Btrfs: move the extent buffer radix tree into the fs_info
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <linux/semaphore.h>
35 #include <asm/unaligned.h>
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63                                              struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66                                       struct btrfs_root *root);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69                                         struct extent_io_tree *dirty_pages,
70                                         int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72                                        struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77  * end_io_wq structs are used to do processing in task context when an IO is
78  * complete.  This is used during reads to verify checksums, and it is used
79  * by writes to insert metadata for new file extents after IO is complete.
80  */
81 struct end_io_wq {
82         struct bio *bio;
83         bio_end_io_t *end_io;
84         void *private;
85         struct btrfs_fs_info *info;
86         int error;
87         int metadata;
88         struct list_head list;
89         struct btrfs_work work;
90 };
91
92 /*
93  * async submit bios are used to offload expensive checksumming
94  * onto the worker threads.  They checksum file and metadata bios
95  * just before they are sent down the IO stack.
96  */
97 struct async_submit_bio {
98         struct inode *inode;
99         struct bio *bio;
100         struct list_head list;
101         extent_submit_bio_hook_t *submit_bio_start;
102         extent_submit_bio_hook_t *submit_bio_done;
103         int rw;
104         int mirror_num;
105         unsigned long bio_flags;
106         /*
107          * bio_offset is optional, can be used if the pages in the bio
108          * can't tell us where in the file the bio should go
109          */
110         u64 bio_offset;
111         struct btrfs_work work;
112         int error;
113 };
114
115 /*
116  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
117  * eb, the lockdep key is determined by the btrfs_root it belongs to and
118  * the level the eb occupies in the tree.
119  *
120  * Different roots are used for different purposes and may nest inside each
121  * other and they require separate keysets.  As lockdep keys should be
122  * static, assign keysets according to the purpose of the root as indicated
123  * by btrfs_root->objectid.  This ensures that all special purpose roots
124  * have separate keysets.
125  *
126  * Lock-nesting across peer nodes is always done with the immediate parent
127  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
128  * subclass to avoid triggering lockdep warning in such cases.
129  *
130  * The key is set by the readpage_end_io_hook after the buffer has passed
131  * csum validation but before the pages are unlocked.  It is also set by
132  * btrfs_init_new_buffer on freshly allocated blocks.
133  *
134  * We also add a check to make sure the highest level of the tree is the
135  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
136  * needs update as well.
137  */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 #  error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144         u64                     id;             /* root objectid */
145         const char              *name_stem;     /* lock name stem */
146         char                    names[BTRFS_MAX_LEVEL + 1][20];
147         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
150         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
151         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
152         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
153         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
154         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
155         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
156         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
157         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
158         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
159         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
160         { .id = 0,                              .name_stem = "tree"     },
161 };
162
163 void __init btrfs_init_lockdep(void)
164 {
165         int i, j;
166
167         /* initialize lockdep class names */
168         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172                         snprintf(ks->names[j], sizeof(ks->names[j]),
173                                  "btrfs-%s-%02d", ks->name_stem, j);
174         }
175 }
176
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178                                     int level)
179 {
180         struct btrfs_lockdep_keyset *ks;
181
182         BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184         /* find the matching keyset, id 0 is the default entry */
185         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186                 if (ks->id == objectid)
187                         break;
188
189         lockdep_set_class_and_name(&eb->lock,
190                                    &ks->keys[level], ks->names[level]);
191 }
192
193 #endif
194
195 /*
196  * extents on the btree inode are pretty simple, there's one extent
197  * that covers the entire device
198  */
199 static struct extent_map *btree_get_extent(struct inode *inode,
200                 struct page *page, size_t pg_offset, u64 start, u64 len,
201                 int create)
202 {
203         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204         struct extent_map *em;
205         int ret;
206
207         read_lock(&em_tree->lock);
208         em = lookup_extent_mapping(em_tree, start, len);
209         if (em) {
210                 em->bdev =
211                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212                 read_unlock(&em_tree->lock);
213                 goto out;
214         }
215         read_unlock(&em_tree->lock);
216
217         em = alloc_extent_map();
218         if (!em) {
219                 em = ERR_PTR(-ENOMEM);
220                 goto out;
221         }
222         em->start = 0;
223         em->len = (u64)-1;
224         em->block_len = (u64)-1;
225         em->block_start = 0;
226         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227
228         write_lock(&em_tree->lock);
229         ret = add_extent_mapping(em_tree, em, 0);
230         if (ret == -EEXIST) {
231                 free_extent_map(em);
232                 em = lookup_extent_mapping(em_tree, start, len);
233                 if (!em)
234                         em = ERR_PTR(-EIO);
235         } else if (ret) {
236                 free_extent_map(em);
237                 em = ERR_PTR(ret);
238         }
239         write_unlock(&em_tree->lock);
240
241 out:
242         return em;
243 }
244
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 {
247         return crc32c(seed, data, len);
248 }
249
250 void btrfs_csum_final(u32 crc, char *result)
251 {
252         put_unaligned_le32(~crc, result);
253 }
254
255 /*
256  * compute the csum for a btree block, and either verify it or write it
257  * into the csum field of the block.
258  */
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260                            int verify)
261 {
262         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263         char *result = NULL;
264         unsigned long len;
265         unsigned long cur_len;
266         unsigned long offset = BTRFS_CSUM_SIZE;
267         char *kaddr;
268         unsigned long map_start;
269         unsigned long map_len;
270         int err;
271         u32 crc = ~(u32)0;
272         unsigned long inline_result;
273
274         len = buf->len - offset;
275         while (len > 0) {
276                 err = map_private_extent_buffer(buf, offset, 32,
277                                         &kaddr, &map_start, &map_len);
278                 if (err)
279                         return 1;
280                 cur_len = min(len, map_len - (offset - map_start));
281                 crc = btrfs_csum_data(kaddr + offset - map_start,
282                                       crc, cur_len);
283                 len -= cur_len;
284                 offset += cur_len;
285         }
286         if (csum_size > sizeof(inline_result)) {
287                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288                 if (!result)
289                         return 1;
290         } else {
291                 result = (char *)&inline_result;
292         }
293
294         btrfs_csum_final(crc, result);
295
296         if (verify) {
297                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298                         u32 val;
299                         u32 found = 0;
300                         memcpy(&found, result, csum_size);
301
302                         read_extent_buffer(buf, &val, 0, csum_size);
303                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
304                                        "failed on %llu wanted %X found %X "
305                                        "level %d\n",
306                                        root->fs_info->sb->s_id, buf->start,
307                                        val, found, btrfs_header_level(buf));
308                         if (result != (char *)&inline_result)
309                                 kfree(result);
310                         return 1;
311                 }
312         } else {
313                 write_extent_buffer(buf, result, 0, csum_size);
314         }
315         if (result != (char *)&inline_result)
316                 kfree(result);
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340                          0, &cached_state);
341         if (extent_buffer_uptodate(eb) &&
342             btrfs_header_generation(eb) == parent_transid) {
343                 ret = 0;
344                 goto out;
345         }
346         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347                        "found %llu\n",
348                        eb->start, parent_transid, btrfs_header_generation(eb));
349         ret = 1;
350         clear_extent_buffer_uptodate(eb);
351 out:
352         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353                              &cached_state, GFP_NOFS);
354         return ret;
355 }
356
357 /*
358  * Return 0 if the superblock checksum type matches the checksum value of that
359  * algorithm. Pass the raw disk superblock data.
360  */
361 static int btrfs_check_super_csum(char *raw_disk_sb)
362 {
363         struct btrfs_super_block *disk_sb =
364                 (struct btrfs_super_block *)raw_disk_sb;
365         u16 csum_type = btrfs_super_csum_type(disk_sb);
366         int ret = 0;
367
368         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
369                 u32 crc = ~(u32)0;
370                 const int csum_size = sizeof(crc);
371                 char result[csum_size];
372
373                 /*
374                  * The super_block structure does not span the whole
375                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376                  * is filled with zeros and is included in the checkum.
377                  */
378                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380                 btrfs_csum_final(crc, result);
381
382                 if (memcmp(raw_disk_sb, result, csum_size))
383                         ret = 1;
384
385                 if (ret && btrfs_super_generation(disk_sb) < 10) {
386                         printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
387                         ret = 0;
388                 }
389         }
390
391         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
392                 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
393                                 csum_type);
394                 ret = 1;
395         }
396
397         return ret;
398 }
399
400 /*
401  * helper to read a given tree block, doing retries as required when
402  * the checksums don't match and we have alternate mirrors to try.
403  */
404 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
405                                           struct extent_buffer *eb,
406                                           u64 start, u64 parent_transid)
407 {
408         struct extent_io_tree *io_tree;
409         int failed = 0;
410         int ret;
411         int num_copies = 0;
412         int mirror_num = 0;
413         int failed_mirror = 0;
414
415         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
416         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
417         while (1) {
418                 ret = read_extent_buffer_pages(io_tree, eb, start,
419                                                WAIT_COMPLETE,
420                                                btree_get_extent, mirror_num);
421                 if (!ret) {
422                         if (!verify_parent_transid(io_tree, eb,
423                                                    parent_transid, 0))
424                                 break;
425                         else
426                                 ret = -EIO;
427                 }
428
429                 /*
430                  * This buffer's crc is fine, but its contents are corrupted, so
431                  * there is no reason to read the other copies, they won't be
432                  * any less wrong.
433                  */
434                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
435                         break;
436
437                 num_copies = btrfs_num_copies(root->fs_info,
438                                               eb->start, eb->len);
439                 if (num_copies == 1)
440                         break;
441
442                 if (!failed_mirror) {
443                         failed = 1;
444                         failed_mirror = eb->read_mirror;
445                 }
446
447                 mirror_num++;
448                 if (mirror_num == failed_mirror)
449                         mirror_num++;
450
451                 if (mirror_num > num_copies)
452                         break;
453         }
454
455         if (failed && !ret && failed_mirror)
456                 repair_eb_io_failure(root, eb, failed_mirror);
457
458         return ret;
459 }
460
461 /*
462  * checksum a dirty tree block before IO.  This has extra checks to make sure
463  * we only fill in the checksum field in the first page of a multi-page block
464  */
465
466 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
467 {
468         u64 start = page_offset(page);
469         u64 found_start;
470         struct extent_buffer *eb;
471
472         eb = (struct extent_buffer *)page->private;
473         if (page != eb->pages[0])
474                 return 0;
475         found_start = btrfs_header_bytenr(eb);
476         if (WARN_ON(found_start != start || !PageUptodate(page)))
477                 return 0;
478         csum_tree_block(root, eb, 0);
479         return 0;
480 }
481
482 static int check_tree_block_fsid(struct btrfs_root *root,
483                                  struct extent_buffer *eb)
484 {
485         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
486         u8 fsid[BTRFS_UUID_SIZE];
487         int ret = 1;
488
489         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
490         while (fs_devices) {
491                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
492                         ret = 0;
493                         break;
494                 }
495                 fs_devices = fs_devices->seed;
496         }
497         return ret;
498 }
499
500 #define CORRUPT(reason, eb, root, slot)                         \
501         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
502                "root=%llu, slot=%d\n", reason,                  \
503                btrfs_header_bytenr(eb), root->objectid, slot)
504
505 static noinline int check_leaf(struct btrfs_root *root,
506                                struct extent_buffer *leaf)
507 {
508         struct btrfs_key key;
509         struct btrfs_key leaf_key;
510         u32 nritems = btrfs_header_nritems(leaf);
511         int slot;
512
513         if (nritems == 0)
514                 return 0;
515
516         /* Check the 0 item */
517         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
518             BTRFS_LEAF_DATA_SIZE(root)) {
519                 CORRUPT("invalid item offset size pair", leaf, root, 0);
520                 return -EIO;
521         }
522
523         /*
524          * Check to make sure each items keys are in the correct order and their
525          * offsets make sense.  We only have to loop through nritems-1 because
526          * we check the current slot against the next slot, which verifies the
527          * next slot's offset+size makes sense and that the current's slot
528          * offset is correct.
529          */
530         for (slot = 0; slot < nritems - 1; slot++) {
531                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
532                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
533
534                 /* Make sure the keys are in the right order */
535                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
536                         CORRUPT("bad key order", leaf, root, slot);
537                         return -EIO;
538                 }
539
540                 /*
541                  * Make sure the offset and ends are right, remember that the
542                  * item data starts at the end of the leaf and grows towards the
543                  * front.
544                  */
545                 if (btrfs_item_offset_nr(leaf, slot) !=
546                         btrfs_item_end_nr(leaf, slot + 1)) {
547                         CORRUPT("slot offset bad", leaf, root, slot);
548                         return -EIO;
549                 }
550
551                 /*
552                  * Check to make sure that we don't point outside of the leaf,
553                  * just incase all the items are consistent to eachother, but
554                  * all point outside of the leaf.
555                  */
556                 if (btrfs_item_end_nr(leaf, slot) >
557                     BTRFS_LEAF_DATA_SIZE(root)) {
558                         CORRUPT("slot end outside of leaf", leaf, root, slot);
559                         return -EIO;
560                 }
561         }
562
563         return 0;
564 }
565
566 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
567                                       u64 phy_offset, struct page *page,
568                                       u64 start, u64 end, int mirror)
569 {
570         u64 found_start;
571         int found_level;
572         struct extent_buffer *eb;
573         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
574         int ret = 0;
575         int reads_done;
576
577         if (!page->private)
578                 goto out;
579
580         eb = (struct extent_buffer *)page->private;
581
582         /* the pending IO might have been the only thing that kept this buffer
583          * in memory.  Make sure we have a ref for all this other checks
584          */
585         extent_buffer_get(eb);
586
587         reads_done = atomic_dec_and_test(&eb->io_pages);
588         if (!reads_done)
589                 goto err;
590
591         eb->read_mirror = mirror;
592         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
593                 ret = -EIO;
594                 goto err;
595         }
596
597         found_start = btrfs_header_bytenr(eb);
598         if (found_start != eb->start) {
599                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
600                                "%llu %llu\n",
601                                found_start, eb->start);
602                 ret = -EIO;
603                 goto err;
604         }
605         if (check_tree_block_fsid(root, eb)) {
606                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
607                                eb->start);
608                 ret = -EIO;
609                 goto err;
610         }
611         found_level = btrfs_header_level(eb);
612         if (found_level >= BTRFS_MAX_LEVEL) {
613                 btrfs_info(root->fs_info, "bad tree block level %d\n",
614                            (int)btrfs_header_level(eb));
615                 ret = -EIO;
616                 goto err;
617         }
618
619         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
620                                        eb, found_level);
621
622         ret = csum_tree_block(root, eb, 1);
623         if (ret) {
624                 ret = -EIO;
625                 goto err;
626         }
627
628         /*
629          * If this is a leaf block and it is corrupt, set the corrupt bit so
630          * that we don't try and read the other copies of this block, just
631          * return -EIO.
