)fs_info->fs_devices->num_devices;
3315
3316         for (i = 0; i < num_types; i++) {
3317                 struct btrfs_space_info *tmp;
3318
3319                 sinfo = NULL;
3320                 rcu_read_lock();
3321                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3322                         if (tmp->flags == types[i]) {
3323                                 sinfo = tmp;
3324                                 break;
3325                         }
3326                 }
3327                 rcu_read_unlock();
3328
3329                 if (!sinfo)
3330                         continue;
3331
3332                 down_read(&sinfo->groups_sem);
3333                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3334                         if (!list_empty(&sinfo->block_groups[c])) {
3335                                 u64 flags;
3336
3337                                 btrfs_get_block_group_info(
3338                                         &sinfo->block_groups[c], &space);
3339                                 if (space.total_bytes == 0 ||
3340                                     space.used_bytes == 0)
3341                                         continue;
3342                                 flags = space.flags;
3343                                 /*
3344                                  * return
3345                                  * 0: if dup, single or RAID0 is configured for
3346                                  *    any of metadata, system or data, else
3347                                  * 1: if RAID5 is configured, or if RAID1 or
3348                                  *    RAID10 is configured and only two mirrors
3349                                  *    are used, else
3350                                  * 2: if RAID6 is configured, else
3351                                  * num_mirrors - 1: if RAID1 or RAID10 is
3352                                  *                  configured and more than
3353                                  *                  2 mirrors are used.
3354                                  */
3355                                 if (num_tolerated_disk_barrier_failures > 0 &&
3356                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3357                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3358                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3359                                       == 0)))
3360                                         num_tolerated_disk_barrier_failures = 0;
3361                                 else if (num_tolerated_disk_barrier_failures > 1) {
3362                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3363                                             BTRFS_BLOCK_GROUP_RAID5 |
3364                                             BTRFS_BLOCK_GROUP_RAID10)) {
3365                                                 num_tolerated_disk_barrier_failures = 1;
3366                                         } else if (flags &
3367                                                    BTRFS_BLOCK_GROUP_RAID6) {
3368                                                 num_tolerated_disk_barrier_failures = 2;
3369                                         }
3370                                 }
3371                         }
3372                 }
3373                 up_read(&sinfo->groups_sem);
3374         }
3375
3376         return num_tolerated_disk_barrier_failures;
3377 }
3378
3379 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3380 {
3381         struct list_head *head;
3382         struct btrfs_device *dev;
3383         struct btrfs_super_block *sb;
3384         struct btrfs_dev_item *dev_item;
3385         int ret;
3386         int do_barriers;
3387         int max_errors;
3388         int total_errors = 0;
3389         u64 flags;
3390
3391         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3392         backup_super_roots(root->fs_info);
3393
3394         sb = root->fs_info->super_for_commit;
3395         dev_item = &sb->dev_item;
3396
3397         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3398         head = &root->fs_info->fs_devices->devices;
3399         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3400
3401         if (do_barriers) {
3402                 ret = barrier_all_devices(root->fs_info);
3403                 if (ret) {
3404                         mutex_unlock(
3405                                 &root->fs_info->fs_devices->device_list_mutex);
3406                         btrfs_error(root->fs_info, ret,
3407                                     "errors while submitting device barriers.");
3408                         return ret;
3409                 }
3410         }
3411
3412         list_for_each_entry_rcu(dev, head, dev_list) {
3413                 if (!dev->bdev) {
3414                         total_errors++;
3415                         continue;
3416                 }
3417                 if (!dev->in_fs_metadata || !dev->writeable)
3418                         continue;
3419
3420                 btrfs_set_stack_device_generation(dev_item, 0);
3421                 btrfs_set_stack_device_type(dev_item, dev->type);
3422                 btrfs_set_stack_device_id(dev_item, dev->devid);
