Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50
51 #ifdef CONFIG_X86
52 #include <asm/cpufeature.h>
53 #endif
54
55 static struct extent_io_ops btree_extent_io_ops;
56 static void end_workqueue_fn(struct btrfs_work *work);
57 static void free_fs_root(struct btrfs_root *root);
58 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
59                                     int read_only);
60 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
61                                              struct btrfs_root *root);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64                                       struct btrfs_root *root);
65 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
68                                         struct extent_io_tree *dirty_pages,
69                                         int mark);
70 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
71                                        struct extent_io_tree *pinned_extents);
72
73 /*
74  * end_io_wq structs are used to do processing in task context when an IO is
75  * complete.  This is used during reads to verify checksums, and it is used
76  * by writes to insert metadata for new file extents after IO is complete.
77  */
78 struct end_io_wq {
79         struct bio *bio;
80         bio_end_io_t *end_io;
81         void *private;
82         struct btrfs_fs_info *info;
83         int error;
84         int metadata;
85         struct list_head list;
86         struct btrfs_work work;
87 };
88
89 /*
90  * async submit bios are used to offload expensive checksumming
91  * onto the worker threads.  They checksum file and metadata bios
92  * just before they are sent down the IO stack.
93  */
94 struct async_submit_bio {
95         struct inode *inode;
96         struct bio *bio;
97         struct list_head list;
98         extent_submit_bio_hook_t *submit_bio_start;
99         extent_submit_bio_hook_t *submit_bio_done;
100         int rw;
101         int mirror_num;
102         unsigned long bio_flags;
103         /*
104          * bio_offset is optional, can be used if the pages in the bio
105          * can't tell us where in the file the bio should go
106          */
107         u64 bio_offset;
108         struct btrfs_work work;
109         int error;
110 };
111
112 /*
113  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
114  * eb, the lockdep key is determined by the btrfs_root it belongs to and
115  * the level the eb occupies in the tree.
116  *
117  * Different roots are used for different purposes and may nest inside each
118  * other and they require separate keysets.  As lockdep keys should be
119  * static, assign keysets according to the purpose of the root as indicated
120  * by btrfs_root->objectid.  This ensures that all special purpose roots
121  * have separate keysets.
122  *
123  * Lock-nesting across peer nodes is always done with the immediate parent
124  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
125  * subclass to avoid triggering lockdep warning in such cases.
126  *
127  * The key is set by the readpage_end_io_hook after the buffer has passed
128  * csum validation but before the pages are unlocked.  It is also set by
129  * btrfs_init_new_buffer on freshly allocated blocks.
130  *
131  * We also add a check to make sure the highest level of the tree is the
132  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
133  * needs update as well.
134  */
135 #ifdef CONFIG_DEBUG_LOCK_ALLOC
136 # if BTRFS_MAX_LEVEL != 8
137 #  error
138 # endif
139
140 static struct btrfs_lockdep_keyset {
141         u64                     id;             /* root objectid */
142         const char              *name_stem;     /* lock name stem */
143         char                    names[BTRFS_MAX_LEVEL + 1][20];
144         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
145 } btrfs_lockdep_keysets[] = {
146         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
147         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
148         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
149         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
150         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
151         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
152         { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
153         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
154         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
155         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
156         { .id = 0,                              .name_stem = "tree"     },
157 };
158
159 void __init btrfs_init_lockdep(void)
160 {
161         int i, j;
162
163         /* initialize lockdep class names */
164         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
165                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
166
167                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
168                         snprintf(ks->names[j], sizeof(ks->names[j]),
169                                  "btrfs-%s-%02d", ks->name_stem, j);
170         }
171 }
172
173 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
174                                     int level)
175 {
176         struct btrfs_lockdep_keyset *ks;
177
178         BUG_ON(level >= ARRAY_SIZE(ks->keys));
179
180         /* find the matching keyset, id 0 is the default entry */
181         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
182                 if (ks->id == objectid)
183                         break;
184
185         lockdep_set_class_and_name(&eb->lock,
186                                    &ks->keys[level], ks->names[level]);
187 }
188
189 #endif
190
191 /*
192  * extents on the btree inode are pretty simple, there's one extent
193  * that covers the entire device
194  */
195 static struct extent_map *btree_get_extent(struct inode *inode,
196                 struct page *page, size_t pg_offset, u64 start, u64 len,
197                 int create)
198 {
199         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
200         struct extent_map *em;
201         int ret;
202
203         read_lock(&em_tree->lock);
204         em = lookup_extent_mapping(em_tree, start, len);
205         if (em) {
206                 em->bdev =
207                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
208                 read_unlock(&em_tree->lock);
209                 goto out;
210         }
211         read_unlock(&em_tree->lock);
212
213         em = alloc_extent_map();
214         if (!em) {
215                 em = ERR_PTR(-ENOMEM);
216                 goto out;
217         }
218         em->start = 0;
219         em->len = (u64)-1;
220         em->block_len = (u64)-1;
221         em->block_start = 0;
222         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
223
224         write_lock(&em_tree->lock);
225         ret = add_extent_mapping(em_tree, em);
226         if (ret == -EEXIST) {
227                 free_extent_map(em);
228                 em = lookup_extent_mapping(em_tree, start, len);
229                 if (!em)
230                         em = ERR_PTR(-EIO);
231         } else if (ret) {
232                 free_extent_map(em);
233                 em = ERR_PTR(ret);
234         }
235         write_unlock(&em_tree->lock);
236
237 out:
238         return em;
239 }
240
241 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
242 {
243         return crc32c(seed, data, len);
244 }
245
246 void btrfs_csum_final(u32 crc, char *result)
247 {
248         put_unaligned_le32(~crc, result);
249 }
250
251 /*
252  * compute the csum for a btree block, and either verify it or write it
253  * into the csum field of the block.
254  */
255 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
256                            int verify)
257 {
258         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
259         char *result = NULL;
260         unsigned long len;
261         unsigned long cur_len;
262         unsigned long offset = BTRFS_CSUM_SIZE;
263         char *kaddr;
264         unsigned long map_start;
265         unsigned long map_len;
266         int err;
267         u32 crc = ~(u32)0;
268         unsigned long inline_result;
269
270         len = buf->len - offset;
271         while (len > 0) {
272                 err = map_private_extent_buffer(buf, offset, 32,
273                                         &kaddr, &map_start, &map_len);
274                 if (err)
275                         return 1;
276                 cur_len = min(len, map_len - (offset - map_start));
277                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
278                                       crc, cur_len);
279                 len -= cur_len;
280                 offset += cur_len;
281         }
282         if (csum_size > sizeof(inline_result)) {
283                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
284                 if (!result)
285                         return 1;
286         } else {
287                 result = (char *)&inline_result;
288         }
289
290         btrfs_csum_final(crc, result);
291
292         if (verify) {
293                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
294                         u32 val;
295                         u32 found = 0;
296                         memcpy(&found, result, csum_size);
297
298                         read_extent_buffer(buf, &val, 0, csum_size);
299                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
300                                        "failed on %llu wanted %X found %X "
301                                        "level %d\n",
302                                        root->fs_info->sb->s_id,
303                                        (unsigned long long)buf->start, val, found,
304                                        btrfs_header_level(buf));
305                         if (result != (char *)&inline_result)
306                                 kfree(result);
307                         return 1;
308                 }
309         } else {
310                 write_extent_buffer(buf, result, 0, csum_size);
311         }
312         if (result != (char *)&inline_result)
313                 kfree(result);
314         return 0;
315 }
316
317 /*
318  * we can't consider a given block up to date unless the transid of the
319  * block matches the transid in the parent node's pointer.  This is how we
320  * detect blocks that either didn't get written at all or got written
321  * in the wrong place.
322  */
323 static int verify_parent_transid(struct extent_io_tree *io_tree,
324                                  struct extent_buffer *eb, u64 parent_transid,
325                                  int atomic)
326 {
327         struct extent_state *cached_state = NULL;
328         int ret;
329
330         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331                 return 0;
332
333         if (atomic)
334                 return -EAGAIN;
335
336         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
337                          0, &cached_state);
338         if (extent_buffer_uptodate(eb) &&
339             btrfs_header_generation(eb) == parent_transid) {
340                 ret = 0;
341                 goto out;
342         }
343         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
344                        "found %llu\n",
345                        (unsigned long long)eb->start,
346                        (unsigned long long)parent_transid,
347                        (unsigned long long)btrfs_header_generation(eb));
348         ret = 1;
349         clear_extent_buffer_uptodate(eb);
350 out:
351         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
352                              &cached_state, GFP_NOFS);
353         return ret;
354 }
355
356 /*
357  * helper to read a given tree block, doing retries as required when
358  * the checksums don't match and we have alternate mirrors to try.
359  */
360 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
361                                           struct extent_buffer *eb,
362                                           u64 start, u64 parent_transid)
363 {
364         struct extent_io_tree *io_tree;
365         int failed = 0;
366         int ret;
367         int num_copies = 0;
368         int mirror_num = 0;
369         int failed_mirror = 0;
370
371         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
372         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
373         while (1) {
374                 ret = read_extent_buffer_pages(io_tree, eb, start,
375                                                WAIT_COMPLETE,
376                                                btree_get_extent, mirror_num);
377                 if (!ret) {
378                         if (!verify_parent_transid(io_tree, eb,
379                                                    parent_transid, 0))
380                                 break;
381                         else
382                                 ret = -EIO;
383                 }
384
385                 /*
386                  * This buffer's crc is fine, but its contents are corrupted, so
387                  * there is no reason to read the other copies, they won't be
388                  * any less wrong.
389                  */
390                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
391                         break;
392
393                 num_copies = btrfs_num_copies(root->fs_info,
394                                               eb->start, eb->len);
395                 if (num_copies == 1)
396                         break;
397
398                 if (!failed_mirror) {
399                         failed = 1;
400                         failed_mirror = eb->read_mirror;
401                 }
402
403                 mirror_num++;
404                 if (mirror_num == failed_mirror)
405                         mirror_num++;
406
407                 if (mirror_num > num_copies)
408                         break;
409         }
410
411         if (failed && !ret && failed_mirror)
412                 repair_eb_io_failure(root, eb, failed_mirror);
413
414         return ret;
415 }
416
417 /*
418  * checksum a dirty tree block before IO.  This has extra checks to make sure
419  * we only fill in the checksum field in the first page of a multi-page block
420  */
421
422 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
423 {
424         struct extent_io_tree *tree;
425         u64 start = page_offset(page);
426         u64 found_start;
427         struct extent_buffer *eb;
428
429         tree = &BTRFS_I(page->mapping->host)->io_tree;
430
431         eb = (struct extent_buffer *)page->private;
432         if (page != eb->pages[0])
433                 return 0;
434         found_start = btrfs_header_bytenr(eb);
435         if (found_start != start) {
436                 WARN_ON(1);
437                 return 0;
438         }
439         if (!PageUptodate(page)) {
440                 WARN_ON(1);
441                 return 0;
442         }
443         csum_tree_block(root, eb, 0);
444         return 0;
445 }
446
447 static int check_tree_block_fsid(struct btrfs_root *root,
448                                  struct extent_buffer *eb)
449 {
450         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
451         u8 fsid[BTRFS_UUID_SIZE];
452         int ret = 1;
453
454         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
455                            BTRFS_FSID_SIZE);
456         while (fs_devices) {
457                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
458                         ret = 0;
459                         break;
460                 }
461                 fs_devices = fs_devices->seed;
462         }
463         return ret;
464 }
465
466 #define CORRUPT(reason, eb, root, slot)                         \
467         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
468                "root=%llu, slot=%d\n", reason,                  \
469                (unsigned long long)btrfs_header_bytenr(eb),     \
470                (unsigned long long)root->objectid, slot)
471
472 static noinline int check_leaf(struct btrfs_root *root,
473                                struct extent_buffer *leaf)
474 {
475         struct btrfs_key key;
476         struct btrfs_key leaf_key;
477         u32 nritems = btrfs_header_nritems(leaf);
478         int slot;
479
480         if (nritems == 0)
481                 return 0;
482
483         /* Check the 0 item */
484         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
485             BTRFS_LEAF_DATA_SIZE(root)) {
486                 CORRUPT("invalid item offset size pair", leaf, root, 0);
487                 return -EIO;
488         }
489
490         /*
491          * Check to make sure each items keys are in the correct order and their
492          * offsets make sense.  We only have to loop through nritems-1 because
493          * we check the current slot against the next slot, which verifies the
494          * next slot's offset+size makes sense and that the current's slot
495          * offset is correct.
496          */
497         for (slot = 0; slot < nritems - 1; slot++) {
498                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
499                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
500
501                 /* Make sure the keys are in the right order */
502                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
503                         CORRUPT("bad key order", leaf, root, slot);
504                         return -EIO;
505                 }
506
507                 /*
508                  * Make sure the offset and ends are right, remember that the
509                  * item data starts at the end of the leaf and grows towards the
510                  * front.
511                  */
512                 if (btrfs_item_offset_nr(leaf, slot) !=
513                         btrfs_item_end_nr(leaf, slot + 1)) {
514                         CORRUPT("slot offset bad", leaf, root, slot);
515                         return -EIO;
516                 }
517
518                 /*
519                  * Check to make sure that we don't point outside of the leaf,
520                  * just incase all the items are consistent to eachother, but
521                  * all point outside of the leaf.
522                  */
523                 if (btrfs_item_end_nr(leaf, slot) >
524                     BTRFS_LEAF_DATA_SIZE(root)) {
525                         CORRUPT("slot end outside of leaf", leaf, root, slot);
526                         return -EIO;
527                 }
528         }
529
530         return 0;
531 }
532
533 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
534                                        struct page *page, int max_walk)
535 {
536         struct extent_buffer *eb;
537         u64 start = page_offset(page);
538         u64 target = start;
539         u64 min_start;
540
541         if (start < max_walk)
542                 min_start = 0;
543         else
544                 min_start = start - max_walk;
545
546         while (start >= min_start) {
547                 eb = find_extent_buffer(tree, start, 0);
548                 if (eb) {
549                         /*
550                          * we found an extent buffer and it contains our page
551                          * horray!
552                          */
553                         if (eb->start <= target &&
554                             eb->start + eb->len > target)
555                                 return eb;
556
557                         /* we found an extent buffer that wasn't for us */
558                         free_extent_buffer(eb);
559                         return NULL;
560                 }
561                 if (start == 0)
562                         break;
563                 start -= PAGE_CACHE_SIZE;
564         }
565         return NULL;
566 }
567
568 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
569                                struct extent_state *state, int mirror)
570 {
571         struct extent_io_tree *tree;
572         u64 found_start;
573         int found_level;
574         struct extent_buffer *eb;
575         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
576         int ret = 0;
577         int reads_done;
578
579         if (!page->private)
580                 goto out;
581
582         tree = &BTRFS_I(page->mapping->host)->io_tree;
583         eb = (struct extent_buffer *)page->private;
584
585         /* the pending IO might have been the only thing that kept this buffer
586          * in memory.  Make sure we have a ref for all this other checks
587          */
588         extent_buffer_get(eb);
589
590         reads_done = atomic_dec_and_test(&eb->io_pages);
591         if (!reads_done)
592                 goto err;
593
594         eb->read_mirror = mirror;
595         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
596                 ret = -EIO;
597                 goto err;
598         }
599
600         found_start = btrfs_header_bytenr(eb);
601         if (found_start != eb->start) {
602                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
603                                "%llu %llu\n",
604                                (unsigned long long)found_start,
605                                (unsigned long long)eb->start);
606                 ret = -EIO;
607                 goto err;
608         }
609         if (check_tree_block_fsid(root, eb)) {
610                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
611                                (unsigned long long)eb->start);
612                 ret = -EIO;
613                 goto err;
614         }
615         found_level = btrfs_header_level(eb);
616
617         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
618                                        eb, found_level);
619
620         ret = csum_tree_block(root, eb, 1);
621         if (ret) {
622                 ret = -EIO;
623                 goto err;
624         }
625
626         /*
627          * If this is a leaf block and it is corrupt, set the corrupt bit so
628          * that we don't try and read the other copies of this block, just
629          * return -EIO.