632          */
633         if (found_level == 0 && check_leaf(root, eb)) {
634                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
635                 ret = -EIO;
636         }
637
638         if (!ret)
639                 set_extent_buffer_uptodate(eb);
640 err:
641         if (reads_done &&
642             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
643                 btree_readahead_hook(root, eb, eb->start, ret);
644
645         if (ret) {
646                 /*
647                  * our io error hook is going to dec the io pages
648                  * again, we have to make sure it has something
649                  * to decrement
650                  */
651                 atomic_inc(&eb->io_pages);
652                 clear_extent_buffer_uptodate(eb);
653         }
654         free_extent_buffer(eb);
655 out:
656         return ret;
657 }
658
659 static int btree_io_failed_hook(struct page *page, int failed_mirror)
660 {
661         struct extent_buffer *eb;
662         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
663
664         eb = (struct extent_buffer *)page->private;
665         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
666         eb->read_mirror = failed_mirror;
667         atomic_dec(&eb->io_pages);
668         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
669                 btree_readahead_hook(root, eb, eb->start, -EIO);
670         return -EIO;    /* we fixed nothing */
671 }
672
673 static void end_workqueue_bio(struct bio *bio, int err)
674 {
675         struct end_io_wq *end_io_wq = bio->bi_private;
676         struct btrfs_fs_info *fs_info;
677
678         fs_info = end_io_wq->info;
679         end_io_wq->error = err;
680         end_io_wq->work.func = end_workqueue_fn;
681         end_io_wq->work.flags = 0;
682
683         if (bio->bi_rw & REQ_WRITE) {
684                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
685                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
686                                            &end_io_wq->work);
687                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
688                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
689                                            &end_io_wq->work);
690                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
691                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
692                                            &end_io_wq->work);
693                 else
694                         btrfs_queue_worker(&fs_info->endio_write_workers,
695                                            &end_io_wq->work);
696         } else {
697                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
698                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
699                                            &end_io_wq->work);
700                 else if (end_io_wq->metadata)
701                         btrfs_queue_worker(&fs_info->endio_meta_workers,
702                                            &end_io_wq->work);
703                 else
704                         btrfs_queue_worker(&fs_info->endio_workers,
705                                            &end_io_wq->work);
706         }
707 }
708
709 /*
710  * For the metadata arg you want
711  *
712  * 0 - if data
713  * 1 - if normal metadta
714  * 2 - if writing to the free space cache area
715  * 3 - raid parity work
716  */
717 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
718                         int metadata)
719 {
720         struct end_io_wq *end_io_wq;
721         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
722         if (!end_io_wq)
723                 return -ENOMEM;
724
725         end_io_wq->private = bio->bi_private;
726         end_io_wq->end_io = bio->bi_end_io;
727         end_io_wq->info = info;
728         end_io_wq->error = 0;
729         end_io_wq->bio = bio;
730         end_io_wq->metadata = metadata;
731
732         bio->bi_private = end_io_wq;
733         bio->bi_end_io = end_workqueue_bio;
734         return 0;
735 }
736
737 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
738 {
739         unsigned long limit = min_t(unsigned long,
740                                     info->workers.max_workers,
741                                     info->fs_devices->open_devices);
742         return 256 * limit;
743 }
744
745 static void run_one_async_start(struct btrfs_work *work)
746 {
747         struct async_submit_bio *async;
748         int ret;
749
750         async = container_of(work, struct  async_submit_bio, work);
751         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
752                                       async->mirror_num, async->bio_flags,
753                                       async->bio_offset);
754         if (ret)
755                 async->error = ret;
756 }
757
758 static void run_one_async_done(struct btrfs_work *work)
759 {
760         struct btrfs_fs_info *fs_info;
761         struct async_submit_bio *async;
762         int limit;
763
764         async = container_of(work, struct  async_submit_bio, work);
765         fs_info = BTRFS_I(async->inode)->root->fs_info;
766
767         limit = btrfs_async_submit_limit(fs_info);
768         limit = limit * 2 / 3;
769
770         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
771             waitqueue_active(&fs_info->async_submit_wait))
772                 wake_up(&fs_info->async_submit_wait);
773
774         /* If an error occured we just want to clean up the bio and move on */
775         if (async->error) {
776                 bio_endio(async->bio, async->error);
777                 return;
778         }
779
780         async->submit_bio_done(async->inode, async->rw, async->bio,
781                                async->mirror_num, async->bio_flags,
782                                async->bio_offset);
783 }
784
785 static void run_one_async_free(struct btrfs_work *work)
786 {
787         struct async_submit_bio *async;
788
789         async = container_of(work, struct  async_submit_bio, work);
790         kfree(async);
791 }
792
793 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
794                         int rw, struct bio *bio, int mirror_num,
795                         unsigned long bio_flags,
796                         u64 bio_offset,
797                         extent_submit_bio_hook_t *submit_bio_start,
798                         extent_submit_bio_hook_t *submit_bio_done)
799 {
800         struct async_submit_bio *async;
801
802         async = kmalloc(sizeof(*async), GFP_NOFS);
803         if (!async)
804                 return -ENOMEM;
805
806         async->inode = inode;
807         async->rw = rw;
808         async->bio = bio;
809         async->mirror_num = mirror_num;
810         async->submit_bio_start = submit_bio_start;
811         async->submit_bio_done = submit_bio_done;
812
813         async->work.func = run_one_async_start;
814         async->work.ordered_func = run_one_async_done;
815         async->work.ordered_free = run_one_async_free;
816
817         async->work.flags = 0;
818         async->bio_flags = bio_flags;
819         async->bio_offset = bio_offset;
820
821         async->error = 0;
822
823         atomic_inc(&fs_info->nr_async_submits);
824
825         if (rw & REQ_SYNC)
826                 btrfs_set_work_high_prio(&async->work);
827
828         btrfs_queue_worker(&fs_info->workers, &async->work);
829
830         while (atomic_read(&fs_info->async_submit_draining) &&
831               atomic_read(&fs_info->nr_async_submits)) {
832                 wait_event(fs_info->async_submit_wait,
833                            (atomic_read(&fs_info->nr_async_submits) == 0));
834         }
835
836         return 0;
837 }
838
839 static int btree_csum_one_bio(struct bio *bio)
840 {
841         struct bio_vec *bvec = bio->bi_io_vec;
842         int bio_index = 0;
843         struct btrfs_root *root;
844         int ret = 0;
845
846         WARN_ON(bio->bi_vcnt <= 0);
847         while (bio_index < bio->bi_vcnt) {
848                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
849                 ret = csum_dirty_buffer(root, bvec->bv_page);
850                 if (ret)
851                         break;
852                 bio_index++;
853                 bvec++;
854         }
855         return ret;
856 }
857
858 static int __btree_submit_bio_start(struct inode *inode, int rw,
859                                     struct bio *bio, int mirror_num,
860                                     unsigned long bio_flags,
861                                     u64 bio_offset)
862 {
863         /*
864          * when we're called for a write, we're already in the async
865          * submission context.  Just jump into btrfs_map_bio
866          */
867         return btree_csum_one_bio(bio);
868 }
869
870 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
871                                  int mirror_num, unsigned long bio_flags,
872                                  u64 bio_offset)
873 {
874         int ret;
875
876         /*
877          * when we're called for a write, we're already in the async
878          * submission context.  Just jump into btrfs_map_bio
879          */
880         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
881         if (ret)
882                 bio_endio(bio, ret);
883         return ret;
884 }
885
886 static int check_async_write(struct inode *inode, unsigned long bio_flags)
887 {
888         if (bio_flags & EXTENT_BIO_TREE_LOG)
889                 return 0;
890 #ifdef CONFIG_X86
891         if (cpu_has_xmm4_2)
892                 return 0;
893 #endif
894         return 1;
895 }
896
897 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
898                                  int mirror_num, unsigned long bio_flags,
899                                  u64 bio_offset)
900 {
901         int async = check_async_write(inode, bio_flags);
902         int ret;
903
904         if (!(rw & REQ_WRITE)) {
905                 /*
906                  * called for a read, do the setup so that checksum validation
907                  * can happen in the async kernel threads
908                  */
909                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
910                                           bio, 1);
911                 if (ret)
912                         goto out_w_error;
913                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
914                                     mirror_num, 0);
915         } else if (!async) {
916                 ret = btree_csum_one_bio(bio);
917                 if (ret)
918                         goto out_w_error;
919                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
920                                     mirror_num, 0);
921         } else {
922                 /*
923                  * kthread helpers are used to submit writes so that
924                  * checksumming can happen in parallel across all CPUs
925                  */
926                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
927                                           inode, rw, bio, mirror_num, 0,
928                                           bio_offset,
929                                           __btree_submit_bio_start,
930                                           __btree_submit_bio_done);
931         }
932
933         if (ret) {
934 out_w_error:
935                 bio_endio(bio, ret);
936         }
937         return ret;
938 }
939
940 #ifdef CONFIG_MIGRATION
941 static int btree_migratepage(struct address_space *mapping,
942                         struct page *newpage, struct page *page,
943                         enum migrate_mode mode)
944 {
945         /*
946          * we can't safely write a btree page from here,
947          * we haven't done the locking hook
948          */
949         if (PageDirty(page))
950                 return -EAGAIN;
951         /*
952          * Buffers may be managed in a filesystem specific way.
953          * We must have no buffers or drop them.
954          */
955         if (page_has_private(page) &&
956             !try_to_release_page(page, GFP_KERNEL))
957                 return -EAGAIN;
958         return migrate_page(mapping, newpage, page, mode);
959 }
960 #endif
961
962
963 static int btree_writepages(struct address_space *mapping,
964                             struct writeback_control *wbc)
965 {
966         struct btrfs_fs_info *fs_info;
967         int ret;
968
969         if (wbc->sync_mode == WB_SYNC_NONE) {
970
971                 if (wbc->for_kupdate)
972                         return 0;
973
974                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
975                 /* this is a bit racy, but that's ok */
976                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
977                                              BTRFS_DIRTY_METADATA_THRESH);
978                 if (ret < 0)
979                         return 0;
980         }
981         return btree_write_cache_pages(mapping, wbc);
982 }
983
984 static int btree_readpage(struct file *file, struct page *page)
985 {
986         struct extent_io_tree *tree;
987         tree = &BTRFS_I(page->mapping->host)->io_tree;
988         return extent_read_full_page(tree, page, btree_get_extent, 0);
989 }
990
991 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
992 {
993         if (PageWriteback(page) || PageDirty(page))
994                 return 0;
995
996         return try_release_extent_buffer(page);
997 }
998
999 static void btree_invalidatepage(struct page *page, unsigned int offset,
1000                                  unsigned int length)
1001 {
1002         struct extent_io_tree *tree;
1003         tree = &BTRFS_I(page->mapping->host)->io_tree;
1004         extent_invalidatepage(tree, page, offset);
1005         btree_releasepage(page, GFP_NOFS);
1006         if (PagePrivate(page)) {
1007                 printk(KERN_WARNING "btrfs warning page private not zero "
1008                        "on page %llu\n", (unsigned long long)page_offset(page));
1009                 ClearPagePrivate(page);
1010                 set_page_private(page, 0);
1011                 page_cache_release(page);
1012         }
1013 }
1014
1015 static int btree_set_page_dirty(struct page *page)
1016 {
1017 #ifdef DEBUG
1018         struct extent_buffer *eb;
1019
1020         BUG_ON(!PagePrivate(page));
1021         eb = (struct extent_buffer *)page->private;
1022         BUG_ON(!eb);
1023         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1024         BUG_ON(!atomic_read(&eb->refs));
1025         btrfs_assert_tree_locked(eb);
1026 #endif
1027         return __set_page_dirty_nobuffers(page);
1028 }
1029
1030 static const struct address_space_operations btree_aops = {
1031         .readpage       = btree_readpage,
1032         .writepages     = btree_writepages,
1033         .releasepage    = btree_releasepage,
1034         .invalidatepage = btree_invalidatepage,
1035 #ifdef CONFIG_MIGRATION
1036         .migratepage    = btree_migratepage,
1037 #endif
1038         .set_page_dirty = btree_set_page_dirty,
1039 };
1040
1041 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1042                          u64 parent_transid)
1043 {
1044         struct extent_buffer *buf = NULL;
1045         struct inode *btree_inode = root->fs_info->btree_inode;
1046         int ret = 0;
1047
1048         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1049         if (!buf)
1050                 return 0;
1051         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1052                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1053         free_extent_buffer(buf);
1054         return ret;
1055 }
1056
1057 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1058                          int mirror_num, struct extent_buffer **eb)
1059 {
1060         struct extent_buffer *buf = NULL;
1061         struct inode *btree_inode = root->fs_info->btree_inode;
1062         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1063         int ret;
1064
1065         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1066         if (!buf)
1067                 return 0;
1068
1069         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1070
1071         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1072                                        btree_get_extent, mirror_num);
1073         if (ret) {
1074                 free_extent_buffer(buf);
1075                 return ret;
1076         }
1077
1078         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1079                 free_extent_buffer(buf);
1080                 return -EIO;
1081         } else if (extent_buffer_uptodate(buf)) {
1082                 *eb = buf;
1083         } else {
1084                 free_extent_buffer(buf);
1085         }
1086         return 0;
1087 }
1088
1089 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1090                                             u64 bytenr, u32 blocksize)
1091 {
1092         return find_extent_buffer(root->fs_info, bytenr);
1093 }
1094
1095 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1096                                                  u64 bytenr, u32 blocksize)
1097 {
1098         return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1099 }
1100
1101
1102 int btrfs_write_tree_block(struct extent_buffer *buf)
1103 {
1104         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1105                                         buf->start + buf->len - 1);
1106 }
1107
1108 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1109 {
1110         return filemap_fdatawait_range(buf->pages[0]->mapping,
1111                                        buf->start, buf->start + buf->len - 1);
1112 }
1113
1114 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1115                                       u32 blocksize, u64 parent_transid)
1116 {
1117         struct extent_buffer *buf = NULL;
1118         int ret;
1119
1120         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1121         if (!buf)
1122                 return NULL;
1123
1124         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1125         if (ret) {
1126                 free_extent_buffer(buf);
1127                 return NULL;
1128         }
1129         return buf;
1130
1131 }
1132
1133 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1134                       struct extent_buffer *buf)
1135 {
1136         struct btrfs_fs_info *fs_info = root->fs_info;
1137
1138         if (btrfs_header_generation(buf) ==
1139             fs_info->running_transaction->transid) {
1140                 btrfs_assert_tree_locked(buf);
1141
1142                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1143                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1144                                              -buf->len,
1145                                              fs_info->dirty_metadata_batch);
1146                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1147                         btrfs_set_lock_blocking(buf);
1148                         clear_extent_buffer_dirty(buf);
1149                 }
1150         }
1151 }
1152
1153 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1154                          u32 stripesize, struct btrfs_root *root,
1155                          struct btrfs_fs_info *fs_info,
1156                          u64 objectid)
1157 {
1158         root->node = NULL;
1159         root->commit_root = NULL;
1160         root->sectorsize = sectorsize;
1161         root->nodesize = nodesize;
1162         root->leafsize = leafsize;
1163         root->stripesize = stripesize;
1164         root->ref_cows = 0;
1165         root->track_dirty = 0;
1166         root->in_radix = 0;
1167         root->orphan_item_inserted = 0;
1168         root->orphan_cleanup_state = 0;
1169
1170         root->objectid = objectid;