3423                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3424                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3425                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3426                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3427                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3428                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3429                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3430
3431                 flags = btrfs_super_flags(sb);
3432                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3433
3434                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3435                 if (ret)
3436                         total_errors++;
3437         }
3438         if (total_errors > max_errors) {
3439                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3440                        total_errors);
3441                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3442
3443                 /* FUA is masked off if unsupported and can't be the reason */
3444                 btrfs_error(root->fs_info, -EIO,
3445                             "%d errors while writing supers", total_errors);
3446                 return -EIO;
3447         }
3448
3449         total_errors = 0;
3450         list_for_each_entry_rcu(dev, head, dev_list) {
3451                 if (!dev->bdev)
3452                         continue;
3453                 if (!dev->in_fs_metadata || !dev->writeable)
3454                         continue;
3455
3456                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3457                 if (ret)
3458                         total_errors++;
3459         }
3460         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3461         if (total_errors > max_errors) {
3462                 btrfs_error(root->fs_info, -EIO,
3463                             "%d errors while writing supers", total_errors);
3464                 return -EIO;
3465         }
3466         return 0;
3467 }
3468
3469 int write_ctree_super(struct btrfs_trans_handle *trans,
3470                       struct btrfs_root *root, int max_mirrors)
3471 {
3472         int ret;
3473
3474         ret = write_all_supers(root, max_mirrors);
3475         return ret;
3476 }
3477
3478 /* Drop a fs root from the radix tree and free it. */
3479 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3480                                   struct btrfs_root *root)
3481 {
3482         spin_lock(&fs_info->fs_roots_radix_lock);
3483         radix_tree_delete(&fs_info->fs_roots_radix,
3484                           (unsigned long)root->root_key.objectid);
3485         spin_unlock(&fs_info->fs_roots_radix_lock);
3486
3487         if (btrfs_root_refs(&root->root_item) == 0)
3488                 synchronize_srcu(&fs_info->subvol_srcu);
3489
3490         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3491                 btrfs_free_log(NULL, root);
3492                 btrfs_free_log_root_tree(NULL, fs_info);
3493         }
3494
3495         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3496         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3497         free_fs_root(root);
3498 }
3499
3500 static void free_fs_root(struct btrfs_root *root)
3501 {
3502         iput(root->cache_inode);
3503         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3504         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3505         root->orphan_block_rsv = NULL;
3506         if (root->anon_dev)
3507                 free_anon_bdev(root->anon_dev);
3508         free_extent_buffer(root->node);
3509         free_extent_buffer(root->commit_root);
3510         kfree(root->free_ino_ctl);
3511         kfree(root->free_ino_pinned);
3512         kfree(root->name);
3513         btrfs_put_fs_root(root);
3514 }
3515
3516 void btrfs_free_fs_root(struct btrfs_root *root)
3517 {
3518         free_fs_root(root);
3519 }
3520
3521 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3522 {
3523         u64 root_objectid = 0;
3524         struct btrfs_root *gang[8];
3525         int i;
3526         int ret;
3527
3528         while (1) {
3529                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3530                                              (void **)gang, root_objectid,
3531                                              ARRAY_SIZE(gang));
3532                 if (!ret)
3533                         break;
3534
3535                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3536                 for (i = 0; i < ret; i++) {
3537                         int err;
3538
3539                         root_objectid = gang[i]->root_key.objectid;
3540                         err = btrfs_orphan_cleanup(gang[i]);
3541                         if (err)
3542                                 return err;
3543                 }
3544                 root_objectid++;
3545         }
3546         return 0;
3547 }
3548
3549 int btrfs_commit_super(struct btrfs_root *root)
3550 {
3551         struct btrfs_trans_handle *trans;
3552         int ret;
3553
3554         mutex_lock(&root->fs_info->cleaner_mutex);
3555         btrfs_run_delayed_iputs(root);