630          */
631         if (found_level == 0 && check_leaf(root, eb)) {
632                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
633                 ret = -EIO;
634         }
635
636         if (!ret)
637                 set_extent_buffer_uptodate(eb);
638 err:
639         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
640                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
641                 btree_readahead_hook(root, eb, eb->start, ret);
642         }
643
644         if (ret) {
645                 /*
646                  * our io error hook is going to dec the io pages
647                  * again, we have to make sure it has something
648                  * to decrement
649                  */
650                 atomic_inc(&eb->io_pages);
651                 clear_extent_buffer_uptodate(eb);
652         }
653         free_extent_buffer(eb);
654 out:
655         return ret;
656 }
657
658 static int btree_io_failed_hook(struct page *page, int failed_mirror)
659 {
660         struct extent_buffer *eb;
661         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
662
663         eb = (struct extent_buffer *)page->private;
664         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
665         eb->read_mirror = failed_mirror;
666         atomic_dec(&eb->io_pages);
667         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
668                 btree_readahead_hook(root, eb, eb->start, -EIO);
669         return -EIO;    /* we fixed nothing */
670 }
671
672 static void end_workqueue_bio(struct bio *bio, int err)
673 {
674         struct end_io_wq *end_io_wq = bio->bi_private;
675         struct btrfs_fs_info *fs_info;
676
677         fs_info = end_io_wq->info;
678         end_io_wq->error = err;
679         end_io_wq->work.func = end_workqueue_fn;
680         end_io_wq->work.flags = 0;
681
682         if (bio->bi_rw & REQ_WRITE) {
683                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
684                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
685                                            &end_io_wq->work);
686                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
687                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
688                                            &end_io_wq->work);
689                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
690                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
691                                            &end_io_wq->work);
692                 else
693                         btrfs_queue_worker(&fs_info->endio_write_workers,
694                                            &end_io_wq->work);
695         } else {
696                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
697                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
698                                            &end_io_wq->work);
699                 else if (end_io_wq->metadata)
700                         btrfs_queue_worker(&fs_info->endio_meta_workers,
701                                            &end_io_wq->work);
702                 else
703                         btrfs_queue_worker(&fs_info->endio_workers,
704                                            &end_io_wq->work);
705         }
706 }
707
708 /*
709  * For the metadata arg you want
710  *
711  * 0 - if data
712  * 1 - if normal metadta
713  * 2 - if writing to the free space cache area
714  * 3 - raid parity work
715  */
716 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
717                         int metadata)
718 {
719         struct end_io_wq *end_io_wq;
720         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
721         if (!end_io_wq)
722                 return -ENOMEM;
723
724         end_io_wq->private = bio->bi_private;
725         end_io_wq->end_io = bio->bi_end_io;
726         end_io_wq->info = info;
727         end_io_wq->error = 0;
728         end_io_wq->bio = bio;
729         end_io_wq->metadata = metadata;
730
731         bio->bi_private = end_io_wq;
732         bio->bi_end_io = end_workqueue_bio;
733         return 0;
734 }
735
736 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
737 {
738         unsigned long limit = min_t(unsigned long,
739                                     info->workers.max_workers,
740                                     info->fs_devices->open_devices);
741         return 256 * limit;
742 }
743
744 static void run_one_async_start(struct btrfs_work *work)
745 {
746         struct async_submit_bio *async;
747         int ret;
748
749         async = container_of(work, struct  async_submit_bio, work);
750         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
751                                       async->mirror_num, async->bio_flags,
752                                       async->bio_offset);
753         if (ret)
754                 async->error = ret;
755 }
756
757 static void run_one_async_done(struct btrfs_work *work)
758 {
759         struct btrfs_fs_info *fs_info;
760         struct async_submit_bio *async;
761         int limit;
762
763         async = container_of(work, struct  async_submit_bio, work);
764         fs_info = BTRFS_I(async->inode)->root->fs_info;
765
766         limit = btrfs_async_submit_limit(fs_info);
767         limit = limit * 2 / 3;
768
769         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
770             waitqueue_active(&fs_info->async_submit_wait))
771                 wake_up(&fs_info->async_submit_wait);
772
773         /* If an error occured we just want to clean up the bio and move on */
774         if (async->error) {
775                 bio_endio(async->bio, async->error);
776                 return;
777         }
778
779         async->submit_bio_done(async->inode, async->rw, async->bio,
780                                async->mirror_num, async->bio_flags,
781                                async->bio_offset);
782 }
783
784 static void run_one_async_free(struct btrfs_work *work)
785 {
786         struct async_submit_bio *async;
787
788         async = container_of(work, struct  async_submit_bio, work);
789         kfree(async);
790 }
791
792 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
793                         int rw, struct bio *bio, int mirror_num,
794                         unsigned long bio_flags,
795                         u64 bio_offset,
796                         extent_submit_bio_hook_t *submit_bio_start,
797                         extent_submit_bio_hook_t *submit_bio_done)
798 {
799         struct async_submit_bio *async;
800
801         async = kmalloc(sizeof(*async), GFP_NOFS);
802         if (!async)
803                 return -ENOMEM;
804
805         async->inode = inode;
806         async->rw = rw;
807         async->bio = bio;
808         async->mirror_num = mirror_num;
809         async->submit_bio_start = submit_bio_start;
810         async->submit_bio_done = submit_bio_done;
811
812         async->work.func = run_one_async_start;
813         async->work.ordered_func = run_one_async_done;
814         async->work.ordered_free = run_one_async_free;
815
816         async->work.flags = 0;
817         async->bio_flags = bio_flags;
818         async->bio_offset = bio_offset;
819
820         async->error = 0;
821
822         atomic_inc(&fs_info->nr_async_submits);
823
824         if (rw & REQ_SYNC)
825                 btrfs_set_work_high_prio(&async->work);
826
827         btrfs_queue_worker(&fs_info->workers, &async->work);
828
829         while (atomic_read(&fs_info->async_submit_draining) &&
830               atomic_read(&fs_info->nr_async_submits)) {
831                 wait_event(fs_info->async_submit_wait,
832                            (atomic_read(&fs_info->nr_async_submits) == 0));
833         }
834
835         return 0;
836 }
837
838 static int btree_csum_one_bio(struct bio *bio)
839 {
840         struct bio_vec *bvec = bio->bi_io_vec;
841         int bio_index = 0;
842         struct btrfs_root *root;
843         int ret = 0;
844
845         WARN_ON(bio->bi_vcnt <= 0);
846         while (bio_index < bio->bi_vcnt) {
847                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
848                 ret = csum_dirty_buffer(root, bvec->bv_page);
849                 if (ret)
850                         break;
851                 bio_index++;
852                 bvec++;
853         }
854         return ret;
855 }
856
857 static int __btree_submit_bio_start(struct inode *inode, int rw,
858                                     struct bio *bio, int mirror_num,
859                                     unsigned long bio_flags,
860                                     u64 bio_offset)
861 {
862         /*
863          * when we're called for a write, we're already in the async
864          * submission context.  Just jump into btrfs_map_bio
865          */
866         return btree_csum_one_bio(bio);
867 }
868
869 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
870                                  int mirror_num, unsigned long bio_flags,
871                                  u64 bio_offset)
872 {
873         int ret;
874
875         /*
876          * when we're called for a write, we're already in the async
877          * submission context.  Just jump into btrfs_map_bio
878          */
879         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
880         if (ret)
881                 bio_endio(bio, ret);
882         return ret;
883 }
884
885 static int check_async_write(struct inode *inode, unsigned long bio_flags)
886 {
887         if (bio_flags & EXTENT_BIO_TREE_LOG)
888                 return 0;
889 #ifdef CONFIG_X86
890         if (cpu_has_xmm4_2)
891                 return 0;
892 #endif
893         return 1;
894 }
895
896 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
897                                  int mirror_num, unsigned long bio_flags,
898                                  u64 bio_offset)
899 {
900         int async = check_async_write(inode, bio_flags);
901         int ret;
902
903         if (!(rw & REQ_WRITE)) {
904                 /*
905                  * called for a read, do the setup so that checksum validation
906                  * can happen in the async kernel threads
907                  */
908                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
909                                           bio, 1);
910                 if (ret)
911                         goto out_w_error;
912                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
913                                     mirror_num, 0);
914         } else if (!async) {
915                 ret = btree_csum_one_bio(bio);
916                 if (ret)
917                         goto out_w_error;
918                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
919                                     mirror_num, 0);
920         } else {
921                 /*
922                  * kthread helpers are used to submit writes so that
923                  * checksumming can happen in parallel across all CPUs
924                  */
925                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
926                                           inode, rw, bio, mirror_num, 0,
927                                           bio_offset,
928                                           __btree_submit_bio_start,
929                                           __btree_submit_bio_done);
930         }
931
932         if (ret) {
933 out_w_error:
934                 bio_endio(bio, ret);
935         }
936         return ret;
937 }
938
939 #ifdef CONFIG_MIGRATION
940 static int btree_migratepage(struct address_space *mapping,
941                         struct page *newpage, struct page *page,
942                         enum migrate_mode mode)
943 {
944         /*
945          * we can't safely write a btree page from here,
946          * we haven't done the locking hook
947          */
948         if (PageDirty(page))
949                 return -EAGAIN;
950         /*
951          * Buffers may be managed in a filesystem specific way.
952          * We must have no buffers or drop them.
953          */
954         if (page_has_private(page) &&
955             !try_to_release_page(page, GFP_KERNEL))
956                 return -EAGAIN;
957         return migrate_page(mapping, newpage, page, mode);
958 }
959 #endif
960
961
962 static int btree_writepages(struct address_space *mapping,
963                             struct writeback_control *wbc)
964 {
965         struct extent_io_tree *tree;
966         struct btrfs_fs_info *fs_info;
967         int ret;
968
969         tree = &BTRFS_I(mapping->host)->io_tree;
970         if (wbc->sync_mode == WB_SYNC_NONE) {
971
972                 if (wbc->for_kupdate)
973                         return 0;
974
975                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
976                 /* this is a bit racy, but that's ok */
977                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
978                                              BTRFS_DIRTY_METADATA_THRESH);
979                 if (ret < 0)
980                         return 0;
981         }
982         return btree_write_cache_pages(mapping, wbc);
983 }
984
985 static int btree_readpage(struct file *file, struct page *page)
986 {
987         struct extent_io_tree *tree;
988         tree = &BTRFS_I(page->mapping->host)->io_tree;
989         return extent_read_full_page(tree, page, btree_get_extent, 0);
990 }
991
992 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
993 {
994         if (PageWriteback(page) || PageDirty(page))
995                 return 0;
996         /*
997          * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
998          * slab allocation from alloc_extent_state down the callchain where
999          * it'd hit a BUG_ON as those flags are not allowed.