1171         root->last_trans = 0;
1172         root->highest_objectid = 0;
1173         root->nr_delalloc_inodes = 0;
1174         root->nr_ordered_extents = 0;
1175         root->name = NULL;
1176         root->inode_tree = RB_ROOT;
1177         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1178         root->block_rsv = NULL;
1179         root->orphan_block_rsv = NULL;
1180
1181         INIT_LIST_HEAD(&root->dirty_list);
1182         INIT_LIST_HEAD(&root->root_list);
1183         INIT_LIST_HEAD(&root->delalloc_inodes);
1184         INIT_LIST_HEAD(&root->delalloc_root);
1185         INIT_LIST_HEAD(&root->ordered_extents);
1186         INIT_LIST_HEAD(&root->ordered_root);
1187         INIT_LIST_HEAD(&root->logged_list[0]);
1188         INIT_LIST_HEAD(&root->logged_list[1]);
1189         spin_lock_init(&root->orphan_lock);
1190         spin_lock_init(&root->inode_lock);
1191         spin_lock_init(&root->delalloc_lock);
1192         spin_lock_init(&root->ordered_extent_lock);
1193         spin_lock_init(&root->accounting_lock);
1194         spin_lock_init(&root->log_extents_lock[0]);
1195         spin_lock_init(&root->log_extents_lock[1]);
1196         mutex_init(&root->objectid_mutex);
1197         mutex_init(&root->log_mutex);
1198         init_waitqueue_head(&root->log_writer_wait);
1199         init_waitqueue_head(&root->log_commit_wait[0]);
1200         init_waitqueue_head(&root->log_commit_wait[1]);
1201         atomic_set(&root->log_commit[0], 0);
1202         atomic_set(&root->log_commit[1], 0);
1203         atomic_set(&root->log_writers, 0);
1204         atomic_set(&root->log_batch, 0);
1205         atomic_set(&root->orphan_inodes, 0);
1206         atomic_set(&root->refs, 1);
1207         root->log_transid = 0;
1208         root->last_log_commit = 0;
1209         if (fs_info)
1210                 extent_io_tree_init(&root->dirty_log_pages,
1211                                      fs_info->btree_inode->i_mapping);
1212
1213         memset(&root->root_key, 0, sizeof(root->root_key));
1214         memset(&root->root_item, 0, sizeof(root->root_item));
1215         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1216         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1217         if (fs_info)
1218                 root->defrag_trans_start = fs_info->generation;
1219         else
1220                 root->defrag_trans_start = 0;
1221         init_completion(&root->kobj_unregister);
1222         root->defrag_running = 0;
1223         root->root_key.objectid = objectid;
1224         root->anon_dev = 0;
1225
1226         spin_lock_init(&root->root_item_lock);
1227 }
1228
1229 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1230 {
1231         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1232         if (root)
1233                 root->fs_info = fs_info;
1234         return root;
1235 }
1236
1237 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1238 /* Should only be used by the testing infrastructure */
1239 struct btrfs_root *btrfs_alloc_dummy_root(void)
1240 {
1241         struct btrfs_root *root;
1242
1243         root = btrfs_alloc_root(NULL);
1244         if (!root)
1245                 return ERR_PTR(-ENOMEM);
1246         __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1247         root->dummy_root = 1;
1248
1249         return root;
1250 }
1251 #endif
1252
1253 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1254                                      struct btrfs_fs_info *fs_info,
1255                                      u64 objectid)
1256 {
1257         struct extent_buffer *leaf;
1258         struct btrfs_root *tree_root = fs_info->tree_root;
1259         struct btrfs_root *root;
1260         struct btrfs_key key;
1261         int ret = 0;
1262         uuid_le uuid;
1263
1264         root = btrfs_alloc_root(fs_info);
1265         if (!root)
1266                 return ERR_PTR(-ENOMEM);
1267
1268         __setup_root(tree_root->nodesize, tree_root->leafsize,
1269                      tree_root->sectorsize, tree_root->stripesize,
1270                      root, fs_info, objectid);
1271         root->root_key.objectid = objectid;
1272         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1273         root->root_key.offset = 0;
1274
1275         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1276                                       0, objectid, NULL, 0, 0, 0);
1277         if (IS_ERR(leaf)) {
1278                 ret = PTR_ERR(leaf);
1279                 leaf = NULL;
1280                 goto fail;
1281         }
1282
1283         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1284         btrfs_set_header_bytenr(leaf, leaf->start);
1285         btrfs_set_header_generation(leaf, trans->transid);
1286         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1287         btrfs_set_header_owner(leaf, objectid);
1288         root->node = leaf;
1289
1290         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1291                             BTRFS_FSID_SIZE);
1292         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1293                             btrfs_header_chunk_tree_uuid(leaf),
1294                             BTRFS_UUID_SIZE);
1295         btrfs_mark_buffer_dirty(leaf);
1296
1297         root->commit_root = btrfs_root_node(root);
1298         root->track_dirty = 1;
1299
1300
1301         root->root_item.flags = 0;
1302         root->root_item.byte_limit = 0;
1303         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1304         btrfs_set_root_generation(&root->root_item, trans->transid);
1305         btrfs_set_root_level(&root->root_item, 0);
1306         btrfs_set_root_refs(&root->root_item, 1);
1307         btrfs_set_root_used(&root->root_item, leaf->len);
1308         btrfs_set_root_last_snapshot(&root->root_item, 0);
1309         btrfs_set_root_dirid(&root->root_item, 0);
1310         uuid_le_gen(&uuid);
1311         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1312         root->root_item.drop_level = 0;
1313
1314         key.objectid = objectid;
1315         key.type = BTRFS_ROOT_ITEM_KEY;
1316         key.offset = 0;
1317         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1318         if (ret)
1319                 goto fail;
1320
1321         btrfs_tree_unlock(leaf);
1322
1323         return root;
1324
1325 fail:
1326         if (leaf) {
1327                 btrfs_tree_unlock(leaf);
1328                 free_extent_buffer(leaf);
1329         }
1330         kfree(root);
1331
1332         return ERR_PTR(ret);
1333 }
1334
1335 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1336                                          struct btrfs_fs_info *fs_info)
1337 {
1338         struct btrfs_root *root;
1339         struct btrfs_root *tree_root = fs_info->tree_root;
1340         struct extent_buffer *leaf;
1341
1342         root = btrfs_alloc_root(fs_info);
1343         if (!root)
1344                 return ERR_PTR(-ENOMEM);
1345
1346         __setup_root(tree_root->nodesize, tree_root->leafsize,
1347                      tree_root->sectorsize, tree_root->stripesize,
1348                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1349
1350         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1351         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1352         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1353         /*
1354          * log trees do not get reference counted because they go away
1355          * before a real commit is actually done.  They do store pointers
1356          * to file data extents, and those reference counts still get
1357          * updated (along with back refs to the log tree).
1358          */
1359         root->ref_cows = 0;
1360
1361         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1362                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1363                                       0, 0, 0);
1364         if (IS_ERR(leaf)) {
1365                 kfree(root);
1366                 return ERR_CAST(leaf);
1367         }
1368
1369         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1370         btrfs_set_header_bytenr(leaf, leaf->start);
1371         btrfs_set_header_generation(leaf, trans->transid);
1372         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1373         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1374         root->node = leaf;
1375
1376         write_extent_buffer(root->node, root->fs_info->fsid,
1377                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1378         btrfs_mark_buffer_dirty(root->node);
1379         btrfs_tree_unlock(root->node);
1380         return root;
1381 }
1382
1383 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1384                              struct btrfs_fs_info *fs_info)
1385 {
1386         struct btrfs_root *log_root;
1387
1388         log_root = alloc_log_tree(trans, fs_info);
1389         if (IS_ERR(log_root))
1390                 return PTR_ERR(log_root);
1391         WARN_ON(fs_info->log_root_tree);
1392         fs_info->log_root_tree = log_root;
1393         return 0;
1394 }
1395
1396 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1397                        struct btrfs_root *root)
1398 {
1399         struct btrfs_root *log_root;
1400         struct btrfs_inode_item *inode_item;
1401
1402         log_root = alloc_log_tree(trans, root->fs_info);
1403         if (IS_ERR(log_root))
1404                 return PTR_ERR(log_root);
1405
1406         log_root->last_trans = trans->transid;
1407         log_root->root_key.offset = root->root_key.objectid;
1408
1409         inode_item = &log_root->root_item.inode;
1410         btrfs_set_stack_inode_generation(inode_item, 1);
1411         btrfs_set_stack_inode_size(inode_item, 3);
1412         btrfs_set_stack_inode_nlink(inode_item, 1);
1413         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1414         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1415
1416         btrfs_set_root_node(&log_root->root_item, log_root->node);
1417
1418         WARN_ON(root->log_root);
1419         root->log_root = log_root;
1420         root->log_transid = 0;
1421         root->last_log_commit = 0;
1422         return 0;
1423 }
1424
1425 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1426                                                struct btrfs_key *key)
1427 {
1428         struct btrfs_root *root;
1429         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1430         struct btrfs_path *path;
1431         u64 generation;
1432         u32 blocksize;
1433         int ret;
1434
1435         path = btrfs_alloc_path();
1436         if (!path)
1437                 return ERR_PTR(-ENOMEM);
1438
1439         root = btrfs_alloc_root(fs_info);
1440         if (!root) {
1441                 ret = -ENOMEM;
1442                 goto alloc_fail;
1443         }
1444
1445         __setup_root(tree_root->nodesize, tree_root->leafsize,
1446                      tree_root->sectorsize, tree_root->stripesize,
1447                      root, fs_info, key->objectid);
1448
1449         ret = btrfs_find_root(tree_root, key, path,
1450                               &root->root_item, &root->root_key);
1451         if (ret) {
1452                 if (ret > 0)
1453                         ret = -ENOENT;
1454                 goto find_fail;
1455         }
1456
1457         generation = btrfs_root_generation(&root->root_item);
1458         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1459         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1460                                      blocksize, generation);
1461         if (!root->node) {
1462                 ret = -ENOMEM;
1463                 goto find_fail;
1464         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1465                 ret = -EIO;
1466                 goto read_fail;
1467         }
1468         root->commit_root = btrfs_root_node(root);
1469 out:
1470         btrfs_free_path(path);
1471         return root;
1472
1473 read_fail:
1474         free_extent_buffer(root->node);
1475 find_fail:
1476         kfree(root);
1477 alloc_fail:
1478         root = ERR_PTR(ret);
1479         goto out;
1480 }
1481
1482 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1483                                       struct btrfs_key *location)
1484 {
1485         struct btrfs_root *root;
1486
1487         root = btrfs_read_tree_root(tree_root, location);
1488         if (IS_ERR(root))
1489                 return root;
1490
1491         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1492                 root->ref_cows = 1;
1493                 btrfs_check_and_init_root_item(&root->root_item);
1494         }
1495
1496         return root;
1497 }
1498
1499 int btrfs_init_fs_root(struct btrfs_root *root)
1500 {
1501         int ret;
1502
1503         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1504         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1505                                         GFP_NOFS);
1506         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1507                 ret = -ENOMEM;
1508                 goto fail;
1509         }
1510
1511         btrfs_init_free_ino_ctl(root);
1512         mutex_init(&root->fs_commit_mutex);
1513         spin_lock_init(&root->cache_lock);
1514         init_waitqueue_head(&root->cache_wait);
1515
1516         ret = get_anon_bdev(&root->anon_dev);
1517         if (ret)
1518                 goto fail;
1519         return 0;
1520 fail:
1521         kfree(root->free_ino_ctl);
1522         kfree(root->free_ino_pinned);
1523         return ret;
1524 }
1525
1526 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1527                                                u64 root_id)
1528 {
1529         struct btrfs_root *root;
1530
1531         spin_lock(&fs_info->fs_roots_radix_lock);
1532         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1533                                  (unsigned long)root_id);
1534         spin_unlock(&fs_info->fs_roots_radix_lock);
1535         return root;
1536 }
1537
1538 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1539                          struct btrfs_root *root)
1540 {
1541         int ret;
1542
1543         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1544         if (ret)
1545                 return ret;
1546
1547         spin_lock(&fs_info->fs_roots_radix_lock);
1548         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1549                                 (unsigned long)root->root_key.objectid,
1550                                 root);
1551         if (ret == 0)
1552                 root->in_radix = 1;
1553         spin_unlock(&fs_info->fs_roots_radix_lock);
1554         radix_tree_preload_end();
1555
1556         return ret;
1557 }
1558
1559 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1560                                      struct btrfs_key *location,
1561                                      bool check_ref)
1562 {
1563         struct btrfs_root *root;
1564         int ret;
1565
1566         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1567                 return fs_info->tree_root;
1568         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1569                 return fs_info->extent_root;
1570         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1571                 return fs_info->chunk_root;
1572         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1573                 return fs_info->dev_root;
1574         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1575                 return fs_info->csum_root;
1576         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1577                 return fs_info->quota_root ? fs_info->quota_root :
1578                                              ERR_PTR(-ENOENT);
1579         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1580                 return fs_info->uuid_root ? fs_info->uuid_root :
1581                                             ERR_PTR(-ENOENT);
1582 again:
1583         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1584         if (root) {
1585                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1586                         return ERR_PTR(-ENOENT);
1587                 return root;
1588         }
1589
1590         root = btrfs_read_fs_root(fs_info->tree_root, location);
1591         if (IS_ERR(root))
1592                 return root;
1593
1594         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1595                 ret = -ENOENT;
1596                 goto fail;
1597         }
1598
1599         ret = btrfs_init_fs_root(root);
1600         if (ret)
1601                 goto fail;
1602
1603         ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1604                         location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1605         if (ret < 0)
1606                 goto fail;
1607         if (ret == 0)
1608                 root->orphan_item_inserted = 1;
1609
1610         ret = btrfs_insert_fs_root(fs_info, root);
1611         if (ret) {
1612                 if (ret == -EEXIST) {
1613                         free_fs_root(root);
1614                         goto again;
1615                 }
1616                 goto fail;
1617         }
1618         return root;
1619 fail:
1620         free_fs_root(root);
1621         return ERR_PTR(ret);
1622 }
1623
1624 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1625 {
1626         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1627         int ret = 0;
1628         struct btrfs_device *device;
1629         struct backing_dev_info *bdi;
1630
1631         rcu_read_lock();
1632         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1633                 if (!device->bdev)
1634                         continue;
1635                 bdi = blk_get_backing_dev_info(device->bdev);
1636                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1637                         ret = 1;
1638                         break;
1639                 }
1640         }
1641         rcu_read_unlock();
1642         return ret;
1643 }
1644
1645 /*
1646  * If this fails, caller must call bdi_destroy() to get rid of the
1647  * bdi again.
1648  */
1649 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1650 {
1651         int err;
1652
1653         bdi->capabilities = BDI_CAP_MAP_COPY;
1654         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1655         if (err)
1656                 return err;
1657
1658         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1659         bdi->congested_fn       = btrfs_congested_fn;
1660         bdi->congested_data     = info;
1661         return 0;
1662 }
1663
1664 /*
1665  * called by the kthread helper functions to finally call the bio end_io
1666  * functions.  This is where read checksum verification actually happens
1667  */
1668 static void end_workqueue_fn(struct btrfs_work *work)
1669 {
1670         struct bio *bio;
1671         struct end_io_wq *end_io_wq;
1672         int error;
1673
1674         end_io_wq = container_of(work, struct end_io_wq, work);
1675         bio = end_io_wq->bio;
1676
1677         error = end_io_wq->error;
1678         bio->bi_private = end_io_wq->private;
1679         bio->bi_end_io = end_io_wq->end_io;
1680         kfree(end_io_wq);
1681         bio_endio(bio, error);
1682 }
1683
1684 static int cleaner_kthread(void *arg)
1685 {
1686         struct btrfs_root *root = arg;
1687         int again;
1688
1689         do {
1690                 again = 0;
1691
1692                 /* Make the cleaner go to sleep early. */
1693                 if (btrfs_need_cleaner_sleep(root))
1694                         goto sleep;
1695
1696                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1697                         goto sleep;
1698
1699                 /*
1700                  * Avoid the problem that we change the status of the fs
1701                  * during the above check and trylock.