3556         mutex_unlock(&root->fs_info->cleaner_mutex);
3557         wake_up_process(root->fs_info->cleaner_kthread);
3558
3559         /* wait until ongoing cleanup work done */
3560         down_write(&root->fs_info->cleanup_work_sem);
3561         up_write(&root->fs_info->cleanup_work_sem);
3562
3563         trans = btrfs_join_transaction(root);
3564         if (IS_ERR(trans))
3565                 return PTR_ERR(trans);
3566         ret = btrfs_commit_transaction(trans, root);
3567         if (ret)
3568                 return ret;
3569         /* run commit again to drop the original snapshot */
3570         trans = btrfs_join_transaction(root);
3571         if (IS_ERR(trans))
3572                 return PTR_ERR(trans);
3573         ret = btrfs_commit_transaction(trans, root);
3574         if (ret)
3575                 return ret;
3576         ret = btrfs_write_and_wait_transaction(NULL, root);
3577         if (ret) {
3578                 btrfs_error(root->fs_info, ret,
3579                             "Failed to sync btree inode to disk.");
3580                 return ret;
3581         }
3582
3583         ret = write_ctree_super(NULL, root, 0);
3584         return ret;
3585 }
3586
3587 int close_ctree(struct btrfs_root *root)
3588 {
3589         struct btrfs_fs_info *fs_info = root->fs_info;
3590         int ret;
3591
3592         fs_info->closing = 1;
3593         smp_mb();
3594
3595         /* wait for the uuid_scan task to finish */
3596         down(&fs_info->uuid_tree_rescan_sem);
3597         /* avoid complains from lockdep et al., set sem back to initial state */
3598         up(&fs_info->uuid_tree_rescan_sem);
3599
3600         /* pause restriper - we want to resume on mount */
3601         btrfs_pause_balance(fs_info);
3602
3603         btrfs_dev_replace_suspend_for_unmount(fs_info);
3604
3605         btrfs_scrub_cancel(fs_info);
3606
3607         /* wait for any defraggers to finish */
3608         wait_event(fs_info->transaction_wait,
3609                    (atomic_read(&fs_info->defrag_running) == 0));
3610
3611         /* clear out the rbtree of defraggable inodes */
3612         btrfs_cleanup_defrag_inodes(fs_info);
3613
3614         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3615                 ret = btrfs_commit_super(root);
3616                 if (ret)
3617                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3618         }
3619
3620         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3621                 btrfs_error_commit_super(root);
3622
3623         btrfs_put_block_group_cache(fs_info);
3624
3625         kthread_stop(fs_info->transaction_kthread);
3626         kthread_stop(fs_info->cleaner_kthread);
3627
3628         fs_info->closing = 2;
3629         smp_mb();
3630
3631         btrfs_free_qgroup_config(root->fs_info);
3632
3633         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3634                 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3635                        percpu_counter_sum(&fs_info->delalloc_bytes));
3636         }
3637
3638         btrfs_free_block_groups(fs_info);
3639
3640         btrfs_stop_all_workers(fs_info);
3641
3642         del_fs_roots(fs_info);
3643
3644         free_root_pointers(fs_info, 1);
3645
3646         iput(fs_info->btree_inode);
3647
3648 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3649         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3650                 btrfsic_unmount(root, fs_info->fs_devices);
3651 #endif
3652
3653         btrfs_close_devices(fs_info->fs_devices);
3654         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3655
3656         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3657         percpu_counter_destroy(&fs_info->delalloc_bytes);
3658         bdi_destroy(&fs_info->bdi);
3659         cleanup_srcu_struct(&fs_info->subvol_srcu);
3660
3661         btrfs_free_stripe_hash_table(fs_info);
3662
3663         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3664         root->orphan_block_rsv = NULL;
3665
3666         return 0;
3667 }
3668
3669 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3670                           int atomic)
3671 {
3672         int ret;
3673         struct inode *btree_inode = buf->pages[0]->mapping->host;
3674
3675         ret = extent_buffer_uptodate(buf);
3676         if (!ret)
3677                 return ret;
3678
3679         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3680                                     parent_transid, atomic);
3681         if (ret == -EAGAIN)
3682                 return ret;
3683         return !ret;
3684 }
3685
3686 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3687 {
3688         return set_extent_buffer_uptodate(buf);
3689 }
3690
3691 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3692 {
3693         struct btrfs_root *root;
3694         u64 transid = btrfs_header_generation(buf);
3695         int was_dirty;
3696
3697 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3698         /*
3699          * This is a fast path so only do this check if we have sanity tests
3700          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3701          * outside of the sanity tests.
