2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <asm/unaligned.h>
38 #include "transaction.h"
39 #include "btrfs_inode.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
53 #include <asm/cpufeature.h>
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
58 static void free_fs_root(struct btrfs_root *root);
59 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
62 struct btrfs_root *root);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 struct btrfs_root *root);
66 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
85 struct btrfs_fs_info *info;
88 struct list_head list;
89 struct btrfs_work work;
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
97 struct async_submit_bio {
100 struct list_head list;
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
105 unsigned long bio_flags;
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
111 struct btrfs_work work;
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
143 static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
159 { .id = 0, .name_stem = "tree" },
162 void __init btrfs_init_lockdep(void)
166 /* initialize lockdep class names */
167 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
168 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
171 snprintf(ks->names[j], sizeof(ks->names[j]),
172 "btrfs-%s-%02d", ks->name_stem, j);
176 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
179 struct btrfs_lockdep_keyset *ks;
181 BUG_ON(level >= ARRAY_SIZE(ks->keys));
183 /* find the matching keyset, id 0 is the default entry */
184 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
185 if (ks->id == objectid)
188 lockdep_set_class_and_name(&eb->lock,
189 &ks->keys[level], ks->names[level]);
195 * extents on the btree inode are pretty simple, there's one extent
196 * that covers the entire device
198 static struct extent_map *btree_get_extent(struct inode *inode,
199 struct page *page, size_t pg_offset, u64 start, u64 len,
202 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
203 struct extent_map *em;
206 read_lock(&em_tree->lock);
207 em = lookup_extent_mapping(em_tree, start, len);
210 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
211 read_unlock(&em_tree->lock);
214 read_unlock(&em_tree->lock);
216 em = alloc_extent_map();
218 em = ERR_PTR(-ENOMEM);
223 em->block_len = (u64)-1;
225 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227 write_lock(&em_tree->lock);
228 ret = add_extent_mapping(em_tree, em, 0);
229 if (ret == -EEXIST) {
231 em = lookup_extent_mapping(em_tree, start, len);
238 write_unlock(&em_tree->lock);
244 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 return crc32c(seed, data, len);
249 void btrfs_csum_final(u32 crc, char *result)
251 put_unaligned_le32(~crc, result);
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
267 unsigned long map_start;
268 unsigned long map_len;
271 unsigned long inline_result;
273 len = buf->len - offset;
275 err = map_private_extent_buffer(buf, offset, 32,
276 &kaddr, &map_start, &map_len);
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(kaddr + offset - map_start,
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
290 result = (char *)&inline_result;
293 btrfs_csum_final(crc, result);
296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
299 memcpy(&found, result, csum_size);
301 read_extent_buffer(buf, &val, 0, csum_size);
302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 "failed on %llu wanted %X found %X "
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
313 write_extent_buffer(buf, result, 0, csum_size);
315 if (result != (char *)&inline_result)
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
330 struct extent_state *cached_state = NULL;
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
352 clear_extent_buffer_uptodate(eb);
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
360 * Return 0 if the superblock checksum type matches the checksum value of that
361 * algorithm. Pass the raw disk superblock data.
363 static int btrfs_check_super_csum(char *raw_disk_sb)
365 struct btrfs_super_block *disk_sb =
366 (struct btrfs_super_block *)raw_disk_sb;
367 u16 csum_type = btrfs_super_csum_type(disk_sb);
370 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
372 const int csum_size = sizeof(crc);
373 char result[csum_size];
376 * The super_block structure does not span the whole
377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
378 * is filled with zeros and is included in the checkum.
380 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 btrfs_csum_final(crc, result);
384 if (memcmp(raw_disk_sb, result, csum_size))
387 if (ret && btrfs_super_generation(disk_sb) < 10) {
388 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
393 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
394 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
403 * helper to read a given tree block, doing retries as required when
404 * the checksums don't match and we have alternate mirrors to try.
406 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
407 struct extent_buffer *eb,
408 u64 start, u64 parent_transid)
410 struct extent_io_tree *io_tree;
415 int failed_mirror = 0;
417 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
418 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
420 ret = read_extent_buffer_pages(io_tree, eb, start,
422 btree_get_extent, mirror_num);
424 if (!verify_parent_transid(io_tree, eb,
432 * This buffer's crc is fine, but its contents are corrupted, so
433 * there is no reason to read the other copies, they won't be
436 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
439 num_copies = btrfs_num_copies(root->fs_info,
444 if (!failed_mirror) {
446 failed_mirror = eb->read_mirror;
450 if (mirror_num == failed_mirror)
453 if (mirror_num > num_copies)
457 if (failed && !ret && failed_mirror)
458 repair_eb_io_failure(root, eb, failed_mirror);
464 * checksum a dirty tree block before IO. This has extra checks to make sure
465 * we only fill in the checksum field in the first page of a multi-page block
468 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
470 struct extent_io_tree *tree;
471 u64 start = page_offset(page);
473 struct extent_buffer *eb;
475 tree = &BTRFS_I(page->mapping->host)->io_tree;
477 eb = (struct extent_buffer *)page->private;
478 if (page != eb->pages[0])
480 found_start = btrfs_header_bytenr(eb);
481 if (found_start != start) {
485 if (!PageUptodate(page)) {
489 csum_tree_block(root, eb, 0);
493 static int check_tree_block_fsid(struct btrfs_root *root,
494 struct extent_buffer *eb)
496 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
497 u8 fsid[BTRFS_UUID_SIZE];
500 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
503 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
507 fs_devices = fs_devices->seed;
512 #define CORRUPT(reason, eb, root, slot) \
513 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
514 "root=%llu, slot=%d\n", reason, \
515 (unsigned long long)btrfs_header_bytenr(eb), \
516 (unsigned long long)root->objectid, slot)
518 static noinline int check_leaf(struct btrfs_root *root,
519 struct extent_buffer *leaf)
521 struct btrfs_key key;
522 struct btrfs_key leaf_key;
523 u32 nritems = btrfs_header_nritems(leaf);
529 /* Check the 0 item */
530 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
531 BTRFS_LEAF_DATA_SIZE(root)) {
532 CORRUPT("invalid item offset size pair", leaf, root, 0);
537 * Check to make sure each items keys are in the correct order and their
538 * offsets make sense. We only have to loop through nritems-1 because
539 * we check the current slot against the next slot, which verifies the
540 * next slot's offset+size makes sense and that the current's slot
543 for (slot = 0; slot < nritems - 1; slot++) {
544 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
545 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
547 /* Make sure the keys are in the right order */
548 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
549 CORRUPT("bad key order", leaf, root, slot);
554 * Make sure the offset and ends are right, remember that the
555 * item data starts at the end of the leaf and grows towards the
558 if (btrfs_item_offset_nr(leaf, slot) !=
559 btrfs_item_end_nr(leaf, slot + 1)) {
560 CORRUPT("slot offset bad", leaf, root, slot);
565 * Check to make sure that we don't point outside of the leaf,
566 * just incase all the items are consistent to eachother, but
567 * all point outside of the leaf.
569 if (btrfs_item_end_nr(leaf, slot) >
570 BTRFS_LEAF_DATA_SIZE(root)) {
571 CORRUPT("slot end outside of leaf", leaf, root, slot);
579 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
580 struct extent_state *state, int mirror)
582 struct extent_io_tree *tree;
585 struct extent_buffer *eb;
586 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
593 tree = &BTRFS_I(page->mapping->host)->io_tree;
594 eb = (struct extent_buffer *)page->private;
596 /* the pending IO might have been the only thing that kept this buffer
597 * in memory. Make sure we have a ref for all this other checks
599 extent_buffer_get(eb);
601 reads_done = atomic_dec_and_test(&eb->io_pages);
605 eb->read_mirror = mirror;
606 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
611 found_start = btrfs_header_bytenr(eb);
612 if (found_start != eb->start) {
613 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
615 (unsigned long long)found_start,
616 (unsigned long long)eb->start);
620 if (check_tree_block_fsid(root, eb)) {
621 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
622 (unsigned long long)eb->start);
626 found_level = btrfs_header_level(eb);
627 if (found_level >= BTRFS_MAX_LEVEL) {
628 btrfs_info(root->fs_info, "bad tree block level %d\n",
629 (int)btrfs_header_level(eb));
634 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
637 ret = csum_tree_block(root, eb, 1);
644 * If this is a leaf block and it is corrupt, set the corrupt bit so
645 * that we don't try and read the other copies of this block, just
648 if (found_level == 0 && check_leaf(root, eb)) {
649 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
654 set_extent_buffer_uptodate(eb);
657 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
658 btree_readahead_hook(root, eb, eb->start, ret);
662 * our io error hook is going to dec the io pages
663 * again, we have to make sure it has something
666 atomic_inc(&eb->io_pages);
667 clear_extent_buffer_uptodate(eb);
669 free_extent_buffer(eb);
674 static int btree_io_failed_hook(struct page *page, int failed_mirror)
676 struct extent_buffer *eb;
677 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
679 eb = (struct extent_buffer *)page->private;
680 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
681 eb->read_mirror = failed_mirror;
682 atomic_dec(&eb->io_pages);
683 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
684 btree_readahead_hook(root, eb, eb->start, -EIO);
685 return -EIO; /* we fixed nothing */
688 static void end_workqueue_bio(struct bio *bio, int err)
690 struct end_io_wq *end_io_wq = bio->bi_private;
691 struct btrfs_fs_info *fs_info;
693 fs_info = end_io_wq->info;
694 end_io_wq->error = err;
695 end_io_wq->work.func = end_workqueue_fn;
696 end_io_wq->work.flags = 0;
698 if (bio->bi_rw & REQ_WRITE) {
699 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
700 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
702 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
703 btrfs_queue_worker(&fs_info->endio_freespace_worker,
705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
706 btrfs_queue_worker(&fs_info->endio_raid56_workers,
709 btrfs_queue_worker(&fs_info->endio_write_workers,
712 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
713 btrfs_queue_worker(&fs_info->endio_raid56_workers,
715 else if (end_io_wq->metadata)
716 btrfs_queue_worker(&fs_info->endio_meta_workers,
719 btrfs_queue_worker(&fs_info->endio_workers,
725 * For the metadata arg you want
728 * 1 - if normal metadta
729 * 2 - if writing to the free space cache area
730 * 3 - raid parity work
732 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
735 struct end_io_wq *end_io_wq;
736 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
740 end_io_wq->private = bio->bi_private;
741 end_io_wq->end_io = bio->bi_end_io;
742 end_io_wq->info = info;
743 end_io_wq->error = 0;
744 end_io_wq->bio = bio;
745 end_io_wq->metadata = metadata;
747 bio->bi_private = end_io_wq;
748 bio->bi_end_io = end_workqueue_bio;
752 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
754 unsigned long limit = min_t(unsigned long,
755 info->workers.max_workers,
756 info->fs_devices->open_devices);
760 static void run_one_async_start(struct btrfs_work *work)
762 struct async_submit_bio *async;
765 async = container_of(work, struct async_submit_bio, work);
766 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
767 async->mirror_num, async->bio_flags,
773 static void run_one_async_done(struct btrfs_work *work)
775 struct btrfs_fs_info *fs_info;
776 struct async_submit_bio *async;
779 async = container_of(work, struct async_submit_bio, work);
780 fs_info = BTRFS_I(async->inode)->root->fs_info;
782 limit = btrfs_async_submit_limit(fs_info);
783 limit = limit * 2 / 3;
785 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
786 waitqueue_active(&fs_info->async_submit_wait))
787 wake_up(&fs_info->async_submit_wait);
789 /* If an error occured we just want to clean up the bio and move on */
791 bio_endio(async->bio, async->error);
795 async->submit_bio_done(async->inode, async->rw, async->bio,
796 async->mirror_num, async->bio_flags,
800 static void run_one_async_free(struct btrfs_work *work)
802 struct async_submit_bio *async;
804 async = container_of(work, struct async_submit_bio, work);
808 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
809 int rw, struct bio *bio, int mirror_num,