1702                  */
1703                 if (btrfs_need_cleaner_sleep(root)) {
1704                         mutex_unlock(&root->fs_info->cleaner_mutex);
1705                         goto sleep;
1706                 }
1707
1708                 btrfs_run_delayed_iputs(root);
1709                 again = btrfs_clean_one_deleted_snapshot(root);
1710                 mutex_unlock(&root->fs_info->cleaner_mutex);
1711
1712                 /*
1713                  * The defragger has dealt with the R/O remount and umount,
1714                  * needn't do anything special here.
1715                  */
1716                 btrfs_run_defrag_inodes(root->fs_info);
1717 sleep:
1718                 if (!try_to_freeze() && !again) {
1719                         set_current_state(TASK_INTERRUPTIBLE);
1720                         if (!kthread_should_stop())
1721                                 schedule();
1722                         __set_current_state(TASK_RUNNING);
1723                 }
1724         } while (!kthread_should_stop());
1725         return 0;
1726 }
1727
1728 static int transaction_kthread(void *arg)
1729 {
1730         struct btrfs_root *root = arg;
1731         struct btrfs_trans_handle *trans;
1732         struct btrfs_transaction *cur;
1733         u64 transid;
1734         unsigned long now;
1735         unsigned long delay;
1736         bool cannot_commit;
1737
1738         do {
1739                 cannot_commit = false;
1740                 delay = HZ * root->fs_info->commit_interval;
1741                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1742
1743                 spin_lock(&root->fs_info->trans_lock);
1744                 cur = root->fs_info->running_transaction;
1745                 if (!cur) {
1746                         spin_unlock(&root->fs_info->trans_lock);
1747                         goto sleep;
1748                 }
1749
1750                 now = get_seconds();
1751                 if (cur->state < TRANS_STATE_BLOCKED &&
1752                     (now < cur->start_time ||
1753                      now - cur->start_time < root->fs_info->commit_interval)) {
1754                         spin_unlock(&root->fs_info->trans_lock);
1755                         delay = HZ * 5;
1756                         goto sleep;
1757                 }
1758                 transid = cur->transid;
1759                 spin_unlock(&root->fs_info->trans_lock);
1760
1761                 /* If the file system is aborted, this will always fail. */
1762                 trans = btrfs_attach_transaction(root);
1763                 if (IS_ERR(trans)) {
1764                         if (PTR_ERR(trans) != -ENOENT)
1765                                 cannot_commit = true;
1766                         goto sleep;
1767                 }
1768                 if (transid == trans->transid) {
1769                         btrfs_commit_transaction(trans, root);
1770                 } else {
1771                         btrfs_end_transaction(trans, root);
1772                 }
1773 sleep:
1774                 wake_up_process(root->fs_info->cleaner_kthread);
1775                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1776
1777                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1778                                       &root->fs_info->fs_state)))
1779                         btrfs_cleanup_transaction(root);
1780                 if (!try_to_freeze()) {
1781                         set_current_state(TASK_INTERRUPTIBLE);
1782                         if (!kthread_should_stop() &&
1783                             (!btrfs_transaction_blocked(root->fs_info) ||
1784                              cannot_commit))
1785                                 schedule_timeout(delay);
1786                         __set_current_state(TASK_RUNNING);
1787                 }
1788         } while (!kthread_should_stop());
1789         return 0;
1790 }
1791
1792 /*
1793  * this will find the highest generation in the array of
1794  * root backups.  The index of the highest array is returned,
1795  * or -1 if we can't find anything.
1796  *
1797  * We check to make sure the array is valid by comparing the
1798  * generation of the latest  root in the array with the generation
1799  * in the super block.  If they don't match we pitch it.
1800  */
1801 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1802 {
1803         u64 cur;
1804         int newest_index = -1;
1805         struct btrfs_root_backup *root_backup;
1806         int i;
1807
1808         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1809                 root_backup = info->super_copy->super_roots + i;
1810                 cur = btrfs_backup_tree_root_gen(root_backup);
1811                 if (cur == newest_gen)
1812                         newest_index = i;
1813         }
1814
1815         /* check to see if we actually wrapped around */
1816         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1817                 root_backup = info->super_copy->super_roots;
1818                 cur = btrfs_backup_tree_root_gen(root_backup);
1819                 if (cur == newest_gen)
1820                         newest_index = 0;
1821         }
1822         return newest_index;
1823 }
1824
1825
1826 /*
1827  * find the oldest backup so we know where to store new entries
1828  * in the backup array.  This will set the backup_root_index
1829  * field in the fs_info struct
1830  */
1831 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1832                                      u64 newest_gen)
1833 {
1834         int newest_index = -1;
1835
1836         newest_index = find_newest_super_backup(info, newest_gen);
1837         /* if there was garbage in there, just move along */
1838         if (newest_index == -1) {
1839                 info->backup_root_index = 0;
1840         } else {
1841                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1842         }
1843 }
1844
1845 /*
1846  * copy all the root pointers into the super backup array.
1847  * this will bump the backup pointer by one when it is
1848  * done
1849  */
1850 static void backup_super_roots(struct btrfs_fs_info *info)
1851 {
1852         int next_backup;
1853         struct btrfs_root_backup *root_backup;
1854         int last_backup;
1855
1856         next_backup = info->backup_root_index;
1857         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1858                 BTRFS_NUM_BACKUP_ROOTS;
1859
1860         /*
1861          * just overwrite the last backup if we're at the same generation
1862          * this happens only at umount
1863          */
1864         root_backup = info->super_for_commit->super_roots + last_backup;
1865         if (btrfs_backup_tree_root_gen(root_backup) ==
1866             btrfs_header_generation(info->tree_root->node))
1867                 next_backup = last_backup;
1868
1869         root_backup = info->super_for_commit->super_roots + next_backup;
1870
1871         /*
1872          * make sure all of our padding and empty slots get zero filled
1873          * regardless of which ones we use today
1874          */
1875         memset(root_backup, 0, sizeof(*root_backup));
1876
1877         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1878
1879         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1880         btrfs_set_backup_tree_root_gen(root_backup,
1881                                btrfs_header_generation(info->tree_root->node));
1882
1883         btrfs_set_backup_tree_root_level(root_backup,
1884                                btrfs_header_level(info->tree_root->node));
1885
1886         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1887         btrfs_set_backup_chunk_root_gen(root_backup,
1888                                btrfs_header_generation(info->chunk_root->node));
1889         btrfs_set_backup_chunk_root_level(root_backup,
1890                                btrfs_header_level(info->chunk_root->node));
1891
1892         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1893         btrfs_set_backup_extent_root_gen(root_backup,
1894                                btrfs_header_generation(info->extent_root->node));
1895         btrfs_set_backup_extent_root_level(root_backup,
1896                                btrfs_header_level(info->extent_root->node));
1897
1898         /*
1899          * we might commit during log recovery, which happens before we set
1900          * the fs_root.  Make sure it is valid before we fill it in.
1901          */
1902         if (info->fs_root && info->fs_root->node) {
1903                 btrfs_set_backup_fs_root(root_backup,
1904                                          info->fs_root->node->start);
1905                 btrfs_set_backup_fs_root_gen(root_backup,
1906                                btrfs_header_generation(info->fs_root->node));
1907                 btrfs_set_backup_fs_root_level(root_backup,
1908                                btrfs_header_level(info->fs_root->node));
1909         }
1910
1911         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1912         btrfs_set_backup_dev_root_gen(root_backup,
1913                                btrfs_header_generation(info->dev_root->node));
1914         btrfs_set_backup_dev_root_level(root_backup,
1915                                        btrfs_header_level(info->dev_root->node));
1916
1917         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1918         btrfs_set_backup_csum_root_gen(root_backup,
1919                                btrfs_header_generation(info->csum_root->node));
1920         btrfs_set_backup_csum_root_level(root_backup,
1921                                btrfs_header_level(info->csum_root->node));
1922
1923         btrfs_set_backup_total_bytes(root_backup,
1924                              btrfs_super_total_bytes(info->super_copy));
1925         btrfs_set_backup_bytes_used(root_backup,
1926                              btrfs_super_bytes_used(info->super_copy));
1927         btrfs_set_backup_num_devices(root_backup,
1928                              btrfs_super_num_devices(info->super_copy));
1929
1930         /*
1931          * if we don't copy this out to the super_copy, it won't get remembered
1932          * for the next commit
1933          */
1934         memcpy(&info->super_copy->super_roots,
1935                &info->super_for_commit->super_roots,
1936                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1937 }
1938
1939 /*
1940  * this copies info out of the root backup array and back into
1941  * the in-memory super block.  It is meant to help iterate through
1942  * the array, so you send it the number of backups you've already
1943  * tried and the last backup index you used.
1944  *
1945  * this returns -1 when it has tried all the backups
1946  */
1947 static noinline int next_root_backup(struct btrfs_fs_info *info,
1948                                      struct btrfs_super_block *super,
1949                                      int *num_backups_tried, int *backup_index)
1950 {
1951         struct btrfs_root_backup *root_backup;
1952         int newest = *backup_index;
1953
1954         if (*num_backups_tried == 0) {
1955                 u64 gen = btrfs_super_generation(super);
1956
1957                 newest = find_newest_super_backup(info, gen);
1958                 if (newest == -1)
1959                         return -1;
1960
1961                 *backup_index = newest;
1962                 *num_backups_tried = 1;
1963         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1964                 /* we've tried all the backups, all done */
1965                 return -1;
1966         } else {
1967                 /* jump to the next oldest backup */
1968                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1969                         BTRFS_NUM_BACKUP_ROOTS;
1970                 *backup_index = newest;
1971                 *num_backups_tried += 1;
1972         }
1973         root_backup = super->super_roots + newest;
1974
1975         btrfs_set_super_generation(super,
1976                                    btrfs_backup_tree_root_gen(root_backup));
1977         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1978         btrfs_set_super_root_level(super,
1979                                    btrfs_backup_tree_root_level(root_backup));
1980         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1981
1982         /*
1983          * fixme: the total bytes and num_devices need to match or we should
1984          * need a fsck
1985          */
1986         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1987         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1988         return 0;
1989 }
1990
1991 /* helper to cleanup workers */
1992 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1993 {
1994         btrfs_stop_workers(&fs_info->generic_worker);
1995         btrfs_stop_workers(&fs_info->fixup_workers);
1996         btrfs_stop_workers(&fs_info->delalloc_workers);
1997         btrfs_stop_workers(&fs_info->workers);
1998         btrfs_stop_workers(&fs_info->endio_workers);
1999         btrfs_stop_workers(&fs_info->endio_meta_workers);
2000         btrfs_stop_workers(&fs_info->endio_raid56_workers);
2001         btrfs_stop_workers(&fs_info->rmw_workers);
2002         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2003         btrfs_stop_workers(&fs_info->endio_write_workers);
2004         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2005         btrfs_stop_workers(&fs_info->submit_workers);
2006         btrfs_stop_workers(&fs_info->delayed_workers);
2007         btrfs_stop_workers(&fs_info->caching_workers);
2008         btrfs_stop_workers(&fs_info->readahead_workers);
2009         btrfs_stop_workers(&fs_info->flush_workers);
2010         btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2011 }
2012
2013 static void free_root_extent_buffers(struct btrfs_root *root)
2014 {
2015         if (root) {
2016                 free_extent_buffer(root->node);
2017                 free_extent_buffer(root->commit_root);
2018                 root->node = NULL;
2019                 root->commit_root = NULL;
2020         }
2021 }
2022
2023 /* helper to cleanup tree roots */
2024 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2025 {
2026         free_root_extent_buffers(info->tree_root);
2027
2028         free_root_extent_buffers(info->dev_root);
2029         free_root_extent_buffers(info->extent_root);
2030         free_root_extent_buffers(info->csum_root);
2031         free_root_extent_buffers(info->quota_root);
2032         free_root_extent_buffers(info->uuid_root);
2033         if (chunk_root)
2034                 free_root_extent_buffers(info->chunk_root);
2035 }
2036
2037 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2038 {
2039         int ret;
2040         struct btrfs_root *gang[8];
2041         int i;
2042
2043         while (!list_empty(&fs_info->dead_roots)) {
2044                 gang[0] = list_entry(fs_info->dead_roots.next,
2045                                      struct btrfs_root, root_list);
2046                 list_del(&gang[0]->root_list);
2047
2048                 if (gang[0]->in_radix) {
2049                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2050                 } else {
2051                         free_extent_buffer(gang[0]->node);
2052                         free_extent_buffer(gang[0]->commit_root);
2053                         btrfs_put_fs_root(gang[0]);
2054                 }
2055         }
2056
2057         while (1) {
2058                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2059                                              (void **)gang, 0,
2060                                              ARRAY_SIZE(gang));
2061                 if (!ret)
2062                         break;
2063                 for (i = 0; i < ret; i++)
2064                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2065         }
2066 }
2067
2068 int open_ctree(struct super_block *sb,
2069                struct btrfs_fs_devices *fs_devices,
2070                char *options)
2071 {
2072         u32 sectorsize;
2073         u32 nodesize;
2074         u32 leafsize;
2075         u32 blocksize;
2076         u32 stripesize;
2077         u64 generation;
2078         u64 features;
2079         struct btrfs_key location;
2080         struct buffer_head *bh;
2081         struct btrfs_super_block *disk_super;
2082         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2083         struct btrfs_root *tree_root;
2084         struct btrfs_root *extent_root;
2085         struct btrfs_root *csum_root;
2086         struct btrfs_root *chunk_root;
2087         struct btrfs_root *dev_root;
2088         struct btrfs_root *quota_root;
2089         struct btrfs_root *uuid_root;
2090         struct btrfs_root *log_tree_root;
2091         int ret;
2092         int err = -EINVAL;
2093         int num_backups_tried = 0;
2094         int backup_index = 0;
2095         bool create_uuid_tree;
2096         bool check_uuid_tree;
2097
2098         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2099         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2100         if (!tree_root || !chunk_root) {
2101                 err = -ENOMEM;
2102                 goto fail;
2103         }
2104
2105         ret = init_srcu_struct(&fs_info->subvol_srcu);
2106         if (ret) {
2107                 err = ret;
2108                 goto fail;
2109         }
2110
2111         ret = setup_bdi(fs_info, &fs_info->bdi);
2112         if (ret) {
2113                 err = ret;
2114                 goto fail_srcu;
2115         }
2116
2117         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2118         if (ret) {
2119                 err = ret;
2120                 goto fail_bdi;
2121         }
2122         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2123                                         (1 + ilog2(nr_cpu_ids));
2124
2125         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2126         if (ret) {
2127                 err = ret;
2128                 goto fail_dirty_metadata_bytes;
2129         }
2130
2131         fs_info->btree_inode = new_inode(sb);
2132         if (!fs_info->btree_inode) {
2133                 err = -ENOMEM;
2134                 goto fail_delalloc_bytes;
2135         }
2136
2137         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2138
2139         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2140         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2141         INIT_LIST_HEAD(&fs_info->trans_list);
2142         INIT_LIST_HEAD(&fs_info->dead_roots);
2143         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2144         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2145         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2146         spin_lock_init(&fs_info->delalloc_root_lock);
2147         spin_lock_init(&fs_info->trans_lock);
2148         spin_lock_init(&fs_info->fs_roots_radix_lock);
2149         spin_lock_init(&fs_info->delayed_iput_lock);
2150         spin_lock_init(&fs_info->defrag_inodes_lock);
2151         spin_lock_init(&fs_info->free_chunk_lock);
2152         spin_lock_init(&fs_info->tree_mod_seq_lock);
2153         spin_lock_init(&fs_info->super_lock);
2154         spin_lock_init(&fs_info->buffer_lock);
2155         rwlock_init(&fs_info->tree_mod_log_lock);
2156         mutex_init(&fs_info->reloc_mutex);
2157         seqlock_init(&fs_info->profiles_lock);
2158
2159         init_completion(&fs_info->kobj_unregister);
2160         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2161         INIT_LIST_HEAD(&fs_info->space_info);
2162         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2163         btrfs_mapping_init(&fs_info->mapping_tree);
2164         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2165                              BTRFS_BLOCK_RSV_GLOBAL);
2166         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2167                              BTRFS_BLOCK_RSV_DELALLOC);
2168         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2169         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2170         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2171         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2172                              BTRFS_BLOCK_RSV_DELOPS);
2173         atomic_set(&fs_info->nr_async_submits, 0);
2174         atomic_set(&fs_info->async_delalloc_pages, 0);
2175         atomic_set(&fs_info->async_submit_draining, 0);
2176         atomic_set(&fs_info->nr_async_bios, 0);
2177         atomic_set(&fs_info->defrag_running, 0);
2178         atomic64_set(&fs_info->tree_mod_seq, 0);
2179         fs_info->sb = sb;
2180         fs_info->max_inline = 8192 * 1024;
2181         fs_info->metadata_ratio = 0;
2182         fs_info->defrag_inodes = RB_ROOT;
2183         fs_info->free_chunk_space = 0;
2184         fs_info->tree_mod_log = RB_ROOT;
2185         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2186
2187         /* readahead state */
2188         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2189         spin_lock_init(&fs_info->reada_lock);
2190
2191         fs_info->thread_pool_size = min_t(unsigned long,
2192                                           num_online_cpus() + 2, 8);
2193
2194         INIT_LIST_HEAD(&fs_info->ordered_roots);
2195         spin_lock_init(&fs_info->ordered_root_lock);
2196         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2197                                         GFP_NOFS);
2198         if (!fs_info->delayed_root) {
2199                 err = -ENOMEM;
2200                 goto fail_iput;
2201         }
2202         btrfs_init_delayed_root(fs_info->delayed_root);
2203
2204         mutex_init(&fs_info->scrub_lock);
2205         atomic_set(&fs_info->scrubs_running, 0);
2206         atomic_set(&fs_info->scrub_pause_req, 0);
2207         atomic_set(&fs_info->scrubs_paused, 0);
2208         atomic_set(&fs_info->scrub_cancel_req, 0);
2209         init_waitqueue_head(&fs_info->scrub_pause_wait);
2210         fs_info->scrub_workers_refcnt = 0;
2211 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2212         fs_info->check_integrity_print_mask = 0;
2213 #endif
2214
2215         spin_lock_init(&fs_info->balance_lock);
2216         mutex_init(&fs_info->balance_mutex);
2217         atomic_set(&fs_info->balance_running, 0);
2218         atomic_set(&fs_info->balance_pause_req, 0);
2219         atomic_set(&fs_info->balance_cancel_req, 0);
2220         fs_info->balance_ctl = NULL;
2221         init_waitqueue_head(&fs_info->balance_wait_q);
2222
2223         sb->s_blocksize = 4096;
2224         sb->s_blocksize_bits = blksize_bits(4096);
2225         sb->s_bdi = &fs_info->bdi;
2226
2227         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2228         set_nlink(fs_info->btree_inode, 1);
2229         /*
2230          * we set the i_size on the btree inode to the max possible int.