1000          */
1001         gfp_flags &= ~GFP_SLAB_BUG_MASK;
1002
1003         return try_release_extent_buffer(page, gfp_flags);
1004 }
1005
1006 static void btree_invalidatepage(struct page *page, unsigned long offset)
1007 {
1008         struct extent_io_tree *tree;
1009         tree = &BTRFS_I(page->mapping->host)->io_tree;
1010         extent_invalidatepage(tree, page, offset);
1011         btree_releasepage(page, GFP_NOFS);
1012         if (PagePrivate(page)) {
1013                 printk(KERN_WARNING "btrfs warning page private not zero "
1014                        "on page %llu\n", (unsigned long long)page_offset(page));
1015                 ClearPagePrivate(page);
1016                 set_page_private(page, 0);
1017                 page_cache_release(page);
1018         }
1019 }
1020
1021 static int btree_set_page_dirty(struct page *page)
1022 {
1023 #ifdef DEBUG
1024         struct extent_buffer *eb;
1025
1026         BUG_ON(!PagePrivate(page));
1027         eb = (struct extent_buffer *)page->private;
1028         BUG_ON(!eb);
1029         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1030         BUG_ON(!atomic_read(&eb->refs));
1031         btrfs_assert_tree_locked(eb);
1032 #endif
1033         return __set_page_dirty_nobuffers(page);
1034 }
1035
1036 static const struct address_space_operations btree_aops = {
1037         .readpage       = btree_readpage,
1038         .writepages     = btree_writepages,
1039         .releasepage    = btree_releasepage,
1040         .invalidatepage = btree_invalidatepage,
1041 #ifdef CONFIG_MIGRATION
1042         .migratepage    = btree_migratepage,
1043 #endif
1044         .set_page_dirty = btree_set_page_dirty,
1045 };
1046
1047 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1048                          u64 parent_transid)
1049 {
1050         struct extent_buffer *buf = NULL;
1051         struct inode *btree_inode = root->fs_info->btree_inode;
1052         int ret = 0;
1053
1054         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1055         if (!buf)
1056                 return 0;
1057         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1058                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1059         free_extent_buffer(buf);
1060         return ret;
1061 }
1062
1063 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1064                          int mirror_num, struct extent_buffer **eb)
1065 {
1066         struct extent_buffer *buf = NULL;
1067         struct inode *btree_inode = root->fs_info->btree_inode;
1068         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1069         int ret;
1070
1071         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1072         if (!buf)
1073                 return 0;
1074
1075         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1076
1077         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1078                                        btree_get_extent, mirror_num);
1079         if (ret) {
1080                 free_extent_buffer(buf);
1081                 return ret;
1082         }
1083
1084         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1085                 free_extent_buffer(buf);
1086                 return -EIO;
1087         } else if (extent_buffer_uptodate(buf)) {
1088                 *eb = buf;
1089         } else {
1090                 free_extent_buffer(buf);
1091         }
1092         return 0;
1093 }
1094
1095 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1096                                             u64 bytenr, u32 blocksize)
1097 {
1098         struct inode *btree_inode = root->fs_info->btree_inode;
1099         struct extent_buffer *eb;
1100         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1101                                 bytenr, blocksize);
1102         return eb;
1103 }
1104
1105 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1106                                                  u64 bytenr, u32 blocksize)
1107 {
1108         struct inode *btree_inode = root->fs_info->btree_inode;
1109         struct extent_buffer *eb;
1110
1111         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1112                                  bytenr, blocksize);
1113         return eb;
1114 }
1115
1116
1117 int btrfs_write_tree_block(struct extent_buffer *buf)
1118 {
1119         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1120                                         buf->start + buf->len - 1);
1121 }
1122
1123 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1124 {
1125         return filemap_fdatawait_range(buf->pages[0]->mapping,
1126                                        buf->start, buf->start + buf->len - 1);
1127 }
1128
1129 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1130                                       u32 blocksize, u64 parent_transid)
1131 {
1132         struct extent_buffer *buf = NULL;
1133         int ret;
1134
1135         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1136         if (!buf)
1137                 return NULL;
1138
1139         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1140         return buf;
1141
1142 }
1143
1144 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1145                       struct extent_buffer *buf)
1146 {
1147         struct btrfs_fs_info *fs_info = root->fs_info;
1148
1149         if (btrfs_header_generation(buf) ==
1150             fs_info->running_transaction->transid) {
1151                 btrfs_assert_tree_locked(buf);
1152
1153                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1154                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1155                                              -buf->len,
1156                                              fs_info->dirty_metadata_batch);
1157                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1158                         btrfs_set_lock_blocking(buf);
1159                         clear_extent_buffer_dirty(buf);
1160                 }
1161         }
1162 }
1163
1164 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1165                          u32 stripesize, struct btrfs_root *root,
1166                          struct btrfs_fs_info *fs_info,
1167                          u64 objectid)
1168 {
1169         root->node = NULL;
1170         root->commit_root = NULL;
1171         root->sectorsize = sectorsize;
1172         root->nodesize = nodesize;
1173         root->leafsize = leafsize;
1174         root->stripesize = stripesize;
1175         root->ref_cows = 0;
1176         root->track_dirty = 0;
1177         root->in_radix = 0;
1178         root->orphan_item_inserted = 0;
1179         root->orphan_cleanup_state = 0;
1180
1181         root->objectid = objectid;
1182         root->last_trans = 0;
1183         root->highest_objectid = 0;
1184         root->name = NULL;
1185         root->inode_tree = RB_ROOT;
1186         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1187         root->block_rsv = NULL;
1188         root->orphan_block_rsv = NULL;
1189
1190         INIT_LIST_HEAD(&root->dirty_list);
1191         INIT_LIST_HEAD(&root->root_list);
1192         INIT_LIST_HEAD(&root->logged_list[0]);
1193         INIT_LIST_HEAD(&root->logged_list[1]);
1194         spin_lock_init(&root->orphan_lock);
1195         spin_lock_init(&root->inode_lock);
1196         spin_lock_init(&root->accounting_lock);
1197         spin_lock_init(&root->log_extents_lock[0]);
1198         spin_lock_init(&root->log_extents_lock[1]);
1199         mutex_init(&root->objectid_mutex);
1200         mutex_init(&root->log_mutex);
1201         init_waitqueue_head(&root->log_writer_wait);
1202         init_waitqueue_head(&root->log_commit_wait[0]);
1203         init_waitqueue_head(&root->log_commit_wait[1]);
1204         atomic_set(&root->log_commit[0], 0);
1205         atomic_set(&root->log_commit[1], 0);
1206         atomic_set(&root->log_writers, 0);
1207         atomic_set(&root->log_batch, 0);
1208         atomic_set(&root->orphan_inodes, 0);
1209         root->log_transid = 0;
1210         root->last_log_commit = 0;
1211         extent_io_tree_init(&root->dirty_log_pages,
1212                              fs_info->btree_inode->i_mapping);
1213
1214         memset(&root->root_key, 0, sizeof(root->root_key));
1215         memset(&root->root_item, 0, sizeof(root->root_item));
1216         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1217         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1218         root->defrag_trans_start = fs_info->generation;
1219         init_completion(&root->kobj_unregister);
1220         root->defrag_running = 0;
1221         root->root_key.objectid = objectid;
1222         root->anon_dev = 0;
1223
1224         spin_lock_init(&root->root_item_lock);
1225 }
1226
1227 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1228                                             struct btrfs_fs_info *fs_info,
1229                                             u64 objectid,
1230                                             struct btrfs_root *root)
1231 {
1232         int ret;
1233         u32 blocksize;
1234         u64 generation;
1235
1236         __setup_root(tree_root->nodesize, tree_root->leafsize,
1237                      tree_root->sectorsize, tree_root->stripesize,
1238                      root, fs_info, objectid);
1239         ret = btrfs_find_last_root(tree_root, objectid,
1240                                    &root->root_item, &root->root_key);
1241         if (ret > 0)
1242                 return -ENOENT;
1243         else if (ret < 0)
1244                 return ret;
1245
1246         generation = btrfs_root_generation(&root->root_item);
1247         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1248         root->commit_root = NULL;
1249         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1250                                      blocksize, generation);
1251         if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1252                 free_extent_buffer(root->node);
1253                 root->node = NULL;
1254                 return -EIO;
1255         }
1256         root->commit_root = btrfs_root_node(root);
1257         return 0;
1258 }
1259
1260 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1261 {
1262         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1263         if (root)
1264                 root->fs_info = fs_info;
1265         return root;
1266 }
1267
1268 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1269                                      struct btrfs_fs_info *fs_info,
1270                                      u64 objectid)
1271 {
1272         struct extent_buffer *leaf;
1273         struct btrfs_root *tree_root = fs_info->tree_root;
1274         struct btrfs_root *root;
1275         struct btrfs_key key;
1276         int ret = 0;
1277         u64 bytenr;
1278
1279         root = btrfs_alloc_root(fs_info);
1280         if (!root)
1281                 return ERR_PTR(-ENOMEM);
1282
1283         __setup_root(tree_root->nodesize, tree_root->leafsize,
1284                      tree_root->sectorsize, tree_root->stripesize,
1285                      root, fs_info, objectid);
1286         root->root_key.objectid = objectid;
1287         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1288         root->root_key.offset = 0;
1289
1290         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1291                                       0, objectid, NULL, 0, 0, 0);
1292         if (IS_ERR(leaf)) {
1293                 ret = PTR_ERR(leaf);
1294                 leaf = NULL;
1295                 goto fail;
1296         }
1297
1298         bytenr = leaf->start;
1299         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1300         btrfs_set_header_bytenr(leaf, leaf->start);
1301         btrfs_set_header_generation(leaf, trans->transid);
1302         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1303         btrfs_set_header_owner(leaf, objectid);
1304         root->node = leaf;
1305
1306         write_extent_buffer(leaf, fs_info->fsid,
1307                             (unsigned long)btrfs_header_fsid(leaf),
1308                             BTRFS_FSID_SIZE);
1309         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1310                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1311                             BTRFS_UUID_SIZE);
1312         btrfs_mark_buffer_dirty(leaf);
1313
1314         root->commit_root = btrfs_root_node(root);
1315         root->track_dirty = 1;
1316
1317
1318         root->root_item.flags = 0;
1319         root->root_item.byte_limit = 0;
1320         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1321         btrfs_set_root_generation(&root->root_item, trans->transid);
1322         btrfs_set_root_level(&root->root_item, 0);
1323         btrfs_set_root_refs(&root->root_item, 1);
1324         btrfs_set_root_used(&root->root_item, leaf->len);
1325         btrfs_set_root_last_snapshot(&root->root_item, 0);
1326         btrfs_set_root_dirid(&root->root_item, 0);
1327         root->root_item.drop_level = 0;
1328
1329         key.objectid = objectid;
1330         key.type = BTRFS_ROOT_ITEM_KEY;
1331         key.offset = 0;
1332         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1333         if (ret)
1334                 goto fail;
1335
1336         btrfs_tree_unlock(leaf);
1337
1338         return root;
1339
1340 fail:
1341         if (leaf) {
1342                 btrfs_tree_unlock(leaf);
1343                 free_extent_buffer(leaf);
1344         }
1345         kfree(root);
1346
1347         return ERR_PTR(ret);
1348 }
1349
1350 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1351                                          struct btrfs_fs_info *fs_info)
1352 {
1353         struct btrfs_root *root;
1354         struct btrfs_root *tree_root = fs_info->tree_root;
1355         struct extent_buffer *leaf;
1356
1357         root = btrfs_alloc_root(fs_info);
1358         if (!root)
1359                 return ERR_PTR(-ENOMEM);
1360
1361         __setup_root(tree_root->nodesize, tree_root->leafsize,
1362                      tree_root->sectorsize, tree_root->stripesize,
1363                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1364
1365         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1366         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1367         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1368         /*
1369          * log trees do not get reference counted because they go away
1370          * before a real commit is actually done.  They do store pointers
1371          * to file data extents, and those reference counts still get
1372          * updated (along with back refs to the log tree).
1373          */
1374         root->ref_cows = 0;
1375
1376         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1377                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1378                                       0, 0, 0);
1379         if (IS_ERR(leaf)) {
1380                 kfree(root);
1381                 return ERR_CAST(leaf);
1382         }
1383
1384         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1385         btrfs_set_header_bytenr(leaf, leaf->start);
1386         btrfs_set_header_generation(leaf, trans->transid);
1387         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1388         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1389         root->node = leaf;
1390
1391         write_extent_buffer(root->node, root->fs_info->fsid,
1392                             (unsigned long)btrfs_header_fsid(root->node),
1393                             BTRFS_FSID_SIZE);
1394         btrfs_mark_buffer_dirty(root->node);
1395         btrfs_tree_unlock(root->node);
1396         return root;
1397 }
1398
1399 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1400                              struct btrfs_fs_info *fs_info)
1401 {
1402         struct btrfs_root *log_root;
1403
1404         log_root = alloc_log_tree(trans, fs_info);
1405         if (IS_ERR(log_root))
1406                 return PTR_ERR(log_root);
1407         WARN_ON(fs_info->log_root_tree);
1408         fs_info->log_root_tree = log_root;
1409         return 0;
1410 }
1411
1412 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1413                        struct btrfs_root *root)
1414 {
1415         struct btrfs_root *log_root;
1416         struct btrfs_inode_item *inode_item;
1417
1418         log_root = alloc_log_tree(trans, root->fs_info);
1419         if (IS_ERR(log_root))
1420                 return PTR_ERR(log_root);
1421
1422         log_root->last_trans = trans->transid;
1423         log_root->root_key.offset = root->root_key.objectid;
1424
1425         inode_item = &log_root->root_item.inode;
1426         inode_item->generation = cpu_to_le64(1);
1427         inode_item->size = cpu_to_le64(3);
1428         inode_item->nlink = cpu_to_le32(1);
1429         inode_item->nbytes = cpu_to_le64(root->leafsize);
1430         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1431
1432         btrfs_set_root_node(&log_root->root_item, log_root->node);
1433
1434         WARN_ON(root->log_root);
1435         root->log_root = log_root;
1436         root->log_transid = 0;
1437         root->last_log_commit = 0;
1438         return 0;
1439 }
1440
1441 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1442                                                struct btrfs_key *location)
1443 {
1444         struct btrfs_root *root;
1445         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1446         struct btrfs_path *path;
1447         struct extent_buffer *l;
1448         u64 generation;
1449         u32 blocksize;
1450         int ret = 0;
1451         int slot;
1452
1453         root = btrfs_alloc_root(fs_info);
1454         if (!root)
1455                 return ERR_PTR(-ENOMEM);
1456         if (location->offset == (u64)-1) {
1457                 ret = find_and_setup_root(tree_root, fs_info,
1458                                           location->objectid, root);
1459                 if (ret) {
1460                         kfree(root);
1461                         return ERR_PTR(ret);
1462                 }
1463                 goto out;
1464         }
1465
1466         __setup_root(tree_root->nodesize, tree_root->leafsize,
1467                      tree_root->sectorsize, tree_root->stripesize,
1468                      root, fs_info, location->objectid);
1469
1470         path = btrfs_alloc_path();
1471         if (!path) {
1472                 kfree(root);
1473                 return ERR_PTR(-ENOMEM);
1474         }
1475         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1476         if (ret == 0) {
1477                 l = path->nodes[0];
1478                 slot = path->slots[0];
1479                 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1480                 memcpy(&root->root_key, location, sizeof(*location));
1481         }
1482         btrfs_free_path(path);
1483         if (ret) {
1484                 kfree(root);
1485                 if (ret > 0)
1486                         ret = -ENOENT;
1487                 return ERR_PTR(ret);
1488         }
1489
1490         generation = btrfs_root_generation(&root->root_item);
1491         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1492         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1493                                      blocksize, generation);
1494         root->commit_root = btrfs_root_node(root);
1495         BUG_ON(!root->node); /* -ENOMEM */
1496 out:
1497         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1498                 root->ref_cows = 1;
1499                 btrfs_check_and_init_root_item(&root->root_item);
1500         }
1501
1502         return root;
1503 }
1504
1505 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1506                                               struct btrfs_key *location)
1507 {
1508         struct btrfs_root *root;
1509         int ret;
1510
1511         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1512                 return fs_info->tree_root;
1513         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1514                 return fs_info->extent_root;
1515         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1516                 return fs_info->chunk_root;
1517         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1518                 return fs_info->dev_root;
1519         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1520                 return fs_info->csum_root;
1521         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1522                 return fs_info->quota_root ? fs_info->quota_root :
1523                                              ERR_PTR(-ENOENT);
1524 again:
1525         spin_lock(&fs_info->fs_roots_radix_lock);
1526         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1527                                  (unsigned long)location->objectid);
1528         spin_unlock(&fs_info->fs_roots_radix_lock);
1529         if (root)
1530                 return root;
1531
1532         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1533         if (IS_ERR(root))
1534                 return root;
1535
1536         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1537         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1538                                         GFP_NOFS);
1539         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1540                 ret = -ENOMEM;
1541                 goto fail;
1542         }
1543
1544         btrfs_init_free_ino_ctl(root);
1545         mutex_init(&root->fs_commit_mutex);
1546         spin_lock_init(&root->cache_lock);
1547         init_waitqueue_head(&root->cache_wait);
1548
1549         ret = get_anon_bdev(&root->anon_dev);
1550         if (ret)
1551                 goto fail;
1552
1553         if (btrfs_root_refs(&root->root_item) == 0) {
1554                 ret = -ENOENT;
1555                 goto fail;
1556         }
1557
1558         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1559         if (ret < 0)
1560                 goto fail;
1561         if (ret == 0)
1562                 root->orphan_item_inserted = 1;
1563
1564         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1565         if (ret)
1566                 goto fail;
1567
1568         spin_lock(&fs_info->fs_roots_radix_lock);
1569         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1570                                 (unsigned long)root->root_key.objectid,
1571                                 root);
1572         if (ret == 0)
1573                 root->in_radix = 1;
1574
1575         spin_unlock(&fs_info->fs_roots_radix_lock);
1576         radix_tree_preload_end();
1577         if (ret) {
1578                 if (ret == -EEXIST) {
1579                         free_fs_root(root);
1580                         goto again;
1581                 }
1582                 goto fail;
1583         }
1584
1585         ret = btrfs_find_dead_roots(fs_info->tree_root,
1586                                     root->root_key.objectid);
1587         WARN_ON(ret);
1588         return root;
1589 fail:
1590         free_fs_root(root);
1591         return ERR_PTR(ret);
1592 }
1593
1594 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1595 {
1596         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1597         int ret = 0;
1598         struct btrfs_device *device;
1599         struct backing_dev_info *bdi;
1600
1601         rcu_read_lock();
1602         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1603                 if (!device->bdev)
1604                         continue;
1605                 bdi = blk_get_backing_dev_info(device->bdev);
1606                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1607                         ret = 1;
1608                         break;
1609                 }
1610         }
1611         rcu_read_unlock();
1612         return ret;
1613 }
1614
1615 /*
1616  * If this fails, caller must call bdi_destroy() to get rid of the
1617  * bdi again.