810 unsigned long bio_flags,
812 extent_submit_bio_hook_t *submit_bio_start,
813 extent_submit_bio_hook_t *submit_bio_done)
815 struct async_submit_bio *async;
817 async = kmalloc(sizeof(*async), GFP_NOFS);
821 async->inode = inode;
824 async->mirror_num = mirror_num;
825 async->submit_bio_start = submit_bio_start;
826 async->submit_bio_done = submit_bio_done;
828 async->work.func = run_one_async_start;
829 async->work.ordered_func = run_one_async_done;
830 async->work.ordered_free = run_one_async_free;
832 async->work.flags = 0;
833 async->bio_flags = bio_flags;
834 async->bio_offset = bio_offset;
838 atomic_inc(&fs_info->nr_async_submits);
841 btrfs_set_work_high_prio(&async->work);
843 btrfs_queue_worker(&fs_info->workers, &async->work);
845 while (atomic_read(&fs_info->async_submit_draining) &&
846 atomic_read(&fs_info->nr_async_submits)) {
847 wait_event(fs_info->async_submit_wait,
848 (atomic_read(&fs_info->nr_async_submits) == 0));
854 static int btree_csum_one_bio(struct bio *bio)
856 struct bio_vec *bvec = bio->bi_io_vec;
858 struct btrfs_root *root;
861 WARN_ON(bio->bi_vcnt <= 0);
862 while (bio_index < bio->bi_vcnt) {
863 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
864 ret = csum_dirty_buffer(root, bvec->bv_page);
873 static int __btree_submit_bio_start(struct inode *inode, int rw,
874 struct bio *bio, int mirror_num,
875 unsigned long bio_flags,
879 * when we're called for a write, we're already in the async
880 * submission context. Just jump into btrfs_map_bio
882 return btree_csum_one_bio(bio);
885 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
886 int mirror_num, unsigned long bio_flags,
892 * when we're called for a write, we're already in the async
893 * submission context. Just jump into btrfs_map_bio
895 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
901 static int check_async_write(struct inode *inode, unsigned long bio_flags)
903 if (bio_flags & EXTENT_BIO_TREE_LOG)
912 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
913 int mirror_num, unsigned long bio_flags,
916 int async = check_async_write(inode, bio_flags);
919 if (!(rw & REQ_WRITE)) {
921 * called for a read, do the setup so that checksum validation
922 * can happen in the async kernel threads
924 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
928 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
931 ret = btree_csum_one_bio(bio);
934 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
938 * kthread helpers are used to submit writes so that
939 * checksumming can happen in parallel across all CPUs
941 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
942 inode, rw, bio, mirror_num, 0,
944 __btree_submit_bio_start,
945 __btree_submit_bio_done);
955 #ifdef CONFIG_MIGRATION
956 static int btree_migratepage(struct address_space *mapping,
957 struct page *newpage, struct page *page,
958 enum migrate_mode mode)
961 * we can't safely write a btree page from here,
962 * we haven't done the locking hook
967 * Buffers may be managed in a filesystem specific way.
968 * We must have no buffers or drop them.
970 if (page_has_private(page) &&
971 !try_to_release_page(page, GFP_KERNEL))
973 return migrate_page(mapping, newpage, page, mode);
978 static int btree_writepages(struct address_space *mapping,
979 struct writeback_control *wbc)
981 struct extent_io_tree *tree;
982 struct btrfs_fs_info *fs_info;
985 tree = &BTRFS_I(mapping->host)->io_tree;
986 if (wbc->sync_mode == WB_SYNC_NONE) {
988 if (wbc->for_kupdate)
991 fs_info = BTRFS_I(mapping->host)->root->fs_info;
992 /* this is a bit racy, but that's ok */
993 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
994 BTRFS_DIRTY_METADATA_THRESH);
998 return btree_write_cache_pages(mapping, wbc);
1001 static int btree_readpage(struct file *file, struct page *page)
1003 struct extent_io_tree *tree;
1004 tree = &BTRFS_I(page->mapping->host)->io_tree;
1005 return extent_read_full_page(tree, page, btree_get_extent, 0);
1008 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1010 if (PageWriteback(page) || PageDirty(page))
1013 return try_release_extent_buffer(page);
1016 static void btree_invalidatepage(struct page *page, unsigned long offset)
1018 struct extent_io_tree *tree;
1019 tree = &BTRFS_I(page->mapping->host)->io_tree;
1020 extent_invalidatepage(tree, page, offset);
1021 btree_releasepage(page, GFP_NOFS);
1022 if (PagePrivate(page)) {
1023 printk(KERN_WARNING "btrfs warning page private not zero "
1024 "on page %llu\n", (unsigned long long)page_offset(page));
1025 ClearPagePrivate(page);
1026 set_page_private(page, 0);
1027 page_cache_release(page);
1031 static int btree_set_page_dirty(struct page *page)
1034 struct extent_buffer *eb;
1036 BUG_ON(!PagePrivate(page));
1037 eb = (struct extent_buffer *)page->private;
1039 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1040 BUG_ON(!atomic_read(&eb->refs));
1041 btrfs_assert_tree_locked(eb);
1043 return __set_page_dirty_nobuffers(page);
1046 static const struct address_space_operations btree_aops = {
1047 .readpage = btree_readpage,
1048 .writepages = btree_writepages,
1049 .releasepage = btree_releasepage,
1050 .invalidatepage = btree_invalidatepage,
1051 #ifdef CONFIG_MIGRATION
1052 .migratepage = btree_migratepage,
1054 .set_page_dirty = btree_set_page_dirty,
1057 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1060 struct extent_buffer *buf = NULL;
1061 struct inode *btree_inode = root->fs_info->btree_inode;
1064 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1067 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1068 buf, 0, WAIT_NONE, btree_get_extent, 0);
1069 free_extent_buffer(buf);
1073 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1074 int mirror_num, struct extent_buffer **eb)
1076 struct extent_buffer *buf = NULL;
1077 struct inode *btree_inode = root->fs_info->btree_inode;
1078 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1081 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1085 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1087 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1088 btree_get_extent, mirror_num);
1090 free_extent_buffer(buf);
1094 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1095 free_extent_buffer(buf);
1097 } else if (extent_buffer_uptodate(buf)) {
1100 free_extent_buffer(buf);
1105 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1106 u64 bytenr, u32 blocksize)
1108 struct inode *btree_inode = root->fs_info->btree_inode;
1109 struct extent_buffer *eb;
1110 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1115 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1116 u64 bytenr, u32 blocksize)
1118 struct inode *btree_inode = root->fs_info->btree_inode;
1119 struct extent_buffer *eb;
1121 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1127 int btrfs_write_tree_block(struct extent_buffer *buf)
1129 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1130 buf->start + buf->len - 1);
1133 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1135 return filemap_fdatawait_range(buf->pages[0]->mapping,
1136 buf->start, buf->start + buf->len - 1);
1139 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1140 u32 blocksize, u64 parent_transid)
1142 struct extent_buffer *buf = NULL;
1145 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1149 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1154 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1155 struct extent_buffer *buf)
1157 struct btrfs_fs_info *fs_info = root->fs_info;
1159 if (btrfs_header_generation(buf) ==
1160 fs_info->running_transaction->transid) {
1161 btrfs_assert_tree_locked(buf);
1163 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1164 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1166 fs_info->dirty_metadata_batch);
1167 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1168 btrfs_set_lock_blocking(buf);
1169 clear_extent_buffer_dirty(buf);
1174 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1175 u32 stripesize, struct btrfs_root *root,
1176 struct btrfs_fs_info *fs_info,
1180 root->commit_root = NULL;
1181 root->sectorsize = sectorsize;
1182 root->nodesize = nodesize;
1183 root->leafsize = leafsize;
1184 root->stripesize = stripesize;
1186 root->track_dirty = 0;
1188 root->orphan_item_inserted = 0;
1189 root->orphan_cleanup_state = 0;
1191 root->objectid = objectid;
1192 root->last_trans = 0;
1193 root->highest_objectid = 0;
1195 root->inode_tree = RB_ROOT;
1196 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1197 root->block_rsv = NULL;
1198 root->orphan_block_rsv = NULL;
1200 INIT_LIST_HEAD(&root->dirty_list);
1201 INIT_LIST_HEAD(&root->root_list);
1202 INIT_LIST_HEAD(&root->logged_list[0]);
1203 INIT_LIST_HEAD(&root->logged_list[1]);
1204 spin_lock_init(&root->orphan_lock);
1205 spin_lock_init(&root->inode_lock);
1206 spin_lock_init(&root->accounting_lock);
1207 spin_lock_init(&root->log_extents_lock[0]);
1208 spin_lock_init(&root->log_extents_lock[1]);
1209 mutex_init(&root->objectid_mutex);
1210 mutex_init(&root->log_mutex);
1211 init_waitqueue_head(&root->log_writer_wait);
1212 init_waitqueue_head(&root->log_commit_wait[0]);
1213 init_waitqueue_head(&root->log_commit_wait[1]);
1214 atomic_set(&root->log_commit[0], 0);
1215 atomic_set(&root->log_commit[1], 0);
1216 atomic_set(&root->log_writers, 0);
1217 atomic_set(&root->log_batch, 0);
1218 atomic_set(&root->orphan_inodes, 0);
1219 root->log_transid = 0;
1220 root->last_log_commit = 0;
1221 extent_io_tree_init(&root->dirty_log_pages,
1222 fs_info->btree_inode->i_mapping);
1224 memset(&root->root_key, 0, sizeof(root->root_key));
1225 memset(&root->root_item, 0, sizeof(root->root_item));
1226 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1227 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1228 root->defrag_trans_start = fs_info->generation;
1229 init_completion(&root->kobj_unregister);
1230 root->defrag_running = 0;
1231 root->root_key.objectid = objectid;
1234 spin_lock_init(&root->root_item_lock);
1237 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1238 struct btrfs_fs_info *fs_info,
1240 struct btrfs_root *root)
1246 __setup_root(tree_root->nodesize, tree_root->leafsize,
1247 tree_root->sectorsize, tree_root->stripesize,
1248 root, fs_info, objectid);
1249 ret = btrfs_find_last_root(tree_root, objectid,
1250 &root->root_item, &root->root_key);
1256 generation = btrfs_root_generation(&root->root_item);
1257 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1258 root->commit_root = NULL;
1259 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1260 blocksize, generation);
1261 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1262 free_extent_buffer(root->node);
1266 root->commit_root = btrfs_root_node(root);
1270 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1272 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1274 root->fs_info = fs_info;
1278 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1279 struct btrfs_fs_info *fs_info,
1282 struct extent_buffer *leaf;
1283 struct btrfs_root *tree_root = fs_info->tree_root;
1284 struct btrfs_root *root;
1285 struct btrfs_key key;
1290 root = btrfs_alloc_root(fs_info);
1292 return ERR_PTR(-ENOMEM);
1294 __setup_root(tree_root->nodesize, tree_root->leafsize,
1295 tree_root->sectorsize, tree_root->stripesize,
1296 root, fs_info, objectid);
1297 root->root_key.objectid = objectid;
1298 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1299 root->root_key.offset = 0;
1301 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1302 0, objectid, NULL, 0, 0, 0);
1304 ret = PTR_ERR(leaf);
1309 bytenr = leaf->start;
1310 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1311 btrfs_set_header_bytenr(leaf, leaf->start);
1312 btrfs_set_header_generation(leaf, trans->transid);
1313 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1314 btrfs_set_header_owner(leaf, objectid);
1317 write_extent_buffer(leaf, fs_info->fsid,
1318 (unsigned long)btrfs_header_fsid(leaf),
1320 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1321 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1323 btrfs_mark_buffer_dirty(leaf);
1325 root->commit_root = btrfs_root_node(root);
1326 root->track_dirty = 1;
1329 root->root_item.flags = 0;
1330 root->root_item.byte_limit = 0;
1331 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1332 btrfs_set_root_generation(&root->root_item, trans->transid);
1333 btrfs_set_root_level(&root->root_item, 0);
1334 btrfs_set_root_refs(&root->root_item, 1);
1335 btrfs_set_root_used(&root->root_item, leaf->len);
1336 btrfs_set_root_last_snapshot(&root->root_item, 0);
1337 btrfs_set_root_dirid(&root->root_item, 0);
1339 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1340 root->root_item.drop_level = 0;
1342 key.objectid = objectid;
1343 key.type = BTRFS_ROOT_ITEM_KEY;
1345 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1349 btrfs_tree_unlock(leaf);
1355 btrfs_tree_unlock(leaf);
1356 free_extent_buffer(leaf);
1360 return ERR_PTR(ret);
1363 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1364 struct btrfs_fs_info *fs_info)
1366 struct btrfs_root *root;
1367 struct btrfs_root *tree_root = fs_info->tree_root;
1368 struct extent_buffer *leaf;
1370 root = btrfs_alloc_root(fs_info);
1372 return ERR_PTR(-ENOMEM);
1374 __setup_root(tree_root->nodesize, tree_root->leafsize,
1375 tree_root->sectorsize, tree_root->stripesize,
1376 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1378 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1379 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1380 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1382 * log trees do not get reference counted because they go away
1383 * before a real commit is actually done. They do store pointers
1384 * to file data extents, and those reference counts still get
1385 * updated (along with back refs to the log tree).