2231          * the real end of the address space is determined by all of
2232          * the devices in the system
2233          */
2234         fs_info->btree_inode->i_size = OFFSET_MAX;
2235         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2236         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2237
2238         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2239         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2240                              fs_info->btree_inode->i_mapping);
2241         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2242         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2243
2244         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2245
2246         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2247         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2248                sizeof(struct btrfs_key));
2249         set_bit(BTRFS_INODE_DUMMY,
2250                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2251         btrfs_insert_inode_hash(fs_info->btree_inode);
2252
2253         spin_lock_init(&fs_info->block_group_cache_lock);
2254         fs_info->block_group_cache_tree = RB_ROOT;
2255         fs_info->first_logical_byte = (u64)-1;
2256
2257         extent_io_tree_init(&fs_info->freed_extents[0],
2258                              fs_info->btree_inode->i_mapping);
2259         extent_io_tree_init(&fs_info->freed_extents[1],
2260                              fs_info->btree_inode->i_mapping);
2261         fs_info->pinned_extents = &fs_info->freed_extents[0];
2262         fs_info->do_barriers = 1;
2263
2264
2265         mutex_init(&fs_info->ordered_operations_mutex);
2266         mutex_init(&fs_info->ordered_extent_flush_mutex);
2267         mutex_init(&fs_info->tree_log_mutex);
2268         mutex_init(&fs_info->chunk_mutex);
2269         mutex_init(&fs_info->transaction_kthread_mutex);
2270         mutex_init(&fs_info->cleaner_mutex);
2271         mutex_init(&fs_info->volume_mutex);
2272         init_rwsem(&fs_info->extent_commit_sem);
2273         init_rwsem(&fs_info->cleanup_work_sem);
2274         init_rwsem(&fs_info->subvol_sem);
2275         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2276         fs_info->dev_replace.lock_owner = 0;
2277         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2278         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2279         mutex_init(&fs_info->dev_replace.lock_management_lock);
2280         mutex_init(&fs_info->dev_replace.lock);
2281
2282         spin_lock_init(&fs_info->qgroup_lock);
2283         mutex_init(&fs_info->qgroup_ioctl_lock);
2284         fs_info->qgroup_tree = RB_ROOT;
2285         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2286         fs_info->qgroup_seq = 1;
2287         fs_info->quota_enabled = 0;
2288         fs_info->pending_quota_state = 0;
2289         fs_info->qgroup_ulist = NULL;
2290         mutex_init(&fs_info->qgroup_rescan_lock);
2291
2292         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2293         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2294
2295         init_waitqueue_head(&fs_info->transaction_throttle);
2296         init_waitqueue_head(&fs_info->transaction_wait);
2297         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2298         init_waitqueue_head(&fs_info->async_submit_wait);
2299
2300         ret = btrfs_alloc_stripe_hash_table(fs_info);
2301         if (ret) {
2302                 err = ret;
2303                 goto fail_alloc;
2304         }
2305
2306         __setup_root(4096, 4096, 4096, 4096, tree_root,
2307                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2308
2309         invalidate_bdev(fs_devices->latest_bdev);
2310
2311         /*
2312          * Read super block and check the signature bytes only
2313          */
2314         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2315         if (!bh) {
2316                 err = -EINVAL;
2317                 goto fail_alloc;
2318         }
2319
2320         /*
2321          * We want to check superblock checksum, the type is stored inside.
2322          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2323          */
2324         if (btrfs_check_super_csum(bh->b_data)) {
2325                 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2326                 err = -EINVAL;
2327                 goto fail_alloc;
2328         }
2329
2330         /*
2331          * super_copy is zeroed at allocation time and we never touch the
2332          * following bytes up to INFO_SIZE, the checksum is calculated from
2333          * the whole block of INFO_SIZE
2334          */
2335         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2336         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2337                sizeof(*fs_info->super_for_commit));
2338         brelse(bh);
2339
2340         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2341
2342         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2343         if (ret) {
2344                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2345                 err = -EINVAL;
2346                 goto fail_alloc;
2347         }
2348
2349         disk_super = fs_info->super_copy;
2350         if (!btrfs_super_root(disk_super))
2351                 goto fail_alloc;
2352
2353         /* check FS state, whether FS is broken. */
2354         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2355                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2356
2357         /*
2358          * run through our array of backup supers and setup
2359          * our ring pointer to the oldest one
2360          */
2361         generation = btrfs_super_generation(disk_super);
2362         find_oldest_super_backup(fs_info, generation);
2363
2364         /*
2365          * In the long term, we'll store the compression type in the super
2366          * block, and it'll be used for per file compression control.
2367          */
2368         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2369
2370         ret = btrfs_parse_options(tree_root, options);
2371         if (ret) {
2372                 err = ret;
2373                 goto fail_alloc;
2374         }
2375
2376         features = btrfs_super_incompat_flags(disk_super) &
2377                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2378         if (features) {
2379                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2380                        "unsupported optional features (%Lx).\n",
2381                        features);
2382                 err = -EINVAL;
2383                 goto fail_alloc;
2384         }
2385
2386         if (btrfs_super_leafsize(disk_super) !=
2387             btrfs_super_nodesize(disk_super)) {
2388                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2389                        "blocksizes don't match.  node %d leaf %d\n",
2390                        btrfs_super_nodesize(disk_super),
2391                        btrfs_super_leafsize(disk_super));
2392                 err = -EINVAL;
2393                 goto fail_alloc;
2394         }
2395         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2396                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2397                        "blocksize (%d) was too large\n",
2398                        btrfs_super_leafsize(disk_super));
2399                 err = -EINVAL;
2400                 goto fail_alloc;
2401         }
2402
2403         features = btrfs_super_incompat_flags(disk_super);
2404         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2405         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2406                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2407
2408         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2409                 printk(KERN_ERR "btrfs: has skinny extents\n");
2410
2411         /*
2412          * flag our filesystem as having big metadata blocks if
2413          * they are bigger than the page size
2414          */
2415         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2416                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2417                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2418                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2419         }
2420
2421         nodesize = btrfs_super_nodesize(disk_super);
2422         leafsize = btrfs_super_leafsize(disk_super);
2423         sectorsize = btrfs_super_sectorsize(disk_super);
2424         stripesize = btrfs_super_stripesize(disk_super);
2425         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2426         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2427
2428         /*
2429          * mixed block groups end up with duplicate but slightly offset
2430          * extent buffers for the same range.  It leads to corruptions
2431          */
2432         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2433             (sectorsize != leafsize)) {
2434                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2435                                 "are not allowed for mixed block groups on %s\n",
2436                                 sb->s_id);
2437                 goto fail_alloc;
2438         }
2439
2440         /*
2441          * Needn't use the lock because there is no other task which will
2442          * update the flag.
2443          */
2444         btrfs_set_super_incompat_flags(disk_super, features);
2445
2446         features = btrfs_super_compat_ro_flags(disk_super) &
2447                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2448         if (!(sb->s_flags & MS_RDONLY) && features) {
2449                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2450                        "unsupported option features (%Lx).\n",
2451                        features);
2452                 err = -EINVAL;
2453                 goto fail_alloc;
2454         }
2455
2456         btrfs_init_workers(&fs_info->generic_worker,
2457                            "genwork", 1, NULL);
2458
2459         btrfs_init_workers(&fs_info->workers, "worker",
2460                            fs_info->thread_pool_size,
2461                            &fs_info->generic_worker);
2462
2463         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2464                            fs_info->thread_pool_size, NULL);
2465
2466         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2467                            fs_info->thread_pool_size, NULL);
2468
2469         btrfs_init_workers(&fs_info->submit_workers, "submit",
2470                            min_t(u64, fs_devices->num_devices,
2471                            fs_info->thread_pool_size), NULL);
2472
2473         btrfs_init_workers(&fs_info->caching_workers, "cache",
2474                            fs_info->thread_pool_size, NULL);
2475
2476         /* a higher idle thresh on the submit workers makes it much more
2477          * likely that bios will be send down in a sane order to the
2478          * devices
2479          */
2480         fs_info->submit_workers.idle_thresh = 64;
2481
2482         fs_info->workers.idle_thresh = 16;
2483         fs_info->workers.ordered = 1;
2484
2485         fs_info->delalloc_workers.idle_thresh = 2;
2486         fs_info->delalloc_workers.ordered = 1;
2487
2488         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2489                            &fs_info->generic_worker);
2490         btrfs_init_workers(&fs_info->endio_workers, "endio",
2491                            fs_info->thread_pool_size,
2492                            &fs_info->generic_worker);
2493         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2494                            fs_info->thread_pool_size,
2495                            &fs_info->generic_worker);
2496         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2497                            "endio-meta-write", fs_info->thread_pool_size,
2498                            &fs_info->generic_worker);
2499         btrfs_init_workers(&fs_info->endio_raid56_workers,
2500                            "endio-raid56", fs_info->thread_pool_size,
2501                            &fs_info->generic_worker);
2502         btrfs_init_workers(&fs_info->rmw_workers,
2503                            "rmw", fs_info->thread_pool_size,
2504                            &fs_info->generic_worker);
2505         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2506                            fs_info->thread_pool_size,
2507                            &fs_info->generic_worker);
2508         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2509                            1, &fs_info->generic_worker);
2510         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2511                            fs_info->thread_pool_size,
2512                            &fs_info->generic_worker);
2513         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2514                            fs_info->thread_pool_size,
2515                            &fs_info->generic_worker);
2516         btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2517                            &fs_info->generic_worker);
2518
2519         /*
2520          * endios are largely parallel and should have a very
2521          * low idle thresh
2522          */
2523         fs_info->endio_workers.idle_thresh = 4;
2524         fs_info->endio_meta_workers.idle_thresh = 4;
2525         fs_info->endio_raid56_workers.idle_thresh = 4;
2526         fs_info->rmw_workers.idle_thresh = 2;
2527
2528         fs_info->endio_write_workers.idle_thresh = 2;
2529         fs_info->endio_meta_write_workers.idle_thresh = 2;
2530         fs_info->readahead_workers.idle_thresh = 2;
2531
2532         /*
2533          * btrfs_start_workers can really only fail because of ENOMEM so just
2534          * return -ENOMEM if any of these fail.