1618  */
1619 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1620 {
1621         int err;
1622
1623         bdi->capabilities = BDI_CAP_MAP_COPY;
1624         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1625         if (err)
1626                 return err;
1627
1628         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1629         bdi->congested_fn       = btrfs_congested_fn;
1630         bdi->congested_data     = info;
1631         return 0;
1632 }
1633
1634 /*
1635  * called by the kthread helper functions to finally call the bio end_io
1636  * functions.  This is where read checksum verification actually happens
1637  */
1638 static void end_workqueue_fn(struct btrfs_work *work)
1639 {
1640         struct bio *bio;
1641         struct end_io_wq *end_io_wq;
1642         struct btrfs_fs_info *fs_info;
1643         int error;
1644
1645         end_io_wq = container_of(work, struct end_io_wq, work);
1646         bio = end_io_wq->bio;
1647         fs_info = end_io_wq->info;
1648
1649         error = end_io_wq->error;
1650         bio->bi_private = end_io_wq->private;
1651         bio->bi_end_io = end_io_wq->end_io;
1652         kfree(end_io_wq);
1653         bio_endio(bio, error);
1654 }
1655
1656 static int cleaner_kthread(void *arg)
1657 {
1658         struct btrfs_root *root = arg;
1659
1660         do {
1661                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1662                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1663                         btrfs_run_delayed_iputs(root);
1664                         btrfs_clean_old_snapshots(root);
1665                         mutex_unlock(&root->fs_info->cleaner_mutex);
1666                         btrfs_run_defrag_inodes(root->fs_info);
1667                 }
1668
1669                 if (!try_to_freeze()) {
1670                         set_current_state(TASK_INTERRUPTIBLE);
1671                         if (!kthread_should_stop())
1672                                 schedule();
1673                         __set_current_state(TASK_RUNNING);
1674                 }
1675         } while (!kthread_should_stop());
1676         return 0;
1677 }
1678
1679 static int transaction_kthread(void *arg)
1680 {
1681         struct btrfs_root *root = arg;
1682         struct btrfs_trans_handle *trans;
1683         struct btrfs_transaction *cur;
1684         u64 transid;
1685         unsigned long now;
1686         unsigned long delay;
1687         bool cannot_commit;
1688
1689         do {
1690                 cannot_commit = false;
1691                 delay = HZ * 30;
1692                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1693
1694                 spin_lock(&root->fs_info->trans_lock);
1695                 cur = root->fs_info->running_transaction;
1696                 if (!cur) {
1697                         spin_unlock(&root->fs_info->trans_lock);
1698                         goto sleep;
1699                 }
1700
1701                 now = get_seconds();
1702                 if (!cur->blocked &&
1703                     (now < cur->start_time || now - cur->start_time < 30)) {
1704                         spin_unlock(&root->fs_info->trans_lock);
1705                         delay = HZ * 5;
1706                         goto sleep;
1707                 }
1708                 transid = cur->transid;
1709                 spin_unlock(&root->fs_info->trans_lock);
1710
1711                 /* If the file system is aborted, this will always fail. */
1712                 trans = btrfs_attach_transaction(root);
1713                 if (IS_ERR(trans)) {
1714                         if (PTR_ERR(trans) != -ENOENT)
1715                                 cannot_commit = true;
1716                         goto sleep;
1717                 }
1718                 if (transid == trans->transid) {
1719                         btrfs_commit_transaction(trans, root);
1720                 } else {
1721                         btrfs_end_transaction(trans, root);
1722                 }
1723 sleep:
1724                 wake_up_process(root->fs_info->cleaner_kthread);
1725                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1726
1727                 if (!try_to_freeze()) {
1728                         set_current_state(TASK_INTERRUPTIBLE);
1729                         if (!kthread_should_stop() &&
1730                             (!btrfs_transaction_blocked(root->fs_info) ||
1731                              cannot_commit))
1732                                 schedule_timeout(delay);
1733                         __set_current_state(TASK_RUNNING);
1734                 }
1735         } while (!kthread_should_stop());
1736         return 0;
1737 }
1738
1739 /*
1740  * this will find the highest generation in the array of
1741  * root backups.  The index of the highest array is returned,
1742  * or -1 if we can't find anything.
1743  *
1744  * We check to make sure the array is valid by comparing the
1745  * generation of the latest  root in the array with the generation
1746  * in the super block.  If they don't match we pitch it.
1747  */
1748 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1749 {
1750         u64 cur;
1751         int newest_index = -1;
1752         struct btrfs_root_backup *root_backup;
1753         int i;
1754
1755         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1756                 root_backup = info->super_copy->super_roots + i;
1757                 cur = btrfs_backup_tree_root_gen(root_backup);
1758                 if (cur == newest_gen)
1759                         newest_index = i;
1760         }
1761
1762         /* check to see if we actually wrapped around */
1763         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1764                 root_backup = info->super_copy->super_roots;
1765                 cur = btrfs_backup_tree_root_gen(root_backup);
1766                 if (cur == newest_gen)
1767                         newest_index = 0;
1768         }
1769         return newest_index;
1770 }
1771
1772
1773 /*
1774  * find the oldest backup so we know where to store new entries
1775  * in the backup array.  This will set the backup_root_index
1776  * field in the fs_info struct
1777  */
1778 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1779                                      u64 newest_gen)
1780 {
1781         int newest_index = -1;
1782
1783         newest_index = find_newest_super_backup(info, newest_gen);
1784         /* if there was garbage in there, just move along */
1785         if (newest_index == -1) {
1786                 info->backup_root_index = 0;
1787         } else {
1788                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1789         }
1790 }
1791
1792 /*
1793  * copy all the root pointers into the super backup array.
1794  * this will bump the backup pointer by one when it is
1795  * done
1796  */
1797 static void backup_super_roots(struct btrfs_fs_info *info)
1798 {
1799         int next_backup;
1800         struct btrfs_root_backup *root_backup;
1801         int last_backup;
1802
1803         next_backup = info->backup_root_index;
1804         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1805                 BTRFS_NUM_BACKUP_ROOTS;
1806
1807         /*
1808          * just overwrite the last backup if we're at the same generation
1809          * this happens only at umount
1810          */
1811         root_backup = info->super_for_commit->super_roots + last_backup;
1812         if (btrfs_backup_tree_root_gen(root_backup) ==
1813             btrfs_header_generation(info->tree_root->node))
1814                 next_backup = last_backup;
1815
1816         root_backup = info->super_for_commit->super_roots + next_backup;
1817
1818         /*
1819          * make sure all of our padding and empty slots get zero filled
1820          * regardless of which ones we use today
1821          */
1822         memset(root_backup, 0, sizeof(*root_backup));
1823
1824         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1825
1826         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1827         btrfs_set_backup_tree_root_gen(root_backup,
1828                                btrfs_header_generation(info->tree_root->node));
1829
1830         btrfs_set_backup_tree_root_level(root_backup,
1831                                btrfs_header_level(info->tree_root->node));
1832
1833         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1834         btrfs_set_backup_chunk_root_gen(root_backup,
1835                                btrfs_header_generation(info->chunk_root->node));
1836         btrfs_set_backup_chunk_root_level(root_backup,
1837                                btrfs_header_level(info->chunk_root->node));
1838
1839         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1840         btrfs_set_backup_extent_root_gen(root_backup,
1841                                btrfs_header_generation(info->extent_root->node));
1842         btrfs_set_backup_extent_root_level(root_backup,
1843                                btrfs_header_level(info->extent_root->node));
1844
1845         /*
1846          * we might commit during log recovery, which happens before we set
1847          * the fs_root.  Make sure it is valid before we fill it in.
1848          */
1849         if (info->fs_root && info->fs_root->node) {
1850                 btrfs_set_backup_fs_root(root_backup,
1851                                          info->fs_root->node->start);
1852                 btrfs_set_backup_fs_root_gen(root_backup,
1853                                btrfs_header_generation(info->fs_root->node));
1854                 btrfs_set_backup_fs_root_level(root_backup,
1855                                btrfs_header_level(info->fs_root->node));
1856         }
1857
1858         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1859         btrfs_set_backup_dev_root_gen(root_backup,
1860                                btrfs_header_generation(info->dev_root->node));
1861         btrfs_set_backup_dev_root_level(root_backup,
1862                                        btrfs_header_level(info->dev_root->node));
1863
1864         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1865         btrfs_set_backup_csum_root_gen(root_backup,
1866                                btrfs_header_generation(info->csum_root->node));
1867         btrfs_set_backup_csum_root_level(root_backup,
1868                                btrfs_header_level(info->csum_root->node));
1869
1870         btrfs_set_backup_total_bytes(root_backup,
1871                              btrfs_super_total_bytes(info->super_copy));
1872         btrfs_set_backup_bytes_used(root_backup,
1873                              btrfs_super_bytes_used(info->super_copy));
1874         btrfs_set_backup_num_devices(root_backup,
1875                              btrfs_super_num_devices(info->super_copy));
1876
1877         /*
1878          * if we don't copy this out to the super_copy, it won't get remembered
1879          * for the next commit
1880          */
1881         memcpy(&info->super_copy->super_roots,
1882                &info->super_for_commit->super_roots,
1883                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1884 }
1885
1886 /*
1887  * this copies info out of the root backup array and back into
1888  * the in-memory super block.  It is meant to help iterate through
1889  * the array, so you send it the number of backups you've already
1890  * tried and the last backup index you used.
1891  *
1892  * this returns -1 when it has tried all the backups
1893  */
1894 static noinline int next_root_backup(struct btrfs_fs_info *info,
1895                                      struct btrfs_super_block *super,
1896                                      int *num_backups_tried, int *backup_index)
1897 {
1898         struct btrfs_root_backup *root_backup;
1899         int newest = *backup_index;
1900
1901         if (*num_backups_tried == 0) {
1902                 u64 gen = btrfs_super_generation(super);
1903
1904                 newest = find_newest_super_backup(info, gen);
1905                 if (newest == -1)
1906                         return -1;
1907
1908                 *backup_index = newest;
1909                 *num_backups_tried = 1;
1910         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1911                 /* we've tried all the backups, all done */
1912                 return -1;
1913         } else {
1914                 /* jump to the next oldest backup */
1915                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1916                         BTRFS_NUM_BACKUP_ROOTS;
1917                 *backup_index = newest;
1918                 *num_backups_tried += 1;
1919         }
1920         root_backup = super->super_roots + newest;
1921
1922         btrfs_set_super_generation(super,
1923                                    btrfs_backup_tree_root_gen(root_backup));
1924         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1925         btrfs_set_super_root_level(super,
1926                                    btrfs_backup_tree_root_level(root_backup));
1927         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1928
1929         /*
1930          * fixme: the total bytes and num_devices need to match or we should
1931          * need a fsck
1932          */
1933         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1934         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1935         return 0;
1936 }
1937
1938 /* helper to cleanup tree roots */
1939 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1940 {
1941         free_extent_buffer(info->tree_root->node);
1942         free_extent_buffer(info->tree_root->commit_root);
1943         free_extent_buffer(info->dev_root->node);
1944         free_extent_buffer(info->dev_root->commit_root);
1945         free_extent_buffer(info->extent_root->node);
1946         free_extent_buffer(info->extent_root->commit_root);
1947         free_extent_buffer(info->csum_root->node);
1948         free_extent_buffer(info->csum_root->commit_root);
1949         if (info->quota_root) {
1950                 free_extent_buffer(info->quota_root->node);
1951                 free_extent_buffer(info->quota_root->commit_root);
1952         }
1953
1954         info->tree_root->node = NULL;
1955         info->tree_root->commit_root = NULL;
1956         info->dev_root->node = NULL;
1957         info->dev_root->commit_root = NULL;
1958         info->extent_root->node = NULL;
1959         info->extent_root->commit_root = NULL;
1960         info->csum_root->node = NULL;
1961         info->csum_root->commit_root = NULL;
1962         if (info->quota_root) {
1963                 info->quota_root->node = NULL;
1964                 info->quota_root->commit_root = NULL;
1965         }
1966
1967         if (chunk_root) {
1968                 free_extent_buffer(info->chunk_root->node);
1969                 free_extent_buffer(info->chunk_root->commit_root);
1970                 info->chunk_root->node = NULL;
1971                 info->chunk_root->commit_root = NULL;
1972         }
1973 }
1974
1975
1976 int open_ctree(struct super_block *sb,
1977                struct btrfs_fs_devices *fs_devices,
1978                char *options)
1979 {
1980         u32 sectorsize;
1981         u32 nodesize;
1982         u32 leafsize;
1983         u32 blocksize;
1984         u32 stripesize;
1985         u64 generation;
1986         u64 features;
1987         struct btrfs_key location;
1988         struct buffer_head *bh;
1989         struct btrfs_super_block *disk_super;
1990         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1991         struct btrfs_root *tree_root;
1992         struct btrfs_root *extent_root;
1993         struct btrfs_root *csum_root;
1994         struct btrfs_root *chunk_root;
1995         struct btrfs_root *dev_root;
1996         struct btrfs_root *quota_root;
1997         struct btrfs_root *log_tree_root;
1998         int ret;
1999         int err = -EINVAL;
2000         int num_backups_tried = 0;
2001         int backup_index = 0;
2002
2003         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2004         extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2005         csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2006         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2007         dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2008         quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2009
2010         if (!tree_root || !extent_root || !csum_root ||
2011             !chunk_root || !dev_root || !quota_root) {
2012                 err = -ENOMEM;
2013                 goto fail;
2014         }
2015
2016         ret = init_srcu_struct(&fs_info->subvol_srcu);
2017         if (ret) {
2018                 err = ret;
2019                 goto fail;
2020         }
2021
2022         ret = setup_bdi(fs_info, &fs_info->bdi);
2023         if (ret) {
2024                 err = ret;
2025                 goto fail_srcu;
2026         }
2027
2028         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2029         if (ret) {
2030                 err = ret;
2031                 goto fail_bdi;
2032         }
2033         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2034                                         (1 + ilog2(nr_cpu_ids));
2035
2036         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2037         if (ret) {
2038                 err = ret;
2039                 goto fail_dirty_metadata_bytes;
2040         }
2041
2042         fs_info->btree_inode = new_inode(sb);
2043         if (!fs_info->btree_inode) {
2044                 err = -ENOMEM;
2045                 goto fail_delalloc_bytes;
2046         }
2047
2048         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2049
2050         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2051         INIT_LIST_HEAD(&fs_info->trans_list);
2052         INIT_LIST_HEAD(&fs_info->dead_roots);
2053         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2054         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2055         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2056         spin_lock_init(&fs_info->delalloc_lock);
2057         spin_lock_init(&fs_info->trans_lock);
2058         spin_lock_init(&fs_info->fs_roots_radix_lock);
2059         spin_lock_init(&fs_info->delayed_iput_lock);
2060         spin_lock_init(&fs_info->defrag_inodes_lock);
2061         spin_lock_init(&fs_info->free_chunk_lock);
2062         spin_lock_init(&fs_info->tree_mod_seq_lock);
2063         rwlock_init(&fs_info->tree_mod_log_lock);
2064         mutex_init(&fs_info->reloc_mutex);
2065         seqlock_init(&fs_info->profiles_lock);
2066
2067         init_completion(&fs_info->kobj_unregister);
2068         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2069         INIT_LIST_HEAD(&fs_info->space_info);
2070         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2071         btrfs_mapping_init(&fs_info->mapping_tree);
2072         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2073                              BTRFS_BLOCK_RSV_GLOBAL);
2074         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2075                              BTRFS_BLOCK_RSV_DELALLOC);
2076         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2077         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2078         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2079         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2080                              BTRFS_BLOCK_RSV_DELOPS);
2081         atomic_set(&fs_info->nr_async_submits, 0);
2082         atomic_set(&fs_info->async_delalloc_pages, 0);
2083         atomic_set(&fs_info->async_submit_draining, 0);
2084         atomic_set(&fs_info->nr_async_bios, 0);
2085         atomic_set(&fs_info->defrag_running, 0);
2086         atomic_set(&fs_info->tree_mod_seq, 0);
2087         fs_info->sb = sb;
2088         fs_info->max_inline = 8192 * 1024;
2089         fs_info->metadata_ratio = 0;
2090         fs_info->defrag_inodes = RB_ROOT;
2091         fs_info->trans_no_join = 0;
2092         fs_info->free_chunk_space = 0;
2093         fs_info->tree_mod_log = RB_ROOT;
2094
2095         /* readahead state */
2096         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2097         spin_lock_init(&fs_info->reada_lock);
2098
2099         fs_info->thread_pool_size = min_t(unsigned long,
2100                                           num_online_cpus() + 2, 8);
2101
2102         INIT_LIST_HEAD(&fs_info->ordered_extents);
2103         spin_lock_init(&fs_info->ordered_extent_lock);
2104         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2105                                         GFP_NOFS);
2106         if (!fs_info->delayed_root) {
2107                 err = -ENOMEM;
2108                 goto fail_iput;
2109         }
2110         btrfs_init_delayed_root(fs_info->delayed_root);
2111
2112         mutex_init(&fs_info->scrub_lock);
2113         atomic_set(&fs_info->scrubs_running, 0);
2114         atomic_set(&fs_info->scrub_pause_req, 0);
2115         atomic_set(&fs_info->scrubs_paused, 0);
2116         atomic_set(&fs_info->scrub_cancel_req, 0);
2117         init_waitqueue_head(&fs_info->scrub_pause_wait);
2118         init_rwsem(&fs_info->scrub_super_lock);
2119         fs_info->scrub_workers_refcnt = 0;
2120 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2121         fs_info->check_integrity_print_mask = 0;
2122 #endif
2123
2124         spin_lock_init(&fs_info->balance_lock);
2125         mutex_init(&fs_info->balance_mutex);
2126         atomic_set(&fs_info->balance_running, 0);
2127         atomic_set(&fs_info->balance_pause_req, 0);
2128         atomic_set(&fs_info->balance_cancel_req, 0);
2129         fs_info->balance_ctl = NULL;
2130         init_waitqueue_head(&fs_info->balance_wait_q);
2131
2132         sb->s_blocksize = 4096;
2133         sb->s_blocksize_bits = blksize_bits(4096);
2134         sb->s_bdi = &fs_info->bdi;
2135
2136         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2137         set_nlink(fs_info->btree_inode, 1);
2138         /*
2139          * we set the i_size on the btree inode to the max possible int.