3702          */
3703         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3704                 return;
3705 #endif
3706         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3707         btrfs_assert_tree_locked(buf);
3708         if (transid != root->fs_info->generation)
3709                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3710                        "found %llu running %llu\n",
3711                         buf->start, transid, root->fs_info->generation);
3712         was_dirty = set_extent_buffer_dirty(buf);
3713         if (!was_dirty)
3714                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3715                                      buf->len,
3716                                      root->fs_info->dirty_metadata_batch);
3717 }
3718
3719 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3720                                         int flush_delayed)
3721 {
3722         /*
3723          * looks as though older kernels can get into trouble with
3724          * this code, they end up stuck in balance_dirty_pages forever
3725          */
3726         int ret;
3727
3728         if (current->flags & PF_MEMALLOC)
3729                 return;
3730
3731         if (flush_delayed)
3732                 btrfs_balance_delayed_items(root);
3733
3734         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3735                                      BTRFS_DIRTY_METADATA_THRESH);
3736         if (ret > 0) {
3737                 balance_dirty_pages_ratelimited(
3738                                    root->fs_info->btree_inode->i_mapping);
3739         }
3740         return;
3741 }
3742
3743 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3744 {
3745         __btrfs_btree_balance_dirty(root, 1);
3746 }
3747
3748 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3749 {
3750         __btrfs_btree_balance_dirty(root, 0);
3751 }
3752
3753 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3754 {
3755         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3756         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3757 }
3758
3759 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3760                               int read_only)
3761 {
3762         /*
3763          * Placeholder for checks
3764          */
3765         return 0;
3766 }
3767
3768 static void btrfs_error_commit_super(struct btrfs_root *root)
3769 {
3770         mutex_lock(&root->fs_info->cleaner_mutex);
3771         btrfs_run_delayed_iputs(root);
3772         mutex_unlock(&root->fs_info->cleaner_mutex);
3773
3774         down_write(&root->fs_info->cleanup_work_sem);
3775         up_write(&root->fs_info->cleanup_work_sem);
3776
3777         /* cleanup FS via transaction */
3778         btrfs_cleanup_transaction(root);
3779 }
3780
3781 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3782                                              struct btrfs_root *root)
3783 {
3784         struct btrfs_inode *btrfs_inode;
3785         struct list_head splice;
3786
3787         INIT_LIST_HEAD(&splice);
3788
3789         mutex_lock(&root->fs_info->ordered_operations_mutex);
3790         spin_lock(&root->fs_info->ordered_root_lock);
3791
3792         list_splice_init(&t->ordered_operations, &splice);
3793         while (!list_empty(&splice)) {
3794                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3795                                          ordered_operations);
3796
3797                 list_del_init(&btrfs_inode->ordered_operations);
3798                 spin_unlock(&root->fs_info->ordered_root_lock);
3799
3800                 btrfs_invalidate_inodes(btrfs_inode->root);
3801
3802                 spin_lock(&root->fs_info->ordered_root_lock);
3803         }
3804
3805         spin_unlock(&root->fs_info->ordered_root_lock);
3806         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3807 }
3808
3809 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3810 {
3811         struct btrfs_ordered_extent *ordered;
3812
3813         spin_lock(&root->ordered_extent_lock);
3814         /*
3815          * This will just short circuit the ordered completion stuff which will
3816          * make sure the ordered extent gets properly cleaned up.