2535          */
2536         ret = btrfs_start_workers(&fs_info->workers);
2537         ret |= btrfs_start_workers(&fs_info->generic_worker);
2538         ret |= btrfs_start_workers(&fs_info->submit_workers);
2539         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2540         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2541         ret |= btrfs_start_workers(&fs_info->endio_workers);
2542         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2543         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2544         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2545         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2546         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2547         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2548         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2549         ret |= btrfs_start_workers(&fs_info->caching_workers);
2550         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2551         ret |= btrfs_start_workers(&fs_info->flush_workers);
2552         ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2553         if (ret) {
2554                 err = -ENOMEM;
2555                 goto fail_sb_buffer;
2556         }
2557
2558         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2559         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2560                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2561
2562         tree_root->nodesize = nodesize;
2563         tree_root->leafsize = leafsize;
2564         tree_root->sectorsize = sectorsize;
2565         tree_root->stripesize = stripesize;
2566
2567         sb->s_blocksize = sectorsize;
2568         sb->s_blocksize_bits = blksize_bits(sectorsize);
2569
2570         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2571                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2572                 goto fail_sb_buffer;
2573         }
2574
2575         if (sectorsize != PAGE_SIZE) {
2576                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2577                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2578                 goto fail_sb_buffer;
2579         }
2580
2581         mutex_lock(&fs_info->chunk_mutex);
2582         ret = btrfs_read_sys_array(tree_root);
2583         mutex_unlock(&fs_info->chunk_mutex);
2584         if (ret) {
2585                 printk(KERN_WARNING "btrfs: failed to read the system "
2586                        "array on %s\n", sb->s_id);
2587                 goto fail_sb_buffer;
2588         }
2589
2590         blocksize = btrfs_level_size(tree_root,
2591                                      btrfs_super_chunk_root_level(disk_super));
2592         generation = btrfs_super_chunk_root_generation(disk_super);
2593
2594         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2595                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2596
2597         chunk_root->node = read_tree_block(chunk_root,
2598                                            btrfs_super_chunk_root(disk_super),
2599                                            blocksize, generation);
2600         if (!chunk_root->node ||
2601             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2602                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2603                        sb->s_id);
2604                 goto fail_tree_roots;
2605         }
2606         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2607         chunk_root->commit_root = btrfs_root_node(chunk_root);
2608
2609         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2610            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2611
2612         ret = btrfs_read_chunk_tree(chunk_root);
2613         if (ret) {
2614                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2615                        sb->s_id);
2616                 goto fail_tree_roots;
2617         }
2618
2619         /*
2620          * keep the device that is marked to be the target device for the
2621          * dev_replace procedure
2622          */
2623         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2624
2625         if (!fs_devices->latest_bdev) {
2626                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2627                        sb->s_id);
2628                 goto fail_tree_roots;
2629         }
2630
2631 retry_root_backup:
2632         blocksize = btrfs_level_size(tree_root,
2633                                      btrfs_super_root_level(disk_super));
2634         generation = btrfs_super_generation(disk_super);
2635
2636         tree_root->node = read_tree_block(tree_root,
2637                                           btrfs_super_root(disk_super),
2638                                           blocksize, generation);
2639         if (!tree_root->node ||
2640             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2641                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2642                        sb->s_id);
2643
2644                 goto recovery_tree_root;
2645         }
2646
2647         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2648         tree_root->commit_root = btrfs_root_node(tree_root);
2649         btrfs_set_root_refs(&tree_root->root_item, 1);
2650
2651         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2652         location.type = BTRFS_ROOT_ITEM_KEY;
2653         location.offset = 0;
2654
2655         extent_root = btrfs_read_tree_root(tree_root, &location);
2656         if (IS_ERR(extent_root)) {
2657                 ret = PTR_ERR(extent_root);
2658                 goto recovery_tree_root;
2659         }
2660         extent_root->track_dirty = 1;
2661         fs_info->extent_root = extent_root;
2662
2663         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2664         dev_root = btrfs_read_tree_root(tree_root, &location);
2665         if (IS_ERR(dev_root)) {
2666                 ret = PTR_ERR(dev_root);
2667                 goto recovery_tree_root;
2668         }
2669         dev_root->track_dirty = 1;
2670         fs_info->dev_root = dev_root;
2671         btrfs_init_devices_late(fs_info);
2672
2673         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2674         csum_root = btrfs_read_tree_root(tree_root, &location);
2675         if (IS_ERR(csum_root)) {
2676                 ret = PTR_ERR(csum_root);
2677                 goto recovery_tree_root;
2678         }
2679         csum_root->track_dirty = 1;
2680         fs_info->csum_root = csum_root;
2681
2682         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2683         quota_root = btrfs_read_tree_root(tree_root, &location);
2684         if (!IS_ERR(quota_root)) {
2685                 quota_root->track_dirty = 1;
2686                 fs_info->quota_enabled = 1;
2687                 fs_info->pending_quota_state = 1;
2688                 fs_info->quota_root = quota_root;
2689         }
2690
2691         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2692         uuid_root = btrfs_read_tree_root(tree_root, &location);
2693         if (IS_ERR(uuid_root)) {
2694                 ret = PTR_ERR(uuid_root);
2695                 if (ret != -ENOENT)
2696                         goto recovery_tree_root;
2697                 create_uuid_tree = true;
2698                 check_uuid_tree = false;
2699         } else {
2700                 uuid_root->track_dirty = 1;
2701                 fs_info->uuid_root = uuid_root;
2702                 create_uuid_tree = false;
2703                 check_uuid_tree =
2704                     generation != btrfs_super_uuid_tree_generation(disk_super);
2705         }
2706
2707         fs_info->generation = generation;
2708         fs_info->last_trans_committed = generation;
2709
2710         ret = btrfs_recover_balance(fs_info);
2711         if (ret) {
2712                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2713                 goto fail_block_groups;
2714         }
2715
2716         ret = btrfs_init_dev_stats(fs_info);
2717         if (ret) {
2718                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2719                        ret);
2720                 goto fail_block_groups;
2721         }
2722
2723         ret = btrfs_init_dev_replace(fs_info);
2724         if (ret) {
2725                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2726                 goto fail_block_groups;
2727         }
2728
2729         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2730
2731         ret = btrfs_sysfs_add_one(fs_info);
2732         if (ret) {
2733                 pr_err("btrfs: failed to init sysfs interface: %d\n", ret);
2734                 goto fail_block_groups;
2735         }
2736
2737         ret = btrfs_init_space_info(fs_info);
2738         if (ret) {
2739                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2740                 goto fail_block_groups;
2741         }
2742
2743         ret = btrfs_read_block_groups(extent_root);
2744         if (ret) {
2745                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2746                 goto fail_block_groups;
2747         }
2748         fs_info->num_tolerated_disk_barrier_failures =
2749                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2750         if (fs_info->fs_devices->missing_devices >
2751              fs_info->num_tolerated_disk_barrier_failures &&
2752             !(sb->s_flags & MS_RDONLY)) {
2753                 printk(KERN_WARNING
2754                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2755                 goto fail_block_groups;
2756         }
2757
2758         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2759                                                "btrfs-cleaner");
2760         if (IS_ERR(fs_info->cleaner_kthread))
2761                 goto fail_block_groups;
2762
2763         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2764                                                    tree_root,
2765                                                    "btrfs-transaction");
2766         if (IS_ERR(fs_info->transaction_kthread))
2767                 goto fail_cleaner;
2768
2769         if (!btrfs_test_opt(tree_root, SSD) &&
2770             !btrfs_test_opt(tree_root, NOSSD) &&
2771             !fs_info->fs_devices->rotating) {
2772                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2773                        "mode\n");
2774                 btrfs_set_opt(fs_info->mount_opt, SSD);
2775         }
2776
2777 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2778         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2779                 ret = btrfsic_mount(tree_root, fs_devices,
2780                                     btrfs_test_opt(tree_root,
2781                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2782                                     1 : 0,
2783                                     fs_info->check_integrity_print_mask);
2784                 if (ret)
2785                         printk(KERN_WARNING "btrfs: failed to initialize"
2786                                " integrity check module %s\n", sb->s_id);
2787         }
2788 #endif
2789         ret = btrfs_read_qgroup_config(fs_info);
2790         if (ret)
2791                 goto fail_trans_kthread;
2792
2793         /* do not make disk changes in broken FS */
2794         if (btrfs_super_log_root(disk_super) != 0) {
2795                 u64 bytenr = btrfs_super_log_root(disk_super);
2796
2797                 if (fs_devices->rw_devices == 0) {
2798                         printk(KERN_WARNING "Btrfs log replay required "
2799                                "on RO media\n");
2800                         err = -EIO;
2801                         goto fail_qgroup;
2802                 }
2803                 blocksize =
2804                      btrfs_level_size(tree_root,
2805                                       btrfs_super_log_root_level(disk_super));
2806
2807                 log_tree_root = btrfs_alloc_root(fs_info);
2808                 if (!log_tree_root) {
2809                         err = -ENOMEM;
2810                         goto fail_qgroup;
2811                 }
2812
2813                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2814                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2815
2816                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2817                                                       blocksize,
2818                                                       generation + 1);
2819                 if (!log_tree_root->node ||
2820                     !extent_buffer_uptodate(log_tree_root->node)) {
2821                         printk(KERN_ERR "btrfs: failed to read log tree\n");
2822                         free_extent_buffer(log_tree_root->node);
2823                         kfree(log_tree_root);
2824                         goto fail_trans_kthread;
2825                 }
2826                 /* returns with log_tree_root freed on success */
2827                 ret = btrfs_recover_log_trees(log_tree_root);
2828                 if (ret) {
2829                         btrfs_error(tree_root->fs_info, ret,
2830                                     "Failed to recover log tree");
2831                         free_extent_buffer(log_tree_root->node);
2832                         kfree(log_tree_root);
2833                         goto fail_trans_kthread;
2834                 }
2835
2836                 if (sb->s_flags & MS_RDONLY) {
2837                         ret = btrfs_commit_super(tree_root);
2838                         if (ret)
2839                                 goto fail_trans_kthread;
2840                 }
2841         }
2842
2843         ret = btrfs_find_orphan_roots(tree_root);
2844         if (ret)
2845                 goto fail_trans_kthread;
2846
2847         if (!(sb->s_flags & MS_RDONLY)) {
2848                 ret = btrfs_cleanup_fs_roots(fs_info);
2849                 if (ret)
2850                         goto fail_trans_kthread;
2851
2852                 ret = btrfs_recover_relocation(tree_root);
2853                 if (ret < 0) {
2854                         printk(KERN_WARNING
2855                                "btrfs: failed to recover relocation\n");
2856                         err = -EINVAL;
2857                         goto fail_qgroup;
2858                 }
2859         }
2860
2861         location.objectid = BTRFS_FS_TREE_OBJECTID;
2862         location.type = BTRFS_ROOT_ITEM_KEY;
2863         location.offset = 0;
2864
2865         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2866         if (IS_ERR(fs_info->fs_root)) {
2867                 err = PTR_ERR(fs_info->fs_root);
2868                 goto fail_qgroup;
2869         }
2870
2871         if (sb->s_flags & MS_RDONLY)
2872                 return 0;
2873
2874         down_read(&fs_info->cleanup_work_sem);
2875         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2876             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2877                 up_read(&fs_info->cleanup_work_sem);
2878                 close_ctree(tree_root);
2879                 return ret;
2880         }
2881         up_read(&fs_info->cleanup_work_sem);
2882
2883         ret = btrfs_resume_balance_async(fs_info);
2884         if (ret) {
2885                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2886                 close_ctree(tree_root);
2887                 return ret;
2888         }
2889
2890         ret = btrfs_resume_dev_replace_async(fs_info);
2891         if (ret) {
2892                 pr_warn("btrfs: failed to resume dev_replace\n");
2893                 close_ctree(tree_root);
2894                 return ret;
2895         }
2896
2897         btrfs_qgroup_rescan_resume(fs_info);
2898
2899         if (create_uuid_tree) {
2900                 pr_info("btrfs: creating UUID tree\n");
2901                 ret = btrfs_create_uuid_tree(fs_info);
2902                 if (ret) {
2903                         pr_warn("btrfs: failed to create the UUID tree %d\n",
2904                                 ret);
2905                         close_ctree(tree_root);
2906                         return ret;
2907                 }
2908         } else if (check_uuid_tree ||
2909                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2910                 pr_info("btrfs: checking UUID tree\n");
2911                 ret = btrfs_check_uuid_tree(fs_info);
2912                 if (ret) {
2913                         pr_warn("btrfs: failed to check the UUID tree %d\n",
2914                                 ret);
2915                         close_ctree(tree_root);
2916                         return ret;
2917                 }
2918         } else {
2919                 fs_info->update_uuid_tree_gen = 1;
2920         }
2921
2922         return 0;
2923
2924 fail_qgroup:
2925         btrfs_free_qgroup_config(fs_info);
2926 fail_trans_kthread:
2927         kthread_stop(fs_info->transaction_kthread);
2928         btrfs_cleanup_transaction(fs_info->tree_root);
2929         del_fs_roots(fs_info);
2930 fail_cleaner:
2931         kthread_stop(fs_info->cleaner_kthread);
2932
2933         /*
2934          * make sure we're done with the btree inode before we stop our
2935          * kthreads
2936          */
2937         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2938
2939 fail_block_groups:
2940         btrfs_put_block_group_cache(fs_info);
2941         btrfs_free_block_groups(fs_info);
2942
2943 fail_tree_roots:
2944         free_root_pointers(fs_info, 1);
2945         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2946
2947 fail_sb_buffer:
2948         btrfs_stop_all_workers(fs_info);
2949 fail_alloc:
2950 fail_iput:
2951         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2952
2953         iput(fs_info->btree_inode);
2954 fail_delalloc_bytes:
2955         percpu_counter_destroy(&fs_info->delalloc_bytes);
2956 fail_dirty_metadata_bytes:
2957         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2958 fail_bdi:
2959         bdi_destroy(&fs_info->bdi);
2960 fail_srcu:
2961         cleanup_srcu_struct(&fs_info->subvol_srcu);
2962 fail:
2963         btrfs_free_stripe_hash_table(fs_info);
2964         btrfs_close_devices(fs_info->fs_devices);
2965         return err;
2966
2967 recovery_tree_root:
2968         if (!btrfs_test_opt(tree_root, RECOVERY))
2969                 goto fail_tree_roots;
2970
2971         free_root_pointers(fs_info, 0);
2972
2973         /* don't use the log in recovery mode, it won't be valid */
2974         btrfs_set_super_log_root(disk_super, 0);
2975
2976         /* we can't trust the free space cache either */
2977         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2978
2979         ret = next_root_backup(fs_info, fs_info->super_copy,
2980                                &num_backups_tried, &backup_index);
2981         if (ret == -1)
2982                 goto fail_block_groups;
2983         goto retry_root_backup;
2984 }
2985
2986 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2987 {
2988         if (uptodate) {
2989                 set_buffer_uptodate(bh);
2990         } else {
2991                 struct btrfs_device *device = (struct btrfs_device *)
2992                         bh->b_private;
2993
2994                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2995                                           "I/O error on %s\n",
2996                                           rcu_str_deref(device->name));
2997                 /* note, we dont' set_buffer_write_io_error because we have
2998                  * our own ways of dealing with the IO errors
2999                  */
3000                 clear_buffer_uptodate(bh);
3001                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3002         }
3003         unlock_buffer(bh);
3004         put_bh(bh);
3005 }
3006
3007 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3008 {
3009         struct buffer_head *bh;
3010         struct buffer_head *latest = NULL;
3011         struct btrfs_super_block *super;
3012         int i;
3013         u64 transid = 0;
3014         u64 bytenr;
3015
3016         /* we would like to check all the supers, but that would make
3017          * a btrfs mount succeed after a mkfs from a different FS.
3018          * So, we need to add a special mount option to scan for
3019          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3020          */
3021         for (i = 0; i < 1; i++) {
3022                 bytenr = btrfs_sb_offset(i);
3023                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3024                                         i_size_read(bdev->bd_inode))
3025                         break;
3026                 bh = __bread(bdev, bytenr / 4096,
3027                                         BTRFS_SUPER_INFO_SIZE);
3028                 if (!bh)
3029                         continue;
3030
3031                 super = (struct btrfs_super_block *)bh->b_data;
3032                 if (btrfs_super_bytenr(super) != bytenr ||
3033                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3034                         brelse(bh);
3035                         continue;
3036                 }
3037
3038                 if (!latest || btrfs_super_generation(super) > transid) {
3039                         brelse(latest);
3040                         latest = bh;
3041                         transid = btrfs_super_generation(super);
3042                 } else {
3043                         brelse(bh);
3044                 }
3045         }
3046         return latest;
3047 }
3048
3049 /*
3050  * this should be called twice, once with wait == 0 and
3051  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3052  * we write are pinned.
3053  *
3054  * They are released when wait == 1 is done.
3055  * max_mirrors must be the same for both runs, and it indicates how
3056  * many supers on this one device should be written.
3057  *
3058  * max_mirrors == 0 means to write them all.