2140          * the real end of the address space is determined by all of
2141          * the devices in the system
2142          */
2143         fs_info->btree_inode->i_size = OFFSET_MAX;
2144         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2145         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2146
2147         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2148         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2149                              fs_info->btree_inode->i_mapping);
2150         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2151         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2152
2153         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2154
2155         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2156         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2157                sizeof(struct btrfs_key));
2158         set_bit(BTRFS_INODE_DUMMY,
2159                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2160         insert_inode_hash(fs_info->btree_inode);
2161
2162         spin_lock_init(&fs_info->block_group_cache_lock);
2163         fs_info->block_group_cache_tree = RB_ROOT;
2164         fs_info->first_logical_byte = (u64)-1;
2165
2166         extent_io_tree_init(&fs_info->freed_extents[0],
2167                              fs_info->btree_inode->i_mapping);
2168         extent_io_tree_init(&fs_info->freed_extents[1],
2169                              fs_info->btree_inode->i_mapping);
2170         fs_info->pinned_extents = &fs_info->freed_extents[0];
2171         fs_info->do_barriers = 1;
2172
2173
2174         mutex_init(&fs_info->ordered_operations_mutex);
2175         mutex_init(&fs_info->tree_log_mutex);
2176         mutex_init(&fs_info->chunk_mutex);
2177         mutex_init(&fs_info->transaction_kthread_mutex);
2178         mutex_init(&fs_info->cleaner_mutex);
2179         mutex_init(&fs_info->volume_mutex);
2180         init_rwsem(&fs_info->extent_commit_sem);
2181         init_rwsem(&fs_info->cleanup_work_sem);
2182         init_rwsem(&fs_info->subvol_sem);
2183         fs_info->dev_replace.lock_owner = 0;
2184         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2185         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2186         mutex_init(&fs_info->dev_replace.lock_management_lock);
2187         mutex_init(&fs_info->dev_replace.lock);
2188
2189         spin_lock_init(&fs_info->qgroup_lock);
2190         fs_info->qgroup_tree = RB_ROOT;
2191         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2192         fs_info->qgroup_seq = 1;
2193         fs_info->quota_enabled = 0;
2194         fs_info->pending_quota_state = 0;
2195
2196         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2197         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2198
2199         init_waitqueue_head(&fs_info->transaction_throttle);
2200         init_waitqueue_head(&fs_info->transaction_wait);
2201         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2202         init_waitqueue_head(&fs_info->async_submit_wait);
2203
2204         ret = btrfs_alloc_stripe_hash_table(fs_info);
2205         if (ret) {
2206                 err = ret;
2207                 goto fail_alloc;
2208         }
2209
2210         __setup_root(4096, 4096, 4096, 4096, tree_root,
2211                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2212
2213         invalidate_bdev(fs_devices->latest_bdev);
2214         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2215         if (!bh) {
2216                 err = -EINVAL;
2217                 goto fail_alloc;
2218         }
2219
2220         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2221         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2222                sizeof(*fs_info->super_for_commit));
2223         brelse(bh);
2224
2225         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2226
2227         disk_super = fs_info->super_copy;
2228         if (!btrfs_super_root(disk_super))
2229                 goto fail_alloc;
2230
2231         /* check FS state, whether FS is broken. */
2232         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2233                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2234
2235         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2236         if (ret) {
2237                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2238                 err = ret;
2239                 goto fail_alloc;
2240         }
2241
2242         /*
2243          * run through our array of backup supers and setup
2244          * our ring pointer to the oldest one
2245          */
2246         generation = btrfs_super_generation(disk_super);
2247         find_oldest_super_backup(fs_info, generation);
2248
2249         /*
2250          * In the long term, we'll store the compression type in the super
2251          * block, and it'll be used for per file compression control.
2252          */
2253         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2254
2255         ret = btrfs_parse_options(tree_root, options);
2256         if (ret) {
2257                 err = ret;
2258                 goto fail_alloc;
2259         }
2260
2261         features = btrfs_super_incompat_flags(disk_super) &
2262                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2263         if (features) {
2264                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2265                        "unsupported optional features (%Lx).\n",
2266                        (unsigned long long)features);
2267                 err = -EINVAL;
2268                 goto fail_alloc;
2269         }
2270
2271         if (btrfs_super_leafsize(disk_super) !=
2272             btrfs_super_nodesize(disk_super)) {
2273                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2274                        "blocksizes don't match.  node %d leaf %d\n",
2275                        btrfs_super_nodesize(disk_super),
2276                        btrfs_super_leafsize(disk_super));
2277                 err = -EINVAL;
2278                 goto fail_alloc;
2279         }
2280         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2281                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2282                        "blocksize (%d) was too large\n",
2283                        btrfs_super_leafsize(disk_super));
2284                 err = -EINVAL;
2285                 goto fail_alloc;
2286         }
2287
2288         features = btrfs_super_incompat_flags(disk_super);
2289         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2290         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2291                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2292
2293         /*
2294          * flag our filesystem as having big metadata blocks if
2295          * they are bigger than the page size
2296          */
2297         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2298                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2299                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2300                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2301         }
2302
2303         nodesize = btrfs_super_nodesize(disk_super);
2304         leafsize = btrfs_super_leafsize(disk_super);
2305         sectorsize = btrfs_super_sectorsize(disk_super);
2306         stripesize = btrfs_super_stripesize(disk_super);
2307         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2308         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2309
2310         /*
2311          * mixed block groups end up with duplicate but slightly offset
2312          * extent buffers for the same range.  It leads to corruptions
2313          */
2314         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2315             (sectorsize != leafsize)) {
2316                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2317                                 "are not allowed for mixed block groups on %s\n",
2318                                 sb->s_id);
2319                 goto fail_alloc;
2320         }
2321
2322         btrfs_set_super_incompat_flags(disk_super, features);
2323
2324         features = btrfs_super_compat_ro_flags(disk_super) &
2325                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2326         if (!(sb->s_flags & MS_RDONLY) && features) {
2327                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2328                        "unsupported option features (%Lx).\n",
2329                        (unsigned long long)features);
2330                 err = -EINVAL;
2331                 goto fail_alloc;
2332         }
2333
2334         btrfs_init_workers(&fs_info->generic_worker,
2335                            "genwork", 1, NULL);
2336
2337         btrfs_init_workers(&fs_info->workers, "worker",
2338                            fs_info->thread_pool_size,
2339                            &fs_info->generic_worker);
2340
2341         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2342                            fs_info->thread_pool_size,
2343                            &fs_info->generic_worker);
2344
2345         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2346                            fs_info->thread_pool_size,
2347                            &fs_info->generic_worker);
2348
2349         btrfs_init_workers(&fs_info->submit_workers, "submit",
2350                            min_t(u64, fs_devices->num_devices,
2351                            fs_info->thread_pool_size),
2352                            &fs_info->generic_worker);
2353
2354         btrfs_init_workers(&fs_info->caching_workers, "cache",
2355                            2, &fs_info->generic_worker);
2356
2357         /* a higher idle thresh on the submit workers makes it much more
2358          * likely that bios will be send down in a sane order to the
2359          * devices
2360          */
2361         fs_info->submit_workers.idle_thresh = 64;
2362
2363         fs_info->workers.idle_thresh = 16;
2364         fs_info->workers.ordered = 1;
2365
2366         fs_info->delalloc_workers.idle_thresh = 2;
2367         fs_info->delalloc_workers.ordered = 1;
2368
2369         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2370                            &fs_info->generic_worker);
2371         btrfs_init_workers(&fs_info->endio_workers, "endio",
2372                            fs_info->thread_pool_size,
2373                            &fs_info->generic_worker);
2374         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2375                            fs_info->thread_pool_size,
2376                            &fs_info->generic_worker);
2377         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2378                            "endio-meta-write", fs_info->thread_pool_size,
2379                            &fs_info->generic_worker);
2380         btrfs_init_workers(&fs_info->endio_raid56_workers,
2381                            "endio-raid56", fs_info->thread_pool_size,
2382                            &fs_info->generic_worker);
2383         btrfs_init_workers(&fs_info->rmw_workers,
2384                            "rmw", fs_info->thread_pool_size,
2385                            &fs_info->generic_worker);
2386         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2387                            fs_info->thread_pool_size,
2388                            &fs_info->generic_worker);
2389         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2390                            1, &fs_info->generic_worker);
2391         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2392                            fs_info->thread_pool_size,
2393                            &fs_info->generic_worker);
2394         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2395                            fs_info->thread_pool_size,
2396                            &fs_info->generic_worker);
2397
2398         /*
2399          * endios are largely parallel and should have a very
2400          * low idle thresh
2401          */
2402         fs_info->endio_workers.idle_thresh = 4;
2403         fs_info->endio_meta_workers.idle_thresh = 4;
2404         fs_info->endio_raid56_workers.idle_thresh = 4;
2405         fs_info->rmw_workers.idle_thresh = 2;
2406
2407         fs_info->endio_write_workers.idle_thresh = 2;
2408         fs_info->endio_meta_write_workers.idle_thresh = 2;
2409         fs_info->readahead_workers.idle_thresh = 2;
2410
2411         /*
2412          * btrfs_start_workers can really only fail because of ENOMEM so just
2413          * return -ENOMEM if any of these fail.