1389 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1390 BTRFS_TREE_LOG_OBJECTID, NULL,
1394 return ERR_CAST(leaf);
1397 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1398 btrfs_set_header_bytenr(leaf, leaf->start);
1399 btrfs_set_header_generation(leaf, trans->transid);
1400 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1401 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1404 write_extent_buffer(root->node, root->fs_info->fsid,
1405 (unsigned long)btrfs_header_fsid(root->node),
1407 btrfs_mark_buffer_dirty(root->node);
1408 btrfs_tree_unlock(root->node);
1412 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1413 struct btrfs_fs_info *fs_info)
1415 struct btrfs_root *log_root;
1417 log_root = alloc_log_tree(trans, fs_info);
1418 if (IS_ERR(log_root))
1419 return PTR_ERR(log_root);
1420 WARN_ON(fs_info->log_root_tree);
1421 fs_info->log_root_tree = log_root;
1425 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1426 struct btrfs_root *root)
1428 struct btrfs_root *log_root;
1429 struct btrfs_inode_item *inode_item;
1431 log_root = alloc_log_tree(trans, root->fs_info);
1432 if (IS_ERR(log_root))
1433 return PTR_ERR(log_root);
1435 log_root->last_trans = trans->transid;
1436 log_root->root_key.offset = root->root_key.objectid;
1438 inode_item = &log_root->root_item.inode;
1439 inode_item->generation = cpu_to_le64(1);
1440 inode_item->size = cpu_to_le64(3);
1441 inode_item->nlink = cpu_to_le32(1);
1442 inode_item->nbytes = cpu_to_le64(root->leafsize);
1443 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1445 btrfs_set_root_node(&log_root->root_item, log_root->node);
1447 WARN_ON(root->log_root);
1448 root->log_root = log_root;
1449 root->log_transid = 0;
1450 root->last_log_commit = 0;
1454 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1455 struct btrfs_key *location)
1457 struct btrfs_root *root;
1458 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1459 struct btrfs_path *path;
1460 struct extent_buffer *l;
1466 root = btrfs_alloc_root(fs_info);
1468 return ERR_PTR(-ENOMEM);
1469 if (location->offset == (u64)-1) {
1470 ret = find_and_setup_root(tree_root, fs_info,
1471 location->objectid, root);
1474 return ERR_PTR(ret);
1479 __setup_root(tree_root->nodesize, tree_root->leafsize,
1480 tree_root->sectorsize, tree_root->stripesize,
1481 root, fs_info, location->objectid);
1483 path = btrfs_alloc_path();
1486 return ERR_PTR(-ENOMEM);
1488 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1491 slot = path->slots[0];
1492 btrfs_read_root_item(l, slot, &root->root_item);
1493 memcpy(&root->root_key, location, sizeof(*location));
1495 btrfs_free_path(path);
1500 return ERR_PTR(ret);
1503 generation = btrfs_root_generation(&root->root_item);
1504 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1505 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1506 blocksize, generation);
1507 if (!root->node || !extent_buffer_uptodate(root->node)) {
1508 ret = (!root->node) ? -ENOMEM : -EIO;
1510 free_extent_buffer(root->node);
1512 return ERR_PTR(ret);
1515 root->commit_root = btrfs_root_node(root);
1517 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1519 btrfs_check_and_init_root_item(&root->root_item);
1525 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1526 struct btrfs_key *location)
1528 struct btrfs_root *root;
1531 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1532 return fs_info->tree_root;
1533 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1534 return fs_info->extent_root;
1535 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1536 return fs_info->chunk_root;
1537 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1538 return fs_info->dev_root;
1539 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1540 return fs_info->csum_root;
1541 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1542 return fs_info->quota_root ? fs_info->quota_root :
1545 spin_lock(&fs_info->fs_roots_radix_lock);
1546 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1547 (unsigned long)location->objectid);
1548 spin_unlock(&fs_info->fs_roots_radix_lock);
1552 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1556 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1557 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1559 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1564 btrfs_init_free_ino_ctl(root);
1565 mutex_init(&root->fs_commit_mutex);
1566 spin_lock_init(&root->cache_lock);
1567 init_waitqueue_head(&root->cache_wait);
1569 ret = get_anon_bdev(&root->anon_dev);
1573 if (btrfs_root_refs(&root->root_item) == 0) {
1578 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1582 root->orphan_item_inserted = 1;
1584 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1588 spin_lock(&fs_info->fs_roots_radix_lock);
1589 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1590 (unsigned long)root->root_key.objectid,
1595 spin_unlock(&fs_info->fs_roots_radix_lock);
1596 radix_tree_preload_end();
1598 if (ret == -EEXIST) {
1605 ret = btrfs_find_dead_roots(fs_info->tree_root,
1606 root->root_key.objectid);
1611 return ERR_PTR(ret);
1614 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1616 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1618 struct btrfs_device *device;
1619 struct backing_dev_info *bdi;
1622 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1625 bdi = blk_get_backing_dev_info(device->bdev);
1626 if (bdi && bdi_congested(bdi, bdi_bits)) {
1636 * If this fails, caller must call bdi_destroy() to get rid of the
1639 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1643 bdi->capabilities = BDI_CAP_MAP_COPY;
1644 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1648 bdi->ra_pages = default_backing_dev_info.ra_pages;
1649 bdi->congested_fn = btrfs_congested_fn;
1650 bdi->congested_data = info;
1655 * called by the kthread helper functions to finally call the bio end_io
1656 * functions. This is where read checksum verification actually happens
1658 static void end_workqueue_fn(struct btrfs_work *work)
1661 struct end_io_wq *end_io_wq;
1662 struct btrfs_fs_info *fs_info;
1665 end_io_wq = container_of(work, struct end_io_wq, work);
1666 bio = end_io_wq->bio;
1667 fs_info = end_io_wq->info;
1669 error = end_io_wq->error;
1670 bio->bi_private = end_io_wq->private;
1671 bio->bi_end_io = end_io_wq->end_io;
1673 bio_endio(bio, error);
1676 static int cleaner_kthread(void *arg)
1678 struct btrfs_root *root = arg;
1683 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1684 down_read_trylock(&root->fs_info->sb->s_umount)) {
1685 if (mutex_trylock(&root->fs_info->cleaner_mutex)) {
1686 btrfs_run_delayed_iputs(root);
1687 again = btrfs_clean_one_deleted_snapshot(root);
1688 mutex_unlock(&root->fs_info->cleaner_mutex);
1690 btrfs_run_defrag_inodes(root->fs_info);
1691 up_read(&root->fs_info->sb->s_umount);
1694 if (!try_to_freeze() && !again) {
1695 set_current_state(TASK_INTERRUPTIBLE);
1696 if (!kthread_should_stop())
1698 __set_current_state(TASK_RUNNING);
1700 } while (!kthread_should_stop());
1704 static int transaction_kthread(void *arg)
1706 struct btrfs_root *root = arg;
1707 struct btrfs_trans_handle *trans;
1708 struct btrfs_transaction *cur;
1711 unsigned long delay;
1715 cannot_commit = false;
1717 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1719 spin_lock(&root->fs_info->trans_lock);
1720 cur = root->fs_info->running_transaction;
1722 spin_unlock(&root->fs_info->trans_lock);
1726 now = get_seconds();
1727 if (!cur->blocked &&
1728 (now < cur->start_time || now - cur->start_time < 30)) {
1729 spin_unlock(&root->fs_info->trans_lock);
1733 transid = cur->transid;
1734 spin_unlock(&root->fs_info->trans_lock);
1736 /* If the file system is aborted, this will always fail. */
1737 trans = btrfs_attach_transaction(root);
1738 if (IS_ERR(trans)) {
1739 if (PTR_ERR(trans) != -ENOENT)
1740 cannot_commit = true;
1743 if (transid == trans->transid) {
1744 btrfs_commit_transaction(trans, root);
1746 btrfs_end_transaction(trans, root);
1749 wake_up_process(root->fs_info->cleaner_kthread);
1750 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1752 if (!try_to_freeze()) {
1753 set_current_state(TASK_INTERRUPTIBLE);
1754 if (!kthread_should_stop() &&
1755 (!btrfs_transaction_blocked(root->fs_info) ||
1757 schedule_timeout(delay);
1758 __set_current_state(TASK_RUNNING);
1760 } while (!kthread_should_stop());
1765 * this will find the highest generation in the array of
1766 * root backups. The index of the highest array is returned,
1767 * or -1 if we can't find anything.