3817          */
3818         list_for_each_entry(ordered, &root->ordered_extents,
3819                             root_extent_list)
3820                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3821         spin_unlock(&root->ordered_extent_lock);
3822 }
3823
3824 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3825 {
3826         struct btrfs_root *root;
3827         struct list_head splice;
3828
3829         INIT_LIST_HEAD(&splice);
3830
3831         spin_lock(&fs_info->ordered_root_lock);
3832         list_splice_init(&fs_info->ordered_roots, &splice);
3833         while (!list_empty(&splice)) {
3834                 root = list_first_entry(&splice, struct btrfs_root,
3835                                         ordered_root);
3836                 list_del_init(&root->ordered_root);
3837
3838                 btrfs_destroy_ordered_extents(root);
3839
3840                 cond_resched_lock(&fs_info->ordered_root_lock);
3841         }
3842         spin_unlock(&fs_info->ordered_root_lock);
3843 }
3844
3845 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3846                                       struct btrfs_root *root)
3847 {
3848         struct rb_node *node;
3849         struct btrfs_delayed_ref_root *delayed_refs;
3850         struct btrfs_delayed_ref_node *ref;
3851         int ret = 0;
3852
3853         delayed_refs = &trans->delayed_refs;
3854
3855         spin_lock(&delayed_refs->lock);
3856         if (delayed_refs->num_entries == 0) {
3857                 spin_unlock(&delayed_refs->lock);
3858                 printk(KERN_INFO "delayed_refs has NO entry\n");
3859                 return ret;
3860         }
3861
3862         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3863                 struct btrfs_delayed_ref_head *head = NULL;
3864                 bool pin_bytes = false;
3865
3866                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3867                 atomic_set(&ref->refs, 1);
3868                 if (btrfs_delayed_ref_is_head(ref)) {
3869
3870                         head = btrfs_delayed_node_to_head(ref);
3871                         if (!mutex_trylock(&head->mutex)) {
3872                                 atomic_inc(&ref->refs);
3873                                 spin_unlock(&delayed_refs->lock);
3874
3875                                 /* Need to wait for the delayed ref to run */
3876                                 mutex_lock(&head->mutex);
3877                                 mutex_unlock(&head->mutex);
3878                                 btrfs_put_delayed_ref(ref);
3879
3880                                 spin_lock(&delayed_refs->lock);
3881                                 continue;
3882                         }
3883
3884                         if (head->must_insert_reserved)
3885                                 pin_bytes = true;
3886                         btrfs_free_delayed_extent_op(head->extent_op);
3887                         delayed_refs->num_heads--;
3888                         if (list_empty(&head->cluster))
3889                                 delayed_refs->num_heads_ready--;
3890                         list_del_init(&head->cluster);
3891                 }
3892
3893                 ref->in_tree = 0;
3894                 rb_erase(&ref->rb_node, &delayed_refs->root);
3895                 delayed_refs->num_entries--;
3896                 spin_unlock(&delayed_refs->lock);
3897                 if (head) {
3898                         if (pin_bytes)
3899                                 btrfs_pin_extent(root, ref->bytenr,
3900                                                  ref->num_bytes, 1);
3901                         mutex_unlock(&head->mutex);
3902                 }
3903                 btrfs_put_delayed_ref(ref);
3904
3905                 cond_resched();
3906                 spin_lock(&delayed_refs->lock);
3907         }
3908
3909         spin_unlock(&delayed_refs->lock);
3910
3911         return ret;
3912 }
3913
3914 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3915 {
3916         struct btrfs_pending_snapshot *snapshot;
3917         struct list_head splice;
3918
3919         INIT_LIST_HEAD(&splice);
3920
3921         list_splice_init(&t->pending_snapshots, &splice);
3922
3923         while (!list_empty(&splice)) {
3924                 snapshot = list_entry(splice.next,
3925                                       struct btrfs_pending_snapshot,
3926                                       list);
3927                 snapshot->error = -ECANCELED;
3928                 list_del_init(&snapshot->list);