2414          */
2415         ret = btrfs_start_workers(&fs_info->workers);
2416         ret |= btrfs_start_workers(&fs_info->generic_worker);
2417         ret |= btrfs_start_workers(&fs_info->submit_workers);
2418         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2419         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2420         ret |= btrfs_start_workers(&fs_info->endio_workers);
2421         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2422         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2423         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2424         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2425         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2426         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2427         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2428         ret |= btrfs_start_workers(&fs_info->caching_workers);
2429         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2430         ret |= btrfs_start_workers(&fs_info->flush_workers);
2431         if (ret) {
2432                 err = -ENOMEM;
2433                 goto fail_sb_buffer;
2434         }
2435
2436         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2437         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2438                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2439
2440         tree_root->nodesize = nodesize;
2441         tree_root->leafsize = leafsize;
2442         tree_root->sectorsize = sectorsize;
2443         tree_root->stripesize = stripesize;
2444
2445         sb->s_blocksize = sectorsize;
2446         sb->s_blocksize_bits = blksize_bits(sectorsize);
2447
2448         if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2449                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2450                 goto fail_sb_buffer;
2451         }
2452
2453         if (sectorsize != PAGE_SIZE) {
2454                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2455                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2456                 goto fail_sb_buffer;
2457         }
2458
2459         mutex_lock(&fs_info->chunk_mutex);
2460         ret = btrfs_read_sys_array(tree_root);
2461         mutex_unlock(&fs_info->chunk_mutex);
2462         if (ret) {
2463                 printk(KERN_WARNING "btrfs: failed to read the system "
2464                        "array on %s\n", sb->s_id);
2465                 goto fail_sb_buffer;
2466         }
2467
2468         blocksize = btrfs_level_size(tree_root,
2469                                      btrfs_super_chunk_root_level(disk_super));
2470         generation = btrfs_super_chunk_root_generation(disk_super);
2471
2472         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2473                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2474
2475         chunk_root->node = read_tree_block(chunk_root,
2476                                            btrfs_super_chunk_root(disk_super),
2477                                            blocksize, generation);
2478         BUG_ON(!chunk_root->node); /* -ENOMEM */
2479         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2480                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2481                        sb->s_id);
2482                 goto fail_tree_roots;
2483         }
2484         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2485         chunk_root->commit_root = btrfs_root_node(chunk_root);
2486
2487         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2488            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2489            BTRFS_UUID_SIZE);
2490
2491         ret = btrfs_read_chunk_tree(chunk_root);
2492         if (ret) {
2493                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2494                        sb->s_id);
2495                 goto fail_tree_roots;
2496         }
2497
2498         /*
2499          * keep the device that is marked to be the target device for the
2500          * dev_replace procedure
2501          */
2502         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2503
2504         if (!fs_devices->latest_bdev) {
2505                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2506                        sb->s_id);
2507                 goto fail_tree_roots;
2508         }
2509
2510 retry_root_backup:
2511         blocksize = btrfs_level_size(tree_root,
2512                                      btrfs_super_root_level(disk_super));
2513         generation = btrfs_super_generation(disk_super);
2514
2515         tree_root->node = read_tree_block(tree_root,
2516                                           btrfs_super_root(disk_super),
2517                                           blocksize, generation);
2518         if (!tree_root->node ||
2519             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2520                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2521                        sb->s_id);
2522
2523                 goto recovery_tree_root;
2524         }
2525
2526         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2527         tree_root->commit_root = btrfs_root_node(tree_root);
2528
2529         ret = find_and_setup_root(tree_root, fs_info,
2530                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2531         if (ret)
2532                 goto recovery_tree_root;
2533         extent_root->track_dirty = 1;
2534
2535         ret = find_and_setup_root(tree_root, fs_info,
2536                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
2537         if (ret)
2538                 goto recovery_tree_root;
2539         dev_root->track_dirty = 1;
2540
2541         ret = find_and_setup_root(tree_root, fs_info,
2542                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
2543         if (ret)
2544                 goto recovery_tree_root;
2545         csum_root->track_dirty = 1;
2546
2547         ret = find_and_setup_root(tree_root, fs_info,
2548                                   BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2549         if (ret) {
2550                 kfree(quota_root);
2551                 quota_root = fs_info->quota_root = NULL;
2552         } else {
2553                 quota_root->track_dirty = 1;
2554                 fs_info->quota_enabled = 1;
2555                 fs_info->pending_quota_state = 1;
2556         }
2557
2558         fs_info->generation = generation;
2559         fs_info->last_trans_committed = generation;
2560
2561         ret = btrfs_recover_balance(fs_info);
2562         if (ret) {
2563                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2564                 goto fail_block_groups;
2565         }
2566
2567         ret = btrfs_init_dev_stats(fs_info);
2568         if (ret) {
2569                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2570                        ret);
2571                 goto fail_block_groups;
2572         }
2573
2574         ret = btrfs_init_dev_replace(fs_info);
2575         if (ret) {
2576                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2577                 goto fail_block_groups;
2578         }
2579
2580         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2581
2582         ret = btrfs_init_space_info(fs_info);
2583         if (ret) {
2584                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2585                 goto fail_block_groups;
2586         }
2587
2588         ret = btrfs_read_block_groups(extent_root);
2589         if (ret) {
2590                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2591                 goto fail_block_groups;
2592         }
2593         fs_info->num_tolerated_disk_barrier_failures =
2594                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2595         if (fs_info->fs_devices->missing_devices >
2596              fs_info->num_tolerated_disk_barrier_failures &&
2597             !(sb->s_flags & MS_RDONLY)) {
2598                 printk(KERN_WARNING
2599                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2600                 goto fail_block_groups;
2601         }
2602
2603         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2604                                                "btrfs-cleaner");
2605         if (IS_ERR(fs_info->cleaner_kthread))
2606                 goto fail_block_groups;
2607
2608         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2609                                                    tree_root,
2610                                                    "btrfs-transaction");
2611         if (IS_ERR(fs_info->transaction_kthread))
2612                 goto fail_cleaner;
2613
2614         if (!btrfs_test_opt(tree_root, SSD) &&
2615             !btrfs_test_opt(tree_root, NOSSD) &&
2616             !fs_info->fs_devices->rotating) {
2617                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2618                        "mode\n");
2619                 btrfs_set_opt(fs_info->mount_opt, SSD);
2620         }
2621
2622 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2623         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2624                 ret = btrfsic_mount(tree_root, fs_devices,
2625                                     btrfs_test_opt(tree_root,
2626                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2627                                     1 : 0,
2628                                     fs_info->check_integrity_print_mask);
2629                 if (ret)
2630                         printk(KERN_WARNING "btrfs: failed to initialize"
2631                                " integrity check module %s\n", sb->s_id);
2632         }
2633 #endif
2634         ret = btrfs_read_qgroup_config(fs_info);
2635         if (ret)
2636                 goto fail_trans_kthread;
2637
2638         /* do not make disk changes in broken FS */
2639         if (btrfs_super_log_root(disk_super) != 0) {
2640                 u64 bytenr = btrfs_super_log_root(disk_super);
2641
2642                 if (fs_devices->rw_devices == 0) {
2643                         printk(KERN_WARNING "Btrfs log replay required "
2644                                "on RO media\n");
2645                         err = -EIO;
2646                         goto fail_qgroup;
2647                 }
2648                 blocksize =
2649                      btrfs_level_size(tree_root,
2650                                       btrfs_super_log_root_level(disk_super));
2651
2652                 log_tree_root = btrfs_alloc_root(fs_info);
2653                 if (!log_tree_root) {
2654                         err = -ENOMEM;
2655                         goto fail_qgroup;
2656                 }
2657
2658                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2659                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2660
2661                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2662                                                       blocksize,
2663                                                       generation + 1);
2664                 /* returns with log_tree_root freed on success */
2665                 ret = btrfs_recover_log_trees(log_tree_root);
2666                 if (ret) {
2667                         btrfs_error(tree_root->fs_info, ret,
2668                                     "Failed to recover log tree");
2669                         free_extent_buffer(log_tree_root->node);
2670                         kfree(log_tree_root);
2671                         goto fail_trans_kthread;
2672                 }
2673
2674                 if (sb->s_flags & MS_RDONLY) {
2675                         ret = btrfs_commit_super(tree_root);
2676                         if (ret)
2677                                 goto fail_trans_kthread;
2678                 }
2679         }
2680
2681         ret = btrfs_find_orphan_roots(tree_root);
2682         if (ret)
2683                 goto fail_trans_kthread;
2684
2685         if (!(sb->s_flags & MS_RDONLY)) {
2686                 ret = btrfs_cleanup_fs_roots(fs_info);
2687                 if (ret)
2688                         goto fail_trans_kthread;
2689
2690                 ret = btrfs_recover_relocation(tree_root);
2691                 if (ret < 0) {
2692                         printk(KERN_WARNING
2693                                "btrfs: failed to recover relocation\n");
2694                         err = -EINVAL;
2695                         goto fail_qgroup;
2696                 }
2697         }
2698
2699         location.objectid = BTRFS_FS_TREE_OBJECTID;
2700         location.type = BTRFS_ROOT_ITEM_KEY;
2701         location.offset = (u64)-1;
2702
2703         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2704         if (!fs_info->fs_root)
2705                 goto fail_qgroup;
2706         if (IS_ERR(fs_info->fs_root)) {
2707                 err = PTR_ERR(fs_info->fs_root);
2708                 goto fail_qgroup;
2709         }
2710
2711         if (sb->s_flags & MS_RDONLY)
2712                 return 0;
2713
2714         down_read(&fs_info->cleanup_work_sem);
2715         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2716             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2717                 up_read(&fs_info->cleanup_work_sem);
2718                 close_ctree(tree_root);
2719                 return ret;
2720         }
2721         up_read(&fs_info->cleanup_work_sem);
2722
2723         ret = btrfs_resume_balance_async(fs_info);
2724         if (ret) {
2725                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2726                 close_ctree(tree_root);
2727                 return ret;
2728         }
2729
2730         ret = btrfs_resume_dev_replace_async(fs_info);
2731         if (ret) {
2732                 pr_warn("btrfs: failed to resume dev_replace\n");
2733                 close_ctree(tree_root);
2734                 return ret;
2735         }
2736
2737         return 0;
2738
2739 fail_qgroup:
2740         btrfs_free_qgroup_config(fs_info);
2741 fail_trans_kthread:
2742         kthread_stop(fs_info->transaction_kthread);
2743 fail_cleaner:
2744         kthread_stop(fs_info->cleaner_kthread);
2745
2746         /*
2747          * make sure we're done with the btree inode before we stop our
2748          * kthreads
2749          */
2750         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2751
2752 fail_block_groups:
2753         btrfs_free_block_groups(fs_info);
2754
2755 fail_tree_roots:
2756         free_root_pointers(fs_info, 1);
2757         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2758
2759 fail_sb_buffer:
2760         btrfs_stop_workers(&fs_info->generic_worker);
2761         btrfs_stop_workers(&fs_info->readahead_workers);
2762         btrfs_stop_workers(&fs_info->fixup_workers);
2763         btrfs_stop_workers(&fs_info->delalloc_workers);
2764         btrfs_stop_workers(&fs_info->workers);
2765         btrfs_stop_workers(&fs_info->endio_workers);
2766         btrfs_stop_workers(&fs_info->endio_meta_workers);
2767         btrfs_stop_workers(&fs_info->endio_raid56_workers);
2768         btrfs_stop_workers(&fs_info->rmw_workers);
2769         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2770         btrfs_stop_workers(&fs_info->endio_write_workers);
2771         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2772         btrfs_stop_workers(&fs_info->submit_workers);
2773         btrfs_stop_workers(&fs_info->delayed_workers);
2774         btrfs_stop_workers(&fs_info->caching_workers);
2775         btrfs_stop_workers(&fs_info->flush_workers);
2776 fail_alloc:
2777 fail_iput:
2778         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2779
2780         iput(fs_info->btree_inode);
2781 fail_delalloc_bytes:
2782         percpu_counter_destroy(&fs_info->delalloc_bytes);
2783 fail_dirty_metadata_bytes:
2784         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2785 fail_bdi:
2786         bdi_destroy(&fs_info->bdi);
2787 fail_srcu:
2788         cleanup_srcu_struct(&fs_info->subvol_srcu);
2789 fail:
2790         btrfs_free_stripe_hash_table(fs_info);
2791         btrfs_close_devices(fs_info->fs_devices);
2792         return err;
2793
2794 recovery_tree_root:
2795         if (!btrfs_test_opt(tree_root, RECOVERY))
2796                 goto fail_tree_roots;
2797
2798         free_root_pointers(fs_info, 0);
2799
2800         /* don't use the log in recovery mode, it won't be valid */
2801         btrfs_set_super_log_root(disk_super, 0);
2802
2803         /* we can't trust the free space cache either */
2804         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2805
2806         ret = next_root_backup(fs_info, fs_info->super_copy,
2807                                &num_backups_tried, &backup_index);
2808         if (ret == -1)
2809                 goto fail_block_groups;
2810         goto retry_root_backup;
2811 }
2812
2813 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2814 {
2815         if (uptodate) {
2816                 set_buffer_uptodate(bh);
2817         } else {
2818                 struct btrfs_device *device = (struct btrfs_device *)
2819                         bh->b_private;
2820
2821                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2822                                           "I/O error on %s\n",
2823                                           rcu_str_deref(device->name));
2824                 /* note, we dont' set_buffer_write_io_error because we have
2825                  * our own ways of dealing with the IO errors
2826                  */
2827                 clear_buffer_uptodate(bh);
2828                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2829         }
2830         unlock_buffer(bh);
2831         put_bh(bh);
2832 }
2833
2834 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2835 {
2836         struct buffer_head *bh;
2837         struct buffer_head *latest = NULL;
2838         struct btrfs_super_block *super;
2839         int i;
2840         u64 transid = 0;
2841         u64 bytenr;
2842
2843         /* we would like to check all the supers, but that would make
2844          * a btrfs mount succeed after a mkfs from a different FS.
2845          * So, we need to add a special mount option to scan for
2846          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2847          */
2848         for (i = 0; i < 1; i++) {
2849                 bytenr = btrfs_sb_offset(i);
2850                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2851                         break;
2852                 bh = __bread(bdev, bytenr / 4096, 4096);
2853                 if (!bh)
2854                         continue;
2855
2856                 super = (struct btrfs_super_block *)bh->b_data;
2857                 if (btrfs_super_bytenr(super) != bytenr ||
2858                     super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2859                         brelse(bh);
2860                         continue;
2861                 }
2862
2863                 if (!latest || btrfs_super_generation(super) > transid) {
2864                         brelse(latest);
2865                         latest = bh;
2866                         transid = btrfs_super_generation(super);
2867                 } else {
2868                         brelse(bh);
2869                 }
2870         }
2871         return latest;
2872 }
2873
2874 /*
2875  * this should be called twice, once with wait == 0 and
2876  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2877  * we write are pinned.
2878  *
2879  * They are released when wait == 1 is done.
2880  * max_mirrors must be the same for both runs, and it indicates how
2881  * many supers on this one device should be written.
2882  *
2883  * max_mirrors == 0 means to write them all.
2884  */
2885 static int write_dev_supers(struct btrfs_device *device,
2886                             struct btrfs_super_block *sb,
2887                             int do_barriers, int wait, int max_mirrors)
2888 {
2889         struct buffer_head *bh;
2890         int i;
2891         int ret;
2892         int errors = 0;
2893         u32 crc;
2894         u64 bytenr;
2895
2896         if (max_mirrors == 0)
2897                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2898
2899         for (i = 0; i < max_mirrors; i++) {
2900                 bytenr = btrfs_sb_offset(i);
2901                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2902                         break;
2903
2904                 if (wait) {
2905                         bh = __find_get_block(device->bdev, bytenr / 4096,
2906                                               BTRFS_SUPER_INFO_SIZE);
2907                         BUG_ON(!bh);
2908                         wait_on_buffer(bh);
2909                         if (!buffer_uptodate(bh))
2910                                 errors++;
2911
2912                         /* drop our reference */
2913                         brelse(bh);
2914
2915                         /* drop the reference from the wait == 0 run */
2916                         brelse(bh);
2917                         continue;
2918                 } else {
2919                         btrfs_set_super_bytenr(sb, bytenr);
2920
2921                         crc = ~(u32)0;
2922                         crc = btrfs_csum_data(NULL, (char *)sb +
2923                                               BTRFS_CSUM_SIZE, crc,
2924                                               BTRFS_SUPER_INFO_SIZE -
2925                                               BTRFS_CSUM_SIZE);
2926                         btrfs_csum_final(crc, sb->csum);
2927
2928                         /*
2929                          * one reference for us, and we leave it for the
2930                          * caller
2931                          */
2932                         bh = __getblk(device->bdev, bytenr / 4096,
2933                                       BTRFS_SUPER_INFO_SIZE);
2934                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2935
2936                         /* one reference for submit_bh */
2937                         get_bh(bh);
2938
2939                         set_buffer_uptodate(bh);
2940                         lock_buffer(bh);
2941                         bh->b_end_io = btrfs_end_buffer_write_sync;
2942                         bh->b_private = device;
2943                 }
2944
2945                 /*
2946                  * we fua the first super.  The others we allow
2947                  * to go down lazy.
2948                  */
2949                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2950                 if (ret)
2951                         errors++;
2952         }
2953         return errors < i ? 0 : -1;
2954 }
2955
2956 /*
2957  * endio for the write_dev_flush, this will wake anyone waiting
2958  * for the barrier when it is done
2959  */
2960 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2961 {
2962         if (err) {
2963                 if (err == -EOPNOTSUPP)
2964                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2965                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2966         }
2967         if (bio->bi_private)
2968                 complete(bio->bi_private);
2969         bio_put(bio);
2970 }
2971
2972 /*
2973  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2974  * sent down.  With wait == 1, it waits for the previous flush.