3059  */
3060 static int write_dev_supers(struct btrfs_device *device,
3061                             struct btrfs_super_block *sb,
3062                             int do_barriers, int wait, int max_mirrors)
3063 {
3064         struct buffer_head *bh;
3065         int i;
3066         int ret;
3067         int errors = 0;
3068         u32 crc;
3069         u64 bytenr;
3070
3071         if (max_mirrors == 0)
3072                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3073
3074         for (i = 0; i < max_mirrors; i++) {
3075                 bytenr = btrfs_sb_offset(i);
3076                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3077                         break;
3078
3079                 if (wait) {
3080                         bh = __find_get_block(device->bdev, bytenr / 4096,
3081                                               BTRFS_SUPER_INFO_SIZE);
3082                         if (!bh) {
3083                                 errors++;
3084                                 continue;
3085                         }
3086                         wait_on_buffer(bh);
3087                         if (!buffer_uptodate(bh))
3088                                 errors++;
3089
3090                         /* drop our reference */
3091                         brelse(bh);
3092
3093                         /* drop the reference from the wait == 0 run */
3094                         brelse(bh);
3095                         continue;
3096                 } else {
3097                         btrfs_set_super_bytenr(sb, bytenr);
3098
3099                         crc = ~(u32)0;
3100                         crc = btrfs_csum_data((char *)sb +
3101                                               BTRFS_CSUM_SIZE, crc,
3102                                               BTRFS_SUPER_INFO_SIZE -
3103                                               BTRFS_CSUM_SIZE);
3104                         btrfs_csum_final(crc, sb->csum);
3105
3106                         /*
3107                          * one reference for us, and we leave it for the
3108                          * caller
3109                          */
3110                         bh = __getblk(device->bdev, bytenr / 4096,
3111                                       BTRFS_SUPER_INFO_SIZE);
3112                         if (!bh) {
3113                                 printk(KERN_ERR "btrfs: couldn't get super "
3114                                        "buffer head for bytenr %Lu\n", bytenr);
3115                                 errors++;
3116                                 continue;
3117                         }
3118
3119                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3120
3121                         /* one reference for submit_bh */
3122                         get_bh(bh);
3123
3124                         set_buffer_uptodate(bh);
3125                         lock_buffer(bh);
3126                         bh->b_end_io = btrfs_end_buffer_write_sync;
3127                         bh->b_private = device;
3128                 }
3129
3130                 /*
3131                  * we fua the first super.  The others we allow
3132                  * to go down lazy.
3133                  */
3134                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3135                 if (ret)
3136                         errors++;
3137         }
3138         return errors < i ? 0 : -1;
3139 }
3140
3141 /*
3142  * endio for the write_dev_flush, this will wake anyone waiting
3143  * for the barrier when it is done
3144  */
3145 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3146 {
3147         if (err) {
3148                 if (err == -EOPNOTSUPP)
3149                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3150                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3151         }
3152         if (bio->bi_private)
3153                 complete(bio->bi_private);
3154         bio_put(bio);
3155 }
3156
3157 /*
3158  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3159  * sent down.  With wait == 1, it waits for the previous flush.
3160  *
3161  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3162  * capable
3163  */
3164 static int write_dev_flush(struct btrfs_device *device, int wait)
3165 {
3166         struct bio *bio;
3167         int ret = 0;
3168
3169         if (device->nobarriers)
3170                 return 0;
3171
3172         if (wait) {
3173                 bio = device->flush_bio;
3174                 if (!bio)
3175                         return 0;
3176
3177                 wait_for_completion(&device->flush_wait);
3178
3179                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3180                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3181                                       rcu_str_deref(device->name));
3182                         device->nobarriers = 1;
3183                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3184                         ret = -EIO;
3185                         btrfs_dev_stat_inc_and_print(device,
3186                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3187                 }
3188
3189                 /* drop the reference from the wait == 0 run */
3190                 bio_put(bio);
3191                 device->flush_bio = NULL;
3192
3193                 return ret;
3194         }
3195
3196         /*
3197          * one reference for us, and we leave it for the
3198          * caller
3199          */
3200         device->flush_bio = NULL;
3201         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3202         if (!bio)
3203                 return -ENOMEM;
3204
3205         bio->bi_end_io = btrfs_end_empty_barrier;
3206         bio->bi_bdev = device->bdev;
3207         init_completion(&device->flush_wait);
3208         bio->bi_private = &device->flush_wait;
3209         device->flush_bio = bio;
3210
3211         bio_get(bio);
3212         btrfsic_submit_bio(WRITE_FLUSH, bio);
3213
3214         return 0;
3215 }
3216
3217 /*
3218  * send an empty flush down to each device in parallel,
3219  * then wait for them
3220  */
3221 static int barrier_all_devices(struct btrfs_fs_info *info)
3222 {
3223         struct list_head *head;
3224         struct btrfs_device *dev;
3225         int errors_send = 0;
3226         int errors_wait = 0;
3227         int ret;
3228
3229         /* send down all the barriers */
3230         head = &info->fs_devices->devices;
3231         list_for_each_entry_rcu(dev, head, dev_list) {
3232                 if (!dev->bdev) {
3233                         errors_send++;
3234                         continue;
3235                 }
3236                 if (!dev->in_fs_metadata || !dev->writeable)
3237                         continue;
3238
3239                 ret = write_dev_flush(dev, 0);
3240                 if (ret)
3241                         errors_send++;
3242         }
3243
3244         /* wait for all the barriers */
3245         list_for_each_entry_rcu(dev, head, dev_list) {
3246                 if (!dev->bdev) {
3247                         errors_wait++;
3248                         continue;
3249                 }
3250                 if (!dev->in_fs_metadata || !dev->writeable)
3251                         continue;
3252
3253                 ret = write_dev_flush(dev, 1);
3254                 if (ret)
3255                         errors_wait++;
3256         }
3257         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3258             errors_wait > info->num_tolerated_disk_barrier_failures)
3259                 return -EIO;
3260         return 0;
3261 }
3262
3263 int btrfs_calc_num_tolerated_disk_barrier_failures(
3264         struct btrfs_fs_info *fs_info)
3265 {
3266         struct btrfs_ioctl_space_info space;
3267         struct btrfs_space_info *sinfo;
3268         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3269                        BTRFS_BLOCK_GROUP_SYSTEM,
3270                        BTRFS_BLOCK_GROUP_METADATA,
3271                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3272         int num_types = 4;
3273         int i;
3274         int c;
3275         int num_tolerated_disk_barrier_failures =
3276                 (int)fs_info->fs_devices->num_devices;
3277
3278         for (i = 0; i < num_types; i++) {
3279                 struct btrfs_space_info *tmp;
3280
3281                 sinfo = NULL;
3282                 rcu_read_lock();
3283                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3284                         if (tmp->flags == types[i]) {
3285                                 sinfo = tmp;
3286                                 break;
3287                         }
3288                 }
3289                 rcu_read_unlock();
3290
3291                 if (!sinfo)
3292                         continue;
3293
3294                 down_read(&sinfo->groups_sem);
3295                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3296                         if (!list_empty(&sinfo->block_groups[c])) {
3297                                 u64 flags;
3298
3299                                 btrfs_get_block_group_info(
3300                                         &sinfo->block_groups[c], &space);
3301                                 if (space.total_bytes == 0 ||
3302                                     space.used_bytes == 0)
3303                                         continue;
3304                                 flags = space.flags;
3305                                 /*
3306                                  * return
3307                                  * 0: if dup, single or RAID0 is configured for
3308                                  *    any of metadata, system or data, else
3309                                  * 1: if RAID5 is configured, or if RAID1 or
3310                                  *    RAID10 is configured and only two mirrors
3311                                  *    are used, else
3312                                  * 2: if RAID6 is configured, else
3313                                  * num_mirrors - 1: if RAID1 or RAID10 is
3314                                  *                  configured and more than
3315                                  *                  2 mirrors are used.
3316                                  */
3317                                 if (num_tolerated_disk_barrier_failures > 0 &&
3318                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3319                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3320                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3321                                       == 0)))
3322                                         num_tolerated_disk_barrier_failures = 0;
3323                                 else if (num_tolerated_disk_barrier_failures > 1) {
3324                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3325                                             BTRFS_BLOCK_GROUP_RAID5 |
3326                                             BTRFS_BLOCK_GROUP_RAID10)) {
3327                                                 num_tolerated_disk_barrier_failures = 1;
3328                                         } else if (flags &
3329                                                    BTRFS_BLOCK_GROUP_RAID6) {
3330                                                 num_tolerated_disk_barrier_failures = 2;
3331                                         }
3332                                 }
3333                         }
3334                 }
3335                 up_read(&sinfo->groups_sem);
3336         }
3337
3338         return num_tolerated_disk_barrier_failures;
3339 }
3340
3341 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3342 {
3343         struct list_head *head;
3344         struct btrfs_device *dev;
3345         struct btrfs_super_block *sb;
3346         struct btrfs_dev_item *dev_item;
3347         int ret;
3348         int do_barriers;
3349         int max_errors;
3350         int total_errors = 0;
3351         u64 flags;
3352
3353         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3354         backup_super_roots(root->fs_info);
3355
3356         sb = root->fs_info->super_for_commit;
3357         dev_item = &sb->dev_item;
3358
3359         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3360         head = &root->fs_info->fs_devices->devices;
3361         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3362
3363         if (do_barriers) {
3364                 ret = barrier_all_devices(root->fs_info);
3365                 if (ret) {
3366                         mutex_unlock(
3367                                 &root->fs_info->fs_devices->device_list_mutex);
3368                         btrfs_error(root->fs_info, ret,
3369                                     "errors while submitting device barriers.");
3370                         return ret;
3371                 }
3372         }
3373
3374         list_for_each_entry_rcu(dev, head, dev_list) {
3375                 if (!dev->bdev) {
3376                         total_errors++;
3377                         continue;
3378                 }
3379                 if (!dev->in_fs_metadata || !dev->writeable)
3380                         continue;
3381
3382                 btrfs_set_stack_device_generation(dev_item, 0);
3383                 btrfs_set_stack_device_type(dev_item, dev->type);
3384                 btrfs_set_stack_device_id(dev_item, dev->devid);
3385                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3386                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3387                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3388                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3389                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3390                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3391                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3392
3393                 flags = btrfs_super_flags(sb);
3394                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3395
3396                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3397                 if (ret)
3398                         total_errors++;
3399         }
3400         if (total_errors > max_errors) {
3401                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3402                        total_errors);
3403                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3404
3405                 /* FUA is masked off if unsupported and can't be the reason */
3406                 btrfs_error(root->fs_info, -EIO,
3407                             "%d errors while writing supers", total_errors);
3408                 return -EIO;
3409         }
3410
3411         total_errors = 0;
3412         list_for_each_entry_rcu(dev, head, dev_list) {
3413                 if (!dev->bdev)
3414                         continue;
3415                 if (!dev->in_fs_metadata || !dev->writeable)
3416                         continue;
3417
3418                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3419                 if (ret)
3420                         total_errors++;
3421         }
3422         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3423         if (total_errors > max_errors) {
3424                 btrfs_error(root->fs_info, -EIO,
3425                             "%d errors while writing supers", total_errors);
3426                 return -EIO;
3427         }
3428         return 0;
3429 }
3430
3431 int write_ctree_super(struct btrfs_trans_handle *trans,
3432                       struct btrfs_root *root, int max_mirrors)
3433 {
3434         return write_all_supers(root, max_mirrors);
3435 }
3436
3437 /* Drop a fs root from the radix tree and free it. */
3438 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3439                                   struct btrfs_root *root)
3440 {
3441         spin_lock(&fs_info->fs_roots_radix_lock);
3442         radix_tree_delete(&fs_info->fs_roots_radix,
3443                           (unsigned long)root->root_key.objectid);
3444         spin_unlock(&fs_info->fs_roots_radix_lock);
3445
3446         if (btrfs_root_refs(&root->root_item) == 0)
3447                 synchronize_srcu(&fs_info->subvol_srcu);
3448
3449         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3450                 btrfs_free_log(NULL, root);
3451                 btrfs_free_log_root_tree(NULL, fs_info);
3452         }
3453
3454         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3455         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3456         free_fs_root(root);
3457 }
3458
3459 static void free_fs_root(struct btrfs_root *root)
3460 {
3461         iput(root->cache_inode);
3462         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3463         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3464         root->orphan_block_rsv = NULL;
3465         if (root->anon_dev)
3466                 free_anon_bdev(root->anon_dev);
3467         free_extent_buffer(root->node);
3468         free_extent_buffer(root->commit_root);
3469         kfree(root->free_ino_ctl);
3470         kfree(root->free_ino_pinned);
3471         kfree(root->name);
3472         btrfs_put_fs_root(root);
3473 }
3474
3475 void btrfs_free_fs_root(struct btrfs_root *root)
3476 {
3477         free_fs_root(root);
3478 }
3479
3480 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3481 {
3482         u64 root_objectid = 0;
3483         struct btrfs_root *gang[8];
3484         int i;
3485         int ret;
3486
3487         while (1) {
3488                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3489                                              (void **)gang, root_objectid,
3490                                              ARRAY_SIZE(gang));
3491                 if (!ret)
3492                         break;
3493
3494                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3495                 for (i = 0; i < ret; i++) {
3496                         int err;
3497
3498                         root_objectid = gang[i]->root_key.objectid;
3499                         err = btrfs_orphan_cleanup(gang[i]);
3500                         if (err)
3501                                 return err;
3502                 }
3503                 root_objectid++;
3504         }
3505         return 0;
3506 }
3507
3508 int btrfs_commit_super(struct btrfs_root *root)
3509 {
3510         struct btrfs_trans_handle *trans;
3511
3512         mutex_lock(&root->fs_info->cleaner_mutex);
3513         btrfs_run_delayed_iputs(root);
3514         mutex_unlock(&root->fs_info->cleaner_mutex);
3515         wake_up_process(root->fs_info->cleaner_kthread);
3516
3517         /* wait until ongoing cleanup work done */
3518         down_write(&root->fs_info->cleanup_work_sem);
3519         up_write(&root->fs_info->cleanup_work_sem);
3520
3521         trans = btrfs_join_transaction(root);
3522         if (IS_ERR(trans))
3523                 return PTR_ERR(trans);
3524         return btrfs_commit_transaction(trans, root);
3525 }
3526
3527 int close_ctree(struct btrfs_root *root)
3528 {
3529         struct btrfs_fs_info *fs_info = root->fs_info;
3530         int ret;
3531
3532         fs_info->closing = 1;
3533         smp_mb();
3534
3535         /* wait for the uuid_scan task to finish */
3536         down(&fs_info->uuid_tree_rescan_sem);
3537         /* avoid complains from lockdep et al., set sem back to initial state */
3538         up(&fs_info->uuid_tree_rescan_sem);
3539
3540         /* pause restriper - we want to resume on mount */
3541         btrfs_pause_balance(fs_info);
3542
3543         btrfs_dev_replace_suspend_for_unmount(fs_info);
3544
3545         btrfs_scrub_cancel(fs_info);
3546
3547         /* wait for any defraggers to finish */
3548         wait_event(fs_info->transaction_wait,
3549                    (atomic_read(&fs_info->defrag_running) == 0));
3550
3551         /* clear out the rbtree of defraggable inodes */
3552         btrfs_cleanup_defrag_inodes(fs_info);
3553
3554         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3555                 ret = btrfs_commit_super(root);
3556                 if (ret)
3557                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3558         }
3559
3560         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3561                 btrfs_error_commit_super(root);
3562
3563         btrfs_put_block_group_cache(fs_info);
3564
3565         kthread_stop(fs_info->transaction_kthread);
3566         kthread_stop(fs_info->cleaner_kthread);
3567
3568         fs_info->closing = 2;
3569         smp_mb();
3570
3571         btrfs_free_qgroup_config(root->fs_info);
3572
3573         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3574                 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3575                        percpu_counter_sum(&fs_info->delalloc_bytes));
3576         }
3577
3578         btrfs_sysfs_remove_one(fs_info);
3579
3580         del_fs_roots(fs_info);
3581
3582         btrfs_free_block_groups(fs_info);
3583
3584         btrfs_stop_all_workers(fs_info);
3585
3586         free_root_pointers(fs_info, 1);
3587
3588         iput(fs_info->btree_inode);
3589
3590 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3591         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3592                 btrfsic_unmount(root, fs_info->fs_devices);
3593 #endif
3594
3595         btrfs_close_devices(fs_info->fs_devices);
3596         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3597
3598         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3599         percpu_counter_destroy(&fs_info->delalloc_bytes);
3600         bdi_destroy(&fs_info->bdi);
3601         cleanup_srcu_struct(&fs_info->subvol_srcu);
3602
3603         btrfs_free_stripe_hash_table(fs_info);
3604
3605         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3606         root->orphan_block_rsv = NULL;
3607
3608         return 0;
3609 }
3610
3611 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3612                           int atomic)
3613 {
3614         int ret;
3615         struct inode *btree_inode = buf->pages[0]->mapping->host;
3616
3617         ret = extent_buffer_uptodate(buf);
3618         if (!ret)
3619                 return ret;
3620
3621         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3622                                     parent_transid, atomic);
3623         if (ret == -EAGAIN)
3624                 return ret;
3625         return !ret;
3626 }
3627
3628 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3629 {
3630         return set_extent_buffer_uptodate(buf);
3631 }
3632
3633 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3634 {
3635         struct btrfs_root *root;
3636         u64 transid = btrfs_header_generation(buf);
3637         int was_dirty;
3638
3639 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3640         /*
3641          * This is a fast path so only do this check if we have sanity tests
3642          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3643          * outside of the sanity tests.