1769 * We check to make sure the array is valid by comparing the
1770 * generation of the latest root in the array with the generation
1771 * in the super block. If they don't match we pitch it.
1773 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1776 int newest_index = -1;
1777 struct btrfs_root_backup *root_backup;
1780 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1781 root_backup = info->super_copy->super_roots + i;
1782 cur = btrfs_backup_tree_root_gen(root_backup);
1783 if (cur == newest_gen)
1787 /* check to see if we actually wrapped around */
1788 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1789 root_backup = info->super_copy->super_roots;
1790 cur = btrfs_backup_tree_root_gen(root_backup);
1791 if (cur == newest_gen)
1794 return newest_index;
1799 * find the oldest backup so we know where to store new entries
1800 * in the backup array. This will set the backup_root_index
1801 * field in the fs_info struct
1803 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1806 int newest_index = -1;
1808 newest_index = find_newest_super_backup(info, newest_gen);
1809 /* if there was garbage in there, just move along */
1810 if (newest_index == -1) {
1811 info->backup_root_index = 0;
1813 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1818 * copy all the root pointers into the super backup array.
1819 * this will bump the backup pointer by one when it is
1822 static void backup_super_roots(struct btrfs_fs_info *info)
1825 struct btrfs_root_backup *root_backup;
1828 next_backup = info->backup_root_index;
1829 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1830 BTRFS_NUM_BACKUP_ROOTS;
1833 * just overwrite the last backup if we're at the same generation
1834 * this happens only at umount
1836 root_backup = info->super_for_commit->super_roots + last_backup;
1837 if (btrfs_backup_tree_root_gen(root_backup) ==
1838 btrfs_header_generation(info->tree_root->node))
1839 next_backup = last_backup;
1841 root_backup = info->super_for_commit->super_roots + next_backup;
1844 * make sure all of our padding and empty slots get zero filled
1845 * regardless of which ones we use today
1847 memset(root_backup, 0, sizeof(*root_backup));
1849 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1851 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1852 btrfs_set_backup_tree_root_gen(root_backup,
1853 btrfs_header_generation(info->tree_root->node));
1855 btrfs_set_backup_tree_root_level(root_backup,
1856 btrfs_header_level(info->tree_root->node));
1858 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1859 btrfs_set_backup_chunk_root_gen(root_backup,
1860 btrfs_header_generation(info->chunk_root->node));
1861 btrfs_set_backup_chunk_root_level(root_backup,
1862 btrfs_header_level(info->chunk_root->node));
1864 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1865 btrfs_set_backup_extent_root_gen(root_backup,
1866 btrfs_header_generation(info->extent_root->node));
1867 btrfs_set_backup_extent_root_level(root_backup,
1868 btrfs_header_level(info->extent_root->node));
1871 * we might commit during log recovery, which happens before we set
1872 * the fs_root. Make sure it is valid before we fill it in.
1874 if (info->fs_root && info->fs_root->node) {
1875 btrfs_set_backup_fs_root(root_backup,
1876 info->fs_root->node->start);
1877 btrfs_set_backup_fs_root_gen(root_backup,
1878 btrfs_header_generation(info->fs_root->node));
1879 btrfs_set_backup_fs_root_level(root_backup,
1880 btrfs_header_level(info->fs_root->node));
1883 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1884 btrfs_set_backup_dev_root_gen(root_backup,
1885 btrfs_header_generation(info->dev_root->node));
1886 btrfs_set_backup_dev_root_level(root_backup,
1887 btrfs_header_level(info->dev_root->node));
1889 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1890 btrfs_set_backup_csum_root_gen(root_backup,
1891 btrfs_header_generation(info->csum_root->node));
1892 btrfs_set_backup_csum_root_level(root_backup,
1893 btrfs_header_level(info->csum_root->node));
1895 btrfs_set_backup_total_bytes(root_backup,
1896 btrfs_super_total_bytes(info->super_copy));
1897 btrfs_set_backup_bytes_used(root_backup,
1898 btrfs_super_bytes_used(info->super_copy));
1899 btrfs_set_backup_num_devices(root_backup,
1900 btrfs_super_num_devices(info->super_copy));
1903 * if we don't copy this out to the super_copy, it won't get remembered
1904 * for the next commit
1906 memcpy(&info->super_copy->super_roots,
1907 &info->super_for_commit->super_roots,
1908 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1912 * this copies info out of the root backup array and back into
1913 * the in-memory super block. It is meant to help iterate through
1914 * the array, so you send it the number of backups you've already
1915 * tried and the last backup index you used.
1917 * this returns -1 when it has tried all the backups
1919 static noinline int next_root_backup(struct btrfs_fs_info *info,
1920 struct btrfs_super_block *super,
1921 int *num_backups_tried, int *backup_index)
1923 struct btrfs_root_backup *root_backup;
1924 int newest = *backup_index;
1926 if (*num_backups_tried == 0) {
1927 u64 gen = btrfs_super_generation(super);
1929 newest = find_newest_super_backup(info, gen);
1933 *backup_index = newest;
1934 *num_backups_tried = 1;
1935 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1936 /* we've tried all the backups, all done */
1939 /* jump to the next oldest backup */
1940 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1941 BTRFS_NUM_BACKUP_ROOTS;
1942 *backup_index = newest;
1943 *num_backups_tried += 1;
1945 root_backup = super->super_roots + newest;
1947 btrfs_set_super_generation(super,
1948 btrfs_backup_tree_root_gen(root_backup));
1949 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1950 btrfs_set_super_root_level(super,
1951 btrfs_backup_tree_root_level(root_backup));
1952 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1955 * fixme: the total bytes and num_devices need to match or we should
1958 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1959 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1963 /* helper to cleanup workers */
1964 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1966 btrfs_stop_workers(&fs_info->generic_worker);
1967 btrfs_stop_workers(&fs_info->fixup_workers);
1968 btrfs_stop_workers(&fs_info->delalloc_workers);
1969 btrfs_stop_workers(&fs_info->workers);
1970 btrfs_stop_workers(&fs_info->endio_workers);
1971 btrfs_stop_workers(&fs_info->endio_meta_workers);
1972 btrfs_stop_workers(&fs_info->endio_raid56_workers);
1973 btrfs_stop_workers(&fs_info->rmw_workers);
1974 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1975 btrfs_stop_workers(&fs_info->endio_write_workers);
1976 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1977 btrfs_stop_workers(&fs_info->submit_workers);
1978 btrfs_stop_workers(&fs_info->delayed_workers);
1979 btrfs_stop_workers(&fs_info->caching_workers);
1980 btrfs_stop_workers(&fs_info->readahead_workers);
1981 btrfs_stop_workers(&fs_info->flush_workers);
1982 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
1985 /* helper to cleanup tree roots */
1986 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1988 free_extent_buffer(info->tree_root->node);
1989 free_extent_buffer(info->tree_root->commit_root);
1990 info->tree_root->node = NULL;
1991 info->tree_root->commit_root = NULL;
1993 if (info->dev_root) {
1994 free_extent_buffer(info->dev_root->node);
1995 free_extent_buffer(info->dev_root->commit_root);
1996 info->dev_root->node = NULL;
1997 info->dev_root->commit_root = NULL;
1999 if (info->extent_root) {
2000 free_extent_buffer(info->extent_root->node);
2001 free_extent_buffer(info->extent_root->commit_root);
2002 info->extent_root->node = NULL;
2003 info->extent_root->commit_root = NULL;
2005 if (info->csum_root) {
2006 free_extent_buffer(info->csum_root->node);
2007 free_extent_buffer(info->csum_root->commit_root);
2008 info->csum_root->node = NULL;
2009 info->csum_root->commit_root = NULL;
2011 if (info->quota_root) {
2012 free_extent_buffer(info->quota_root->node);
2013 free_extent_buffer(info->quota_root->commit_root);
2014 info->quota_root->node = NULL;
2015 info->quota_root->commit_root = NULL;
2018 free_extent_buffer(info->chunk_root->node);
2019 free_extent_buffer(info->chunk_root->commit_root);
2020 info->chunk_root->node = NULL;
2021 info->chunk_root->commit_root = NULL;
2025 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2028 struct btrfs_root *gang[8];
2031 while (!list_empty(&fs_info->dead_roots)) {
2032 gang[0] = list_entry(fs_info->dead_roots.next,
2033 struct btrfs_root, root_list);
2034 list_del(&gang[0]->root_list);
2036 if (gang[0]->in_radix) {
2037 btrfs_free_fs_root(fs_info, gang[0]);
2039 free_extent_buffer(gang[0]->node);
2040 free_extent_buffer(gang[0]->commit_root);
2046 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2051 for (i = 0; i < ret; i++)
2052 btrfs_free_fs_root(fs_info, gang[i]);
2056 int open_ctree(struct super_block *sb,
2057 struct btrfs_fs_devices *fs_devices,
2067 struct btrfs_key location;
2068 struct buffer_head *bh;
2069 struct btrfs_super_block *disk_super;
2070 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2071 struct btrfs_root *tree_root;
2072 struct btrfs_root *extent_root;
2073 struct btrfs_root *csum_root;
2074 struct btrfs_root *chunk_root;
2075 struct btrfs_root *dev_root;
2076 struct btrfs_root *quota_root;
2077 struct btrfs_root *log_tree_root;
2080 int num_backups_tried = 0;
2081 int backup_index = 0;
2083 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2084 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2085 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2086 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2087 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2088 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2090 if (!tree_root || !extent_root || !csum_root ||
2091 !chunk_root || !dev_root || !quota_root) {
2096 ret = init_srcu_struct(&fs_info->subvol_srcu);
2102 ret = setup_bdi(fs_info, &fs_info->bdi);
2108 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2113 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2114 (1 + ilog2(nr_cpu_ids));
2116 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2119 goto fail_dirty_metadata_bytes;
2122 fs_info->btree_inode = new_inode(sb);
2123 if (!fs_info->btree_inode) {
2125 goto fail_delalloc_bytes;
2128 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2130 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2131 INIT_LIST_HEAD(&fs_info->trans_list);
2132 INIT_LIST_HEAD(&fs_info->dead_roots);
2133 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2134 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2135 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2136 spin_lock_init(&fs_info->delalloc_lock);
2137 spin_lock_init(&fs_info->trans_lock);
2138 spin_lock_init(&fs_info->fs_roots_radix_lock);
2139 spin_lock_init(&fs_info->delayed_iput_lock);
2140 spin_lock_init(&fs_info->defrag_inodes_lock);
2141 spin_lock_init(&fs_info->free_chunk_lock);
2142 spin_lock_init(&fs_info->tree_mod_seq_lock);
2143 spin_lock_init(&fs_info->super_lock);
2144 rwlock_init(&fs_info->tree_mod_log_lock);
2145 mutex_init(&fs_info->reloc_mutex);
2146 seqlock_init(&fs_info->profiles_lock);
2148 init_completion(&fs_info->kobj_unregister);
2149 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2150 INIT_LIST_HEAD(&fs_info->space_info);
2151 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2152 btrfs_mapping_init(&fs_info->mapping_tree);
2153 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2154 BTRFS_BLOCK_RSV_GLOBAL);
2155 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2156 BTRFS_BLOCK_RSV_DELALLOC);
2157 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2158 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2159 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2160 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2161 BTRFS_BLOCK_RSV_DELOPS);
2162 atomic_set(&fs_info->nr_async_submits, 0);
2163 atomic_set(&fs_info->async_delalloc_pages, 0);
2164 atomic_set(&fs_info->async_submit_draining, 0);
2165 atomic_set(&fs_info->nr_async_bios, 0);
2166 atomic_set(&fs_info->defrag_running, 0);
2167 atomic64_set(&fs_info->tree_mod_seq, 0);
2169 fs_info->max_inline = 8192 * 1024;
2170 fs_info->metadata_ratio = 0;
2171 fs_info->defrag_inodes = RB_ROOT;
2172 fs_info->trans_no_join = 0;
2173 fs_info->free_chunk_space = 0;
2174 fs_info->tree_mod_log = RB_ROOT;
2176 /* readahead state */
2177 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2178 spin_lock_init(&fs_info->reada_lock);
2180 fs_info->thread_pool_size = min_t(unsigned long,
2181 num_online_cpus() + 2, 8);
2183 INIT_LIST_HEAD(&fs_info->ordered_extents);
2184 spin_lock_init(&fs_info->ordered_extent_lock);
2185 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2187 if (!fs_info->delayed_root) {
2191 btrfs_init_delayed_root(fs_info->delayed_root);
2193 mutex_init(&fs_info->scrub_lock);
2194 atomic_set(&fs_info->scrubs_running, 0);
2195 atomic_set(&fs_info->scrub_pause_req, 0);
2196 atomic_set(&fs_info->scrubs_paused, 0);
2197 atomic_set(&fs_info->scrub_cancel_req, 0);
2198 init_waitqueue_head(&fs_info->scrub_pause_wait);
2199 init_rwsem(&fs_info->scrub_super_lock);
2200 fs_info->scrub_workers_refcnt = 0;
2201 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2202 fs_info->check_integrity_print_mask = 0;
2205 spin_lock_init(&fs_info->balance_lock);
2206 mutex_init(&fs_info->balance_mutex);
2207 atomic_set(&fs_info->balance_running, 0);
2208 atomic_set(&fs_info->balance_pause_req, 0);
2209 atomic_set(&fs_info->balance_cancel_req, 0);
2210 fs_info->balance_ctl = NULL;
2211 init_waitqueue_head(&fs_info->balance_wait_q);
2213 sb->s_blocksize = 4096;
2214 sb->s_blocksize_bits = blksize_bits(4096);
2215 sb->s_bdi = &fs_info->bdi;
2217 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2218 set_nlink(fs_info->btree_inode, 1);
2220 * we set the i_size on the btree inode to the max possible int.