2975  *
2976  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2977  * capable
2978  */
2979 static int write_dev_flush(struct btrfs_device *device, int wait)
2980 {
2981         struct bio *bio;
2982         int ret = 0;
2983
2984         if (device->nobarriers)
2985                 return 0;
2986
2987         if (wait) {
2988                 bio = device->flush_bio;
2989                 if (!bio)
2990                         return 0;
2991
2992                 wait_for_completion(&device->flush_wait);
2993
2994                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2995                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2996                                       rcu_str_deref(device->name));
2997                         device->nobarriers = 1;
2998                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
2999                         ret = -EIO;
3000                         btrfs_dev_stat_inc_and_print(device,
3001                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3002                 }
3003
3004                 /* drop the reference from the wait == 0 run */
3005                 bio_put(bio);
3006                 device->flush_bio = NULL;
3007
3008                 return ret;
3009         }
3010
3011         /*
3012          * one reference for us, and we leave it for the
3013          * caller
3014          */
3015         device->flush_bio = NULL;
3016         bio = bio_alloc(GFP_NOFS, 0);
3017         if (!bio)
3018                 return -ENOMEM;
3019
3020         bio->bi_end_io = btrfs_end_empty_barrier;
3021         bio->bi_bdev = device->bdev;
3022         init_completion(&device->flush_wait);
3023         bio->bi_private = &device->flush_wait;
3024         device->flush_bio = bio;
3025
3026         bio_get(bio);
3027         btrfsic_submit_bio(WRITE_FLUSH, bio);
3028
3029         return 0;
3030 }
3031
3032 /*
3033  * send an empty flush down to each device in parallel,
3034  * then wait for them
3035  */
3036 static int barrier_all_devices(struct btrfs_fs_info *info)
3037 {
3038         struct list_head *head;
3039         struct btrfs_device *dev;
3040         int errors_send = 0;
3041         int errors_wait = 0;
3042         int ret;
3043
3044         /* send down all the barriers */
3045         head = &info->fs_devices->devices;
3046         list_for_each_entry_rcu(dev, head, dev_list) {
3047                 if (!dev->bdev) {
3048                         errors_send++;
3049                         continue;
3050                 }
3051                 if (!dev->in_fs_metadata || !dev->writeable)
3052                         continue;
3053
3054                 ret = write_dev_flush(dev, 0);
3055                 if (ret)
3056                         errors_send++;
3057         }
3058
3059         /* wait for all the barriers */
3060         list_for_each_entry_rcu(dev, head, dev_list) {
3061                 if (!dev->bdev) {
3062                         errors_wait++;
3063                         continue;
3064                 }
3065                 if (!dev->in_fs_metadata || !dev->writeable)
3066                         continue;
3067
3068                 ret = write_dev_flush(dev, 1);
3069                 if (ret)
3070                         errors_wait++;
3071         }
3072         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3073             errors_wait > info->num_tolerated_disk_barrier_failures)
3074                 return -EIO;
3075         return 0;
3076 }
3077
3078 int btrfs_calc_num_tolerated_disk_barrier_failures(
3079         struct btrfs_fs_info *fs_info)
3080 {
3081         struct btrfs_ioctl_space_info space;
3082         struct btrfs_space_info *sinfo;
3083         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3084                        BTRFS_BLOCK_GROUP_SYSTEM,
3085                        BTRFS_BLOCK_GROUP_METADATA,
3086                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3087         int num_types = 4;
3088         int i;
3089         int c;
3090         int num_tolerated_disk_barrier_failures =
3091                 (int)fs_info->fs_devices->num_devices;
3092
3093         for (i = 0; i < num_types; i++) {
3094                 struct btrfs_space_info *tmp;
3095
3096                 sinfo = NULL;
3097                 rcu_read_lock();
3098                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3099                         if (tmp->flags == types[i]) {
3100                                 sinfo = tmp;
3101                                 break;
3102                         }
3103                 }
3104                 rcu_read_unlock();
3105
3106                 if (!sinfo)
3107                         continue;
3108
3109                 down_read(&sinfo->groups_sem);
3110                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3111                         if (!list_empty(&sinfo->block_groups[c])) {
3112                                 u64 flags;
3113
3114                                 btrfs_get_block_group_info(
3115                                         &sinfo->block_groups[c], &space);
3116                                 if (space.total_bytes == 0 ||
3117                                     space.used_bytes == 0)
3118                                         continue;
3119                                 flags = space.flags;
3120                                 /*
3121                                  * return
3122                                  * 0: if dup, single or RAID0 is configured for
3123                                  *    any of metadata, system or data, else
3124                                  * 1: if RAID5 is configured, or if RAID1 or
3125                                  *    RAID10 is configured and only two mirrors
3126                                  *    are used, else
3127                                  * 2: if RAID6 is configured, else
3128                                  * num_mirrors - 1: if RAID1 or RAID10 is
3129                                  *                  configured and more than
3130                                  *                  2 mirrors are used.
3131                                  */
3132                                 if (num_tolerated_disk_barrier_failures > 0 &&
3133                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3134                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3135                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3136                                       == 0)))
3137                                         num_tolerated_disk_barrier_failures = 0;
3138                                 else if (num_tolerated_disk_barrier_failures > 1) {
3139                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3140                                             BTRFS_BLOCK_GROUP_RAID5 |
3141                                             BTRFS_BLOCK_GROUP_RAID10)) {
3142                                                 num_tolerated_disk_barrier_failures = 1;
3143                                         } else if (flags &
3144                                                    BTRFS_BLOCK_GROUP_RAID5) {
3145                                                 num_tolerated_disk_barrier_failures = 2;
3146                                         }
3147                                 }
3148                         }
3149                 }
3150                 up_read(&sinfo->groups_sem);
3151         }
3152
3153         return num_tolerated_disk_barrier_failures;
3154 }
3155
3156 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3157 {
3158         struct list_head *head;
3159         struct btrfs_device *dev;
3160         struct btrfs_super_block *sb;
3161         struct btrfs_dev_item *dev_item;
3162         int ret;
3163         int do_barriers;
3164         int max_errors;
3165         int total_errors = 0;
3166         u64 flags;
3167
3168         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3169         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3170         backup_super_roots(root->fs_info);
3171
3172         sb = root->fs_info->super_for_commit;
3173         dev_item = &sb->dev_item;
3174
3175         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3176         head = &root->fs_info->fs_devices->devices;
3177
3178         if (do_barriers) {
3179                 ret = barrier_all_devices(root->fs_info);
3180                 if (ret) {
3181                         mutex_unlock(
3182                                 &root->fs_info->fs_devices->device_list_mutex);
3183                         btrfs_error(root->fs_info, ret,
3184                                     "errors while submitting device barriers.");
3185                         return ret;
3186                 }
3187         }
3188
3189         list_for_each_entry_rcu(dev, head, dev_list) {
3190                 if (!dev->bdev) {
3191                         total_errors++;
3192                         continue;
3193                 }
3194                 if (!dev->in_fs_metadata || !dev->writeable)
3195                         continue;
3196
3197                 btrfs_set_stack_device_generation(dev_item, 0);
3198                 btrfs_set_stack_device_type(dev_item, dev->type);
3199                 btrfs_set_stack_device_id(dev_item, dev->devid);
3200                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3201                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3202                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3203                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3204                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3205                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3206                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3207
3208                 flags = btrfs_super_flags(sb);
3209                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3210
3211                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3212                 if (ret)
3213                         total_errors++;
3214         }
3215         if (total_errors > max_errors) {
3216                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3217                        total_errors);
3218
3219                 /* This shouldn't happen. FUA is masked off if unsupported */
3220                 BUG();
3221         }
3222
3223         total_errors = 0;
3224         list_for_each_entry_rcu(dev, head, dev_list) {
3225                 if (!dev->bdev)
3226                         continue;
3227                 if (!dev->in_fs_metadata || !dev->writeable)
3228                         continue;
3229
3230                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3231                 if (ret)
3232                         total_errors++;
3233         }
3234         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3235         if (total_errors > max_errors) {
3236                 btrfs_error(root->fs_info, -EIO,
3237                             "%d errors while writing supers", total_errors);
3238                 return -EIO;
3239         }
3240         return 0;
3241 }
3242
3243 int write_ctree_super(struct btrfs_trans_handle *trans,
3244                       struct btrfs_root *root, int max_mirrors)
3245 {
3246         int ret;
3247
3248         ret = write_all_supers(root, max_mirrors);
3249         return ret;
3250 }
3251
3252 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3253 {
3254         spin_lock(&fs_info->fs_roots_radix_lock);
3255         radix_tree_delete(&fs_info->fs_roots_radix,
3256                           (unsigned long)root->root_key.objectid);
3257         spin_unlock(&fs_info->fs_roots_radix_lock);
3258
3259         if (btrfs_root_refs(&root->root_item) == 0)
3260                 synchronize_srcu(&fs_info->subvol_srcu);
3261
3262         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3263                 btrfs_free_log(NULL, root);
3264                 btrfs_free_log_root_tree(NULL, fs_info);
3265         }
3266
3267         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3268         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3269         free_fs_root(root);
3270 }
3271
3272 static void free_fs_root(struct btrfs_root *root)
3273 {
3274         iput(root->cache_inode);
3275         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3276         if (root->anon_dev)
3277                 free_anon_bdev(root->anon_dev);
3278         free_extent_buffer(root->node);
3279         free_extent_buffer(root->commit_root);
3280         kfree(root->free_ino_ctl);
3281         kfree(root->free_ino_pinned);
3282         kfree(root->name);
3283         kfree(root);
3284 }
3285
3286 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3287 {
3288         int ret;
3289         struct btrfs_root *gang[8];
3290         int i;
3291
3292         while (!list_empty(&fs_info->dead_roots)) {
3293                 gang[0] = list_entry(fs_info->dead_roots.next,
3294                                      struct btrfs_root, root_list);
3295                 list_del(&gang[0]->root_list);
3296
3297                 if (gang[0]->in_radix) {
3298                         btrfs_free_fs_root(fs_info, gang[0]);
3299                 } else {
3300                         free_extent_buffer(gang[0]->node);
3301                         free_extent_buffer(gang[0]->commit_root);
3302                         kfree(gang[0]);
3303                 }
3304         }
3305
3306         while (1) {
3307                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3308                                              (void **)gang, 0,
3309                                              ARRAY_SIZE(gang));
3310                 if (!ret)
3311                         break;
3312                 for (i = 0; i < ret; i++)
3313                         btrfs_free_fs_root(fs_info, gang[i]);
3314         }
3315 }
3316
3317 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3318 {
3319         u64 root_objectid = 0;
3320         struct btrfs_root *gang[8];
3321         int i;
3322         int ret;
3323
3324         while (1) {
3325                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3326                                              (void **)gang, root_objectid,
3327                                              ARRAY_SIZE(gang));
3328                 if (!ret)
3329                         break;
3330
3331                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3332                 for (i = 0; i < ret; i++) {
3333                         int err;
3334
3335                         root_objectid = gang[i]->root_key.objectid;
3336                         err = btrfs_orphan_cleanup(gang[i]);
3337                         if (err)
3338                                 return err;
3339                 }
3340                 root_objectid++;
3341         }
3342         return 0;
3343 }
3344
3345 int btrfs_commit_super(struct btrfs_root *root)
3346 {
3347         struct btrfs_trans_handle *trans;
3348         int ret;
3349
3350         mutex_lock(&root->fs_info->cleaner_mutex);
3351         btrfs_run_delayed_iputs(root);
3352         btrfs_clean_old_snapshots(root);
3353         mutex_unlock(&root->fs_info->cleaner_mutex);
3354
3355         /* wait until ongoing cleanup work done */
3356         down_write(&root->fs_info->cleanup_work_sem);
3357         up_write(&root->fs_info->cleanup_work_sem);
3358
3359         trans = btrfs_join_transaction(root);
3360         if (IS_ERR(trans))
3361                 return PTR_ERR(trans);
3362         ret = btrfs_commit_transaction(trans, root);
3363         if (ret)
3364                 return ret;
3365         /* run commit again to drop the original snapshot */
3366         trans = btrfs_join_transaction(root);
3367         if (IS_ERR(trans))
3368                 return PTR_ERR(trans);
3369         ret = btrfs_commit_transaction(trans, root);
3370         if (ret)
3371                 return ret;
3372         ret = btrfs_write_and_wait_transaction(NULL, root);
3373         if (ret) {
3374                 btrfs_error(root->fs_info, ret,
3375                             "Failed to sync btree inode to disk.");
3376                 return ret;
3377         }
3378
3379         ret = write_ctree_super(NULL, root, 0);
3380         return ret;
3381 }
3382
3383 int close_ctree(struct btrfs_root *root)
3384 {
3385         struct btrfs_fs_info *fs_info = root->fs_info;
3386         int ret;
3387
3388         fs_info->closing = 1;
3389         smp_mb();
3390
3391         /* pause restriper - we want to resume on mount */
3392         btrfs_pause_balance(fs_info);
3393
3394         btrfs_dev_replace_suspend_for_unmount(fs_info);
3395
3396         btrfs_scrub_cancel(fs_info);
3397
3398         /* wait for any defraggers to finish */
3399         wait_event(fs_info->transaction_wait,
3400                    (atomic_read(&fs_info->defrag_running) == 0));
3401
3402         /* clear out the rbtree of defraggable inodes */
3403         btrfs_cleanup_defrag_inodes(fs_info);
3404
3405         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3406                 ret = btrfs_commit_super(root);
3407                 if (ret)
3408                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3409         }
3410
3411         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3412                 btrfs_error_commit_super(root);
3413
3414         btrfs_put_block_group_cache(fs_info);
3415
3416         kthread_stop(fs_info->transaction_kthread);
3417         kthread_stop(fs_info->cleaner_kthread);
3418
3419         fs_info->closing = 2;
3420         smp_mb();
3421
3422         btrfs_free_qgroup_config(root->fs_info);
3423
3424         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3425                 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3426                        percpu_counter_sum(&fs_info->delalloc_bytes));
3427         }
3428
3429         free_extent_buffer(fs_info->extent_root->node);
3430         free_extent_buffer(fs_info->extent_root->commit_root);
3431         free_extent_buffer(fs_info->tree_root->node);
3432         free_extent_buffer(fs_info->tree_root->commit_root);
3433         free_extent_buffer(fs_info->chunk_root->node);
3434         free_extent_buffer(fs_info->chunk_root->commit_root);
3435         free_extent_buffer(fs_info->dev_root->node);
3436         free_extent_buffer(fs_info->dev_root->commit_root);
3437         free_extent_buffer(fs_info->csum_root->node);
3438         free_extent_buffer(fs_info->csum_root->commit_root);
3439         if (fs_info->quota_root) {
3440                 free_extent_buffer(fs_info->quota_root->node);
3441                 free_extent_buffer(fs_info->quota_root->commit_root);
3442         }
3443
3444         btrfs_free_block_groups(fs_info);
3445
3446         del_fs_roots(fs_info);
3447
3448         iput(fs_info->btree_inode);
3449
3450         btrfs_stop_workers(&fs_info->generic_worker);
3451         btrfs_stop_workers(&fs_info->fixup_workers);
3452         btrfs_stop_workers(&fs_info->delalloc_workers);
3453         btrfs_stop_workers(&fs_info->workers);
3454         btrfs_stop_workers(&fs_info->endio_workers);
3455         btrfs_stop_workers(&fs_info->endio_meta_workers);
3456         btrfs_stop_workers(&fs_info->endio_raid56_workers);