3929         }
3930 }
3931
3932 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3933 {
3934         struct btrfs_inode *btrfs_inode;
3935         struct list_head splice;
3936
3937         INIT_LIST_HEAD(&splice);
3938
3939         spin_lock(&root->delalloc_lock);
3940         list_splice_init(&root->delalloc_inodes, &splice);
3941
3942         while (!list_empty(&splice)) {
3943                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3944                                                delalloc_inodes);
3945
3946                 list_del_init(&btrfs_inode->delalloc_inodes);
3947                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3948                           &btrfs_inode->runtime_flags);
3949                 spin_unlock(&root->delalloc_lock);
3950
3951                 btrfs_invalidate_inodes(btrfs_inode->root);
3952
3953                 spin_lock(&root->delalloc_lock);
3954         }
3955
3956         spin_unlock(&root->delalloc_lock);
3957 }
3958
3959 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3960 {
3961         struct btrfs_root *root;
3962         struct list_head splice;
3963
3964         INIT_LIST_HEAD(&splice);
3965
3966         spin_lock(&fs_info->delalloc_root_lock);
3967         list_splice_init(&fs_info->delalloc_roots, &splice);
3968         while (!list_empty(&splice)) {
3969                 root = list_first_entry(&splice, struct btrfs_root,
3970                                          delalloc_root);
3971                 list_del_init(&root->delalloc_root);
3972                 root = btrfs_grab_fs_root(root);
3973                 BUG_ON(!root);
3974                 spin_unlock(&fs_info->delalloc_root_lock);
3975
3976                 btrfs_destroy_delalloc_inodes(root);
3977                 btrfs_put_fs_root(root);
3978
3979                 spin_lock(&fs_info->delalloc_root_lock);
3980         }
3981         spin_unlock(&fs_info->delalloc_root_lock);
3982 }
3983
3984 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3985                                         struct extent_io_tree *dirty_pages,
3986                                         int mark)
3987 {
3988         int ret;
3989         struct extent_buffer *eb;
3990         u64 start = 0;
3991         u64 end;
3992
3993         while (1) {
3994                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3995                                             mark, NULL);
3996                 if (ret)
3997                         break;
3998
3999                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4000                 while (start <= end) {
4001                         eb = btrfs_find_tree_block(root, start,
4002                                                    root->leafsize);
4003                         start += root->leafsize;
4004                         if (!eb)
4005                                 continue;
4006                         wait_on_extent_buffer_writeback(eb);
4007
4008                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4009                                                &eb->bflags))
4010                                 clear_extent_buffer_dirty(eb);
4011                         free_extent_buffer_stale(eb);
4012                 }
4013         }
4014
4015         return ret;
4016 }
4017
4018 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4019                                        struct extent_io_tree *pinned_extents)
4020 {
4021         struct extent_io_tree *unpin;
4022         u64 start;
4023         u64 end;
4024         int ret;
4025         bool loop = true;
4026
4027         unpin = pinned_extents;
4028 again:
4029         while (1) {
4030                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4031                                             EXTENT_DIRTY, NULL);
4032                 if (ret)
4033                         break;
4034
4035                 /* opt_discard */
4036                 if (btrfs_test_opt(root, DISCARD))
4037                         ret = btrfs_error_discard_extent(root, start,
4038                                                          end + 1 - start,
4039                                                          NULL);
4040
4041                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4042                 btrfs_error_unpin_extent_range(root, start, end);
4043                 cond_resched();
4044         }
4045
4046         if (loop) {
4047                 if (unpin == &root->fs_info->freed_extents[0])