2221 * the real end of the address space is determined by all of
2222 * the devices in the system
2224 fs_info->btree_inode->i_size = OFFSET_MAX;
2225 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2226 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2228 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2229 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2230 fs_info->btree_inode->i_mapping);
2231 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2232 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2234 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2236 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2237 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2238 sizeof(struct btrfs_key));
2239 set_bit(BTRFS_INODE_DUMMY,
2240 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2241 insert_inode_hash(fs_info->btree_inode);
2243 spin_lock_init(&fs_info->block_group_cache_lock);
2244 fs_info->block_group_cache_tree = RB_ROOT;
2245 fs_info->first_logical_byte = (u64)-1;
2247 extent_io_tree_init(&fs_info->freed_extents[0],
2248 fs_info->btree_inode->i_mapping);
2249 extent_io_tree_init(&fs_info->freed_extents[1],
2250 fs_info->btree_inode->i_mapping);
2251 fs_info->pinned_extents = &fs_info->freed_extents[0];
2252 fs_info->do_barriers = 1;
2255 mutex_init(&fs_info->ordered_operations_mutex);
2256 mutex_init(&fs_info->tree_log_mutex);
2257 mutex_init(&fs_info->chunk_mutex);
2258 mutex_init(&fs_info->transaction_kthread_mutex);
2259 mutex_init(&fs_info->cleaner_mutex);
2260 mutex_init(&fs_info->volume_mutex);
2261 init_rwsem(&fs_info->extent_commit_sem);
2262 init_rwsem(&fs_info->cleanup_work_sem);
2263 init_rwsem(&fs_info->subvol_sem);
2264 fs_info->dev_replace.lock_owner = 0;
2265 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2266 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2267 mutex_init(&fs_info->dev_replace.lock_management_lock);
2268 mutex_init(&fs_info->dev_replace.lock);
2270 spin_lock_init(&fs_info->qgroup_lock);
2271 mutex_init(&fs_info->qgroup_ioctl_lock);
2272 fs_info->qgroup_tree = RB_ROOT;
2273 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2274 fs_info->qgroup_seq = 1;
2275 fs_info->quota_enabled = 0;
2276 fs_info->pending_quota_state = 0;
2277 mutex_init(&fs_info->qgroup_rescan_lock);
2279 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2280 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2282 init_waitqueue_head(&fs_info->transaction_throttle);
2283 init_waitqueue_head(&fs_info->transaction_wait);
2284 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2285 init_waitqueue_head(&fs_info->async_submit_wait);
2287 ret = btrfs_alloc_stripe_hash_table(fs_info);
2293 __setup_root(4096, 4096, 4096, 4096, tree_root,
2294 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2296 invalidate_bdev(fs_devices->latest_bdev);
2299 * Read super block and check the signature bytes only
2301 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2308 * We want to check superblock checksum, the type is stored inside.
2309 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2311 if (btrfs_check_super_csum(bh->b_data)) {
2312 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2318 * super_copy is zeroed at allocation time and we never touch the
2319 * following bytes up to INFO_SIZE, the checksum is calculated from
2320 * the whole block of INFO_SIZE
2322 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2323 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2324 sizeof(*fs_info->super_for_commit));
2327 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2329 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2331 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2336 disk_super = fs_info->super_copy;
2337 if (!btrfs_super_root(disk_super))
2340 /* check FS state, whether FS is broken. */
2341 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2342 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2345 * run through our array of backup supers and setup
2346 * our ring pointer to the oldest one
2348 generation = btrfs_super_generation(disk_super);
2349 find_oldest_super_backup(fs_info, generation);
2352 * In the long term, we'll store the compression type in the super
2353 * block, and it'll be used for per file compression control.
2355 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2357 ret = btrfs_parse_options(tree_root, options);
2363 features = btrfs_super_incompat_flags(disk_super) &
2364 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2366 printk(KERN_ERR "BTRFS: couldn't mount because of "
2367 "unsupported optional features (%Lx).\n",
2368 (unsigned long long)features);
2373 if (btrfs_super_leafsize(disk_super) !=
2374 btrfs_super_nodesize(disk_super)) {
2375 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2376 "blocksizes don't match. node %d leaf %d\n",
2377 btrfs_super_nodesize(disk_super),
2378 btrfs_super_leafsize(disk_super));
2382 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2383 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2384 "blocksize (%d) was too large\n",
2385 btrfs_super_leafsize(disk_super));
2390 features = btrfs_super_incompat_flags(disk_super);
2391 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2392 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2393 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2395 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2396 printk(KERN_ERR "btrfs: has skinny extents\n");
2399 * flag our filesystem as having big metadata blocks if
2400 * they are bigger than the page size
2402 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2403 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2404 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2405 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2408 nodesize = btrfs_super_nodesize(disk_super);
2409 leafsize = btrfs_super_leafsize(disk_super);
2410 sectorsize = btrfs_super_sectorsize(disk_super);
2411 stripesize = btrfs_super_stripesize(disk_super);
2412 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2413 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2416 * mixed block groups end up with duplicate but slightly offset
2417 * extent buffers for the same range. It leads to corruptions
2419 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2420 (sectorsize != leafsize)) {
2421 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2422 "are not allowed for mixed block groups on %s\n",
2428 * Needn't use the lock because there is no other task which will
2431 btrfs_set_super_incompat_flags(disk_super, features);
2433 features = btrfs_super_compat_ro_flags(disk_super) &
2434 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2435 if (!(sb->s_flags & MS_RDONLY) && features) {
2436 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2437 "unsupported option features (%Lx).\n",
2438 (unsigned long long)features);
2443 btrfs_init_workers(&fs_info->generic_worker,
2444 "genwork", 1, NULL);
2446 btrfs_init_workers(&fs_info->workers, "worker",
2447 fs_info->thread_pool_size,
2448 &fs_info->generic_worker);
2450 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2451 fs_info->thread_pool_size,
2452 &fs_info->generic_worker);
2454 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2455 fs_info->thread_pool_size,
2456 &fs_info->generic_worker);
2458 btrfs_init_workers(&fs_info->submit_workers, "submit",
2459 min_t(u64, fs_devices->num_devices,
2460 fs_info->thread_pool_size),
2461 &fs_info->generic_worker);
2463 btrfs_init_workers(&fs_info->caching_workers, "cache",
2464 2, &fs_info->generic_worker);
2466 /* a higher idle thresh on the submit workers makes it much more
2467 * likely that bios will be send down in a sane order to the
2470 fs_info->submit_workers.idle_thresh = 64;
2472 fs_info->workers.idle_thresh = 16;
2473 fs_info->workers.ordered = 1;
2475 fs_info->delalloc_workers.idle_thresh = 2;
2476 fs_info->delalloc_workers.ordered = 1;
2478 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2479 &fs_info->generic_worker);
2480 btrfs_init_workers(&fs_info->endio_workers, "endio",
2481 fs_info->thread_pool_size,
2482 &fs_info->generic_worker);
2483 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2484 fs_info->thread_pool_size,
2485 &fs_info->generic_worker);
2486 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2487 "endio-meta-write", fs_info->thread_pool_size,
2488 &fs_info->generic_worker);
2489 btrfs_init_workers(&fs_info->endio_raid56_workers,
2490 "endio-raid56", fs_info->thread_pool_size,
2491 &fs_info->generic_worker);
2492 btrfs_init_workers(&fs_info->rmw_workers,
2493 "rmw", fs_info->thread_pool_size,
2494 &fs_info->generic_worker);
2495 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2496 fs_info->thread_pool_size,
2497 &fs_info->generic_worker);
2498 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2499 1, &fs_info->generic_worker);
2500 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2501 fs_info->thread_pool_size,
2502 &fs_info->generic_worker);
2503 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2504 fs_info->thread_pool_size,
2505 &fs_info->generic_worker);
2506 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2507 &fs_info->generic_worker);
2510 * endios are largely parallel and should have a very
2513 fs_info->endio_workers.idle_thresh = 4;
2514 fs_info->endio_meta_workers.idle_thresh = 4;
2515 fs_info->endio_raid56_workers.idle_thresh = 4;
2516 fs_info->rmw_workers.idle_thresh = 2;
2518 fs_info->endio_write_workers.idle_thresh = 2;
2519 fs_info->endio_meta_write_workers.idle_thresh = 2;
2520 fs_info->readahead_workers.idle_thresh = 2;
2523 * btrfs_start_workers can really only fail because of ENOMEM so just
2524 * return -ENOMEM if any of these fail.