3644          */
3645         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3646                 return;
3647 #endif
3648         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3649         btrfs_assert_tree_locked(buf);
3650         if (transid != root->fs_info->generation)
3651                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3652                        "found %llu running %llu\n",
3653                         buf->start, transid, root->fs_info->generation);
3654         was_dirty = set_extent_buffer_dirty(buf);
3655         if (!was_dirty)
3656                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3657                                      buf->len,
3658                                      root->fs_info->dirty_metadata_batch);
3659 }
3660
3661 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3662                                         int flush_delayed)
3663 {
3664         /*
3665          * looks as though older kernels can get into trouble with
3666          * this code, they end up stuck in balance_dirty_pages forever
3667          */
3668         int ret;
3669
3670         if (current->flags & PF_MEMALLOC)
3671                 return;
3672
3673         if (flush_delayed)
3674                 btrfs_balance_delayed_items(root);
3675
3676         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3677                                      BTRFS_DIRTY_METADATA_THRESH);
3678         if (ret > 0) {
3679                 balance_dirty_pages_ratelimited(
3680                                    root->fs_info->btree_inode->i_mapping);
3681         }
3682         return;
3683 }
3684
3685 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3686 {
3687         __btrfs_btree_balance_dirty(root, 1);
3688 }
3689
3690 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3691 {
3692         __btrfs_btree_balance_dirty(root, 0);
3693 }
3694
3695 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3696 {
3697         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3698         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3699 }
3700
3701 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3702                               int read_only)
3703 {
3704         /*
3705          * Placeholder for checks
3706          */
3707         return 0;
3708 }
3709
3710 static void btrfs_error_commit_super(struct btrfs_root *root)
3711 {
3712         mutex_lock(&root->fs_info->cleaner_mutex);
3713         btrfs_run_delayed_iputs(root);
3714         mutex_unlock(&root->fs_info->cleaner_mutex);
3715
3716         down_write(&root->fs_info->cleanup_work_sem);
3717         up_write(&root->fs_info->cleanup_work_sem);
3718
3719         /* cleanup FS via transaction */
3720         btrfs_cleanup_transaction(root);
3721 }
3722
3723 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3724                                              struct btrfs_root *root)
3725 {
3726         struct btrfs_inode *btrfs_inode;
3727         struct list_head splice;
3728
3729         INIT_LIST_HEAD(&splice);
3730
3731         mutex_lock(&root->fs_info->ordered_operations_mutex);
3732         spin_lock(&root->fs_info->ordered_root_lock);
3733
3734         list_splice_init(&t->ordered_operations, &splice);
3735         while (!list_empty(&splice)) {
3736                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3737                                          ordered_operations);
3738
3739                 list_del_init(&btrfs_inode->ordered_operations);
3740                 spin_unlock(&root->fs_info->ordered_root_lock);
3741
3742                 btrfs_invalidate_inodes(btrfs_inode->root);
3743
3744                 spin_lock(&root->fs_info->ordered_root_lock);
3745         }
3746
3747         spin_unlock(&root->fs_info->ordered_root_lock);
3748         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3749 }
3750
3751 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3752 {
3753         struct btrfs_ordered_extent *ordered;
3754
3755         spin_lock(&root->ordered_extent_lock);
3756         /*
3757          * This will just short circuit the ordered completion stuff which will
3758          * make sure the ordered extent gets properly cleaned up.
3759          */
3760         list_for_each_entry(ordered, &root->ordered_extents,
3761                             root_extent_list)
3762                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3763         spin_unlock(&root->ordered_extent_lock);
3764 }
3765
3766 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3767 {
3768         struct btrfs_root *root;
3769         struct list_head splice;
3770
3771         INIT_LIST_HEAD(&splice);
3772
3773         spin_lock(&fs_info->ordered_root_lock);
3774         list_splice_init(&fs_info->ordered_roots, &splice);
3775         while (!list_empty(&splice)) {
3776                 root = list_first_entry(&splice, struct btrfs_root,
3777                                         ordered_root);
3778                 list_move_tail(&root->ordered_root,
3779                                &fs_info->ordered_roots);
3780
3781                 btrfs_destroy_ordered_extents(root);
3782
3783                 cond_resched_lock(&fs_info->ordered_root_lock);
3784         }
3785         spin_unlock(&fs_info->ordered_root_lock);
3786 }
3787
3788 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3789                                       struct btrfs_root *root)
3790 {
3791         struct rb_node *node;
3792         struct btrfs_delayed_ref_root *delayed_refs;
3793         struct btrfs_delayed_ref_node *ref;
3794         int ret = 0;
3795
3796         delayed_refs = &trans->delayed_refs;
3797
3798         spin_lock(&delayed_refs->lock);
3799         if (delayed_refs->num_entries == 0) {
3800                 spin_unlock(&delayed_refs->lock);
3801                 printk(KERN_INFO "delayed_refs has NO entry\n");
3802                 return ret;
3803         }
3804
3805         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3806                 struct btrfs_delayed_ref_head *head = NULL;
3807                 bool pin_bytes = false;
3808
3809                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3810                 atomic_set(&ref->refs, 1);
3811                 if (btrfs_delayed_ref_is_head(ref)) {
3812
3813                         head = btrfs_delayed_node_to_head(ref);
3814                         if (!mutex_trylock(&head->mutex)) {
3815                                 atomic_inc(&ref->refs);
3816                                 spin_unlock(&delayed_refs->lock);
3817
3818                                 /* Need to wait for the delayed ref to run */
3819                                 mutex_lock(&head->mutex);
3820                                 mutex_unlock(&head->mutex);
3821                                 btrfs_put_delayed_ref(ref);
3822
3823                                 spin_lock(&delayed_refs->lock);
3824                                 continue;
3825                         }
3826
3827                         if (head->must_insert_reserved)
3828                                 pin_bytes = true;
3829                         btrfs_free_delayed_extent_op(head->extent_op);
3830                         delayed_refs->num_heads--;
3831                         if (list_empty(&head->cluster))
3832                                 delayed_refs->num_heads_ready--;
3833                         list_del_init(&head->cluster);
3834                 }
3835
3836                 ref->in_tree = 0;
3837                 rb_erase(&ref->rb_node, &delayed_refs->root);
3838                 if (head)
3839                         rb_erase(&head->href_node, &delayed_refs->href_root);
3840
3841                 delayed_refs->num_entries--;
3842                 spin_unlock(&delayed_refs->lock);
3843                 if (head) {
3844                         if (pin_bytes)
3845                                 btrfs_pin_extent(root, ref->bytenr,
3846                                                  ref->num_bytes, 1);
3847                         mutex_unlock(&head->mutex);
3848                 }
3849                 btrfs_put_delayed_ref(ref);
3850
3851                 cond_resched();
3852                 spin_lock(&delayed_refs->lock);
3853         }
3854
3855         spin_unlock(&delayed_refs->lock);
3856
3857         return ret;
3858 }
3859
3860 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3861 {
3862         struct btrfs_inode *btrfs_inode;
3863         struct list_head splice;
3864
3865         INIT_LIST_HEAD(&splice);
3866
3867         spin_lock(&root->delalloc_lock);
3868         list_splice_init(&root->delalloc_inodes, &splice);
3869
3870         while (!list_empty(&splice)) {
3871                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3872                                                delalloc_inodes);
3873
3874                 list_del_init(&btrfs_inode->delalloc_inodes);
3875                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3876                           &btrfs_inode->runtime_flags);
3877                 spin_unlock(&root->delalloc_lock);
3878
3879                 btrfs_invalidate_inodes(btrfs_inode->root);
3880
3881                 spin_lock(&root->delalloc_lock);
3882         }
3883
3884         spin_unlock(&root->delalloc_lock);
3885 }
3886
3887 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3888 {
3889         struct btrfs_root *root;
3890         struct list_head splice;
3891
3892         INIT_LIST_HEAD(&splice);
3893
3894         spin_lock(&fs_info->delalloc_root_lock);
3895         list_splice_init(&fs_info->delalloc_roots, &splice);
3896         while (!list_empty(&splice)) {
3897                 root = list_first_entry(&splice, struct btrfs_root,
3898                                          delalloc_root);
3899                 list_del_init(&root->delalloc_root);
3900                 root = btrfs_grab_fs_root(root);
3901                 BUG_ON(!root);
3902                 spin_unlock(&fs_info->delalloc_root_lock);
3903
3904                 btrfs_destroy_delalloc_inodes(root);
3905                 btrfs_put_fs_root(root);
3906
3907                 spin_lock(&fs_info->delalloc_root_lock);
3908         }
3909         spin_unlock(&fs_info->delalloc_root_lock);
3910 }
3911
3912 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3913                                         struct extent_io_tree *dirty_pages,
3914                                         int mark)
3915 {
3916         int ret;
3917         struct extent_buffer *eb;
3918         u64 start = 0;
3919         u64 end;
3920
3921         while (1) {
3922                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3923                                             mark, NULL);
3924                 if (ret)
3925                         break;
3926
3927                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3928                 while (start <= end) {
3929                         eb = btrfs_find_tree_block(root, start,
3930                                                    root->leafsize);
3931                         start += root->leafsize;
3932                         if (!eb)
3933                                 continue;
3934                         wait_on_extent_buffer_writeback(eb);
3935
3936                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3937                                                &eb->bflags))
3938                                 clear_extent_buffer_dirty(eb);
3939                         free_extent_buffer_stale(eb);
3940                 }
3941         }
3942
3943         return ret;
3944 }
3945
3946 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3947                                        struct extent_io_tree *pinned_extents)
3948 {
3949         struct extent_io_tree *unpin;
3950         u64 start;
3951         u64 end;
3952         int ret;
3953         bool loop = true;
3954
3955         unpin = pinned_extents;
3956 again:
3957         while (1) {
3958                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3959                                             EXTENT_DIRTY, NULL);
3960                 if (ret)
3961                         break;
3962
3963                 /* opt_discard */
3964                 if (btrfs_test_opt(root, DISCARD))
3965                         ret = btrfs_error_discard_extent(root, start,
3966                                                          end + 1 - start,
3967                                                          NULL);
3968
3969                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3970                 btrfs_error_unpin_extent_range(root, start, end);
3971                 cond_resched();
3972         }
3973
3974         if (loop) {
3975                 if (unpin == &root->fs_info->freed_extents[0])
3976                         unpin = &root->fs_info->freed_extents[1];
3977                 else
3978                         unpin = &root->fs_info->freed_extents[0];
3979                 loop = false;
3980                 goto again;
3981         }
3982
3983         return 0;
3984 }
3985
3986 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3987                                    struct btrfs_root *root)
3988 {
3989         btrfs_destroy_ordered_operations(cur_trans, root);
3990
3991         btrfs_destroy_delayed_refs(cur_trans, root);
3992
3993         cur_trans->state = TRANS_STATE_COMMIT_START;
3994         wake_up(&root->fs_info->transaction_blocked_wait);
3995
3996         cur_trans->state = TRANS_STATE_UNBLOCKED;
3997         wake_up(&root->fs_info->transaction_wait);
3998
3999         btrfs_destroy_delayed_inodes(root);
4000         btrfs_assert_delayed_root_empty(root);
4001
4002         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4003                                      EXTENT_DIRTY);
4004         btrfs_destroy_pinned_extent(root,
4005                                     root->fs_info->pinned_extents);
4006
4007         cur_trans->state =TRANS_STATE_COMPLETED;
4008         wake_up(&cur_trans->commit_wait);
4009
4010         /*
4011         memset(cur_trans, 0, sizeof(*cur_trans));
4012         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4013         */
4014 }
4015
4016 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4017 {
4018         struct btrfs_transaction *t;
4019
4020         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4021
4022         spin_lock(&root->fs_info->trans_lock);
4023         while (!list_empty(&root->fs_info->trans_list)) {
4024                 t = list_first_entry(&root->fs_info->trans_list,
4025                                      struct btrfs_transaction, list);
4026                 if (t->state >= TRANS_STATE_COMMIT_START) {
4027                         atomic_inc(&t->use_count);
4028                         spin_unlock(&root->fs_info->trans_lock);
4029                         btrfs_wait_for_commit(root, t->transid);
4030                         btrfs_put_transaction(t);
4031                         spin_lock(&root->fs_info->trans_lock);
4032                         continue;
4033                 }
4034                 if (t == root->fs_info->running_transaction) {
4035                         t->state = TRANS_STATE_COMMIT_DOING;
4036                         spin_unlock(&root->fs_info->trans_lock);
4037                         /*
4038                          * We wait for 0 num_writers since we don't hold a trans
4039                          * handle open currently for this transaction.
4040                          */
4041                         wait_event(t->writer_wait,
4042                                    atomic_read(&t->num_writers) == 0);
4043                 } else {
4044                         spin_unlock(&root->fs_info->trans_lock);
4045                 }
4046                 btrfs_cleanup_one_transaction(t, root);
4047
4048                 spin_lock(&root->fs_info->trans_lock);
4049                 if (t == root->fs_info->running_transaction)
4050                         root->fs_info->running_transaction = NULL;
4051                 list_del_init(&t->list);
4052                 spin_unlock(&root->fs_info->trans_lock);
4053
4054                 btrfs_put_transaction(t);
4055                 trace_btrfs_transaction_commit(root);
4056                 spin_lock(&root->fs_info->trans_lock);
4057         }
4058         spin_unlock(&root->fs_info->trans_lock);
4059         btrfs_destroy_all_ordered_extents(root->fs_info);
4060         btrfs_destroy_delayed_inodes(root);
4061         btrfs_assert_delayed_root_empty(root);
4062         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4063         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4064         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4065
4066         return 0;
4067 }
4068
4069 static struct extent_io_ops btree_extent_io_ops = {
4070         .readpage_end_io_hook = btree_readpage_end_io_hook,
4071         .readpage_io_failed_hook = btree_io_failed_hook,
4072         .submit_bio_hook = btree_submit_bio_hook,
4073         /* note we're sharing with inode.c for the merge bio hook */
4074         .merge_bio_hook = btrfs_merge_bio_hook,
4075 };