4048                         unpin = &root->fs_info->freed_extents[1];
4049                 else
4050                         unpin = &root->fs_info->freed_extents[0];
4051                 loop = false;
4052                 goto again;
4053         }
4054
4055         return 0;
4056 }
4057
4058 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4059                                    struct btrfs_root *root)
4060 {
4061         btrfs_destroy_delayed_refs(cur_trans, root);
4062         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
4063                                 cur_trans->dirty_pages.dirty_bytes);
4064
4065         cur_trans->state = TRANS_STATE_COMMIT_START;
4066         wake_up(&root->fs_info->transaction_blocked_wait);
4067
4068         btrfs_evict_pending_snapshots(cur_trans);
4069
4070         cur_trans->state = TRANS_STATE_UNBLOCKED;
4071         wake_up(&root->fs_info->transaction_wait);
4072
4073         btrfs_destroy_delayed_inodes(root);
4074         btrfs_assert_delayed_root_empty(root);
4075
4076         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4077                                      EXTENT_DIRTY);
4078         btrfs_destroy_pinned_extent(root,
4079                                     root->fs_info->pinned_extents);
4080
4081         cur_trans->state =TRANS_STATE_COMPLETED;
4082         wake_up(&cur_trans->commit_wait);
4083
4084         /*
4085         memset(cur_trans, 0, sizeof(*cur_trans));
4086         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4087         */
4088 }
4089
4090 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4091 {
4092         struct btrfs_transaction *t;
4093         LIST_HEAD(list);
4094
4095         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4096
4097         spin_lock(&root->fs_info->trans_lock);
4098         list_splice_init(&root->fs_info->trans_list, &list);
4099         root->fs_info->running_transaction = NULL;
4100         spin_unlock(&root->fs_info->trans_lock);
4101
4102         while (!list_empty(&list)) {
4103                 t = list_entry(list.next, struct btrfs_transaction, list);
4104
4105                 btrfs_destroy_ordered_operations(t, root);
4106
4107                 btrfs_destroy_all_ordered_extents(root->fs_info);
4108
4109                 btrfs_destroy_delayed_refs(t, root);
4110
4111                 /*
4112                  *  FIXME: cleanup wait for commit
4113                  *  We needn't acquire the lock here, because we are during
4114                  *  the umount, there is no other task which will change it.
4115                  */
4116                 t->state = TRANS_STATE_COMMIT_START;
4117                 smp_mb();
4118                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
4119                         wake_up(&root->fs_info->transaction_blocked_wait);
4120
4121                 btrfs_evict_pending_snapshots(t);
4122
4123                 t->state = TRANS_STATE_UNBLOCKED;
4124                 smp_mb();
4125                 if (waitqueue_active(&root->fs_info->transaction_wait))
4126                         wake_up(&root->fs_info->transaction_wait);
4127
4128                 btrfs_destroy_delayed_inodes(root);
4129                 btrfs_assert_delayed_root_empty(root);
4130
4131                 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4132
4133                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
4134                                              EXTENT_DIRTY);
4135
4136                 btrfs_destroy_pinned_extent(root,
4137                                             root->fs_info->pinned_extents);
4138
4139                 t->state = TRANS_STATE_COMPLETED;
4140                 smp_mb();
4141                 if (waitqueue_active(&t->commit_wait))
4142                         wake_up(&t->commit_wait);
4143
4144                 atomic_set(&t->use_count, 0);
4145                 list_del_init(&t->list);
4146                 memset(t, 0, sizeof(*t));
4147                 kmem_cache_free(btrfs_transaction_cachep, t);
4148         }
4149
4150         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4151
4152         return 0;
4153 }
4154
4155 static struct extent_io_ops btree_extent_io_ops = {
4156         .readpage_end_io_hook = btree_readpage_end_io_hook,
4157         .readpage_io_failed_hook = btree_io_failed_hook,
4158         .submit_bio_hook = btree_submit_bio_hook,
4159         /* note we're sharing with inode.c for the merge bio hook */
4160         .merge_bio_hook = btrfs_merge_bio_hook,
4161 };