2526 ret = btrfs_start_workers(&fs_info->workers);
2527 ret |= btrfs_start_workers(&fs_info->generic_worker);
2528 ret |= btrfs_start_workers(&fs_info->submit_workers);
2529 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2530 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2531 ret |= btrfs_start_workers(&fs_info->endio_workers);
2532 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2533 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2534 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2535 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2536 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2537 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2538 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2539 ret |= btrfs_start_workers(&fs_info->caching_workers);
2540 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2541 ret |= btrfs_start_workers(&fs_info->flush_workers);
2542 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2545 goto fail_sb_buffer;
2548 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2549 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2550 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2552 tree_root->nodesize = nodesize;
2553 tree_root->leafsize = leafsize;
2554 tree_root->sectorsize = sectorsize;
2555 tree_root->stripesize = stripesize;
2557 sb->s_blocksize = sectorsize;
2558 sb->s_blocksize_bits = blksize_bits(sectorsize);
2560 if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2561 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2562 goto fail_sb_buffer;
2565 if (sectorsize != PAGE_SIZE) {
2566 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2567 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2568 goto fail_sb_buffer;
2571 mutex_lock(&fs_info->chunk_mutex);
2572 ret = btrfs_read_sys_array(tree_root);
2573 mutex_unlock(&fs_info->chunk_mutex);
2575 printk(KERN_WARNING "btrfs: failed to read the system "
2576 "array on %s\n", sb->s_id);
2577 goto fail_sb_buffer;
2580 blocksize = btrfs_level_size(tree_root,
2581 btrfs_super_chunk_root_level(disk_super));
2582 generation = btrfs_super_chunk_root_generation(disk_super);
2584 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2585 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2587 chunk_root->node = read_tree_block(chunk_root,
2588 btrfs_super_chunk_root(disk_super),
2589 blocksize, generation);
2590 if (!chunk_root->node ||
2591 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2592 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2594 goto fail_tree_roots;
2596 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2597 chunk_root->commit_root = btrfs_root_node(chunk_root);
2599 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2600 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2603 ret = btrfs_read_chunk_tree(chunk_root);
2605 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2607 goto fail_tree_roots;
2611 * keep the device that is marked to be the target device for the
2612 * dev_replace procedure
2614 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2616 if (!fs_devices->latest_bdev) {
2617 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2619 goto fail_tree_roots;
2623 blocksize = btrfs_level_size(tree_root,
2624 btrfs_super_root_level(disk_super));
2625 generation = btrfs_super_generation(disk_super);
2627 tree_root->node = read_tree_block(tree_root,
2628 btrfs_super_root(disk_super),
2629 blocksize, generation);
2630 if (!tree_root->node ||
2631 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2632 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2635 goto recovery_tree_root;
2638 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2639 tree_root->commit_root = btrfs_root_node(tree_root);
2641 ret = find_and_setup_root(tree_root, fs_info,
2642 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2644 goto recovery_tree_root;
2645 extent_root->track_dirty = 1;
2647 ret = find_and_setup_root(tree_root, fs_info,
2648 BTRFS_DEV_TREE_OBJECTID, dev_root);
2650 goto recovery_tree_root;
2651 dev_root->track_dirty = 1;
2653 ret = find_and_setup_root(tree_root, fs_info,
2654 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2656 goto recovery_tree_root;
2657 csum_root->track_dirty = 1;
2659 ret = find_and_setup_root(tree_root, fs_info,
2660 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2663 quota_root = fs_info->quota_root = NULL;
2665 quota_root->track_dirty = 1;
2666 fs_info->quota_enabled = 1;
2667 fs_info->pending_quota_state = 1;
2670 fs_info->generation = generation;
2671 fs_info->last_trans_committed = generation;
2673 ret = btrfs_recover_balance(fs_info);
2675 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2676 goto fail_block_groups;
2679 ret = btrfs_init_dev_stats(fs_info);
2681 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2683 goto fail_block_groups;
2686 ret = btrfs_init_dev_replace(fs_info);
2688 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2689 goto fail_block_groups;
2692 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2694 ret = btrfs_init_space_info(fs_info);
2696 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2697 goto fail_block_groups;
2700 ret = btrfs_read_block_groups(extent_root);
2702 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2703 goto fail_block_groups;
2705 fs_info->num_tolerated_disk_barrier_failures =
2706 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2707 if (fs_info->fs_devices->missing_devices >
2708 fs_info->num_tolerated_disk_barrier_failures &&
2709 !(sb->s_flags & MS_RDONLY)) {
2711 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2712 goto fail_block_groups;
2715 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2717 if (IS_ERR(fs_info->cleaner_kthread))
2718 goto fail_block_groups;
2720 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2722 "btrfs-transaction");
2723 if (IS_ERR(fs_info->transaction_kthread))
2726 if (!btrfs_test_opt(tree_root, SSD) &&
2727 !btrfs_test_opt(tree_root, NOSSD) &&
2728 !fs_info->fs_devices->rotating) {
2729 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2731 btrfs_set_opt(fs_info->mount_opt, SSD);
2734 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2735 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2736 ret = btrfsic_mount(tree_root, fs_devices,
2737 btrfs_test_opt(tree_root,
2738 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2740 fs_info->check_integrity_print_mask);
2742 printk(KERN_WARNING "btrfs: failed to initialize"
2743 " integrity check module %s\n", sb->s_id);
2746 ret = btrfs_read_qgroup_config(fs_info);
2748 goto fail_trans_kthread;
2750 /* do not make disk changes in broken FS */
2751 if (btrfs_super_log_root(disk_super) != 0) {
2752 u64 bytenr = btrfs_super_log_root(disk_super);
2754 if (fs_devices->rw_devices == 0) {
2755 printk(KERN_WARNING "Btrfs log replay required "
2761 btrfs_level_size(tree_root,
2762 btrfs_super_log_root_level(disk_super));
2764 log_tree_root = btrfs_alloc_root(fs_info);
2765 if (!log_tree_root) {
2770 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2771 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2773 log_tree_root->node = read_tree_block(tree_root, bytenr,
2776 if (!log_tree_root->node ||
2777 !extent_buffer_uptodate(log_tree_root->node)) {
2778 printk(KERN_ERR "btrfs: failed to read log tree\n");
2779 free_extent_buffer(log_tree_root->node);
2780 kfree(log_tree_root);
2781 goto fail_trans_kthread;
2783 /* returns with log_tree_root freed on success */
2784 ret = btrfs_recover_log_trees(log_tree_root);
2786 btrfs_error(tree_root->fs_info, ret,
2787 "Failed to recover log tree");
2788 free_extent_buffer(log_tree_root->node);
2789 kfree(log_tree_root);
2790 goto fail_trans_kthread;
2793 if (sb->s_flags & MS_RDONLY) {
2794 ret = btrfs_commit_super(tree_root);
2796 goto fail_trans_kthread;
2800 ret = btrfs_find_orphan_roots(tree_root);
2802 goto fail_trans_kthread;
2804 if (!(sb->s_flags & MS_RDONLY)) {
2805 ret = btrfs_cleanup_fs_roots(fs_info);
2807 goto fail_trans_kthread;
2809 ret = btrfs_recover_relocation(tree_root);
2812 "btrfs: failed to recover relocation\n");
2818 location.objectid = BTRFS_FS_TREE_OBJECTID;
2819 location.type = BTRFS_ROOT_ITEM_KEY;
2820 location.offset = (u64)-1;
2822 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2823 if (!fs_info->fs_root)
2825 if (IS_ERR(fs_info->fs_root)) {
2826 err = PTR_ERR(fs_info->fs_root);
2830 if (sb->s_flags & MS_RDONLY)
2833 down_read(&fs_info->cleanup_work_sem);
2834 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2835 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2836 up_read(&fs_info->cleanup_work_sem);
2837 close_ctree(tree_root);
2840 up_read(&fs_info->cleanup_work_sem);
2842 ret = btrfs_resume_balance_async(fs_info);
2844 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2845 close_ctree(tree_root);
2849 ret = btrfs_resume_dev_replace_async(fs_info);
2851 pr_warn("btrfs: failed to resume dev_replace\n");
2852 close_ctree(tree_root);
2859 btrfs_free_qgroup_config(fs_info);
2861 kthread_stop(fs_info->transaction_kthread);
2862 btrfs_cleanup_transaction(fs_info->tree_root);
2863 del_fs_roots(fs_info);
2865 kthread_stop(fs_info->cleaner_kthread);
2868 * make sure we're done with the btree inode before we stop our
2871 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2874 btrfs_put_block_group_cache(fs_info);
2875 btrfs_free_block_groups(fs_info);
2878 free_root_pointers(fs_info, 1);
2879 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2882 btrfs_stop_all_workers(fs_info);
2885 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2887 iput(fs_info->btree_inode);
2888 fail_delalloc_bytes:
2889 percpu_counter_destroy(&fs_info->delalloc_bytes);
2890 fail_dirty_metadata_bytes:
2891 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2893 bdi_destroy(&fs_info->bdi);
2895 cleanup_srcu_struct(&fs_info->subvol_srcu);
2897 btrfs_free_stripe_hash_table(fs_info);
2898 btrfs_close_devices(fs_info->fs_devices);
2902 if (!btrfs_test_opt(tree_root, RECOVERY))
2903 goto fail_tree_roots;
2905 free_root_pointers(fs_info, 0);
2907 /* don't use the log in recovery mode, it won't be valid */
2908 btrfs_set_super_log_root(disk_super, 0);
2910 /* we can't trust the free space cache either */
2911 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2913 ret = next_root_backup(fs_info, fs_info->super_copy,
2914 &num_backups_tried, &backup_index);
2916 goto fail_block_groups;
2917 goto retry_root_backup;
2920 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2923 set_buffer_uptodate(bh);
2925 struct btrfs_device *device = (struct btrfs_device *)
2928 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2929 "I/O error on %s\n",
2930 rcu_str_deref(device->name));
2931 /* note, we dont' set_buffer_write_io_error because we have
2932 * our own ways of dealing with the IO errors
2934 clear_buffer_uptodate(bh);
2935 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2941 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2943 struct buffer_head *bh;
2944 struct buffer_head *latest = NULL;
2945 struct btrfs_super_block *super;
2950 /* we would like to check all the supers, but that would make
2951 * a btrfs mount succeed after a mkfs from a different FS.
2952 * So, we need to add a special mount option to scan for
2953 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2955 for (i = 0; i < 1; i++) {
2956 bytenr = btrfs_sb_offset(i);
2957 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2959 bh = __bread(bdev, bytenr / 4096, 4096);
2963 super = (struct btrfs_super_block *)bh->b_data;
2964 if (btrfs_super_bytenr(super) != bytenr ||
2965 super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2970 if (!latest || btrfs_super_generation(super) > transid) {
2973 transid = btrfs_super_generation(super);
2982 * this should be called twice, once with wait == 0 and
2983 * once with wait == 1. When wait == 0 is done, all the buffer heads
2984 * we write are pinned.