3457         btrfs_stop_workers(&fs_info->rmw_workers);
3458         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3459         btrfs_stop_workers(&fs_info->endio_write_workers);
3460         btrfs_stop_workers(&fs_info->endio_freespace_worker);
3461         btrfs_stop_workers(&fs_info->submit_workers);
3462         btrfs_stop_workers(&fs_info->delayed_workers);
3463         btrfs_stop_workers(&fs_info->caching_workers);
3464         btrfs_stop_workers(&fs_info->readahead_workers);
3465         btrfs_stop_workers(&fs_info->flush_workers);
3466
3467 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3468         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3469                 btrfsic_unmount(root, fs_info->fs_devices);
3470 #endif
3471
3472         btrfs_close_devices(fs_info->fs_devices);
3473         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3474
3475         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3476         percpu_counter_destroy(&fs_info->delalloc_bytes);
3477         bdi_destroy(&fs_info->bdi);
3478         cleanup_srcu_struct(&fs_info->subvol_srcu);
3479
3480         btrfs_free_stripe_hash_table(fs_info);
3481
3482         return 0;
3483 }
3484
3485 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3486                           int atomic)
3487 {
3488         int ret;
3489         struct inode *btree_inode = buf->pages[0]->mapping->host;
3490
3491         ret = extent_buffer_uptodate(buf);
3492         if (!ret)
3493                 return ret;
3494
3495         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3496                                     parent_transid, atomic);
3497         if (ret == -EAGAIN)
3498                 return ret;
3499         return !ret;
3500 }
3501
3502 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3503 {
3504         return set_extent_buffer_uptodate(buf);
3505 }
3506
3507 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3508 {
3509         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3510         u64 transid = btrfs_header_generation(buf);
3511         int was_dirty;
3512
3513         btrfs_assert_tree_locked(buf);
3514         if (transid != root->fs_info->generation)
3515                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3516                        "found %llu running %llu\n",
3517                         (unsigned long long)buf->start,
3518                         (unsigned long long)transid,
3519                         (unsigned long long)root->fs_info->generation);
3520         was_dirty = set_extent_buffer_dirty(buf);
3521         if (!was_dirty)
3522                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3523                                      buf->len,
3524                                      root->fs_info->dirty_metadata_batch);
3525 }
3526
3527 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3528                                         int flush_delayed)
3529 {
3530         /*
3531          * looks as though older kernels can get into trouble with
3532          * this code, they end up stuck in balance_dirty_pages forever
3533          */
3534         int ret;
3535
3536         if (current->flags & PF_MEMALLOC)
3537                 return;
3538
3539         if (flush_delayed)
3540                 btrfs_balance_delayed_items(root);
3541
3542         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3543                                      BTRFS_DIRTY_METADATA_THRESH);
3544         if (ret > 0) {
3545                 balance_dirty_pages_ratelimited(
3546                                    root->fs_info->btree_inode->i_mapping);
3547         }
3548         return;
3549 }
3550
3551 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3552 {
3553         __btrfs_btree_balance_dirty(root, 1);
3554 }
3555
3556 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3557 {
3558         __btrfs_btree_balance_dirty(root, 0);
3559 }
3560
3561 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3562 {
3563         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3564         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3565 }
3566
3567 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3568                               int read_only)
3569 {
3570         if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3571                 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3572                 return -EINVAL;
3573         }
3574
3575         if (read_only)
3576                 return 0;
3577
3578         return 0;
3579 }
3580
3581 void btrfs_error_commit_super(struct btrfs_root *root)
3582 {
3583         mutex_lock(&root->fs_info->cleaner_mutex);
3584         btrfs_run_delayed_iputs(root);
3585         mutex_unlock(&root->fs_info->cleaner_mutex);
3586
3587         down_write(&root->fs_info->cleanup_work_sem);
3588         up_write(&root->fs_info->cleanup_work_sem);
3589
3590         /* cleanup FS via transaction */
3591         btrfs_cleanup_transaction(root);
3592 }
3593
3594 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3595                                              struct btrfs_root *root)
3596 {
3597         struct btrfs_inode *btrfs_inode;
3598         struct list_head splice;
3599
3600         INIT_LIST_HEAD(&splice);
3601
3602         mutex_lock(&root->fs_info->ordered_operations_mutex);
3603         spin_lock(&root->fs_info->ordered_extent_lock);
3604
3605         list_splice_init(&t->ordered_operations, &splice);
3606         while (!list_empty(&splice)) {
3607                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3608                                          ordered_operations);
3609
3610                 list_del_init(&btrfs_inode->ordered_operations);
3611
3612                 btrfs_invalidate_inodes(btrfs_inode->root);
3613         }
3614
3615         spin_unlock(&root->fs_info->ordered_extent_lock);
3616         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3617 }
3618
3619 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3620 {
3621         struct btrfs_ordered_extent *ordered;
3622
3623         spin_lock(&root->fs_info->ordered_extent_lock);
3624         /*
3625          * This will just short circuit the ordered completion stuff which will
3626          * make sure the ordered extent gets properly cleaned up.
3627          */
3628         list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3629                             root_extent_list)
3630                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3631         spin_unlock(&root->fs_info->ordered_extent_lock);
3632 }
3633
3634 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3635                                struct btrfs_root *root)
3636 {
3637         struct rb_node *node;
3638         struct btrfs_delayed_ref_root *delayed_refs;
3639         struct btrfs_delayed_ref_node *ref;
3640         int ret = 0;
3641
3642         delayed_refs = &trans->delayed_refs;
3643
3644         spin_lock(&delayed_refs->lock);
3645         if (delayed_refs->num_entries == 0) {
3646                 spin_unlock(&delayed_refs->lock);
3647                 printk(KERN_INFO "delayed_refs has NO entry\n");
3648                 return ret;
3649         }
3650
3651         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3652                 struct btrfs_delayed_ref_head *head = NULL;
3653
3654                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3655                 atomic_set(&ref->refs, 1);
3656                 if (btrfs_delayed_ref_is_head(ref)) {
3657
3658                         head = btrfs_delayed_node_to_head(ref);
3659                         if (!mutex_trylock(&head->mutex)) {
3660                                 atomic_inc(&ref->refs);
3661                                 spin_unlock(&delayed_refs->lock);
3662
3663                                 /* Need to wait for the delayed ref to run */
3664                                 mutex_lock(&head->mutex);
3665                                 mutex_unlock(&head->mutex);
3666                                 btrfs_put_delayed_ref(ref);
3667
3668                                 spin_lock(&delayed_refs->lock);
3669                                 continue;
3670                         }
3671
3672                         btrfs_free_delayed_extent_op(head->extent_op);
3673                         delayed_refs->num_heads--;
3674                         if (list_empty(&head->cluster))
3675                                 delayed_refs->num_heads_ready--;
3676                         list_del_init(&head->cluster);
3677                 }
3678
3679                 ref->in_tree = 0;
3680                 rb_erase(&ref->rb_node, &delayed_refs->root);
3681                 delayed_refs->num_entries--;
3682                 if (head)
3683                         mutex_unlock(&head->mutex);
3684                 spin_unlock(&delayed_refs->lock);
3685                 btrfs_put_delayed_ref(ref);
3686
3687                 cond_resched();
3688                 spin_lock(&delayed_refs->lock);
3689         }
3690
3691         spin_unlock(&delayed_refs->lock);
3692
3693         return ret;
3694 }
3695
3696 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3697 {
3698         struct btrfs_pending_snapshot *snapshot;
3699         struct list_head splice;
3700
3701         INIT_LIST_HEAD(&splice);
3702
3703         list_splice_init(&t->pending_snapshots, &splice);
3704
3705         while (!list_empty(&splice)) {
3706                 snapshot = list_entry(splice.next,
3707                                       struct btrfs_pending_snapshot,
3708                                       list);
3709                 snapshot->error = -ECANCELED;
3710                 list_del_init(&snapshot->list);
3711         }
3712 }
3713
3714 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3715 {
3716         struct btrfs_inode *btrfs_inode;
3717         struct list_head splice;
3718
3719         INIT_LIST_HEAD(&splice);
3720
3721         spin_lock(&root->fs_info->delalloc_lock);
3722         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3723
3724         while (!list_empty(&splice)) {
3725                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3726                                     delalloc_inodes);
3727
3728                 list_del_init(&btrfs_inode->delalloc_inodes);
3729                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3730                           &btrfs_inode->runtime_flags);
3731
3732                 btrfs_invalidate_inodes(btrfs_inode->root);
3733         }
3734
3735         spin_unlock(&root->fs_info->delalloc_lock);
3736 }
3737
3738 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3739                                         struct extent_io_tree *dirty_pages,
3740                                         int mark)
3741 {
3742         int ret;
3743         struct page *page;
3744         struct inode *btree_inode = root->fs_info->btree_inode;
3745         struct extent_buffer *eb;
3746         u64 start = 0;
3747         u64 end;
3748         u64 offset;
3749         unsigned long index;
3750
3751         while (1) {
3752                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3753                                             mark, NULL);
3754                 if (ret)
3755                         break;
3756
3757                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3758                 while (start <= end) {
3759                         index = start >> PAGE_CACHE_SHIFT;
3760                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3761                         page = find_get_page(btree_inode->i_mapping, index);
3762                         if (!page)
3763                                 continue;
3764                         offset = page_offset(page);
3765
3766                         spin_lock(&dirty_pages->buffer_lock);
3767                         eb = radix_tree_lookup(
3768                              &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3769                                                offset >> PAGE_CACHE_SHIFT);
3770                         spin_unlock(&dirty_pages->buffer_lock);
3771                         if (eb)
3772                                 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3773                                                          &eb->bflags);
3774                         if (PageWriteback(page))
3775                                 end_page_writeback(page);
3776
3777                         lock_page(page);
3778                         if (PageDirty(page)) {
3779                                 clear_page_dirty_for_io(page);
3780                                 spin_lock_irq(&page->mapping->tree_lock);
3781                                 radix_tree_tag_clear(&page->mapping->page_tree,
3782                                                         page_index(page),
3783                                                         PAGECACHE_TAG_DIRTY);
3784                                 spin_unlock_irq(&page->mapping->tree_lock);
3785                         }
3786
3787                         unlock_page(page);
3788                         page_cache_release(page);
3789                 }
3790         }
3791
3792         return ret;
3793 }
3794
3795 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3796                                        struct extent_io_tree *pinned_extents)
3797 {
3798         struct extent_io_tree *unpin;
3799         u64 start;
3800         u64 end;
3801         int ret;
3802         bool loop = true;
3803
3804         unpin = pinned_extents;
3805 again:
3806         while (1) {
3807                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3808                                             EXTENT_DIRTY, NULL);
3809                 if (ret)
3810                         break;
3811
3812                 /* opt_discard */
3813                 if (btrfs_test_opt(root, DISCARD))
3814                         ret = btrfs_error_discard_extent(root, start,
3815                                                          end + 1 - start,
3816                                                          NULL);
3817
3818                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3819                 btrfs_error_unpin_extent_range(root, start, end);
3820                 cond_resched();
3821         }
3822
3823         if (loop) {
3824                 if (unpin == &root->fs_info->freed_extents[0])
3825                         unpin = &root->fs_info->freed_extents[1];
3826                 else
3827                         unpin = &root->fs_info->freed_extents[0];
3828                 loop = false;
3829                 goto again;
3830         }
3831
3832         return 0;
3833 }
3834
3835 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3836                                    struct btrfs_root *root)
3837 {
3838         btrfs_destroy_delayed_refs(cur_trans, root);
3839         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3840                                 cur_trans->dirty_pages.dirty_bytes);
3841
3842         /* FIXME: cleanup wait for commit */
3843         cur_trans->in_commit = 1;
3844         cur_trans->blocked = 1;
3845         wake_up(&root->fs_info->transaction_blocked_wait);
3846
3847         btrfs_evict_pending_snapshots(cur_trans);
3848
3849         cur_trans->blocked = 0;
3850         wake_up(&root->fs_info->transaction_wait);
3851
3852         cur_trans->commit_done = 1;
3853         wake_up(&cur_trans->commit_wait);
3854
3855         btrfs_destroy_delayed_inodes(root);
3856         btrfs_assert_delayed_root_empty(root);
3857
3858         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3859                                      EXTENT_DIRTY);
3860         btrfs_destroy_pinned_extent(root,
3861                                     root->fs_info->pinned_extents);
3862
3863         /*
3864         memset(cur_trans, 0, sizeof(*cur_trans));
3865         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3866         */
3867 }
3868
3869 int btrfs_cleanup_transaction(struct btrfs_root *root)
3870 {
3871         struct btrfs_transaction *t;
3872         LIST_HEAD(list);
3873
3874         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3875
3876         spin_lock(&root->fs_info->trans_lock);
3877         list_splice_init(&root->fs_info->trans_list, &list);
3878         root->fs_info->trans_no_join = 1;
3879         spin_unlock(&root->fs_info->trans_lock);
3880
3881         while (!list_empty(&list)) {
3882                 t = list_entry(list.next, struct btrfs_transaction, list);
3883
3884                 btrfs_destroy_ordered_operations(t, root);
3885
3886                 btrfs_destroy_ordered_extents(root);
3887
3888                 btrfs_destroy_delayed_refs(t, root);
3889
3890                 btrfs_block_rsv_release(root,
3891                                         &root->fs_info->trans_block_rsv,
3892                                         t->dirty_pages.dirty_bytes);
3893
3894                 /* FIXME: cleanup wait for commit */
3895                 t->in_commit = 1;
3896                 t->blocked = 1;
3897                 smp_mb();
3898                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3899                         wake_up(&root->fs_info->transaction_blocked_wait);
3900
3901                 btrfs_evict_pending_snapshots(t);
3902
3903                 t->blocked = 0;
3904                 smp_mb();
3905                 if (waitqueue_active(&root->fs_info->transaction_wait))
3906                         wake_up(&root->fs_info->transaction_wait);
3907
3908                 t->commit_done = 1;
3909                 smp_mb();
3910                 if (waitqueue_active(&t->commit_wait))
3911                         wake_up(&t->commit_wait);
3912
3913                 btrfs_destroy_delayed_inodes(root);
3914                 btrfs_assert_delayed_root_empty(root);
3915
3916                 btrfs_destroy_delalloc_inodes(root);
3917
3918                 spin_lock(&root->fs_info->trans_lock);
3919                 root->fs_info->running_transaction = NULL;
3920                 spin_unlock(&root->fs_info->trans_lock);
3921
3922                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3923                                              EXTENT_DIRTY);
3924
3925                 btrfs_destroy_pinned_extent(root,
3926                                             root->fs_info->pinned_extents);
3927
3928                 atomic_set(&t->use_count, 0);
3929                 list_del_init(&t->list);
3930                 memset(t, 0, sizeof(*t));
3931                 kmem_cache_free(btrfs_transaction_cachep, t);
3932         }
3933
3934         spin_lock(&root->fs_info->trans_lock);
3935         root->fs_info->trans_no_join = 0;
3936         spin_unlock(&root->fs_info->trans_lock);
3937         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3938
3939         return 0;
3940 }
3941
3942 static struct extent_io_ops btree_extent_io_ops = {
3943         .readpage_end_io_hook = btree_readpage_end_io_hook,
3944         .readpage_io_failed_hook = btree_io_failed_hook,
3945         .submit_bio_hook = btree_submit_bio_hook,
3946         /* note we're sharing with inode.c for the merge bio hook */
3947         .merge_bio_hook = btrfs_merge_bio_hook,
3948 };