2986 * They are released when wait == 1 is done.
2987 * max_mirrors must be the same for both runs, and it indicates how
2988 * many supers on this one device should be written.
2990 * max_mirrors == 0 means to write them all.
2992 static int write_dev_supers(struct btrfs_device *device,
2993 struct btrfs_super_block *sb,
2994 int do_barriers, int wait, int max_mirrors)
2996 struct buffer_head *bh;
3003 if (max_mirrors == 0)
3004 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3006 for (i = 0; i < max_mirrors; i++) {
3007 bytenr = btrfs_sb_offset(i);
3008 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3012 bh = __find_get_block(device->bdev, bytenr / 4096,
3013 BTRFS_SUPER_INFO_SIZE);
3019 if (!buffer_uptodate(bh))
3022 /* drop our reference */
3025 /* drop the reference from the wait == 0 run */
3029 btrfs_set_super_bytenr(sb, bytenr);
3032 crc = btrfs_csum_data((char *)sb +
3033 BTRFS_CSUM_SIZE, crc,
3034 BTRFS_SUPER_INFO_SIZE -
3036 btrfs_csum_final(crc, sb->csum);
3039 * one reference for us, and we leave it for the
3042 bh = __getblk(device->bdev, bytenr / 4096,
3043 BTRFS_SUPER_INFO_SIZE);
3045 printk(KERN_ERR "btrfs: couldn't get super "
3046 "buffer head for bytenr %Lu\n", bytenr);
3051 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3053 /* one reference for submit_bh */
3056 set_buffer_uptodate(bh);
3058 bh->b_end_io = btrfs_end_buffer_write_sync;
3059 bh->b_private = device;
3063 * we fua the first super. The others we allow
3066 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3070 return errors < i ? 0 : -1;
3074 * endio for the write_dev_flush, this will wake anyone waiting
3075 * for the barrier when it is done
3077 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3080 if (err == -EOPNOTSUPP)
3081 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3082 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3084 if (bio->bi_private)
3085 complete(bio->bi_private);
3090 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3091 * sent down. With wait == 1, it waits for the previous flush.
3093 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3096 static int write_dev_flush(struct btrfs_device *device, int wait)
3101 if (device->nobarriers)
3105 bio = device->flush_bio;
3109 wait_for_completion(&device->flush_wait);
3111 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3112 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3113 rcu_str_deref(device->name));
3114 device->nobarriers = 1;
3115 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3117 btrfs_dev_stat_inc_and_print(device,
3118 BTRFS_DEV_STAT_FLUSH_ERRS);
3121 /* drop the reference from the wait == 0 run */
3123 device->flush_bio = NULL;
3129 * one reference for us, and we leave it for the
3132 device->flush_bio = NULL;
3133 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3137 bio->bi_end_io = btrfs_end_empty_barrier;
3138 bio->bi_bdev = device->bdev;
3139 init_completion(&device->flush_wait);
3140 bio->bi_private = &device->flush_wait;
3141 device->flush_bio = bio;
3144 btrfsic_submit_bio(WRITE_FLUSH, bio);
3150 * send an empty flush down to each device in parallel,
3151 * then wait for them
3153 static int barrier_all_devices(struct btrfs_fs_info *info)
3155 struct list_head *head;
3156 struct btrfs_device *dev;
3157 int errors_send = 0;
3158 int errors_wait = 0;
3161 /* send down all the barriers */
3162 head = &info->fs_devices->devices;
3163 list_for_each_entry_rcu(dev, head, dev_list) {
3170 if (!dev->in_fs_metadata || !dev->writeable)
3173 ret = write_dev_flush(dev, 0);
3178 /* wait for all the barriers */
3179 list_for_each_entry_rcu(dev, head, dev_list) {
3186 if (!dev->in_fs_metadata || !dev->writeable)
3189 ret = write_dev_flush(dev, 1);
3193 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3194 errors_wait > info->num_tolerated_disk_barrier_failures)
3199 int btrfs_calc_num_tolerated_disk_barrier_failures(
3200 struct btrfs_fs_info *fs_info)
3202 struct btrfs_ioctl_space_info space;
3203 struct btrfs_space_info *sinfo;
3204 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3205 BTRFS_BLOCK_GROUP_SYSTEM,
3206 BTRFS_BLOCK_GROUP_METADATA,
3207 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3211 int num_tolerated_disk_barrier_failures =
3212 (int)fs_info->fs_devices->num_devices;
3214 for (i = 0; i < num_types; i++) {
3215 struct btrfs_space_info *tmp;
3219 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3220 if (tmp->flags == types[i]) {
3230 down_read(&sinfo->groups_sem);
3231 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3232 if (!list_empty(&sinfo->block_groups[c])) {
3235 btrfs_get_block_group_info(
3236 &sinfo->block_groups[c], &space);
3237 if (space.total_bytes == 0 ||
3238 space.used_bytes == 0)
3240 flags = space.flags;
3243 * 0: if dup, single or RAID0 is configured for
3244 * any of metadata, system or data, else
3245 * 1: if RAID5 is configured, or if RAID1 or
3246 * RAID10 is configured and only two mirrors
3248 * 2: if RAID6 is configured, else
3249 * num_mirrors - 1: if RAID1 or RAID10 is
3250 * configured and more than
3251 * 2 mirrors are used.
3253 if (num_tolerated_disk_barrier_failures > 0 &&
3254 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3255 BTRFS_BLOCK_GROUP_RAID0)) ||
3256 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3258 num_tolerated_disk_barrier_failures = 0;
3259 else if (num_tolerated_disk_barrier_failures > 1) {
3260 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3261 BTRFS_BLOCK_GROUP_RAID5 |
3262 BTRFS_BLOCK_GROUP_RAID10)) {
3263 num_tolerated_disk_barrier_failures = 1;
3265 BTRFS_BLOCK_GROUP_RAID5) {
3266 num_tolerated_disk_barrier_failures = 2;
3271 up_read(&sinfo->groups_sem);
3274 return num_tolerated_disk_barrier_failures;
3277 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3279 struct list_head *head;
3280 struct btrfs_device *dev;
3281 struct btrfs_super_block *sb;
3282 struct btrfs_dev_item *dev_item;
3286 int total_errors = 0;
3289 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3290 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3291 backup_super_roots(root->fs_info);
3293 sb = root->fs_info->super_for_commit;
3294 dev_item = &sb->dev_item;
3296 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3297 head = &root->fs_info->fs_devices->devices;
3300 ret = barrier_all_devices(root->fs_info);
3303 &root->fs_info->fs_devices->device_list_mutex);
3304 btrfs_error(root->fs_info, ret,
3305 "errors while submitting device barriers.");
3310 list_for_each_entry_rcu(dev, head, dev_list) {
3315 if (!dev->in_fs_metadata || !dev->writeable)
3318 btrfs_set_stack_device_generation(dev_item, 0);
3319 btrfs_set_stack_device_type(dev_item, dev->type);
3320 btrfs_set_stack_device_id(dev_item, dev->devid);
3321 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3322 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3323 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3324 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3325 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3326 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3327 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3329 flags = btrfs_super_flags(sb);
3330 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3332 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3336 if (total_errors > max_errors) {
3337 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3340 /* This shouldn't happen. FUA is masked off if unsupported */
3345 list_for_each_entry_rcu(dev, head, dev_list) {
3348 if (!dev->in_fs_metadata || !dev->writeable)
3351 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3355 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3356 if (total_errors > max_errors) {
3357 btrfs_error(root->fs_info, -EIO,
3358 "%d errors while writing supers", total_errors);
3364 int write_ctree_super(struct btrfs_trans_handle *trans,
3365 struct btrfs_root *root, int max_mirrors)
3369 ret = write_all_supers(root, max_mirrors);
3373 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3375 spin_lock(&fs_info->fs_roots_radix_lock);
3376 radix_tree_delete(&fs_info->fs_roots_radix,
3377 (unsigned long)root->root_key.objectid);
3378 spin_unlock(&fs_info->fs_roots_radix_lock);
3380 if (btrfs_root_refs(&root->root_item) == 0)
3381 synchronize_srcu(&fs_info->subvol_srcu);
3383 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3384 btrfs_free_log(NULL, root);
3385 btrfs_free_log_root_tree(NULL, fs_info);
3388 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3389 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3393 static void free_fs_root(struct btrfs_root *root)
3395 iput(root->cache_inode);
3396 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3398 free_anon_bdev(root->anon_dev);
3399 free_extent_buffer(root->node);
3400 free_extent_buffer(root->commit_root);
3401 kfree(root->free_ino_ctl);
3402 kfree(root->free_ino_pinned);
3407 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3409 u64 root_objectid = 0;
3410 struct btrfs_root *gang[8];
3415 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3416 (void **)gang, root_objectid,
3421 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3422 for (i = 0; i < ret; i++) {
3425 root_objectid = gang[i]->root_key.objectid;
3426 err = btrfs_orphan_cleanup(gang[i]);
3435 int btrfs_commit_super(struct btrfs_root *root)
3437 struct btrfs_trans_handle *trans;
3440 mutex_lock(&root->fs_info->cleaner_mutex);
3441 btrfs_run_delayed_iputs(root);
3442 mutex_unlock(&root->fs_info->cleaner_mutex);
3443 wake_up_process(root->fs_info->cleaner_kthread);
3445 /* wait until ongoing cleanup work done */
3446 down_write(&root->fs_info->cleanup_work_sem);
3447 up_write(&root->fs_info->cleanup_work_sem);
3449 trans = btrfs_join_transaction(root);
3451 return PTR_ERR(trans);
3452 ret = btrfs_commit_transaction(trans, root);
3455 /* run commit again to drop the original snapshot */
3456 trans = btrfs_join_transaction(root);
3458 return PTR_ERR(trans);
3459 ret = btrfs_commit_transaction(trans, root);
3462 ret = btrfs_write_and_wait_transaction(NULL, root);
3464 btrfs_error(root->fs_info, ret,
3465 "Failed to sync btree inode to disk.");
3469 ret = write_ctree_super(NULL, root, 0);
3473 int close_ctree(struct btrfs_root *root)
3475 struct btrfs_fs_info *fs_info = root->fs_info;
3478 fs_info->closing = 1;
3481 /* pause restriper - we want to resume on mount */
3482 btrfs_pause_balance(fs_info);
3484 btrfs_dev_replace_suspend_for_unmount(fs_info);
3486 btrfs_scrub_cancel(fs_info);
3488 /* wait for any defraggers to finish */
3489 wait_event(fs_info->transaction_wait,
3490 (atomic_read(&fs_info->defrag_running) == 0));
3492 /* clear out the rbtree of defraggable inodes */
3493 btrfs_cleanup_defrag_inodes(fs_info);
3495 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3496 ret = btrfs_commit_super(root);
3498 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3501 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3502 btrfs_error_commit_super(root);
3504 btrfs_put_block_group_cache(fs_info);
3506 kthread_stop(fs_info->transaction_kthread);
3507 kthread_stop(fs_info->cleaner_kthread);
3509 fs_info->closing = 2;
3512 btrfs_free_qgroup_config(root->fs_info);
3514 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3515 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3516 percpu_counter_sum(&fs_info->delalloc_bytes));
3519 btrfs_free_block_groups(fs_info);
3521 btrfs_stop_all_workers(fs_info);
3523 del_fs_roots(fs_info);
3525 free_root_pointers(fs_info, 1);
3527 iput(fs_info->btree_inode);
3529 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3530 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3531 btrfsic_unmount(root, fs_info->fs_devices);
3534 btrfs_close_devices(fs_info->fs_devices);
3535 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3537 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3538 percpu_counter_destroy(&fs_info->delalloc_bytes);
3539 bdi_destroy(&fs_info->bdi);
3540 cleanup_srcu_struct(&fs_info->subvol_srcu);
3542 btrfs_free_stripe_hash_table(fs_info);
3547 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3551 struct inode *btree_inode = buf->pages[0]->mapping->host;
3553 ret = extent_buffer_uptodate(buf);
3557 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3558 parent_transid, atomic);
3564 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3566 return set_extent_buffer_uptodate(buf);
3569 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3571 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3572 u64 transid = btrfs_header_generation(buf);
3575 btrfs_assert_tree_locked(buf);
3576 if (transid != root->fs_info->generation)
3577 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3578 "found %llu running %llu\n",
3579 (unsigned long long)buf->start,
3580 (unsigned long long)transid,
3581 (unsigned long long)root->fs_info->generation);
3582 was_dirty = set_extent_buffer_dirty(buf);
3584 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3586 root->fs_info->dirty_metadata_batch);
3589 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3593 * looks as though older kernels can get into trouble with
3594 * this code, they end up stuck in balance_dirty_pages forever
3598 if (current->flags & PF_MEMALLOC)
3602 btrfs_balance_delayed_items(root);
3604 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3605 BTRFS_DIRTY_METADATA_THRESH);
3607 balance_dirty_pages_ratelimited(
3608 root->fs_info->btree_inode->i_mapping);
3613 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3615 __btrfs_btree_balance_dirty(root, 1);
3618 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3620 __btrfs_btree_balance_dirty(root, 0);
3623 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3625 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3626 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3629 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3633 * Placeholder for checks
3638 static void btrfs_error_commit_super(struct btrfs_root *root)
3640 mutex_lock(&root->fs_info->cleaner_mutex);
3641 btrfs_run_delayed_iputs(root);
3642 mutex_unlock(&root->fs_info->cleaner_mutex);
3644 down_write(&root->fs_info->cleanup_work_sem);
3645 up_write(&root->fs_info->cleanup_work_sem);
3647 /* cleanup FS via transaction */
3648 btrfs_cleanup_transaction(root);
3651 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3652 struct btrfs_root *root)
3654 struct btrfs_inode *btrfs_inode;
3655 struct list_head splice;
3657 INIT_LIST_HEAD(&splice);
3659 mutex_lock(&root->fs_info->ordered_operations_mutex);
3660 spin_lock(&root->fs_info->ordered_extent_lock);
3662 list_splice_init(&t->ordered_operations, &splice);
3663 while (!list_empty(&splice)) {
3664 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3665 ordered_operations);
3667 list_del_init(&btrfs_inode->ordered_operations);
3668 spin_unlock(&root->fs_info->ordered_extent_lock);
3670 btrfs_invalidate_inodes(btrfs_inode->root);
3672 spin_lock(&root->fs_info->ordered_extent_lock);
3675 spin_unlock(&root->fs_info->ordered_extent_lock);
3676 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3679 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3681 struct btrfs_ordered_extent *ordered;
3683 spin_lock(&root->fs_info->ordered_extent_lock);
3685 * This will just short circuit the ordered completion stuff which will
3686 * make sure the ordered extent gets properly cleaned up.
3688 list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3690 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3691 spin_unlock(&root->fs_info->ordered_extent_lock);
3694 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3695 struct btrfs_root *root)
3697 struct rb_node *node;
3698 struct btrfs_delayed_ref_root *delayed_refs;
3699 struct btrfs_delayed_ref_node *ref;
3702 delayed_refs = &trans->delayed_refs;
3704 spin_lock(&delayed_refs->lock);
3705 if (delayed_refs->num_entries == 0) {
3706 spin_unlock(&delayed_refs->lock);
3707 printk(KERN_INFO "delayed_refs has NO entry\n");
3711 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3712 struct btrfs_delayed_ref_head *head = NULL;
3714 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3715 atomic_set(&ref->refs, 1);
3716 if (btrfs_delayed_ref_is_head(ref)) {
3718 head = btrfs_delayed_node_to_head(ref);
3719 if (!mutex_trylock(&head->mutex)) {
3720 atomic_inc(&ref->refs);
3721 spin_unlock(&delayed_refs->lock);
3723 /* Need to wait for the delayed ref to run */
3724 mutex_lock(&head->mutex);
3725 mutex_unlock(&head->mutex);
3726 btrfs_put_delayed_ref(ref);
3728 spin_lock(&delayed_refs->lock);
3732 if (head->must_insert_reserved)
3733 btrfs_pin_extent(root, ref->bytenr,
3735 btrfs_free_delayed_extent_op(head->extent_op);
3736 delayed_refs->num_heads--;
3737 if (list_empty(&head->cluster))
3738 delayed_refs->num_heads_ready--;
3739 list_del_init(&head->cluster);
3743 rb_erase(&ref->rb_node, &delayed_refs->root);
3744 delayed_refs->num_entries--;
3746 mutex_unlock(&head->mutex);
3747 spin_unlock(&delayed_refs->lock);
3748 btrfs_put_delayed_ref(ref);
3751 spin_lock(&delayed_refs->lock);
3754 spin_unlock(&delayed_refs->lock);
3759 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3761 struct btrfs_pending_snapshot *snapshot;
3762 struct list_head splice;
3764 INIT_LIST_HEAD(&splice);
3766 list_splice_init(&t->pending_snapshots, &splice);
3768 while (!list_empty(&splice)) {
3769 snapshot = list_entry(splice.next,
3770 struct btrfs_pending_snapshot,
3772 snapshot->error = -ECANCELED;
3773 list_del_init(&snapshot->list);
3777 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3779 struct btrfs_inode *btrfs_inode;
3780 struct list_head splice;
3782 INIT_LIST_HEAD(&splice);
3784 spin_lock(&root->fs_info->delalloc_lock);
3785 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3787 while (!list_empty(&splice)) {
3788 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3791 list_del_init(&btrfs_inode->delalloc_inodes);
3792 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3793 &btrfs_inode->runtime_flags);
3794 spin_unlock(&root->fs_info->delalloc_lock);
3796 btrfs_invalidate_inodes(btrfs_inode->root);
3798 spin_lock(&root->fs_info->delalloc_lock);
3801 spin_unlock(&root->fs_info->delalloc_lock);
3804 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3805 struct extent_io_tree *dirty_pages,
3809 struct extent_buffer *eb;
3814 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3819 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3820 while (start <= end) {
3821 eb = btrfs_find_tree_block(root, start,
3823 start += root->leafsize;
3826 wait_on_extent_buffer_writeback(eb);
3828 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3830 clear_extent_buffer_dirty(eb);
3831 free_extent_buffer_stale(eb);
3838 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3839 struct extent_io_tree *pinned_extents)
3841 struct extent_io_tree *unpin;
3847 unpin = pinned_extents;
3850 ret = find_first_extent_bit(unpin, 0, &start, &end,
3851 EXTENT_DIRTY, NULL);
3856 if (btrfs_test_opt(root, DISCARD))
3857 ret = btrfs_error_discard_extent(root, start,
3861 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3862 btrfs_error_unpin_extent_range(root, start, end);
3867 if (unpin == &root->fs_info->freed_extents[0])
3868 unpin = &root->fs_info->freed_extents[1];
3870 unpin = &root->fs_info->freed_extents[0];
3878 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3879 struct btrfs_root *root)
3881 btrfs_destroy_delayed_refs(cur_trans, root);
3882 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3883 cur_trans->dirty_pages.dirty_bytes);
3885 /* FIXME: cleanup wait for commit */
3886 cur_trans->in_commit = 1;
3887 cur_trans->blocked = 1;
3888 wake_up(&root->fs_info->transaction_blocked_wait);
3890 btrfs_evict_pending_snapshots(cur_trans);
3892 cur_trans->blocked = 0;
3893 wake_up(&root->fs_info->transaction_wait);
3895 cur_trans->commit_done = 1;
3896 wake_up(&cur_trans->commit_wait);
3898 btrfs_destroy_delayed_inodes(root);
3899 btrfs_assert_delayed_root_empty(root);
3901 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3903 btrfs_destroy_pinned_extent(root,
3904 root->fs_info->pinned_extents);
3907 memset(cur_trans, 0, sizeof(*cur_trans));
3908 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3912 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3914 struct btrfs_transaction *t;
3917 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3919 spin_lock(&root->fs_info->trans_lock);
3920 list_splice_init(&root->fs_info->trans_list, &list);
3921 root->fs_info->trans_no_join = 1;
3922 spin_unlock(&root->fs_info->trans_lock);
3924 while (!list_empty(&list)) {
3925 t = list_entry(list.next, struct btrfs_transaction, list);
3927 btrfs_destroy_ordered_operations(t, root);
3929 btrfs_destroy_ordered_extents(root);
3931 btrfs_destroy_delayed_refs(t, root);
3933 /* FIXME: cleanup wait for commit */
3937 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3938 wake_up(&root->fs_info->transaction_blocked_wait);
3940 btrfs_evict_pending_snapshots(t);
3944 if (waitqueue_active(&root->fs_info->transaction_wait))
3945 wake_up(&root->fs_info->transaction_wait);
3949 if (waitqueue_active(&t->commit_wait))
3950 wake_up(&t->commit_wait);
3952 btrfs_destroy_delayed_inodes(root);
3953 btrfs_assert_delayed_root_empty(root);
3955 btrfs_destroy_delalloc_inodes(root);
3957 spin_lock(&root->fs_info->trans_lock);
3958 root->fs_info->running_transaction = NULL;
3959 spin_unlock(&root->fs_info->trans_lock);
3961 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3964 btrfs_destroy_pinned_extent(root,
3965 root->fs_info->pinned_extents);
3967 atomic_set(&t->use_count, 0);
3968 list_del_init(&t->list);
3969 memset(t, 0, sizeof(*t));
3970 kmem_cache_free(btrfs_transaction_cachep, t);
3973 spin_lock(&root->fs_info->trans_lock);
3974 root->fs_info->trans_no_join = 0;
3975 spin_unlock(&root->fs_info->trans_lock);
3976 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3981 static struct extent_io_ops btree_extent_io_ops = {
3982 .readpage_end_io_hook = btree_readpage_end_io_hook,
3983 .readpage_io_failed_hook = btree_io_failed_hook,
3984 .submit_bio_hook = btree_submit_bio_hook,
3985 /* note we're sharing with inode.c for the merge bio hook */
3986 .merge_bio_hook = btrfs_merge_bio_hook,